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Abstract

This document is intended for knowledgeable users of C (or any other language using a C-like gram-

mar, like Perl or Java) who would like to know more about, or make the transition to, C++. This

document is the main textbook for Frank’s C++ programming courses, which are yearly organized

at the University of Groningen. The C++ Annotations do not cover all aspects of C++, though. In

particular, C++’s basic grammar, which is, for all practical purposes, equal to C’s grammar, is not

covered. For this part of the C++ language, the reader should consult other texts, like a book cover-

ing the C programming language.

If you want a hard-copy version of the C++ Annotations: printable versions are available in

postscript, pdf and other formats in

ftp://ftp.rug.nl/contrib/frank/documents/annotations,

in files having names starting with cplusplus (A4 paper size). Files having names starting with
‘cplusplusus’ are intended for the US legal paper size.

The latest version of the C++ Annotations in html-format can be browsed at:

http://www.icce.rug.nl/documents/
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Chapter 1

Overview of the chapters

The chapters of the C++ Annotations cover the following topics:

• Chapter 1: This overview of the chapters.

• Chapter 2: A general introduction to C++.

• Chapter 3: A first impression: differences between C and C++.

• Chapter 4: The ‘string’ data type.

• Chapter 5: The C++ I/O library.

• Chapter 6: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of a

class.

• Chapter 7: Allocation and returning unused memory: new, delete, and the function
set_new_handler().

• Chapter 8: Exceptions: handle errors where appropriate, rather than where they occur.

• Chapter 9: Give your own meaning to operators.

• Chapter 10: Static data and functions: members of a class not bound to objects.

• Chapter 11: Gaining access to private parts: friend functions and classes.

• Chapter 12: Abstract Containers to put stuff into.

• Chapter 13: Building classes upon classes: setting up class hierarcies.

• Chapter 14: Changing the behavior of member functions accessed through base class pointers.

• Chapter 15: Classes having pointers to members: pointing to locations inside objects.

• Chapter 16: Constructing classes and enums within classes.

• Chapter 17: The Standard Template Library, generic algorithms.

• Chapter 18: Template functions: using molds for type independent functions.

• Chapter 19: Template classes: using molds for type independent classes.

• Chapter 20: Several examples of programs written in C++.

15
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Chapter 2

Introduction

This document offers an introduction to the C++ programming language. It is a guide for C/C++

programming courses, yearly presented by Frank at the University of Groningen. This document

is not a complete C/C++ handbook, as much of the C-background of C++ is not covered. Other

sources should be referred to for that (e.g., the Dutch book De programmeertaal C, Brokken and

Kubat, University of Groningen, 1996) or the on-line book1 suggested to me by George Danchev
(danchev at spnet dot net).

The reader should realize that extensive knowledge of the C programming language is actually

assumed. The C++ Annotations continue where topics of the C programming language end, such as

pointers, basic flow control and the construction of functions.

The version number of the C++ Annotations (currently 6.5.0) is updated when the contents of the

document change. The first number is the major number, and will probably not be changed for some

time: it indicates a major rewriting. The middle number is increased when new information is added

to the document. The last number only indicates small changes; it is increased when, e.g., series of

typos are corrected.

This document is published by the Computing Center, University of Groningen, the Netherlands

under the GNU General Public License2.

The C++ Annotations were typeset using the yodl3 formatting system.

All correspondence concerning suggestions, additions, improvements or changes

to this document should be directed to the author:

Frank B. Brokken

Computing Center, University of Groningen

Nettelbosje 1,

P.O. Box 11044,

9700 CA Groningen

The Netherlands

(email: f.b.brokken@rug.nl)

In this chapter a first impression of C++ is presented. A few extensions to C are reviewed and the

1http://publications.gbdirect.co.uk/c_book/
2http://www.gnu.org/licenses/
3http://yodl.sourceforge.net
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concepts of object based and object oriented programming (OOP) are briefly introduced.

2.1 What’s new in the C++ Annotations

This section is modified when the first or second part of the version number changes (and sometimes

for the third part as well).

• Version 6.5.0 changed unsigned into size_t where appropriate, and explicitly mentioned
int-derived types like int16_t. In-class member function definitions were moved out of (be-
low) their class definitions as inline defined members. A paragraphs about implementing
pure virtual member functions was added. Various bugs and compilation errors were fixed.

• Version 6.4.0 added a new section (19.11.2) further discussing the use of the template keyword
to distinguish types nested under template classes from template members. Furthermore,

Sergio Bacchi s dot bacchi at gmail dot com did an impressive job when translating
the Annotations into Portuguese. His translation (which may lag a distribution or two behind

the latest verstion of the Annotations) may also be retrieved from

ftp://ftp.rug.nl/contrib/frank/documents/annotations.

• Version 6.3.0 added new sections about anonymous objects (section 6.2.1) and type resolution

with template classes (section 19.11.1). Also the description of the template parameter deduc-

tion algorithm was rewritten (cf. section 18.2.4) and numerous modifications required because

of the compiler’s closer adherence to the C++ standard were realized, among which exception

rethrowing from constructor and destructor function try blocks. Also, all textual corrections

received from readers since version 6.2.4 were processed.

• In version 6.2.4 many textual improvements were realized. I received extensive lists of typos

and suggestions for clarifications of the text, in particular from Nathan Johnson and from

Jakob van Bethlehem. Equally valuable were suggestions I received from various other readers

of the C++ annotations: all were processed in this release. The C++ content matter of this

release was not substantially modified, compared to version 6.2.2.

• Version 6.2.2 offers improved implementations of the configurable template classes (sections

20.7.3 and 20.7.4).

• Version 6.2.0 was released as an Annual Update, by the end of May, 2005. Apart from the

usual typo corrections several new sections were added and some were removed: in the Excep-

tion chapter (8) a section was added covering the standard exceptions and their meanings; in

the chapter covering static members (10) a section was added discussing static const data
members; and the final chapter (20) covers configurable template classes using local context

structs (replacing the previous ForEach, UnaryPredicate and BinaryPredicate classes).
Furthermore, the final section (covering a C++ parser generator) now uses bisonc++, rather

than the old (and somewhat outdated) bison++ program.

• Version 6.1.0 was released shortly after releasing 6.0.0. Following suggestions received from

Leo Razoumov<LEOR@winmain.rutgers.edu> and Paulo Tribolet, and after receiving many,
many useful suggestions and extensive help from Leo, navigatable .pdf files are from now on
distributed with the C++ Annotations. Also, some sections were slightly adapted.

• Version 6.0.0 was released after a full update of the text, removing many inconsistencies and

typos. Since the update effected the Annotation’s full text an upgrade to a new major version

seemed appropriate. Several new sections were added: overloading binary operators (section

9.6); throwing exceptions in constructors and destructors (section 8.8); function try-blocks
(section 8.9); calling conventions of static and global functions (section 10.2.1) and virtual con-

structors (section 14.10). The chapter on templates was completely rewritten and split into
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two separate chapters: chapter 18 discusses the syntax and use of template functions; chapter

19 discusses template classes. Various concrete examples were modified; new examples were

included as well (chapter 20).

• In version 5.2.4 the description of the random_shuffle generic algorithm (section 17.4.39) was

modified.

• In version 5.2.3 section 2.5.10 on local variables was extended and section 2.5.11 on function

overloading was modified by explicitly discussing the effects of the const modifier with over-

loaded functions. Also, the description of the compare() function in chapter 4 contained an
error, which was repaired.

• In version 5.2.2 a leftover in section 9.4 from a former version was removed and the corre-

sponding text was updated. Also, some minor typos were corrected.

• In version 5.2.1 various typos were repaired, and some paragraphs were further clarified. Fur-

thermore, a section was added to the template chapter (chapter 18), about creating several

iterator types. This topic was further elaborated in chapter 20, where the section about the
construction of a reverse iterator (section 20.5) was completely rewritten. In the same chapter,

a universal text to anything convertor is discussed (section 20.6). Also, LaTeX, PostScript
and PDF versions fitting the US-letter paper size are now available as cplusplusus ver-
sions: cplusplusus.latex, cplusplusus.ps and cplusplus.pdf. The A4-paper size is
of course kept, and remains to be available in the cplusplus.latex, cplusplus.ps and
cpluspl.pdf files.

• Version 5.2.0 was released after adding a section about the mutable keyword (section 6.5), and
after thoroughly changing the discussion of the Fork() abstract base class (section 20.3). All
examples should now be up-to-date with respect to the use of the std namespace.

• However, in the meantime the Gnu g++ compiler version 3.2 was released4. In this version
extensions to the abstract containers (see chapter 12) like the hash_map (see section 12.3.11)

were placed in a separate namespace, __gnu_cxx. This namespace should be used when using
these containers. However, this may break compilations of sources with g++, version 3.0. In
that case, a compilation can be performed conditionally to the 3.2 and the 3.0 compiler version,

defining __gnu_cxx for the 3.2 version. Alternatively, the dirty trick

#define __gnu_cxx std

can be placed just before header files in which the __gnu_cxx namespace is used. This might
eventually result in name-collisions, and it’s a dirty trick by any standards, so please don’t tell

anybody I wrote this down.

• Version 5.1.1 was released after modifying the sections related to the fork() system call in
chapter 20. Under the ANSI/ISO standard many of the previously available extensions (like

procbuf, and vform()) applied to streams were discontinued. Starting with version 5.1.1.
ways of constructing these facilities under the ANSI/ISO standard are discussed in the C++

Annotations. I consider the involved subject sufficiently complex to warrant the upgrade to a

new subversion.

• With the advent of the Gnu g++ compiler version 3.00, a more strict implementation of the
ANSI/ISO C++ standard became available. This resulted in version 5.1.0 of the Annotations,

appearing shortly after version 5.0.0. In version 5.1.0 chapter 5 was modified and several

cosmetic changes took place (e.g., removing class from template type parameter lists, see
chapter 18). Intermediate versions (like 5.0.0a, 5.0.0b) were not further documented, but were

4http://www.gnu.org
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mere intermediate releases while approaching version 5.1.0. Code examples will gradually be

adapted to the new release of the compiler.

In the meantime the reader should be prepared to insert

using namespace std;

in many code examples, just beyond the #include preprocessor directives
as a temporary measure to make the example accepted by the compiler.

• New insights develop all the time, resulting in version 5.0.0 of the Annotations. In this version

a lot of old code was cleaned up and typos were repaired. According to current standard,

namespaces are required in C++ programs, so they are introduced now very early (in section

2.5.1) in the Annotations. A new section about using external programs was added to the

Annotations (and removed again in version 5.1.0), and the new stringstream class, replacing
the strstream class is now covered too (sections 5.4.3 and 5.5.3). Actually, the chapter on
input and output was completely rewritten. Furthermore, the operators new and delete are
now discussed in chapter 7, where they fit better than in a chapter on classes, where they

previously were discussed. Chapters were moved, split and reordered, so that subjects could

generally be introduced without forward references. Finally, the html, PostScript and pdf
versions of the C++ Annotations now contain an index (sigh of relief ?) All in, considering the

volume and nature of the modifications, it seemed right to upgrade to a full major version. So

here it is.

Considering the volume of the Annotations, I’m sure there will be typos found every now and

then. Please do not hesitate to send me mail containing any mistakes you find or corrections

you would like to suggest.

• In release 4.4.1b the pagesize in the LaTeX file was defined to be din A4. In countries
where other pagesizes are standard the default pagesize might be a better choice. In that case,

remove the a4paper,twoside option from cplusplus.tex (or cplusplus.yo if you have
yodl installed), and reconstruct the Annotations from the TeX-file or Yodl-files.

The Annotations mailing lists was stopped at release 4.4.1d. From this point on only minor
modifications were expected, which are not anymore generally announced.

At some point, I considered version 4.4.1 to be the final version of the C++ Annotations.
However, a section on special I/O functions was added to cover unformatted I/O, and the section

about the string datatype had its layout improved and was, due to its volume, given a chapter
of its own (chapter 4). All this eventually resulted in version 4.4.2.

Version 4.4.1 again contains new material, and reflects the ANSI/ISO5 standard (well, I try
to have it reflect the ANSI/ISO standard). In version 4.4.1. several new sections and chapters

were added, among which a chapter about the Standard Template Library (STL) and generic

algorithms.

Version 4.4.0 (and subletters) was a mere construction version and was never made available.

The version 4.3.1a is a precursor of 4.3.2. In 4.3.1a most of the typos I’ve received since
the last update have been processed. In version 4.3.2 extra attention was paid to the syntax
for function addresses and pointers to member functions.

The decision to upgrade from version 4.2.* to 4.3.* was made after realizing that the lexical

scanner function yylex() can be defined in the scanner class that is derived from yyFlexLexer.
Under this approach the yylex() function can access the members of the class derived from
yyFlexLexer as well as the public and protected members of yyFlexLexer. The result of all
this is a clean implementation of the rules defined in the flex++ specification file.

The upgrade from version 4.1.* to 4.2.* was the result of the inclusion of section 3.3.1 about

the bool data type in chapter 3. The distinction between differences between C and C++ and

5ftp://research.att.com/dist/c++std/WP/
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extensions of the C programming languages is (albeit a bit fuzzy) reflected in the introduction

chapter and the chapter on first impressions of C++: The introduction chapter covers some

differences between C and C++, whereas the chapter about first impressions of C++ covers

some extensions of the C programming language as found in C++.

Major version 4 is a major rewrite of the previous version 3.4.14. The document was rewritten

from SGML to Yodl and many new sections were added. All sections got a tune-up. The

distribution basis, however, hasn’t changed: see the introduction.

Modifications in versions 1.*.*, 2.*.*, and 3.*.* (replace the stars by any applicable number)

were not logged.

Subreleases like 4.4.2a etc. contain bugfixes and typographical corrections.

2.2 C++’s history

The first implementation of C++ was developed in the nineteen-eighties at the AT&T Bell Labs,

where the Unix operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, which converted special con-

structions in its source code to plain C. This code was then compiled by a normal C compiler. The

‘pre-code’, which was read by the C++ pre-compiler, was usually located in a file with the extension

.cc, .C or .cpp. This file would then be converted to a C source file with the extension .c, which
was compiled and linked.

The nomenclature ofC++ source files remains: the extensions .cc and .cpp are still used. However,
the preliminary work of a C++ pre-compiler is in modern compilers usually included in the actual

compilation process. Often compilers will determine the type of a source file by its extension. This

holds true for Borland’s and Microsoft’s C++ compilers, which assume a C++ source for an extension

.cpp. The Gnu compiler g++, which is available on many Unix platforms, assumes for C++ the
extension .cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is a superset

of C: C++ offers the full C grammar and supports all C-library functions, and adds to this features

of its own. This makes the transition from C to C++ quite easy. Programmers familiar with C may

start ‘programming in C++’ by using source files having extensions .cc or .cpp instead of .c, and
may then comfortably slip into all the possibilities offered by C++. No abrupt change of habits is

required.

2.2.1 History of the C++ Annotations

The original version of the C++ Annotations was written by Frank Brokken and Karel Kubat in

Dutch using LaTeX. After some time, Karel rewrote the text and converted the guide to a more
suitable format and (of course) to English in september 1994.

The first version of the guide appeared on the net in october 1994. By then it was converted to SGML.

Gradually new chapters were added, and the contents were modified and further improved (thanks

to countless readers who sent us their comment).

The transition from major version three to major version four was realized by Frank: again new

chapters were added, and the source-document was converted from SGML to yodl6.

6http://yodl.sourceforge.net
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The C++ Annotations are freely distributable. Be sure to read the legal notes7.

Reading the annotations beyond this point implies that you are aware of these

notes and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to

Frank8.

In the Internet, many useful hyperlinks exist to C++. Without even suggesting completeness (and

without being checked regularly for existence: they might have died by the time you read this), the

following might be worthwhile visiting:

• http://www.cplusplus.com/ref/: a reference site for C++.

• http://www.csci.csusb.edu/dick/c++std/cd2/index.html: offers a version of the 1996
working paper of the C++ ANSI/ISO standard.

2.2.2 Compiling a C program using a C++ compiler

For the sake of completeness, it must be mentioned here that C++ is ‘almost’ a superset of C. There

are some differences you might encounter when you simply rename a file to a file having the exten-

sion .cc and run it through a C++ compiler:

• In C, sizeof(’c’) equals sizeof(int), ’c’ being any ASCII character. The underlying
philosophy is probably that chars, when passed as arguments to functions, are passed as
integers anyway. Furthermore, the C compiler handles a character constant like ’c’ as an
integer constant. Hence, in C, the function calls

putchar(10);

and

putchar(’\n’);

are synonyms.

In contrast, in C++, sizeof(’c’) is always 1 (but see also section 3.3.2), while an int is still
an int. As we shall see later (see section 2.5.11), the two function calls

somefunc(10);

and

somefunc(’\n’);

may be handled by quite separate functions: C++ distinguishes functions not only by their

names, but also by their argument types, which are different in these two calls: one call using

an int argument, the other one using a char.

• C++ requires very strict prototyping of external functions. E.g., a prototype like

extern void func();

in C means that a function func() exists, which returns no value. The declaration doesn’t
specify which arguments (if any) the function takes.

In contrast, such a declaration in C++ means that the function func() takes no arguments at
all: passing arguments to it results in a compile-time error.

7legal.shtml
8mailto:f.b.brokken@rug.nl
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2.2.3 Compiling a C++ program

To compile a C++ program, a C++ compiler is needed. Considering the free nature of this document,

it won’t come as a surprise that a free compiler is suggested here. The Free Software Foundation

(FSF) provides at http://www.gnu.org a free C++ compiler which is, among other places, also
part of the Debian (http://www.debian.org) distribution of Linux ( http://www.linux.org).

2.2.3.1 C++ under MS-Windows

For MS-Windows Cygnus (http://sources.redhat.com/cygwin) provides the foundation for in-
stalling theWindows port of the Gnu g++ compiler.

When visiting the above URL to obtain a free g++ compiler, click on install now. This will down-
load the file setup.exe, which can be run to install cygwin. The software to be installed can be
downloaded by setup.exe from the internet. There are alternatives (e.g., using a CD-ROM), which
are described on the Cygwin page. Installation proceeds interactively. The offered defaults are

normally what you would want.

Themost recent Gnu g++ compiler can be obtained from http://gcc.gnu.org. If the compiler that
is made available in the Cygnus distribution lags behind the latest version, the sources of the latest

version can be downloaded after which the compiler can be built using an already available compiler.

The compiler’s webpage (mentioned above) contains detailed instructions on how to proceed. In our

experience building a new compiler within the Cygnus environment works flawlessly.

2.2.3.2 Compiling a C++ source text

In general, the following command is used to compile a C++ source file ‘source.cc’:

g++ source.cc

This produces a binary program (a.out or a.exe). If the default name is not wanted, the name of
the executable can be specified using the -o flag (here producing the program source):

g++ -o source source.cc

If a mere compilation is required, the compiled module can be generated using the -c flag:

g++ -c source.cc

This produces the file source.o, which can be linked to other modules later on.

Using the icmake9 program amaintenance script can be used to assist in the construction and main-
tenance of C++ programs. A generic icmake maintenance script (icmbuild) is available as well.
Alternatively, the standard make program can be used to maintain C++ programs. It is strongly
advised to start using maintenance scripts or programs early in the study of the C++ program-

ming language. Alternative approaches were implemented by former students, e.g., lake10 by Wybo
Wiersma and ccbuild11 by Bram Neijt.

9ftp://ftp.rug.nl/contrib/frank/software/linux/icmake
10http://nl.logilogi.org/MetaLogi/LaKe
11http://ccbuild.sourceforge.net/
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2.3 C++: advantages and claims

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed advantages

of C++ are:

• New programs would be developed in less time because old code can be reused.

• Creating and using new data types would be easier than in C.

• The memory management under C++ would be easier and more transparent.

• Programs would be less bug-prone, as C++ uses a stricter syntax and type checking.

• ‘Data hiding’, the usage of data by one program part while other program parts cannot access

the data, would be easier to implement with C++.

Which of these allegations are true? Originally, our impression was that the C++ language was a

little overrated; the same holding true for the entire object-oriented programming (OOP) approach.

The enthusiasm for theC++ language resembles the once uttered allegations about Artificial-Intelligence

(AI) languages like Lisp and Prolog: these languages were supposed to solve the most difficult AI-

problems ‘almost without effort’. Obviously, too promising stories about any programming language

must be overdone; in the end, each problem can be coded in any programming language (say BASIC

or assembly language). The advantages or disadvantages of a given programming language aren’t in

‘what you can do with them’, but rather in ‘which tools the language offers to implement an efficient

and understandable solution for a programming problem’.

Concerning the above allegations of C++, we support the following, however.

• The development of new programs while existing code is reused can also be realized in C by,

e.g., using function libraries. Functions can be collected in a library and need not be re-invented

with each new program. C++, however, offers specific syntax possibilities for code reuse, apart

from function libraries (see chapter 13).

• Creating and using new data types is also very well possible in C; e.g., by using structs,
typedefs etc.. From these types other types can be derived, thus leading to structs contain-
ing structs and so on. In C++ these facilities are augmented by defining data types which
are completely ‘self supporting’, taking care of, e.g., their memory management automatically

(without having to resort to an independently operating memory management system as used

in, e.g., Java).

• Memory management is in principle in C++ as easy or as difficult as in C. Especially when

dedicated C functions such as xmalloc() and xrealloc() are used (allocating the memory
or aborting the program when the memory pool is exhausted). However, with malloc() like
functions it is easy to err: miscalculating the required number of bytes in a malloc() call is a
frequently occurring error. Instead, C++ offers facilities for allocating memory in a somewhat

safer way, through its operator new.

• Concerning ‘bug proneness’ we can say that C++ indeed uses stricter type checking than C.

However, most modern C compilers implement ‘warning levels’; it is then the programmer’s

choice to disregard or heed a generated warning. In C++ many of such warnings become fatal

errors (the compilation stops).

• As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or

static variables can be used and special data types such as structs can be manipulated
by dedicated functions. Using such techniques, data hiding can be realized even in C; though

it must be admitted that C++ offers special syntactical constructions, making it far easier to

realize ‘data hiding’ in C++ than in C.
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C++ in particular (and OOP in general) is of course not the solution to all programming problems.

However, the language does offer various new and elegant facilities which are worthwhile investi-

gating. At the same time, the level of grammatical complexity of C++ has increased significantly

compared to C. This may be considered a serious disadvantage of the language. Although we got

used to this increased level of complexity over time, the transition wasn’t fast or painless. With the

C++ Annotations we hope to help the reader to make the transition from C to C++ by providing,

indeed, our annotations to what is found in some textbooks on C++. It is our hope that you like this

document and may benefit from it. Enjoy and good luck on your journey into C++!

2.4 What is Object-Oriented Programming?

Object-oriented (and object-based) programming propagates a slightly different approach to pro-

gramming problems than the strategy usually used in C programs. In C programming problems are

usually solved using a ‘procedural approach’: a problem is decomposed into subproblems and this

process is repeated until the subtasks can be coded. Thus a conglomerate of functions is created,

communicating through arguments and variables, global or local (or static).

In contrast (or maybe better: in addition) to this, an object-based approach identifies keywords in

a problem. These keywords are then depicted in a diagram and arrows are drawn between these

keywords to define an internal hierarchy. The keywords will be the objects in the implementation

and the hierarchy defines the relationship between these objects. The term object is used here to

describe a limited, well-defined structure, containing all information about an entity: data types

and functions to manipulate the data. As an example of an object oriented approach, an illustration

follows:

The employees and owner of a car dealer and auto garage company are paid as follows.

First, mechanics who work in the garage are paid a certain sum each month. Second, the

owner of the company receives a fixed amount each month. Third, there are car salesmen

who work in the showroom and receive their salary each month plus a bonus per sold

car. Finally, the company employs second-hand car purchasers who travel around; these

employees receive their monthly salary, a bonus per bought car, and a restitution of their

travel expenses.

When representing the above salary administration, the keywords could be mechanics, owner, sales-

men and purchasers. The properties of such units are: a monthly salary, sometimes a bonus per

purchase or sale, and sometimes restitution of travel expenses. When analyzing the problem in this

manner we arrive at the following representation:

• The owner and the mechanics can be represented as the same type, receiving a given salary

per month. The relevant information for such a type would be the monthly amount. In addition

this object could contain data as the name, address and social security number.

• Car salesmen whowork in the showroom can be represented as the same type as above but with

some extra functionality: the number of transactions (sales) and the bonus per transaction.

In the hierarchy of objects we would define the dependency between the first two objects by

letting the car salesmen be ‘derived’ from the owner and mechanics.

• Finally, there are the second-hand car purchasers. These share the functionality of the sales-

men except for the travel expenses. The additional functionality would therefore consist of the

expenses made and this type would be derived from the salesmen.

The hierarchy of the thus identified objects are further illustrated in Figure 2.1.
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Figure 2.1: Hierarchy of objects in the salary administration.

The overall process in the definition of a hierarchy such as the above starts with the description of

the most simple type. Subsequently more complex types are derived, while each derivation adds a

little functionality. From these derived types, more complex types can be derived ad infinitum, until

a representation of the entire problem can be made.

In C++ each of the objects can be represented in a class, containing the necessary functionality to do

useful things with the variables (called objects) of these classes. Not all of the functionality and not

all of the properties of a class are usually available to objects of other classes. As we will see, classes

tend to hide their properties in such a way that they are not directly modifiable by the outside world.

Instead, dedicated functions are used to reach or modify the properties of objects. Also, these objects

tend to be self-contained. They encapsulate all the functionality and data required to perform their

tasks and to uphold the object’s integrity.

2.5 Differences between C and C++

In this section some examples of C++ code are shown. Some differences between C and C++ are

highlighted.

2.5.1 Namespaces

C++ introduces the notion of a namespace: all symbols are defined in a larger context, called a

namespace. Namespaces are used to avoid name conflicts that could arise when a programmerwould

like to define a function like sin() operating on degrees, but does not want to lose the capability of
using the standard sin() function, operating on radians.

Namespaces are covered extensively in section 3.7. For now it should be noted that most compilers

require the explicit declaration of a standard namespace: std. So, unless otherwise indicated, it is
stressed that all examples in the Annotations now implicitly use the

using namespace std;

declaration. So, if you actually intend to compile the examples given in the Annotations, make sure
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that the sources start with the above using declaration.

2.5.2 End-of-line comment

According to the ANSI definition, ‘end of line comment’ is implemented in the syntax of C++. This

comment starts with // and ends with the end-of-line marker. The standard C comment, delimited
by /* and */ can still be used in C++:

int main()
{

// this is end-of-line comment
// one comment per line

/*
this is standard-C comment, covering
multiple lines

*/
}

Despite the example, it is advised not to use C type comment inside the body of C++ functions. At

times you will temporarily want to suppress sections of existing code. In those cases it’s very practi-

cal to be able to use standard C comment. If such suppressed code itself contains such comment, it

would result in nested comment-lines, resulting in compiler errors. Therefore, the rule of thumb is

not to use C type comment inside the body of C++ functions.

2.5.3 NULL-pointers vs. 0-pointers

In C++ all zero values are coded as 0. In C, where pointers are concerned, NULL is often used. This
difference is purely stylistic, though one that is widely adopted. In C++ there’s no need anymore to

use NULL, and using 0 is actually preferred when indicating null-pointer values.

2.5.4 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function before it is called,

and the call must match the prototype. The program

int main()
{

printf("Hello World\n");
}

does often compile under C, though with a warning that printf() is not a known function. Many
C++ compilers will fail to produce code in such a situation. The error is of course the missing

#include <stdio.h> directive.

Although, while we’re at it: in C++ the function main() always uses the int return value. It
is possible to define int main() without an explicit return statement, but a return statement
without an expression cannot be given inside the main() function: a return statement in main()
must always be given an int-expression. For example:
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int main()
{

return; // won’t compile: expects int expression
}

2.5.5 A new syntax for casts

Traditionally, C offers the following cast construction:

(typename)expression

in which typename is the name of a valid type, and expression an expression. Apart from the C
style cast (now deprecated) C++ also supports the function call notation:

typename(expression)

This function call notation is not actually a cast, but the request to the compiler to construct an

(anonymous) variable of type typename from the expression expression. This form is actually very
often used in C++, but should not be used for casting. Instead, four new-style casts were introduced:

• The standard cast to convert one type to another is

static_cast<type>(expression)

• There is a special cast to do away with the const type-modification:

const_cast<type>(expression)

• A third cast is used to change the interpretation of information:

reinterpret_cast<type>(expression)

• And, finally, there is a cast form which is used in combination with polymorphism (see chapter

14). The

dynamic_cast<type>(expression)

is performed run-time to convert, e.g., a pointer to an object of a certain class to a pointer to

an object further down its so-called class hierarchy. At this point in the Annotations it is a bit

premature to discuss the dynamic_cast, but we will return to this topic in section 14.5.1.

2.5.5.1 The ‘static_cast’-operator

The static_cast<type>(expression) operator is used to convert one type to an acceptable other
type. E.g., double to int. An example of such a cast is, assuming d is of type double and a and b
are int-type variables. In that situation, computing the floating point quotient of a and b requires
a cast:

d = static_cast<double>(a) / b;
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If the cast is omitted, the division operator will cut-off the remainder, as its operands are int ex-
pressions. Note that the division should be placed outside of the cast. If not, the (integer) division

will be performed before the cast has a chance to convert the type of the operand to double. Another
nice example of code in which it is a good idea to use the static_cast<>()-operator is in situa-
tions where the arithmetic assignment operators are used in mixed-type situations. E.g., consider

the following expression (assume doubleVar is a variable of type double):

intVar += doubleVar;

This statement actually evaluates to:

intVar = static_cast<int>(static_cast<double>(intVar) + doubleVar);

IntVar is first promoted to a double, and is then added as double to doubleVar. Next, the sum
is cast back to an int. These two conversions are a bit overdone. The same result is obtained by
explicitly casting the doubleVar to an int, thus obtaining an int-value for the right-hand side of
the expression:

intVar += static_cast<int>(doubleVar);

2.5.5.2 The ‘const_cast’-operator

The const_cast<type>(expression) operator is used to undo the const-ness of a (pointer) type.
Assume that a function fun(char *s) is available, which performs some operation on its char *s
parameter. Furthermore, assume that it’s known that the function does not actually alter the string

it receives as its argument. How can we use the function with a string like char const hello[]
= "Hello world"?

Passing hello to fun() produces the warning

passing ‘const char *’ as argument 1 of ‘fun(char *)’ discards const

which can be prevented using the call

fun(const_cast<char *>(hello));

2.5.5.3 The ‘reinterpret_cast’-operator

The reinterpret_cast<type>(expression) operator is used to reinterpret pointers. For exam-
ple, using a reinterpret_cast<>() the individual bytes making up a double value can easily be
reached. Assume doubleVar is a variable of type double, then the individual bytes can be reached
using

reinterpret_cast<char *>(&doubleVar)

This particular example also suggests the danger of the cast: it looks as though a standard C-string
is produced, but there is not normally a trailing 0-byte. It’s just a way to reach the individual bytes

of the memory holding a double value.
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More in general: using the cast-operators is a dangerous habit, as it suppresses the normal type-

checking mechanism of the compiler. It is suggested to prevent casts if at all possible. If circum-

stances arise in which casts have to be used, document the reasons for their use well in your code,

to make double sure that the cast will not eventually be the underlying cause for a program to

misbehave.

2.5.5.4 The ‘dynamic_cast’-operator

The dynamic_cast<>() operator is used in the context of polymorphism. Its discussion is post-
poned until section 14.5.1.

2.5.6 The ‘void’ parameter list

Within C, a function prototype with an empty parameter list, such as

void func();

means that the argument list of the declared function is not prototyped: the compiler will not warn

against improper argument usage. In C, to declare a function having no arguments, the keyword

void is used:

void func(void);

As C++ enforces strict type checking, an empty parameter list indicates the absence of any pa-

rameter. The keyword void can thus be omitted: in C++ the above two function declarations are
equivalent.

2.5.7 The ‘#define __cplusplus’

Each C++ compiler which conforms to the ANSI/ISO standard defines the symbol __cplusplus: it
is as if each source file were prefixed with the preprocessor directive #define __cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.8 Using standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used in

C++ programs. Such functions, however, must be declared as C functions.

As an example, the following code fragment declares a function xmalloc() as a C function:

extern "C" void *xmalloc(size_t size);

This declaration is analogous to a declaration inC, except that the prototype is prefixedwith extern
"C".

A slightly different way to declare C functions is the following:

extern "C"
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{
// C-declarations go in here

}

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C header

file myheader.h which declares C functions can be included in a C++ source file as follows:

extern "C"
{

#include <myheader.h>
}

Although these two approaches can be used, they are actually seldomly encountered in C++ sources.

We will encounter a more frequently used method to declare externalC functions in the next section.

2.5.9 Header files for both C and C++

The combination of the predefined symbol __cplusplus and of the possibility to define extern
"C" functions offers the ability to create header files for both C and C++. Such a header file might,
e.g., declare a group of functions which are to be used in both C and C++ programs.

The setup of such a header file is as follows:

#ifdef __cplusplus
extern "C"
{
#endif

// declaration of C-data and functions are inserted here. E.g.,
void *xmalloc(size_t size);

#ifdef __cplusplus
}
#endif

Using this setup, a normal C header file is enclosed by extern "C" { which occurs at the start of
the file and by }, which occurs at the end of the file. The #ifdef directives test for the type of the
compilation: C orC++. The ‘standard’ C header files, such as stdio.h, are built in this manner and
are therefore usable for both C and C++.

In addition to this, C++ headers should support include guards. In C++ it is usually undesirable to

include the same header file twice in the same source file. Such multiple inclusions can easily be

avoided by including an #ifndef directive in the header file. For example:

#ifndef _MYHEADER_H_
#define _MYHEADER_H_

// declarations of the header file is inserted here,
// using #ifdef __cplusplus etc. directives

#endif

When this file is scanned for the first time by the preprocessor, the symbol _MYHEADER_H_ is not yet
defined. The #ifndef condition succeeds and all declarations are scanned. In addition, the symbol
_MYHEADER_H_ is defined.
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When this file is scanned for a second time during the same compilation, the symbol _MYHEADER_H_
has been defined and consequently all information between the #ifndef and #endif directives is
skipped by the compiler.

In this context the symbol name _MYHEADER_H_ serves only for recognition purposes. E.g., the name
of the header file can be used for this purpose, in capitals, with an underscore character instead of a

dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give
C++ header files no extension. For example, the standard iostreams cin, cout and cerr are
available after including the preprocessor directive #include <iostream>, rather than #include
<iostream.h> in a source. In the Annotations this convention is used with the standard C++
header files, but not everywhere else (Frankly, we tend not to follow this convention: ourC++ header

files still have the .h extension, and apparently nobody cares...).

There is more to be said about header files. In section 6.6 the preferred organization of C++ header

files is discussed.

2.5.10 Defining local variables

In C local variables can only be defined at the top of a function or at the beginning of a nested block.

In C++ local variables can be created at any position in the code, even between statements.

Furthermore, local variables can be defined inside some statements, just prior to their usage. A

typical example is the for statement:

#include <stdio.h>

int main()
{

for (register int i = 0; i < 20; i++)
printf("%d\n", i);

return 0;
}

In this code fragment the variable i is created inside the for statement. According to the ANSI-
standard, the variable does not exist prior to the for-statement and not beyond the for-statement.
With some older compilers, the variable continues to exist after the execution of the for-statement,
but a warning like

warning: name lookup of ‘i’ changed for new ANSI ‘for’ scoping using obsolete binding at

‘i’

will then be issued when the variable is used outside of the for-loop. The implication seems clear:
define a variable just before the for-statement if it’s to be used after that statement, otherwise the
variable can be defined inside the for-statement itself.

Defining local variables when they’re needed requires a little getting used to. However, eventually

it tends to produce more readable and often more efficient code than defining variables at the begin-

ning of compound statements. We suggest the following rules of thumb for defining local variables:

• Local variables should be created at ‘intuitively right’ places, such as in the example above.

This does not only entail the for-statement, but also all situations where a variable is only
needed, say, half-way through the function.
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• More in general, variables should be defined in such a way that their scope is as limited and

localized as possible. Local variables are not necessarily defined anymore at the beginning of

functions, following the first {.

• It is considered good practice to avoid global variables. It is fairly easy to lose track of which

global variable is used for what purpose. In C++ global variables are seldomly required, and

by localizing variables the well known phenomenon of using the same variable for multiple

purposes, thereby invalidating each individual purpose of the variable, can easily be avoided.

If considered appropriate, nested blocks can be used to localize auxiliary variables. However, sit-

uations exist where local variables are considered appropriate inside nested statements. The just

mentioned for statement is of course a case in point, but local variables can also be defined within
the condition clauses of if-else statements, within selection clauses of switch statements and
condition clauses of while statements. Variables thus defined will be available in the full state-
ment, including its nested statements. For example, consider the following switch statement:

#include <stdio.h>

int main()
{

switch (int c = getchar())
{

case ’a’:
case ’e’:
case ’i’:
case ’o’:
case ’u’:

printf("Saw vowel %c\n", c);
break;

case EOF:
printf("Saw EOF\n");

break;

default:
printf("Saw other character, hex value 0x%2x\n", c);

}
}

Note the location of the definition of the character ‘c’: it is defined in the expression part of the
switch() statement. This implies that ‘c’ is available only in the switch statement itself, including
its nested (sub)statements, but not outside the scope of the switch.

The same approach can be used with if and while statements: a variable that is defined in the
condition part of an if and while statement is available in their nested statements. However, one
should realize that:

• The variable definition should result in a variable which is initialized to a numerical or logical

value;

• The variable definition cannot be nested (e.g., using parentheses) within a more complex ex-

pression.

The latter point of attention should come as no big surprise: in order to be able to evaluate the

logical condition of an if or while statement, the value of the variable must be interpretable as
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either zero (false) or non-zero (true). Usually this is no problem, but in C++ objects (like objects of

the type std::string (cf. chapter 4)) are often returned by functions. Such objects may or may
not be interpretable as numerical values. If not (as is the case with std::string objects), then
such variables can not be defined in the condition or expression parts of condition- or repetition

statements. The following example will, therefore, not compile:

if (std::string myString = getString()) // assume getString() returns
{ // a std::string value

// process myString
}

The above deserves further clarification. Often a variable can profitably be given local scope, but

an extra check is required immediately following its initialization. Both the initialization and the

test cannot be combined in one expression, but two nested statements are required. The following

example will therefore not compile either:

if ((int c = getchar()) && strchr("aeiou", c))
printf("Saw a vowel\n");

If such a situation occurs, either use two nested if statements, or localize the definition of int
c using a nested compound statement. Actually, other approaches are possible as well, like using
exceptions (cf. chapter 8) and specialized functions, but that’s jumping a bit too far ahead. At this

point in our discussion, we can suggest one of the following approaches to remedy the problem

introduced by the last example:

if (int c = getchar()) // nested if-statements
if (strchr("aeiou", c))

printf("Saw a vowel\n");

{ // nested compound statement
int c = getchar();
if (c && strchr("aeiou", c))
printf("Saw a vowel\n");

}

2.5.11 Function Overloading

In C++ it is possible to define functions having identical names but performing different actions.

The functions must differ in their parameter lists (and/or in their const attribute). An example is
given below:

#include <stdio.h>

void show(int val)
{

printf("Integer: %d\n", val);
}

void show(double val)
{

printf("Double: %lf\n", val);
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}

void show(char *val)
{

printf("String: %s\n", val);
}

int main()
{

show(12);
show(3.1415);
show("Hello World\n!");

}

In the above fragment three functions show() are defined, which only differ in their parameter lists:
int, double and char *. The functions have identical names. The definition of several functions
having identical names is called ‘function overloading’.

It is interesting that the way in which the C++ compiler implements function overloading is quite

simple. Although the functions share the same name in the source text (in this example show()),
the compiler (and hence the linker) use quite different names. The conversion of a name in the

source file to an internally used name is called ‘name mangling’. E.g., the C++ compiler might

convert the name void show (int) to the internal name VshowI, while an analogous function with
a char* argument might be called VshowCP. The actual names which are internally used depend
on the compiler and are not relevant for the programmer, except where these names show up in e.g.,

a listing of the contents of a library.

A few remarks concerning function overloading are:

• Do not use function overloading for functions doing conceptually different tasks. In the ex-

ample above, the functions show() are still somewhat related (they print information to the
screen).

However, it is also quite possible to define two functions lookup(), one of which would find a
name in a list while the other would determine the video mode. In this case the two functions

have nothing in common except for their name. It would therefore be more practical to use

names which suggest the action; say, findname() and vidmode().

• C++ does not allow identically named functions to differ only in their return value, as it is

always the programmer’s choice to either use or ignore the return value of a function. E.g., the

fragment

printf("Hello World!\n");

holds no information concerning the return value of the function printf(). Two functions
printf() which would only differ in their return type could therefore not be distinguished by
the compiler.

• Function overloading can produce surprises. E.g., imagine a statement like

show(0);

given the three functions show() above. The zero could be interpreted here as a NULL pointer
to a char, i.e., a (char *)0, or as an integer with the value zero. Here, C++ will call the
function expecting an integer argument, which might not be what one expects.
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• In chapter 6 the notion of const member functions will be introduced (cf. section 6.2). Here
it is merely mentioned that classes normally have so-called member functions associated with

them (see, e.g., chapter 4 for an informal introduction of the concept). Apart from overloading

member functions using different parameter lists, it is then also possible to overload member

functions by their const attributes. In those cases, classes may have pairs of identically named
member functions, having identical parameter lists. Then, these functions are overloaded by

their const attribute: one of these function must have the const attribute, and the other
must not.

2.5.12 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments are

supplied by the compiler when they are not specified by the programmer. For example:

#include <stdio.h>

void showstring(char *str = "Hello World!\n");

int main()
{

showstring("Here’s an explicit argument.\n");

showstring(); // in fact this says:
// showstring("Hello World!\n");

}

The possibility to omit arguments in situations where default arguments are defined is just a nice

touch: the compiler will supply the missing argument unless explicitly specified in the call. The code

of the program becomes by no means shorter or more efficient.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4);

int main()
{

two_ints(); // arguments: 1, 4
two_ints(20); // arguments: 20, 4
two_ints(20, 5); // arguments: 20, 5

}

When the function two_ints() is called, the compiler supplies one or two arguments when nec-
essary. A statement as two_ints(,6) is however not allowed: when arguments are omitted they
must be on the right-hand side.

Default arguments must be known at compile-time, since at that moment arguments are supplied to

functions. Therefore, the default arguments must be mentioned in the function’s declaration, rather

than in its implementation:

// sample header file
extern void two_ints(int a = 1, int b = 4);
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// code of function in, say, two.cc
void two_ints(int a, int b)
{

...
}

Note that supplying the default arguments in function definitions instead of in function declarations

in header files is incorrect: when the function is used in other sources the compiler will read the

header file and not the function definition. Consequently, in those cases the compiler has no way to

determine the values of default function arguments. Current compilers may generate errors when

detecting default arguments in function definitions.

2.5.13 The keyword ‘typedef’

The keyword typedef is still allowed in C++, but is not required anymore when defining union,
struct or enum definitions. This is illustrated in the following example:

struct somestruct
{

int a;
double d;
char string[80];

};

When a struct, union or other compound type is defined, the tag of this type can be used as type
name (this is somestruct in the above example):

somestruct what;

what.d = 3.1415;

2.5.14 Functions as part of a struct

In C++ it is allowed to define functions as part of a struct. Here we encounter the first concrete

example of an object: as previously was described (see section 2.4), an object is a structure containing

all involved code and data.

A definition of a struct point is given in the code fragment below. In this structure, two int data
fields and one function draw() are declared.

struct point // definition of a screen
{ // dot:

int x; // coordinates
int y; // x/y
void draw(void); // drawing function

};

A similar structure could be part of a painting program and could, e.g., represent a pixel in the

drawing. With respect to this struct it should be noted that:
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• The function draw() mentioned in the struct definition is a mere declaration. The actual
code of the function, or in other words the actions performed by the function, are located else-

where. We will describe the actual definitions of functions inside structs later (see section
3.2).

• The size of the struct point is equal to the size of its two ints. A function declared inside
the structure does not affect its size. The compiler implements this behavior by allowing the

function draw() to be known only in the context of a point.

The point structure could be used as follows:

point a; // two points on
point b; // the screen

a.x = 0; // define first dot
a.y = 10; // and draw it
a.draw();

b = a; // copy a to b
b.y = 20; // redefine y-coord
b.draw(); // and draw it

The function that is part of the structure is selected in a similar manner in which data fields are

selected; i.e., using the field selector operator (.). When pointers to structs are used, -> can be
used.

The idea behind this syntactical construction is that several types may contain functions having

identical names. E.g., a structure representing a circle might contain three int values: two values
for the coordinates of the center of the circle and one value for the radius. Analogously to the point
structure, a function draw() could be declared which would draw the circle.



Chapter 3

A first impression of C++

In this chapterC++ is further explored. The possibility to declare functions in structs is illustrated
in various examples. The concept of a class is introduced.

3.1 More extensions to C in C++

Before we continue with the ‘real’ object-approach to programming, we first introduce some exten-

sions to the C programming language: not mere differences between C and C++, but syntactical

constructs and keywords not found in C.

3.1.1 The scope resolution operator ::

C++ introduces a number of new operators, among which the scope resolution operator (::). This
operator can be used in situations where a global variable exists having the same name as a local

variable:

#include <stdio.h>

int counter = 50; // global variable

int main()
{

for (register int counter = 1; // this refers to the
counter < 10; // local variable
counter++)

{
printf("%d\n",

::counter // global variable
/ // divided by
counter); // local variable

}
return 0;

}

39
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In this code fragment the scope operator is used to address a global variable instead of the local

variable with the same name. In C++ the scope operator is used extensively, but it is seldomly used

to reach a global variable shadowed by an identically named local variable. Its main purpose will be

described in chapter 6.

3.1.2 ‘cout’, ‘cin’, and ‘cerr’

Analogous to C, C++ defines standard input- and output streams which are opened when a program

is executed. The streams are:

• cout, analogous to stdout,

• cin, analogous to stdin,

• cerr, analogous to stderr.

Syntactically these streams are not used as functions: instead, data are written to streams or read

from them using the operators <<, called the insertion operator and >>, called the extraction oper-

ator. This is illustrated in the next example:

#include <iostream>

using namespace std;

int main()
{

int ival;
char sval[30];

cout << "Enter a number:" << endl;
cin >> ival;
cout << "And now a string:" << endl;
cin >> sval;

cout << "The number is: " << ival << endl
<< "And the string is: " << sval << endl;

}

This program reads a number and a string from the cin stream (usually the keyboard) and prints
these data to cout. With respect to streams, please note:

• The standard streams are declared in the header file iostream. In the examples in the An-
notations this header file is often not mentioned explicitly. Nonetheless, it must be included

(either directly or indirectly) when these streams are used. Comparable to the use of the using
namespace std; clause, the reader is expected to #include <iostream>with all the exam-
ples in which the standard streams are used.

• The streams cout, cin and cerr are variables of so-called class-types. Such variables are
commonly called objects. Classes are discussed in detail in chapter 6 and are used extensively

in C++.

• The stream cin extracts data from a stream and copies the extracted information to variables
(e.g., ival in the above example) using the extraction operator (two consecutive > characters:
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>>). We will describe later how operators in C++ can perform quite different actions than

what they are defined to do by the language, as is the case here. Function overloading has

already been mentioned. In C++ operators can also have multiple definitions, which is called

operator overloading.

• The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate vari-

ables of different types. In the above example cout << ival results in the printing of an
integer value, whereas cout << "Enter a number" results in the printing of a string. The
actions of the operators therefore depend on the types of supplied variables.

• The extraction operator (>>) performs a so called type safe assignment to a variable by ‘extract-

ing’ its value from a text-stream. Normally, the extraction operator will skip all white space

characters that precede the values to be extracted.

• Special symbolic constants are used for special situations. The termination of a line written by

cout is usually realized by inserting the endl symbol, rather than the string "\n".

The streams cin, cout and cerr are not part of the C++ grammar, as defined in the compiler
which parses source files. The streams are part of the definitions in the header file iostream.
This is comparable to the fact that functions like printf() are not part of the C grammar, but
were originally written by people who considered such functions important and collected them in a

run-time library.

Whether a program uses the old-style functions like printf() and scanf() or whether it employs
the new-style streams is a matter of taste. Both styles can even be mixed. A number of advantages

and disadvantages is given below:

• Compared to the standard C functions printf() and scanf(), the usage of the insertion
and extraction operators is more type-safe. The format strings which are used with printf()
and scanf() can define wrong format specifiers for their arguments, for which the compiler
sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is performed
by the compiler. Consequently it isn’t possible to err by providing an int argument in places
where, according to the format string, a string argument should appear.

• The functions printf() and scanf(), and other functions which use format strings, in fact
implement a mini-language which is interpreted at run-time. In contrast, the C++ compiler
knows exactly which in- or output action to perform given which argument.

• The usage of the left-shift and right-shift operators in the context of the streams does illustrate

the possibilities of C++. Again, it requires a little getting used to, ascending from C, but after
that these overloaded operators feel rather comfortably.

• Iostreams are extensible: new functionality can easily be added to existing functionality, a
phenomenon called inheritance. Inheritance is discussed in detail in chapter 13.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 5 iostreams
will be covered in greater detail. Even though printf() and friends can still be used in C++
programs, streams are practically replacing the old-style C I/O functions like printf(). If you
think you still need to use printf() and related functions, think again: in that case you’ve probably
not yet completely grasped the possibilities of stream objects.

3.1.3 The keyword ‘const’

The keyword const is very often seen in C++ programs. Although const is part of the C grammar,
in C const is used much less frequently.
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The const keyword is a modifier which states that the value of a variable or of an argument may
not be modified. In the following example the intent is to change the value of a variable ival, which
fails:

int main()
{

int const ival = 3; // a constant int
// initialized to 3

ival = 4; // assignment produces
// an error message

}

This example shows how ival may be initialized to a given value in its definition; attempts to
change the value later (in an assignment) are not permitted.

Variables which are declared const can, in contrast to C, be used as the specification of the size of
an array, as in the following example:

int const size = 20;
char buf[size]; // 20 chars big

Another use of the keyword const is seen in the declaration of pointers, e.g., in pointer-arguments.
In the declaration

char const *buf;

buf is a pointer variable, which points to chars. Whatever is pointed to by bufmay not be changed:
the chars are declared as const. The pointer buf itself however may be changed. A statement like

*buf = ’a’; is therefore not allowed, while buf++ is.

In the declaration

char *const buf;

buf itself is a const pointer which may not be changed. Whatever chars are pointed to by bufmay
be changed at will.

Finally, the declaration

char const *const buf;

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: whatever occurs to the
left to the keyword may not be changed.

Although simple, this rule of thumb is not often used. For example, Bjarne Stroustrup states (in

http://www.research.att.com/~bs/bs_faq2.html#constplacement):

Should I put "const" before or after the type?
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I put it before, but that’s a matter of taste. "const T" and "T const" were always (both)

allowed and equivalent. For example:

const int a = 1; // ok
int const b = 2; // also ok

My guess is that using the first version will confuse fewer programmers (“is more id-

iomatic”).

Below we’ll see an example where applying this simple ‘before’ placement rule for the keyword

const produces unexpected (i.e., unwanted) results. Apart from that, the ‘idiomatic’ before-placement
conflicts with the notion of const functions, which we will encounter in section 6.2, where the key-

word const is also written behind the name of the function.

The definition or declaration in which const is used should be read from the variable or function
identifier back to the type indentifier:

“Buf is a const pointer to const characters”

This rule of thumb is especially useful in cases where confusion may occur. In examples of C++ code,

one often encounters the reverse: const preceding what should not be altered. That this may result
in sloppy code is indicated by our second example above:

char const *buf;

What must remain constant here? According to the sloppy interpretation, the pointer cannot be

altered (since const precedes the pointer). In fact, the charvalues are the constant entities here, as
will be clear when we try to compile the following program:

int main()
{

char const *buf = "hello";

buf++; // accepted by the compiler

*buf = ’u’; // rejected by the compiler

return 0;
}

Compilation fails on the statement *buf = ’u’;, not on the statement buf++.

Marshall Cline’s C++ FAQ1 gives the same rule (paragraph 18.5) , in a similar context:

[18.5] What’s the difference between "const Fred* p", "Fred* const p" and "const Fred*

const p"?

You have to read pointer declarations right-to-left.

Marshal Cline’s advice might be improved, though: You should start to read pointer definitions (and

declarations) at the variable name, reading as far as possible to the definition’s end. Once a closing

parenthesis is seen, reading continues backwards from the initial point of reading, from right-to-left,

1http://www.parashift.com/c++-faq-lite/const-correctness.html
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until the matching open-parenthesis or the very beginning of the definition is found. For example,

consider the following complex declaration:

char const *(* const (*ip)[])[]

Here, we see:

• the variable ip, being a

• (reading backwards) modifiable pointer to an

• (reading forward) array of

• (reading backward) constant pointers to an

• (reading forward) array of

• (reading backward) modifiable pointers to constant characters

3.1.4 References

In addition to the well known ways to define variables, plain variables or pointers, C++ allows

‘references’ to be defined as synonyms for variables. A reference to a variable is like an alias; the

variable and the reference can both be used in statements involving the variable:

int int_value;
int &ref = int_value;

In the above example a variable int_value is defined. Subsequently a reference ref is defined,
which (due to its initialization) refers to the same memory location as int_value. In the definition
of ref, the reference operator & indicates that ref is not itself an integer but a reference to one. The
two statements

int_value++; // alternative 1
ref++; // alternative 2

have the same effect, as expected. At some memory location an int value is increased by one.
Whether that location is called int_value or ref does not matter.

References serve an important function inC++ as a means to pass arguments which can be modified.

E.g., in standard C, a function that increases the value of its argument by five but returns nothing

(void), needs a pointer parameter:

void increase(int *valp) // expects a pointer
{ // to an int

*valp += 5;
}

int main()
{

int x;

increase(&x) // the address of x is
return 0; // passed as argument

}
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This construction can also be used in C++ but the same effect can also be achieved using a reference:

void increase(int &valr) // expects a reference
{ // to an int

valr += 5;
}

int main()
{

int x;

increase(x); // a reference to x is
return 0; // passed as argument

}

It can be argued whether code such as the above is clear: the statement increase (x) in the
main() function suggests that not x itself but a copy is passed. Yet the value of x changes because
of the way increase() is defined.

Actually, references are implemented using pointers. So, references in C++ are just pointers, as

far as the compiler is concerned. However, the programmer does not need to know or to bother

about levels of indirection. Nevertheless, pointers and references should be distinguished: once

initialized, references can never refer to another variable, whereas the values of pointer variables

can be changed, which will result in the pointer variable pointing to another location in memory. For

example:

extern int *ip;
extern int &ir;

ip = 0; // reassigns ip, now a 0-pointer
ir = 0; // ir unchanged, the int variable it refers to

// is now 0.

In order to prevent confusion, we suggest to adhere to the following:

• In those situations where a called function does not alter its arguments of primitive types, a

copy of the variables can be passed:

void some_func(int val)
{

cout << val << endl;
}

int main()
{

int x;

some_func(x); // a copy is passed, so
return 0; // x won’t be changed

}

• When a function changes the values of its arguments, a pointer parameter is preferred. These

pointer parameters should preferably be the initial parameters of the function. This is called

‘return by argument’.
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void by_pointer(int *valp)
{

*valp += 5;
}

• When a function doesn’t change the value of its class- or struct-type arguments, or if the mod-

ification of the argument is a trivial side-effect (e.g., the argument is a stream), references can

be used. Const-references should be used if the function does not modify the argument:

void by_reference(string const &str)
{

cout << str;
}

int main ()
{

int x = 7;
string str("hello");

by_pointer(&x); // a pointer is passed
by_reference(str); // str is not altered
return 0; // x might be changed

}

References play an important role in cases where the argument will not be changed by the

function, but where it is undesirable to use the argument to initialize the parameter. Such a

situation occurs when a large variable, e.g., a struct, is passed as argument, or is returned by
the function. In these cases the copying operation tends to become a significant factor, as the

entire structure must be copied. So, in those cases references are preferred. If the argument

isn’t changed by the function, or if the caller shouldn’t change the returned information, the

use of the const keyword should be used. Consider the following example:

struct Person // some large structure
{

char name[80],
char address[90];
double salary;

};

Person person[50]; // database of persons
// printperson expects a

void printperson (Person const &p)
{ // reference to a structure

// but won’t change it
cout << "Name: " << p.name << endl <<

"Address: " << p.address << endl;

}
// get a person by indexvalue

Person const &person(int index)
{

return person[index]; // a reference is returned,
} // not a copy of person[index]

int main()
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{
Person boss;

printperson (boss); // no pointer is passed,
// so variable won’t be
// altered by the function

printperson(person(5));
// references, not copies
// are passed here

return 0;
}

• Furthermore, it should be noted that there is yet another reason to use referenceswhen passing

objects as function arguments: when passing a reference to an object, the activation of the so

called copy constructor is avoided. Copy constructors will be covered in chapter 7.

References may result in extremely ‘ugly’ code. A function may return a reference to a variable, as

in the following example:

int &func()
{

static int value;
return value;

}

This allows the following constructions:

func() = 20;
func() += func();

It is probably superfluous to note that such constructions should normally not be used. Nonetheless,

there are situations where it is useful to return a reference. We have actually already seen an

example of this phenomenon at our previous discussion of the streams. In a statement like cout
<< "Hello" << endl;, the insertion operator returns a reference to cout. So, in this statement
first the "Hello" is inserted into cout, producing a reference to cout. Via this reference the endl
is then inserted in the cout object, again producing a reference to cout. This latter reference is not
further used.

A number of differences between pointers and references is pointed out in the list below:

• A reference cannot exist by itself, i.e., without something to refer to. A declaration of a reference

like

int &ref;

is not allowed; what would ref refer to?

• References can, however, be declared as external. These references were initialized else-
where.

• References may exist as parameters of functions: they are initialized when the function is

called.

• Referencesmay be used in the return types of functions. In those cases the function determines

to what the return value will refer.
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• References may be used as data members of classes. We will return to this usage later.

• In contrast, pointers are variables by themselves. They point at something concrete or just “at

nothing”.

• References are aliases for other variables and cannot be re-aliased to another variable. Once a

reference is defined, it refers to its particular variable.

• In contrast, pointers can be reassigned to point to different variables.

• When an address-of operator & is used with a reference, the expression yields the address
of the variable to which the reference applies. In contrast, ordinary pointers are variables

themselves, so the address of a pointer variable has nothing to do with the address of the

variable pointed to.

3.2 Functions as part of structs

Earlier it was mentioned that functions can be part of structs (see section 2.5.14). Such functions
are called member functions or methods. This section discusses how to define such functions.

The code fragment below illustrates a struct having data fields for a name and an address. A
function print() is included in the struct definition:

struct Person
{

char name[80],
char address[80];

void print();
};

The member function print() is defined using the structure name (Person) and the scope resolu-
tion operator (::):

void Person::print()
{

cout << "Name: " << name << endl
"Address: " << address<< endl;

}

In the definition of this member function, the function name is preceded by the struct name fol-
lowed by ::. The code of the function shows how the fields of the struct can be addressed without
using the type name: in this example the function print() prints a variable name. Since print()
is a part of the struct person, the variable name implicitly refers to the same type.

This struct could be used as follows:

Person p;

strcpy(p.name, "Karel");
strcpy(p.address, "Rietveldlaan 37");
p.print();
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The advantage of member functions lies in the fact that the called function can automatically ad-

dress the data fields of the structure for which it was invoked. As such, in the statement p.print()
the structure p is the ‘substrate’: the variables name and address which are used in the code of
print() refer to the same struct p.

3.3 Several new data types

In C the following basic data types are available: void, char, short, int, long, float and
double. C++ extends these basic types with several new types: the types bool, wchar_t, long
long and long double (Cf. ANSI/ISO draft (1995), par. 27.6.2.4.1 for examples of these very long
types). The type long long is merely a double-long long datatype. The type long double is
merely a double-long double datatype. Apart from these basic types a standard type string is
available. The datatypes bool, and wchar_t are covered in the following sections, the datatype
string is covered in chapter 4.

Now that these new types are introduced, let’s refresh your memory about letters that can be used

in literal constants of various types. They are:

• E or e: the exponentiation character in floating point literal values. For example: 1.23E+3.
Here, E should be pronounced (and iterpreted) as: times 10 to the power. Therefore, 1.23E+3
represents the value 1230.

• F can be used as postfix to a non-integral numerical constant to indicate a value of type float,
rather than double, which is the default. For example: 12.F (the dot transforms 12 into
a floating point value); 1.23E+3F (see the previous example. 1.23E+3 is a double value,
whereas 1.23E+3F is a float value).

• L can be used as prefix to indicate a character string whose elements are wchar_t-type char-
acters. For example: L"hello world".

• L can be used as postfix to an integral value to indicate a value of type long, rather than
int, which is the default. Note that there is no letter indicating a short type. For that a
static_cast<short>()must be used.

• U can be used as postfix to an integral value to indicate an unsigned value, rather than an
int. It may also be combined with the postfix L to produce an unsigned long int value.

3.3.1 The data type ‘bool’

In C the following basic data types are available: void, char, int, float and double. C++
extends these five basic types with several extra types. In this section the type bool is introduced.

The type bool represents boolean (logical) values, for which the (now reserved) values true and
falsemay be used. Apart from these reserved values, integral values may also be assigned to vari-
ables of type bool, which are then implicitly converted to true and false according to the following
conversion rules (assume intValue is an int-variable, and boolValue is a bool-variable):

// from int to bool:
boolValue = intValue ? true : false;

// from bool to int:

intValue = boolValue ? 1 : 0;
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Furthermore, when bool values are inserted into, e.g., cout, then 1 is written for true values, and
0 is written for false values. Consider the following example:

cout << "A true value: " << true << endl
<< "A false value: " << false << endl;

The bool data type is found in other programming languages as well. Pascal has its type Boolean,
and Java has a boolean type. Different from these languages, C++’s type bool acts like a kind of
int type: it’s primarily a documentation-improving type, having just two values true and false.
Actually, these values can be interpreted as enum values for 1 and 0. Doing so would neglect the
philosophy behind the bool data type, but nevertheless: assigning true to an int variable neither
produces warnings nor errors.

Using the bool-type is generally more intuitively clear than using int. Consider the following
prototypes:

bool exists(char const *fileName); // (1)
int exists(char const *fileName); // (2)

For the first prototype (1), most people will expect the function to return true if the given file-
name is the name of an existing file. However, using the second prototype some ambiguity arises:

intuitively the return value 1 is appealing, as it leads to constructions like

if (exists("myfile"))
cout << "myfile exists";

On the other hand, many functions (like access(), stat(), etc.) return 0 to indicate a successful
operation, reserving other values to indicate various types of errors.

As a rule of thumb I suggest the following: if a function should inform its caller about the success

or failure of its task, let the function return a bool value. If the function should return success or
various types of errors, let the function return enum values, documenting the situation when the

function returns. Only when the function returns a meaningful integral value (like the sum of two

int values), let the function return an int value.

3.3.2 The data type ‘wchar_t’

The wchar_t type is an extension of the char basic type, to accomodate wide character values, such
as the Unicode character set. The g++ compiler (version 2.95 or beyond) reports sizeof(wchar_t)
as 4, which easily accomodates all 65,536 different Unicode character values.

Note that a programming language like Java has a data type char that is comparable to C++’s
wchar_t type. Java’s char type is 2 bytes wide, though. On the other hand, Java’s byte data type
is comparable to C++’s char type: one byte. Very convenient....

3.3.3 The data type ‘size_t’

The size_t type is not really a built-in primitive data type, but a data type that is promoted by
POSIX as a typename to be used for non-negative integral values. It is not a specific C++ type, but

also available in, e.g., C. It should be used instead of unsigned int. Usually it is defined implictly



3.4. KEYWORDS IN C++ 51

when a system header file is included. The header file ‘officially’ defining size_t in the context of
C++ is cstddef.

Using size_t has the advantage of being a conceptual type, rather than a standard type that is
then modified by a modifier. Thus, it improves the self-documenting value of source code.

The type size_t should be used in all situations where non-negative integral values are intended.
Sometimes functions explictly require unsigned int to be used. E.g., on amd-architectures the
X-windows function XQueryPointer explicitly requires a pointer to a unsigned int variable as
one of its arguments. In this particular situation a pointer to a size_t variable can’t be used. This
situation is exceptional, though. Usually a size_t can (and should) be used where unsigned values
are intended.

Other useful bit-represented types also exists. E.g., uns32_t is guaranteerd to hold 32-bits unsigned
values. Analogously, int32_t holds 32-bits signed values. Corresponding types exist for 8, 16 and
64 bits values. These types are defined in the header file stdint.h.

3.4 Keywords in C++

C++’s keywords are a superset of C’s keywords. Here is a list of all keywords of the language:

and const float operator static_cast using
and_eq const_cast for or struct virtual

asm continue friend or_eq switch void
auto default goto private template volatile

bitand delete if protected this wchar_t
bitor do inline public throw while
bool double int register true xor

break dynamic_cast long reinterpret_cast try xor_eq
case else mutable return typedef

catch enum namespace short typeid
char explicit new signed typename

class extern not sizeof union
compl false not_eq static unsigned

Note the operator keywords: and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq,
xor and xor_eq are symbolic alternatives for, respectively, &&, &=, &, |, ~, !, !=, ||, |=,
^ and ^=.

3.5 Data hiding: public, private and class

As mentioned before (see section 2.3), C++ contains special syntactical possibilities to implement

data hiding. Data hiding is the ability of a part of a program to hide its data from other parts; thus

avoiding improper addressing or name collisions.

C++ has three special keywordswhich are related to data hiding: private, protected and public.
These keywords can be used in the definition of a struct. The keyword public defines all subse-
quent fields of a structure as accessible by all code; the keyword private defines all subsequent
fields as only accessible by the code which is part of the struct (i.e., only accessible to its mem-
ber functions). The keyword protected is discussed in chapter 13, and is beyond the scope of the
current discussion.
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In a struct all fields are public, unless explicitly stated otherwise. Using this knowledge we can
expand the struct Person:

struct Person
{

private:
char d_name[80];
char d_address[80];

public:
void setName(char const *n);
void setAddress(char const *a);
void print();
char const *name();
char const *address();

};

The data fields d_name and d_address are only accessible to the member functions which are
defined in the struct: these are the functions setName(), setAddress() etc.. This results from
the fact that the fields d_name and d_address are preceded by the keyword private. As an
illustration consider the following code fragment:

Person x;

x.setName("Frank"); // ok, setName() is public
strcpy(x.d_name, "Knarf"); // error, name is private

Data hiding is realized as follows: the actual data of a struct Person are mentioned in the struc-
ture definition. The data are accessed by the outside world using special functions, which are also

part of the definition. These member functions control all traffic between the data fields and other

parts of the program and are therefore also called ‘interface’ functions. The data hiding which is thus

realized is illustrated in Figure 3.1. Also note that the functions setName() and setAddress()
are declared as having a char const * argument. This means that the functions will not alter
the strings which are supplied as their arguments. In the same vein, the functions name() and
address() return a char const *: the caller may not modify the strings to which the return
values point.

Two examples of member functions of the struct Person are shown below:

void Person::setName(char const *n)
{

strncpy(d_name, n, 79);
d_name[79] = 0;

}

char const *Person::name()
{

return d_name;
}

In general, the power of the member functions and of the concept of data hiding lies in the fact that

the interface functions can perform special tasks, e.g., checking the validity of the data. In the above

example setName() copies only up to 79 characters from its argument to the data member name,
thereby avoiding array buffer overflow.
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Figure 3.1: Private data and public interface functions of the class Person.

Another example of the concept of data hiding is the following. As an alternative to member func-

tions which keep their data in memory (as do the above code examples), a runtime library could

be developed with interface functions which store their data on file. The conversion of a program

which stores Person structures in memory to one that stores the data on disk would not require
any modification of the program using Person structures. After recompilation and linking the new
object module to a new library, the program will use the new Person structure.

Though data hiding can be realized with structs, more often (almost always) classes are used
instead. A class refers to the same concept as a struct, except that a class uses private access
by default, whereas structs use public access by default. The definition of a class Person would
therefore look exactly as shown above, except for the fact that instead of the keyword struct, class
would be used, and the initial private: clause can be omitted. Our typographic suggestion for class
names is to use a capital character as its first character, followed by the remainder of the name in

lower case (e.g., Person).

3.6 Structs in C vs. structs in C++

Next we would like to illustrate the analogy between C and C++ as far as structs are concerned.
In C it is common to define several functions to process a struct, which then require a pointer to
the struct as one of their arguments. A fragment of an imaginary C header file is given below:

// definition of a struct PERSON_
typedef struct
{
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char name[80];
char address[80];

} PERSON_;

// some functions to manipulate PERSON_ structs

// initialize fields with a name and address
void initialize(PERSON_ *p, char const *nm,

char const *adr);

// print information
void print(PERSON_ const *p);

// etc..

In C++, the declarations of the involved functions are placed inside the definition of the struct or
class. The argument which denotes which struct is involved is no longer needed.

class Person
{

public:
void initialize(char const *nm, char const *adr);
void print();
// etc..

private:
char d_name[80];
char d_address[80];

};

The struct argument is implicit in C++. A C function call such as:

PERSON_ x;

initialize(&x, "some name", "some address");

becomes in C++:

Person x;

x.initialize("some name", "some address");

3.7 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program

functions like cos(), sin(), tan() etc. are to be used accepting arguments in degrees rather
than arguments in radians. Unfortunately, the functionname cos() is already in use, and that
function accepts radians as its arguments, rather than degrees.

Problems like these are usually solved by defining another name, e.g., the function name cosDegrees()
is defined. C++ offers an alternative solution: by allowing us to use namespaces. Namespaces can
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be considered as areas or regions in the code in which identifiers are defined which normally won’t

conflict with names already defined elsewhere.

Now that the ANSI/ISO standard has been implemented to a large degree in recent compilers, the

use of namespaces is more strictly enforced than in previous versions of compilers. This has certain

consequences for the setup of class header files. At this point in the Annotations this cannot be dis-
cussed in detail, but in section 6.6.1 the construction of header files using entities from namespaces

is discussed.

3.7.1 Defining namespaces

Namespaces are defined according to the following syntax:

namespace identifier
{

// declared or defined entities
// (declarative region)

}

The identifier used in the definition of a namespace is a standard C++ identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,

classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined

within a block. So it is not possible to define a namespace within, e.g., a function. However, it

is possible to define a namespace using multiple namespace declarations. Namespaces are called

‘open’. This means that a namespace CppAnnotations could be defined in a file file1.cc and also
in a file file2.cc. The entities defined in the CppAnnotations namespace of files file1.cc and
file2.cc are then united in one CppAnnotations namespace region. For example:

// in file1.cc
namespace CppAnnotations
{

double cos(double argInDegrees)
{

...
}

}

// in file2.cc
namespace CppAnnotations
{

double sin(double argInDegrees)
{

...
}

}

Both sin() and cos() are now defined in the same CppAnnotations namespace.

Namespace entities can be defined outside of their namespaces. This topic is discussed in section

3.7.4.1.
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3.7.1.1 Declaring entities in namespaces

Instead of defining entities in a namespace, entities may also be declared in a namespace. This

allows us to put all the declarations of a namespace in a header file which can thereupon be included

in sources in which the entities of a namespace are used. Such a header file could contain, e.g.,

namespace CppAnnotations
{

double cos(double degrees);
double sin(double degrees);

}

3.7.1.2 A closed namespace

Namespaces can be defined without a name. Such a namespace is anonymous and it restricts the

visibility of the defined entities to the source file in which the anonymous namespace is defined.

Entities defined in the anonymous namespace are comparable to C’s static functions and vari-
ables. In C++ the static keyword can still be used, but its use is more common in class defini-
tions (see chapter 6). In situations where static variables or functions are necessary, the use of the

anonymous namespace is preferred.

The anonymous namespace is a closed namespace: it is not possible to add entities to the same

anonymous namespace using different source files.

3.7.2 Referring to entities

Given a namespace and entities that are defined or declared in it, the scope resolution operator can

be used to refer to the entities that are defined in that namespace. For example, to use the function

cos() defined in the CppAnnotations namespace the following code could be used:

// assume the CppAnnotations namespace is declared in the
// next header file:
#include <CppAnnotations>

int main()
{

cout << "The cosine of 60 degrees is: " <<
CppAnnotations::cos(60) << endl;

}

This is a rather cumbersome way to refer to the cos() function in the CppAnnotations namespace,
especially so if the function is frequently used.

However, in these cases an abbreviated form (just cos()) can be used by specifying a using-declaration.
Following

using CppAnnotations::cos; // note: no function prototype,
// just the name of the entity
// is required.



3.7. NAMESPACES 57

the function cos() will refer to the cos() function in the CppAnnotations namespace. This im-
plies that the standard cos() function, accepting radians, cannot be used automatically anymore.
The plain scope resolution operator can be used to reach the generic cos() function:

int main()
{

using CppAnnotations::cos;
...
cout << cos(60) // uses CppAnnotations::cos()

<< ::cos(1.5) // uses the standard cos() function
<< endl;

}

Note that a using-declaration can be used inside a block. The using declaration prevents the
definition of entities having the same name as the one used in the using declaration: it is not
possible to use a using declaration for a variable value in the CppAnnotations namespace, and
to define (or declare) an identically named object in the block in which the using declaration was
placed:

int main()
{

using CppAnnotations::value;
...
cout << value << endl; // this uses CppAnnotations::value

int value; // error: value already defined.
}

3.7.2.1 The ‘using’ directive

A generalized alternative to the using-declaration is the using-directive:

using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are used as if they
where declared by using declarations.

While the using-directive is a quick way to import all the names of the CppAnnotations names-
pace (assuming the entities are declared or defined separately from the directive), it is at the same

time a somewhat dirty way to do so, as it is less clear which entity will be used in a particular block

of code.

If, e.g., cos() is defined in the CppAnnotationsnamespace, the function CppAnnotations::cos()
will be used when cos() is called in the code. However, if cos() is not defined in the CppAnnotations
namespace, the standard cos() function will be used. The using directive does not document as
clearly which entity will be used as the using declaration does. For this reason, the using directive
is somewhat deprecated.

3.7.2.2 ‘Koenig lookup’

If Koenig lookup were called the ‘Koenig principle’, it could have been the title of a new Ludlum

novell. However, it is not. Instead it refers to a C++ technicality.
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‘Koenig lookup’ refers to the fact that if a function is called without referencing a namespace, then

the namespaces of its arguments are used to find the namespace of the function. If the namespace in

which the arguments are defined contains such a function, then that function is used. This is called

the ‘Koenig lookup’.

In the following example this is illustrated. The function FBB::fun(FBB::Value v) is defined in
the FBB namespace. As shown, it can be called without the explicit mentioning of a namespace:

#include <iostream>

namespace FBB
{

enum Value // defines FBB::Value
{

first,
second,

};

void fun(Value x)
{

std::cout << "fun called for " << x << std::endl;
}

}

int main()
{

fun(FBB::first); // Koenig lookup: no namespace
// for fun()

}
/*

generated output:
fun called for 0

*/

Note that trying to fool the compiler doesn’t work: if in the namespace FBB Value was defined
as typedef int Value then FBB::Value would have been recognized as int, thus causing the
Koenig lookup to fail.

As another example, consider the next program. Here there are two namespaces involved, each

defining their own fun() function. There is no ambiguity here, since the argument defines the
namespace. So, FBB::fun() is called:

#include <iostream>

namespace FBB
{

enum Value // defines FBB::Value
{

first,
second,

};

void fun(Value x)
{
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std::cout << "FBB::fun() called for " << x << std::endl;
}

}

namespace ES
{

void fun(FBB::Value x)
{

std::cout << "ES::fun() called for " << x << std::endl;
}

}

int main()
{

fun(FBB::first); // No ambiguity: argument determines
// the namespace

}
/*

generated output:
FBB::fun() called for 0

*/

Finally, an example in which there is an ambiguity: fun() has two arguments, one from each
individual namespace. Here the ambiguity must be resolved by the programmer:

#include <iostream>

namespace ES
{

enum Value // defines ES::Value
{

first,
second,

};
}

namespace FBB
{

enum Value // defines FBB::Value
{

first,
second,

};

void fun(Value x, ES::Value y)
{

std::cout << "FBB::fun() called\n";
}

}

namespace ES
{

void fun(FBB::Value x, Value y)
{
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std::cout << "ES::fun() called\n";
}

}

int main()
{

/*
fun(FBB::first, ES::first); // ambiguity: must be resolved

// by explicitly mentioning
// the namespace

*/
ES::fun(FBB::first, ES::first);

}
/*

generated output:
ES::fun() called

*/

3.7.3 The standard namespace

Many entities of the runtime available software (e.g., cout, cin, cerr and the templates defined
in the Standard Template Library, see chapter 17) are now defined in the std namespace.

Regarding the discussion in the previous section, one should use a using declaration for these
entities. For example, in order to use the cout stream, the code should start with something like

#include <iostream>
using std::cout;

Often, however, the identifiers that are defined in the std namespace can all be accepted without
much thought. Because of that, one frequently encounters a using directive, rather than a using
declaration with the std namespace. So, instead of the mentioned using declaration a construc-
tion like

#include <iostream>
using namespace std;

is encountered. Whether this should be encouraged is subject of some dispute. Long using decla-
rations are of course inconvenient too. So, as a rule of thumb one might decide to stick to using
declarations, up to the point where the list becomes impractically long, at which point a using
directive could be considered.

3.7.4 Nesting namespaces and namespace aliasing

Namespaces can be nested. The following code shows the definition of a nested namespace:

namespace CppAnnotations
{

namespace Virtual
{
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void *pointer;
}

}

Now the variable pointer is defined in the Virtual namespace, nested under the CppAnnotations
namespace. In order to refer to this variable, the following options are available:

• The fully qualified name can be used. A fully qualified name of an entity is a list of all the

namespaces that are visited until the definition of the entity is reached, glued together by the

scope resolution operator:

int main()
{

CppAnnotations::Virtual::pointer = 0;
}

• A using declaration for CppAnnotations::Virtual can be used. Now Virtual can be used
without any prefix, but pointer must be used with the Virtual:: prefix:

...
using CppAnnotations::Virtual;

int main()
{

Virtual::pointer = 0;
}

• A using declaration for CppAnnotations::Virtual::pointer can be used. Now pointer
can be used without any prefix:

...
using CppAnnotations::Virtual::pointer;

int main()
{

pointer = 0;
}

• A using directive or directives can be used:

...
using namespace CppAnnotations::Virtual;

int main()
{

pointer = 0;
}

Alternatively, two separate using directives could have been used:

...
using namespace CppAnnotations;
using namespace Virtual;
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int main()
{

pointer = 0;
}

• A combination of using declarations and using directives can be used. E.g., a using directive
can be used for the CppAnnotations namespace, and a using declaration can be used for the
Virtual::pointer variable:

...
using namespace CppAnnotations;
using Virtual::pointer;

int main()
{

pointer = 0;
}

At every using directive all entities of that namespace can be used without any further prefix. If
a namespace is nested, then that namespace can also be used without any further prefix. However,

the entities defined in the nested namespace still need the nested namespace’s name. Only by using

a using declaration or directive the qualified name of the nested namespace can be omitted.

When fully qualified names are somehow preferred and a long form like

CppAnnotations::Virtual::pointer

is at the same time considered too long, a namespace alias can be used:

namespace CV = CppAnnotations::Virtual;

This defines CV as an alias for the full name. So, to refer to the pointer variable, we may now use
the construction

CV::pointer = 0;

Of course, a namespace alias itself can also be used in a using declaration or directive.

3.7.4.1 Defining entities outside of their namespaces

It is not strictly necessary to define members of namespaces within a namespace region. By prefix-

ing the member by its namespace or namespaces a member can be defined outside of a namespace

region. This may be done at the global level, or at intermediate levels in the case of nested names-

paces. So while it is not possible to define a member of namespace A within the region of namespace
C, it is possible to define a member of namespace A::B within the region of namespace A.

Note, however, that when a member of a namespace is defined outside of a namespace region, it

must still be declared within the region.

Assume the type int INT8[8] is defined in the CppAnnotations::Virtual namespace.
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Now suppose we want to define amember function funny, inside the namespace CppAnnotations::Virtual,
returning a pointer to CppAnnotations::Virtual::INT8. After first defining everything inside
the CppAnnotations::Virtual namespace, such a function could be defined as follows:

namespace CppAnnotations
{

namespace Virtual
{

void *pointer;

typedef int INT8[8];

INT8 *funny()
{

INT8 *ip = new INT8[1];

for (int idx = 0; idx < sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;
}

}
}

The function funny() defines an array of one INT8 vector, and returns its address after initializing
the vector by the squares of the first eight natural numbers.

Now the function funny() can be defined outside of the CppAnnotations::Virtual namespace
as follows:

namespace CppAnnotations
{

namespace Virtual
{

void *pointer;

typedef int INT8[8];

INT8 *funny();
}

}

CppAnnotations::Virtual::INT8 *CppAnnotations::Virtual::funny()
{

INT8 *ip = new INT8[1];

for (int idx = 0; idx < sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;
}

At the final code fragment note the following:
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• funny() is declared inside of the CppAnnotations::Virtual namespace.

• The definition outside of the namespace region requires us to use the fully qualified name of

the function and of its return type.

• Inside the block of the function funnywe are within the CppAnnotations::Virtualnames-
pace, so inside the function fully qualified names (e.g., for INT8) are not required any more.

Finally, note that the function could also have been defined in the CppAnnotations region. It that
case the Virtual namespace would have been required for the function name and its return type,
while the internals of the function would remain the same:

namespace CppAnnotations
{

namespace Virtual
{

void *pointer;

typedef int INT8[8];

INT8 *funny();
}

Virtual::INT8 *Virtual::funny()
{

INT8 *ip = new INT8[1];

for (int idx = 0; idx < sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;
}

}
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The ‘string’ data type

C++ offers a large number of facilities to implement solutions for common problems. Most of these

facilities are part of the Standard Template Library or they are implemented as generic algorithms

(see chapter 17).

Among the facilities C++ programmers have developed over and over again are those for manipulat-

ing chunks of text, commonly called strings. TheC programming language offers rudimentary string

support: the ASCII-Z terminated series of characters is the foundation on which a large amount of

code has been built1.

StandardC++ now offers a string type. In order to use string-type objects, the header file string
must be included in sources.

Actually, string objects are class type variables, and the class is formally introduced in chapter
6. However, in order to use a string, it is not necessary to know what a class is. In this section the

operators that are available for strings and several other operations are discussed. The operations

that can be performed on strings take the form

stringVariable.operation(argumentList)

For example, if string1 and string2 are variables of type string, then

string1.compare(string2)

can be used to compare both strings. A function like compare(), which is part of the string-class
is called a member function. The string class offers a large number of these member functions,
as well as extensions of some well-known operators, like the assignment (=) and the comparison
operator (==). These operators and functions are discussed in the following sections.

4.1 Operations on strings

Some of the operations that can be performed on strings return indices within the strings. Whenever

such an operation fails to find an appropriate index, the value string::npos is returned. This

1We define an ASCII-Z string as a series of ASCII-characters terminated by the ASCII-character zero (hence -Z), which
has the value zero, and should not be confused with character ’0’, which usually has the value 0x30

65
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value is a (symbolic) value of type string::size_type, which is (for all practical purposes) an
(unsigned) int.

Note that in all operations with strings both string objects and char const * values and vari-
ables can be used.

Some string-members use iterators. Iterators will be covered in section 17.2. The member func-
tions using iterators are listed in the next section (4.2), they are not further illustrated below.

The following operations can be performed on strings:

• Initialization: String objects can be initialized. For the initialization a plain ASCII-Z string,
another string object, or an implicit initialization can be used. In the example, note that the
implicit initialization does not have an argument, and may not use an argument list. Not even

empty.

#include <string>

using namespace std;

int main()
{

string stringOne("Hello World"); // using plain ascii-Z
string stringTwo(stringOne); // using another string object
string stringThree; // implicit initialization to "". Do

// not use the form ‘stringThree()’
return 0;

}

• Assignment: String objects can be assigned to each other. For this the assignment operator

(i.e., the = operator) can be used, which accepts both a string object and a C-style character
string as its right-hand argument:

#include <string>
using namespace std;

int main()
{

string stringOne("Hello World");
string stringTwo;

stringTwo = stringOne; // assign stringOne to stringTwo
stringTwo = "Hello world"; // assign a C-string to StringTwo

return 0;
}

• String to ASCII-Z conversion: In the previous example a standard C-string (an ASCII-Z string)

was implicitly converted to a string-object. The reverse conversion (converting a string
object to a standard C-string) is not performed automatically. In order to obtain the C-string
that is stored within the string object itself, the member function c_str(), which returns a
char const *, can be used:

#include <iostream>
#include <string>
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using namespace std;

int main()
{

string stringOne("Hello World");
char const *cString = stringOne.c_str();

cout << cString << endl;

return 0;
}

• String elements: The individual elements of a string object can be accessed for reading or writ-

ing. For this operation the subscript-operator ([]) is available, but there is no string pointer
dereferencing operator (*). The subscript operator does not perform range-checking. If range
checking is required the string::at()member function should be used:

#include <iostream>
#include <string>
using namespace std;

int main()
{

string stringOne("Hello World");

stringOne[6] = ’w’; // now "Hello world"
if (stringOne[0] == ’H’)

stringOne[0] = ’h’; // now "hello world"

// *stringOne = ’H’; // THIS WON’T COMPILE

stringOne = "Hello World"; // Now using the at()

// member function:
stringOne.at(6) =

stringOne.at(0); // now "Hello Horld"
if (stringOne.at(0) == ’H’)

stringOne.at(0) = ’W’; // now "Wello Horld"

return 0;
}

When an illegal index is passed to the at()member function, the program aborts (actually, an
exception is generated, which could be caught. Exceptions are covered in chapter 8).

• Comparisons: Two strings can be compared for (in)equality or ordering, using the ==, !=,
<, <=, > and >= operators or the string::compare() member function. The compare()
member function comes in several flavors (see section 4.2.4 for details). E.g.:

– int string::compare(string const &other): this variant offers a bit more infor-
mation than the comparison-operators do. The return value of the string::compare()
member function may be used for lexicographical ordering: a negative value is returned if

the string stored in the string object using the compare()member function (in the exam-
ple: stringOne) is located earlier in the ASCII collating sequence than the string stored
in the string object passed as argument.

#include <iostream>
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#include <string>
using namespace std;

int main()
{

string stringOne("Hello World");
string stringTwo;

if (stringOne != stringTwo)
stringTwo = stringOne;

if (stringOne == stringTwo)
stringTwo = "Something else";

if (stringOne.compare(stringTwo) > 0)
cout << "stringOne after stringTwo in the alphabet\n";

else if (stringOne.compare(stringTwo) < 0)
cout << "stringOne before stringTwo in the alphabet\n";

else
cout << "Both strings are the same\n";

// Alternatively:

if (stringOne > stringTwo)
cout <<
"stringOne after stringTwo in the alphabet\n";

else if (stringOne < stringTwo)
cout <<
"stringOne before stringTwo in the alphabet\n";

else
cout << "Both strings are the same\n";

return 0;
}

Note that there is no member function to perform a case insensitive comparison of strings.

– int string::compare(string::size_type pos, size_t n, string const &other):
the first argument indicates the position in the current string that should be compared;

the second argument indicates the number of characters that should be compared (if this

value exceeds the number of characters that are actually available, only the available

characters are compared); the third argument indicates the string which is compared to

the current string.

– More variants of string::compare() are available. As stated, refer to section 4.2.4 for
details.

The following example illustrates the compare() function:

#include <iostream>
#include <string>
using namespace std;

int main()
{

string stringOne("Hello World");
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// comparing from a certain offset in stringOne
if (!stringOne.compare(1, stringOne.length() - 1, "ello World"))

cout << "comparing ’Hello world’ from index 1"
" to ’ello World’: ok\n";

// the number of characters to compare (2nd arg.)
// may exceed the number of available characters:

if (!stringOne.compare(1, string::npos, "ello World"))
cout << "comparing ’Hello world’ from index 1"

" to ’ello World’: ok\n";

// comparing from a certain offset in stringOne over a
// certain number of characters in "World and more"
// This fails, as all of the chars in stringOne
// starting at index 6 are compared, not just
// 3 chars in "World and more"

if (!stringOne.compare(6, 3, "World and more"))
cout <<
"comparing ’Hello World’ from index 6 over"
" 3 positions to ’World and more’: ok\n";

else
cout << "Unequal (sub)strings\n";

// This one will report a match, as only 5 characters are
// compared of the source and target strings

if (!stringOne.compare(6, 5, "World and more", 0, 5))
cout <<
"comparing ’Hello World’ from index 6 over"
" 5 positions to ’World and more’: ok\n";

else
cout << "Unequal (sub)strings\n";

}
/*

Generated output:

comparing ’Hello world’ from index 1 to ’ello World’: ok
comparing ’Hello world’ from index 1 to ’ello World’: ok
Unequal (sub)strings
comparing ’Hello World’ from index 6 over 5 positions to

’World and more’: ok

*/

• Appending: A string can be appended to another string. For this the += operator can be used,
as well as the string &string::append()member function.

Like the compare() function, the append() member function may have extra arguments.
The first argument is the string to be appended, the second argument specifies the index po-

sition of the first character that will be appended. The third argument specifies the number

of characters that will be appended. If the first argument is of type char const *, only a
second argument may be specified. In that case, the second argument specifies the number of

characters of the first argument that are appended to the string object. Furthermore, the +
operator can be used to append two strings within an expression:

#include <iostream>
#include <string>



70 CHAPTER 4. THE ‘STRING’ DATA TYPE

using namespace std;

int main()
{

string stringOne("Hello");
string stringTwo("World");

stringOne += " " + stringTwo;

stringOne = "hello";
stringOne.append(" world");

// append 5 characters:
stringOne.append(" ok. >This is not used<", 5);

cout << stringOne << endl;

string stringThree("Hello");
// append " world":

stringThree.append(stringOne, 5, 6);

cout << stringThree << endl;
}

The + operator can be used in cases where at least one term of the + operator is a string
object (the other term can be a string, char const * or char).

When neither operand of the + operator is a string, at least one operand must be converted
to a string object first. An easy way to do this is to use an anonymous string object:

string("hello") + " world";

• Insertions: The string &string::insert()member function to insert (parts of) a string
has at least two, and at most four arguments:

– The first argument is the offset in the current string object where another string should
be inserted.

– The second argument is the string to be inserted.

– The third argument specifies the index position of the first character in the provided

string-argument that will be inserted.

– The fourth argument specifies the number of characters that will be inserted.

If the first argument is of type char const *, the fourth argument is not available. In that
case, the third argument indicates the number of characters of the provided char const *
value that will be inserted.

#include <string>

int main()
{

string
stringOne("Hell ok.");

// Insert "o " at position 4
stringOne.insert(4, "o ");
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string
world("The World of C++");

// insert "World" into stringOne
stringOne.insert(6, world, 4, 5);

cout << "Guess what ? It is: " << stringOne << endl;
}

Several variants of string::insert() are available. See section 4.2 for details.

• Replacements: At times, the contents of string objects must be replaced by other information.
To replace parts of the contents of a string object by another string the member function
string &string::replace() can be used. The member function has at least three and
possibly five arguments, having the following meanings (see section 4.2 for overloaded versions

of replace(), using different types of arguments):

– The first argument indicates the position of the first character that must be replaced

– The second argument gives the number of characters that must be replaced.

– The third argument defines the replacement text (a string or char const *).

– The fourth argument specifies the index position of the first character in the provided

string-argument that will be inserted.

– The fifth argument can be used to specify the number of characters that will be inserted.

If the third argument is of type char const *, the fifth argument is not available. In that
case, the fourth argument indicates the number of characters of the provided char const *
value that will be inserted.

The following example shows a very simple file changer: it reads lines from cin, and replaces
occurrences of a ‘searchstring’ by a ‘replacestring’. Simple tests for the correct number of

arguments and the contents of the provided strings (they should be unequal) are applied as

well.

#include <iostream>
#include <string>

using namespace std;

int main(int argc, char **argv)
{

if (argc == 3)
{

cerr << "Usage: <searchstring> <replacestring> to process "
"stdin\n";

return 1;
}

string search(argv[1]);
string replace(argv[2]);

if (search == replace)
{

cerr << "The replace and search texts should be different\n";
return 1;

}
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string line;
while (getline(cin, line))
{

string::size_type idx = 0;
while (true)
{

idx = line.find(search, idx); // find(): another string member
// see ‘searching’ below

if (idx == string::npos)
break;

line.replace(idx, search.size(), replace);
idx += replace.length(); // don’t change the replacement

}
cout << line << endl;

}
return 0;

}

• Swapping: The member function string &string::swap(string &other) swaps the con-
tents of two string-objects. For example:

#include <iostream>
#include <string>
using namespace std;

int main()
{

string stringOne("Hello");
string stringTwo("World");

cout << "Before: stringOne: " << stringOne << ", stringTwo: "
<< stringTwo << endl;

stringOne.swap(stringTwo);

cout << "After: stringOne: " << stringOne << ", stringTwo: "
<< stringTwo << endl;

}

• Erasing: Themember function string &string::erase() removes characters from a string.
The standard form has two optional arguments:

– If no arguments are specified, the stored string is erased completely: it becomes the empty

string (string() or string("")).

– The first argument may be used to specify the offset of the first character that must be

erased.

– The second argument may be used to specify the number of characters that are to be

erased.

See section 4.2 for overloaded versions of erase(). An example of the use of erase() is given
below:

#include <iostream>
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#include <string>
using namespace std;

int main()
{

string stringOne("Hello Cruel World");

stringOne.erase(5, 6);

cout << stringOne << endl;

stringOne.erase();

cout << "’" << stringOne << "’\n";
}

• Searching: To find substrings in a string the member function string::size_type
string::find() can be used. This function looks for the string that is provided as its first ar-
gument in the string object calling find() and returns the index of the first character of the
substring if found. If the string is not found string::npos is returned. The member function
rfind() looks for the substring from the end of the string object back to its beginning. An
example using find() was given earlier.

• Substrings: To extract a substring from a string object, the member function string
string::substr() is available. The returned string object contains a copy of the substring
in the string-object calling substr() The substr() member function has two optional ar-
guments:

– Without arguments, a copy of the string itself is returned.

– The first argument may be used to specify the offset of the first character to be returned.

– The second argument may be used to specify the number of characters that are to be

returned.

For example:

#include <iostream>
#include <string>
using namespace std;

int main()
{

string stringOne("Hello World");

cout << stringOne.substr(0, 5) << endl
<< stringOne.substr(6) << endl
<< stringOne.substr() << endl;

}

• Character set searches: Whereas find() is used to find a substring, the functions find_first_of(),
find_first_not_of(), find_last_of() and find_last_not_of() can be used to find
sets of characters (Unfortunately, regular expressions are not supported here). The follow-

ing program reads a line of text from the standard input stream, and displays the substrings

starting at the first vowel, starting at the last vowel, and starting at the first non-digit:

#include <iostream>



74 CHAPTER 4. THE ‘STRING’ DATA TYPE

#include <string>
using namespace std;

int main()
{

string line;

getline(cin, line);

string::size_type pos;

cout << "Line: " << line << endl
<< "Starting at the first vowel:\n"
<< "’"

<< (
(pos = line.find_first_of("aeiouAEIOU"))
!= string::npos ?

line.substr(pos)
:

"*** not found ***"
) << "’\n"

<< "Starting at the last vowel:\n"
<< "’"

<< (
(pos = line.find_last_of("aeiouAEIOU"))
!= string::npos ?

line.substr(pos)
:

"*** not found ***"
) << "’\n"

<< "Starting at the first non-digit:\n"
<< "’"

<< (
(pos = line.find_first_not_of("1234567890"))
!= string::npos ?

line.substr(pos)
:

"*** not found ***"
) << "’\n";

}

• String size: The number of characters that are stored in a string are obtained by the size()
member function, which, like the standard C function strlen() does not include the termi-
nating ASCII-Z character. For example:

#include <iostream>
#include <string>
using namespace std;

int main()
{

string stringOne("Hello World");

cout << "The length of the stringOne string is "
<< stringOne.size() << " characters\n";
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}

• Empty strings: The size()member function can be used to determine whether a string holds
no characters. Alternatively, the string::empty()member function can be used:

#include <iostream>
#include <string>
using namespace std;

int main()
{

string stringOne;

cout << "The length of the stringOne string is "
<< stringOne.size() << " characters\n"

"It is " << (stringOne.empty() ? "" : " not ")
<< "empty\n";

stringOne = "";

cout << "After assigning a \"\"-string to a string-object\n"
"it is " << (stringOne.empty() ? "also" : " not")

<< " empty\n";
}

• Resizing strings: If the size of a string is not enough (or if it is too large), the member function

void string::resize() can be used to make it longer or shorter. Note that operators like
+= automatically resize a string when needed.

• Reading a line from a stream into a string: The function

istream &getline(istream &instream, string &target, char delimiter)

may be used to read a line of text (up to the first delimiter or the end of the stream) from

instream (note that getline() is not a member function of the class string).

The delimiter has a default value ’\n’. It is removed from instream, but it is not stored in
target. The member istream::eof()may be called to determine whether the delimiter was
found. If it returns true the delimiter was not found (see chapter 5 for details about istream
objects). The function getline()was used in several earlier examples (e.g., with the replace()
member function).

• A string variables may be extracted from a stream. Using the construction

istr >> str;

where istr is an istream object, and str is a string, the next consecutive series of non-
blank characters will be assigned to str. Note that by default the extraction operation will
skip any blanks that precede the characters that are extracted from the stream.

4.2 Overview of operations on strings

In this section the available operations on strings are summarized. There are four subparts here:

the string-initializers, the string-iterators, the string-operators and the string-member func-
tions.
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The member functions are ordered alphabetically by the name of the operation. Below, object is a
string-object, and argument is either a string const & or a char const *, unless overloaded
versions tailored to string and char const * parameters are explicitly mentioned. Object is
used in cases where a string object is initialized or given a new value. The entity referred to by
argument always remains unchanged.

Furthermore, opos indicates an offset into the object string, apos indicates an offset into the
argument string. Analogously, on indicates a number of characters in the object string, and an
indicates a number of characters in the argument string. Both opos and aposmust refer to existing
offsets, or an exception will be generated. In contrast to this, an and on may exceed the number of
available characters, in which case only the available characters will be considered.

When streams are involved, istr indicates a stream from which information is extracted, ostr
indicates a stream into which information is inserted.

With member functions the types of the parameters are given in a function-prototypical way. With

several member functions iterators are used. At this point in the Annotations it’s a bit premature to

discuss iterators, but for referential purposes they have to be mentioned nevertheless. So, a forward

reference is used here: see section 17.2 for a more detailed discussion of iterators. Like apos and
opos, iterators must also refer to an existing character, or to an available iterator range of the string
to which they refer.

Finally, note that all string-member functions returning indices in object return the predefined
constant string::npos if no suitable index could be found.

4.2.1 Initializers

The following string constructors are available:

• string object:

Initializes object to an empty string.

• string object(string::size_type no, char c):

Initializes object with no characters c.

• string object(string argument):

Initializes object with argument.

• string object = argument:

Initializes object with argument. This is an alternative form of the previous ini-
tialization.

• string object(string argument, string::size_type apos, string::size_type an
= pos):

Initializes object with argument, using an characters of argument, starting at
index apos.

• string object(InputIterator begin, InputIterator end):

Initializes objectwith the range of characters implied by the provided InputIterators.
Iterators are covered in detail in section 17.2, but can (for the time being) be inter-

preted as pointers to characters. See also the next section.
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4.2.2 Iterators

See section 17.2 for details about iterators. As a quick introduction to iterators: an iterator acts

like a pointer, and pointers can often be used in situations where iterators are requested. Iterators

almost always come in pairs: the begin-iterator points to the first entity that will be considered, the

end-iterator points just beyond the last entity that will be considered. Iterators play an important

role in the context of generic algorithms (cf. chapter 17).

• Forward iterators are returned by the members:

– string::begin(), pointing to the first character inside the string object.

– string::end(), pointing beyond the last character inside the string object.

• Reverse iterators are also iterators, but they are used to step through a range in a reversed

direction. Reverse iterators are returned by the members:

– string::rbegin(), which can be considered to be an iterator pointing to the last char-
acter inside the string object.

– string::rend(), which can be considered to be an iterator pointing before the first char-
acter inside the string object.

4.2.3 Operators

The following string operators are available:

• object = argument.

Assignment of argument to an existing string object.

• object = c.

Assignment of char c to object.

• object += argument.

Appends argument to object. Argumentmay also be a char expression.

• argument1 + argument2.

Within expressions, stringsmay be added. At least one term of the expression (the
left-hand term or the right-hand term) should be a string object. The other term
may be a string, a char const * value or a char expression, as illustrated by the
following example:

void fun()
{

char const *asciiz = "hello";
string first = "first";
string second;

// all expressions compile ok:
second = first + asciiz;
second = asciiz + first;
second = first + ’a’;
second = ’a’ + first;

}
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• object[string::size_type opos].

The subscript-operator may be used to retrieve object’s individual characters, or to
assign new values to individual characters of object or to retrieve these characters.
There is no range-checking. If range checking is required, use the at() member
function.

• argument1 == argument2.

The equality operator (==) may be used to compare a string object to another
string or char const * value. The != operator is available as well. The return
value for both is a bool. For two identical strings == returns true, and != returns
false.

• argument1 < argument2.

The less-than operatormay be used to compare the orderingwithin the Ascii-character

set of argument1 and argument2. The operators <=, > and >= are available as well.

• ostr << object.

The insertion-operator may be used with string objects.

• istr >> object.

The extraction-operator may be used with string objects. It operates analogously
to the extraction of characters into a character array, but object is automatically
resized to the required number of characters.

4.2.4 Member functions

The string member functions are listed in alphabetical order. The member name, prefixed by the

string-class is given first. Then the full prototype and a description are given. Values of the type
string::size_type represent index positions within a string. For all practical purposes, these
values may be interpreted as unsigned.

The special value string::npos, defined by the string class, represents a non-existing index. This
value is returned by all members returning indices when they could not perform their requested

tasks. Note that the string’s length is not returned as a valid index. E.g., when calling a member

‘find_first_not_of(" ")’ (see below) on a string object holding 10 blank space characters,
npos is returned, as the string only contains blanks. The final 0-byte that is used in C to indicate
the end of a ASCII-Z string is not considered part of a C++ string, and so the member function will
return npos, rather than length().

In the following overview, ‘size_type’ should always be read as ‘string::size_type’.

• char &string::at(size_type opos):

The character (reference) at the indicated position is returned (it may be reassigned).

The member function performs range-checking, aborting the program if an invalid

index is passed.

• string &string::append(InputIterator begin, InputIterator end):

Using this member function the range of characters implied by the begin and end
InputIterators are appended to the string object.
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• string &string::append(string argument, size_type apos, size_type an):

– If only argument is provided, it is appended to the string object.

– If apos is provided as well, argument is appended from index position apos until
the end of argument.

– If an is provided too, an characters of argument, starting at index position apos
are appended to the string object.

If argument is of type char const *, the second parameter apos is not available.
So, with char const * arguments, either all characters or an initial subset of the
characters of the provided char const * argument are appended to the string
object. Of course, if apos and an are specified in this case, append() can still be
used: the char const * argument will then implicitly be converted to a string
const &.

• string &string::append(size_type n, char c):

Using this member function, n characters c can be appended to the string object.

• string &string::assign(string argument, size_type apos, size_type an):

– If only argument is provided, it is assigned to the string object.

– If apos is specified as well, a substring of argument object, starting at offset
position apos, is assigned to the string object calling this member.

– If an is provided too, a substring of argument object, starting at offset position
apos, containing at most an characters, is assigned to the string object calling
this member.

If argument is of type char const *, no parameter apos is available. So, with
char const * arguments, either all characters or an initial subset of the characters
of the provided char const * argument are assigned to the string object. As with
the string::append() member, a char const * argument may be used, but it
will be converted to a string object first.

• string &string::assign(size_type n, char c):

Using this member function, n characters c can be assigned to the string object.

• size_type string::capacity():

returns the number of characters that can currently be stored inside the string
object.

• int string::compare(string argument):

This member function can be used to compare (according to the ASCII-character set)

the text stored in the string object and in argument. The argument may also be
a (non-0) char const *. 0 is returned if the characters in the string object and
in argument are the same; a negative value is returned if the text in string is
lexicographically before the text in argument; a positive value is returned if the text
in string is lexicographically beyond the text in argument.

• int string::compare(size_type opos, size_type on, string argument):

This member function can be used to compare a substring of the text stored in the

string object with the text stored in argument. At most on characters, starting at
offset opos, are compared with the text in argument. The argument may also be a
(non-0) char const *.
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• int string::compare(size_type opos, size_type on, string argument,
size_type apos, size_type an):

This member function can be used to compare a substring of the text stored in the

string object with a substring of the text stored in argument. At most on char-
acters of the string object, starting at offset opos, are compared with at most an
characters of argument, starting at offset apos. Note that argument must also be a
string object.

• int string::compare(size_type opos, size_type on, char const *argument,
size_type an):

This member function can be used to compare a substring of the text stored in the

string object with a substring of the text stored in argument. At most on char-
acters of the string object, starting at offset opos, are compared with at most an
characters of argument. Argument must have at least an characters. However, the
characters may have arbitrary values: the ASCII-Z value has no special meaning.

• size_type string::copy(char *argument, size_type on, size_type opos):

The contents of the string object is (partially) copied to argument.

– If on is provided, it refers to the maximum number of characters that will be
copied. If omitted, all the string’s characters, starting at offset opos, will be
copied to argument. Also, string::npos may be specified to indicate that all
available characters should be copied.

– If both on and opos are provided, opos refers to the offset in the string object
where copying should start.

The actual number of characters that were copied is returned. Note: following the

copying, no ASCII-Z will be appended to the copied string. A final ASCII-Z character
can be appended to the copied text using the following construction:

buffer[s.copy(buffer)] = 0;

• char const *string::c_str():

the member function returns the contents of the string object as an ASCII-Z C-
string.

• char const *string::data():

returns the raw text stored in the string object. Since this member does not return
an ascii-Z string (as c_str() does), it can be used to store and retrieve any kind of
information, including, e.g., series of 0-bytes:

string s;
s.resize(2);
cout << static_cast<int>(s.data()[1]) << endl;

• bool string::empty():

returns true if the string object contains no data.

• string &string::erase(size_type opos; size_type on):

This member function can be used to erase (a sub)string of the string object.

– If no arguments are provided, the contents of the string object are completely
erased.

– If opos is specified, the contents of the string object are erased, starting from
index position opos until (including) the object’s final character.
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– If on is provided as well, on characters of the string object, starting at index
position opos are erased.

• iterator string::erase(iterator obegin, iterator oend):

– If only obegin is provided, the string object’s character at iterator position
obegin is erased.

– If oend is provided as well, the range of characters of the string object, implied
by the iterators obegin and oend are erased.

The iterator obegin is returned, pointing to the character immediately following the
last erased character.

• size_type string::find(string argument, size_type opos):

Returns the index in the string object where argument is found.

– If opos is provided, it refers to the index in the string object where the search
for argument should start. If opos is omitted, searching starts at the beginning
of the string object.

• size_type string::find(char const *argument, size_type opos, size_type an):

Returns the index in the string object where argument is found.

– If opos is provided, it refers to the index in the string object where the search
for argument should start. If omitted, the string object is scanned completely.

– If an is provided as well, it indicates the number of characters of argument that
should be used in the search: it defines a partial string starting at the beginning

of argument. If omitted, all characters in argument are used.

• size_type string::find(char c, size_type opos):

Returns the index in the string object where c is found.

– If opos is provided it refers to the index in the string object where the search
for the character should start. If omitted, searching starts at the beginning of the

string object.

• size_type string::find_first_of(string argument, size_type opos):

Returns the index in the string object where any character in argument is found.

– If opos is provided, it refers to the index in the string object where the search
for argument should start. If omitted, searching starts at the beginning of the
string object.

• size_type string::find_first_of(char const *argument, size_type opos,
size_type an):

Returns the index in the string object where a character of argument is found, no
matter which character.

– If opos is provided it refers to the index in the string object where the search
for argument should start. If omitted, the string object is scanned completely.

– If an is provided it indicates the number of characters of the char const *
argument that should be used in the search: it defines a partial string starting

at the beginning of the char const * argument. If omitted, all of argument’s
characters are used.
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• size_type string::find_first_of(char c, size_type opos):

Returns the index in the string object where character c is found.

– If opos is provided, it refers to the index in the string object where the search
for c should start. If omitted, searching starts at the beginning of the string
object.

• size_type string::find_first_not_of(string argument, size_type opos):

Returns the index in the string object where a character not appearing in argument
is found.

– If opos is provided, it refers to the index in the string object where the search
for argument should start. If omitted, searching starts at the beginning of the
string object.

• size_type string::find_first_not_of(char const *argument, size_type opos,
size_type an):

Returns the index in the string object where any character not appearing in argument
is found.

– If opos is provided it refers to the index in the string object where the search
for characters not specified in argument should start. If omitted, the string
object is scanned completely.

– If an is provided it indicates the number of characters of the char const *
argument that should be used in the search: it defines a partial string starting

at the beginning of the char const * argument. If omitted, all of argument’s
characters are used.

• size_type string::find_first_not_of(char c, size_type opos):

Returns the index in the string object where another character than c is found.

– If opos is provided, it refers to the index in the string object where the search
for c should start. If omitted, searching starts at the beginning of the string
object.

• size_type string::find_last_of(string argument, size_type opos):

Returns the last index in the string object where one of argument’s characters is
found.

– If opos is provided it refers to the index in the string object where the search
for argument should start, proceeding backwards to the string’s first character.
If omitted, searching starts at the the string object’s last character.

• size_type string::find_last_of(char const* argument, size_type opos,
size_type an):

Returns the last index in the string object where one of argument’s characters is
found.

– If opos is provided it refers to the index in the string object where the search
for argument should start, proceeding backwards to the string’s first character.
If omitted, searching starts at the the string object’s last character.

– If an is provided it indicates the number of characters of argument that should
be used in the search: it defines a partial string starting at the beginning of the

char const * argument. If omitted, all of argument’s characters are used.
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• size_type string::find_last_of(char c, size_type opos):

Returns the last index in the string object where character c is found.

– If opos is provided it refers to the index in the string object where the search for
character c should start, proceeding backwards to the string’s first character.
If omitted, searching starts at the the string object’s last character.

• size_type string::find_last_not_of(string argument, size_type opos):

Returns the last index in the string object where any character not appearing in
argument is found.

– If opos is provided it refers to the index in the string object where the search
for characters not appearing in argument should start, proceeding backwards
to the string’s first character. If omitted, searching starts at the the string
object’s last character.

• size_type string::find_last_not_of(char const *argument, size_type
opos, size_type an):

Returns the last index in the string object where any character not appearing in
argument is found.

– If opos is provided it refers to the index in the string object where the search
for characters not appearing in argument should start, proceeding backwards
to the string’s first character. If omitted, searching starts at the the string
object’s last character.

– If an is provided it indicates the number of characters of argument that should
be used in the search: it defines a partial string starting at the beginning of the

char const * argument. If omitted, all of argument’s characters are used.

• size_type string::find_last_not_of(char c, size_type opos):

Returns the last index in the string object where another character than c is found.

– If opos is provided it refers to the index in the string object where the search
for a character unequal to character c should start, proceeding backwards to the
string’s first character. If omitted, searching starts at the the string object’s
last character.

• istream &getline(istream &istr, string object, char delimiter):

This function (note that it’s not a member function of the class string) can be used
to read a line of text from istr. All characters until delimiter (or the end of the
stream, whichever comes first) are read from istr and are stored in object. The
delimiter, when present, is removed from the stream, but is not stored in line. The
delimiter’s default value is ’\n’.
If the delimiter is not found, istr.fail() returns 1 (see section 5.3.1). Note that
the contents of the last line, whether or not it was terminated by a delimiter, will

always be assigned to object.

• string &string::insert(size_type opos, string argument, size_type
apos, size_type an):

This member function can be used to insert (a sub)string of argument into the string
object, at the string object’s index position opos. The arguments apos and an
must either be specified or they must both be omitted. If specified, an characters of
argument, starting at index position apos are inserted into the string object.
If argument is of type char const *, no parameter apos is available. So, with
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char const * arguments, either all characters or an initial subset of an characters
of the provided char const * argument are inserted into the string object. In this
case, the prototype of the member function is:

string &string::insert(size_type opos, char const *argument,
size_type an)

(As before, an implicit conversion from char const * to string will occur if apos
and an are provided).

• string &string::insert(size_type opos, size_type n, char c):

Using this member function, n characters c can be inserted to the string object.

• iterator string::insert(iterator obegin, char c):

The character c is inserted at the (iterator) position obegin in the string object.
The iterator obegin is returned.

• iterator string::insert(iterator obegin, size_type n, char c):

At the (iterator) position obegin of object n characters c are inserted. The iterator
obegin is returned.

• iterator string::insert(iterator obegin, InputIterator abegin,
InputIterator aend):

The range of characters implied by the InputIterators abegin and aend are in-
serted at the (iterator) position obegin in object. The iterator obegin is returned.

• size_type string::length():

returns the number of characters stored in the string object.

• size_type string::max_size():

returns the maximum number of characters that can be stored in the string object.

• string &string::replace(size_type opos, size_type on, string argument,
size_type apos, size_type an):

The arguments apos and an are optional. If omitted, argument is considered com-
pletely. The substring of on characters of the string object, starting at position opos
is replaced by argument. If on is set to 0, the member function inserts argument into
object.

– If apos and an are provided, an characters of argument, starting at index posi-
tion apos will replace the indicated range of characters of object.

If argument is of type char const *, no parameter apos is available. So, with
char const * arguments, either all characters or an initial subset of the characters
of an characters of the provided char const * argument will replace the indicated
range of characters in object. In that case, the prototype of the member function is:

string &string::replace(size_type opos, size_type on,
char const *argument, size_type an)

• string &string::replace(size_type opos, size_type on, size_type n,
char c):

This member function can be used to replace on characters of the string object,
starting at index position opos, by n characters having values c.
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• string &string::replace (iterator obegin, iterator oend, string argument):

Here, the string implied by the iterators obegin and oend are replaced by argument.
If argument is a char const *, an extra argument n may be used, specifying the
number of characters of argument that are used in the replacement.

• string &string::replace(iterator obegin, iterator oend, size_type n, char
c):

The range of characters of the string object, implied by the iterators obegin
and oend are replaced by n characters having values c.

• string string::replace(iterator obegin, iterator oend, InputIterator abegin,
InputIterator aend):

Here the range of characters implied by the iterators obegin and oend is replaced
by the range of characters implied by the InputIterators abegin and aend.

• void string::resize(size_type n, char c):

The string stored in the string object is resized to n characters. The second argu-
ment is optional, in which case the value c = 0 is used. If provided and the string is
enlarged, the extra characters are initialized to c.

• size_type string::rfind(string argument, size_type opos):

Returns the index in the string object where argument is found. Searching pro-
ceeds either from the end of the string object or from its offset opos back to the
beginning. If the argument opos is omitted, searching starts at the end of object.

• size_type string::rfind(char const *argument, size_type opos, size_type an):

Returns the index in the string object where argument is found. Searching pro-
ceeds either from the end of the string object or from offset opos back to the be-
ginning. The parameter an indicates the number of characters of argument that
should be used in the search: it defines a partial string starting at the beginning of

argument. If omitted, all characters in argument are used.

• size_type string::rfind(char c, size_type opos):

Returns the index in the string object where c is found. Searching proceeds either
from the end of the string object or from offset opos back to the beginning.

• size_type string::size():

returns the number of characters stored in the string object. This member is a
synonym of string::length().

• string string::substr(size_type opos, size_type on):

Returns (using a value return type) a substring of the string object. The parameter
onmay be used to specify the number of characters of object that are returned. The
parameter oposmay be used to specify the index of the first character of object that
is returned. Either on or both arguments may be omitted. The string object itself
is not modified by substr().

• size_type string::swap(string argument):

swaps the contents of the string object and argument. In this case, argumentmust
be a string and cannot be a char const *. Of course, both strings (object and
argument) are modified by this member function.
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Chapter 5

The IO-stream Library

As an extension to the standard stream (FILE) approach, well known from the C programming
language, C++ offers an input/output (I/O) library based on class concepts.

Earlier (in chapter 3) we’ve already seen examples of the use of the C++ I/O library, especially the

use of the insertion operator (<<) and the extraction operator (>>). In this chapter we’ll cover the

library in more detail.

The discussion of input and output facilities provided by the C++ programming language heavily

uses the class concept, and the notion of member functions. Although the construction of classes
will be covered in the upcoming chapter 6, and inheritance will formally be introduced in chapter

13, we think it is well possible to introduce input and output (I/O) facilities long before the technical

background of these topics is actually covered.

Most C++ I/O classes have names starting with basic_ (like basic_ios). However, these basic_
names are not regularly found in C++ programs, as most classes are also defined using typedef
definitions like:

typedef basic_ios<char> ios;

SinceC++ defines both the char and wchar_t types, I/O facilities were developed using the template
mechanism. As will be further elaborated in chapter 18, this way it was possible to construct generic

software, which could thereupon be used for both the char and wchar_t types. So, analogously to
the above typedef there exists a

typedef basic_ios<wchar_t> wios;

This type definition can be used for the wchar_t type. Because of the existence of these type def-
initions, the basic_ prefix can be omitted from the Annotations without loss of continuity. In the
Annotations the emphasis is primarily on the standard 8-bits char type.

As a side effect to this implementation it must be stressed that it is not anymore correct to declare

iostream objects using standard forward declarations, like:

class ostream; // now erroneous

Instead, sources that must declare iostream classes must

#include <iosfwd> // correct way to declare iostream classes

87
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Using the C++ I/O library offers the additional advantage of type safety. Objects (or plain values)

are inserted into streams. Compare this to the situation commonly encountered in C where the

fprintf() function is used to indicate by a format string what kind of value to expect where.
Compared to this latter situation C++’s iostream approach immediately uses the objects where their

values should appear, as in

cout << "There were " << nMaidens << " virgins present\n";

The compiler notices the type of the nMaidens variable, inserting its proper value at the appropriate
place in the sentence inserted into the cout iostream.

Compare this to the situation encountered in C. Although C compilers are getting smarter and

smarter over the years, and although a well-designed C compiler may warn you for a mismatch

between a format specifier and the type of a variable encountered in the corresponding position of

the argument list of a printf() statement, it can’t do much more than warn you. The type safety
seen in C++ prevents you from making type mismatches, as there are no types to match.

Apart from this, iostreams offer more or less the same set of possibilities as the standard FILE-
based I/O used in C: files can be opened, closed, positioned, read, written, etc.. In C++ the basic

FILE structure, as used in C, is still available. C++ adds I/O based on classes to FILE-based I/O,
resulting in type safety, extensibility, and a clean design. In the ANSI/ISO standard the intent was

to construct architecture independent I/O. Previous implementations of the iostreams library did

not always comply with the standard, resulting in many extensions to the standard. Software de-

veloped earlier may have to be partially rewritten with respect to I/O. This is tough for those who

are now forced to modify existing software, but every feature and extension that was available in

previous implementations can be reconstructed easily using the ANSI/ISO standard conforming I/O

library. Not all of these reimplementations can be covered in this chapter, as most use inheritance

and polymorphism, topics that will be covered in chapters 13 and 14, respectively. Selected reim-

plementations will be provided in chapter 20, and below references to particular sections in that

chapter will be given where appropriate. This chapter is organized as follows (see also Figure 5.1):

• The class ios_base represents the foundation upon with the iostreams I/O library was built.
The class ios forms the foundation of all I/O operations, and defines, among other things, the
facilities for inspecting the state of I/O streams and output formatting.

• The class ios was directly derived from ios_base. Every class of the I/O library doing input
or output is derived from this ios class, and inherits its (and, by implication, ios_base’s)
capabilities. The reader is urged to keep this feature in mind while reading this chapter. The

concept of inheritance is not discussed further here, but rather in chapter 13.

An important function of the class ios is to define the communication with the buffer that is
used by streams. The buffer is a streambuf object (or is derived from the class streambuf)
and is responsible for the actual input and/or output. This means that iostream objects do
not perform input/output operations themselves, but leave these to the (stream)buffer objects

with which they are associated.

• Next, basic C++ output facilities are discussed. The basic class used for output is ostream,
defining the insertion operator as well as other facilities for writing information to streams.

Apart from inserting information in files it is possible to insert information in memory buffers,

for which the ostringstream class is available. Formatting of the output is to a great extent
possible using the facilities defined in the ios class, but it is also possible to insert formatting
commands directly in streams, using manipulators. This aspect of C++ output is discussed as

well.

• Basic C++ input facilities are available in the istream class. This class defines the insertion
operator and related facilities for input. Analogous to the ostringstream a class istringstream
class is available for extracting information from memory buffers.
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Figure 5.1: Central I/O Classes
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• Finally, several advanced I/O-related topics are discussed: other topics, combined reading and

writing using streams and mixing C and C++ I/O using filebuf ojects. Other I/O related
topics are covered elsewhere in the Annotations, e.g., in chapter 20.

In the iostream library the stream objects have a limited role: they form the interface between,

on the one hand, the objects to be input or output and, on the other hand, the streambuf, which
is responsible for the actual input and output to the device for which the streambuf object was
created in the first place. This approach allows us to construct a new kind of streambuf for a new
kind of device, and use that streambuf in combination with the ‘good old’ istream- or ostream-
class facilities. It is important to understand the distinction between the formatting roles of the

iostream objects and the buffering interface to an external device as implemented in a streambuf.
Interfacing to new devices (like sockets or file descriptors) requires us to construct a new kind of

streambuf, not a new kind of istream or ostream object. A wrapper class may be constructed
around the istream or ostream classes, though, to ease the access to a special device. This is how
the stringstream classes were constructed.

5.1 Special header files

Several header files are defined for the iostream library. Depending on the situation at hand, the

following header files should be used:

• #include <iosfwd>: sources should use this preprocessor directive if a forward declaration
is required for the iostream classes. For example, if a function defines a reference parameter

to an ostream then, when this function itself is declared, there is no need for the compiler to
know exactly what an ostream is. In the header file declaring such a function the ostream
class merely needs to be be declared. One cannot use

class ostream; // erroneous declaration

void someFunction(ostream &str);

but, instead, one should use:

#include <iosfwd> // correctly declares class ostream

void someFunction(ostream &str);

• #include <streambuf>: sources should use this preprocessor directive when using streambuf
or filebuf classes. See sections 5.7 and 5.7.2.

• #include <istream>: sources should use this preprocessor directive when using the class
istream or when using classes that do both input and output. See section 5.5.1.

• #include <ostream>: sources should use this preprocessor directive when using the class
ostream class or when using classes that do both input and output. See section 5.4.1.

• #include <iostream>: sources should use this preprocessor directive when using the global
stream objects (like cin and cout).

• #include <fstream>: sources should use this preprocessor directive when using the file
stream classes. See sections 5.5.2, 5.4.2 and 5.8.4.

• #include <sstream>: sources should use this preprocessor directive when using the string
stream classes. See sections 5.4.3 and 5.5.3.

• #include <iomanip>: sources should use this preprocessor directive when using parameter-
ized manipulators. See section 5.6
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5.2 The foundation: the class ‘ios_base’

The class ios_base forms the foundation of all I/O operations, and defines, among other things, the
facilities for inspecting the state of I/O streams and most output formatting facilities. Every stream

class of the I/O library is, via the class ios, derived from this class, and inherits its capabilities.

The discussion of the class ios_base precedes the introduction of members that can be used for
actual reading from and writing to streams. But as the ios_base class is the foundation on which
all I/O in C++ was built, we introduce it as the first class of the C++ I/O library.

Note, however, that as in C, I/O in C++ is not part of the language (although it is part of the

ANSI/ISO standard on C++): although it is technically possible to ignore all predefined I/O facil-

ities, nobody actually does so, and the I/O library represents therefore a de facto I/O standard in

C++. Also note that, as mentioned before, the iostream classes do not do input and output them-

selves, but delegate this to an auxiliary class: the class streambuf or its derivatives.

For the sake of completeness it is noted that it is not possible to construct an ios_base object
directly. As covered by chapter 13, classes that are derived from ios_base (like ios) may construct
ios_base objects using the ios_base::ios_base() constructor.

The next class in the iostream hierarchy (see figure 5.1) is the class ios. Since the stream classes in-
herit from the class ios, and thus also from ios_base, in practice the distinction between ios_base
and ios is hardly important. Therefore, facilities actually provided by ios_base will be discussed
as facilities provided by ios. The reader who is interested in the true class in which a particular
facility is defined should consult the relevant header files (e.g., ios_base.h and basic_ios.h).

5.3 Interfacing ‘streambuf’ objects: the class ‘ios’

The ios class was derived directly from ios_base, and it defines de facto the foundation for all
stream classes of the C++ I/O library.

Although it is possible to construct an ios object directly, this is hardly ever done. The purpose of
the class ios is to provide the facilities of the class basic_ios, and to add several new facilites, all
related to managing the streambuf object which is managed by objects of the class ios.

All other stream classes are either directly or indirectly derived from ios. This implies, as explained
in chapter 13, that all facilities offered by the classes ios and ios_base are also available in other
stream classes. Before discussing these additional stream classes, the facilities offered by the class

ios (and by implication: by ios_base) are now introduced.

The class ios offers several member functions, most of which are related to formatting. Other
frequently used member functions are:

• streambuf *ios::rdbuf():

This member function returns a pointer to the streambuf object forming the inter-
face between the ios object and the device with which the ios object communicates.
See section 20.1.2 for further information about the class streambuf.

• streambuf *ios::rdbuf(streambuf *new):

This member function can be used to associate a ios object with another streambuf
object. A pointer to the ios object’s original streambuf object is returned. The
object to which this pointer points is not destroyed when the stream object goes out
of scope, but is owned by the caller of rdbuf().
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• ostream *ios::tie():

This member function returns a pointer to the ostream object that is currently tied
to the ios object (see the next member). The returned ostream object is flushed
every time before information is input or output to the ios object of which the tie()
member is called. The return value 0 indicates that currently no ostream object is
tied to the ios object. See section 5.8.2 for details.

• ostream *ios::tie(ostream *new):

This member function can be used to associate an ios object with another ostream
object. A pointer to the ios object’s original ostream object is returned. See section
5.8.2 for details.

5.3.1 Condition states

Operations on streams may succeed and they may fail for several reasons. Whenever an operation

fails, further read and write operations on the stream are suspended. It is possible to inspect (and

possibly: clear) the condition state of streams, so that a program can repair the problem, instead of

having to abort.

Conditions are represented by the following condition flags:

• ios::badbit:

if this flag has been raised an illegal operation has been requested at the level of the

streambuf object to which the stream interfaces. See the member functions below
for some examples.

• ios::eofbit:

if this flag has been raised, the ios object has sensed end of file.

• ios::failbit:

if this flag has been raised, an operation performed by the stream object has failed

(like an attempt to extract an int when no numeric characters are available on in-
put). In this case the stream itself could not perform the operation that was requested

of it.

• ios::goodbit:

this flag is raised when none of the other three condition flags were raised.

Several condition member functions are available to manipulate or determine the states of ios
objects. Originally they returned int values, but their current return type is bool:

• ios::bad():

this member function returns truewhen ios::badbit has been set and false oth-
erwise. If true is returned it indicates that an illegal operation has been requested
at the level of the streambuf object to which the stream interfaces. What does this
mean? It indicates that the streambuf itself is behaving unexpectedly. Consider the
following example:

std::ostream error(0);
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This constructs an ostream object without providing it with a working streambuf
object. Since this ‘streambuf’ will never operate properly, its ios::badbit is raised
from the very beginning: error.bad() returns true.

• ios::eof():

this member function returns true when end of file (EOF) has been sensed (i.e.,
ios::eofbit has been set) and false otherwise. Assume we’re reading lines line-
by-line from cin, but the last line is not terminated by a final \n character. In that
case getline(), attempting to read the \n delimiter, hits end-of-file first. This sets
eos::eofbit, and cin.eof() returns true. For example, assume main() executes
the statements:

getline(cin, str);
cout << cin.eof();

Following:

echo "hello world" | program

the value 0 (no EOF sensed) is printed, following:

echo -n "hello world" | program

the value 1 (EOF sensed) is printed.

• ios::fail():

this member function returns truewhen ios::bad() returns true or when the ios::failbit
was set, and false otherwise. In the above example, cin.fail() returns false,
whether we terminate the final line with a delimiter or not (as we’ve read a line).

However, trying to execute a second getline() statement will set ios::failbit,
causing cin::fail() to return true. The value not fail() is returned by the
bool interpretation of a stream object (see below).

• ios::good():

this member function returns the value of the ios::goodbit flag. It returns true
when none of the other condition flags (ios::badbit, ios::eofbit, ios::failbit)
were raised. Consider the following little program:

#include <iostream>
#include <string>

using namespace std;

void state()
{

cout << "\n"
"Bad: " << cin.bad() << " "
"Fail: " << cin.fail() << " "
"Eof: " << cin.eof() << " "
"Good: " << cin.good() << endl;

}

int main()
{

string line;
int x;
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cin >> x;
state();

cin.clear();
getline(cin, line);
state();

getline(cin, line);
state();

}

When this program processes a file having two lines, containing, respectively, hello
and world, while the second line is not terminated by a \n character it shows the
following results:

Bad: 0 Fail: 1 Eof: 0 Good: 0

Bad: 0 Fail: 0 Eof: 0 Good: 1

Bad: 0 Fail: 0 Eof: 1 Good: 0

So, extracting x fails (good() returning false). Then, the error state is cleared, and
the first line is successfully read (good() returning true). Finally the second line is
read (incompletely): good() returns t(false), and eof() returns true.

• Interpreting streams as bool values:

streams may be used in expressions expecting logical values. Some examples are:

if (cin) // cin itself interpreted as bool
if (cin >> x) // cin interpreted as bool after an extraction
if (getline(cin, str)) // getline returning cin

When interpreting a stream as a logical value, it is actually not ios::fail() that
is interpreted. So, the above examples may be rewritten as:

if (not cin.fail())
if (not (cin >> x).fail())
if (not getline(cin, str).fail())

The former incantation, however, is used almost exclusively.

The following members are available to manage error states:

• ios::clear():

When an error condition has occurred, and the condition can be repaired, then clear()
can be called to clear the error status of the file. An overloaded version accepts state

flags, which are set after first clearing the current set of flags: ios::clear(int
state). It’s return type is void

• ios::rdstate():

This member function returns (as an int) the current set of flags that are set for an
ios object. To test for a particular flag, use the bitwise and operator:

if (iosObject.rdstate() & ios::good)
{

// state is good
}
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• ios::setstate(int flags):

This member is used to set a particular set of flags. Its return type is void. The
member ios::clear() is a shortcut to clear all error flags. Of course, clearing
the flags doesn’t automatically mean the error condition has been cleared too. The

strategy should be:

– An error condition is detected,

– The error is repaired

– The member ios::clear() is called.

C++ supports an exceptionmechanism for handling exceptional situations. According to the ANSI/ISO

standard, exceptions can be used with stream objects. Exceptions are covered in chapter 8. Using

exceptions with stream objects is covered in section 8.7.

5.3.2 Formatting output and input

The way information is written to streams (or, occasionally, read from streams) may be controlled by

formatting flags.

Formatting is used when it is necessary to control the width of an output field or an input buffer and

if formatting is used to determine the form (e.g., the radix) in which a value is displayed. Most for-

matting belongs to the realm of the ios class, althoughmost formatting is actually used with output
streams, like the upcoming ostream class. Since the formatting is controlled by flags, defined in the
ios class, it was considered best to discuss formatting with the ios class itself, rather than with a
selected derived class, where the choice of the derived class would always be somewhat arbitrarily.

Formatting is controlled by a set of formatting flags. These flags can basically be altered in two

ways: using specialized member functions, discussed in section 5.3.2.2 or usingmanipulators, which

are directly inserted into streams. Manipulators are not applied directly to the ios class, as they
require the use of the insertion operator. Consequently they are discussed later (in section 5.6).

5.3.2.1 Formatting flags

Most formatting flags are related to outputting information. Information can be written to output

streams in basically two ways: binary output will write information directly to the output stream,

without conversion to some human-readable format. E.g., an int value is written as a set of four
bytes. Alternatively, formatted output will convert the values that are stored in bytes in the com-

puter’s memory to ASCII-characters, in order to create a human-readable form.

Formatting flags can be used to define the way this conversion takes place, to control, e.g., the

number of characters that are written to the output stream.

The following formatting flags are available (see also sections 5.3.2.2 and 5.6):

• ios::adjustfield:

mask value used in combination with a flag setting defining the way values are ad-

justed in wide fields (ios::left, ios::right, ios::internal). Example, setting
the value 10 left-aligned in a field of 10 character positions:

cout.setf(ios::left, ios::adjustfield);
cout << "’" << setw(10) << 10 << "’" << endl;
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• ios::basefield:

mask value used in combination with a flag setting the radix of integral values to

output (ios::dec, ios::hex or ios::oct). Example, printing the value 57005 as
a hexadecimal number:

cout.setf(ios::hex, ios::basefield);
cout << 57005 << endl;

// or, using the manipulator:
cout << hex << 57005 << endl;

• ios::boolalpha:

to display boolean values as text, using the text ‘true’ for the true logical value,
and the string ‘false’ for the false logical value. By default this flag is not set.
Corresponding manipulators: boolalpha and noboolalpha. Example, printing the
boolean value ‘true’ instead of 1:

cout << boolalpha << (1 == 1) << endl;

• ios::dec:

to read and display integral values as decimal (i.e., radix 10) values. This is the

default. With setf() the mask value ios::basefield must be provided. Corre-
sponding manipulator: dec.

• ios::fixed:

to display real values in a fixed notation (e.g., 12.25), as opposed to displaying val-

ues in a scientific notation. If just a change of notation is requested the mask value

ios::floatfieldmust be providedwhen setf() is used. Example: see ios::scientific
below. Corresponding manipulator: fixed.

Another use of ios::fixed is to set a fixed number of digits behind the decimal
point when floating or double values are to be printed. See ios::precision in
section 5.3.2.2.

• ios::floatfield:

mask value used in combination with a flag setting the way real numbers are dis-

played (ios::fixed or ios::scientific). Example:

cout.setf(ios::fixed, ios::floatfield);

• ios::hex:

to read and display integral values as hexadecimal values (i.e., radix 16) values. With

setf() the mask value ios::basefieldmust be provided. Corresponding manip-
ulator: hex.

• ios::internal:

to add fill characters (blanks by default) between the minus sign of negative numbers

and the value itself. With setf() the mask value adjustfield must be provided.
Corresponding manipulator: internal.

• ios::left:

to left-adjust (integral) values in fields that are wider than needed to display the

values. By default values are right-adjusted (see below). With setf() the mask
value adjustfieldmust be provided. Corresponding manipulator: left.
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• ios::oct:

to display integral values as octal values (i.e., radix 8) values. With setf() the mask
value ios::basefieldmust be provided. Corresponding manipulator: oct.

• ios::right:

to right-adjust (integral) values in fields that are wider than needed to display the

values. This is the default adjustment. With setf() the mask value adjustfield
must be provided. Corresponding manipulator: right.

• ios::scientific:

to display real values in scientific notation (e.g., 1.24e+03). With setf() the mask
value ios::floatfieldmust be provided. Correspondingmanipulator: scientific.

• ios::showbase:

to display the numeric base of integral values. With hexadecimal values the 0x prefix
is used, with octal values the prefix 0. For the (default) decimal value no particular
prefix is used. Corresponding manipulators: showbase and noshowbase

• ios::showpoint:

display a trailing decimal point and trailing decimal zeros when real numbers are

displayed. When this flag is set, an insertion like:

cout << 16.0 << ", " << 16.1 << ", " << 16 << endl;

could result in:

16.0000, 16.1000, 16

Note that the last 16 is an integral rather than a real number, and is not given a
decimal point: ios::showpoint has no effect here. If ios::showpoint is not used,
then trailing zeros are discarded. If the decimal part is zero, then the decimal point

is discarded as well. Corresponding manipulator: showpoint.

• ios::showpos:

display a + character with positive values. Corresponding manipulator: showpos.

• ios::skipws:

used for extracting information from streams. When this flag is set (which is the

default) leading white space characters (blanks, tabs, newlines, etc.) are skipped

when a value is extracted from a stream. If the flag is not set, leading white space

characters are not skipped.

• ios::unitbuf:

flush the stream after each output operation.

• ios::uppercase:

use capital letters in the representation of (hexadecimal or scientifically formatted)

values.
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5.3.2.2 Format modifying member functions

Severalmember functions are available for I/O formatting. Often, correspondingmanipulators exist,

which may directly be inserted into or extracted from streams using insertion or extraction opera-

tors. See section 5.6 for a discussion of the available manipulators. They are:

• ios &copyfmt(ios &obj):

This member function copies all format definitions from obj to the current ios object.
The current ios object is returned.

• ios::fill() const:

returns (as char) the current padding character. By default, this is the blank space.

• ios::fill(char padding):

redefines the padding character. Returns (as char) the previous padding character.
Corresponding manipulator: setfill().

• ios::flags() const:

returns the current collection of flags controlling the format state of the stream for

which the member function is called. To inspect a particular flag, use the binary and

operator, e.g.,

if (cout.flags() & ios::hex)
{

// hexadecimal output of integral values
}

• ios::flags(fmtflags flagset):

returns the previous set of flags, and defines the current set of flags as flagset,
defined by a combination of formatting flags, combined by the binary or operator.

Note: when setting flags using this member, a previously set flag may have to be

unset first. For example, to change the number conversion of cout from decimal to
hexadecimal using this member, do:

cout.flags(ios::hex | cout.flags() & ~ios::dec);

Alternatively, either of the following statements could have been used:

cout.setf(ios::hex, ios::basefield);
cout << hex;

• ios::precision() const:

returns (as int) the number of significant digits used for outputting real values (de-
fault: 6).

• ios::precision(int signif):

redefines the number of significant digits used for outputting real values, returns (as

int) the previously used number of significant digits. Corresponding manipulator:
setprecision(). Example, rounding all displayed double values to a fixed number
of digits (e.g., 3) behind the decimal point:

cout.setf(ios::fixed);
cout.precision(3);
cout << 3.0 << " " << 3.01 << " " << 3.001 << endl;
cout << 3.0004 << " " << 3.0005 << " " << 3.0006 << endl;
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Note that the value 3.0005 is rounded away from zero to 3.001 (-3.0005 is rounded to

-3.001).

• ios::setf(fmtflags flags):

returns the previous set of all flags, and sets one or more formatting flags (using

the bitwise operator|() to combine multiple flags. Other flags are not affected).
Corresponding manipulators: setiosflags and resetiosflags

• ios::setf(fmtflags flags, fmtflags mask):

returns the previous set of all flags, clears all flags mentioned in mask, and sets
the flags specified in flags. Well-known mask values are ios::adjustfield,
ios::basefield and ios::floatfield. For example:

– setf(ios::left, ios::adjustfield) is used to left-adjust wide values in
their field. (alternatively, ios::right and ios::internal can be used).

– setf(ios::hex, ios::basefield) is used to activate the hexadecimal rep-
resentation of integral values (alternatively, ios::dec and ios::oct can be
used).

– setf(ios::fixed, ios::floatfield) is used to activate the fixed value rep-
resentation of real values (alternatively, ios::scientific can be used).

• ios::unsetf(fmtflags flags):

returns the previous set of all flags, and clears the specified formatting flags (leav-

ing the remaining flags unaltered). The unsetting of an active default flag (e.g.,

cout.unsetf(ios::dec)) has no effect.

• ios::width() const:

returns (as int) the current output field width (the number of characters to write
for numerical values on the next insertion operation). Default: 0, meaning ‘as many

characters as needed to write the value’. Corresponding manipulator: setw().

• ios::width(int nchars):

returns (as int) the previously used output field width, redefines the value to nchars
for the next insertion operation. Note that the field width is reset to 0 after every

insertion operation, and that width() currently has no effect on text-values like
char * or string values. Corresponding manipulator: setw(int).

5.4 Output

In C++ output is primarily based on the ostream class. The ostream class defines the basic oper-
ators and members for inserting information into streams: the insertion operator (<<), and special

members like ostream::write() for writing unformatted information from streams.

From the class ostream several other classes are derived, all having the functionality of the ostream
class, and adding their own specialties. In the next sections on ‘output’ we will introduce:

• The class ostream, offering the basic facilities for doing output;

• The class ofstream, allowing us to open files for writing (comparable toC’s fopen(filename,
"w"));

• The class ostringstream, allowing us to write information to memory rather than to files
(streams) (comparable to C’s sprintf() function).
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5.4.1 Basic output: the class ‘ostream’

The class ostream is the class defining basic output facilities. The cout, clog and cerr objects are
all ostream objects. Note that all facilities defined in the ios class, as far as output is concerned, is
available in the ostream class as well, due to the inheritance mechanism (discussed in chapter 13).

We can construct ostream objects using the following ostream constructor:

• ostream object(streambuf *sb):

this constructor can be used to construct a wrapper around an existing streambuf,
which may be the interface to an existing file. See chapter 20 for examples.

What this boils down to is that it isn’t possible to construct a plain ostream object that can
be used for insertions. When cout or its friends is used, we are actually using a predefined
ostream object that has already been created for us, and interfaces to, e.g., the standard output
stream using a (also predefined) streambuf object handling the actual interfacing.

Note that it is possible to construct an ostream object passing it a ih(std::ostream: constructed
using a 0-pointer) 0-pointer as a streambuf. Such an object cannot be used for insertions (i.e.,
it will raise its ios::bad flag when something is inserted into it), but since it may be given a
streambuf later, it may be preliminary constructed, receiving its streambuf once it becomes
available.

In order to use the ostream class in C++ sources, the #include <ostream> preprocessor directive
must be given. To use the predefined ostream objects, the #include <iostream> preprocessor
directive must be given.

5.4.1.1 Writing to ‘ostream’ objects

The class ostream supports both formatted and binary output.

The insertion operator (<<) may be used to insert values in a type safe way into ostream objects.
This is called formatted output, as binary values which are stored in the computer’s memory are

converted to human-readable ASCII characters according to certain formatting rules.

Note that the insertion operator points to the ostream object wherein the information must be
inserted. The normal associativity of << remains unaltered, so when a statement like

cout << "hello " << "world";

is encountered, the leftmost two operands are evaluated first (cout<< "hello "), and an ostream
& object, which is actually the same cout object, is returned. Now, the statement is reduced to

cout << "world";

and the second string is inserted into cout.

The << operator has a lot of (overloaded) variants, so many types of variables can be inserted into

ostream objects. There is an overloaded <<-operator expecting an int, a double, a pointer, etc.
etc.. For every part of the information that is inserted into the stream the operator returns the

ostream object into which the information so far was inserted, and the next part of the information
to be inserted is processed.
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Streams do not have facilities for formatted output like C’s form() and vform() functions. Al-
though it is not difficult to realize these facilities in the world of streams, form()-like functionality
is hardly ever required in C++ programs. Furthermore, as it is potentially type-unsafe, it might be

better to avoid this functionality completely.

When binary files must be written, normally no text-formatting is used or required: an int value
should be written as a series of unaltered bytes, not as a series of ASCII numeric characters 0 to 9.

The following member functions of ostream objects may be used to write ‘binary files’:

• ostream& ostream::put(char c):

This member function writes a single character to the output stream. Since a char-

acter is a byte, this member function could also be used for writing a single character

to a text-file.

• ostream& ostream::write(char const *buffer, int length):

This member function writes at most len bytes, stored in the char const *buffer
to the ostream object. The bytes are written as they are stored in the buffer, no
formatting is done whatsoever. Note that the first argument is a char const *: a
type_cast is required to write any other type. For example, to write an int as an
unformatted series of byte-values:

int x;
out.write(reinterpret_cast<char const *>(&x), sizeof(int));

5.4.1.2 ‘ostream’ positioning

Although not every ostream object supports repositioning, they usually do. This means that it is
possible to rewrite a section of the stream which was written earlier. Repositioning is frequently

used in database applications where it must be possible to access the information in the database

randomly.

The following members are available:

• pos_type ostream::tellp():

this function returns the current (absolute) position where the next write-operation to

the stream will take place. For all practical purposes a pos_type can be considered
to be an unsigned long.

• ostream &ostream::seekp(off_type step, ios::seekdir org):

This member function can be used to reposition the stream. The function expects

an off_type step, the stepsize in bytes to go from org. For all practical pur-
poses a off_type can be considered to be a long. The origin of the step, org is
an ios::seekdir value. Possible values are:

– ios::beg:

org is interpreted as the stepsize relative to the beginning of the stream.
If org is not specified, ios::beg is used.

– ios::cur:

org is interpreted as the stepsize relative to the current position (as re-
turned by tellp() of the stream).
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– ios::end:

org is interpreted as the stepsize relative to the current end position of
the the stream.

It is ok to seek beyond end of file. Writing bytes to a location beyond EOF will pad the
intermediate bytes with ASCII-Z values: null-bytes. It is not allowed to seek before

begin of file. Seeking before ios::beg will cause the ios::fail flag to be set.

5.4.1.3 ‘ostream’ flushing

Unless the ios::unitbuf flag has been set, information written to an ostream object is not im-
mediately written to the physical stream. Rather, an internal buffer is filled up during the write-

operations, and when full it is flushed.

The internal buffer can be flushed under program control:

• ostream& ostream::flush():

this member function writes any buffered information to the ostream object. The
call to flush() is implied when:

– The ostream object ceases to exist,

– The endl or flushmanipulators (see section 5.6) are inserted into the ostream
object,

– A stream derived from ostream (like ofstream, see section 5.4.2) is closed.

5.4.2 Output to files: the class ‘ofstream’

The ofstream class is derived from the ostream class: it has the same capabilities as the ostream
class, but can be used to access files or create files for writing.

In order to use the ofstream class inC++ sources, the preprocessor directive #include <fstream>
must be given. After including fstream cin, cout etc. are not automatically declared. If these lat-
ter objects are needed too, then iostream should be included.

The following constructors are available for ofstream objects:

• ofstream object:

This is the basic constructor. It creates an ofstream object which may be associated
with an actual file later, using the open() member (see below).

• ofstream object(char const *name, int mode):

This constructor can be used to associate an ofstream object with the file named
name, using output mode mode. The output mode is by default ios::out. See section
5.4.2.1 for a complete overview of available output modes.

In the following example an ofstream object, associated with the newly created file
/tmp/scratch, is constructed:

ofstream out("/tmp/scratch");
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Note that it is not possible to open a ofstream using a file descriptor. The reason for this is (ap-
parently) that file descriptors are not universally available over different operating systems. For-

tunately, file descriptors can be used (indirectly) with a streambuf object (and in some implemen-
tations: with a filebuf object, which is also a streambuf). Streambuf objects are discussed in
section 5.7, filebuf objects are discussed in section 5.7.2.

Instead of directly associating an ofstream object with a file, the object can be constructed first,
and opened later.

• void ofstream::open(char const *name, int mode):

Having constructed an ofstream object, the member function open() can be used
to associate the ofstream object with an actual file.

• ofstream::close():

Conversely, it is possible to close an ofstream object explicitly using the close()
member function. The function sets the ios::fail flag of the closed object. Closing
the file will flush any buffered information to the associated file. A file is automati-

cally closed when the associated ofstream object ceases to exist.

A subtlety is the following: Assume a stream is constructed, but it is not actually attached to a file.

E.g., the statement ofstream ostr was executed. When we now check its status through good(),
a non-zero (i.e., ok) value will be returned. The ‘good’ status here indicates that the stream object has

been properly constructed. It doesn’t mean the file is also open. To test whether a stream is actually

open, inspect ofstream::is_open(): If true, the stream is open. See the following example:

#include <fstream>
#include <iostream>

using namespace std;

int main()
{

ofstream of;

cout << "of’s open state: " << boolalpha << of.is_open() << endl;

of.open("/dev/null"); // on Unix systems

cout << "of’s open state: " << of.is_open() << endl;
}
/*

Generated output:
of’s open state: false
of’s open state: true

*/

5.4.2.1 Modes for opening stream objects

The following file modes or file flags are defined for constructing or opening ofstream (or istream,
see section 5.5.2) objects. The values are of type ios::openmode:



104 CHAPTER 5. THE IO-STREAM LIBRARY

• ios::app:

reposition to the end of the file before every output command. The existing contents

of the file are kept.

• ios::ate:

Start initially at the end of the file. The existing contents of the file are kept.

Note that the original contents are only kept if some other flag tells the object to

do so. For example ofstream out("gone", ios::ate) will rewrite the file gone,
because the implied ios::out will cause the rewriting. If rewriting of an existing
file should be prevented, the ios::inmode should be specified too. Note that in this
case the construction only succeeds if the file already exists.

• ios::binary:

open a binary file (used on systems whichmake a distinction between text- and binary

files, like MS-DOS or MS-Windows).

• ios::in:

open the file for reading. The file must exist.

• ios::out:

open the file. Create it if it doesn’t yet exist. If it exists, the file is rewritten.

• ios::trunc:

Start initially with an empty file. Any existing contents of the file are lost.

The following combinations of file flags have special meanings:

out | app: The file is created if non-existing,
information is always added to the end of the
stream;

out | trunc: The file is (re)created empty to be written;
in | out: The stream may be read and written. However, the

file must exist.
in | out | trunc: The stream may be read and written. It is

(re)created empty first.

5.4.3 Output to memory: the class ‘ostringstream’

In order to write information to memory, using the stream facilities, ostringstream objects can
be used. These objects are derived from ostream objects. The following constructors and members
are available:

• ostringstream ostr(string const &s, ios::openmode mode):

When using this constructor, the last or both argumentsmay be omitted. There is also

a constructor requiring only an openmode parameter. If string s is specified and
openmode is ios::ate, the ostringstream object is initialized with the string
s and remaining insertions are appended to the contents of the ostringstream
object. If string s is provided, it will not be altered, as any information inserted
into the object is stored in dynamically allocated memory which is deleted when the

ostringstream object goes out of scope.
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• string ostringstream::str() const:

This member function will return the string that is stored inside the ostringstream
object.

• ostringstream::str(string):

This member function will re-initialize the ostringstream object with new initial
contents.

Before the stringstream class was available the class ostrstream was commonly used for doing
output to memory. This latter class suffered from the fact that, once its contents were retrieved

using its str() member function, these contents were ‘frozen’, meaning that its dynamically allo-
cated memory was not released when the object went out of scope. Although this situation could be

prevented (using the ostrstream member call freeze(0)), this implementation could easily lead
to memory leaks. The stringstream class does not suffer from these risks. Therefore, the use of
the class ostrstream is now deprecated in favor of ostringstream.

The following example illustrates the use of the ostringstream class: several values are inserted
into the object. Then, the stored text is stored in a string, whose length and contents are thereupon

printed. Such ostringstream objects are most often used for doing ‘type to string’ conversions,
like converting int to string. Formatting commands can be used with stringstreams as well,
as they are available in ostream objects.

Here is an example showing the use of an ostringstream object:

#include <iostream>
#include <string>
#include <sstream>
#include <fstream>

using namespace std;

int main()
{

ostringstream ostr("hello ", ios::ate);

cout << ostr.str() << endl;

ostr.setf(ios::showbase);
ostr.setf(ios::hex, ios::basefield);
ostr << 12345;

cout << ostr.str() << endl;

ostr << " -- ";
ostr.unsetf(ios::hex);
ostr << 12;

cout << ostr.str() << endl;
}
/*

Output from this program:
hello
hello 0x3039
hello 0x3039 -- 12
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*/

5.5 Input

InC++ input is primarily based on the istream class. The istream class defines the basic operators
and members for extracting information from streams: the extraction operator (>>), and special

members like istream::read() for reading unformatted information from streams.

From the class istream several other classes are derived, all having the functionality of the istream
class, and adding their own specialties. In the next sections we will introduce:

• The class istream, offering the basic facilities for doing input;

• The class ifstream, allowing us to open files for reading (comparable toC’s fopen(filename,
"r"));

• The class istringstream, allowing us to read information from text that is not stored on files
(streams) but in memory (comparable to C’s sscanf() function).

5.5.1 Basic input: the class ‘istream’

The class istream is the I/O class defining basic input facilities. The cin object is an istream
object that is declared when sources contain the preprocessor directive #include <iostream>.
Note that all facilities defined in the ios class are, as far as input is concerned, available in the
istream class as well due to the inheritance mechanism (discussed in chapter 13).

Istream objects can be constructed using the following istream constructor:

• istream object(streambuf *sb):

this constructor can be used to construct a wrapper around an existing open stream,

based on an existing streambuf, which may be the interface to an existing file. Sim-
ilarly to ostream objects, istream objects may ih(std::istream: constructed using a
0-pointer) initially be constructed using a 0-pointer. See section 5.4.1 for a discussion,

and chapter 20 for examples.

In order to use the istream class in C++ sources, the #include <istream> preprocessor directive
must be given. To use the predefined istream object cin, the #include <iostream> preprocessor
directive must be given.

5.5.1.1 Reading from ‘istream’ objects

The class istream supports both formatted and unformatted binary input. The extraction operator
(operator»()) may be used to extract values in a type safe way from istream objects. This is called
formatted input, whereby human-readable ASCII characters are converted, according to certain

formatting rules, to binary values which are stored in the computer’s memory.

Note that the extraction operator points to the objects or variables which must receive new values.

The normal associativity of >> remains unaltered, so when a statement like

cin >> x >> y;
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is encountered, the leftmost two operands are evaluated first (cin >> x), and an istream & object,
which is actually the same cin object, is returned. Now, the statement is reduced to

cin >> y

and the y variable is extracted from cin.

The >> operator has a lot of (overloaded) variants, so many types of variables can be extracted from

istream objects. There is an overloaded >> available for the extraction of an int, of a double,
of a string, of an array of characters, possibly to a pointer, etc. etc.. String or character array

extraction will (by default) skip all white space characters, and will then extract all consecutive

non-white space characters. After processing an extraction operator, the istream object into which
the information so far was inserted is returned, which will thereupon be used as the lvalue for the

remaining part of the statement.

Streams do not have facilities for formatted input (like C’s scanf() and vscanf() functions). Al-
though it is not difficult to make these facilities available in the world of streams, scanf()-like
functionality is hardly ever required in C++ programs. Furthermore, as it is potentially type-unsafe,

it might be better to avoid this functionality completely.

When binary files must be read, the information should normally not be formatted: an int value
should be read as a series of unaltered bytes, not as a series of ASCII numeric characters 0 to 9. The

following member functions for reading information from istream objects are available:

• int istream::gcount():

this function does not actually read from the input stream, but returns the number of

characters that were read from the input stream during the last unformatted input

operation.

• int istream::get():

this function returns EOF or reads and returns the next available single character as
an int value.

• istream &istream::get(char &c):

this function reads the next single character from the input stream into c. As its
return value is the stream itself, its return value can be queried to determine whether

the extraction succeeded or not.

• istream& istream::get(char *buffer, int len [, char delim]):

This function reads a series of len - 1 characters from the input stream into the
array starting at buffer, which should be at least len bytes long. At most len -
1 characters are read into the buffer. By default, the delimiter is a newline (’\n’)
character. The delimiter itself is not removed from the input stream.

After reading the series of characters into buffer, an ASCII-Z character is written
beyond the last character that was written to buffer. The functions eof() and
fail() (see section 5.3.1) return 0 (false) if the delimiter was not encountered
before len - 1 characters were read. Furthermore, an ASCII-Z can be used for the
delimiter: this way strings terminating in ASCII-Z characters may be read from a
(binary) file. The programusing this get()member function should know in advance
the maximum number of characters that are going to be read.
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• istream& istream::getline(char *buffer, int len [, char delim]):

This function operates analogously to the previous get() member function, but
delim is removed from the stream if it is actually encountered. At most len - 1
bytes are written into the buffer, and a trailing ASCII-Z character is appended to
the string that was read. The delimiter itself is not stored in the buffer. If delim
was not found (before reading len - 1 characters) the fail() member function,
and possibly also eof()will return true. Note that the std::string class also has a
support function getline()which is usedmore often than this istream::getline()
member function (see section 4.2.4).

• istream& istream::ignore(int n , int delim):

This member function has two (optional) arguments. When called without argu-

ments, one character is skipped from the input stream. When called with one argu-

ment, n characters are skipped. The optional second argument specifies a delimiter:
after skipping n or the delim character (whichever comes first) the function returns.

• int istream::peek():

this function returns the next available input character, but does not actually remove

the character from the input stream.

• istream& istream::putback (char c):

The character c that was last read from the stream is ‘pushed back’ into the input
stream, to be read again as the next character. EOF is returned if this is not allowed.
Normally, one character may always be put back. Note that c must be the character
that was last read from the stream. Trying to put back any other character will fail.

• istream& istream::read(char *buffer, int len):

This function reads at most len bytes from the input stream into the buffer. If EOF is
encountered first, fewer bytes are read, and the member function eof() will return
true. This function will normally be used for reading binary files. Section 5.5.2
contains an example in which this member function is used. The member function

gcount() should be used to determine the number of characters that were retrieved
by the read() member function.

• istream& istream::readsome(char *buffer, int len):

This function reads at most len bytes from the input stream into the buffer. All
available characters are read into the buffer, but if EOF is encountered first, fewer
bytes are read, without setting the ios_base::eofbit or ios_base::failbit.

• istream& istream::unget():

an attempt is made to push back the last character that was read into the stream.

Normally, this succeeds if requested only once after a read operation, as is the case

with putback()

5.5.1.2 ‘istream’ positioning

Although not every istream object supports repositioning, some do. This means that it is possi-
ble to read the same section of a stream repeatedly. Repositioning is frequently used in database

applications where it must be possible to access the information in the database randomly.



5.5. INPUT 109

The following members are available:

• pos_type istream::tellg():

this function returns the current (absolute) position where the next read-operation to

the stream will take place. For all practical purposes a pos_type can be considered
to be an unsigned long.

• istream &istream::seekg(off_type step, ios::seekdir org):

This member function can be used to reposition the stream. The function expects

an off_type step, the stepsize in bytes to go from org. For all practical pur-
poses a pos_type can be considered to be a long. The origin of the step, org is
a ios::seekdir value. Possible values are:

– ios::beg:

org is interpreted as the stepsize relative to the beginning of the stream.
If org is not specified, ios::beg is used.

– ios::cur:

org is interpreted as the stepsize relative to the current position (as re-
turned by tellg() of the stream).

– ios::end:

org is interpreted as the stepsize relative to the current end position of
the the stream.

While it is ok to seek beyond end of file, reading at that point will of course fail. It

is not allowed to seek before begin of file. Seeking before ios::beg will cause the
ios::fail flag to be set.

5.5.2 Input from streams: the class ‘ifstream’

The class ifstream is derived from the class istream: it has the same capabilities as the istream
class, but can be used to access files for reading. Such files must exist.

In order to use the ifstream class inC++ sources, the preprocessor directive #include <fstream>
must be given.

The following constructors are available for ifstream objects:

• ifstream object:

This is the basic constructor. It creates an ifstream object which may be associated
with an actual file later, using the open() member (see below).

• ifstream object(char const *name, int mode):

This constructor can be used to associate an ifstream object with the file named
name, using input mode mode. The input mode is by default ios::in. See also
section 5.4.2.1 for an overview of available file modes.

In the following example an ifstream object is opened for reading. The file must
exist:

ifstream in("/tmp/scratch");
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Instead of directly associating an ifstream object with a file, the object can be constructed first,
and opened later.

• void ifstream::open(char const *name, int mode):

Having constructed an ifstream object, the member function open() can be used
to associate the ifstream object with an actual file.

• ifstream::close():

Conversely, it is possible to close an ifstream object explicitly using the close()
member function. The function sets the ios::fail flag of the closed object. A file is
automatically closed when the associated ifstream object ceases to exist.

A subtlety is the following: Assume a stream is constructed, but it is not actually attached to a file.

E.g., the statement ifstream ostr was executed. When we now check its status through good(),
a non-zero (i.e., ok) value will be returned. The ‘good’ status here indicates that the stream object

has been properly constructed. It doesn’t mean the file is also open. To test whether a stream is

actually open, inspect ifstream::is_open(): If true, the stream is open. See also the example
in section 5.4.2.

To illustrate reading from a binary file (see also section 5.5.1.1), a double value is read in binary
form from a file in the next example:

#include <fstream>
using namespace std;

int main(int argc, char **argv)
{

ifstream f(argv[1]);
double d;

// reads double in binary form.
f.read(reinterpret_cast<char *>(&d), sizeof(double));

}

5.5.3 Input from memory: the class ‘istringstream’

In order to read information from memory, using the stream facilities, istringstream objects can
be used. These objects are derived from istream objects. The following constructors and members
are available:

• istringstream istr:

The constructor will construct an empty istringstream object. The object may be
filled with information to be extracted later.

• istringstream istr(string const &text):

The constructor will construct an istringstream object initialized with the con-
tents of the string text.

• void istringstream::str(string const &text):

This member function will store the contents of the string text into the istringstream
object, overwriting its current contents.
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The istringstream object is commonly used for converting ASCII text to its binary equivalent,
like the C function atoi(). The following example illustrates the use of the istringstream class,
note especially the use of the member seekg():

#include <iostream>
#include <string>
#include <sstream>

using namespace std;

int main()
{

istringstream istr("123 345"); // store some text.
int x;

istr.seekg(2); // skip "12"
istr >> x; // extract int
cout << x << endl; // write it out
istr.seekg(0); // retry from the beginning
istr >> x; // extract int
cout << x << endl; // write it out
istr.str("666"); // store another text
istr >> x; // extract it
cout << x << endl; // write it out

}
/*

output of this program:
3
123
666

*/

5.6 Manipulators

Ios objects define a set of format flags that are used for determining the way values are inserted
(see section 5.3.2.1). The format flags can be controlled by member functions (see section 5.3.2.2),

but also by manipulators. Manipulators are inserted into output streams or extracted from input

streams, instead of being activated through the member selection operator (‘.’).

Manipulators are functions. New manipulators can be constructed as well. The construction of

manipulators is covered in section 9.10.1. In this section the manipulators that are available in the

C++ I/O library are discussed. Most manipulators affect format flags. See section 5.3.2.1 for details

about these flags. Most manipulators are parameterless. Sources in which manipulators expecting

arguments are used, must do:

#include <iomanip>

• std::boolalpha:

This manipulator will set the ios::boolalpha flag.

• std::dec:
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This manipulator enforces the display and reading of integral numbers in decimal

format. This is the default conversion. The conversion is applied to values inserted

into the stream after processing the manipulators. For example (see also std::hex
and std::oct, below):

cout << 16 << ", " << hex << 16 << ", " << oct << 16;
// produces the output:
16, 10, 20

• std::endl:

This manipulator will insert a newline character into an output buffer and will flush

the buffer thereafter.

• std::ends:

This manipulator will insert a string termination character into an output buffer.

• std::fixed:

This manipulator will set the ios::fixed flag.

• std::flush:

This manipulator will flush an output buffer.

• std::hex:

This manipulator enforces the display and reading of integral numbers in hexadeci-

mal format.

• std::internal:

This manipulator will set the ios::internal flag.

• std::left:

This manipulator will align values to the left in wide fields.

• std::noboolalpha:

This manipulator will clear the ios::boolalpha flag.

• std::noshowpoint:

This manipulator will clear the ios::showpoint flag.

• std::noshowpos:

This manipulator will clear the ios::showpos flag.

• std::noshowbase:

This manipulator will clear the ios::showbase flag.

• std::noskipws:

This manipulator will clear the ios::skipws flag.

• std::nounitbuf:

This manipulator will stop flushing an output stream after each write operation. Now

the stream is flushed at a flush, endl, unitbuf or when it is closed.
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• std::nouppercase:

This manipulator will clear the ios::uppercase flag.

• std::oct:

This manipulator enforces the display and reading of integral numbers in octal for-

mat.

• std::resetiosflags(flags):

This manipulator calls std::resetf(flags) to clear the indicated flag values.

• std::right:

This manipulator will align values to the right in wide fields.

• std::scientific:

This manipulator will set the ios::scientific flag.

• std::setbase(int b):

This manipulator can be used to display integral values using the base 8, 10 or 16.

It can be used as an alternative to oct, dec, hex in situations where the base of
integral values is parameterized.

• std::setfill(int ch):

This manipulator defines the filling character in situations where the values of num-

bers are too small to fill the width that is used to display these values. By default the

blank space is used.

• std::setiosflags(flags):

This manipulator calls std::setf(flags) to set the indicated flag values.

• std::setprecision(int width):

This manipulator will set the precision in which a float or double is displayed. In
combination with std::fixed it can be used to display a fixed number of digits of
the fractional part of a floating or double value:

cout << fixed << setprecision(3) << 5.0 << endl;
// displays: 5.000

• std::setw(int width):

This manipulator expects as its argument the width of the field that is inserted or

extracted next. It can be used as manipulator for insertion, where it defines the

maximum number of characters that are displayed for the field, but it can also be

used during extraction, where it defines the maximum number of characters that

are inserted into an array of characters. To prevent array bounds overflow when

extracting from cin, setw() can be used as well:

cin >> setw(sizeof(array)) >> array;

A nice feature is that a long string appearing at cin is split into substrings of at most
sizeof(array) - 1 characters, and that an ASCII-Z character is automatically
appended. Notes:

– setw() is valid only for the next field. It does not act like e.g., hexwhich changes
the general state of the output stream for displaying numbers.
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– When setw(sizeof(someArray)) is used, make sure that someArray really
is an array, and not a pointer to an array: the size of a pointer, being, e.g., four

bytes, is usually not the size of the array that it points to....

• std::showbase:

This manipulator will set the ios::showbase flag.

• std::showpoint:

This manipulator will set the ios::showpoint flag.

• std::showpos:

This manipulator will set the ios::showpos flag.

• std::skipws:

This manipulator will set the ios::skipws flag.

• std::unitbuf:

This manipulator will flush an output stream after each write operation.

• std::uppercase:

This manipulator will set the ios::uppercase flag.

• std::ws:

This manipulator will remove all whitespace characters that are available at the

current read-position of an input buffer.

5.7 The ‘streambuf’ class

The class streambuf defines the input and output character sequences that are processed by streams.
Like an ios object, a streambuf object is not directly constructed, but is implied by objects of other
classes that are specializations of the class streambuf.

The class plays an important role in realizing possibilities that were available as extensions to

the pre-ANSI/ISO standard implementations of C++. Although the class cannot be used directly,

its members are introduced here, as the current chapter is the most logical place to introduce the

class streambuf. However, this section of the current chapter assumes a basic familiarity with
the concept of polymorphism, a topic discussed in detail in chapter 14. Readers not yet familiar with

the concept of polymorphism may, for the time being, skip this section without loss of continuity.

The primary reason for existence of the class streambuf, however, is to decouple the stream
classes from the devices they operate upon. The rationale here is to use an extra software layer

between on the one hand the classes allowing us to communicate with the device and the commu-

nication between the software and the devices themselves. This implements a chain of command

which is seen regularly in software design: The chain of command is considered a generic pattern

for the construction of reusable software, encountered also in, e.g., the TCP/IP stack. A streambuf
can be considered yet another example of the chain of command pattern: here the program talks to

stream objects, which in turn forward their requests to streambuf objects, which in turn commu-
nicate with the devices. Thus, as we will see shortly, we are now able to do in user-software what

had to be done via (expensive) system calls before.
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The class streambuf has no public constructor, but does make available several public member
functions. In addition to these public member functions, several member functions are available to

specializing classes only. These protected members are listed in this section for further reference. In

section 5.7.2 below, a particular specialization of the class streambuf is introduced. Note that all
public members of streambuf discussed here are also available in filebuf.

In section 14.6 the process of constructing specializations of the class streambuf is discussed,
and in chapter 20 several other implications of using streambuf objects are mentioned. In the
current chapter examples of copying streams, of redirecting streams and and of reading and writing

to streams using the streambufmembers of stream objects are presented (section 5.8).

With the class streambuf the following public member functions are available. The type streamsize
that is used below may, for all practical purposes, be considered an unsigned int.

Public members for input operations:

• streamsize streambuf::in_avail():

This member function returns a lower bound on the number of characters that can

be read immediately.

• int streambuf::sbumpc():

This member function returns the next available character or EOF. The character is
removed from the streambuf object. If no input is available, sbumpc() will call
the (protected) member uflow() (see section 5.7.1 below) to make new characters
available. EOF is returned if no more characters are available.

• int streambuf::sgetc():

This member function returns the next available character or EOF. The character is
not removed from the streambuf object, however.

• int streambuf::sgetn(char *buffer, streamsize n):

This member function reads n characters from the input buffer, and stores them in
buffer. The actual number of characters read is returned. This member function
calls the (protected) member xsgetn() (see section 5.7.1 below) to obtain the re-
quested number of characters.

• int streambuf::snextc():

This member function removes the current character from the input buffer and re-

turns the next available character or EOF. The character is not removed from the
streambuf object, however.

• int streambuf::sputback(char c):

Inserts c as the next character to read from the streambuf object. Caution should
be exercised when using this function: often there is a maximum of just one character

that can be put back.

• int streambuf::sungetc():

Returns the last character read to the input buffer, to be read again at the next input

operation. Caution should be exercised when using this function: often there is a

maximum of just one character that can be put back.
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Public members for output operations:

• int streambuf::pubsync():

Synchronize (i.e., flush) the buffer, by writing any pending information available in

the streambuf’s buffer to the device. Normally used only by specializing classes.

• int streambuf::sputc(char c):

This member function inserts c into the streambuf object. If, after writing the char-
acter, the buffer is full, the function calls the (protected)member function overflow()
to flush the buffer to the device (see section 5.7.1 below).

• int streambuf::sputn(char const *buffer, streamsize n):

This member function inserts n characters from buffer into the streambuf object.
The actual number of inserted characters is returned. This member function calls

the (protected) member xsputn() (see section 5.7.1 below) to insert the requested
number of characters.

Public members for miscellaneous operations:

• pos_type streambuf::pubseekoff(off_type offset, ios::seekdir way, ios::openmode
mode = ios::in |ios::out):

Reset the offset of the next character to be read or written to offset, relative to the
standard ios::seekdir values indicating the direction of the seeking operation.
Normally used only by specializing classes.

• pos_type streambuf::pubseekpos(pos_type offset, ios::openmode mode = ios::in
|ios::out):

Reset the absolute position of the next character to be read or written to pos. Nor-
mally used only by specializing classes.

• streambuf *streambuf::pubsetbuf(char* buffer, streamsize n):

Define buffer as the buffer to be used by the streambuf object. Normally used only
by specializing classes.

5.7.1 Protected ‘streambuf’ members

The protected members of the class streambuf are normally not accessible. However, they are
accessible in specializing classes which are derived from streambuf. They are important for un-
derstanding and using the class streambuf. Usually there are both protected data members
and protected member functions defined in the class streambuf. Since using data members im-
mediately violates the principle of encapsulation, these members are not mentioned here. As the

functionality of streambuf, made available via its member functions, is quite extensive, directly
using its data members is probably hardly ever necessary. This section not even lists all protected

member functions of the class streambuf. Only those member functions are mentioned that are
useful in constructing specializations. The class streambuf maintains an input- and/or and out-
put buffer, for which begin-, actual- and end-pointers have been defined, as depicted in figure 5.2. In

upcoming sections we will refer to this figure repeatedly.

Protected constructor:
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Figure 5.2: Input- and output buffer pointers of the class ‘streambuf’
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• streambuf::streambuf():

Default (protected) constructor of the class streambuf.

Several protected member functions are related to input operations. The member functions marked

as virtualmay be redefined in classes derived from streambuf. In those cases, the redefined func-
tion will be called by i/ostream objects that received the addresses of such derived class objects.
See chapter 14 for details about virtual member functions. Here are the protected members:

• char *streambuf::eback():

For the input buffer the class streambufmaintains three pointers: eback() points
to the ‘end of the putback’ area: characters can safely be put back up to this position.

See also figure 5.2. Eback() can be considered to represent the beginning of the
input buffer.

• char *streambuf::egptr():

For the input buffer the class streambufmaintains three pointers: egptr() points
just beyond the last character that can be retrieved. See also figure 5.2. If gptr()
(see below) equals egptr() the buffer must be refilled. This should be realized by
calling underflow(), see below.

• void streambuf::gbump(int n):

This function moves the input pointer over n positions.

• char *streambuf::gptr():

For the input buffer the class streambufmaintains three pointers: gptr() points
to the next character to be retrieved. See also figure 5.2.

• virtual int streambuf::pbackfail(int c):

This member function may be redefined by specializations of the class streambuf
to do something intelligent when putting back character c fails. One of the things to
consider here is to restore the old read pointer when putting back a character fails,

because the beginning of the input buffer is reached. This member function is called

when ungetting or putting back a character fails.

• void streambuf::setg(char *beg, char *next, char *beyond):

This member function initializes an input buffer: beg points to the beginning of the
input area, next points to the next character to be retrieved, and beyond points
beyond the last character of the input buffer. Ususally next is at least beg + 1, to
allow for a put back operation. No input buffering is used when this member is called

with 0-arguments (not no arguments, but arguments having 0 values.) See also the

member streambuf::uflow(), below.

• virtual streamsize streambuf::showmanyc():

(Pronounce: s-how-many-c) This member function may be redefined by specializa-

tions of the class streambuf. It must return a guaranteed lower bound on the
number of characters that can be read from the device before uflow() or underflow()
returns EOF. By default 0 is returned (meaning at least 0 characters will be returned
before the latter two functions will return EOF).
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• virtual int streambuf::uflow():

This member function may be redefined by specializations of the class streambuf
to reload an input buffer with new characters. The default implementation is to call

underflow(), see below, and to increment the read pointer gptr(). When no input
buffering is required this function, rather than underflow() can be overridden to
produce the next available character from the device to read.

• virtual int streambuf::underflow():

This member function may be redefined by specializations of the class streambuf
to read another character from the device. The default implementation is to return

EOF. When buffering is used, often the complete buffer is not refreshed, as this would
make it impossible to put back characters just after a reload. This system, where

only a subsection of the input buffer is reloaded, is called a split buffer.

• virtual streamsize streambuf::xsgetn(char *buffer, streamsize n):

This member function may be redefined by specializations of the class streambuf
to retrieve n characters from the device. The default implementation is to call sbumpc()
for every single character. By default this calls (eventually) underflow() for every
single character.

Here are the protected member functions related to output operations. Similarly to the functions

related to input operations, some of the following functions are virtual: they may be redefined in
derived classes:

• virtual int streambuf::overflow(int c):

This member function may be redefined by specializations of the class streambuf
to flush the characters in the output buffer to the device, and then to reset the out-

put buffer pointers such that the buffer may be considered empty. It receives as

parameter c the next character to be processed by the streambuf. If no output
buffering is used, overflow() is called for every single character which is written
to the streambuf object. This is realized by setting the buffer pointers (using, e.g.,
setp(), see below) to 0. The default implementation returns EOF, indicating that no
characters can be written to the device.

• char *streambuf::pbase():

For the output buffer the class streambuf maintains three pointers: pbase()
points to the beginning of the output buffer area. See also figure 5.2.

• char *streambuf::epptr():

For the output buffer the class streambuf maintains three pointers: epptr()
points just beyond the location of the last character that can be written. See also

figure 5.2. If pptr() (see below) equals epptr() the buffer must be flushed. This is
realized by calling overflow(), see below.

• void streambuf::pbump(int n):

This function moves the output pointer over n positions.

• char *streambuf::pptr():

For the output buffer the class streambufmaintains three pointers: pptr() points
to the location of the next character to be written. See also figure 5.2.
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• void streambuf::setp(char *beg, char *beyond):

This member function initializes an output buffer: beg points to the beginning of the
output area and beyond points beyond the last character of the output area. Use 0 for
the arguments to indicate that no buffering is requested. In that case overflow()
is called for every single character to write to the device.

• streamsize streambuf::xsputn(char const *buffer, streamsize n):

This member function may be redefined by specializations of the class streambuf
to write n characters immediately to the device. The actual number of inserted char-
acters should be returned. The default implementation calls sputc() for each indi-
vidual character, so redefining is only needed if a more efficient implementation is

required.

Protected member functions related to buffer management and positioning:

• virtual streambuf *streambuf::setbuf(char *buffer, streamsize n):

This member function may be redefined by specializations of the class streambuf
to install a buffer. The default implementation is to do nothing.

• virtual pos_type streambuf::seekoff(off_type offset, ios::seekdir way,
ios::openmode mode = ios::in |ios::out)

This member function may be redefined by specializations of the class streambuf
to reset the next pointer for input or output to a new relative position (using ios::beg,
ios::cur or ios::end). The default implementation is to indicate failure by re-
turning -1. The function is called when, e.g., tellg() or tellp() is called. When
a streambuf specialization supports seeking, then the specialization should also de-
fine this function to determine what to do with a repositioning (or tellp/g()) re-
quest.

• virtual pos_type streambuf::seekpos(pos_type offset, ios::openmode mode =
ios::in |ios::out):

This member function may be redefined by specializations of the class streambuf
to reset the next pointer for input or output to a new absolute position (i.e, relative to

ios::beg). The default implementation is to indicate failure by returning -1.

• virtual int sync():

This member function may be redefined by specializations of the class streambuf
to flush the output buffer to the device or to reset the input device to the position

of the last consumed character. The default implementation (not using a buffer) is

to return 0, indicating successfull syncing. The member function is used to make

sure that any characters that are still buffered are written to the device or to restore

unconsumed characters to the device when the streambuf object ceases to exist.

Morale: when specializations of the class streambuf are designed, the very least thing to do
is to redefine underflow() for specializations aimed at reading information from devices, and to
redefine overflow() for specializations aimed at writing information to devices. Several examples
of specializations of the class streambuf will be given in the C++ Annotations (e.g., in chapter
20).

Objects of the class fstream use a combined input/output buffer. This results from the fact that
istream and ostream, are virtually derived from ios, which contains the streambuf. As ex-
plained in section 14.4.2, this implies that classes derived from both istream and ostream share
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their streambuf pointer. In order to construct a class supporting both input and output on sepa-
rate buffers, the streambuf itself may define internally two buffers. When seekoff() is called for
reading, its mode parameter is set to ios::in, otherwise to ios::out. This way, the streambuf
specializaiton knows whether it should access the read buffer or the write buffer. Of course,
underflow() and overflow() themselves already know on which buffer they should operate.

5.7.2 The class ‘filebuf’

The class filebuf is a specialization of streambuf used by the file stream classes. Apart from
the (public) members that are available through the class streambuf, it defines the following
extra (public) members:

• filebuf::filebuf():

Since the class has a constructor, it is, different from the class streambuf, possible
to construct a filebuf object. This defines a plain filebuf object, not yet connected
to a stream.

• bool filebuf::is_open():

This member function returns true if the filebuf is actually connected to an open
file. See the open() member, below.

• filebuf *filebuf::open(char const *name, ios::openmode mode):

This member function associates the filebuf object with a file whose name is pro-
vided. The file is opened according to the provided ios::openmode.

• filebuf *filebuf::close():

This member function closes the association between the filebuf object and its file.
The association is automatically closed when the filebuf object ceases to exist.

Before filebuf objects can be defined the following preprocessor directive must have been specified:

#include <fstream>

5.8 Advanced topics

5.8.1 Copying streams

Usually, files are copied either by reading a source file character by character or line by line. The

basic mold for processing files is as follows:

• In an eternal loop:

1. read a character

2. if reading did not succeed (i.e., fail() returns true), break from the loop

3. process the character
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It is important to note that the reading must precede the testing, as it is only possible to know after

the actual attempt to read from a file whether the reading succeeded or not. Of course, variations are

possible: getline(istream &, string &) (see section 5.5.1.1) returns an istream & itself, so
here reading and testing may be realized in one expression. Nevertheless, the above mold represents

the general case. So, the following program could be used to copy cin to cout:

#include <iostream>

using namespace::std;

int main()
{

while (true)
{

char c;

cin.get(c);
if (cin.fail())

break;
cout << c;

}
return 0;

}

By combining the get() with the if-statement a construction comparable to getline() could be
used:

if (!cin.get(c))
break;

Note, however, that this would still follow the basic rule: ‘read first, test later’.

This simple copying of a file, however, isn’t required very often. More often, a situation is encoun-

tered where a file is processed up to a certain point, whereafter the remainder of the file can be

copied unaltered. The following program illustrates this situation: the ignore() call is used to
skip the first line (for the sake of the example it is assumed that the first line is at most 80 char-

acters long), the second statement uses a special overloaded version of the <<-operator, in which a

streambuf pointer is inserted into another stream. As the member rdbuf() returns a streambuf

*, it can thereupon be inserted into cout. This immediately copies the remainder of cin to cout:

#include <iostream>
using namespace std;

int main()
{

cin.ignore(80, ’\n’); // skip the first line
cout << cin.rdbuf(); // copy the rest by inserting a streambuf *

}

Note that this method assumes a streambuf object, so it will work for all specializations of streambuf.
Consequently, if the class streambuf is specialized for a particular device it can be inserted into
any other stream using the above method.
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5.8.2 Coupling streams

Ostreams can be coupled to ios objects using the tie() member function. This results in flushing
all buffered output of the ostream object (by calling flush()) whenever an input or output opera-
tion is performed on the ios object to which the ostream object is tied. By default cout is tied to
cin (i.e., cin.tie(cout)): whenever an operation on cin is requested, cout is flushed first. To
break the coupling, the member function ios::tie(0) can be called.

Another (frequently useful, but non-default) example of coupling streams is to tie cerr to cout: this
way standard output and error messages written to the screen will appear in sync with the time at

which they were generated:

#include <iostream>
using namespace std;

int main()
{

cout << "first (buffered) line to cout ";
cerr << "first (unbuffered) line to cerr\n";
cout << "\n";

cerr.tie(&cout);

cout << "second (buffered) line to cout ";
cerr << "second (unbuffered) line to cerr\n";
cout << "\n";

}
/*

Generated output:

first (buffered) line to cout
first (unbuffered) line to cerr
second (buffered) line to cout second (unbuffered) line to cerr

*/

An alternative way to couple streams is to make streams use a common streambuf object. This
can be realized using the ios::rdbuf(streambuf *) member function. This way two streams
can use, e.g. their own formatting, one stream can be used for input, the other for output, and

redirection using the iostream library rather than operating system calls can be realized. See the

next sections for examples.

5.8.3 Redirecting streams

By using the ios::rdbuf()member streams can share their streambuf objects. This means that
the information that is written to a stream will actually be written to another stream, a phenomenon

normally called redirection. Redirection is normally realized at the level of the operating system, and

in some situations that is still necessary (see section 20.3.1).

A standard situation where redirection is wanted is to write error messages to file rather than to

standard error, usually indicated by its file descriptor number 2. In the Unix operating system using

the bash shell, this can be realized as follows:
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program 2>/tmp/error.log

With this command any errormessages written by programwill be saved on the file /tmp/error.log,
rather than being written to the screen.

Here is how this can be realized using streambuf objects. Assume program now expects an optional
argument defining the name of the file to write the error messages to; so program is now called as:

program /tmp/error.log

Here is the example realizing redirection. It is annotated below.

#include <iostream>
#include <streambuf>
#include <fstream>

using namespace std;

int main(int argc, char **argv)
{

ofstream errlog; // 1
streambuf *cerr_buffer = 0; // 2

if (argc == 2)
{

errlog.open(argv[1]); // 3
cerr_buffer = cerr.rdbuf(errlog.rdbuf()); // 4

}
else
{

cerr << "Missing log filename\n";
return 1;

}

cerr << "Several messages to stderr, msg 1\n";
cerr << "Several messages to stderr, msg 2\n";

cout << "Now inspect the contents of " <<
argv[1] << "... [Enter] ";

cin.get(); // 5

cerr << "Several messages to stderr, msg 3\n";

cerr.rdbuf(cerr_buffer); // 6
cerr << "Done\n"; // 7

}
/*

Generated output on file argv[1]

at cin.get():

Several messages to stderr, msg 1
Several messages to stderr, msg 2
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at the end of the program:

Several messages to stderr, msg 1
Several messages to stderr, msg 2
Several messages to stderr, msg 3

*/

• At lines 1-2 local variables are defined: errlog is the ofstream to write the error messages
too, and cerr_buffer is a pointer to a streambuf, to point to the original cerr buffer. This
is further discussed below.

• At line 3 the alternate error stream is opened.

• At line 4 the redirection takes place: cerrwill nowwrite to the streambuf defined by errlog.
It is important that the original buffer used by cerr is saved, as explained below.

• At line 5 we pause. At this point, two lines were written to the alternate error file. We get a

chance to take a look at its contents: there were indeed two lines written to the file.

• At line 6 the redirection is terminated. This is very important, as the errlog object is de-
stroyed at the end of main(). If cerr’s buffer would not have been restored, then at that
point cerr would refer to a non-existing streambuf object, which might produce unexpected
results. It is the responsibility of the programmer to make sure that an original streambuf is
saved before redirection, and is restored when the redirection ends.

• Finally, at line 7, Done is now written to the screen again, as the redirection has been termi-
nated.

5.8.4 Reading AND Writing streams

In order to both read and write to a stream an fstream object must be created. As with ifstream
and ofstream objects, its constructor receives the name of the file to be opened:

fstream inout("iofile", ios::in | ios::out);

Note the use of the ios constants ios::in and ios::out, indicating that the file must be opened
for both reading and writing. Multiple mode indicators may be used, concatenated by the binary or

operator ’|’. Alternatively, instead of ios::out, ios::app could have been used, in which case
writing will always be done at the end of the file.

Somehow reading and writing to a file is a bit awkward: what to do when the file may or may not

exist yet, but if it already exists it should not be rewritten? I have been fighting with this problem

for some time, and now I use the following approach:

#include <fstream>
#include <iostream>
#include <string>

using namespace std;

int main()
{

fstream rw("fname", ios::out | ios::in);
if (!rw)
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{
rw.clear();
rw.open("fname", ios::out | ios::trunc | ios::in);

}
if (!rw)
{

cerr << "Opening ‘fname’ failed miserably" << endl;
return 1;

}

cerr << rw.tellp() << endl;

rw << "Hello world" << endl;
rw.seekg(0);

string s;
getline(rw, s);

cout << "Read: " << s << endl;
}

In the above example, the constructor fails when fname doesn’t exist yet. However, in that case the
open() member will normally succeed since the file is created due to the ios::trunc flag. If the
file already existed, the constructor will succeed. If the ios::ate flag would have been specified
as well with rw’s initial construction, the first read/write action would by default have take place at
EOF. However, ios::ate is not ios::app, so it would then still have been possible to repositioned
rw using seekg() or seekp().

Under DOS-like operating systems, which use the multiple character \r\n sentinels to separate
lines in text files the flag ios::binary is required for processing binary files to ensure that \r\n
combinations are processed as two characters.

With fstream objects, combinations of file flags are used to make sure that a stream is or is not
(re)created empty when opened. See section 5.4.2.1 for details.

Once a file has been opened in read and write mode, the << operator can be used to insert infor-

mation to the file, while the >> operator may be used to extract information from the file. These

operations may be performed in random order. The following fragment will read a blank-delimited

word from the file, and will then write a string to the file, just beyond the point where the string just

read terminated, followed by the reading of yet another string just beyond the location where the

string just written ended:

fstream f("filename", ios::in | ios::out | ios::trunc);
string str;

f >> str; // read the first word
// write a well known text

f << "hello world";
f >> str; // and read again

Since the operators << and >> can apparently be used with fstream objects, you might wonder
whether a series of << and >> operators in one statement might be possible. After all, f >> str
should produce an fstream &, shouldn’t it?
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The answer is: it doesn’t. The compiler casts the fstream object into an ifstream object in combi-
nation with the extraction operator, and into an ofstream object in combination with the insertion
operator. Consequently, a statement like

f >> str << "grandpa" >> str;

results in a compiler error like

no match for ‘operator <<(class istream, char[8])’

Since the compiler complains about the istream class, the fstream object is apparently considered
an ifstream object in combination with the extraction operator.

Of course, random insertions and extractions are hardly used. Generally, insertions and extractions

take place at specific locations in the file. In those cases, the position where the insertion or ex-

traction must take place can be controlled and monitored by the seekg() and tellg() member
functions (see sections 5.4.1.2 and 5.5.1.2).

Error conditions (see section 5.3.1) occurring due to, e.g., reading beyond end of file, reaching end of

file, or positioning before begin of file, can be cleared using the clear()member function. Following
clear() processing may continue. E.g.,

fstream f("filename", ios::in | ios::out | ios::trunc);
string str;

f.seekg(-10); // this fails, but...
f.clear(); // processing f continues

f >> str; // read the first word

A common situation in which files are both read and written occurs in data base applications, where

files consists of records of fixed size, and where the location and size of pieces of information is well

known. For example, the following program may be used to add lines of text to a (possibly existing)

file, and to retrieve a certain line, based on its order-numer from the file. Note the use of the binary

file index to retrieve the location of the first byte of a line.

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

void err(char const *msg)
{

cout << msg << endl;
return;

}

void err(char const *msg, long value)
{

cout << msg << value << endl;
return;

}
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void read(fstream &index, fstream &strings)
{

int idx;

if (!(cin >> idx)) // read index
return err("line number expected");

index.seekg(idx * sizeof(long)); // go to index-offset

long offset;

if
(

!index.read // read the line-offset
(

reinterpret_cast<char *>(&offset),
sizeof(long)

)
)

return err("no offset for line", idx);

if (!strings.seekg(offset)) // go to the line’s offset
return err("can’t get string offet ", offset);

string line;

if (!getline(strings, line)) // read the line
return err("no line at ", offset);

cout << "Got line: " << line << endl; // show the line
}

void write(fstream &index, fstream &strings)
{

string line;

if (!getline(cin, line)) // read the line
return err("line missing");

strings.seekp(0, ios::end); // to strings
index.seekp(0, ios::end); // to index

long offset = strings.tellp();

if
(

!index.write // write the offset to index
(

reinterpret_cast<char *>(&offset),
sizeof(long)

)
)

err("Writing failed to index: ", offset);
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if (!(strings << line << endl)) // write the line itself
err("Writing to ‘strings’ failed");

// confirm writing the line
cout << "Write at offset " << offset << " line: " << line << endl;

}

int main()
{

fstream index("index", ios::trunc | ios::in | ios::out);
fstream strings("strings", ios::trunc | ios::in | ios::out);

cout << "enter ‘r <number>’ to read line <number> or "
"w <line>’ to write a line\n"

"or enter ‘q’ to quit.\n";

while (true)
{

cout << "r <nr>, w <line>, q ? "; // show prompt

string cmd;

cin >> cmd; // read cmd

if (cmd == "q") // process the cmd.
return 0;

if (cmd == "r")
read(index, strings);

else if (cmd == "w")
write(index, strings);

else
cout << "Unknown command: " << cmd << endl;

}
}

As another example of reading and writing files, consider the following program, which also serves

as an illustration of reading an ASCII-Z delimited string:

#include <iostream>
#include <fstream>
using namespace std;

int main()
{ // r/w the file

fstream f("hello", ios::in | ios::out | ios::trunc);

f.write("hello", 6); // write 2 ascii-z
f.write("hello", 6);

f.seekg(0, ios::beg); // reset to begin of file

char buffer[100]; // or: char *buffer = new char[100]
char c;
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// read the first ‘hello’
cout << f.get(buffer, sizeof(buffer), 0).tellg() << endl;;
f >> c; // read the ascii-z delim

// and read the second ‘hello’
cout << f.get(buffer + 6, sizeof(buffer) - 6, 0).tellg() << endl;

buffer[5] = ’ ’; // change asciiz to ’ ’
cout << buffer << endl; // show 2 times ‘hello’

}
/*

Generated output:
5
11
hello hello

*/

A completely differentway to both read and write to streams can be implemented using the streambuf
members of stream objects. All considerations mentioned so far remain valid: before a read oper-

ation following a write operation seekg() must be used, and before a write operation following
a read operation seekp() must be used. When the stream’s streambuf objects are used, either
an istream is associated with the streambuf object of another ostream object, or vice versa, an
ostream object is associated with the streambuf object of another istream object. Here is the
same program as before, now using associated streams:

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

void err(char const *msg)
{

cout << msg << endl;
return;

}

void err(char const *msg, long value)
{

cout << msg << value << endl;
return;

}

void read(istream &index, istream &strings)
{

int idx;

if (!(cin >> idx)) // read index
return err("line number expected");

index.seekg(idx * sizeof(long)); // go to index-offset

long offset;

if
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(
!index.read // read the line-offset
(

reinterpret_cast<char *>(&offset),
sizeof(long)

)
)

return err("no offset for line", idx);

if (!strings.seekg(offset)) // go to the line’s offset
return err("can’t get string offet ", offset);

string line;

if (!getline(strings, line)) // read the line
return err("no line at ", offset);

cout << "Got line: " << line << endl; // show the line
}

void write(ostream &index, ostream &strings)
{

string line;

if (!getline(cin, line)) // read the line
return err("line missing");

strings.seekp(0, ios::end); // to strings
index.seekp(0, ios::end); // to index

long offset = strings.tellp();

if
(

!index.write // write the offset to index
(

reinterpret_cast<char *>(&offset),
sizeof(long)

)
)

err("Writing failed to index: ", offset);

if (!(strings << line << endl)) // write the line itself
err("Writing to ‘strings’ failed");

// confirm writing the line
cout << "Write at offset " << offset << " line: " << line << endl;

}

int main()
{

ifstream index_in("index", ios::trunc | ios::in | ios::out);
ifstream strings_in("strings", ios::trunc | ios::in | ios::out);
ostream index_out(index_in.rdbuf());
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ostream strings_out(strings_in.rdbuf());

cout << "enter ‘r <number>’ to read line <number> or "
"w <line>’ to write a line\n"

"or enter ‘q’ to quit.\n";

while (true)
{

cout << "r <nr>, w <line>, q ? "; // show prompt

string cmd;

cin >> cmd; // read cmd

if (cmd == "q") // process the cmd.
return 0;

if (cmd == "r")
read(index_in, strings_in);

else if (cmd == "w")
write(index_out, strings_out);

else
cout << "Unknown command: " << cmd << endl;

}
}

Please note:

• The streams to associate with the streambuf objects of existing streams are not ifstream or
ofstream objects (or, for that matter, istringstream or ostringstream objects), but basic
istream and ostream objects.

• The streambuf object does not have to be defined in an ifstream or ofstream object: it can
be defined outside of the streams, using constructions like:

filebuf fb("index", ios::in | ios::out | ios::trunc);
istream index_in(&fb);
ostream index_out(&fb);

• Note that an ifstream object can be constructed using stream modes normally used for writ-
ing to files. Conversely, ofstream objects can be constructed using stream modes normally
used for reading from files.

• If istream and ostreams are associated through a common streambuf, then the read and
write pointers (should) point to the same locations: they are tightly coupled.

• The advantage of using a separate streambuf over a predefined fstream object is (of course)
that it opens the possibility of using stream objects with specialized streambuf objects. These
streambuf objects may then specifically be constructed to interface particular devices. Elabo-
rating this is left as an exercise to the reader.



Chapter 6

Classes

In this chapter classes are formally introduced. Two special member functions, the constructor and

the destructor, are presented.

In steps we will construct a class Person, which could be used in a database application to store a
person’s name, address and phone number.

Let’s start by creating the declaration of a class Person right away. The class declaration is
normally contained in the header file of the class, e.g., person.h. A class declaration is generally
not called a declaration, though. Rather, the common name for class declarations is class interface,

to be distinguished from the definitions of the function members, called the class implementation.

Thus, the interface of the class Person is given next:

#include <string>

class Person
{

std::string d_name; // name of person
std::string d_address; // address field
std::string d_phone; // telephone number
size_t d_weight; // the weight in kg.

public: // interface functions
void setName(std::string const &n);
void setAddress(std::string const &a);
void setPhone(std::string const &p);
void setWeight(size_t weight);

std::string const &name() const;
std::string const &address() const;
std::string const &phone() const;
size_t weight() const;

};

It should be noted that this terminology is frequently loosely applied. Sometimes, class definition is

used to indicate the class interface. While the class definition (so, the interface) contains the declara-

tions of its members, the actual implementation of these members is also referred to as the definition

of these members. As long as the concept of the class interface and the class implementation is well

distinguished, it should be clear from the context what is meant by a ‘definition’.

133
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The data fields in this class are d_name, d_address, d_phone and d_weight. All fields except
d_weight are string objects. As the data fields are not given a specific access modifier, they
are private, which means that they can only be accessed by the functions of the class Person.
Alternatively, the label ‘private:’ might have been used at the beginning of a private section of the
class definition.

The data are manipulated by interface functions which take care of all communication with code

outside of the class. Either to set the data fields to a given value (e.g., setName()) or to inspect the
data (e.g., name()). Functions merely returning values stored inside the object, not allowing the
caller to modify these internally stored values, are called accessor functions.

Note once again how similar the class is to the struct. The fundamental difference being that by
default classes have private members, whereas structs have public members. Since the convention

calls for the public members of a class to appear first, the keyword private is needed to switch back
from public members to the (default) private situation.

A few remarks concerning style. Following Lakos (Lakos, J., 2001) Large-Scale C++ Software

Design (Addison-Wesley). I suggest the following setup of class interfaces:

• All data members should have private access rights, and should be placed at the head of the

interface.

• All data members start with d_, followed by a name suggesting the meaning of the variable
(In chapter 10 we’ll also encounter data members starting with s_).

• Non-private data members do exist, but one should be hesitant to use non-private access rights

for data members (see also chapter 13).

• Two broad classes of member functions aremanipulators and accessor functions. Manipulators

allow the users of objects to actually modify the internal data of the objects. By convention,

manipulators start with set. E.g., setName().

• With accessors, often a get-prefix is encountered, e.g., getName(). However, following the con-
ventions used in the Qt Graphical User Interface Toolkit (see http://www.trolltech.com),
the get-prefix is dropped. So, rather than defining the member getAddress(), the function
will simply be defined as address().

Style conventions usually take a long time to develop. There is nothing obligatory about them, how-

ever. I suggest that readers who have compelling reasons not to follow the above style conventions

use their own. All others should adopt the above style conventions.

6.1 The constructor

A class in C++ may contain two special categories of member functions which are involved in the

internal workings of the class. These member function categories are, on the one hand, the con-

structors and, on the other hand, the destructor. The destructor’s primary task is to return memory

allocated by an object to the common pool when an object goes ‘out of scope’. Allocation of memory is

discussed in chapter 7, and destructors will therefore be discussed in depth in that chapter.

In this chapter the emphasis will be on the basic form of the class and on its constructors.

The constructor has by definition the same name as its class. The constructor does not specify a

return value, not even void. E.g., for the class Person the constructor is Person::Person(). The
C++ run-time system ensures that the constructor of a class, if defined, is called when a variable

of the class, called an object, is defined (‘created’). It is of course possible to define a class with no
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constructor at all. In that case the program will call a default constructor when a corresponding

object is created. What actually happens in that case depends on the way the class has been defined.

The actions of the default constructors are covered in section 6.4.1.

Objects may be defined locally or globally. However, in C++most objects are defined locally. Globally

defined objects are hardly ever required.

When an object is defined locally (in a function), the constructor is called every time the function is

called. The object’s constructor is then activated at the point where the object is defined (a subtlety

here is that a variable may be defined implicitly as, e.g., a temporary variable in an expression).

When an object is defined as a static object (i.e., it is static variable) in a function, the constructor is

called when the function in which the static variable is defined is called for the first time.

When an object is defined as a global object the constructor is called when the program starts. Note

that in this case the constructor is called even before the function main() is started. This feature is
illustrated in the following program:

#include <iostream>
using namespace std;

class Demo
{

public:
Demo();

};

Demo::Demo()
{

cout << "Demo constructor called\n";
}

Demo d;

int main()
{}

/*
Generated output:

Demo constructor called

*/

The above listing shows how a class Demo is defined which consists of just one function: the con-
structor. The constructor performs but one action: a message is printed. The program contains one

global object of the class Demo, and main() has an empty body. Nonetheless, the program produces
some output.

Some important characteristics of constructors are:

• The constructor has the same name as its class.

• The primary function of a constructor is to make sure that all its data members have sensible

or at least defined values once the object has been constructed. We’ll get back to this important

task shortly.

• The constructor does not have a return value. This holds true for the declaration of the con-

structor in the class definition, as in:
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class Demo
{

public:
Demo(); // no return value here

};

and it holds true for the definition of the constructor function, as in:

Demo::Demo() // no return value here
{

// statements ...
}

• The constructor function in the example above has no arguments. It is called the default

constructor. That a constructor has no arguments is, however, no requirement per se. We

shall shortly see that it is possible to define constructors with arguments as well as without

arguments.

• NOTE: Once a constructor is defined having arguments, the default constructor doesn’t exist

anymore, unless the default constructor is defined explicitly too.

This has important consequences, as the default constructor is required in cases where it must

be able to construct an object either with or without explicit initialization values. By merely

defining a constructor having at least one argument, the implicitly available default construc-

tor disappears from view. As noted, to make it available again in this situation, it must be

defined explicitly too.

6.1.1 A first application

As illustrated at the beginning of this chapter, the class Person contains three private string
data members and an size_t d_weight data member. These data members can be manipulated
by the interface functions.

Classes (should) operate as follows:

• When the object is constructed, its data members are given ‘sensible’ values. Thus, objects

never suffer from uninitialized values.

• The assignment to a data member (using a set...() function) consists of the assignment of
the new value to the corresponding data member. This assignment is fully controlled by the

class-designer. Consequently, the object itself is ‘responsible’ for its own data-integrity.

• Inspecting data members using the accessor functions simply returns the value of the re-

quested data member. Again, this will not result in uncontrolled modifications of the object’s

data.

The set...() functions could be constructed as follows:

#include "person.h" // given earlier

// interface functions set...()
void Person::setName(string const &name)
{

d_name = name;
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}

void Person::setAddress(string const &address)
{

d_address = address;
}

void Person::setPhone(string const &phone)
{

d_phone = phone;
}

void Person::setWeight(size_t weight)
{

d_weight = weight;
}

Next the accessor functions are defined. Note the occurence of the keyword const following the
parameter lists of these functions: these member functions are called const member functions, indi-

cating that they will not modify their object’s data when they’re called. Furthermore, notice that the

return types of the member functions returning the values of the string data members are string
const & types: the const here indicates that the caller of the member function cannot alter the
returned value itself. The caller of the accessor member function could copy the returned value to a

variable of its own, though, and that variable’s value may then of course be modified ad lib. Const

member functions are discussed in greater detail in section 6.2. The return value of the weight()
member function, however, is a plain size_t, as this can be a simple copy of the value that’s stored
in the Person’s weight member:

#include "person.h" // given earlier

// accessor functions ...()
string const &Person::name() const
{

return d_name;
}

string const &Person::address() const
{

return d_address;
}

string const &Person::phone() const
{

return d_phone;
}

size_t Person::weight() const
{

return d_weight;
}

The class definition of the Person class given earlier can still be used. The set...() and accessor
functions merely implement the member functions declared in that class definition.
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The following example shows the use of the class Person. An object is initialized and passed to
a function printperson(), which prints the person’s data. Note also the usage of the reference
operator & in the argument list of the function printperson(). This way only a reference to an
existing Person object is passed, rather than a whole object. The fact that printperson() does
not modify its argument is evident from the fact that the parameter is declared const.

Alternatively, the function printperson()might have been defined as a publicmember function
of the class Person, rather than a plain, objectless function.

#include <iostream>
#include "person.h" // given earlier

void printperson(Person const &p)
{

cout << "Name : " << p.name() << endl <<
"Address : " << p.address() << endl <<
"Phone : " << p.phone() << endl <<
"Weight : " << p.weight() << endl;

}

int main()
{

Person p;

p.setName("Linus Torvalds");
p.setAddress("E-mail: Torvalds@cs.helsinki.fi");
p.setPhone(" - not sure - ");
p.setWeight(75); // kg.

printperson(p);
return 0;

}
/*

Produced output:

Name : Linus Torvalds
Address : E-mail: Torvalds@cs.helsinki.fi
Phone : - not sure -
Weight : 75

*/

6.1.2 Constructors: with and without arguments

In the above declaration of the class Person the constructor has no arguments. C++ allows con-
structors to be defined with or without argument lists. The arguments are supplied when an object

is created.

For the class Person a constructor expecting three strings and an size_t may be handy: these argu-
ments then represent, respectively, the person’s name, address, phone number and weight. Such a

constructor is:

Person::Person(string const &name, string const &address,
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string const &phone, size_t weight)
{

d_name = name;
d_address = address;
d_phone = phone;
d_weight = weight;

}

The constructor must also be declared in the class interface:

class Person
{

public:
Person(std::string const &name, std::string const &address,

std::string const &phone, size_t weight);

// rest of the class interface
};

However, now that this constructor has been declared, the default constructor must be declared

explicitly too, if we still want to be able to construct a plain Person object without any specific
initial values for its data members.

Since C++ allows function overloading, such a declaration of a constructor can co-exist with a con-

structor without arguments. The class Person would thus have two constructors, and the relevant
part of the class interface becomes:

class Person
{

public:
Person();
Person(std::string const &name, std::string const &address,

std::string const &phone, size_t weight);

// rest of the class interface
};

In this case, the Person() constructor doesn’t have to do much, as it doesn’t have to initialize the
string data members of the Person object: as these data members themselves are objects, they
are already initialized to empty strings by default. However, there is also an size_t data member.
That member is a variable of a basic type and basic type variabes are not initialized automatically.

So, unless the value of the d_weight data member is explicitly initialized, it will be

• A random value for local Person objects,

• 0 for global and static Person objects

The 0-value might not be too bad, but normally we don’t want a random value for our data members.

So, the default constructor has a job to do: initializing the data members which are not initialized to

sensible values automatically. Here is an implementation of the default constructor:

Person::Person()
{
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d_weight = 0;
}

The use of a constructor with and without arguments (i.e., the default constructor) is illustrated in

the following code fragment. The object a is initialized at its definition using the constructor with
arguments, with the b object the default constructor is used:

int main()
{

Person a("Karel", "Rietveldlaan 37", "542 6044", 70);
Person b;

return 0;
}

In this example, the Person objects a and b are created when main() is started: they are local
objects, living for as long as the main() function is active.

If Person objects must be contructed using other arguments, other constructors are required as
well. It is also possible to define default parameter values. These default parameter values must be

given in the class interface, e.g.,

class Person
{

public:
Person();
Person(std::string const &name,

std::string const &address = "--unknown--",
std::string const &phone = "--unknown--",
size_t weight = 0);

// rest of the class interface
};

Often, the constructors are implemented highly similar. This results from the fact that often the

constructor’s parameters are defined for convenience: a constructor not requiring a phone number
but requiring a weight cannot be defined using default arguments, since only the last but one
parameter in the constructor defining all four parameters is not required. This cannot be solved

using default argument values, but only by defining another constructor, not requiring phone to be
specified.

Although some languages (e.g., Java) allow constructors to call constructors, this is conceptually

weird. It’s weird because it makes a kludge out of the constructor concept. A constructor is meant

to construct an object, not to construct itself while it hasn’t been constructed yet.

In C++ the way to proceed is as follows: All constructors must initialize their reference data mem-

bers, or the compiler will (rightfully) complain. This is one of the fundamental reasons why you can’t

call a constructor during a construction. Next, we have two options:

• If the body of your construction process is extensive, but (parameterizable) identical to another

constructor’s body, factorize! Make a private member init(maybe having params) called
by the constructors. Each constructor furthermore initializes any reference data members its

class may have.
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• If the constructors act fundamentally differently, then there’s nothing left but to construct

completely different constructors.

6.1.2.1 The order of construction

The possibility to pass arguments to constructors allows us to monitor the construction of objects

during a program’s execution. This is shown in the next listing, using a class Test. The program
listing below shows a class Test, a global Test object, and two local Test objects: in a function
func() and in the main() function. The order of construction is as expected: first global, then
main’s first local object, then func()’s local object, and then, finally, main()’s second local object:

#include <iostream>
#include <string>
using namespace std;

class Test
{

public:
Test(string const &name); // constructor with an argument

};

Test::Test(string const &name)
{

cout << "Test object " << name << " created" << endl;
}

Test globaltest("global");

void func()
{

Test functest("func");
}

int main()
{

Test first("main first");
func();
Test second("main second");
return 0;

}
/*

Generated output:
Test object global created
Test object main first created
Test object func created
Test object main second created

*/
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6.2 Const member functions and const objects

The keyword const is often used behind the parameter list of member functions. This keyword
indicates that a member function does not alter the data members of its object, but will only inspect

them. These member functions are called const member functions. Using the example of the class

Person, we see that the accessor functions were declared const:

class Person
{

public:
std::string const &name() const;
std::string const &address() const;
std::string const &phone() const;

};

This fragment illustrates that the keyword const appears behind the functions’ argument lists.
Note that in this situation the rule of thumb given in section 3.1.3 applies as well: whichever appears

before the keyword const, may not be altered and doesn’t alter (its own) data.

The const specification must be repeated in the definitions of member functions:

string const &Person::name() const
{

return d_name;
}

A member function which is declared and defined as constmay not alter any data fields of its class.
In other words, a statement like

d_name = 0;

in the above const function name() would result in a compilation error.

Const member functions exist because C++ allows const objects to be created, or (used more of-
ten) references to const objects to be passed to functions. For such objects only member functions
which do not modify it, i.e., the const member functions, may be called. The only exception to this
rule are the constructors and destructor: these are called ‘automatically’. The possibility of calling

constructors or destructors is comparable to the definition of a variable int const max = 10. In
situations like these, no assignment but rather an initialization takes place at creation-time. Analo-

gously, the constructor can initialize its object when the const variable is created, but subsequent
assignments cannot take place.

The following example shows the definition of a const object of the class Person. When the object
is created the data fields are initialized by the constructor:

Person const me("Karel", "karel@icce.rug.nl", "542 6044");

Following this definition it would be illegal to try to redefine the name, address or phone number for

the object me: a statement as

me.setName("Lerak");



6.2. CONST MEMBER FUNCTIONS AND CONST OBJECTS 143

would not be accepted by the compiler. Once more, look at the position of the const keyword in the
variable definition: const, following Person and preceding me associates to the left: the Person
object in general must remain unaltered. Hence, if multiple objects were defined here, both would

be constant Person objects, as in:

Person const // all constant Person objects
kk("Karel", "karel@icce.rug.nl", "542 6044"),
fbb("Frank", "f.b.brokken@rug.nl", "363 9281");

Member functions which do not modify their object should be defined as const member functions.
This subsequently allows the use of these functions with const objects or with const references. As
a rule of thumb it is stated here that member functions should always be given the const attribute,
unless they actually modify the object’s data.

Earlier, in section 2.5.11 the concept of function overloading was introduced. There it noted that

member functions may be overloaded merely by their const attribute. In those cases, the compiler
will use the member function matching most closely the const-qualification of the object:

• When the object is a const object, only const member functions can be used.

• When the object is not a const object, non-const member functions will be used, unless only
a const member function is available. In that case, the const member function will be used.

An example showing the selection of (non) const member functions is given in the following exam-
ple:

#include <iostream>
using namespace std;

class X
{

public:
X();
void member();
void member() const;

};

X::X()
{}
void X::member()
{

cout << "non const member\n";
}
void X::member() const
{

cout << "const member\n";
}

int main()
{

X const constObject;
X nonConstObject;

constObject.member();
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nonConstObject.member();
}
/*

Generated output:

const member
non const member

*/

Overloading member functions by their const attribute commonly occurs in the context of operator
overloading. See chapter 9, in particular section 9.1 for details.

6.2.1 Anonymous objects

Situations exists where objects are used because they offer a certain functionality. They only exist

because of the functionality they offer, and nothing in the objects themselves is ever changed. This

situation resembles the well-known situation in the C programming language where a function

pointer is passed to another function, to allow run-time configuration of the behavior of the latter

function.

For example, the class Print may offer a facility to print a string, prefixing it with a configurable
prefix, and affixing a configurable affix to it. Such a class could be given the following prototype:

class Print
{

public:
printout(std::string const &prefix, std::string const &text,

std::string const &affix) const;
};

An interface like this would allow us to do things like:

Print print;
for (int idx = 0; idx < argc; ++idx)

print.printout("arg: ", argv[idx], "\n");

This would work well, but can greatly be improved if we could pass printout’s invariant arguments
to Print’s constructors: this way we would not only simplify printout’s prototype (only one argu-
ment would need to be passed rather than three, allowing us to make faster calls to printout) but
we could also capture the above code in a function expecting a Print object:

void printText(Print const &print, int argc, char *argv[])
{

for (int idx = 0; idx < argc; ++idx)
print.printout(argv[idx]);

}

Now we have a fairly generic piece of code, at least as far as Print is concerned. If we would provide
Print’s interface with the following constructors we would be able to configure our output stream
as well:

Print(char const *prefix, char const *affix);
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Print(ostream &out, char const *prefix, char const *affix);

Now printText could be used as follows:

Print p1("arg: ", "\n"); // prints to cout
Print p2(cerr, "err: --", "--\n"); // prints to cerr

printText(p1, argc, argv); // prints to cout
printText(p2, argc, argv); // prints to cerr

However, when looking closely at this example, it should be clear that both p1 and p2 are only
used inside the printText function. Furthermore, as we can see from printText’s prototype,
printText won’t modify the internal data of the Print object it is using.

In situations like these it is not necessary to define objects before they are used. Instead anonymous

objects should be used. Using anonymous objects is indicated when:

• A function parameter defines a const reference to an object;

• The object is only needed inside the function call.

Anonymous objects are defined by calling a constructor without providing a name for the constructed

object. In the above example anonymous objects can be used as follows:

printText(Print("arg: ", "\n"), argc, argv); // prints to cout
printText(Print(cerr, "err: --", "--\n"), argc, argv);// prints to cerr

In this situation the Print objects are constructed and immediately passed as first arguments to
the printText functions, where they are accessible as the function’s print parameter. While the
printText function is executing they can be used, but once the function has completed, the Print
objects are no longer accessible.

Anonymous objects cease to exist when the function for which they were created has terminated. In

this respect they differ from ordinary local variables whose lifetimes end by the time the function

block in which they were defined is closed.

6.2.1.1 Subtleties with anonymous objects

As discussed, anonymous objects can be used to initialize function parameters that are const ref-
erences to objects. These objects are created just before such a function is called, and are destroyed

once the function has terminated. This use of anonymous objects to initialize function parameters

is often seen, but C++’s grammar allows us to use anonymous objects in other situations as well.

Consider the following snippet of code:

int main()
{

// initial statements
Print("hello", "world");
// later statements

}
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In this example the anonymous Print object is constructed, and is immediately destroyed after
its construction. So, following the ‘initial statements’ our Print object is constructed, then it is
destroyed again, followed by the execution of the ‘later statements’. This is remarkable as it shows

that the standard lifetime rules do not apply to anonymous objects. Their lifetime is limited to the

statement, rather than to the end of the block in which they are defined.

Of course one might wonder why a plain anonymous object could ever be considered useful. One

might think of at least one situation, though. Assume we want to putmarkers in our code producing

some output when the program’s execution reaches a certain point. An object’s constructor could be

implemented so as to provide that marker-functionality, thus allowing us to put markers in our code

by defining anonymous, rather than named objects.

However, C++’s grammar contains another remarkable characteristic. Consider the next example:

int main(int argc, char *argv[])
{

Print p("", ""); // 1
printText(Print(p), argc, argv); // 2

}

In this example a non-anonymous object p is constrcted in statement 1, which object is then used in
statement 2 to initialize an anonymous object which, in turn, is then used to initialize printText’s
const reference parameter. This use of an existing object to initialize another object is common
practice, and is based on the existence of a so-called copy constructor. A copy constructor creates an

object (as it is a constructor), using an existing object’s characteristics to initialize the new object’s

data. Copy constructors are discussed in depth in chapter 7, but presently merely the concept of a

copy constructor is used.

In the last example a copy constructor was used to initialize an anonymous object, which was then

used to initialize a parameter of a function. However, when we try to apply the same trick (i.e., using

an existing object to initialize an anonymous object) to a plain statement, the compiler generates an

error: the object p can’t be redefined (in statement 3, below):

int main(int argc, char *argv[])
{

Print p("", ""); // 1
printText(Print(p), argc, argv); // 2
Print(p); // 3 error!

}

So, using an existing object to initialize an anonymous object that is used as function argument is

ok, but an existing object can’t be used to initialize an anonymous object in a plain statement?

The answer to this apparent contradiction is actually found in the compiler’s error message itself.

At statement 3 the compiler states something like:

error: redeclaration of ’Print p’

which solves the problem, by realizing that within a compound statement objects and variables may

be defined as well. Inside a compound statement, a type name followed by a variable name is the
grammatical form of a variable definition. Parentheses can be used to break priorities, but if there

are no priorities to break, they have no effect, and are simply ignored by the compiler. In statement

3 the parentheses allowed us to get rid of the blank that’s required between a type name and the

variable name, but to the compiler we wrote
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Print (p);

which is, since the parentheses are superfluous, equal to

Print p;

thus producing p’s redeclaration.

As a further example: when we define a variable using a basic type (e.g., double) using superfluous
parentheses the compiler will quietly remove these parentheses for us:

double ((((a)))); // weird, but ok.

To summarize our findings about anonymous variables:

• Anonymous objects are great for initializing const reference parameters.

• The same syntaxis, however, can also be used in stand-alone statements, in which they are

interpreted as variable definitions if our intention actually was to initialize an anonymous

object using an existing object.

• Since this may cause confusion, it’s probably best to restrict the use of anonymous objects to

the first (and main) form: initializing function parameters.

6.3 The keyword ‘inline’

Let us take another look at the implementation of the function Person::name():

std::string const &Person::name() const
{

return d_name;
}

This function is used to retrieve the name field of an object of the class Person. In a code fragment
like:

Person frank("Frank", "Oostumerweg 17", "403 2223");

cout << frank.name();

the following actions take place:

• The function Person::name() is called.

• This function returns the name of the object frank as a reference.

• The referenced name is inserted into cout.

Especially the first part of these actions results in some time loss, since an extra function call is

necessary to retrieve the value of the name field. Sometimes a faster procedure may be desirable,
in which the name field becomes immediately available, without ever actually calling a function
name(). This can be realized using inline functions.
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6.3.1 Defining members inline

Inline functions may be implemented in the class interface itself. For the class Person this results
in the following implementation of name():

class Person
{

public:
std::string const &name() const
{

return d_name;
}

};

Note that the inline code of the function name() now literally occurs inline in the interface of the
class Person. The keyword const occurs after the function declaration, and before the code block.

Although members can be defined inside the class interface itself, it should be considered bad prac-

tice because of the following considerations:

• Defining functions inside the interface confuses the interface with the implementation. The

interface should merely document what functionality the class offers. Mixing member declara-

tions with implementation detail complicates understanding the interface. Readers will have

to skip over implementation details which takes time and makes it hard to grab the ‘broad

picture’, and thus to understand at a glance what functionality the class’s objects are offering.

• Although members that are eligible for inline-coding should remain inline, situations do exist

where members migrate from an inline to a non-inline definition. The in-class inline definition

still needs editiing (sometimes considerable editing) before a non-inline definition is ready to

be compiled. This additional editing is undesirable.

Because of the above considerations inline members should not be defined within the class interface.

Rather, they should be defined below the class interface. The name() member of the Person class
is therefore preferably defined as follows:

class Person
{

public:
std::string const &name() const;

};

inline std::string const &Person::name() const
{

return d_name;
}

This version of the Person class clearly shows that:

• the class interface itself only contains a declaration

• the inline implementation can easily be redefined as a non-inline implementation by removing

the inline keyword and including the appropriate class-header file. E.g.,

#include "person.h"
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std::string const &Person::name() const
{

return d_name;
}

Defining members inline has the following effect: Whenever an inline function is called in a program

statement, the compiler may insert the function’s body at the location of the function call. The

function itself may never actually be called. Consequently, the function call is prevented, but the

function’s body appears as often in the final program as the inline function is actually called.

This construction, where the function code itself is inserted rather than a call to the function, is

called an inline function. Note that using inline functions may result in multiple occurrences of

the code of those functions in a program: one copy for each invocation of the inline function. This

is probably ok if the function is a small one, and needs to be executed fast. It’s not so desirable if

the code of the function is extensive. The compiler knows this too, and considers the use of inline

functions a request rather than a command: if the compiler considers the function too long, it will

not grant the request, but will, instead, treat the function as a normal function. As a rule of thumb:

members should only be defined inline if they are small (containing a single, small statement) and

if it is highly unlikely that their definition will ever change.

6.3.2 When to use inline functions

When should inline functions be used, and when not? There are some rules of thumb which may
be followed:

• In general inline functions should not be used. Voilà; that’s simple, isn’t it?

• Defining inline functions can be considered once a fully developed and tested program runs
too slowly and shows ‘bottlenecks’ in certain functions. A profiler, which runs a program and

determines where most of the time is spent, is necessary to perform for such optimizations.

• inline functions can be used when member functions consist of one very simple statement
(such as the return statement in the function Person::name()).

• By defining a function as inline, its implementation is inserted in the code wherever the
function is used. As a consequence, when the implementation of the inline function changes, all

sources using the inline function must be recompiled. In practice that means that all functions

must be recompiled that include (either directly or indirectly) the header file of the class in

which the inline function is defined.

• It is only useful to implement an inline function when the time spent during a function call
is long compared to the code in the function. An example of an inline function which will
hardly have any effect on the program’s speed is:

void Person::printname() const
{

cout << d_name << endl;
}

This function, which is, for the sake of the example, presented as a member of the class Person,
contains only one statement. However, the statement takes a relatively long time to execute.

In general, functions which perform input and output take lots of time. The effect of the

conversion of this function printname() to inline would therefore lead to an insignificant
gain in execution time.
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All inline functions have one disadvantage: the actual code is inserted by the compiler and must
therefore be known compile-time. Therefore, as mentioned earlier, an inline function can never
be located in a run-time library. Practically this means that an inline function is placed near
the interface of a class, usually in the same header file. The result is a header file which not only

shows the declaration of a class, but also part of its implementation, thus blurring the distinction

between interface and implementation.

Finally, note once again that the keyword inline is not really a command to the compiler. Rather,
it is a request the compiler may or may not grant.

6.4 Objects inside objects: composition

Often objects are used as data members in class definitions. This is called composition.

For example, the class Person holds information about the name, address and phone number. This
information is stored in string data members, which are themselves objects: composition.

Composition is not extraordinary or C++ specific: in C a struct or union field is commonly used in
other compound types.

The initialization of composed objects deserves some special attention: the topics of the coming

sections.

6.4.1 Composition and const objects: const member initializers

Composition of objects has an important consequence for the constructor functions of the ‘composed’

(embedded) object. Unless explicitly instructed otherwise, the compiler generates code to call the

default constructors of all composed classes in the constructor of the composing class.

Often it is desirable to initialize a composed object from a specific constructor of the composing class.

This is illustrated below for the class Person. In this fragment it assumed that a constructor for a
Person should be defined expecting four arguments: the name, address and phone number plus the
person’s weight:

Person::Person(char const *name, char const *address,
char const *phone, size_t weight)

:
d_name(name),
d_address(address),
d_phone(phone),
d_weight(weight)

{}

Following the argument list of the constructor Person::Person(), the constructors of the string
data members are explicitly called, e.g., name(mn). The initialization takes place before the code
block of Person::Person() (now empty) is executed. This construction, where member initial-
ization takes place before the code block itself is executed is called member initialization. Member

initialization can be made explicit in the member initializer list, that may appear after the parame-

ter list, between a colon (announcing the start of the member initializer list) and the opening curly

brace of the code block of the constructor.

Member initialization always occurs when objects are composed in classes: if no constructors are
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mentioned in the member initializer list the default constructors of the objects are called. Note that

this only holds true for objects. Data members of primitive data types are not initialized automati-

cally.

Member initialization can, however, also be used for primitive data members, like int and double.
The above example shows the initialization of the data member d_weight from the parameter
weight. Note that with member initializers the data member could even have the same name
as the constructor parameter (although this is deprecated): with member initialization there is no

ambiguity and the first (left) identifier in, e.g., weight(weight) is interpreted as the data member
to be initialized, whereas the identifier between parentheses is interpreted as the parameter.

When a class has multiple composed data members, all members can be initialized using a ‘member

initializer list’: this list consists of the constructors of all composed objects, separated by commas.

The order in which the objects are initialized is defined by the order in which the members are

defined in the class interface. If the order of the initialization in the constructor differs from the

order in the class interface, the compiler complains, and reorders the initialization so as to match

the order of the class interface.

Member initializers should be used as often as possible: it can be downright necessary to use them,

and not using member initializers can result in inefficient code: with objects always at least the

default constructor is called. So, in the following example, first the string members are initialized
to empty strings, whereafter these values are immediately redefined to their intended values. Of

course, the immediate initialization to the intended values would have been more efficent.

Person::Person(char const *name, char const *address,
char const *phone, size_t weight)

{
d_name = name;
d_address = address;
d_phone = phone;
d_weight = weight;

}

This method is not only inefficient, but even more: it may not work when the composed object is

declared as a const object. A data field like birthday is a good candidate for being const, since a
person’s birthday usually doesn’t change too much.

This means that when the definition of a Person is altered so as to contain a string const
birthday member, the implementation of the constructor Person::Person() in which also the
birthday must be initialized, a member initializermust be used for birthday. Direct assignment of
the birthday would be illegal, since birthday is a const data member. The next example illustrates
the const data member initialization:

Person::Person(char const *name, char const *address,
char const *phone, char const *birthday,
size_t weight)

:
d_name(name),
d_address(address),
d_phone(phone),
d_birthday(birthday), // assume: string const d_birthday
d_weight(weight)

{}

Concluding, the rule of thumb is the following: when composition of objects is used, the member
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initializer method is preferred to explicit initialization of composed objects. This not only results in

more efficient code, but it also allows composed objects to be declared as const objects.

6.4.2 Composition and reference objects: reference member initializers

Apart from using member initializers to initialize composed objects (be they const objects or not),
there is another situation where member initializers must be used. Consider the following situation.

A program uses an object of the class Configfile, defined in main() to access the information in
a configuration file. The configuration file contains parameters of the program which may be set by

changing the values in the configuration file, rather than by supplying command line arguments.

Assume that another object that is used in the function main() is an object of the class Process,
doing ‘all the work’. What possibilities do we have to tell the object of the class Process that an
object of the class Configfile exists?

• The objects could have been declared as global objects. This is a possibility, but not a very good

one, since all the advantages of local objects are lost.

• The Configfile object may be passed to the Process object at construction time. Bluntly
passing an object (i.e., by value) might not be a very good idea, since the object must be copied

into the Configfile parameter, and then a data member of the Process class can be used to
make the Configfile object accessible throughout the Process class. This might involve yet
another object-copying task, as in the following situation:

Process::Process(Configfile conf) // a copy from the caller
{

d_conf = conf; // copying to conf_member
}

• The copy-instructions can be avoided if pointers to the Configfile objects are used, as in:

Process::Process(Configfile *conf) // pointer to external object
{

d_conf = conf; // d_conf is a Configfile *
}

This construction as such is ok, but forces us to use the ‘->’ field selector operator, rather
than the ‘.’ operator, which is (disputably) awkward: conceptually one tends to think of the
Configfile object as an object, and not as a pointer to an object. In C this would probably
have been the preferred method, but in C++ we can do better.

• Rather than using value or pointer parameters, the Configfile parameter could be defined
as a reference parameter to the Process constructor. Next, we can define a Config reference
data member in the class Process. Using the reference variable effectively uses a pointer,
disguised as a variable.

However, the following construction will not result in the initialization of the Configfile &d_conf
reference data member:

Process::Process(Configfile &conf)
{

d_conf = conf; // wrong: no assignment
}
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The statement d_conf = conf fails, because the compiler won’t see this as an initialization, but
considers this an assignment of one Configfile object (i.e., conf), to another (d_conf). It does
so, because that’s the normal interpretation: an assignment to a reference variable is actually an

assignment to the variable the reference variable refers to. But to what variable does d_conf refer?
To no variable, since we haven’t initialized d_conf. After all, the whole purpose of the statement
d_conf = conf was to initialize d_conf....

So, how do we proceed when d_conf must be initialized? In this situation we once again use the
member initializer syntax. The following example shows the correct way to initialize d_conf:

Process::Process(Configfile &conf)
:

d_conf(conf) // initializing reference member
{}

Note that this syntax must be used in all cases where reference data members are used. If d_ir
would be an int reference data member, a construction like

Process::Process(int &ir)
:

d_ir(ir)
{}

would have been called for.

6.5 The keyword ‘mutable’

Earlier, in section 6.2, the concepts of const member functions and const objects were introduced.

C++, however, allows the construction of objects which are, in a sense, neither const objects, nor
non-const objects. Data members which are defined using the keyword mutable, can be modified
by const member functions.

An example of a situation where mutable might come in handy is where a const object needs to
register the number of times it was used. The following example illustrates this situation:

#include <string>
#include <iostream>
#include <memory>

class Mutable
{

std::string d_name;
mutable int d_count; // uses mutable keyword

public:
Mutable(std::string const &name)
:

d_name(name),
d_count(0)
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{}

void called() const
{

std::cout << "Calling " << d_name <<
" (attempt " << ++d_count << ")\n";

}
};

int main()
{

Mutable const x("Constant mutable object");

for (int idx = 0; idx < 4; idx++)
x.called(); // modify data of const object

}

/*
Generated output:

Calling Constant mutable object (attempt 1)
Calling Constant mutable object (attempt 2)
Calling Constant mutable object (attempt 3)
Calling Constant mutable object (attempt 4)

*/

The keyword mutablemay also be useful in classes implementing, e.g., reference counting. Consider
a class implementing reference counting for textstrings. The object doing the reference counting

might be a const object, but the class may define a copy constructor. Since const objects can’t
be modified, how would the copy constructor be able to increment the reference count? Here the

mutable keyword may profitably be used, as it can be incremented and decremented, even though
its object is a const object.

The advantage of having a mutable keyword is that, in the end, the programmer decides which data
members can be modified and which data members can’t. But that might as well be a disadvantage:

having the keyword mutable around prevents us frommaking rigid assumptions about the stability
of const objects. Depending on the context, that may or may not be a problem. In practice, mutable
tends to be useful only for internal bookkeeping purposes: accessors returning values of mutable

data members might return puzzling results to clients using these accessors with const objects. In
those situations, the nature of the returned value should clearly be documented. As a rule of thumb:

do not use mutable unless there is a very clear reason to divert from this rule.

6.6 Header file organization

In section 2.5.9 the requirements for header files when a C++ program also uses C functions were

discussed.

When classes are used, there are more requirements for the organization of header files. In this

section these requirements are covered.

First, the source files. With the exception of the occasional classless function, source files should

contain the code of member functions of classes. With source files there are basically two approaches:
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• All required header files for a member function are included in each individual source file.

• All required header files for all member functions are included in the class-headerfile, and each

sourcefile of that class includes only the header file of its class.

The first alternative has the advantage of economy for the compiler: it only needs to read the header

files that are necessary for a particular source file. It has the disadvantage that the program devel-

oper must include multiple header files again and again in sourcefiles: it both takes time to type the

include-directives and to think about the header files which are needed in a particular source file.

The second alternative has the advantage of economy for the program developer: the header file of

the class accumulates header files, so it tends to become more and more generally useful. It has the

disadvantage that the compiler frequently has to read header files which aren’t actually used by the

function defined in the source file.

With computers running faster and faster we think the second alternative is to be preferred over the

first alternative. So, as a starting point we suggest that source files of a particular class MyClass
are organized according to the following example:

#include <myclass.h>

int MyClass::aMemberFunction()
{}

There is only one include-directive. Note that the directive refers to a header file in a direc-
tory mentioned in the INCLUDE-file environment variable. Local header files (using #include
"myclass.h") could be used too, but that tends to complicate the organization of the class header
file itself somewhat.

If name collisions with existing header files might occur it pays off to have a subdirectory of one of the

directoriesmentioned in the INCLUDE environment variable (e.g., /usr/local/include/myheaders/).

If a class MyClass is developed there, create a subdirectory (or subdirectory link) myheaders of one
of the standard INCLUDE directories to contain all header files of all classes that are developed as
part of the project. The include-directiveswill then be similar to #include <myheaders/myclass.h>,
and name collisions with other header files are avoided.

The organization of the header file itself requires some attention. Consider the following example,

in which two classes File and String are used.

Assume the File class has a member gets(String &destination), while the class String has
a member function getLine(File &file). The (partial) header file for the class String is
then:

#ifndef _String_h_
#define _String_h_

#include <project/file.h> // to know about a File

class String
{

public:
void getLine(File &file);

};
#endif
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However, a similar setup is required for the class File:

#ifndef _File_h_
#define _File_h_

#include <project/string.h> // to know about a String

class File
{

public:
void gets(String &string);

};
#endif

Now we have created a problem. The compiler, trying to compile the source file of the function

File::gets() proceeds as follows:

• The header file project/file.h is opened to be read;

• _File_h_ is defined

• The header file project/string.h is opened to be read

• _String_h_ is defined

• The header file project/file.h is (again) opened to be read

• Apparently, _File_h_ is already defined, so the remainder of project/file.h is skipped.

• The interface of the class String is now parsed.

• In the class interface a reference to a File object is encountered.

• As the class File hasn’t been parsed yet, a File is still an undefined type, and the compiler
quits with an error.

The solution for this problem is to use a forward class reference before the class interface, and to

include the corresponding class header file after the class interface. So we get:

#ifndef _String_h_
#define _String_h_

class File; // forward reference

class String
{

public:
void getLine(File &file);

};

#include <project/file.h> // to know about a File

#endif
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A similar setup is required for the class File:

#ifndef _File_h_
#define _File_h_

class String; // forward reference

class File
{

public:
void gets(String &string);

};

#include <project/string.h> // to know about a String

#endif

This works well in all situations where either references or pointers to another classes are involved

and with (non-inline) member functions having class-type return values or parameters.

Note that this setup doesn’t work with composition, nor with inline member functions. Assume the

class File has a composed data member of the class String. In that case, the class interface of the
class File must include the header file of the class String before the class interface itself, because
otherwise the compiler can’t tell how big a File object will be, as it doesn’t know the size of a String
object once the interface of the File class is completed.

In cases where classes contain composed objects (or are derived from other classes, see chapter 13)

the header files of the classes of the composed objects must have been read before the class interface

itself. In such a case the class File might be defined as follows:

#ifndef _File_h_
#define _File_h_

#include <project/string.h> // to know about a String

class File
{

String d_line; // composition !

public:
void gets(String &string);

};
#endif

Note that the class String can’t have a File object as a composed member: such a situation would
result again in an undefined class while compiling the sources of these classes.

All remaining header files (appearing below the class interface itself) are required only because they

are used by the class’s source files.

This approach allows us to introduce yet another refinement:

• Header files defining a class interface should declare what can be declared before defining the

class interface itself. So, classes that are mentioned in a class interface should be specified

using forward declarations unless
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– They are a base class of the current class (see chapter 13);

– They are the class types of composed data members;

– They are used in inline member functions.

In particular: additional actual header files are not required for:

– class-type return values of functions;

– class-type value parameters of functions.

Header files of classes of objects that are either composed or inherited or that are used in inline

functions, must be known to the compiler before the interface of the current class starts. The

information in the header file itself is protected by the #ifndef ... #endif construction
introduced in section 2.5.9.

• Program sources in which the class is used only need to include this header file. Lakos, (2001)

refines this process even further. See his book Large-Scale C++ Software Design for further

details. This header file should be made available in a well-known location, such as a directory

or subdirectory of the standard INCLUDE path.

• For the implementation of the member functions the class’s header file is required and usually

other header files (like #include <string>) as well. The class header file itself as well as
these additional header files should be included in a separate internal header file (for which

the extension .ih (‘internal header’) is suggested).

The .ih file should be defined in the same directory as the source files of the class, and has the
following characteristics:

– There is no need for a protective #ifndef .. #endif shield, as the header file is never
included by other header files.

– The standard .h header file defining the class interface is included.

– The header files of all classes used as forward references in the standard .h header file
are included.

– Finally, all other header files that are required in the source files of the class are included.

An example of such a header file organization is:

– First part, e.g., /usr/local/include/myheaders/file.h:

#ifndef _File_h_
#define _File_h_

#include <fstream> // for composed ’ifstream’

class Buffer; // forward reference

class File // class interface
{

ifstream d_instream;

public:
void gets(Buffer &buffer);

};
#endif

– Second part, e.g., ~/myproject/file/file.ih, where all sources of the class File are stored:

#include <myheaders/file.h> // make the class File known
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#include <buffer.h> // make Buffer known to File
#include <string> // used by members of the class
#include <sys/stat.h> // File.

6.6.1 Using namespaces in header files

When entities from namespaces are used in header files, in general using directives should not be
used in these header files if they are to be used as general header files declaring classes or other

entities from a library. When the using directive is used in a header file then users of such a header
file are forced to accept and use the declarations in all code that includes the particular header file.

For example, if in a namespace special an object Inserter cout is declared, then special::cout
is of course a different object than std::cout. Now, if a class Flaw is constructed, in which the
constructor expects a reference to a special::Inserter, then the class should be constructed as
follows:

class special::Inserter;

class Flaw
{
public:

Flaw(special::Inserter &ins);
};

Now the person designing the class Flawmay be in a lazy mood, and might get bored by continuously
having to prefix special:: before every entity from that namespace. So, the following construction
is used:

using namespace special;

class Inserter;

class Flaw
{
public:

Flaw(Inserter &ins);
};

This works fine, up to the point where somebody wants to include flaw.h in other source files:
because of the using directive, this latter person is now by implication also using namespace
special, which could produce unwanted or unexpected effects:

#include <flaw.h>
#include <iostream>

using std::cout;

int main()
{

cout << "starting" << endl; // doesn’t compile
}
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The compiler is confronted with two interpretations for cout: first, because of the using directive
in the flaw.h header file, it considers cout a special::Extractor, then, because of the using
directive in the user program, it considers cout a std::ostream. As compilers do, when confronted
with an ambiguity, an error is reported.

As a rule of thumb, header files intented to be generally used should not contain using declarations.
This rule does not hold true for header files which are included only by the sources of a class: here

the programmer is free to apply as many using declarations as desired, as these directives never
reach other sources.



Chapter 7

Classes and memory allocation

In contrast to the set of functions which handle memory allocation in C (i.e., malloc() etc.), the
operators new and delete are specifically meant to be used with the features that C++ offers.
Important differences between malloc() and new are:

• The function malloc() doesn’t ‘know’ what the allocated memory will be used for. E.g., when
memory for ints is allocated, the programmer must supply the correct expression using a mul-
tiplication by sizeof(int). In contrast, new requires the use of a type; the sizeof expression
is implicitly handled by the compiler.

• The only way to initialize memory which is allocated by malloc() is to use calloc(), which
allocates memory and resets it to a given value. In contrast, new can call the constructor of
an allocated object where initial actions are defined. This constructor may be supplied with

arguments.

• All C-allocation functions must be inspected for NULL-returns. In contrast, the new-operator
provides a facility called a new_handler (cf. section 7.2.2) which can be used instead of explicitly

checking for 0 return values.

A comparable relationship exists between free() and delete: delete makes sure that when an
object is deallocated, a corresponding destructor is called.

The automatic calling of constructors and destructors when objects are created and destroyed, has a

number of consequences which we shall discuss in this chapter. Many problems encountered during

C program development are caused by incorrect memory allocation or memory leaks: memory is not

allocated, not freed, not initialized, boundaries are overwritten, etc.. C++ does not ‘magically’ solve

these problems, but it does provide a number of handy tools.

Unfortunately, the very frequently used str...() functions, like strdup() are all malloc()
based, and should therefore preferably not be used anymore in C++ programs. Instead, a new set

of corresponding functions, based on the operator new, are preferred. Also, since the class string
is available, there is less need for these functions in C++ than in C. In cases where operations on

char * are preferred or necessary, comparable functions based on new could be developed. E.g.,
for the function strdup() a comparable function char *strdupnew(char const *str) could
be developed as follows:

char *strdupnew(char const *str)
{

return str ? strcpy(new char [strlen(str) + 1], str) : 0;

161
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}

In this chapter the following topics will be covered:

• the assignment operator (and operator overloading in general),

• the this pointer,

• the copy constructor.

7.1 The operators ‘new’ and ‘delete’

C++ defines two operators to allocate and deallocate memory. These operators are new and delete.

The most basic example of the use of these operators is given below. An int pointer variable is used
to point to memory which is allocated by the operator new. This memory is later released by the
operator delete.

int *ip;

ip = new int;
delete ip;

Note that new and delete are operators and therefore do not require parentheses, as required for
functions like malloc() and free(). The operator delete returns void, the operator new returns
a pointer to the kind of memory that’s asked for by its argument (e.g., a pointer to an int in the
above example). Note that the operator new uses a type as its operand, which has the benefit that
the correct amount of memory, given the type of the object to be allocated, becomes automatically

available. Furthermore, this is a type safe procedure as new returns a pointer to the type that was
given as its operand, which pointer must match the type of the variable receiving the pointervalue.

The operator new can be used to allocate primitive types and to allocate objects. When a non-class
type is allocated (a primitive type or a struct type without a constructor), the allocated memory is
not guaranteed to be initialized to 0. Alternatively, an initialization expression may be provided:

int *v1 = new int; // not guaranteed to be initialized to 0
int *v1 = new int(); // initialized to 0
int *v2 = new int(3); // initialized to 3
int *v3 = new int(3 * *v2); // initialized to 9

When class-type objects are allocated, the constructor must be mentioned, and the allocated memory

will be initialized according to the constructor that is used. For example, to allocate a string object
the following statement can be used:

string *s = new string();

Here, the default constructor was used, and s will point to the newly allocated, but empty, string.
If overloaded forms of the constructor are available, these can be used as well. E.g.,

string *s = new string("hello world");

which results in s pointing to a string containing the text hello world.

Memory allocation may fail. What happens then is unveiled in section 7.2.2.
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7.1.1 Allocating arrays

Operator new[] is used to allocate arrays. The generic notation new[] is an abbreviation used in the
Annotations. Actually, the number of elements to be allocated is specified as an expression between

the square brackets, which are prefixed by the type of the values or class of the objects that must be

allocated:

int *intarr = new int[20]; // allocates 20 ints

Note well that operator new is a different operator than operator new[]. In section 9.9 redefin-
ing operator new[] is covered.

Arrays allocated by operator new[] are called dynamic arrays. They are constructed during the
execution of a program, and their lifetime may exceed the lifetime of the function in which they were

created. Dynamically allocated arrays may last for as long as the program runs.

When new[] is used to allocate an array of primitive values or an array of objects, new[] must be
specified with a type and an (unsigned) expression between square brackets. The type and expres-

sion together are used by the compiler to determine the required size of the block of memory to make

available. With the array allocation, all elements are stored consecutively in memory. The array in-

dex notation can be used to access the individual elements: intarr[0] will be the very first int
value, immediately followed by intarr[1], and so on until the last element: intarr[19]. With
non-class types (primitive types, struct types without constructors, pointer types) the returned
allocated block of memory is not guaranteed to be initialized to 0.

To allocate arrays of objects, the new[]-bracket notation is used as well. For example, to allocate an
array of 20 string objects the following construction is used:

string *strarr = new string[20]; // allocates 20 strings

Note here that, since objects are allocated, constructors are automatically used. So, whereas new
int[20] results in a block of 20 uninitialized int values, new string[20] results in a block of
20 initialized string objects. With arrays of objects the default constructor is used for the ini-
tialization. Unfortunately it is not possible to use a constructor having arguments when arrays of

objects are allocated. However, it is possible to overload operator new[] and provide it with argu-
ments which may be used for a non-default initialization of arrays of objects. Overloading operator
new[] is discussed in section 9.9.

Similar to C, and without resorting to the operator new[], arrays of variable size can also be con-
structed as local arrays within functions. Such arrays are not dynamic arrays, but local arrays, and

their lifetime is restricted to the lifetime of the block in which they were defined.

Once allocated, all arrays are fixed size arrays. There is no simple way to enlarge or

shrink arrays: there is no renew operator. In section 7.1.3 an example is given showing
how to enlarge an array.

7.1.2 Deleting arrays

A dynamically allocated array may be deleted using operator delete[]. Operator delete[] ex-
pects a pointer to a block of memory, previously allocated using operator new[].

When an object is deleted, its destructor (see section 7.2) is called automatically, comparable to the

calling of the object’s constructor when the object was created. It is the task of the destructor, as
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discussed in depth later in this chapter, to do all kinds of cleanup operations that are required for

the proper destruction of the object.

The operator delete[] (empty square brackets) expects as its argument a pointer to an array of
objects. This operator will now first call the destructors of the individual objects, and will then delete

the allocated block of memory. So, the proper way to delete an array of Objects is:

Object *op = new Object[10];
delete[] op;

Realize that delete[] only has an additional effect if the block of memory to be deallocated con-
sists of objects. With pointers or values of primitive types normally no special action is performed.

Following int *it = new int[10] the statement delete[] it the memory occupied by all ten
int values is returned to the common pool. Nothing special happens.

Note especially that an array of pointers to objects is not handled as an array of objects
by delete[]: the array of pointers to objects doesn’t contain objects, so the objects are not properly
destroyed by delete[], whereas an array of objects contains objects, which are properly destroyed
by delete[]. In section 7.2 several examples of the use of delete versus delete[] will be given.

The operator delete is a different operator than operator delete[]. In section 9.9 redefining
delete[] is discussed. The rule of thumb is: if new[] was used, also use delete[].

7.1.3 Enlarging arrays

Once allocated, all arrays are arrays of fixed size. There is no simple way to enlarge or shrink arrays:

there is no renew operator. In this section an example is given showing how to enlarge an array.
Enlarging arrays is only possible with dynamic arrays. Local and global arrays cannot be enlarged.

When an array must be enlarged, the following procedure can be used:

• Allocate a new block of memory, of larger size

• Copy the old array contents to the new array

• Delete the old array (see section 7.1.2)

• Have the old array pointer point to the newly allocated array

The following example focuses on the enlargement of an array of string objects:

#include <string>
using namespace std;

string *enlarge(string *old, unsigned oldsize, unsigned newsize)
{

string *tmp = new string[newsize]; // allocate larger array

for (unsigned idx = 0; idx < oldsize; ++idx)
tmp[idx] = old[idx]; // copy old to tmp

delete[] old; // using [] due to objects

return tmp; // return new array
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}

int main()
{

string *arr = new string[4]; // initially: array of 4 strings

arr = enlarge(arr, 4, 6); // enlarge arr to 6 elements.
}

7.2 The destructor

Comparable to the constructor, classes may define a destructor. This function is the opposite of the

constructor in the sense that it is invoked when an object ceases to exist. For objects which are local

non-static variables, the destructor is called when the block in which the object is defined is left:

the destructors of objects that are defined in nested blocks of functions are therefore usually called

before the function itself terminates. The destructors of objects that are defined somewhere in the

outer block of a function are called just before the function returns (terminates). For static or global

variables the destructor is called before the program terminates.

However, when a program is interrupted using an exit() call, the destructors are called only for
global objects existing at that time. Destructors of objects defined locally within functions are not

called when a program is forcefully terminated using exit().

The definition of a destructor must obey the following rules:

• The destructor has the same name as the class but its name is prefixed by a tilde.

• The destructor has no arguments and has no return value.

The destructor for the class Person is thus declared as follows:

class Person
{

public:
Person(); // constructor
~Person(); // destructor

};

The position of the constructor(s) and destructor in the class definition is dictated by convention:

first the constructors are declared, then the destructor, and only then other members are declared.

The main task of a destructor is to make sure that memory allocated by the object (e.g., by its

constructor) is properly deleted when the object goes out of scope. Consider the following definition

of the class Person:

class Person
{

char *d_name;
char *d_address;
char *d_phone;

public:
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Person();
Person(char const *name, char const *address,

char const *phone);
~Person();

char const *name() const;
char const *address() const;
char const *phone() const;

};

inline Person::Person()
{}

/*
person.ih contains:

#include "person.h"
char const *strdupnew(char const *org);

*/

The task of the constructor is to initialize the data fields of the object. E.g, the constructor is defined

as follows:

#include "person.ih"

Person::Person(char const *name, char const *address, char const *phone)
:

d_name(strdupnew(name)),
d_address(strdupnew(address)),
d_phone(strdupnew(phone))

{}

In this class the destructor is necessary to prevent that memory, allocated for the fields d_name,
d_address and d_phone, becomes unreachable when an object ceases to exist, thus producing a
memory leak. The destructor of an object is called automatically

• When an object goes out of scope;

• When a dynamically allocated object is deleted;

• When a dynamically allocated array of objects is deleted using the delete[] operator (see
section 7.1.2).

Since it is the task of the destructor to delete all memory that was dynamically allocated and used

by the object, the task of the Person’s destructor would be to delete the memory to which its three
data members point. The implementation of the destructor would therefore be:

#include "person.ih"

Person::~Person()
{

delete d_name;
delete d_address;
delete d_phone;

}
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In the following example a Person object is created, and its data fields are printed. After this
the showPerson() function stops, resulting in the deletion of memory. Note that in this example a
second object of the class Person is created and destroyed dynamically by respectively, the operators
new and delete.

#include "person.h"
#include <iostream>

void showPerson()
{

Person karel("Karel", "Marskramerstraat", "038 420 1971");
Person *frank = new Person("Frank", "Oostumerweg", "050 403 2223");

cout << karel.name() << ", " <<
karel.address() << ", " <<
karel.phone() << endl <<
frank->name() << ", " <<
frank->address() << ", " <<
frank->phone() << endl;

delete frank;
}

Thememory occupied by the object karel is deleted automatically when showPerson() terminates:
the C++ compiler makes sure that the destructor is called. Note, however, that the object pointed

to by frank is handled differently. The variable frank is a pointer, and a pointer variable is itself
no Person. Therefore, before main() terminates, the memory occupied by the object pointed to by
frank should be explicitly deleted; hence the statement delete frank. The operator delete will
make sure that the destructor is called, thereby deleting the three char * strings of the object.

7.2.1 New and delete and object pointers

The operators new and delete are used when an object of a given class is allocated. As we have seen,
one of the advantages of the operators new and delete over functions like malloc() and free()
is that new and delete call the corresponding constructors and destructors. This is illustrated in
the next example:

Person *pp = new Person(); // ptr to Person object

delete pp; // now destroyed

The allocation of a new Person object pointed to by pp is a two-step process. First, the memory for
the object itself is allocated. Second, the constructor is called, initializing the object. In the above

example the constructor is the argument-free version; it is however also possible to use a constructor

having arguments:

frank = new Person("Frank", "Oostumerweg", "050 403 2223");
delete frank;

Note that, analogously to the construction of an object, the destruction is also a two-step process:

first, the destructor of the class is called to delete the memory allocated and used by the object; then

the memory which is used by the object itself is freed.
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Dynamically allocated arrays of objects can also be manipulated by new and delete. In this case
the size of the array is given between the [] when the array is created:

Person *personarray = new Person [10];

The compiler will generate code to call the default constructor for each object which is created. As

we have seen in section 7.1.2, the delete[] operator must be used here to destroy such an array in
the proper way:

delete[] personarray;

The presence of the [] ensures that the destructor is called for each object in the array.

What happens if delete rather than delete[] is used? Consider the following situation, in which
the destructor ~Person() is modified so that it will tell us that it’s called. In a main() function an
array of two Person objects is allocated by new, to be deleted by delete []. Next, the same actions
are repeated, albeit that the delete operator is called without []:

#include <iostream>
#include "person.h"
using namespace std;

Person::~Person()
{

cout << "Person destructor called" << endl;
}

int main()
{

Person *a = new Person[2];

cout << "Destruction with []’s" << endl;
delete[] a;

a = new Person[2];

cout << "Destruction without []’s" << endl;
delete a;

return 0;
}

/*
Generated output:

Destruction with []’s
Person destructor called
Person destructor called
Destruction without []’s
Person destructor called

*/

Looking at the generated output, we see that the destructors of the individual Person objects are
called if the delete[] syntax is followed, while only the first object’s destructor is called if the [] is
omitted.
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If no destructor is defined, it is not called. This may seem to be a trivial statement, but it has severe

implications: objects which allocate memory will result in a memory leak when no destructor is

defined. Consider the following program:

#include <iostream>
#include "person.h"
using namespace std;

Person::~Person()
{

cout << "Person destructor called" << endl;
}

int main()
{

Person **a = new Person* [2];

a[0] = new Person[2];
a[1] = new Person[2];

delete[] a;

return 0;
}

This program produces no output at all. Why is this? The variable a is defined as a pointer to a
pointer. For this situation, however, there is no defined destructor. Consequently, the [] is ignored.

Now, as the [] is ignored, only the array a itself is deleted, because here ‘delete[] a’ deletes the
memory pointed to by a. That’s all there is to it.

Of course, we don’t want this, but require the Person objects pointed to by the elements of a to be
deleted too. In this case we have two options:

• Explicitly walk all the elements of the a array, deleting them in turn. This will call the de-
structor for a pointer to Person objects, which will destroy all elements if the [] operator is
used, as in:

#include <iostream>
#include "person.h"

Person::~Person()
{

cout << "Person destructor called" << endl;
}

int main()
{

Person **a = new Person* [2];

a[0] = new Person[2];
a[1] = new Person[2];

for (int index = 0; index < 2; index++)
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delete[] a[index];

delete[] a;
}
/*

Generated output:
Person destructor called
Person destructor called
Person destructor called
Person destructor called

*/

• Define a wrapper class containing a pointer to Person objects, and allocate a pointer to this
class, rather than a pointer to a pointer to Person objects. The topic of containing classes in
classes, composition, was discussed in section 6.4. Here is an example showing the deletion of

pointers to memory using such a wrapper class:

#include <iostream>
using namespace std;

class Informer
{

public:
~Informer();

};

inline Informer::~Informer()
{

cout << "destructor called\n";
}

class Wrapper
{

Informer *d_i;

public:
Wrapper();
~Wrapper();

};

inline Wrapper::Wrapper()
:

d_i(new Informer())
{}
inline Wrapper::~Wrapper()
{

delete d_i;
}

int main()
{

delete[] new Informer *[4]; // memory leak: no destructor called

cout << "===========\n";
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delete[] new Wrapper[4]; // ok: 4 x destructor called
}
/*

Generated output:
===========
destructor called
destructor called
destructor called
destructor called

*/

7.2.2 The function set_new_handler()

The C++ run-time system makes sure that when memory allocation fails, an error function is acti-

vated. By default this function throws a (bad_alloc) exception () (see section 8.10), terminating the

program. Consequently, in the default case it is never necessary to check the return value of the op-

erator new. This default behavior may be modified in various ways. One way to modify this default
behavior is to redefine the function handling failing memory allocation. However, any user-defined

function must comply with the following prerequisites:

• it has no arguments, and

• it returns no value

The redefined error function might, e.g., print a message and terminate the program. The user-

written error function becomes part of the allocation system through the function set_new_handler().

The implementation of an error function is illustrated below1:

#include <iostream>
using namespace std;

void outOfMemory()
{

cout << "Memory exhausted. Program terminates." << endl;
exit(1);

}

int main()
{

long allocated = 0;

set_new_handler(outOfMemory); // install error function

while (true) // eat up all memory
{

new int [100000];
allocated += 100000 * sizeof(int);
cout << "Allocated " << allocated << " bytes\n";

}
}

1 This implementation applies to the Gnu C/C++ requirements. The actual try-out of the program given in the example is
not encouraged, as it will slow down the computer enormously due to the resulting use of the operating system’s swap area.
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After installing the error function it is automatically invoked when memory allocation fails, and the

program exits. Note that memory allocation may fail in indirectly called code as well, e.g., when

constructing or using streams or when strings are duplicated by low-level functions.

Note that it may not be assumed that the standard C functions which allocate memory, such as

strdup(), malloc(), realloc() etc. will trigger the new handler when memory allocation fails.
This means that once a new handler is installed, such functions should not automatically be used in
an unprotected way in a C++ program. An example using new to duplicate a string, was given in a
rewrite of the function strdup() (see section 7).

7.3 The assignment operator

Variables which are structs or classes can be directly assigned in C++ in the same way that
structs can be assigned in C. The default action of such an assignment for non-class type data
members is a straight byte-by-byte copy from one data member to another. Now consider the conse-

quences of this default action in a function such as the following:

void printperson(Person const &p)
{

Person tmp;

tmp = p;
cout << "Name: " << tmp.name() << endl <<

"Address: " << tmp.address() << endl <<
"Phone: " << tmp.phone() << endl;

}

We shall follow the execution of this function step by step.

• The function printperson() expects a reference to a Person as its parameter p. So far,
nothing extraordinary is happening.

• The function defines a local object tmp. This means that the default constructor of Person is
called, which -if defined properly- resets the pointer fields name, address and phone of the
tmp object to zero.

• Next, the object referenced by p is copied to tmp. By default this means that sizeof(Person)
bytes from p are copied to tmp.

Now a potentially dangerous situation has arisen. Note that the actual values in p are pointers,
pointing to allocated memory. Following the assignment this memory is addressed by two

objects: p and tmp.

• The potentially dangerous situation develops into an acutely dangerous situation when the

function printperson() terminates: the object tmp is destroyed. The destructor of the class
Person releases the memory pointed to by the fields name, address and phone: unfortunately,
this memory is also in use by p.... The incorrect assignment is illustrated in Figure 7.1.

Having executed printperson(), the object which was referenced by p now contains pointers to
deleted memory.

This situation is undoubtedly not a desired effect of a function like the above. The deleted memory

will likely become occupied during subsequent allocations: the pointer members of p have effec-
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Figure 7.1: Private data and public interface functions of the class Person, using byte-by-byte as-

signment
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Figure 7.2: Private data and public interface functions of the class Person, using the ‘correct’ assign-

ment.

tively become wild pointers, as they don’t point to allocated memory anymore. In general it can be

concluded that

every class containing pointer data members is a potential candidate for trouble.

Fortunately, it is possible to prevent these troubles, as discussed in the next section.

7.3.1 Overloading the assignment operator

Obviously, the right way to assign one Person object to another, is not to copy the contents of the
object bytewise. A better way is to make an equivalent object: one with its own allocated memory,

but which contains the same strings.

The ‘right’ way to duplicate a Person object is illustrated in Figure 7.2. There are several ways
to duplicate a Person object. One way would be to define a special member function to handle
assignments of objects of the class Person. The purpose of this member function would be to create
a copy of an object, but one with its own name, address and phone strings. Such a member function
might be:

void Person::assign(Person const &other)
{

// delete our own previously used memory
delete d_name;
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delete d_address;
delete d_phone;

// now copy the other Person’s data
d_name = strdupnew(other.d_name);
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);

}

Using this tool we could rewrite the offending function printperson():

void printperson(Person const &p)
{

Person tmp;

// make tmp a copy of p, but with its own allocated memory
tmp.assign(p);

cout << "Name: " << tmp.name() << endl <<
"Address: " << tmp.address() << endl <<
"Phone: " << tmp.phone() << endl;

// now it doesn’t matter that tmp gets destroyed..
}

By itself this solution is valid, although it is a purely symptomatic solution. This solution requires

the programmer to use a specific member function instead of the operator =. The basic problem,
however, remains if this rule is not strictly adhered to. Experience learns that errare humanum est:

a solution which doesn’t enforce special actions is therefore preferable.

The problem of the assignment operator is solved using operator overloading: the syntactic possibil-

ity C++ offers to redefine the actions of an operator in a given context. Operator overloading was

mentioned earlier, when the operators<< and >> were redefined to be used with streams (like cin,
cout and cerr), see section 3.1.2.

Overloading the assignment operator is probably the most common form of operator overloading.

However, a word of warning is appropriate: the fact that C++ allows operator overloading does not

mean that this feature should be used at all times. A few rules are:

• Operator overloading should be used in situations where an operator has a defined action, but

when this action is not desired as it has negative side effects. A typical example is the above

assignment operator in the context of the class Person.

• Operator overloading can be used in situations where the use of the operator is common and

when no ambiguity in the meaning of the operator is introduced by redefining it. An example

may be the redefinition of the operator + for a class which represents a complex number. The
meaning of a + between two complex numbers is quite clear and unambiguous.

• In all other cases it is preferable to define a member function, instead of redefining an operator.

Using these rules, operator overloading is minimized which helps keep source files readable. An

operator simply does what it is designed to do. Therefore, I consider overloading the insertion (<<)

and extraction (>>) operators in the context of streams ill-chosen: the stream operations do not

have anything in common with the bitwise shift operations.
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7.3.1.1 The member ’operator=()’

To achieve operator overloading in the context of a class, the class is simply expanded with a (usu-

ally public) member function naming the particular operator. That member function is thereupon

defined.

For example, to overload the assignment operator =, a function operator=()must be defined. Note
that the function name consists of two parts: the keyword operator, followed by the operator itself.
When we augment a class interface with a member function operator=(), then that operator is
redefined for the class, which prevents the default operator from being used. Previously (in section

7.3.1) the function assign() was offered to solve the memory-problems resulting from using the
default assignment operator. However, instead of using an ordinary member function it is much

more common in C++ to define a dedicated operator for these special cases. So, the earlier assign()
member may be redefined as follows (note that the member operator=() presented below is a first,
rather unsophisticated, version of the overloaded assignment operator. It will be improved shortly):

class Person
{

public: // extension of the class Person
// earlier members are assumed.

void operator=(Person const &other);
};

and its implementation could be

void Person::operator=(Person const &other)
{

delete d_name; // delete old data
delete d_address;
delete d_phone;

d_name = strdupnew(other.d_name); // duplicate other’s data
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);

}

The actions of this member function are similar to those of the previously proposed function assign(),
but now its name ensures that this function is also activated when the assignment operator = is used.
There are actually two ways to call overloaded operators:

Person pers("Frank", "Oostumerweg", "403 2223");
Person copy;

copy = pers; // first possibility
copy.operator=(pers); // second possibility

Actually, the second possibility, explicitly calling operator=(), is not used very often. However, the
code fragment does illustrate two ways to call the same overloaded operator member function.
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7.4 The ‘this’ pointer

As we have seen, a member function of a given class is always called in the context of some object of

the class. There is always an implicit ‘substrate’ for the function to act on. C++ defines a keyword,

this, to address this substrate2.

The this keyword is a pointer variable, which always contains the address of the object in question.
The this pointer is implicitly declared in each member function (whether public, protected, or
private). Therefore, it is as if each member function of the class Person contains the following
declaration:

extern Person *const this;

A member function like name(), which returns the name field of a Person, could therefore be im-
plemented in two ways: with or without the this pointer:

char const *Person::name() // implicit usage of ‘this’
{

return d_name;
}

char const *Person::name() // explicit usage of ‘this’
{

return this->d_name;
}

The this pointer is not frequently used explicitly. However, situations do exist where the this
pointer is actually required (cf. chapter 15).

7.4.1 Preventing self-destruction using ‘this’

As we have seen, the operator = can be redefined for the class Person in such a way that two objects
of the class can be assigned, resulting in two copies of the same object.

As long as the two variables are different ones, the previously presented version of the function

operator=() will behave properly: the memory of the assigned object is released, after which it is
allocated again to hold new strings. However, when an object is assigned to itself (which is called

auto-assignment), a problem occurs: the allocated strings of the receiving object are first deleted,

resulting in the deletion of the memory of the right-hand side variable, which we call self-destruction.

An example of this situation is illustrated here:

void fubar(Person const &p)
{

p = p; // auto-assignment!
}

In this example it is perfectly clear that something unnecessary, possibly even wrong, is happening.

But auto-assignment can also occur in more hidden forms:

Person one;

2Note that ‘this’ is not available in the not yet discussed staticmember functions.
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Person two;
Person *pp = &one;

*pp = two;
one = *pp;

The problem of auto-assignment can be solved using the this pointer. In the overloaded assignment
operator function we simply test whether the address of the right-hand side object is the same as

the address of the current object: if so, no action needs to be taken. The definition of the function

operator=() thus becomes:

void Person::operator=(Person const &other)
{

// only take action if address of the current object
// (this) is NOT equal to the address of the other object

if (this != &other)
{

delete d_name;
delete d_address;
delete d_phone;

d_name = strdupnew(other.d_name);
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);

}
}

This is the second version of the overloaded assignment function. One, yet better version remains to

be discussed.

As a subtlety, note the usage of the address operator ’&’ in the statement

if (this != &other)

The variable this is a pointer to the ‘current’ object, while other is a reference; which is an ‘alias’
to an actual Person object. The address of the other object is therefore &other, while the address
of the current object is this.

7.4.2 Associativity of operators and this

According to C++’s syntax, the assignment operator associates from right to left. I.e., in statements

like:

a = b = c;

the expression b = c is evaluated first, and the result is assigned to a.

So far, the implementation of the overloaded assignment operator does not permit such construc-

tions, as an assignment using the member function returns nothing (void). We can therefore con-
clude that the previous implementation does solve an allocation problem, but concatenated assign-

ments are still not allowed.
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The problem can be illustrated as follows. When we rewrite the expression a = b = c to the form
which explicitly mentions the overloaded assignment member functions, we get:

a.operator=(b.operator=(c));

This variant is syntactically wrong, since the sub-expression b.operator=(c) yields void. How-
ever, the class Person contains no member functions with the prototype operator=(void).

This problem too can be remedied using the this pointer. The overloaded assignment function
expects as its argument a reference to a Person object. It can also return a reference to such an
object. This reference can then be used as an argument in a concatenated assignment.

It is customary to let the overloaded assignment return a reference to the current object (i.e., *this).
The (final) version of the overloaded assignment operator for the class Person thus becomes:

Person &Person::operator=(Person const &other)
{

if (this != &other)
{

delete d_address;
delete d_name;
delete d_phone;

d_address = strdupnew(other.d_address);
d_name = strdupnew(other.d_name);
d_phone = strdupnew(other.d_phone);

}
// return current object. The compiler will make sure
// that a reference is returned
return *this;

}

7.5 The copy constructor: initialization vs. assignment

In the following sections we shall take a closer look at another usage of the operator =. Consider,
once again, the class Person. The class has the following characteristics:

• The class contains several pointers, possibly pointing to allocated memory. As discussed, such

a class needs a constructor and a destructor.

A typical action of the constructor would be to set the pointer members to 0. A typical action of

the destructor would be to delete the allocated memory.

• For the same reason the class requires an overloaded assignment operator.

• The class has, besides a default constructor, a constructor which expects the name, address

and phone number of the Person object.

• For now, the only remaining interface functions return the name, address or phone number of

the Person object.

Now consider the following code fragment. The statement references are discussed following the

example:
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Person karel("Karel", "Marskramerstraat", "038 420 1971"); // see (1)
Person karel2; // see (2)
Person karel3 = karel; // see (3)

int main()
{

karel2 = karel3; // see (4)
return 0;

}

• Statement 1: this shows an initialization. The object karel is initialized with appropriate
texts. This construction of karel therefore uses the constructor expecting three char const

* arguments.

Assume a Person constructor is available having only one char const * parameter, e.g.,

Person::Person(char const *n);

It should be noted that the initialization ‘Person frank("Frank")’ is identical to

Person frank = "Frank";

Even though this piece of code uses the operator =, it is no assignment: rather, it is an initial-
ization, and hence, it’s done at construction time by a constructor of the class Person.

• Statement 2: here a second Person object is created. Again a constructor is called. As no
special arguments are present, the default constructor is used.

• Statement 3: again a new object karel3 is created. A constructor is therefore called once more.
The new object is also initialized. This time with a copy of the data of object karel.

This form of initializations has not yet been discussed. As we can rewrite this statement in the

form

Person karel3(karel);

it is suggested that a constructor is called, having a reference to a Person object as its argu-
ment. Such constructors are quite common in C++ and are called copy constructors.

• Statement 4: here one object is assigned to another. No object is created in this statement.

Hence, this is just an assignment, using the overloaded assignment operator.

The simple rule emanating from these examples is that whenever an object is created, a constructor

is needed. All constructors have the following characteristics:

• Constructors have no return values.

• Constructors are defined in functions having the same names as the class to which they belong.

• The actual constructor that is to be used can be deduced from the constructor’s argument list.

The assignment operator may be used if the constructor has only one parameter (and also

when remaining parameters have default argument values).

Therefore, we conclude that, given the above statement (3), the class Person must be augmented
with a copy constructor:

class Person
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{
public:

Person(Person const &other);
};

The implementation of the Person copy constructor is:

Person::Person(Person const &other)
{

d_name = strdupnew(other.d_name);
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);

}

The actions of copy constructors are comparable to those of the overloaded assignment operators: an

object is duplicated, so that it will contain its own allocated data. The copy constructor, however, is

simpler in the following respects:

• A copy constructor doesn’t need to delete previously allocated memory: since the object in

question has just been created, it cannot already have its own allocated data.

• A copy constructor never needs to check whether auto-duplication occurs. No variable can be

initialized with itself.

Apart from the above mentioned quite obvious usage of the copy constructor, the copy constructor

has other important tasks. All of these tasks are related to the fact that the copy constructor is

always called when an object is initialized using another object of its class. The copy constructor is

called even when this new object is a hidden or is a temporary variable.

• When a function takes an object as argument, instead of, e.g., a pointer or a reference, the copy

constructor is called to pass a copy of an object as the argument. This argument, which usually

is passed via the stack, is therefore a new object. It is created and initialized with the data of

the passed argument. This is illustrated in the following code fragment:

void nameOf(Person p) // no pointer, no reference
{ // but the Person itself

cout << p.name() << endl;
}

int main()
{

Person frank("Frank");

nameOf(frank);
return 0;

}

In this code fragment frank itself is not passed as an argument, but instead a temporary
(stack) variable is created using the copy constructor. This temporary variable is known inside

nameOf() as p. Note that if nameOf() would have had a reference parameter, extra stack
usage and a call to the copy constructor would have been avoided.

• The copy constructor is also implicitly called when a function returns an object:

Person person()
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{
string name;
string address;
string phone;

cin >> name >> address >> phone;

Person p(name.c_str(), address.c_str(), phone.c_str());

return p; // returns a copy of ‘p’.
}

Here a hidden object of the class Person is initialized, using the copy constructor, as the value
returned by the function. The local variable p itself ceases to exist when person() terminates.

To demonstrate that copy constructors are not called in all situations, consider the following. We

could rewrite the above function person() to the following form:

Person person()
{

string name;
string address;
string phone;

cin >> name >> address >> phone;

return Person(name.c_str(), address.c_str(), phone.c_str());
}

This code fragment is perfectly valid, and illustrates the use of an anonymous object. Anonymous
objects are const objects: their data members may not change. The use of an anonymous object in the

above example illustrates the fact that object return values should be considered constant objects,

even though the keyword const is not explicitly mentioned in the return type of the function (as in
Person const person()).

As an other example, once again assuming the availability of a Person(char const *name) con-
structor, consider:

Person namedPerson()
{

string name;

cin >> name;
return name.c_str();

}

Here, even though the return value name.c_str() doesn’t match the return type Person, there is
a constructor available to construct a Person from a char const *. Since such a constructor is
available, the (anonymous) return value can be constructed by promoting a char const * type to
a Person type using an appropriate constructor.

Contrary to the situation we encountered with the default constructor, the default copy constructor

remains available once a constructor (any constructor) is defined explicitly. The copy constructor

can be redefined, but if not, then the default copy constructor will still be available when another

constructor is defined.
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7.5.1 Similarities between the copy constructor and operator=()

The similarities between the copy constructor and the overloaded assignment operator are rein-

vestigated in this section. We present here two primitive functions which often occur in our code,

and which we think are quite useful. Note the following features of copy constructors, overloaded

assignment operators, and destructors:

• The copying of (private) data occurs (1) in the copy constructor and (2) in the overloaded as-

signment function.

• The deletion of allocated memory occurs (1) in the overloaded assignment function and (2) in

the destructor.

The above two actions (duplication and deletion) can be implemented in two private functions, say

copy() and destroy(), which are used in the overloaded assignment operator, the copy construc-
tor, and the destructor. When we apply this method to the class Person, we can implement this
approach as follows:

• First, the class definition is expanded with two private functions copy() and destroy().
The purpose of these functions is to copy the data of another object or to delete the memory of

the current object unconditionally. Hence these functions implement ‘primitive’ functionality:

// class definition, only relevant functions are shown here
class Person
{

char *d_name;
char *d_address;
char *d_phone;

public:
Person(Person const &other);
~Person();
Person &operator=(Person const &other);

private:
void copy(Person const &other); // new members
void destroy(void);

};

• Next, the functions copy() and destroy() are constructed:

void Person::copy(Person const &other)
{

d_name = strdupnew(other.d_name); // unconditional copying
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);

}

void Person::destroy()
{

delete d_name; // unconditional deletion
delete d_address;
delete d_phone;

}
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• Finally the public functions in which other object’s memory is copied or in which memory is
deleted are rewritten:

Person::Person (Person const &other) // copy constructor
{

copy(other);
}

Person::~Person() // destructor
{

destroy();
}

// overloaded assignment
Person const &Person::operator=(Person const &other)
{

if (this != &other)
{

destroy();
copy(other);

}
return *this;

}

What we like about this approach is that the destructor, copy constructor and overloaded assign-

ment functions are now completely standard: they are independent of a particular class, and their

implementations can therefore be used in every class. Any class dependencies are reduced to the

implementations of the private member functions copy() and destroy().

Note, that the copy()member function is responsible for the copying of the other object’s data fields
to the current object. We’ve shown the situation in which a class only has pointer data members. In

most situations classes have non-pointer data members as well. These members must be copied in

the copy constructor as well. This can simply be realized by the copy constructor’s body except for

the initialization of reference data members, which must be initialized using the member initializer

method, introduced in section 6.4.2. However, in this case the overloaded assignment operator can’t

be fully implemented either, as reference members cannot be given another value once initialized.

An object having reference data members is inseparately attached to its referenced object(s) once it

has been constructed.

7.5.2 Preventing certain members from being used

As we’ve seen in the previous section, situations may be encountered in which a member function

can’t do its job in a completely satisfactory way. In particular: an overloaded assignment operator

cannot do its job completely if its class contains reference data members. In this and comparable

situations the programmer might want to prevent the (accidental) use of certain member functions.

This can be realized in the following ways:

• Move all member functions that should not be callable to the private section of the class
interface. This will effectively prevent the user from the class to use these members. By

moving the assignment operator to the private section, objects of the class cannot be assigned

to each other anymore. Here the compiler will detect the use of a private member outside of its

class and will flag a compilation error.

• The above solution still allows the constructor of the class to use the unwanted member func-

tions within the class members itself. If that is deemed undesirable as well, such functions
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should stil be moved to the private section of the class interface, but they should not be imple-

mented. The compilerwon’t be able to prevent the (accidental) use of these forbiddenmembers,

but the linker won’t be able to solve the associated external reference.

• It is not always a good idea to omit member functions that should not be called from the class

interface. In particular, the overloaded assignment operator has a default implementation that

will be used if no overloaded version is mentioned in the class interface. So, in particular with

the overloaded assignment operator, the previously mentioned approach should be followed.

Moving certain constructors to the private section of the class interface is also a good technique

to prevent their use by ‘the general public’.

7.6 Conclusion

Two important extensions to classes have been discussed in this chapter: the overloaded assignment

operator and the copy constructor. As we have seen, classes with pointer data members, addressing

allocated memory, are potential sources of memory leaks. The two extensions introduced in this

chapter represent the standard way to prevent these memory leaks.

The simple conclusion is therefore: classes whose objects allocate memory which is used by these

objects themselves, should implement a destructor, an overloaded assignment operator and a copy

constructor as well.
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Chapter 8

Exceptions

C supports several ways in which a program can react to situations which break the normal unham-

pered flow of the program:

• The function may notice the abnormality and issue a message. This is probably the least

disastrous reaction a program may show.

• The function in which the abnormality is observed may decide to stop its intended task, re-

turning an error code to its caller. This is a great example of postponing decisions: now the

calling function is faced with a problem. Of course the calling function may act similarly, by

passing the error code up to its caller.

• The function may decide that things are going out of hand, and may call exit() to terminate
the program completely. A tough way to handle a problem....

• The function may use a combination of the functions setjmp() and longjmp() to enforce
non-local exits. This mechanism implements a kind of goto jump, allowing the program to
continue at an outer level, skipping the intermediate levels which would have to be visited if a

series of returns from nested functions would have been used.

In C++ all the above ways to handle flow-breaking situations are still available. However, of the

mentioned alternatives, the setjmp() and longjmp() approach isn’t frequently seen in C++ (or
even in C) programs, due to the fact that the program flow is completely disrupted.

C++ offers exceptions as the preferred alternative to setjmp() and longjmp() are. Exceptions al-
lowC++ programs to performa controlled non-local return, without the disadvantages of longjmp()
and setjmp().

Exceptions are the proper way to bail out of a situation which cannot be handled easily by a function

itself, but which is not disastrous enough for a program to terminate completely. Also, exceptions

provide a flexible layer of control between the short-range return and the crude exit().

In this chapter exceptions and their syntax will be introduced. First an example of the different

impacts exceptions and setjmp() and longjmp() have on a program will be given. Then the
discussion will dig into the formalities exceptions.

187
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8.1 Using exceptions: syntax elements

With exceptions the following syntactical elements are used:

• try: The try-block surrounds statements in which exceptions may be generated (the parlance
is for exceptions to be thrown). Example:

try
{

// statements in which exceptions may be thrown
}

• throw: followed by an expression of a certain type, throws the value of the expression as an
exception. The throw statement must be executed somewhere within the try-block: either
directly or from within a function called directly or indirectly from the try-block. Example:

throw "This generates a char * exception";

• catch: Immediately following the try-block, the catch-block receives the thrown exceptions.
Example of a catch-block receiving char * exceptions:

catch (char *message)
{

// statements in which the thrown char * exceptions are handled
}

8.2 An example using exceptions

In the next two sections the same basic program will be used. The program uses two classes, Outer
and Inner. An Outer object is created in main(), and its member Outer::fun() is called. Then,
in Outer::fun() an Inner object is constructed. Having constructing the Inner object, its member
Inner::fun() is called.

That’s about it. The function Outer::fun() terminates, and the destructor of the Inner object is
called. Then the program terminates and the destructor of the Outer object is called. Here is the
basic program:

#include <iostream>
using namespace std;

class Inner
{

public:
Inner();
~Inner();
void fun();

};

class Outer
{

public:
Outer();
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~Outer();
void fun();

};

Inner::Inner()
{

cout << "Inner constructor\n";
}

Inner::~Inner()
{

cout << "Inner destructor\n";
}

void Inner::fun()
{

cout << "Inner fun\n";
}

Outer::Outer()
{

cout << "Outer constructor\n";
}

Outer::~Outer()
{

cout << "Outer destructor\n";
}

void Outer::fun()
{

Inner in;

cout << "Outer fun\n";
in.fun();

}

int main()
{

Outer out;

out.fun();
}

/*
Generated output:

Outer constructor
Inner constructor
Outer fun
Inner fun
Inner destructor
Outer destructor

*/
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After compiling and running, the program’s output is entirely as expected, and it shows exactly

what we want: the destructors are called in their correct order, reversing the calling sequence of the

constructors.

Now let’s focus our attention on two variants, in which we simulate a non-fatal disastrous event to

take place in the Inner::fun() function, which is supposedly handled somewhere at the end of
the function main(). We’ll consider two variants. The first variant will try to handle this situation
using setjmp() and longjmp(); the second variant will try to handle this situation using C++’s
exception mechanism.

8.2.1 Anachronisms: ‘setjmp()’ and ‘longjmp()’

In order to use setjmp() and longjmp() the basic program from section 8.2 is slightly modified to
contain a variable jmp_buf jmpBuf. The function Inner::fun() now calls longjmp, simulating
a disastrous event, to be handled at the end of the function main(). In main() we see the standard
code defining the target location of the long jump, using the function setjmp(). A zero return
value indicates the initialization of the jmp_buf variable, upon which the Outer::fun() function
is called. This situation represents the ‘normal flow’.

To complete the simulation, the return value of the program is zero only if the program is able

to return from the function Outer::fun() normally. However, as we know, this won’t happen:
Inner::fun() calls longjmp(), returning to the setjmp() function, which (at this time) will not
return a zero return value. Hence, after calling Inner::fun() from Outer::fun() the program
proceeds beyond the if-statement in the main() function, and the program terminates with the
return value 1. Now try to follow these steps by studying the following program source, modified

after the basic program given in section 8.2:

#include <iostream>
#include <setjmp.h>
#include <cstdlib>

using namespace std;

class Inner
{

public:
Inner();
~Inner();
void fun();

};

class Outer
{

public:
Outer();
~Outer();
void fun();

};

jmp_buf jmpBuf;

Inner::Inner()
{
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cout << "Inner constructor\n";
}

void Inner::fun()
{

cout << "Inner fun()\n";
longjmp(jmpBuf, 0);

}

Inner::~Inner()
{

cout << "Inner destructor\n";
}

Outer::Outer()
{

cout << "Outer constructor\n";
}

Outer::~Outer()
{

cout << "Outer destructor\n";
}

void Outer::fun()
{

Inner in;

cout << "Outer fun\n";
in.fun();

}

int main()
{

Outer out;

if (!setjmp(jmpBuf))
{

out.fun();
return 0;

}
return 1;

}
/*

Generated output:
Outer constructor
Inner constructor
Outer fun
Inner fun()
Outer destructor

*/

The output produced by this program clearly shows that the destructor of the class Inner is not
executed. This is a direct result of the non-local characteristic of the call to longjmp(): processing
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proceeds immediately from the longjmp() call in the member function Inner::fun() to the func-
tion setjmp() in main(). There, its return value is zero, so the program terminates with return
value 1. What is important here is that the call to the destructor Inner::~Inner(), waiting to be
executed at the end of Outer::fun(), is never reached.

As this example shows that the destructors of objects can easily be skipped when longjmp() and
setjmp() are used, these function should be avoided completely in C++ programs.

8.2.2 Exceptions: the preferred alternative

In C++ exceptions are the best alternative to setjmp() and longjmp(). In this section an example
using exceptions is presented. Again, the program is derived from the basic program, given in

section 8.2:

#include <iostream>
using namespace std;

class Inner
{

public:
Inner();
~Inner();
void fun();

};

class Outer
{

public:
Outer();
~Outer();
void fun();

};

Inner::Inner()
{

cout << "Inner constructor\n";
}

Inner::~Inner()
{

cout << "Inner destructor\n";
}

void Inner::fun()
{

cout << "Inner fun\n";
throw 1;
cout << "This statement is not executed\n";

}

Outer::Outer()
{

cout << "Outer constructor\n";
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}

Outer::~Outer()
{

cout << "Outer destructor\n";
}

void Outer::fun()
{

Inner in;

cout << "Outer fun\n";
in.fun();

}

int main()
{

Outer out;

try
{

out.fun();
}
catch (...)
{}

}
/*

Generated output:
Outer constructor
Inner constructor
Outer fun
Inner fun
Inner destructor
Outer destructor

*/

In this program an exception is thrown, where a longjmp() was used in the program in section
8.2.1. The comparable construct for the setjmp() call in that program is represented here by the
try and catch blocks. The try block surrounds statements (including function calls) in which
exceptions are thrown, the catch block may contain statements to be executed just after throwing
an exception.

So, comparably to the example given in section 8.2.1, the function Inner::fun() terminates, albeit
with an exception rather than by a call to longjmp(). The exception is caught in main(), and
the program terminates. When the output from the current program is inspected, we notice that

the destructor of the Inner object, created in Outer::fun() is now correctly called. Also notice
that the execution of the function Inner::fun() really terminates at the throw statement: the
insertion of the text into cout, just beyond the throw statement, doesn’t take place.

Hopefully this has raised your appetite for exceptions, since it was shown that:

• Exceptions provide a means to break out of the normal flow control without having to use a

cascade of return-statements, and without the need to terminate the program.
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• Exceptions do not disrupt the activation of destructors, and are therefore strongly preferred

over the use of setjmp() and longjmp().

8.3 Throwing exceptions

Exceptions may be generated in a throw statement. The throw keyword is followed by an expres-
sion, resulting in a value of a certain type. For example:

throw "Hello world"; // throws a char *
throw 18; // throws an int
throw string("hello"); // throws a string

Objects defined locally in functions are automatically destroyed once exceptions thrown by these

functions leave these functions. However, if the object itself is thrown, the exception catcher receives

a copy of the thrown object. This copy is constructed just before the local object is destroyed.

The next example illustrates this point. Within the function Object::fun() a local Object toThrow
is created, which is thereupon thrown as an exception. The exception is caught outside of Object::fun(),
in main(). At this point the thrown object doesn’t actually exist anymore, Let’s first take a look at
the sourcetext:

#include <iostream>
#include <string>
using namespace std;

class Object
{

string d_name;

public:
Object(string name)
:

d_name(name)
{

cout << "Object constructor of " << d_name << "\n";
}
Object(Object const &other)
:

d_name(other.d_name + " (copy)")
{

cout << "Copy constructor for " << d_name << "\n";
}
~Object()
{

cout << "Object destructor of " << d_name << "\n";
}
void fun()
{

Object toThrow("’local object’");

cout << "Object fun() of " << d_name << "\n";
throw toThrow;
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}
void hello()
{

cout << "Hello by " << d_name << "\n";
}

};

int main()
{

Object out("’main object’");

try
{

out.fun();
}
catch (Object o)
{

cout << "Caught exception\n";
o.hello();

}
}
/*

Generated output:
Object constructor of ’main object’
Object constructor of ’local object’
Object fun() of ’main object’
Copy constructor for ’local object’ (copy)
Object destructor of ’local object’
Copy constructor for ’local object’ (copy) (copy)
Caught exception
Hello by ’local object’ (copy) (copy)
Object destructor of ’local object’ (copy) (copy)
Object destructor of ’local object’ (copy)
Object destructor of ’main object’

*/

The class Object defines several simple constructors and members. The copy constructor is special
in that it adds the text " (copy)" to the received name, to allow us to monitor the construction and
destruction of objects more closely. The member function Object::fun() generates the exception,
and throws its locally defined object. Just before the exception the following output is generated by

the program:

Object constructor of ’main object’
Object constructor of ’local object’
Object fun() of ’main object’

Now the exception is generated, resulting in the next line of output:

Copy constructor for ’local object’ (copy)

The throw clause receives the local object, and treats it as a value argument: it creates a copy of the
local object. Following this, the exception is processed: the local object is destroyed, and the catcher

catches an Object, again a value parameter. Hence, another copy is created. Threfore, we see the
following lines:
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Object destructor of ’local object’
Copy constructor for ’local object’ (copy) (copy)

Now we are inside the catcher, who displays its message:

Caught exception

followed by the calling of the hello() member of the received object. This member also shows us
that we received a copy of the copy of the local object of the Object::fun()member function:

Hello by ’local object’ (copy) (copy)

Finally the program terminates, and its still living objects are now destroyed in their reversed order

of creation:

Object destructor of ’local object’ (copy) (copy)
Object destructor of ’local object’ (copy)
Object destructor of ’main object’

If the catcher would have been implemented so as to receive a reference to an object (which you could

do by using ‘catch (Object &o)’), then repeatedly calling the copy constructor would have been
avoided. In that case the output of the program would have been:

Object constructor of ’main object’
Object constructor of ’local object’
Object fun() of ’main object’
Copy constructor for ’local object’ (copy)
Object destructor of ’local object’
Caught exception
Hello by ’local object’ (copy)
Object destructor of ’local object’ (copy)
Object destructor of ’main object’

This shows us that only a single copy of the local object has been used.

Of course, it’s a bad idea to throw a pointer to a locally defined object: the pointer is thrown, but the

object to which the pointer refers dies once the exception is thrown, and the catcher receives a wild

pointer. Bad news....

Summarizing:

• Local objects are thrown as copied objects,

• Pointers to local objects should not be thrown.

• However, it is possible to throw pointers or references to dynamically generated objects. In

this case one must take care that the generated object is properly deleted when the generated

exception is caught, to prevent a memory leak.

Exceptions are thrown in situations where a function can’t continue its normal task anymore, al-

though the program is still able to continue. Imagine a program which is an interactive calculator.

The program continuously requests expressions, which are then evaluated. In this case the parsing
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of the expression may show syntactical errors; and the evaluation of the expression may result in

expressions which can’t be evaluated, e.g., because of the expression resulting in a division by zero.

Also, the calculator might allow the use of variables, and the user might refer to non-existing vari-

ables: plenty of reasons for exceptions to be thrown, but no overwhelming reason to terminate the

program. In the program, the following code may be used, all throwing exceptions:

if (!parse(expressionBuffer)) // parsing failed
throw "Syntax error in expression";

if (!lookup(variableName)) // variable not found
throw "Variable not defined";

if (divisionByZero()) // unable to do division
throw "Division by zero is not defined";

The location of these throw statements is immaterial: they may be placed deeply nested within
the program, or at a more superficial level. Furthermore, functions may be used to generate the

expression which is then thrown. A function

char const *formatMessage(char const *fmt, ...);

would allow us to throw more specific messages, like

if (!lookup(variableName))
throw formatMessage("Variable ’%s’ not defined", variableName);

8.3.1 The empty ‘throw’ statement

Situations may occur in which it is required to inspect a thrown exception. Then, depending on

the nature of the received exception, the program may continue its normal operation, or a serious

event took place, requiring a more drastic reaction by the program. In a server-client situation the

client may enter requests to the server into a queue. Every request placed in the queue is normally

answered by the server, telling the client that the request was successfully completed, or that some

sort of error has occurred. Actually, the server may have died, and the client should be able to

discover this calamity, by not waiting indefinitely for the server to reply.

In this situation an intermediate exception handler is called for. A thrown exception is first inspected

at the middle level. If possible it is processed there. If it is not possible to process the exception at the

middle level, it is passed on, unaltered, to a more superficial level, where the really tough exceptions

are handled.

By placing an empty throw statement in the code handling an exception the received exception is
passed on to the next level that might be able to process that particular type of exception.

In our server-client situation a function

initialExceptionHandler(char *exception)

could be designed to do so. The received message is inspected. If it’s a simple message it’s processed,

otherwise the exception is passed on to an outer level. The implementation of initialExceptionHandler()
shows the empty throw statement:

void initialExceptionHandler(char *exception)
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{
if (!plainMessage(exception))

throw;

handleTheMessage(exception);
}

As we will see below (section 8.5), the empty throw statement passes on the exception received in a
catch-block. Therefore, a function like initialExceptionHandler() can be used for a variety of
thrown exceptions, as long as the argument used with initialExceptionHandler() is compatible
with the nature of the received exception.

Does this sound intriguing? Then try to follow the next example, which jumps slightly ahead to the

topics covered in chapter 14. The next example may be skipped, though, without loss of continuity.

We can now state that a basic exception handling class can be constructed from which specific excep-

tions are derived. Suppose we have a class Exception, containing a member function ExceptionType
Exception::severity(). This member function tells us (little wonder!) the severity of a thrown
exception. It might be Message, Warning, Mistake, Error or Fatal. Furthermore, depend-
ing on the severity, a thrown exception may contain less or more information, somehow processed

by a function process(). In addition to this, all exceptions have a plain-text producing member
function, e.g., toString(), telling us a bit more about the nature of the generated exception.

Using polymorphism, process() can be made to behave differently, depending on the nature of a
thrown exception, when called through a basic Exception pointer or reference.

In this case, a program may throw any of these five types of exceptions. Let’s assume that the

Message and Warning exceptions are processable by our initialExceptionHandler(). Then its
code would become:

void initialExceptionHandler(Exception const *e)
{

cout << e->toString() << endl; // show the plain-text information

if
(

e->severity() != ExceptionWarning
&&
e->severity() != ExceptionMessage

)
throw; // Pass on other types of Exceptions

e->process(); // Process a message or a warning
delete e;

}

Due to polymorphism (see chapter 14), e->process()will either process a Message or a Warning.
Thrown exceptions are generated as follows:

throw new Message(<arguments>);
throw new Warning(<arguments>);
throw new Mistake(<arguments>);
throw new Error(<arguments>);
throw new Fatal(<arguments>);
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All of these exceptions are processable by our initialExceptionHandler(), which may decide
to pass exceptions upward for further processing or to process exceptions itself. The polymorphic

exception class is developed further in section 14.7.

8.4 The try block

The try-block surrounds statements in which exceptions may be thrown. As we have seen, the
actual throw statement can be placed everywhere, not necessarily directly in the try-block. It may,
for example, be placed in a function, called from within the try-block.

The keyword try is followed by a set of curly braces, acting like a standard C++ compound state-
ment: multiple statements and definitions may be placed here.

It is possible (and very common) to create levels in which exceptions may be thrown. For example,

main()’s code is surrounded by a try-block, forming an outer level in which exceptions can be han-
dled. Within main()’s try-block, functions are called which may also contain try-blocks, forming
the next level in which exceptions may be generated. As we have seen (in section 8.3.1), exceptions

thrown in inner level try-blocks may or may not be processed at that level. By placing an empty
throw in an exception handler, the thrown exception is passed on to the next (outer) level.

If an exception is thrown outside of any try-block, then the default way to handle (uncaught) ex-
ceptions is used, which is normally to abort the program. Try to compile and run the following tiny

program, and see what happens:

int main()
{

throw "hello";
}

8.5 Catching exceptions

The catch block contains code that is executed when an exception is thrown. Since expressions are
thrown, the catch-block must know what kind of exceptions it should be able to handle. Therefore,
the keyword catch is followed by a parameter list consisting of but one parameter, which is the type
of the exception handled by the catch block. So, an exception handler for char const * exceptions
will have the following form:

catch (char const *message)
{

// code to handle the message
}

Earlier (section 8.3) we’ve seen that such a message doesn’t have to be thrown as a static string.

It’s also possible for a function to return a string, which is then thrown as an exception. If such a

function creates the string that is thrown as an exception dynamically, the exception handler will

normally have to delete the allocated memory to prevent a memory leak.

Close attention should be paid to the nature of the parameter of the exception handler, to make sure

that dynamically generated exceptions are deleted once the handler has processed them. Of course,

when an exception is passed on to an outer level exception handler, the received exception should

not be deleted by the inner level handler.
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Different kinds of exceptions may be thrown: char *s, ints, pointers or references to objects, etc.:
all these different types may be used in throwing and catching exceptions. So, various types of

exceptions may come out of a try-block. In order to catch all expressions that may emerge from a
try-block, multiple exception handlers (i.e., catch-blocks) may follow the try-block.

To some extent the order of the exception handlers is important. When an exception is thrown, the

first exception handler matching the type of the thrown exception is used and remaining exception

handlers are ignored. So only one exception handler following a try-block will be executed. Nor-
mally this is no problem: the thrown exception is of a certain type, and the correspondingly typed

catch-handler will catch it. For example, if exception handlers are defined for char *s and void *s
then ASCII-Z strings will be caught by the latter handler. Note that a char * can also be consid-
ered a void *, but even so, an ASCII-Z string will be handled by a char * handler, and not by a
void * handler. This is true in general: handlers should be designed very type specific to catch the
correspondingly typed exception. For example, int-exceptions are not caught by double-catchers,
char-exceptions are not caught by int-catchers. Here is a little example illustrating that the order
of the catchers is not important for types not having any hierarchical relation to each other (i.e., int
is not derived from double; string is not derived from ASCII-Z):

#include <iostream>
using namespace std;

int main()
{

while (true)
{

try
{

string s;
cout << "Enter a,c,i,s for ascii-z, char, int, string "

"exception\n";
getline(cin, s);
switch (s[0])
{

case ’a’:
throw "ascii-z";

case ’c’:
throw ’c’;

case ’i’:
throw 12;

case ’s’:
throw string();

}
}
catch (string const &)
{

cout << "string caught\n";
}
catch (char const *)
{

cout << "ASCII-Z string caught\n";
}
catch (double)
{

cout << "isn’t caught at all\n";
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}
catch (int)
{

cout << "int caught\n";
}
catch (char)
{

cout << "char caught\n";
}

}
}

As an alternative to constructing different types of exception handlers for different types of excep-

tions, a specific class can be designed whose objects contain information about the exception. Such

an approach was mentioned earlier, in section 8.3.1. Using this approach, there’s only one handler

required, since we know we won’t throw other types of exceptions:

try
{

// code throws only Exception pointers
}
catch (Exception *e)
{

e->process();
delete e;

}

The delete e statement in the above code indicates that the Exception object was created dy-
namically.

When the code of an exception handler has been processed, execution continues beyond the last

exception handler directly following that try-block (assuming the handler doesn’t itself use flow
control statements (like return or throw) to break the default flow of execution). From this, we
distinguish the following cases:

• If no exception was thrown within the try-block no exception handler is activated, and the
execution continues from the last statement in the try-block to the first statement beyond the
last catch-block.

• If an exception was thrown within the try-block but neither the current level nor an other
level contains an appropriate exception handler, the program’s default exception handler is

called, usually aborting the program.

• If an exception was thrown from the try-block and an appropriate exception handler is avail-
able, then the code of that exception handler is executed. Following the execution of the code

of the exception handler, the execution of the program continues at the first statement beyond

the last catch-block.

All statements in a try block appearing below an executed throw-statement will be ignored. How-
ever, destructors of objects defined locally in the try-block are called, and they are called before any
exception handler’s code is executed.

The actual computation or construction of an exception may be realized using various degrees of

sophistication. For example, it’s possible to use the operator new; to use static member functions of
a class; to return a pointer to an object; or to use objects of classes derived from a class, possibly

involving polymorphism.
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8.5.1 The default catcher

In cases where different types of exceptions can be thrown, only a limited set of handlers may be

required at a certain level of the program. Exceptions whose types belong to that limited set are

processed, all other exceptions are passed on to an outer level of exception handling.

An intermediate kind of exception handling may be implemented using the default exception han-

dler, which should (due to the hierarchical nature of exception catchers, discussed in section 8.5) be

placed beyond all other, more specific exception handlers. In this case, the current level of exception

handling may do some processing by default, but will then, using the the empty throw statement
(see section 8.3.1), pass the thrown exception on to an outer level. Here is an example showing the

use of a default exception handler:

#include <iostream>
using namespace std;

int main()
{

try
{

try
{

throw 12.25; // no specific handler for doubles
}
catch (char const *message)
{

cout << "Inner level: caught char const *\n";
}
catch (int value)
{

cout << "Inner level: caught int\n";
}
catch (...)
{

cout << "Inner level: generic handling of exceptions\n";
throw;

}
}
catch(double d)
{

cout << "Outer level still knows the double: " << d << endl;
}

}
/*

Generated output:
Inner level: generic handling of exceptions
Outer level still knows the double: 12.25

*/

From the generated output we may conclude that an empty throw statement throws the received
exception to the next (outer) level of exception catchers, keeping the type and value of the exception:

basic or generic exception handling can thus be accomplished at an inner level, specific handling,

based on the type of the thrown expression, can then continue at an outer level.
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8.6 Declaring exception throwers

Functions defined elsewhere may be linked to code using these functions. Such functions are nor-

mally declared in header files, either as stand alone functions or as member functions of a class.

These external functionsmay of course throw exceptions. Declarations of such functionsmay contain

a function throw list or exception specification list, in which the types of the exceptions that can be

thrown by the function are specified. For example, a function that could throw ‘char *’ and ‘int’
exceptions can be declared as

void exceptionThrower() throw(char *, int);

If specified, a function throw list appears immediately beyond the function header (and also beyond

a possible const specifier), and, noting that throw lists may be empty, it has the following generic
form: throw([type1 [, type2, type3, ...]])

If a function doesn’t throw exceptions an empty function throw list may be used. E.g.,

void noExceptions() throw ();

In all cases, the function header used in the function definition must exactly match the function

header that is used in the declaration, e.g., including a possible empty function throw list.

A function for which a function throw list is specifiedmay not throw other types of exceptions. A run-

time error occurs if it tries to throw other types of exceptions than those mentioned in the function

throw list.

For example, consider the declarations and definitions in the following program:

#include <iostream>
using namespace std;

void charPintThrower() throw(char const *, int); // declarations

class Thrower
{

public:
void intThrower(int) const throw(int);

};

void Thrower::intThrower(int x) const throw(int) // definitions
{

if (x)
throw x;

}

void charPintThrower() throw(char const *, int)
{

int x;

cerr << "Enter an int: ";
cin >> x;

Thrower().intThrower(x);
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throw "this text is thrown if 0 was entered";
}

void runTimeError() throw(int)
{

throw 12.5;
}

int main()
{

try
{

charPintThrower();
}
catch (char const *message)
{

cerr << "Text exception: " << message << endl;
}
catch (int value)
{

cerr << "Int exception: " << value << endl;
}
try
{

cerr << "Up to the run-time error\n";
runTimeError();

}
catch(...)
{

cerr << "not reached\n";
}

}

In the function charPintThrower() the throw statement clearly throws a char const *. How-
ever, since intThrower()may throw an int exception, the function throw list of charPintThrower()
must also contain int.

If the function throw list is not used, the function may either throw exceptions (of any kind) or not

throw exceptions at all. Without a function throw list the responsibility of providing the correct

handlers is in the hands of the program’s designer.

8.7 Iostreams and exceptions

The C++ I/O library was used well before exceptions were available in C++. Hence, normally the

classes of the iostream library do not throw exceptions. However, it is possible to modify that behav-

ior using the ios::exceptions()member function. This function has two overloaded versions:

• iostate exceptions(): this member returns the state flags for which the stream will throw
exceptions,

• void exceptions(iostate state): this member will throw an exception when state state
is observed.
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In the context of the I/O library, exceptions are objects of the class ios::failure, derived from
ios::exception. A failure object can be constructed with a string const &message, which
can be retrieved using the virtual char const *what() const member.

Exceptions should be used for exceptional situations. Therefore, we think it is questionable to have

stream objects throw exceptions for rather standard situations like EOF. Using exceptions to han-
dle input errors might be defensible, for example when input errors should not occur and imply a

corrupted file. But here we think aborting the program with an appropriate error message usu-

ally would be a more appropriate action. Here is an example showing the use of exceptions in an

interactive program, expecting numbers:

#include <iostream>
using namespace::std;

int main()
{

cin.exceptions(ios::failbit);

while (true)
{

try
{

cout << "enter a number: ";

int value;

cin >> value;
cout << "you entered " << value << endl;

}
catch (ios::failure const &problem)
{

cout << problem.what() << endl;
cin.clear();
string s;
getline(cin, s);

}
}

}

8.8 Exceptions in constructors and destructors

Only constructed objects are eventually destroyed. Although this may sound like a truism, there is

a subtlety here. If the construction of an object fails for some reason, the object’s destructor will not

be called once the object goes out of scope. This could happen if an uncaught exception is generated

by the constructor. If the exception is thrown after the object has allocated some memory, then its

destructor (as it isn’t called) won’t be able to delete the allocated block of memory. A memory leak

will be the result.

The following example illustrates this situation in its prototypical form. The constructor of the class

Incomplete first displays a message and then throws an exception. Its destructor also displays a
message:

class Incomplete
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{
public:

Incomplete()
{

cerr << "Allocated some memory\n";
throw 0;

}
~Incomplete()
{

cerr << "Destroying the allocated memory\n";
}

};

Next, main() creates an Incomplete object inside a try block. Any exception that may be gener-
ated is subsequently caught:

int main()
{

try
{

cerr << "Creating ‘Incomplete’ object\n";
Incomplete();
cerr << "Object constructed\n";

}
catch(...)
{

cerr << "Caught exception\n";
}

}

When this program is run, it produces the following output:

Creating ‘Incomplete’ object
Allocated some memory
Caught exception

Thus, if Incomplete’s constructor would actually have allocated some memory, the program would
suffer from a memory leak. To prevent this from happening, the following countermeasures are

available:

• Exceptions should not leave the constructor. If part of the constructor’s code may generate

exceptions, then this part should itself be surrounded by a try block, catching the exception
within the constructor. There may be good reasons for throwing exceptions out of the construc-

tor, as that is a direct way to inform the code using the constructor that the object has not

become available. But before the exception leaves the constructor, it should be given a chance

to delete memory it already has allocated. The following skeleton setup of a constructor shows

how this can be realized. Note how any exception that may have been generated is rethrown,

allowing external code to inspect this exception too:

Incomplete::Incomplete()
{

try
{
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d_memory = new Type;
code_maybe_throwing_exceptions();

}
catch (...)
{

delete d_memory;
throw;

}
};

• Exceptions might be generated while initializing members. In those cases, a try block within
the constructor’s body has no chance to catch such exceptions. When a class uses pointer data

members, and exceptions are generated after these pointer data members have been initialized,

memory leaks can still be avoided, though. This is accomplished by using smart pointers, e.g.,

auto_ptr objects, introduced in section 17.3. As auto_ptr objects are objects, their destructors
are still called, even when their the full construction of their composing object fails. In this

case the rule once an object has been constructed its destructor is called when the object goes

out of scope still applies.

Section 17.3.6 covers the use of auto_ptr objects to prevent memory leaks when exceptions
are thrown out of constructors, even if the exception is generated by a member initializer.

C++, however, supports an even more generic way to prevent exceptions from leaving func-

tions (or constructors): function try blocks. These function try blocks are discussed in the next

section.

Destructors have problems of their own when they generate exceptions. Exceptions leaving de-

structors may of course produce memory leaks, as not all allocated memory may already have been

deleted when the exception is generated. Other forms of incomplete handling may be encountered.

For example, a database class may store modifications of its database in memory, leaving the update

of file containing the database file to its destructor. If the destructor generates an exception before

the file has been updated, then there will be no update. But another, far more subtle, consequence

of exceptions leaving destructors exist.

The situation we’re about to discuss may be compared to a carpenter building a cupboard containing

a single drawer. The cupboard is finished, and a customer, buying the cupboard, finds that the

cupboard can be used as expected. Satisfied with the cupboard, the customer asks the carpenter to

build another cupboard, this time containing two drawers. When the second cupboard is finished,

the customer takes it home and is utterly amazed when the second cupboard completely collapses

immediately after its first use.

Weird story? Consider the following program:

int main()
{

try
{

cerr << "Creating Cupboard1\n";
Cupboard1();
cerr << "Beyond Cupboard1 object\n";

}
catch (...)
{

cerr << "Cupboard1 behaves as expected\n";
}
try
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{
cerr << "Creating Cupboard2\n";
Cupboard2();
cerr << "Beyond Cupboard2 object\n";

}
catch (...)
{

cerr << "Cupboard2 behaves as expected\n";
}

}

When this program is run it produces the following output:

Creating Cupboard1
Drawer 1 used
Cupboard1 behaves as expected
Creating Cupboard2
Drawer 2 used
Drawer 1 used
Abort

The final Abort indicating that the program has aborted, instead of displaying a message like
Cupboard2 behaves as expected. Now let’s have a look at the three classes involved. The
class Drawer has no particular characteristics, except that its destructor throws an exception:

class Drawer
{

size_t d_nr;
public:

Drawer(size_t nr)
:

d_nr(nr)
{}
~Drawer()
{

cerr << "Drawer " << d_nr << " used\n";
throw 0;

}
};

The class Cupboard1 has no special characteristics at all. It merely has a single composed Drawer
object:

class Cupboard1
{

Drawer left;
public:

Cupboard1()
:

left(1)
{}

};
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The class Cupboard2 is constructed comparably, but it has two composed Drawer objects:

class Cupboard2
{

Drawer left;
Drawer right;
public:

Cupboard2()
:

left(1),
right(2)

{}
};

When Cupboard1’s destructor is called, Drawer’s destructor is eventually called to destroy its com-
posed object. This destructor throws an exception, which is caught beyond the program’s first try
block. This behavior is completely as expected. However, a problem occurs when Cupboard2’s de-
structor is called. Of its two composed objects, the destructor of the second Drawer is called first.
This destructor throws an exception, which ought to be caught beyond the program’s second try
block. However, although the flow of control by then has left the context of Cupboard2’s destructor,
that object hasn’t completely been destroyed yet as the destructor of its other (left) Drawer still has
to be called. Normally that would not be a big problem: once the exception leaving Cupboard2’s
destructor is thrown, any remaining actions would simply be ignored, albeit that (as both drawers

are properly constructed objects) left’s destructor would still be called. So this happens here too.
However, left’s destructor also throws an exception. Since we’ve already left the context of the sec-
ond try block, the programmed flow control is completely mixed up, and the program has no other
option but to abort. It does so by calling terminate(), which in turn calls abort(). Here we have
our collapsing cupboard having two drawers, even though the cupboard having one drawer behaves

perfectly.

The program aborts since there are multiple composed objects whose destructors throw exceptions

leaving the destructors. In this situation one of the composed objects would throw an exception by

the time the program’s flow control has already left its proper context. This causes the program to

abort.

This situation can be prevented if we ensure that exceptions never leave destructors. In the cupboard

example, Drawer’s destructor throws an exception leaving the destructor. This should not happen:
the exception should be caught by Drawer’s destructor itself. Exceptions should never be thrown
out of destructors, as we might not be able to catch, at an outer level, exceptions generated by

destructors. As long as we view destructors as service members performing tasks that are directly

related to the object being destroyed, rather than a member on which we can base any flow control,

this should not be a serious limitation. Here is the skeleton of a destructor whose code might throw

exceptions:

Class::~Class()
{

try
{

maybe_throw_exceptions();
}
catch (...)
{}

}
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8.9 Function try blocks

Exceptions might be generated while a constructor is initializing its members. How can exceptions

generated in such situations be caught by the constructor itself, rather than outside of the construc-

tor? The intuitive solution, nesting the object construction in a nested try block does not solve the
problem (as the exception by then has left the constructor) and is not a very elegant approach by

itself, because of the resulting additional (and somewhat artificial) nesting level.

Using a nested try block is illustrated by the next example, where main() defines an object of class
DataBase. Assuming that DataBase’s constructor may throw an exception, there is no way we can
catch the exception in an ‘outer block’ (i.e., in the code calling main()), as we don’t have an outer
block in this situation. Consequently, we must resort to less elegant solutions like the following:

int main(int argc, char **argv)
{

try
{

DataBase db(argc, argv); // may throw exceptions
... // main()’s other code

}
catch(...) // and/or other handlers
{

...
}

}

This approach may potentially produce very complex code. If multiple objects are defined, or if

multiple sources of exceptions are identifiable within the try block, we either get a complex series
of exception handlers, or we have to use multiple nested try blocks, each using its own set of catch-
handlers.

None of these approaches, however, solves the basic problem: how can exceptions generated in a

local context be caught before the local context has disappeared?

A function’s local context remains accessible when its body is defined as a function try block. A

function try block consists of a try block and its associated handlers, defining the function’s body.
When a function try block is used, the function itself may catch any exception its code may generate,

even if these exceptions are generated in member initializer lists of constructors.

The following example shows how a function try block might have been deployed in the above

main() function. Note how the try block and its handler now replace the plain function body:

int main(int argc, char **argv)
try
{

DataBase db(argc, argv); // may throw exceptions
... // main()’s other code

}
catch(...) // and/or other handlers
{

...
}

Of course, this still does not enable us have exceptions thrown by DataBase’s constructor itself
caught locally by DataBase’s constructor. Function try blocks, however, may also be used when



8.9. FUNCTION TRY BLOCKS 211

implementing constructors. In that case, exceptions thrown by base class initializers (cf. chapter

13) or member initializers may also be caught by the constructor’s exception handlers. So let’s try to

implement this approach.

The following example shows a function try block being used by a constructor. Note that the gram-

mar requires us to put the try keyword even before the member initializer list’s colon:

#include <iostream>

class Throw
{

public:
Throw(int value)
try
{

throw value;
}
catch(...)
{

std::cout << "Throw’s exception handled locally by Throw()\n";
throw;

}
};

class Composer
{

Throw d_t;
public:

Composer()
try // NOTE: try precedes initializer list
:

d_t(5)
{}
catch(...)
{

std::cout << "Composer() caught exception as well\n";
}

};

int main()
{

Composer c;
}

In this example, the exception thrown by the Throw object is first caught by the object itself. Then
it is rethrown. As the Composer’s constructor uses a function try block, Throw’s rethrown exception
is also caught by Composer’s exception handler, even though the exception was generated inside its
member initializer list.

However, when running this example, we’re in for a nasty surprise: the program runs and then

breaks with an abort exception. Here is the output it produces, the last two lines being added by the

system’s final catch-all handler, catching all exceptions that otherwise remain uncaught:

Throw’s exception handled locally by Throw()
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Composer() caught exception as well
terminate called after throwing an instance of ’int’
Abort

The reason for this is actually stated in theC++ standard: at the end of a catch-handler implemented

as part of a destructor’s or constructor’s function try block, the original exception is automatically

rethrown. The exception is not rethrown if the handler itself throws another exception, and it is

not retrown by catch-handlers that are part of try blocks of other functions. Only constructors

and destructors are affected. Consequently, to repair the above program another, outer, exception

handler is still required. A simple repair (applicable to all programs except those having global

objects whose constructors or destructors use function try blocks) is to provide main with a function
try block. In the above example this would boil down to:

int main()
try
{

Composer c;
}
catch (...)
{}

Now the program runs as planned, producing the following output:

Throw’s exception handled locally by Throw()
Composer() caught exception as well

A final note: if a constructor or function using a function try block also declares the exception types

it may throw, then the function try block must follow the function’s exception specification list.

8.10 Standard Exceptions

All data types may be thrown as exceptions. However, the standard exceptions are derived from

the class exception. Class derivation is covered in chapter 13, but the concepts that lie behind

inheritance are not required for the the current section.

All standard exceptions (and all user-defined classes derived from the class std::exception) offer
the member

char const *what() const;

describing in a short textual message the nature of the exception.

Four classes derived from std::exception are offered by the language:

• std::bad_alloc: thrown when operator new fails;

• std::bad_exception: thrown when a function tries to generate another type of exception
than declared in its function throw list;

• std::bad_cast: thrown in the context of polymorphism (see section 14.5.1);

• std::bad_typeid: also thrown in the context of polymorphism (see section 14.5.2);



Chapter 9

More Operator Overloading

Having covered the overloaded assignment operator in chapter 7, and having shown several exam-

ples of other overloaded operators as well (i.e., the insertion and extraction operators in chapters 3

and 5), we will now take a look at several other interesting examples of operator overloading.

9.1 Overloading ‘operator[]()’

As our next example of operator overloading, we present a class operating on an array of ints.
Indexing the array elements occurs with the standard array operator [], but additionally the class
checks for boundary overflow. Furthermore, the index operator (operator[]()) is interesting in
that it both produces a value and accepts a value, when used, respectively, as a right-hand value

(rvalue) and a left-hand value (lvalue) in expressions. Here is an example showing the use of the

class:

int main()
{

IntArray x(20); // 20 ints

for (int i = 0; i < 20; i++)
x[i] = i * 2; // assign the elements

for (int i = 0; i <= 20; i++) // produces boundary overflow
cout << "At index " << i << ": value is " << x[i] << endl;

}

First, the constructor is used to create an object containing 20 ints. The elements stored in the
object can be assigned or retrieved: the first for-loop assigns values to the elements using the index
operator, the second for-loop retrieves the values, but will also produce a run-time error as the
non-existing value x[20] is addressed. The IntArray class interface is:

class IntArray
{

int *d_data;
unsigned d_size;

213
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public:
IntArray(unsigned size = 1);
IntArray(IntArray const &other);
~IntArray();
IntArray const &operator=(IntArray const &other);

// overloaded index operators:
int &operator[](unsigned index); // first
int const &operator[](unsigned index) const; // second

private:
void boundary(unsigned index) const;
void copy(IntArray const &other);
int &operatorIndex(unsigned index) const;

};

This class has the following characteristics:

• One of its constructors has an size_t parameter having a default argument value, specifying
the number of int elements in the object.

• The class internally uses a pointer to reach allocated memory. Hence, the necessary tools are

provided: a copy constructor, an overloaded assignment operator and a destructor.

• Note that there are two overloaded index operators. Why are there two of them ?

The first overloaded index operator allows us to reach and modify the elements of non-constant

IntArray objects. This overloaded operator has as its prototype a function that returns a
reference to an int. This allows us to use expressions like x[10] as rvalues or lvalues.

We can therefore use the same function to retrieve and to assign values. Furthermore note

that the return value of the overloaded array operator is not an int const &, but rather an
int &. In this situation we don’t use const, as we must be able to change the element we
want to access, when the operator is used as an lvalue.

However, this whole scheme fails if there’s nothing to assign. Consider the situation where

we have an IntArray const stable(5). Such an object is a const object, which cannot be
modified. The compiler detects this and will refuse to compile this object definition if only the

first overloaded index operator is available. Hence the second overloaded index operator. Here

the return-value is an int const &, rather than an int &, and the member-function itself is
a const member function. This second form of the overloaded index operator is not used with
non-const objects, but it’s only used with const objects. It is used for value-retrieval, not for
value-assignment, but that is precisely what we want, using const objects. Here, members
are overloaded only by their const attribute. This form of function overloading was introduced
earlier in the Annotations (sections 2.5.11 and 6.2).

Also note that, since the values stored in the IntArray are primitive values of type int, it’s
ok to use value return types. However, with objects one usually doesn’t want the extra copying

that’s implied with value return types. In those cases const & return values are preferred for
constmember functions. So, in the IntArray class an int return value could have been used
as well. The second overloaded index operator would then use the following prototype:

int IntArray::operator[](int index) const;

• As there is only one pointer data member, the destruction of the memory allocated by the object

is a simple delete data. Therefore, our standard destroy() function was not used.
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Now, the implementation of the members are:

#include "intarray.ih"

IntArray::IntArray(unsigned size)
:

d_size(size)
{

if (d_size < 1)
{

cerr << "IntArray: size of array must be >= 1\n";
exit(1);

}
d_data = new int[d_size];

}

IntArray::IntArray(IntArray const &other)
{

copy(other);
}

IntArray::~IntArray()
{

delete[] d_data;
}

IntArray const &IntArray::operator=(IntArray const &other)
{

if (this != &other)
{

delete[] d_data;
copy(other);

}
return *this;

}

void IntArray::copy(IntArray const &other)
{

d_size = other.d_size;
d_data = new int[d_size];
memcpy(d_data, other.d_data, d_size * sizeof(int));

}

int &IntArray::operatorIndex(unsigned index) const
{

boundary(index);
return d_data[index];

}

int &IntArray::operator[](unsigned index)
{

return operatorIndex(index);
}
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int const &IntArray::operator[](unsigned index) const
{

return operatorIndex(index);
}

void IntArray::boundary(unsigned index) const
{

if (index >= d_size)
{

cerr << "IntArray: boundary overflow, index = " <<
index << ", should range from 0 to " << d_size - 1 << endl;

exit(1);
}

}

Especially note the implementation of the operator[]() functions: as non-const members may call
const member functions, and as the implementation of the constmember function is identical to the
non-const member function’s implementation, we could implement both operator[] members in-
line using an auxiliary function int &operatorIndex(size_t index) const. It is interesting
to note that a const member function may return a non-const reference (or pointer) return value,
referring to one of the data members of its object. This is a potentially dangerous backdoor breaking

data hiding. However, as the members in the public interface prevents this breach, we feel confident

in defining int &operatorIndex() const as a private function, knowing that it won’t be used
for this unwanted purpose.

9.2 Overloading the insertion and extraction operators

This section describes how a class can be adapted in such a way that it can be used with the C++

streams cout and cerr and the insertion operator (<<). Adapting a class in such a way that the

istream’s extraction operator (>>) can be used, is implemented similarly and is simply shown in

an example.

The implementation of an overloaded operator«() in the context of cout or cerr involves their
class, which is ostream. This class is declared in the header file ostream and defines only over-
loaded operator functions for ‘basic’ types, such as, int, char *, etc.. The purpose of this section is
to show how an insertion operator can be overloaded in such a way that an object of any class, say

Person (see chapter 7), can be inserted into an ostream. Having made available such an overloaded
operator, the following will be possible:

Person kr("Kernighan and Ritchie", "unknown", "unknown");

cout << "Name, address and phone number of Person kr:\n" << kr << endl;

The statement cout << kr involves operator<<(). This member function has two operands:
an ostream & and a Person &. The proposed action is defined in an overloaded global operator
operator<<() expecting two arguments:

// assume declared in ‘person.h’
ostream &operator<<(ostream &, Person const &);

// define in some source file
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ostream &operator<<(ostream &stream, Person const &pers)
{

return
stream <<

"Name: " << pers.name() <<
"Address: " << pers.address() <<
"Phone: " << pers.phone();

}

Note the following characteristics of operator<<():

• The function returns a reference to an ostream object, to enable ‘chaining’ of the insertion
operator.

• The two operands of operator<<() act as arguments of the the overloaded function. In the
earlier example, the parameter stream is initialized by cout, the parameter pers is initial-
ized by kr.

In order to overload the extraction operator for, e.g., the Person class, members are needed to
modify the private data members. Such modifiers are normally included in the class interface. For

the Person class, the following members should be added to the class interface:

void setName(char const *name);
void setAddress(char const *address);
void setPhone(char const *phone);

The implementation of these members could be straightforward: the memory pointed to by the

corresponding data member must be deleted, and the data member should point to a copy of the text

pointed to by the parameter. E.g.,

void Person::setAddress(char const *address)
{

delete d_address;
d_address = strdupnew(address);

}

A more elaborate function could also check the reasonableness of the new address. This elaboration,

however, is not further pursued here. Instead, let’s have a look at the final overloaded extraction

operator (>>). A simple implementation is:

istream &operator>>(istream &str, Person &p)
{

string name;
string address;
string phone;

if (str >> name >> address >> phone) // extract three strings
{

p.setName(name.c_str());
p.setAddress(address.c_str());
p.setPhon(phone.c_str());

}
return str;

}
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Note the stepwise approach that is followed with the extraction operator: first the required infor-

mation is extracted, using available extraction operators (like a string-extraction), then, if that
succeeds, modifier members are used to modify the data members of the object to be extracted.

Finally, the stream object itself is returned as a reference.

9.3 Conversion operators

A class may be constructed around a basic type. E.g., the class String was constructed around the
char * type. Such a class may define all kinds of operations, like assignments. Take a look at the
following class interface, designed after the string class:

class String
{

char *d_string;

public:
String();
String(char const *arg);
~String();
String(String const &other);
String const &operator=(String const &rvalue);
String const &operator=(char const *rvalue);

};

Objects from this class can be initialized from a char const *, and also from a String itself.
There is an overloaded assignment operator, allowing the assignment from a String object and
from a char const *

1.

Usually, in classes that are less directly coupled to their data than this String class, there will be
an accessor member function, like char const *String::c_str() const. However, the need to
use this latter member doesn’t appeal to our intuition when an array of String objects is defined by,
e.g., a class StringArray. If this latter class provides the operator[] to access individual String
members, we would have the following interface for StringArray:

class StringArray
{

String *d_store;
size_t d_n;

public:
StringArray(size_t size);
StringArray(StringArray const &other);
StringArray const &operator=(StringArray const &rvalue);
~StringArray();

String &operator[](size_t index);
};

Using the StringArray::operator[], assignments between the String elements can simply be
realized:

1Note that the assingment from a char const * also includes the null-pointer. An assignment like stringObject = 0
is perfectly in order.
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StringArray sa(10);

sa[4] = sa[3]; // String to String assignment

It is also possible to assign a char const * to an element of sa:

sa[3] = "hello world";

Here, the following steps are taken:

• First, sa[3] is evaluated. This results in a String reference.

• Next, the String class is inspected for an overloaded assignment, expecting a char const *
to its right-hand side. This operator is found, and the string object sa[3] can receive its new
value.

Now we try to do it the other way around: how to access the char const * that’s stored in sa[3]?
We try the following code:

char const

*cp = sa[3];

This, however, won’t work: we would need an overloaded assignment operator for the ’class char
const *’. Unfortunately, there isn’t such a class, and therefore we can’t build that overloaded
assignment operator (see also section 9.11). Furthermore, casting won’t work: the compiler doesn’t

know how to cast a String to a char const *. How to proceed from here?

The naive solution is to resort to the accessor member function c_str():

cp = sa[3].c_str()

That solution would work, but it looks so clumsy.... A far better approach would be to use a conversion

operator.

A conversion operator is a kind of overloaded operator, but this time the overloading is used to cast

the object to another type. Using a conversion operator a String object may be interpreted as a
char const *, which can then be assigned to another char const *. Conversion operators can
be implemented for all types for which a conversion is needed.

In the current example, the class String would need a conversion operator for a char const *.
In class interfaces, the general form of a conversion operator is:

operator <type>();

In our String class, this would become:

operator char const *();

The implementation of the conversion operator is straightforward:

String::operator char const *()
{

return d_string;
}
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Notes:

• There is no mentioning of a return type. The conversion operator returns a value of the type

mentioned after the operator keyword.

• In certain situations the compiler needs a hand to disambiguate our intentions. In a statement

like

cout.form("%s", sa[3])

the compiler is confused: are we going to pass a String & or a char const * to the form()
member function? To help the compiler, we supply an static_cast:

cout.form("%s", static_cast<char const *>(sa[3]));

One might wonder what will happen if an object for which, e.g., a string conversion operator is
defined is inserted into, e.g., an ostream object, into which string objects can be inserted. In this
case, the compiler will not look for appropriate conversion operators (like operator string()),
but will report an error. For example, the following example produces a compilation error:

#include <iostream>
#include <string>
using namespace std;

class NoInsertion
{

public:
operator string() const;

};

int main()
{

NoInsertion object;

cout << object << endl;
}

The problem is caused by the fact that the compiler notices an insertion, applied to an object. It

will now look for an appropriate overloaded version of the insertion operator. As it can’t find one, it

reports a compilation error, instead of performing a two-stage insertion: first using the operator
string() insertion, followed by the insertion of that string into the ostream object.

Conversion operators are usedwhen the compiler is given no choice: an assignment of a NoInsertion
object to a string object is such a situation. The problem of how to insert an object into, e.g., an
ostream is simply solved: by defining an appropriate overloaded insertion operator, rather than by
resorting to a conversion operator.

Several considerations apply to conversion operators:

• In general, a class should have at most one conversion operator. When multiple conversion

operators are defined, ambiguities are quickly introduced.

• A conversion operator should be a ‘natural extension’ of the facilities of the object. For example,

the stream classes define operator bool(), allowing constructions like if (cin).
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• A conversion operator should return a rvalue. It should do so not only to enforce data-hiding,

but also because implementing a conversion operator as an lvalue simply won’t work. The

following little program is a case in point: the compiler will not perform a two-step conversion

and will therefore try (in vain) to find operator=(int):

#include <iostream>

class Lvalue
{

int d_value;

public:
operator int&();

};

inline Lvalue::operator int&()
{

return d_value;
}

int main()
{

Lvalue lvalue;

lvalue = 5; // won’t compile: no lvalue::operator=(int)
};

• Conversion operators should be defined as const member functions if they don’t modify their
object’s data members.

• Conversion operators returning composed objects should return const references to these ob-

jects, rather than the plain object types. Plain object types would force the compiler to call the

composed object’s copy constructor, instead of a reference to the object itself. For example, in

the following program std::string’s copy constructor is not called. It would have been called
if the conversion operator had been declared as operator string():

#include <string>

class XString
{

std::string d_s;

public:
operator std::string const &() const;

};

inline XString::operator std::string const &() const
{

return d_s;
}

int main()
{

XString x;
std::string s;
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s = x;
};

9.4 The keyword ‘explicit’

Conversions are performed not only by conversion operators, but also by constructors having one

parameter (or multiple parameters, having default argument values beyond the first parameter).

Consider the class Person introduced in chapter 7. This class has a constructor

Person(char const *name, char const *address, char const *phone)

This constructor could be given default argument values:

Person(char const *name, char const *address = "<unknown>",
char const *phone = "<unknown>");

In several situations this constructor might be used intentionally, possibly providing the default

<unknown> texts for the address and phone numbers. For example:

Person frank("Frank", "Room 113", "050 363 9281");

Also, functions might use Person objects as parameters, e.g., the following member in a fictitious
class PersonData could be available:

PersonData &PersonData::operator+=(Person const &person);

Now, combining the above two pieces of code, we might, do something like

PersonData dbase;

dbase += frank; // add frank to the database

So far, so good. However, since the Person constructor can also be used as a conversion operator, it
is also possible to do:

dbase += "karel";

Here, the char const * text ‘karel’ is converted to an (anonymous) Person object using the
abovementioned Person constructor: the second and third parameters use their default values.
Here, an implicit conversion is performed from a char const * to a Person object, which might
not be what the programmer had in mind when the class Person was constructed.

As another example, consider the situation where a class representing a container is constructed.

Let’s assume that the initial construction of objects of this class is rather complex and time-consuming,

but expanding an object so that it can accomodatemore elements is evenmore time-consuming. Such

a situation might arise when a hash-table is initially constructed to contain n elements: that’s ok as
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long as the table is not full, but when the table must be expanded, all its elements normally must

be rehashed to allow for the new table size.

Such a class could (partially) be defined as follows:

class HashTable
{

size_t d_maxsize;

public:
HashTable(size_t n); // n: initial table size
size_t size(); // returns current # of elements

// add new key and value
void add(std::string const &key, std::string const &value);

};

Now consider the following implementation of add():

void HashTable::add(string const &key, string const &value)
{

if (size() > d_maxsize * 0.75) // table gets rather full

*this = size() * 2; // Oops: not what we want!

// etc.
}

In the first line of the body of add() the programmer first determines how full the hashtable cur-
rently is: if it’s more than three quarter full, then the intention is to double the size of the hashtable.

Although this succeeds, the hashtable will completely fail to fulfill its purpose: accidentally the pro-

grammer assigns an size_t value, intending to tell the hashtable what its new size should be. This

results in the following unwelcome surprise:

• The compiler notices that no operator=(size_t newsize) is available for HashTable.

• There is, however, a constructor accepting an size_t, and the default overloaded assignment

operator is still available, expecting a HashTable as its right-hand operand.

• Thus, the rvalue of the assignment (a HashTable) is obtained by (implicitly) constructing an
(empty) HashTable that can accomodate size() * 2 elements.

• The just constructed empty HashTable is thereupon assigned to the current HashTable, thus
removing all hitherto stored elements from the current HashTable.

If an implicit use of a constructor is not appropriate (or dangerous), it can be prevented using the

explicit modifier with the constructor. Constructors using the explicit modifier can only be
used for the explicit construction of objects, and cannot be used as implicit type convertors anymore.

For example, to prevent the implicit conversion from size_t to HashTable the class interface of
the class HashTable should declare the constructor

explicit HashTable(size_t n);

Now the compiler will catch the error in the compilation of HashTable::add(), producing an error
message like
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error: no match for ’operator=’ in
’*this = (this->HashTable::size()() * 2)’

9.5 Overloading the increment and decrement operators

Overloading the increment operator (operator++()) and decrement operator (operator−−())
creates a little problem: there are two version of each operator, as they may be used as postfix

operator (e.g., x++) or as prefix operator (e.g., ++x).

Used as postfix operator, the value’s object is returned as rvalue, which is an expression having

a fixed value: the post-incremented variable itself disappears from view. Used as prefix operator,

the variable is incremented, and its value is returned as lvalue, so it can be altered immediately

again. Whereas these characteristics are not requiredwhen the operator is overloaded, it is strongly

advised to implement these characteristics in any overloaded increment or decrement operator.

Suppose we define awrapper class around the size_t value type. The class could have the following
(partially shown) interface:

class Unsigned
{

size_t d_value;

public:
Unsigned();
Unsigned(size_t init);
Unsigned &operator++();

}

This defines the prefix overloaded increment operator. An lvalue is returned, as we can deduce from

the return type, which is Unsigned &.

The implementation of the above function could be:

Unsigned &Unsigned::operator++()
{

++d_value;
return *this;

}

In order to define the postfix operator, an overloaded version of the operator is defined, expecting

an int argument. This might be considered a kludge, or an acceptable application of function
overloading. Whatever your opinion in this matter, the following can be concluded:

• Overloaded increment and decrement operators without parameters are prefix operators, and

should return references to the current object.

• Overloaded increment and decrement operators having an int parameter are postfix operators,

and should return the value the object has at the point the overloaded operator is called as a

constant value.

To add the postfix increment operator to the Unsigned wrapper class, add the following line to the
class interface:
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Unsigned const operator++(int);

The implementation of the postfix increment operator should be like this:

Unsigned const Unsigned::operator++(int)
{

return d_value++;
}

The simplicity of this implementation is deceiving. Note that:

• d_value is used with a postfix increment in the return expression. Therefore, the value of
the return expression is d_value’s value, before it is incremented; which is correct.

• The return value of the function is an Unsigned value. This anonymous object is implicitly
initialized by the value of d_value, so there is a hidden constructor call here.

• Anonymous objects are always const objects, so, indeed, the return value of the postfix incre-

ment operator is an rvalue.

• The parameter is not used. It is only part of the implementation to disambiguate the prefix-

and postfix operators in implementations and declarations.

When the object has a more complex data organization, using a copy constructor might be preferred.

For instance, assume we want to implement the postfix increment operator in the class PersonData,
mentioned in section 9.4. Presumably, the PersonData class contains a complex inner data organi-
zation. If the PersonData class would maintain a pointer Person *current to the Person object
that is currently selected, then the postfix increment operator for the class PersonData could be
implemented as follows:

PersonData PersonData::operator++(int)
{

PersonData tmp(*this);

incrementCurrent(); // increment ‘current’, somehow.
return tmp;

}

A matter of concern here could be that this operation actually requires two calls to the copy con-

structor: first to keep the current state, then to copy the tmp object to the (anonymous) return value.
In some cases this double call of the copy constructor might be avoidable, by defining a specialized

constructor. E.g.,

PersonData PersonData::operator++(int)
{

return PersonData(*this, incrementCurrent());
}

Here, incrementCurrent() is supposed to return the information which allows the constructor to
set its current data member to the pre-increment value, at the same time incrementing current
of the actual PersonData object. The above constructor would have to:

• initialize its data members by copying the values of the data members of the this object.



226 CHAPTER 9. MORE OPERATOR OVERLOADING

• reassign current based on the return value of its second parameter, which could be, e.g., an
index.

At the same time, incrementCurrent()would have incremented current of the actual PersonData
object.

The general rule is that double calls of the copy constructor can be avoided if a specialized construc-

tor can be defined initializing an object to the pre-increment state of the current object. The current

object itself has its necessary data members incremented by a function, whose return value is passed

as argument to the constructor, thereby informing the constructor of the pre-incremented state of

the involved data members. The postfix increment operator will then return the thus constructed

(anonymous) object, and no copy constructor is ever called.

Finally it is noted that the call of the increment or decrement operator using its overloaded function

name might require us to provide an (any) int argument to inform the compiler that we want the
postfix increment function. E.g.,

PersonData p;

p = other.operator++(); // incrementing ‘other’, then assigning ‘p’
p = other.operator++(0); // assigning ‘p’, then incrementing ‘other’

9.6 Overloading binary operators

In various classes overloading binary operators (like operator+()) can be a very natural extension
of the class’s functionality. For example, the std::string class has various overloaded forms of
operator+() as have most abstract containers, covered in chapter 12.

Most binary operators come in two flavors: the plain binary operator (like the + operator) and the
arithmetic assignment variant (like the += operator). Whereas the plain binary operators return
const expression values, the arithmetic assignment operators return a (non-const) reference to the

object to which the operator was applied. For example, with std::string objects the following code
(annotated below the example) may be used:

std::string s1;
std::string s2;
std::string s3;

s1 = s2 += s3; // 1
(s2 += s3) + " postfix"; // 2
s1 = "prefix " + s3; // 3
"prefix " + s3 + "postfix"; // 4
("prefix " + s3) += "postfix"; // 5

• at // 1 the contents of s3 is added to s2. Next, s2 is returned, and its new contents are
assigned to s1. Note that += returns s2 itself.

• at // 2 the contents of s3 is also added to s2, but as += returns s2 itself, it’s possible to add
some more to s2

• at // 3 the + operator returns a std::string containing the concatenation of the text prefix
and the contents of s3. This string returned by the + operator is thereupon assigned to s1.
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• at // 4 the + operator is applied twice. The effect is:

1. The first + returns a std::string containing the concatenation of the text prefix and
the contents of s3.

2. The second + operator takes this returned string as its left hand value, and returns a
string containing the concatenated text of its left and right hand operands.

3. The string returned by the second + operator represents the value of the expression.

• statement // 5 should not compile (although it does compile with the Gnu compiler version
3.1.1). It should not compile, as the + operator should return a const string, thereby pre-
venting its modification by the subsequent += operator. Below we will consequently follow this
line of reasoning, and will ensure that overloaded binary operators will always return const
values.

Now consider the following code, in which a class Binary supports an overloaded operator+():

class Binary
{

public:
Binary();
Binary(int value);
Binary const operator+(Binary const &rvalue);

};

int main()
{

Binary b1;
Binary b2(5);

b1 = b2 + 3; // 1
b1 = 3 + b2; // 2

}

Compilation of this little program fails for statement // 2, with the compiler reporting an error
like:

error: no match for ’operator+’ in ’3 + b2’

Why is statement // 1 compiled correctly whereas statement // 2 won’t compile?

In order to understand this, the notion of a promotion is introduced. As we have seen in section

9.4, constructors requiring a single argument may be implicitly activated when an object is appar-

ently initialized by an argument of a corresponding type. We’ve encountered this repeatedly with

std::string objects, when an ASCII-Z string was used to initialize a std::string object.

In situations where a member function expects a const & to an object of its own class (like the
Binary const & that was specified in the declaration of the Binary::operator+() member
mentioned above), the type of the actually used argument may also be any type that can be used

as an argument for a single-argument constructor of that class. This implicit call of a constructor to

obtain an object of the proper type is called a promotion.

So, in statement // 1, the + operator is called for the b2 object. This operator expects another
Binary object as its right hand operand. However, an int is provided. As a constructor Binary(int)
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exists, the int value is first promoted to a Binary object. Next, this Binary object is passed as ar-
gument to the operator+()member.

Note that no promotions are possibly in statement // 2: here the + operator is applied to an int
typed value, which has no concept of a ‘constructor’, ‘member function’ or ‘promotion’.

How, then, are promotions of left-hand operands realized in statements like "prefix " + s3?
Since promotions are applied to function arguments, we must make sure that both operands of bi-

nary operators are arguments. This means that binary operators are declared as classless functions,

also called free functions. However, they conceptually belong to the class for which they implement

the binary operator, and so they should be declared in the class’s header file. We will cover their im-

plementations shortly, but here is our first revision of the declaration of the class Binary, declaring
an overloaded + operator as a free function:

class Binary
{

public:
Binary();
Binary(int value);

};

Binary const operator+(Binary const &l_hand, Binary const &r_hand);

By defining binary operators as free functions, the following promotions are possible:

• If the left-hand operand is of the intended class type, the right hand argument will be promoted

whenever possible

• If the right-hand operand is of the intended class type, the left hand argument will be promoted

whenever possible

• No promotions occur when none of the operands are of the intended class type

• An ambiguity occurs when promotions to different classes are possible for the two operands.

For example:

class A;

class B
{

public:
B(A const &a);

};

class A
{

public:
A();
A(B const &b);

};

A const operator+(A const &a, B const &b);
B const operator+(B const &b, A const &a);

int main()
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{
A a;

a + a;
};

Here, both overloaded + operators are possible when compiling the statement a + a. The
ambiguity must be solved by explicitly promoting one of the arguments, e.g., a + B(a) will
allow the compiler to resolve the ambiguity to the first overloaded + operator.

The next step is to implement the corresponding overloaded arithmetic assignment operator. As

this operator always has a left-hand operand which is an object of its own class, it is implemented

as a true member function. Furthermore, the arithmetic assignment operator should return a ref-

erence to the object to which the arithmetic operation applies, as the object might be modified in

the same statement. E.g., (s2 += s3) + " postfix". Here is our second revision of the class
Binary, showing both the declaration of the plain binary operator and the corresponding arithmetic
assignment operator:

class Binary
{

public:
Binary();
Binary(int value);
Binary const operator+(Binary const &rvalue);

Binary &operator+=(Binary const &other);
};

Binary const operator+(Binary const &l_hand, Binary const &r_hand);

Finally, having available the arithmetic assignment operator, the implementation of the plain bi-

nary operator turns out to be extremely simple. It contains of a single return statement, in which

an anonymous object is constructed to which the arithmetic assignment operator is applied. This

anonymous object is then returned by the plain binary operator as its const return value. Since
its implementation consists of merely one statement it is usually provided in-line, adding to its

efficiency:

class Binary
{

public:
Binary();
Binary(int value);
Binary const operator+(Binary const &rvalue);

Binary &operator+=(Binary const &other);
};

Binary const operator+(Binary const &l_hand, Binary const &r_hand)
{

return Binary(l_hand) += r_hand;
}

One might wonder where the temporary value is located. Most compilers apply in these cases a

procedure called ‘return value optimization’: the anonymous object is created at the location where
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the eventual returned object will be stored. So, rather than first creating a separate temporary

object, and then copying this object later on to the return value, it initializes the return value using

the l_hand argument, and then applies the += operator to add the r_hand argument to it. Without
return value optimization it would have to:

• create separate room to accomodate the return value

• initialize a temporary object using l_hand

• Add r_hand to it

• Use the copy constructor to copy the temporary object to the return value.

Return value optimization is not required, but optionally available to compilers. As it has no nega-

tive side effects, most compiler use it.

9.7 Overloading ‘operator new(size_t)’

When operator new is overloaded, it must have a void * return type, and at least an argument
of type size_t. The size_t type is defined in the header file cstddef, which must therefore be
included when the operator new is overloaded.

It is also possible to define multiple versions of the operator new, as long as each version has its
own unique set of arguments. The global new operator can still be used, through the ::-operator. If
a class X overloads the operator new, then the system-provided operator new is activated by

X *x = ::new X();

Overloading new[] is discussed in section 9.9. The following example shows an overloaded version
of operator new:

#include <cstddef>

void *X::operator new(size_t sizeofX)
{

void *p = new char[sizeofX];

return memset(p, 0, sizeof(X));
}

Now, let’s see what happens when operator new is overloaded for the class X. Assume that class
is defined as follows2:

class X
{

public:
void *operator new(size_t sizeofX);

int d_x;
int d_y;

};
2For the sake of simplicity we have violated the principle of encapsulation here. The principle of encapsulation, however,

is immaterial to the discussion of the workings of the operator new.
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Now, consider the following program fragment:

#include "x.h" // class X interface
#include <iostream>
using namespace std;

int main()
{

X *x = new X();

cout << x->d_x << ", " << x->d_y << endl;
}

This small program produces the following output:

0, 0

At the call of new X(), our little program performed the following actions:

• First, operator new was called, which allocated and initialized a block of memory, the size of
an X object.

• Next, a pointer to this block of memory was passed to the (default) X() constructor. Since no
constructor was defined, the constructor itself didn’t do anything at all.

Due to the initialization of the block of memory by operator new the allocated X object was already
initialized to zeros when the constructor was called.

Non-static member functions are passed a (hidden) pointer to the object on which they should oper-

ate. This hidden pointer becomes the this pointer in non-static member functions. This procedure
is also followed for constructors. In the next pieces of pseudo C++ code, the pointer is made visible.

In the first part an X object x is defined directly, in the second part of the example the (overloaded)
operator new is used:

X::X(&x); // x’s address is passed to the
// constructor

void *ptr = X::operator new(); // new allocates the memory

X::X(ptr); // next the constructor operates on the
// memory returned by ’operator new’

Notice that in the pseudo C++ fragment the member functions were treated as static member func-
tion of the class X. Actually, operator new is a static member function of its class: it cannot reach
data members of its object, since it’s normally the task of the operator new to create room for that
object. It can do that by allocating enough memory, and by initializing the area as required. Next,

the memory is passed (as the this pointer) to the constructor for further processing. The fact that
an overloaded operator new is actually a static function, not requiring an object of its class, can be
illustrated in the following (frowned upon in normal situations!) program fragment, which can be

compiled without problems (assume class X has been defined and is available as before):

int main()
{
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X x;

X::operator new(sizeof x);
}

The call to X::operator new() returns a void * to an initialized block of memory, the size of an
X object.

The operator new can have multiple parameters. The first parameter is initialized by an implicit
argument and is always the size_t parameter, other parameters are initialized by explicit argu-
ments that are specified when operator new is used. For example:

class X
{

public:
void *operator new(size_t p1, size_t p2);
void *operator new(size_t p1, char const *fmt, ...);

};

int main()
{

X

*p1 = new(12) X(),

*p2 = new("%d %d", 12, 13) X(),

*p3 = new("%d", 12) X();
}

The pointer p1 is a pointer to an X object for which the memory has been allocated by the call to
the first overloaded operator new, followed by the call of the constructor X() for that block of
memory. The pointer p2 is a pointer to an X object for which the memory has been allocated by the
call to the second overloaded operator new, followed again by a call of the constructor X() for its
block of memory. Notice that pointer p3 also uses the second overloaded operator new(), as that
overloaded operator accepts a variable number of arguments, the first of which is a char const *.

Finally note that no explicit argument is passed for new’s first parameter, as this argument is im-
plicitly provided by the type specification that’s required for operator new.

9.8 Overloading ‘operator delete(void *)’

The delete operator may be overloaded too. The operator delete must have a void * argu-
ment, and an optional second argument of type size_t, which is the size in bytes of objects of the
class for which the operator delete is overloaded. The return type of the overloaded operator
delete is void.

Therefore, in a class the operator delete may be overloaded using the following prototype:

void operator delete(void *);

or

void operator delete(void *, size_t);
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Overloading delete[] is discussed in section 9.9.

The ‘home-made’ operator delete is called after executing the destructor of the associated class.
So, the statement

delete ptr;

with ptr being a pointer to an object of the class X for which the operator delete was overloaded,
boils down to the following statements:

X::~X(ptr); // call the destructor function itself

// and do things with the memory pointed to by ptr
X::operator delete(ptr, sizeof(*ptr));

The overloaded operator delete may do whatever it wants to do with the memory pointed to by
ptr. It could, e.g., simply delete it. If that would be the preferred thing to do, then the default
delete operator can be activated using the :: scope resolution operator. For example:

void X::operator delete(void *ptr)
{

// any operation considered necessary, then:
::delete ptr;

}

9.9 Operators ‘new[]’ and ‘delete[]’

In sections 7.1.1, 7.1.2 and 7.2.1 operator new[] and operator delete[]were introduced. Like
operator new and operator delete the operators new[] and delete[] may be overloaded.
Because it is possible to overload new[] and delete[] as well as operator new and operator
delete, one should be careful in selecting the appropriate set of operators. The following rule of
thumb should be followed:

If new is used to allocate memory, delete should be used to deallocate memory. If new[]
is used to allocate memory, delete[] should be used to deallocate memory.

The default way these operators act is as follows:

• operator new is used to allocate a single object or primitive value. With an object, the object’s
constructor is called.

• operator delete is used to return the memory allocated by operator new. Again, with an
object, the destructor of its class is called.

• operator new[] is used to allocate a series of primitive values or objects. Note that if a series
of objects is allocated, the class’s default constructor is called to initialize each individual object.

• operator delete[] is used to delete the memory previously allocated by new[]. If objects
were previously allocated, then the destructor wil be called for each individual object. However,

if pointers to objectswere allocated, no destructor is called, as a pointer is considered a primitive

type, and certainly not an object.
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Operators new[] and delete[] may only be overloaded in classes. Consequently, when allocating
primitive types or pointers to objects only the default line of action is followed: when arrays of

pointers to objects are deleted, a memory leak occurs unless the objects to which the pointers point

were deleted earlier.

In this section the mere syntax for overloading operators new[] and delete[] is presented. It is
left as an exercise to the reader to make good use of these overloaded operators.

9.9.1 Overloading ‘new[]’

To overload operator new[] in a class Object the interface should contain the following lines,
showing multiple forms of overloaded forms of operator new[]:

class Object
{

public:
void *operator new[](size_t size);
void *operator new[](size_t index, size_t extra);

};

The first form shows the basic form of operator new[]. It should return a void *, and defines
at least a size_t parameter. When operator new[] is called, size contains the number of bytes
that must be allocated for the required number of objects. These objects can be initialized by the

global operator new[] using the form

::new Object[size / sizeof(Object)]

Or, alternatively, the required (uninitialized) amount of memory can be allocated using:

::new char[size]

An example of an overloaded operator new[]member function, returning an array of Object objects
all filled with 0-bytes, is:

void *Object::operator new[](size_t size)
{

return memset(new char[size], 0, size);
}

Having constructed the overloaded operator new[], it will be used automatically in statements like:

Object *op = new Object[12];

Operator new[]may be overloaded using additional parameters. The second form of the overloaded
operator new[] shows such an additional size_t parameter. The definition of such a function is
standard, and could be:

void *Object::operator new[](size_t size, size_t extra)
{

size_t n = size / sizeof(Object);
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Object *op = ::new Object[n];

for (size_t idx = 0; idx < n; idx++)
op[idx].value = extra; // assume a member ‘value’

return op;
}

To use this overloaded operator, only the additional parameter must be provided. It is given in a

parameter list just after the name of the operator itself:

Object

*op = new(100) Object[12];

This results in an array of 12 Object objects, all having their value members set to 100.

9.9.2 Overloading ‘delete[]’

Like operator new[] operator delete[]may be overloaded. To overload operator delete[]
in a class Object the interface should contain the following lines, showing multiple forms of over-
loaded forms of operator delete[]:

class Object
{

public:
void operator delete[](void *p);
void operator delete[](void *p, size_t index);
void operator delete[](void *p, int extra, bool yes);

};

9.9.2.1 ‘delete[](void *)’

The first form shows the basic form of operator delete[]. Its parameter is initialized to the ad-
dress of a block of memory previously allocated by Object::new[]. These objects can be deleted by
the global operator delete[] using the form ::delete[]. However, the compiler expects ::delete[]
to receive a pointer to Objects, so a type cast is necessary:

::delete[] reinterpret_cast<Object *>(p);

An example of an overloaded operator delete[] is:

void Object::operator delete[](void *p)
{

cout << "operator delete[] for Objects called\n";
::delete[] reinterpret_cast<Object *>(p);

}

Having constructed the overloaded operator delete[], it will be used automatically in statements
like:

delete[] new Object[5];
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9.9.2.2 ‘delete[](void *, size_t)’

Operator delete[] may be overloaded using additional parameters. However, if overloaded as

void operator delete[](void *p, size_t size);

then size is automatically initialized to the size (in bytes) of the block of memory to which void

*p points. If this form is defined, then the first form should not be defined, to avoid ambiguity. An
example of this form of operator delete[] is:

void Object::operator delete[](void *p, size_t size)
{

cout << "deleting " << size << " bytes\n";
::delete[] reinterpret_cast<Object *>(p);

}

9.9.2.3 Alternate forms of overloading operator ‘delete[]’

If additional parameters are defined, as in

void operator delete[](void *p, int extra, bool yes);

an explicit argument list must be provided. With delete[], the argument list is specified following
the brackets:

delete[](new Object[5], 100, false);

9.10 Function Objects

Function Objects are created by overloading the function call operator operator()(). By defining
the function call operator an object masquerades as a function, hence the term function objects.

Function objects play an important role in generic algorithms and their use is preferred over alterna-

tives like pointers to functions. The fact that they are important in the context of generic algorithms

constitutes some sort of a didactical dilemma: at this point it would have been nice if generic al-

gorithms would have been covered, but for the discussion of the generic algorithms knowledge of

function objects is required. This bootstrapping problem is solved in a well known way: by ignoring

the dependency.

Function objects are objects for which operator()() has been defined. Function objects are com-
monly used in combination with generic algorithms, but also in situations where otherwise pointers

to functions would have been used. Another reason for using function objects is to support inline
functions, which cannot be used in combination with pointers to functions.

Assume we have a class Person and an array of Person objects. Further assume that the array is
not sorted. A well known procedure for finding a particular Person object in the array is to use the
function lsearch(), which performs a lineair search in an array. A program fragment using this
function is:

Person &target = targetPerson(); // determine the person to find
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Person *pArray;
size_t n = fillPerson(&pArray);

cout << "The target person is";

if (!lsearch(&target, pArray, &n, sizeof(Person), compareFunction))
cout << " not";

cout << "found\n";

The function targetPerson() is called to determine the person we’re looking for, and the function
fillPerson() is called to fill the array. Then lsearch() is used to locate the target person.

The comparison function must be available, as its address is one of the arguments of the lsearch()
function. It could be something like:

int compareFunction(Person const *p1, Person const *p2)
{

return *p1 != *p2; // lsearch() wants 0 for equal objects
}

This, of course, assumes that the operator!=() has been overloaded in the class Person, as it is
quite unlikely that a bytewise comparison will be appropriate here. But overloading operator!=()
is no big deal, so let’s assume that that operator is available as well.

With lsearch() (and friends, having parameters that are pointers to functions) an inline compare
function cannot be used: as the address of the compare() functionmust be known to the lsearch()
function. So, on average n / 2 times at least the following actions take place:

1. The two arguments of the compare function are pushed on the stack;

2. The value of the final parameter of lsearch() is determined, producing the address of
compareFunction();

3. The compare function is called;

4. Then, inside the compare function the address of the right-hand argument of the

Person::operator!=() argument is pushed on the stack;

5. The Person::operator!=() function is evaluated;

6. The argument of the Person::operator!=() function is popped off the stack again;

7. The two arguments of the compare function are popped off the stack again.

When function objects are used a different picture emerges. Assume we have constructed a func-

tion PersonSearch(), having the following prototype (realize that this is not the preferred ap-
proach. Normally a generic algorithm will be preferred to a home-made function. But for now our

PersonSearch() function is used to illustrate the use and implementation of a function object):

Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target);

This function can be used as follows:

Person &target = targetPerson();
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Person *pArray;
size_t n = fillPerson(&pArray);

cout << "The target person is";

if (!PersonSearch(pArray, n, target))
cout << " not";

cout << "found\n";

So far, nothing much has been altered. We’ve replaced the call to lsearch() with a call to another
function: PersonSearch(). Now we show what happens inside PersonSearch():

Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target)

{
for (int idx = 0; idx < nmemb; ++idx)

if (target(base[idx]))
return base + idx;

return 0;
}

The implementation shows a plain linear search. However, in the for-loop the expression target(base[idx])
shows our target object used as a function object. Its implementation can be simple:

bool Person::operator()(Person const &other) const
{

return *this != other;
}

Note the somewhat peculiar syntax: operator()(). The first set of parentheses define the partic-
ular operator that is overloaded: the function call operator. The second set of parentheses define the

parameters that are required for this function. Operator()() appears in the class header file as:

bool operator()(Person const &other) const;

Now, Person::operator()() is a simple function. It contains but one statement, so we could
consider making it inline. Assuming that we do, than this is what happens when operator()() is
called:

• The address of the right-hand argument of the Person::operator!=() argument is pushed
on the stack,

• The operator!=() function is evaluated,

• The argument of Person::operator!=() argument is popped off the stack,

Note that due to the fact that operator()() is an inline function, it is not actually called. Instead
operator!=() is called immediately. Also note that the required stack operations are fairly modest.

So, function objects may be defined inline. This is not possible for functions that are called indirectly

(i.e., using pointers to functions). Therefore, even if the function object needs to do very little work
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it has to be defined as an ordinary function if it is going to be called via pointers. The overhead of

performing the indirect call may annihilate the advantage of the flexibility of calling functions indi-

rectly. In these cases function objects that are defined as inline functions can result in an increase

of efficiency of the program.

Finally, function objects may access the private data of their objects directly. In a search algorithm

where a compare function is used (as with lsearch()) the target and array elements are passed to
the compare function using pointers, involving extra stack handling. When function objects are used,

the target person doesn’t vary within a single search task. Therefore, the target person could be

passed to the constructor of the function object doing the comparison. This is in fact what happened

in the expression target(base[idx]), where only one argument is passed to the operator()()
member function of the target function object.

As noted, function objects play a central role in generic algorithms. In chapter 17 these generic

algorithms are discussed in detail. Furthermore, in that chapter predefined function objects will be

introduced, further emphasizing the importance of the function object concept.

9.10.1 Constructing manipulators

In chapter 5 we saw constructions like cout << hex << 13 << endl to display the value 13 in
hexadecimal format. One may wonder by what magic the hex manipulator accomplishes this. In
this section the construction of manipulators like hex is covered.

Actually the construction of a manipulator is rather simple. To start, a definition of the manipulator

is needed. Let’s assume we want to create a manipulator w10 which will set the field width of the
next field to be written to the ostream object to 10. This manipulator is constructed as a function.
The w10 function will have to know about the ostream object in which the width must be set.
By providing the function with a ostream & parameter, it obtains this knowledge. Now that the
function knows about the ostream object we’re referring to, it can set the width in that object.

Next, it must be possible to use the manipulator in an insertion sequence. This implies that the

return value of the manipulator must be a reference to an ostream object also.

From the above considerations we’re now able to construct our w10 function:

#include <ostream>
#include <iomanip>

std::ostream &w10(std::ostream &str)
{

return str << std::setw(10);
}

The w10 function can of course be used in a ‘stand alone’ mode, but it can also be used as a manipu-
lator. E.g.,

#include <iostream>
#include <iomanip>

using namespace std;

extern ostream &w10(ostream &str);

int main()
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{
w10(cout) << 3 << " ships sailed to America" << endl;
cout << "And " << w10 << 3 << " more ships sailed too." << endl;

}

The w10 function can be used as a manipulator because the class ostream has an overloaded
operator<<() accepting a pointer to a function expecting an ostream & and returning an ostream
&. Its definition is:

ostream& operator<<(ostream & (*func)(ostream &str))
{

return (*func)(*this);
}

The above procedure does not work for manipulators requiring arguments: it is of course possible to

overload operator<<() to accept an ostream reference and the address of a function expecting an
ostream & and, e.g., an int, but while the address of such a function may be specified with the <<-

operator, the arguments itself cannot be specified. So, one wonders how the following construction

has been implemented:

cout << setprecision(3)

In this case the manipulator is defined as a macro. Macro’s, however, are the realm of the prepro-

cessor, and may easily suffer from unwanted side-effects. In C++ programs they should be avoided

whenever possible. The following section introduces a way to implement manipulators requiring

arguments without resorting to macros, but using anonymous objects.

9.10.1.1 Manipulators requiring arguments

Manipulators taking arguments are implemented as macros: they are handled by the preprocessor,

and are not available beyond the preprocessing stage. The problem appears to be that you can’t call

a function in an insertion sequence: in a sequence of operator<<() calls the compiler will first
call the functions, and then use their return values in the insertion sequence. That will invalidate

the ordering of the arguments passed to your <<-operators.

So, one might consider constructing another overloaded operator<<() accepting the address of
a function receiving not just the ostream reference, but a series of other arguments as well. The
problem now is that it isn’t clear how the function will receive its arguments: you can’t just call it,

since that produces the abovementioned problem, and you can’t just pass its address in the insertion

sequence, as you normally do with a manipulator....

However, there is a solution, based on the use of anonymous objects:

• First, a class is constructed, e.g. Align, whose constructor expects multiple arguments. In our
example representing, respectively, the field width and the alignment.

• Furthermore, we define the function:

ostream &operator<<(ostream &ostr, Align const &align)

so we can insert an Align object into the ostream.
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Here is an example of a little program using such a home-made manipulator expecting multiple

arguments:

#include <iostream>
#include <iomanip>

class Align
{

unsigned d_width;
std::ios::fmtflags d_alignment;

public:
Align(unsigned width, std::ios::fmtflags alignment);
std::ostream &operator()(std::ostream &ostr) const;

};

Align::Align(unsigned width, std::ios::fmtflags alignment)
:

d_width(width),
d_alignment(alignment)

{}

std::ostream &Align::operator()(std::ostream &ostr) const
{

ostr.setf(d_alignment, std::ios::adjustfield);
return ostr << std::setw(d_width);

}

std::ostream &operator<<(std::ostream &ostr, Align const &align)
{

return align(ostr);
}

using namespace std;

int main()
{

cout
<< "‘" << Align(5, ios::left) << "hi" << "’"
<< "‘" << Align(10, ios::right) << "there" << "’" << endl;

}

/*
Generated output:

‘hi ’‘ there’

*/

Note that in order to insert an anonymous Align object into the ostream, the operator<<()
function must define a Align const & parameter (note the const modifier).



242 CHAPTER 9. MORE OPERATOR OVERLOADING

9.11 Overloadable operators

The following operators can be overloaded:

+ - * / % ^ & |
~ ! , = < > <= >=
++ -- << >> == != && ||
+= -= *= /= %= ^= &= |=
<<= >>= [] () -> ->* new new[]
delete delete[]

When ‘textual’ alternatives of operators are available (e.g., and for &&) then they are overloadable
too.

Several of these operators may only be overloaded as member functions within a class. This holds

true for the ’=’, the ’[]’, the ’()’ and the ’->’ operators. Consequently, it isn’t possible to
redefine, e.g., the assignment operator globally in such a way that it accepts a char const * as an
lvalue and a String & as an rvalue. Fortunately, that isn’t necessary either, as we have seen in
section 9.3.

Finally, the following operators are not overloadable at all:

. .* :: ?: sizeof typeid



Chapter 10

Static data and functions

In the previous chapters we have shown examples of classes where each object of a class had its own

set of public or private data. Each public or privatemember could access any member of any
object of its class.

In some situations it may be desirable that one or more common data fields exist, which are acces-

sible to all objects of the class. For example, the name of the startup directory, used by a program

that recursively scans the directory tree of a disk. A second example is a flag variable, which states

whether some specific initialization has occurred: only the first object of the class would perform the

necessary initialization and would set the flag to ‘done’.

Such situations are analogous to C code, where several functions need to access the same variable. A

common solution in C is to define all these functions in one source file and to declare the variable as

a static: the variable name is then not known beyond the scope of the source file. This approach is
quite valid, but violates our philosophy of using only one function per source file. AnotherC-solution

is to give the variable in question an unusual name, e.g., _6uldv8, hoping that other program parts
won’t use this name by accident. Neither the first, nor the second C-like solution is elegant.

C++’s solution is to define static members: data and functions, common to all objects of a class
and inaccessible outside of the class. These static members are the topic of this chapter.

10.1 Static data

Any data member of a class can be declared static; be it in the public or private section of the
class definition. Such a data member is created and initialized only once, in contrast to non-static

data members which are created again and again for each separate object of the class.

Static data members are created when the program starts. Note, however, that they are always

created as true members of their classes. It is suggested to prefix static member names with s_ in
order to distinguish them (in class member functions) from the class’s data members (which should

preferably start with d_).

Public static data members are like ‘normal’ global variables: they can be accessed by all code of the

program, simply using their class names, the scope resolution operator and their member names.

This is illustrated in the following example:

class Test
{
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static int s_private_int;

public:
static int s_public_int;

};

int main()
{

Test::s_public_int = 145; // ok

Test::s_private_int = 12; // wrong, don’t touch
// the private parts

return 0;
}

This code fragment is not suitable for consumption by a C++ compiler: it merely illustrates the

interface, and not the implementation of static data members, which is discussed next.

10.1.1 Private static data

To illustrate the use of a static data member which is a private variable in a class, consider the

following example:

class Directory
{

static char s_path[];

public:
// constructors, destructors, etc. (not shown)

};

The data member s_path[] is a private static data member. During the execution of the program,
only one Directory::s_path[] exists, even though more than one object of the class Directory
may exist. This data member could be inspected or altered by the constructor, destructor or by any

other member function of the class Directory.

Since constructors are called for each new object of a class, static data members are never initialized

by constructors. At most they are modified. The reason for this is that static data members exist

before any constructor of the class has been called. Static data members are initialized when they are

defined, outside of all member functions, in the same way as other global variables are initialized.

The definition and initialization of a static data member usually occurs in one of the source files

of the class functions, preferably in a source file dedicated to the definition of static data members,

called data.cc.

The data member s_path[], used above, could thus be defined and initialized as follows in a file
data.cc:

include "directory.ih"

char Directory::s_path[200] = "/usr/local";

In the class interface the static member is actually only declared. In its implementation (definition)

its type and class name are explicitly mentioned. Note also that the size specification can be left out
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of the interface, as shown above. However, its size is (either explicitly or implicitly) required when

it is defined.

Note that any source file could contain the definition of the static data members of a class. A separate

data.cc source is advised, but the source file containing, e.g., main() could be used as well. Of
course, any source file defining static data of a class must also include the header file of that class,

in order for the static data member to be known to the compiler.

A second example of a useful private static data member is given below. Assume that a class

Graphics defines the communication of a program with a graphics-capable device (e.g., a VGA
screen). The initialization of the device, which in this case would be to switch from text mode to

graphics mode, is an action of the constructor and depends on a static flag variable s_nobjects.
The variable s_nobjects simply counts the number of Graphics objects which are present at one
time. Similarly, the destructor of the class may switch back from graphics mode to text mode when

the last Graphics object ceases to exist. The class interface for this Graphics class might be:

class Graphics
{

static int s_nobjects; // counts # of objects

public:
Graphics();
~Graphics(); // other members not shown.

private:
void setgraphicsmode(); // switch to graphics mode
void settextmode(); // switch to text-mode

}

The purpose of the variable s_nobjects is to count the number of objects existing at a particular
moment in time. When the first object is created, the graphics device is initialized. At the destruction

of the last Graphics object, the switch from graphics mode to text mode is made:

int Graphics::s_nobjects = 0; // the static data member

Graphics::Graphics()
{

if (!s_nobjects++)
setgraphicsmode();

}

Graphics::~Graphics()
{

if (!--s_nobjects)
settextmode();

}

Obviously, when the class Graphicswould definemore than one constructor, each constructor would
need to increase the variable s_nobjects and would possibly have to initialize the graphics mode.

10.1.2 Public static data

Data members can be declared in the public section of a class, although this is not common practice

(as this would violate the principle of data hiding). E.g., when the static data member s_path[]
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from section 10.1 would be declared in the public section of the class definition, all program code

could access this variable:

int main()
{

getcwd(Directory::s_path, 199);
}

Note that the variable s_path would still have to be defined. As before, the class interface would
only declare the array s_path[]. This means that some source file would still need to contain the
definition of the s_path[] array.

10.1.3 Initializing static const data

Static const data members may be initialized in the class interface if these data members are of an
integral data type. So, in the following example the first three static data members can be initialized

since int enum and double types are integral data members. The last static data member cannot
be initialized in the class interface since string is not an integral data type:

class X
{

public:
enum Enum
{

FIRST,
};

static int const s_x = 34;
static Enum const s_type = FIRST;

static double const s_d = 1.2;
static string const s_str = "a"; // won’t compile

};

Static const integral data members initialized in the class interface are not addressable variables.
They are mere symbolic names for their associated values. Since they are not variables, it is not

possible to determine their addresses. Note that this is not a compilation problem, but a linking

problem. The static const variable that is initialized in the class interface does not exist as an
addressable entity.

A statement like int *ip = &X::s_x will therefore compile correctly, but will fail to link. Static
variables that are explicitly defined in a source file can be linked correctly, though. So, in the follow-

ing example the address of X::s_x cannot be solved by the linker, but the address of X::s_y can be
solved by the linker:

class X
{

public:
static int const s_x = 34;
static int const s_y;

};
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int const X::s_y = 12;

int main()
{

int const *ip = &X::s_x; // compiles, but fails to link
ip = &X::s_y; // compiles and links correctly

}

10.2 Static member functions

Besides static data members, C++ allows the definition of static member functions. Similar to the

concept of static data, in which these variables are shared by all objects of the class, static member

functions exist without any associated object of their class.

Static member functions can access all static members of their class, but also the members (private
or public) of objects of their class if they are informed about the existence of these objects, as in
the upcoming example. Static member functions are themselves not associated with any object of

their class. Consequently, they do not have a this pointer. In fact, a static member function is
completely comparable to a global function, not associated with any class (i.e., in practice they are.

See the next section (10.2.1) for a subtle note). Since static member functions do not require an

associated object, static member functions declared in the public section of a class interface may be

called without specifying an object of its class. The following example illustrates this characteristic

of static member functions:

class Directory
{

string d_currentPath;
static char s_path[];

public:
static void setpath(char const *newpath);
static void preset(Directory &dir, char const *path);

};
inline void Directory::preset(Directory &dir, char const *newpath)
{

// see the text below
dir.d_currentPath = newpath; // 1

}

char Directory::s_path[200] = "/usr/local"; // 2

void Directory::setpath(char const *newpath)
{

if (strlen(newpath) >= 200)
throw "newpath too long";

strcpy(s_path, newpath); // 3
}

int main()
{

Directory dir;
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Directory::setpath("/etc"); // 4
dir.setpath("/etc"); // 5

Directory::preset(dir, "/usr/local/bin"); // 6
dir.preset(dir, "/usr/local/bin"); // 7

}

• at 1 a static member function modifies a private data member of an object. However, the object

whose member must be modified is given to the member function as a reference parameter.

Note that static member functions can be defined as inline functions.

• at 2 a relatively long array is defined to be able to accomodate long paths. Alternatively, a

string or a pointer to dynamic memory could have been used.

• at 3 a (possibly longer, but not too long) new pathname is stored in the static data member

s_path[]. Note that here only static members are used.

• at 4, setpath() is called. It is a static member, so no object is required. But the compiler must
know to which class the function belongs, so the class is mentioned, using the scope resolution

operator.

• at 5, the same is realized as in 4. But here dir is used to tell the compiler that we’re talking
about a function in the Directory class. So, static member functions can be called as normal
member functions.

• at 6, the currentPath member of dir is altered. As in 4, the class and the scope resolution
operator are used.

• at 7, the same is realized as in 6. But here dir is used to tell the compiler that we’re talk-
ing about a function in the Directory class. Here in particular note that this is not using
preset() as an ordinary member function of dir: the function still has no this-pointer, so
dirmust be passed as argument to inform the static member function preset about the object
whose currentPathmember it should modify.

In the example only public static member functions were used. C++ also allows the definition of

private static member functions: these functions can only be called by member functions of their

class.

10.2.1 Calling conventions

As noted in the previous section, static (public) member functions are comparable to classless func-

tions. However, formally this statement is not true, as the C++ standard does not prescribe the same

calling conventions for static member functions and for classless global functions.

In practice these calling conventions are identical, implying that the address of a static member

function could be used as an argument in functions having parameters that are pointers to (global)

functions.

If unpleasant surprises must be avoided at all cost, it is suggested to create global classless wrap-

per functions around static member functions that must be used as call back functions for other

functions.

Recognizing that the traditional situations in which call back functions are used in C are tackled in

C++ using template algorithms (cf. chapter 17), let’s assume that we have a class Person having
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data members representing the person’s name, address, phone and weight. Furthermore, assume we

want to sort an array of pointers to Person objects, by comparing the Person objects these pointers
point to. To keep things simple, we assume that a public static

int Person::compare(Person const *const *p1, Person const *const *p2);

exists. A useful characteristic of this member is that it may directly inspect the required data

members of the two Person objects passed to the member function using double pointers.

Most compilers will allow us to pass this function’s address as the address of the comparison function

for the standard C qsort() function. E.g.,

qsort
(

personArray, nPersons, sizeof(Person *),
reinterpret_cast<int(*)(const void *, const void *)>(Person::compare)

);

However, if the compiler uses different calling conventions for static members and for classless

functions, this might not work. In such a case, a classless wrapper function like the following may

be used profitably:

int compareWrapper(void const *p1, void const *p2)
{

return
Person::compare
(

reinterpret_cast<Person const *const *>(p1),
reinterpret_cast<Person const *const *>(p2)

);
}

resulting in the following call of the qsort() function:

qsort(personArray, nPersons, sizeof(Person *), compareWrapper);

Note:

• The wrapper function takes care of any mismatch in the calling conventions of static member

functions and classless functions;

• The wrapper function handles the required type casts;

• The wrapper function might perform small additional services (like dereferencing pointers if

the static member function expects references to Person objects rather than double pointers);

• As noted before: in current C++ programs functions like qsort(), requiring the specification
of call back functions are seldomly used, in favor of existing generic template algorithms (cf.

chapter 17).



250 CHAPTER 10. STATIC DATA AND FUNCTIONS



Chapter 11

Friends

In all examples we’ve discussed up to now, we’ve seen that private members are only accessible
by the members of their class. This is good, as it enforces the principles of encapsulation and data

hiding: By encapsulating the data in an object we can prevent that code external to classes becomes

implementation dependent on the data in a class, and by hiding the data from external code we can

control modifications of the data, helping us to maintain data integrity.

In this short chapter we will introduce the friend keyword as a means to allow external functions
to access the private members of a class. In this chapter the subject of friendship among classes
is not discussed. Situations in which it is natural to use friendship among classes are discussed in

chapters 16 and 18.

Friendship (i.e., using the friend keyword) is a complex and dangerous topic for various reasons:

• Friendship, when applied to program design, is an escape mechanism allowing us to circum-

vent the principles of encapsulation and data hiding. The use of friends should therefore be

minimized to situations where they can be used naturally.

• If friends are used, realize that friend functions or classes become implementation dependent

on the classes declaring them as friends. Once the internal organization of the data of a class

declaring friends changes, all its friends must be recompiled (and possibly modified) as well.

• Therefore, as a rule of thumb: don’t use friend functions or classes.

Nevertheless, there are situations where the friend keyword can be used quite safely and naturally.
It is the purpose of this chapter to introduce the required syntax and to develop principles allowing

us to recognize cases where the friend keyword can be used with very little danger.

Let’s consider a situation where it would be nice for an existing class to have access to another class.

Such a situation might occur when we would like to give a class developed earlier in history access

to a class developed later in history.

Unfortunately, while developing the older class, it was not yet known that the newer class would be

developed. Consequently, no provisions were offered in the older class to access the information in

the newer class.

Consider the following situation. The insertion operator may be used to insert information into a

stream. This operator can be given data of several types: int, double, char *, etc.. Earlier
(chapter 7), we introduced the class Person. The class Person has members to retrieve the data
stored in the Person object, like char const *Person::name(). These members could be used
to ‘insert’ a Person object into a stream, as shown in section 9.2.

251
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With the Person class the implementation of the insertion and extraction operators is fairly opti-
mal. The insertion operator uses accessor members which can be implemented as inline members,

effectively making the private data members directly available for inspection. The extraction op-

erator requires the use of modifier members that could hardly be implemented differently: the old

memory will always have to be deleted, and the new value will always have to be copied to newly

allocated memory.

But let’s once more take a look at the class PersonData, introduced in section 9.4. It seems likely
that this class has at least the following (private) data members:

class PersonData
{

Person *d_person;
size_t d_n;

};

When constructing an overloaded insertion operator for a PersonData object, e.g., inserting the
information of all its persons into a stream, the overloaded insertion operator is implemented rather

inefficiently when the individual persons must be accessed using the index operator.

In cases like these, where the accessor and modifier members tend to become rather complex, direct

access to the private data members might improve efficiency. So, in the context of insertion and ex-

traction, we are looking for overloaded member functions implementing the insertion and extraction

operations and having access to the private data members of the objects to be inserted or extracted.

In order to implement such functions non-member functions must be given access to the private data

members of a class. The friend keyword is used to realize this.

11.1 Friend functions

Concentrating on the PersonData class, our initial implementation of the insertion operator is:

ostream &operator<<(ostream &str, PersonData const &pd)
{

for (size_t idx = 0; idx < pd.nPersons(); idx++)
str << pd[idx] << endl;

}

This implementation will perform its task as expected: using the (overloaded) insertion operator

of the class Person, the information about every Person stored in the PersonData object will be
written on a separate line.

However, repeatedly calling the index operator might reduce the efficiency of the implementation.

Instead, directly using the array Person *d_person might improve the efficiency of the above
function.

At this point we should ask ourselves if we consider the above operator<<() primarily an exten-
sion of the globally available operator<<() function, or in fact a member function of the class
PersonData. Stated otherwise: assume we would be able to make operator<<() into a true
member function of the class PersonData, would we object? Probably not, as the function’s task is
very closely tied to the class PersonData. In that case, the function can sensibly be made a friend
of the class PersonData, thereby allowing the function access to the private data members of the
class PersonData.
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Friend functions must be declared as friends in the class interface. These friend declarations refer

neither to private nor to public functions, so the friend declaration may be placed anywhere in
the class interface. Convention dictates that friend declaractions are listed directly at the top of the

class interface. So, for the class PersonData we get:

class PersonData
{

friend ostream &operator<<(ostream &stream, PersonData &pd);
friend istream &operator>>(istream &stream, PersonData &pd);

public:
// rest of the interface

};

The implementation of the insertion operator can now be altered so as to allow the insertion operator

direct access to the private data members of the provided PersonData object:

ostream &operator<<(ostream &str, PersonData const &pd)
{

for (size_t idx = 0; idx < pd.d_n; idx++)
str << pd.d_person[idx] << endl;

}

Once again, whether friend functions are considered acceptable or not remains a matter of taste: if
the function is in fact considered a member function, but it cannot be defined as a member function

due to the nature of the C++ grammar, then it is defensible to use the friend keyword. In other
cases, the friend keyword should rather be avoided, thereby respecting the principles of encapsu-
lation and data hiding.

Explicitly note that if we want to be able to insert PersonData objects into ostream objects without
using the friend keyword, the insertion operator cannot be placed inside the PersonData class.
In this case operator<<() is a normal overloaded variant of the insertion operator, which must
therefore be declared and defined outside of the PersonData class. This situation applies, e.g., to
the example at the beginning of this section.

11.2 Inline friends

In the previous section we stated that friends can be consideredmember functions of a class, albeit
that the characteristics of the function prevents us from actually defining the function as a member

function. In this section we will extend this line of reasoning a little further.

If we conceptually consider friend functions to be member functions, we should be able to design a

true member function that performs the same tasks as our friend function. For example, we could
construct a function that inserts a PersonData object into an ostream:

ostream &PersonData::insertor(ostream &str) const
{

for (size_t idx = 0; idx < d_n; idx++)
str << d_person[idx] << endl;

return str;
}
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This member function can be used by a PersonData object to insert that object into the ostream
str:

PersonData pd;

cout << "The Person-information in the PersonData object is:\n";
pd.insertor(str);
cout << "========\n";

Realizing that insertor() does the same thing as the overloaded insertion operator, earlier defined
as a friend, we could simply call the insertor()member in the code of the friend operator<<()
function. Now this operator<<() function needs only one statement: it calls insertor(). Conse-
quently:

• The insertor() function may be hidden in the class by making it private, as there is not
need for it to be called elsewhere

• The operator<<() may be constructed as inline member, as it contains but one statement.
However, this is deprecated since it contaminates class interfaces with implementations. The

overloaded operator<<()member should be implemented below the class interface:

Thus, the relevant section of the class interface of PersonData becomes:

class PersonData
{

friend ostream &operator<<(ostream &str, PersonData const &pd);

private:
ostream &insertor(ostream &str) const;

};

inline std::ostream &operator<<(std::ostream &str, PersonData const &pd)
{

return pd.insertor(str);
}

The above example illustrates the final step in the development of friend functions. It allows us to
formulate the following principle:

Although friend functions have access to private members of a class, this characteristic
should not be used indiscriminately, as it results in a severe breach of the principle of

encapsulation, thereby making non-class functions dependent on the implementation of

the data in a class.

Instead, if the task a friend function performs, can be implemented by a true member
function, it can be argued that a friend is merely a syntactical synonym or alias for this
member function.

The interpretation of a friend function as a synonym for a member function is made
concrete by constructing the friend function as an inline function.

As a principle we therefore state that friend functions should be avoided, unless they
can be constructed as inline functions, having only one statement, in which an appropri-

ate private member function is called.
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Using this principle, we ascertain that all code that has access to the private data of a class remains

confined to the class itself. This even holds true for friend functions, as they are defined as simple
inline functions.
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Chapter 12

Abstract Containers

C++ offers several predefined datatypes, all part of the Standard Template Library, which can

be used to implement solutions to frequently occurring problems. The datatypes discussed in this

chapter are all containers: you can put stuff inside them, and you can retrieve the stored information

from them.

The interesting part is that the kind of data that can be stored inside these containers has been left

unspecified by the time the containers were constructed. That’s why they are spoken of as abstract

containers.

Abstract containers rely heavily on templates, which are covered near the end of the C++ Annota-

tions, in chapter 18. However, in order to use the abstract containers, only a minimal grasp of the

template concept is needed. InC++ a template is in fact a recipe for constructing a function or a com-

plete class. The recipe tries to abstract the functionality of the class or function as much as possible

from the data on which the class or function operates. As the data types on which the templates

operate were not known by the time the template was constructed, the datatypes are either inferred

from the context in which a template function is used, or they are mentioned explicitly by the time a

template class is used (the term that’s used here is instantiated). In situations where the types are

explicitly mentioned, the angle bracket notation is used to indicate which data types are required.

For example, below (in section 12.2) we’ll encounter the pair container, which requires the explicit
mentioning of two data types. E.g., to define a pair variable containing both an int and a string,
the notation

pair<int, string> myPair;

is used. Here, myPair is defined as a pair variable, containing both an int and a string.

The angle bracket notation is used intensively in the following discussion of abstract containers.

Actually, understanding this part of templates is the only real requirement for using abstract con-

tainers. Now that we’ve introduced this notation, we can postpone the more thorough discussion of

templates to chapter 18, and concentrate on their use in this chapter.

Most of the abstract containers are sequential containers: they represent a series of data which

can be stored and retrieved in some sequential way. Examples are the vector, implementing an
extendable array, the list, implementing a datastructure in which insertions and deletions can be
easily realized, a queue, also called a FIFO (first in, first out) structure, in which the first element
that is entered will be the first element that will be retrieved, and the stack, which is a first in, last
out (FILO or LIFO) structure.

Apart from the sequential containers, several special containers are available. The pair is a basic

257
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container in which a pair of values (of types that are left open for further specification) can be stored,

like two strings, two ints, a string and a double, etc.. Pairs are often used to return data elements

that naturally come in pairs. For example, the map is an abstract container storing keys and their
associated values. Elements of these maps are returned as pairs.

A variant of the pair is the complex container, implementing operations that are defined on com-
plex numbers.

All abstract containers described in this chapter and the string datatype discussed in chapter
4 are part of the Standard Template Library. There also exists an abstract container for the im-

plementation of a hashtable, but that container is not (yet) accepted by the ANSI/ISO standard.

Nevertheless, the final section of this chapter will cover the hashtable to some extent. It may be

expected that containers like hash_map and other, now still considered an extension, will become
part of the ANSI/ISO standard at the next release: apparently by the time the standard was frozen

these containers were not yet fully available. Now that they are available they cannot be official

part of the C++ library , but they are in fact available, albeit as extensions.

All containers support the following operators:

• The overloaded assignment operator, so we can assign two containers of the same types to each

other.

• Tests for equality: == and != The equality operator applied to two containers returns true if
the two containers have the same number of elements, which are pairwise equal according to

the equality operator of the contained data type. The inequality operator does the opposite.

• Ordering operators: <, <=, > and >=. The < operator returns true if each element in the left-
hand side container is less than each corresponding element in the right-hand side container.

Additional elements in either the left-hand side container or the right-hand side container are

ignored.

container left;
container right;

left = {0, 2, 4};
right = {1, 3}; // left < right

right = {1, 3, 6, 1, 2}; // left < right

Note that before a user-defined type (usually a class-type) can be stored in a container, the user-
defined type should at least support:

• A default-value (e.g., a default constructor)

• The equality operator (==)

• The less-than operator (<)

Closely linked to the standard template library are the generic algorithms. These algorithms may

be used to perform frequently occurring tasks or more complex tasks than is possible with the con-

tainers themselves, like counting, filling, merging, filtering etc.. An overview of generic algorithms

and their applications is given in chapter 17. Generic algorithms usually rely on the availabil-

ity of iterators, which represent begin and end-points for processing data stored within containers.

The abstract containers usually support constructors and members expecting iterators, and they of-

ten have members returning iterators (comparable to the string::begin() and string::end()
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members). In the remainder of this chapter the iterator concept is not covered. Refer to chapter 17

for this.

The url http://www.sgi.com/Technology/STL is worth visiting by those readers who are look-
ing for more information about the abstract containers and the standard template library than can

be provided in the C++ annotations.

Containers often collect data during their lifetimes. When a container goes out of scope, its destruc-

tor tries to destroy its data elements. This only succeeds if the data elements themselves are stored

inside the container. If the data elements of containers are pointers, the data pointed to by these

pointers will not be destroyed, resulting in a memory leak. A consequence of this scheme is that the

data stored in a container should be considered the ‘property’ of the container: the container should

be able to destroy its data elements when the container’s destructor is called. So, normally contain-

ers should contain no pointer data. Also, a container should not be required to contain const data,
as const data prevent the use of many of the container’s members, like the assignment operator.

12.1 Notations used in this chapter

In this chapter about containers, the following notational convention is used:

• Containers live in the standard namespace. In code examples this will be clearly visible, but

in the text std:: is usually omitted.

• A container without angle brackets represents any container of that type. Mentally add the

required type in angle bracket notation. E.g., pair may represent pair<string, int>.

• The notation Type represents the generic type. Type could be int, string, etc.

• Identifiers object and container represent objects of the container type under discussion.

• The identifier value represents a value of the type that is stored in the container.

• Simple, one-letter identifiers, like n represent unsigned values.

• Longer identifiers represent iterators. Examples are pos, from, beyond

Some containers, e.g., the map container, contain pairs of values, usually called ‘keys’ and ‘values’.
For such containers the following notational convention is used in addition:

• The identifier key indicates a value of the used key-type

• The identifier keyvalue indicates a value of the ‘value_type’ used with the particular con-
tainer.

12.2 The ‘pair’ container

The pair container is a rather basic container. It can be used to store two elements, called first
and second, and that’s about it. Before pair containers can be used the following preprocessor
directive must have been specified:

#include <utility>
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The data types of a pair are specified when the pair variable is defined (or declared), using the
standard template (see chapter Templates) angle bracket notation:

pair<string, string> piper("PA28", "PH-ANI");
pair<string, string> cessna("C172", "PH-ANG");

here, the variables piper and cessna are defined as pair variables containing two strings. Both
strings can be retrieved using the first and second fields of the pair type:

cout << piper.first << endl << // shows ’PA28’
cessna.second << endl; // shows ’PH-ANG’

The first and second members can also be used to reassign values:

cessna.first = "C152";
cessna.second = "PH-ANW";

If a pair object must be completely reassigned, an anonymous pair object can be used as the right-
hand operand of the assignment. An anonymous variable defines a temporary variable (which re-

ceives no name) solely for the purpose of (re)assigning another variable of the same type. Its generic

form is

type(initializer list)

Note that when a pair object is used the type specification is not completed by just mentioning the
containername pair. It also requires the specification of the data types which are stored within
the pair. For this the (template) angle bracket notation is used again. E.g., the reassignment of the

cessna pair variable could have been accomplished as follows:

cessna = pair<string, string>("C152", "PH-ANW");

In cases like these, the type specification can become quite elaborate, which has caused a revival
of interest in the possibilities offered by the typedef keyword. If a lot of pair<type1, type2>
clauses are used in a source, the typing effort may be reduced and legibility might be improved by

first defining a name for the clause, and then using the defined name later. E.g.,

typedef pair<string, string> pairStrStr;

cessna = pairStrStr("C152", "PH-ANW");

Apart from this (and the basic set of operations (assignment and comparisons)) the pair offers no
further functionality. It is, however, a basic ingredient of the upcoming abstract containers map,
multimap and hash_map.

12.3 Sequential Containers

12.3.1 The ‘vector’ container

The vector class implements an expandable array. Before vector containers can be used the
following preprocessor directive must have been specified:
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#include <vector>

The following constructors, operators, and member functions are available:

• Constructors:

– A vector may be constructed empty:

vector<string> object;

Note the specification of the data type to be stored in the vector: the data type is given
between angle brackets, just after the ‘vector’ container name. This is common practice
with containers.

– A vector may be initialized to a certain number of elements. One of the nicer character-

istics of vectors (and other containers) is that it initializes its data elements to the data

type’s default value. The data type’s default constructor is used for this initialization.

With non-class data types the value 0 is used. So, for the int vector we know its initial
values are zero. Some examples:

vector<string> object(5, string("Hello")); // initialize to 5 Hello’s,
vector<string> container(10); // and to 10 empty strings

– A vector may be initialized using iterators. To initialize a vector with elements 5 until 10

(including the last one) of an existing vector<string> the following construction may
be used:

extern vector<string> container;
vector<string> object(&container[5], &container[11]);

Note here that the last element pointed to by the second iterator (&container[11]) is
not stored in object. This is a simple example of the use of iterators, in which the range
of values that is used starts at the first value, and includes all elements up to but not

including the element to which the second iterator refers. The standard notation for this

is [begin, end).

– A vector may be initialized using a copy constructor:

extern vector<string> container;
vector<string> object(container);

• In addition to the standard operators for containers, the vector supports the index operator,
which may be used to retrieve or reassign individual elements of the vector. Note that the ele-

ments which are indexed must exist. For example, having defined an empty vector a statement

like ivect[0] = 18 produces an error, as the vector is empty. So, the vector is not automati-
cally expanded, and it does respect its array bounds. In this case the vector should be resized

first, or ivect.push_back(18) should be used (see below).

• The vector class has the following member functions:

– Type &vector::back():

this member returns a reference to the last element in the vector. It is the respon-

sibility of the programmer to use the member only if the vector is not empty.

– vector::iterator vector::begin():

this member returns an iterator pointing to the first element in the vector, return-

ing vector::end() if the vector is empty.

– vector::clear():

this member erases all the vector’s elements.
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– bool vector::empty()

this member returns true if the vector contains no elements.

– vector::iterator vector::end():

this member returns an iterator pointing beyond the last element in the vector.

– vector::iterator vector::erase():

this member can be used to erase a specific range of elements in the vector:

∗ erase(pos) erases the element pointed to by the iterator pos. The value ++pos is
returned.

∗ erase(first, beyond) erases elements indicated by the iterator range [first,
beyond), returning beyond.

– Type &vector::front():

this member returns a reference to the first element in the vector. It is the re-

sponsibility of the programmer to use the member only if the vector is not empty.

– ... vector::insert():

elements may be inserted starting at a certain position. The return value depends

on the version of insert() that is called:

∗ vector::iterator insert(pos) inserts a default value of type Type at pos, pos
is returned.

∗ vector::iterator insert(pos, value) inserts value at pos, pos is returned.

∗ void insert(pos, first, beyond) inserts the elements in the iterator range
[first, beyond).

∗ void insert(pos, n, value) inserts n elements having value value at position
pos.

– void vector::pop_back():

this member removes the last element from the vector. With an empty vector

nothing happens.

– void vector::push_back(value):

this member adds value to the end of the vector.

– void vector::resize():

this member can be used to alter the number of elements that are currently stored

in the vector:

∗ resize(n, value)may be used to resize the vector to a size of n. Value is optional.
If the vector is expanded and value is not provided, the additional elements are ini-
tialized to the default value of the used data type, otherwise value is used to initialize
extra elements.

– vector::reverse_iterator vector::rbegin():

this member returns an iterator pointing to the last element in the vector.

– vector::reverse_iterator vector::rend():

this member returns an iterator pointing before the first element in the vector.

– size_t vector::size()

this member returns the number of elements in the vector.

– void vector::swap()

this member can be used to swap two vectors using identical data types. E.g.,
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Figure 12.1: A list data-structure

#include <iostream>
#include <vector>
using namespace std;

int main()
{

vector<int> v1(7);
vector<int> v2(10);

v1.swap(v2);
cout << v1.size() << " " << v2.size() << endl;

}
/*

Produced output:
10 7

*/

12.3.2 The ‘list’ container

The list container implements a list data structure. Before list containers can be used the fol-
lowing preprocessor directive must have been specified:

#include <list>

The organization of a list is shown in figure 12.1. In figure 12.1 it is shown that a list consists
of separate list-elements, connected to each other by pointers. The list can be traversed in two

directions: starting at Front the list may be traversed from left to right, until the 0-pointer is reached

at the end of the rightmost list-element. The list can also be traversed from right to left: starting

at Back, the list is traversed from right to left, until eventually the 0-pointer emanating from the

leftmost list-element is reached.

As a subtlety note that the representation given in figure 12.1 is not necessarily used in actual

implementations of the list. For example, consider the following little program:
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int main()
{

list<int> l;
cout << "size: " << l.size() << ", first element: " <<

l.front() << endl;
}

When this program is run it might actually produce the output:

size: 0, first element: 0

Its front element can even be assigned a value. In this case the implementor has choosen to insert

a hidden element to the list, which is actually a circular list, where the hidden element serves as

terminating element, replacing the 0-pointers in figure 12.1. As noted, this is a subtlety, which

doesn’t affect the conceptual notion of a list as a data structure ending in 0-pointers. Note also that

it is well known that various implementations of list-structures are possible (cf. Aho, A.V., Hopcroft

J.E. and Ullman, J.D., (1983) Data Structures and Algorithms (Addison-Wesley)).

Both lists and vectors are often appropriate data structures in situations where an unknown number

of data elements must be stored. However, there are some rules of thumb to follow when a choice

between the two data structures must be made.

• When the majority of accesses is random, a vector is the preferred data structure. E.g., a pro-
gram counting the frequencies of characters in a textfile, a vector<int> frequencies(256)
is the datastructure doing the trick, as the values of the received characters can be used as in-

dices into the frequencies vector.

• The previous example illustrates a second rule of thumb, also favoring the vector: if the
number of elements is known in advance (and does not notably change during the lifetime of

the program), the vector is also preferred over the list.

• In cases where insertions or deletions prevail, the list is generally preferred. Actually, in my

experience, lists aren’t that useful at all, and often an implementation will be faster when a

vector, maybe containing holes, is used.

Other considerations related to the choice between lists and vectors should also be given some

thought. Although it is true that the vector is able to grow dynamically, the dynamic growth does

involve a lot data-copying. Clearly, copying a million large data structures takes a considerable

amount of time, even on fast computers. On the other hand, inserting a large number of elements in

a list doesn’t require us to copy non-involved data. Inserting a new element in a list merely requires

us to juggle some pointers. In figure 12.2 this is shown: a new element is inserted between the

second and third element, creating a new list of four elements. Removing an element from a list also

is a simple matter. Starting again from the situation shown in figure 12.1, figure 12.3 shows what

happens if element two is removed from our list. Again: only pointers need to be juggled. In this case

it’s even simpler than adding an element: only two pointers need to be rerouted. Summarizing the

comparison between lists and vectors, it’s probably best to conclude that there is no clear-cut answer

to the question what data structure to prefer. There are rules of thumb, which may be adhered to.

But if worse comes to worst, a profiler may be required to find out what’s best.

But, no matter what the thoughts on the subject are, the list container is available, so let’s see
what we can do with it. The following constructors, operators, and member functions are available:

• Constructors:

– A list may be constructed empty:

list<string> object;
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Figure 12.2: Adding a new element to a list

Figure 12.3: Removing an element from a list
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As with the vector, it is an error to refer to an element of an empty list.

– A list may be initialized to a certain number of elements. By default, if the initialization

value is not explicitly mentioned, the default value or default constructor for the actual

data type is used. For example:

list<string> object(5, string("Hello")); // initialize to 5 Hello’s
list<string> container(10); // and to 10 empty strings

– A list may be initialized using a two iterators. To initialize a list with elements 5 until 10

(including the last one) of a vector<string> the following construction may be used:

extern vector<string> container;
list<string> object(&container[5], &container[11]);

– A list may be initialized using a copy constructor:

extern list<string> container;
list<string> object(container);

• There are no special operators available for lists, apart from the standard operators for con-
tainers.

• The following member functions are available for lists:

– Type &list::back():

this member returns a reference to the last element in the list. It is the responsi-

bility of the programmer to use this member only if the list is not empty.

– list::iterator list::begin():

this member returns an iterator pointing to the first element in the list, returning

list::end() if the list is empty.

– list::clear():

this member erases all elements in the list.

– bool list::empty():

this member returns true if the list contains no elements.

– list::iterator list::end():

this member returns an iterator pointing beyond the last element in the list.

– list::iterator list::erase():

this member can be used to erase a specific range of elements in the list:

∗ erase(pos) erases the element pointed to by pos. The iterator ++pos is returned.

∗ erase(first, beyond) erases elements indicated by the iterator range [first,
beyond). Beyond is returned.

– Type &list::front():

this member returns a reference to the first element in the list. It is the responsi-

bility of the programmer to use this member only if the list is not empty.

– ... list::insert():

this member can be used to insert elements into the list. The return value depends

on the version of insert() that is called:

∗ list::iterator insert(pos) inserts a default value of type Type at pos, pos is
returned.

∗ list::iterator insert(pos, value) inserts value at pos, pos is returned.

∗ void insert(pos, first, beyond) inserts the elements in the iterator range
[first, beyond).
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∗ void insert(pos, n, value) inserts n elements having value value at position
pos.

– void list<Type>::merge(list<Type> other):

this member function assumes that the current and other lists are sorted (see be-

low, the member sort()), and will, based on that assumption, insert the elements
of other into the current list in such a way that the modified list remains sorted.
If both list are not sorted, the resulting list will be ordered ‘as much as possible’,

given the initial ordering of the elements in the two lists. list<Type>::merge()
uses Type::operator<() to sort the data in the list, which operator must there-
fore be available. The next example illustrates the use of the merge() member:
the list ‘object’ is not sorted, so the resulting list is ordered ’as much as possible’.

#include <iostream>
#include <string>
#include <list>
using namespace std;

void showlist(list<string> &target)
{

for
(

list<string>::iterator from = target.begin();
from != target.end();
++from

)
cout << *from << " ";

cout << endl;
}

int main()
{

list<string> first;
list<string> second;

first.push_back(string("alpha"));
first.push_back(string("bravo"));
first.push_back(string("golf"));
first.push_back(string("quebec"));

second.push_back(string("oscar"));
second.push_back(string("mike"));
second.push_back(string("november"));
second.push_back(string("zulu"));

first.merge(second);
showlist(first);

}

A subtlety is that merge() doesn’t alter the list if the list itself is used as argu-
ment: object.merge(object) won’t change the list ‘object’.

– void list::pop_back():

this member removes the last element from the list. With an empty list nothing

happens.
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– void list::pop_front():

this member removes the first element from the list. With an empty list nothing

happens.

– void list::push_back(value):

this member adds value to the end of the list.

– void list::push_front(value):

this member adds value before the first element of the list.

– void list::resize():

this member can be used to alter the number of elements that are currently stored

in the list:

∗ resize(n, value) may be used to resize the list to a size of n. Value is optional.
If the list is expanded and value is not provided, the extra elements are initialized
to the default value of the used data type, otherwise value is used to initialize extra
elements.

– list::reverse_iterator list::rbegin():

this member returns an iterator pointing to the last element in the list.

– void list::remove(value):

this member removes all occurrences of value from the list. In the following
example, the two strings ‘Hello’ are removed from the list object:

#include <iostream>
#include <string>
#include <list>
using namespace std;

int main()
{

list<string> object;

object.push_back(string("Hello"));
object.push_back(string("World"));
object.push_back(string("Hello"));
object.push_back(string("World"));

object.remove(string("Hello"));

while (object.size())
{

cout << object.front() << endl;
object.pop_front();

}
}
/*

Generated output:
World
World

*/

– list::reverse_iterator list::rend():

this member returns an iterator pointing before the first element in the list.

– size_t list::size():

this member returns the number of elements in the list.
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– void list::reverse():

this member reverses the order of the elements in the list. The element back()
will become front() and vice versa.

– void list::sort():

this member will sort the list. Once the list has been sorted, An example of its use

is given at the description of the unique()member function below. list<Type>::sort()
uses Type::operator<() to sort the data in the list, which operator must there-
fore be available.

– void list::splice(pos, object):

this member function transfers the contents of object to the current list, start-
ing the insertion at the iterator position pos of the object using the splice()
member. Following splice(), object is empty. For example:

#include <iostream>
#include <string>
#include <list>
using namespace std;

int main()
{

list<string> object;

object.push_front(string("Hello"));
object.push_back(string("World"));

list<string> argument(object);

object.splice(++object.begin(), argument);

cout << "Object contains " << object.size() << " elements, " <<
"Argument contains " << argument.size() <<
" elements," << endl;

while (object.size())
{

cout << object.front() << endl;
object.pop_front();

}
}

Alternatively, argument may be followed by a iterator of argument, indicating
the first element of argument that should be spliced, or by two iterators begin
and end defining the iterator-range [begin, end) on argument that should be
spliced into object.

– void list::swap():

this member can be used to swap two lists using identical data types.

– void list::unique():

operating on a sorted list, this member function will remove all consecutively iden-

tical elements from the list. list<Type>::unique()uses Type::operator==()
to identify identical data elements, which operator must therefore be available.

Here’s an example removing all multiply occurring words from the list:

#include <iostream>
#include <string>
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#include <list>
using namespace std;

// see the merge() example
void showlist(list<string> &target);
void showlist(list<string> &target)
{

for
(

list<string>::iterator from = target.begin();
from != target.end();
++from

)
cout << *from << " ";

cout << endl;
}

int main()
{

string
array[] =
{

"charley",
"alpha",
"bravo",
"alpha"

};

list<string>
target
(

array, array + sizeof(array)
/ sizeof(string)

);

cout << "Initially we have: " << endl;
showlist(target);

target.sort();
cout << "After sort() we have: " << endl;
showlist(target);

target.unique();
cout << "After unique() we have: " << endl;
showlist(target);

}
/*

Generated output:

Initially we have:
charley alpha bravo alpha
After sort() we have:
alpha alpha bravo charley
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Figure 12.4: A queue data-structure

After unique() we have:
alpha bravo charley

*/

12.3.3 The ‘queue’ container

The queue class implements a queue data structure. Before queue containers can be used the
following preprocessor directive must have been specified:

#include <queue>

A queue is depicted in figure 12.4. In figure 12.4 it is shown that a queue has one point (the back)

where items can be added to the queue, and one point (the front) where items can be removed (read)

from the queue. A queue is therefore also called a FIFO data structure, for first in, first out. It
is most often used in situations where events should be handled in the same order as they are

generated.

The following constructors, operators, and member functions are available for the queue container:

• Constructors:

– A queue may be constructed empty:

queue<string> object;

As with the vector, it is an error to refer to an element of an empty queue.

– A queue may be initialized using a copy constructor:

extern queue<string> container;
queue<string> object(container);

• The queue container only supports the basic operators for containers.

• The following member functions are available for queues:

– Type &queue::back():

this member returns a reference to the last element in the queue. It is the respon-

sibility of the programmer to use the member only if the queue is not empty.

– bool queue::empty():

this member returns true if the queue contains no elements.
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– Type &queue::front():

this member returns a reference to the first element in the queue. It is the re-

sponsibility of the programmer to use the member only if the queue is not empty.

– void queue::push(value):

this member adds value to the back of the queue.

– void queue::pop():

this member removes the element at the front of the queue. Note that the element

is not returned by this member. Nothing happens if the member is called for an

empty queue. One might wonder why pop() returns void, instead of a value
of type Type (cf. front()). Because of this, we must use front() first, and
thereafter pop() to examine and remove the queue’s front element. However,
there is a good reason for this design. If pop() would return the container’s front
element, it would have to return that element by value rather than by reference,

as a return by reference would create a dangling pointer, since pop() would also
remove that front element. Return by value, however, is inefficient in this case:

it involves at least one copy constructor call. Since it is impossible for pop() to
return a value correctly and efficiently, it is more sensible to have pop() return
no value at all and to require clients to use front() to inspect the value at the
queue’s front.

– size_t queue::size():

this member returns the number of elements in the queue.

Note that the queue does not support iterators or a subscript operator. The only elements that can

be accessed are its front and back element. A queue can be emptied by:

• repeatedly removing its front element;

• assigning an empty queue using the same data type to it;

• having its destructor called.

12.3.4 The ‘priority_queue’ container

The priority_queue class implements a priority queue data structure. Before priority_queue
containers can be used the following preprocessor directive must have been specified:

#include <queue>

A priority queue is identical to a queue, but allows the entry of data elements according to priority
rules. An example of a situation where the priority queue is encountered in real-life is found at the

check-in terminals at airports. At a terminal the passengers normally stand in line to wait for their

turn to check in, but late passengers are usually allowed to jump the queue: they receive a higher

priority than other passengers.

The priority queue uses operator<() of the data type stored in the priority ueue to decide about
the priority of the data elements. The smaller the value, the lower the priority. So, the priority queue

could be used to sort values while they arrive. A simple example of such a priority queue application

is the following program: it reads words from cin and writes a sorted list of words to cout:

#include <iostream>
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#include <string>
#include <queue>
using namespace std;

int main()
{

priority_queue<string> q;
string word;

while (cin >> word)
q.push(word);

while (q.size())
{

cout << q.top() << endl;
q.pop();

}
}

Unfortunately, the words are listed in reversed order: because of the underlying <-operator the
words appearing later in the ASCII-sequence appear first in the priority queue. A solution to that

problem is to define a wrapper class around the string datatype, in which the operator<() has
been defined according to our wish, i.e., making sure that the words appearing early in the ASCII-

sequence will appear first in the queue. Here is the modified program:

#include <iostream>
#include <string>
#include <queue>

class Text
{

std::string d_s;

public:
Text(std::string const &str)
:

d_s(str)
{}
operator std::string const &() const
{

return d_s;
}
bool operator<(Text const &right) const
{

return d_s > right.d_s;
}

};

using namespace std;

int main()
{

priority_queue<Text> q;
string word;
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while (cin >> word)
q.push(word);

while (q.size())
{

word = q.top();
cout << word << endl;
q.pop();

}
}

In the above program the wrapper class defines the operator<() just the other way around than
the string class itself, resulting in the preferred ordering. Other possibilities would be to store the
contents of the priority queue in, e.g., a vector, from which the elements can be read in reversed

order.

The following constructors, operators, and member functions are available for the priority_queue
container:

• Constructors:

– A priority_queuemay be constructed empty:

priority_queue<string> object;

As with the vector, it is an error to refer to an element of an empty priority queue.

– A priority queue may be initialized using a copy constructor:

extern priority_queue<string> container;
priority_queue<string> object(container);

• The priority_queue only supports the basic operators of containers.

• The following member functions are available for priority queues:

– bool priority_queue::empty():

this member returns true if the priority queue contains no elements.

– void priority_queue::push(value):

this member inserts value at the appropriate position in the priority queue.

– void priority_queue::pop():

this member removes the element at the top of the priority queue. Note that the

element is not returned by this member. Nothing happens if this member is called

for and empty priority queue. See section 12.3.3 for a discussion about the reason

why pop() has return type void.

– size_t priority_queue::size():

this member returns the number of elements in the priority queue.

– Type &priority_queue::top():

this member returns a reference to the first element of the priority queue. It is

the responsibility of the programmer to use the member only if the priority queue

is not empty.
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Note that the priority queue does not support iterators or a subscript operator. The only element

that can be accessed is its top element. A priority queue can be emptied by:

• repeatedly removing its top element;

• assigning an empty queue using the same data type to it;

• having its destructor called.

12.3.5 The ‘deque’ container

The deque (pronounce: ‘deck’) class implements a doubly ended queue data structure (deque). Be-
fore deque containers can be used the following preprocessor directive must have been specified:

#include <deque>

A deque is comparable to a queue, but it allows reading and writing at both ends. Actually, the deque
data type supports a lot more functionality than the queue, as will be clear from the following
overview of available member functions. A deque is a combination of a vector and two queues,
operating at both ends of the vector. In situations where random insertions and the addition and/or

removal of elements at one or both sides of the vector occurs frequently, using a deque should be
considered.

The following constructors, operators, and member functions are available for deques:

• Constructors:

– A deque may be constructed empty:

deque<string>
object;

As with the vector, it is an error to refer to an element of an empty deque.

– A dequemay be initialized to a certain number of elements. By default, if the initialization

value is not explicitly mentioned, the default value or default constructor for the actual

data type is used. For example:

deque<string> object(5, string("Hello")), // initialize to 5 Hello’s
deque<string> container(10); // and to 10 empty strings

– A deque may be initialized using a two iterators. To initialize a deque with elements 5

until 10 (including the last one) of a vector<string> the following construction may be
used:

extern vector<string> container;
deque<string> object(&container[5], &container[11]);

– A deque may be initialized using a copy constructor:

extern deque<string> container;
deque<string> object(container);

• Apart from the standard operators for containers, the deque supports the index operator, which

may be used to retrieve or reassign random elements of the deque. Note that the elements

which are indexed must exist.
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• The following member functions are available for deques:

– Type &deque::back():

this member returns a reference to the last element in the deque. It is the respon-

sibility of the programmer to use the member only if the deque is not empty.

– deque::iterator deque::begin():

this member returns an iterator pointing to the first element in the deque.

– void deque::clear():

this member erases all elements in the deque.

– bool deque::empty():

this member returns true if the deque contains no elements.

– deque::iterator deque::end():

this member returns an iterator pointing beyond the last element in the deque.

– deque::iterator deque::erase():

the member can be used to erase a specific range of elements in the deque:

∗ erase(pos) erases the element pointed to by pos. The iterator ++pos is returned.

∗ erase(first, beyond) erases elements indicated by the iterator range [first,
beyond). Beyond is returned.

– Type &deque::front():

this member returns a reference to the first element in the deque. It is the re-

sponsibility of the programmer to use the member only if the deque is not empty.

– ... deque::insert():

this member can be used to insert elements starting at a certain position. The

return value depends on the version of insert() that is called:

∗ deque::iterator insert(pos) inserts a default value of type Type at pos, pos
is returned.

∗ deque::iterator insert(pos, value) inserts value at pos, pos is returned.

∗ void insert(pos, first, beyond) inserts the elements in the iterator range
[first, beyond).

∗ void insert(pos, n, value) inserts n elements having value value starting at
iterator position pos.

– void deque::pop_back():

this member removes the last element from the deque. With an empty deque

nothing happens.

– void deque::pop_front():

this member removes the first element from the deque. With an empty deque

nothing happens.

– void deque::push_back(value):

this member adds value to the end of the deque.

– void deque::push_front(value):

this member adds value before the first element of the deque.

– void deque::resize():

this member can be used to alter the number of elements that are currently stored

in the deque:
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∗ resize(n, value)may be used to resize the deque to a size of n. Value is optional.
If the deque is expanded and value is not provided, the additional elements are ini-
tialized to the default value of the used data type, otherwise value is used to initialize
extra elements.

– deque::reverse_iterator deque::rbegin():

this member returns an iterator pointing to the last element in the deque.

– deque::reverse_iterator deque::rend():

this member returns an iterator pointing before the first element in the deque.

– size_t deque::size():

this member returns the number of elements in the deque.

– void deque::swap(argument):

this member can be used to swap two deques using identical data types.

12.3.6 The ‘map’ container

The map class implements a (sorted) associative array. Before map containers can be used, the
following preprocessor directive must have been specified:

#include <map>

A map is filled with key/value pairs, which may be of any container-acceptable type. Since types are
associated with both the key and the value, we must specify two types in the angle bracket notation,

comparable to the specification we’ve seen with the pair (section 12.2) container. The first type
represents the type of the key, the second type represents the type of the value. For example, a map
in which the key is a string and the value is a double can be defined as follows:

map<string, double> object;

The key is used to access its associated information. That information is called the value. For

example, a phone book uses the names of people as the key, and uses the telephone number and

maybe other information (e.g., the zip-code, the address, the profession) as the value. Since a map
sorts its keys, the key’s operator<() must be defined, and it must be sensible to use it. For
example, it is generally a bad idea to use pointers for keys, as sorting pointers is something different

than sorting the values these pointers point to.

The two fundamental operations on maps are the storage of Key/Value combinations, and the re-

trieval of values, given their keys. The index operator, using a key as the index, can be used for both.

If the index operator is used as lvalue, insertion will be performed. If it is used as rvalue, the key’s

associated value is retrieved. Each key can be stored only once in a map. If the same key is entered
again, the new value replaces the formerly stored value, which is lost.

A specific key/value combination can be implicitly or explicitly inserted into a map. If explicit inser-
tion is required, the key/value combination must be constructed first. For this, every map defines a
value_typewhich may be used to create values that can be stored in the map. For example, a value
for a map<string, int> can be constructed as follows:

map<string, int>::value_type siValue("Hello", 1);
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The value_type is associated with the map<string, int>: the type of the key is string, the
type of the value is int. Anonymous value_type objects are also often used. E.g.,

map<string, int>::value_type("Hello", 1);

Instead of using the line map<string, int>::value_type(...) over and over again, a typedef
is often used to reduce typing and to improve legibility:

typedef map<string, int>::value_type StringIntValue

Using this typedef, values for the map<string, int> may now be constructed using:

StringIntValue("Hello", 1);

Finally, pairs may be used to represent key/value combinations used by maps:

pair<string, int>("Hello", 1);

The following constructors, operators, and member functions are available for the map container:

• Constructors:

– A map may be constructed empty:

map<string, int> object;

Note that the values stored in maps may be containers themselves. For example, the

following defines a map in which the value is a pair: a container nested in another
container:

map<string, pair<string, string> > object;

Note the blank space between the two closing angle brackets >: this is obligatory, as the
immediate concatenation of the two angle closing brackets would be interpreted by the

compiler as a right shift operator (operator>>()), which is not what we want here.

– Amapmay be initialized using two iterators. The iterators may either point to value_type
values for the map to be constructed, or to plain pair objects (see section 12.2). If pairs
are used, their first elements represent the keys, and their second elements represent
the values to be used. For example:

pair<string, int> pa[] =
{

pair<string,int>("one", 1),
pair<string,int>("two", 2),
pair<string,int>("three", 3),

};

map<string, int> object(&pa[0], &pa[3]);

In this example, map<string, int>::value_type could have been written instead of
pair<string, int> as well.

When begin is the first iterator used to construct a map and end the second iterator,
[begin, end) will be used to initialize the map. Maybe contrary to intuition, the map
constructor will only enter new keys. If the last element of pa would have been "one",
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3, only two elements would have entered the map: "one", 1 and "two", 2. The value
"one", 3 would have been silently ignored.

The map receives its own copies of the data to which the iterators point. This is illustrated
by the following example:

#include <iostream>
#include <map>
using namespace std;

class MyClass
{

public:
MyClass()
{

cout << "MyClass constructor\n";
}
MyClass(const MyClass &other)
{

cout << "MyClass copy constructor\n";
}
~MyClass()
{

cout << "MyClass destructor\n";
}

};

int main()
{

pair<string, MyClass> pairs[] =
{

pair<string, MyClass>("one", MyClass()),
};
cout << "pairs constructed\n";

map<string, MyClass> mapsm(&pairs[0], &pairs[1]);
cout << "mapsm constructed\n";

}
/*

Generated output:
MyClass constructor
MyClass copy constructor
MyClass destructor
pairs constructed
MyClass copy constructor
MyClass copy constructor
MyClass destructor
mapsm constructed
MyClass destructor

*/

When tracing the output of this program, we see that, first, the constructor of a MyClass
object is called to initialize the anonymous element of the array pairs. This object is then
copied into the first element of the array pairs by the copy constructor. Next, the original
element is not needed anymore, and is destroyed. At that point the array pairs has been
constructed. Thereupon, the map constructs a temporary pair object, which is used to
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construct the map element. Having constructed the map element, the temporary pair
objects is destroyed. Eventually, when the program terminates, the pair element stored
in the map is destroyed too.

– A map may be initialized using a copy constructor:

extern map<string, int> container;
map<string, int> object(container);

• Apart from the standard operators for containers, the map supports the index operator, which
may be used to retrieve or reassign individual elements of the map. Here, the argument of the

index operator is a key. If the provided key is not available in the map, a new data element is
automatically added to the map, using the default value or default constructor to initialize the
value part of the new element. This default value is returned if the index operator is used as

an rvalue.

When initializing a new or reassigning another element of the map, the type of the right-hand

side of the assignment operator must be equal to (or promotable to) the type of the map’s value

part. E.g., to add or change the value of element "two" in a map, the following statement can
be used:

mapsm["two"] = MyClass();

• The map class has the following member functions:

– map::iterator map::begin():

this member returns an iterator pointing to the first element of the map.

– map::clear():

this member erases all elements from the map.

– size_t map::count(key):

this member returns 1 if the provided key is available in the map, otherwise 0 is
returned.

– bool map::empty():

this member returns true if the map contains no elements.

– map::iterator map::end():

this member returns an iterator pointing beyond the last element of the map.

– pair<map::iterator, map::iterator> map::equal_range(key):

this member returns a pair of iterators, being respectively the return values of

the member functions lower_bound() and upper_bound(), introduced below.
An example illustrating these member functions is given at the discussion of the

member function upper_bound().

– ... map::erase():

this member can be used to erase a specific element or range of elements from the

map:

∗ bool erase(key) erases the element having the given key from the map. True is
returned if the value was removed, false if the map did not contain an element using
the given key.

∗ void erase(pos) erases the element pointed to by the iterator pos.

∗ void erase(first, beyond) erases all elements indicated by the iterator range
[first, beyond).
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– map::iterator map::find(key):

this member returns an iterator to the element having the given key. If the ele-

ment isn’t available, end() is returned. The following example illustrates the use
of the find() member function:

#include <iostream>
#include <map>
using namespace std;

int main()
{

map<string, int> object;

object["one"] = 1;

map<string, int>::iterator it = object.find("one");

cout << "‘one’ " <<
(it == object.end() ? "not " : "") << "found\n";

it = object.find("three");

cout << "‘three’ " <<
(it == object.end() ? "not " : "") << "found\n";

}
/*

Generated output:
‘one’ found
‘three’ not found

*/

– ... map::insert():

this member can be used to insert elements into the map. It will, however, not

replace the values associated with already existing keys by new values. Its return

value depends on the version of insert() that is called:

∗ pair<map::iterator, bool> insert(keyvalue) inserts a new map::value_type
into the map. The return value is a pair<map::iterator, bool>. If the returned
bool field is true, keyvalue was inserted into the map. The value false indicates
that the key that was specified in keyvalue was already available in the map, and
so keyvalue was not inserted into the map. In both cases the map::iterator field
points to the data element having the key that was specified in keyvalue. The use of
this variant of insert() is illustrated by the following example:

#include <iostream>
#include <string>
#include <map>
using namespace std;

int main()
{

pair<string, int> pa[] =
{

pair<string,int>("one", 10),
pair<string,int>("two", 20),
pair<string,int>("three", 30),
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};
map<string, int> object(&pa[0], &pa[3]);

// {four, 40} and ‘true’ is returned
pair<map<string, int>::iterator, bool>

ret = object.insert
(

map<string, int>::value_type
("four", 40)

);

cout << boolalpha;

cout << ret.first->first << " " <<
ret.first->second << " " <<
ret.second << " " << object["four"] << endl;

// {four, 40} and ‘false’ is returned
ret = object.insert

(
map<string, int>::value_type
("four", 0)

);

cout << ret.first->first << " " <<
ret.first->second << " " <<
ret.second << " " << object["four"] << endl;

}
/*

Generated output:

four 40 true 40
four 40 false 40

*/

Note the somewhat peculiar constructions like

cout << ret.first->first << " " << ret.first->second << ...

Realize that ‘ret’ is equal to the pair returned by the insert() member function.
Its ‘first’ field is an iterator into the map<string, int>, so it can be considered a
pointer to a map<string, int>::value_type. These value types themselves are
pairs too, having ‘first’ and ‘second’ fields. Consequently, ‘ret.first->first’ is
the key of the map value (a string), and ‘ret.first->second’ is the value (an int).

∗ map::iterator insert(pos, keyvalue). This way a map::value_type may
also be inserted into the map. pos is ignored, and an iterator to the inserted element
is returned.

∗ void insert(first, beyond) inserts the (map::value_type) elements pointed
to by the iterator range [first, beyond).

– map::iterator map::lower_bound(key):

this member returns an iterator pointing to the first keyvalue element of which
the key is at least equal to the specified key. If no such element exists, the func-
tion returns map::end().

– map::reverse_iterator map::rbegin():

this member returns an iterator pointing to the last element of the map.
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– map::reverse_iterator map::rend():

this member returns an iterator pointing before the first element of the map.

– size_t map::size():

this member returns the number of elements in the map.

– void map::swap(argument):

this member can be used to swap two maps, using identical key/value types.

– map::iterator map::upper_bound(key):

this member returns an iterator pointing to the first keyvalue element hav-
ing a key exceeding the specified key. If no such element exists, the function
returns map::end(). The following example illustrates the member functions
equal_range(), lower_bound() and upper_bound():

#include <iostream>
#include <map>
using namespace std;

int main()
{

pair<string, int> pa[] =
{

pair<string,int>("one", 10),
pair<string,int>("two", 20),
pair<string,int>("three", 30),

};
map<string, int> object(&pa[0], &pa[3]);
map<string, int>::iterator it;

if ((it = object.lower_bound("tw")) != object.end())
cout << "lower-bound ‘tw’ is available, it is: " <<

it->first << endl;

if (object.lower_bound("twoo") == object.end())
cout << "lower-bound ‘twoo’ not available" << endl;

cout << "lower-bound two: " <<
object.lower_bound("two")->first <<
" is available\n";

if ((it = object.upper_bound("tw")) != object.end())
cout << "upper-bound ‘tw’ is available, it is: " <<

it->first << endl;

if (object.upper_bound("twoo") == object.end())
cout << "upper-bound ‘twoo’ not available" << endl;

if (object.upper_bound("two") == object.end())
cout << "upper-bound ‘two’ not available" << endl;

pair
<

map<string, int>::iterator,
map<string, int>::iterator

>
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p = object.equal_range("two");

cout << "equal range: ‘first’ points to " <<
p.first->first << ", ‘second’ is " <<

(
p.second == object.end() ?

"not available"
:

p.second->first
) <<
endl;

}
/*

Generated output:

lower-bound ‘tw’ is available, it is: two
lower-bound ‘twoo’ not available
lower-bound two: two is available
upper-bound ‘tw’ is available, it is: two
upper-bound ‘twoo’ not available
upper-bound ‘two’ not available
equal range: ‘first’ points to two, ‘second’ is not available

*/

As mentioned at the beginning of this section, the map represents a sorted associative array. In a
map the keys are sorted. If an application must visit all elements in a map (or just the keys or the
values) the begin() and end() iterators must be used. The following example shows how to make
a simple table listing all keys and values in a map:

#include <iostream>
#include <iomanip>
#include <map>

using namespace std;

int main()
{

pair<string, int>
pa[] =
{

pair<string,int>("one", 10),
pair<string,int>("two", 20),
pair<string,int>("three", 30),

};
map<string, int>

object(&pa[0], &pa[3]);

for
(

map<string, int>::iterator it = object.begin();
it != object.end();

++it
)

cout << setw(5) << it->first.c_str() <<
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setw(5) << it->second << endl;
}
/*

Generated output:
one 10

three 30
two 20

*/

12.3.7 The ‘multimap’ container

Like the map, the multimap class implements a (sorted) associative array. Before multimap con-
tainers can be used the following preprocessor directive must have been specified:

#include <map>

The main difference between the map and the multimap is that the multimap supports multiple
values associated with the same key, whereas the map contains single-valued keys. Note that the

multimap also accepts multiple identical values associated with identical keys.

The map and the multimap have the same set of member functions, with the exception of the index
operator (operator[]()), which is not supported with the multimap. This is understandable: if
multiple entries of the same key are allowed, which of the possible values should be returned for

object[key]?

Refer to section 12.3.6 for an overview of the multimapmember functions. Some member functions,
however, deserve additional attention when used in the context of the multimap container. These
members are discussed below.

• size_t map::count(key):

this member returns the number of entries in the multimap associated with the given

key.

• ... multimap::erase():

this member can be used to erase elements from the map:

– size_t erase(key) erases all elements having the given key. The number of erased
elements is returned.

– void erase(pos) erases the single element pointed to by pos. Other elements possibly
having the same keys are not erased.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,
beyond).

• pair<multimap::iterator, multimap::iterator> multimap::equal_range(key):

this member function returns a pair of iterators, being respectively the return values

of multimap::lower_bound() and multimap::upper_bound(), introduced be-
low. The function provides a simple means to determine all elements in the multimap
that have the same keys. An example illustrating the use of these member functions
is given at the end of this section.
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• multimap::iterator multimap::find(key):

this member returns an iterator pointing to the first value whose key is key. If the
element isn’t available, multimap::end() is returned. The iterator could be incre-
mented to visit all elements having the same key until it is either multimap::end(),
or the iterator’s first member is not equal to key anymore.

• multimap::iterator multimap::insert():

this member function normally succeeds, and so a multimap::iterator is returned, in-

stead of a pair<multimap::iterator, bool> as returned with the map container.
The returned iterator points to the newly added element.

Although the functions lower_bound() and upper_bound() act identically in the map and multimap
containers, their operation in a multimap deserves some additional attention. The next example il-
lustrates multimap::lower_bound(),multimap::upper_bound() and multimap::equal_range
applied to a multimap:

#include <iostream>
#include <map>
using namespace std;

int main()
{

pair<string, int> pa[] =
{

pair<string,int>("alpha", 1),
pair<string,int>("bravo", 2),
pair<string,int>("charley", 3),
pair<string,int>("bravo", 6), // unordered ‘bravo’ values
pair<string,int>("delta", 5),
pair<string,int>("bravo", 4),

};
multimap<string, int> object(&pa[0], &pa[6]);

typedef multimap<string, int>::iterator msiIterator;

msiIterator it = object.lower_bound("brava");

cout << "Lower bound for ‘brava’: " <<
it->first << ", " << it->second << endl;

it = object.upper_bound("bravu");

cout << "Upper bound for ‘bravu’: " <<
it->first << ", " << it->second << endl;

pair<msiIterator, msiIterator>
itPair = object.equal_range("bravo");

cout << "Equal range for ‘bravo’:\n";
for (it = itPair.first; it != itPair.second; ++it)

cout << it->first << ", " << it->second << endl;
cout << "Upper bound: " << it->first << ", " << it->second << endl;
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cout << "Equal range for ‘brav’:\n";
itPair = object.equal_range("brav");
for (it = itPair.first; it != itPair.second; ++it)

cout << it->first << ", " << it->second << endl;
cout << "Upper bound: " << it->first << ", " << it->second << endl;

}
/*

Generated output:

Lower bound for ‘brava’: bravo, 2
Upper bound for ‘bravu’: charley, 3
Equal range for ‘bravo’:
bravo, 2
bravo, 6
bravo, 4
Upper bound: charley, 3
Equal range for ‘brav’:
Upper bound: bravo, 2

*/

In particular note the following characteristics:

• lower_bound() and upper_bound() produce the same result for non-existing keys: they
both return the first element having a key that exceeds the provided key.

• Although the keys are ordered in the multimap, the values for equal keys are not ordered:
they are retrieved in the order in which they were enterd.

12.3.8 The ‘set’ container

The set class implements a sorted collection of values. Before set containers can be used the
following preprocessor directive must have been specified:

#include <set>

A set is filled with values, which may be of any container-acceptable type. Each value can be stored

only once in a set.

A specific value to be inserted into a set can be explicitly created: Every set defines a value_type
which may be used to create values that can be stored in the set. For example, a value for a
set<string> can be constructed as follows:

set<string>::value_type setValue("Hello");

The value_type is associated with the set<string>. Anonymous value_type objects are also
often used. E.g.,

set<string>::value_type("Hello");

Instead of using the line set<string>::value_type(...) over and over again, a typedef is
often used to reduce typing and to improve legibility:

typedef set<string>::value_type StringSetValue
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Using this typedef, values for the set<string>may be constructed as follows:

StringSetValue("Hello");

Alternatively, values of the set’s type may be used immediately. In that case the value of type Type
is implicitly converted to a set<Type>::value_type.

The following constructors, operators, and member functions are available for the set container:

• Constructors:

– A set may be constructed empty:

set<int> object;

– A set may be initialized using two iterators. For example:

int intarr[] = {1, 2, 3, 4, 5};

set<int> object(&intarr[0], &intarr[5]);

Note that all values in the set must be different: it is not possible to store the same value

repeatedly when the set is constructed. If the same value occurs repeatedly, only the first

instance of the value will be entered, the other values will be silently ignored.

Like the map, the set receives its own copy of the data it contains.

• A set may be initialized using a copy constructor:

extern set<string> container;
set<string> object(container);

• The set container only supports the standard set of operators that are available for containers.

• The set class has the following member functions:

– set::iterator set::begin():

this member returns an iterator pointing to the first element of the set. If the set

is empty set::end() is returned.

– set::clear():

this member erases all elements from the set.

– size_t set::count(key):

this member returns 1 if the provided key is available in the set, otherwise 0 is
returned.

– bool set::empty():

this member returns true if the set contains no elements.

– set::iterator set::end():

this member returns an iterator pointing beyond the last element of the set.

– pair<set::iterator, set::iterator> set::equal_range(key):

this member returns a pair of iterators, being respectively the return values of

the member functions lower_bound() and upper_bound(), introduced below.

– ... set::erase():

this member can be used to erase a specific element or range of elements from the

set:
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∗ bool erase(value) erases the element having the given value from the set. True
is returned if the value was removed, false if the set did not contain an element
‘value’.

∗ void erase(pos) erases the element pointed to by the iterator pos.

∗ void erase(first, beyond) erases all elements indicated by the iterator range
[first, beyond).

– set::iterator set::find(value):

this member returns an iterator to the element having the given value. If the

element isn’t available, end() is returned.

– ... set::insert():

this member can be used to insert elements into the set. If the element already
exists, the existing element is left untouched and the element to be inserted is

ignored. The return value depends on the version of insert() that is called:

∗ pair<set::iterator, bool> insert(keyvalue) inserts a new set::value_type
into the set. The return value is a pair<set::iterator, bool>. If the returned
bool field is true, value was inserted into the set. The value false indicates that
the value that was specified was already available in the set, and so the provided

value was not inserted into the set. In both cases the set::iterator field points to
the data element in the set having the specified value.

∗ set::iterator insert(pos, keyvalue). This way a set::value_type may
also be into the set. pos is ignored, and an iterator to the inserted element is returned.

∗ void insert(first, beyond) inserts the (set::value_type) elements pointed
to by the iterator range [first, beyond) into the set.

– set::iterator set::lower_bound(key):

this member returns an iterator pointing to the first keyvalue element of which
the key is at least equal to the specified key. If no such element exists, the func-
tion returns set::end().

– set::reverse_iterator set::rbegin():

this member returns an iterator pointing to the last element of the set.

– set::reverse_iterator set::rend():

this member returns an iterator pointing before the first element of the set.

– size_t set::size():

this member returns the number of elements in the set.

– void set::swap(argument):

this member can be used to swap two sets (argument being the second set) that
use identical data types.

– set::iterator set::upper_bound(key):

this member returns an iterator pointing to the first keyvalue element having a
key exceeding the specified key. If no such element exists, the function returns
set::end().

12.3.9 The ‘multiset’ container

Like the set, the multiset class implements a sorted collection of values. Before multiset con-
tainers can be used the following preprocessor directive must have been specified:

#include <set>
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The main difference between the set and the multiset is that the multiset supports multiple
entries of the same value, whereas the set contains unique values.

The set and the multiset have the same set of member functions. Refer to section 12.3.8 for an
overview of the multiset member functions. Some member functions, however, deserve additional
attention when used in the context of the multiset container. These members are discussed below.

• size_t set::count(value):

this member returns the number of entries in the multiset associated with the given

value.

• ... multiset::erase():

this member can be used to erase elements from the set:

– size_t erase(value) erases all elements having the given value. The number of
erased elements is returned.

– void erase(pos) erases the element pointed to by the iterator pos. Other elements
possibly having the same values are not erased.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,
beyond).

• pair<multiset::iterator, multiset::iterator> multiset::equal_range(value):

this member function returns a pair of iterators, being respectively the return values

of multiset::lower_bound() and multiset::upper_bound(), introduced be-
low. The function provides a simple means to determine all elements in the multiset
that have the same values.

• multiset::iterator multiset::find(value):

this member returns an iterator pointing to the first element having the specified

value. If the element isn’t available, multiset::end() is returned. The iterator
could be incremented to visit all elements having the given value until it is either
multiset::end(), or the iterator doesn’t point to ‘value’ anymore.

• ... multiset::insert():

this member function normally succeeds, and so a multiset::iterator is returned, in-

stead of a pair<multiset::iterator, bool> as returned with the set container.
The returned iterator points to the newly added element.

Although the functions lower_bound() and upper_bound() act identically in the set and multiset
containers, their operation in a multiset deserves some additional attention. In particular note
that with the multiset container lower_bound() and upper_bound() produce the same result
for non-existing keys: they both return the first element having a key exceeding the provided key.

Here is an example showing the use of various member functions of a multiset:

#include <iostream>
#include <set>

using namespace std;

int main()
{
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string
sa[] =
{

"alpha",
"echo",
"hotel",
"mike",
"romeo"

};

multiset<string>
object(&sa[0], &sa[5]);

object.insert("echo");
object.insert("echo");

multiset<string>::iterator
it = object.find("echo");

for (; it != object.end(); ++it)
cout << *it << " ";

cout << endl;

cout << "Multiset::equal_range(\"ech\")\n";
pair
<

multiset<string>::iterator,
multiset<string>::iterator

>
itpair = object.equal_range("ech");

if (itpair.first != object.end())
cout << "lower_bound() points at " << *itpair.first << endl;

for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";

cout << endl <<
object.count("ech") << " occurrences of ’ech’" << endl;

cout << "Multiset::equal_range(\"echo\")\n";
itpair = object.equal_range("echo");

for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";

cout << endl <<
object.count("echo") << " occurrences of ’echo’" << endl;

cout << "Multiset::equal_range(\"echoo\")\n";
itpair = object.equal_range("echoo");

for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";



292 CHAPTER 12. ABSTRACT CONTAINERS

cout << endl <<
object.count("echoo") << " occurrences of ’echoo’" << endl;

}
/*

Generated output:

echo echo echo hotel mike romeo
Multiset::equal_range("ech")
lower_bound() points at echo

0 occurrences of ’ech’
Multiset::equal_range("echo")
echo echo echo
3 occurrences of ’echo’
Multiset::equal_range("echoo")

0 occurrences of ’echoo’

*/

12.3.10 The ‘stack’ container

The stack class implements a stack data structure. Before stack containers can be used the fol-
lowing preprocessor directive must have been specified:

#include <stack>

A stack is also called a first in, last out (FILO or LIFO) data structure, as the first item to enter

the stack is the last item to leave. A stack is an extremely useful data structure in situations where

data must temporarily remain available. For example, programs maintain a stack to store local

variables of functions: the lifetime of these variables is determined by the time these functions

are active, contrary to global (or static local) variables, which live for as long as the program itself

lives. Another example is found in calculators using the Reverse Polish Notation (RPN), in which the

operands of operators are entered in the stack, whereas operators pop their operands off the stack

and push the results of their work back onto the stack.

As an example of the use of a stack, consider figure 12.5, in which the contents of the stack is shown

while the expression (3 + 4) * 2 is evaluated. In the RPN this expression becomes 3 4 + 2 *,
and figure 12.5 shows the stack contents after each token (i.e., the operands and the operators) is

read from the input. Notice that each operand is indeed pushed on the stack, while each operator

changes the contents of the stack. The expression is evaluated in five steps. The caret between

the tokens in the expressions shown on the first line of figure 12.5 shows what token has just been

read. The next line shows the actual stack-contents, and the final line shows the steps for referential

purposes. Note that at step 2, two numbers have been pushed on the stack. The first number (3)
is now at the bottom of the stack. Next, in step 3, the + operator is read. The operator pops two
operands (so that the stack is empty at that moment), calculates their sum, and pushes the resulting

value (7) on the stack. Then, in step 4, the number 2 is read, which is dutifully pushed on the stack
again. Finally, in step 5 the final operator * is read, which pops the values 2 and 7 from the stack,
computes their product, and pushes the result back on the stack. This result (14) could then be
popped to be displayed on some medium.

From figure 12.5 we see that a stack has one point (the top) where items can be pushed onto and

popped off the stack. This top element is the stack’s only immediately visible element. It may be

accessed and modified directly.
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Figure 12.5: The contents of a stack while evaluating 3 4 + 2 *

Bearing this model of the stack in mind, let’s see what we can formally do with it, using the stack
container. For the stack, the following constructors, operators, and member functions are available:

• Constructors:

– A stack may be constructed empty:

stack<string> object;

– A stack may be initialized using a copy constructor:

extern stack<string> container;
stack<string> object(container);

• Only the basic set of container operators are supported by the stack

• The following member functions are available for stacks:

– bool stack::empty():

this member returns true if the stack contains no elements.

– void stack::push(value):

this member places value at the top of the stack, hiding the other elements from
view.

– void stack::pop():

this member removes the element at the top of the stack. Note that the popped

element is not returned by this member. Nothing happens if pop() is used with
an empty stack. See section 12.3.3 for a discussion about the reason why pop()
has return type void.

– size_t stack::size():

this member returns the number of elements in the stack.

– Type &stack::top():

this member returns a reference to the stack’s top (and only visible) element. It is

the responsibility of the programmer to use this member only if the stack is not

empty.
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Note that the stack does not support iterators or a subscript operator. The only elements that can

be accessed is its top element. A stack can be emptied by:

• repeatedly removing its front element;

• assigning an empty stack using the same data type to it;

• having its destructor called.

12.3.11 The ‘hash_map’ and other hashing-based containers

The map is a sorted data structure. The keys in maps are sorted using the operator<() of the key’s
data type. Generally, this is not the fastest way to either store or retrieve data. The main benefit of

sorting is that a listing of sorted keys appeals more to humans than an unsorted list. However, a by

far faster method to store and retrieve data is to use hashing.

Hashing uses a function (called the hash function) to compute an (unsigned) number from the key,

which number is thereupon used as an index in the table in which the keys are stored. Retrieval of

a key is as simple as computing the hash value of the provided key, and looking in the table at the

computed index location: if the key is present, it is stored in the table, and its value can be returned.

If it’s not present, the key is not stored.

Collisions occur when a computed index position is already occupied by another element. For these

situations the abstract containers have solutions available, but that topic is beyond the subject of

this chapter.

The Gnu g++ compiler supports the hash_(multi)map and hash_(multi)set containers. Below the
hash_map container is discussed. Other containers using hashing (hash_multimap, hash_set and
hash_multiset) operate correspondingly.

Concentrating on the hash_map, its constructor needs a key type, a value type, an object creating a
hash value for the key, and an object comparing two keys for equality. Hash functions are available

for char const * keys, and for all the scalar numerical types char, short, int etc.. If another
data type is used, a hash function and an equality test must be implemented, possibly using function

objects (see section 9.10). For both situations examples are given below.

The class implementing the hash function could be called hash. Its function call operator (operator()())
returns the hash value of the key that is passed as its argument.

A generic algorithm (see chapter 17) exists for the test of equality (i.e., equal_to()), which can
be used if the key’s data type supports the equality operator. Alternatively, a specialized function

object could be constructed here, supporting the equality test of two keys. Again, both situations are

illustrated below.

The hash_map class implements an associative array in which the key is stored according to some
hashing scheme. Before hash_map containers can be used the following preprocessor directive must
have been specified:

#include <ext/hash_map>

The hash_(multi)map is not yet part of the ANSI/ISO standard. Once this container becomes
part of the standard, it is likely that the ext/ prefix in the #include preprocessor directive can be
removed. Note that starting with the Gnu g++ compiler version 3.2 the __gnu_cxx namespace is
used for symbols defined in the ext/ header files. See also section 2.1.
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Constructors, operators andmember functions available for the map are also available for the hash_map.
The map and hash_map support the same set of operators and member functions. However, the effi-
ciency of a hash_map in terms of speed should greatly exceed the efficiency of the map. Comparable
conclusions may be drawn for the hash_set, hash_multimap and the hash_multiset.

Compared to the map container, the hash_map has an additional constructor:

hash_map<...> hash(n);

where n is a size_t value, may be used to construct a hash_map consisting of an initial number
of at least n empty slots to put key/value combinations in. This number is automatically extended
when needed.

The hashed key type is almost always text. So, a hash_map in which the key’s data type is either
char const * or a string occurs most often. If the following header file is installed in the C++
compiler’s INCLUDE path as the file hashclasses.h, sources may specify the following preproces-
sor directive to make a set of classes available that can be used to instantiate a hash table

#include <hashclasses.h>

Otherwise, sources must specify the following preprocessor directive:

#include <ext/hash_map>

#ifndef _INCLUDED_HASHCLASSES_H_
#define _INCLUDED_HASHCLASSES_H_

#include <string>
#include <cctype>

/*
Note that with the Gnu g++ compiler 3.2 (and beyond?) the ext/ header
uses the __gnu_cxx namespace for symbols defined in these header files.

When using compilers before version 3.2, do:
#define __gnu_cxx std

before including this file to circumvent problems that may occur
because of these namespace conventions which were not yet used in versions
before 3.2.

*/

#include <ext/hash_map>
#include <algorithm>

/*
This file is copyright (c) GPL, 2001-2004
==========================================
august 2004: redundant include guards removed

october 2002: provisions for using the hashclasses with the g++ 3.2
compiler were incorporated.
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april 2002: namespace FBB introduced
abbreviated class templates defined,
see the END of this comment section for examples of how
to use these abbreviations.

jan 2002: redundant include guards added,
required header files adapted,
for_each() rather than transform() used

With hash_maps using char const * for the keys:
============

* Use ‘HashCharPtr’ as 3rd template argument for case-sensitive keys

* Use ‘HashCaseCharPtr’ as 3rd template argument for case-insensitive
keys

* Use ‘EqualCharPtr’ as 4th template argument for case-sensitive keys

* Use ‘EqualCaseCharPtr’ as 4th template argument for case-insensitive
keys

With hash_maps using std::string for the keys:
===========

* Use ‘HashString’ as 3rd template argument for case-sensitive keys

* Use ‘HashCaseString’ as 3rd template argument for case-insensitive keys

* OMIT the 4th template argument for case-sensitive keys

* Use ‘EqualCaseString’ as 4th template argument for case-insensitive
keys

Examples, using int as the value type. Any other type can be used instead
for the value type:

// key is char const *, case sensitive
__gnu_cxx::hash_map<char const *, int, FBB::HashCharPtr,

FBB::EqualCharPtr >
hashtab;

// key is char const *, case insensitive
__gnu_cxx::hash_map<char const *, int, FBB::HashCaseCharPtr,

FBB::EqualCaseCharPtr >
hashtab;

// key is std::string, case sensitive
__gnu_cxx::hash_map<std::string, int, FBB::HashString>

hashtab;

// key is std::string, case insensitive
__gnu_cxx::hash_map<std::string, int, FBB::HashCaseString,

FBB::EqualCaseString>
hashtab;
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Instead of the above full typedeclarations, the following shortcuts should
work as well:

FBB::CharPtrHash<int> // key is char const *, case sensitive
hashtab;

FBB::CharCasePtrHash<int> // key is char const *, case insensitive
hashtab;

FBB::StringHash<int> // key is std::string, case sensitive
hashtab;

FBB::StringCaseHash<int> // key is std::string, case insensitive
hashtab;

With these template types iterators and other map-members are also
available. E.g.,

--------------------------------------------------------------------------
extern FBB::StringHash<int> dh;

for (FBB::StringHash<int>::iterator it = dh.begin(); it != dh.end(); it++)
std::cout << it->first << " - " << it->second << std::endl;

--------------------------------------------------------------------------

Feb. 2001 - April 2002
Frank B. Brokken (f.b.brokken@rug.nl)

*/

namespace FBB
{

class HashCharPtr
{

public:
size_t operator()(char const *str) const
{

return __gnu_cxx::hash<char const *>()(str);
}

};

class EqualCharPtr
{

public:
bool operator()(char const *x, char const *y) const
{

return !strcmp(x, y);
}

};

class HashCaseCharPtr
{

public:
size_t operator()(char const *str) const
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{
std::string s = str;
for_each(s.begin(), s.end(), *this);
return __gnu_cxx::hash<char const *>()(s.c_str());

}
void operator()(char &c) const
{

c = tolower(c);
}

};

class EqualCaseCharPtr
{

public:
bool operator()(char const *x, char const *y) const
{

return !strcasecmp(x, y);
}

};

class HashString
{

public:
size_t operator()(std::string const &str) const
{

return __gnu_cxx::hash<char const *>()(str.c_str());
}

};

class HashCaseString: public HashCaseCharPtr
{

public:
size_t operator()(std::string const &str) const
{

return HashCaseCharPtr::operator()(str.c_str());
}

};

class EqualCaseString
{

public:
bool operator()(std::string const &s1, std::string const &s2) const
{

return !strcasecmp(s1.c_str(), s2.c_str());
}

};

template<typename Value>
class CharPtrHash: public

__gnu_cxx::hash_map<char const *, Value, HashCharPtr, EqualCharPtr >
{

public:
CharPtrHash()
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{}
template <typename InputIterator>
CharPtrHash(InputIterator first, InputIterator beyond)
:

__gnu_cxx::hash_map<char const *, Value, HashCharPtr,
EqualCharPtr>(first, beyond)

{}
};

template<typename Value>
class CharCasePtrHash: public

__gnu_cxx::hash_map<char const *, Value, HashCaseCharPtr,
EqualCaseCharPtr >

{
public:

CharCasePtrHash()
{}
template <typename InputIterator>
CharCasePtrHash(InputIterator first, InputIterator beyond)
:

__gnu_cxx::hash_map<char const *, Value,
HashCaseCharPtr, EqualCaseCharPtr>
(first, beyond)

{}
};

template<typename Value>
class StringHash: public __gnu_cxx::hash_map<std::string, Value,

HashString>
{

public:
StringHash()
{}
template <typename InputIterator>
StringHash(InputIterator first, InputIterator beyond)
:

__gnu_cxx::hash_map<std::string, Value, HashString>
(first, beyond)

{}
};

template<typename Value>
class StringCaseHash: public

__gnu_cxx::hash_map<std::string, int, HashCaseString,
EqualCaseString>

{
public:

StringCaseHash()
{}
template <typename InputIterator>
StringCaseHash(InputIterator first, InputIterator beyond)
:

__gnu_cxx::hash_map<std::string,
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int, HashCaseString,
EqualCaseString>(first, beyond)

{}
};

template<typename Key, typename Value>
class Hash: public

__gnu_cxx::hash_map<Key, Value,
__gnu_cxx::hash<Key>(),
equal<Key>())

{};

}
#endif

The following program defines a hash_map containing the names of the months of the year and the

number of days these months (usually) have. Then, using the subscript operator the days in several

months are displayed. The equality operator used the generic algorithm equal_to<string>, which
is the default fourth argument of the hash_map constructor:

#include <iostream>
// the following header file must be available in the compiler’s
// INCLUDE path:

#include <hashclasses.h>
using namespace std;
using namespace FBB;

int main()
{

__gnu_cxx::hash_map<string, int, HashString > months;
// Alternatively, using the classes defined in hashclasses.h,
// the following definitions could have been used:
// CharPtrHash<int> months;
// or:
// StringHash<int> months;

months["january"] = 31;
months["february"] = 28;
months["march"] = 31;
months["april"] = 30;
months["may"] = 31;
months["june"] = 30;
months["july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;
months["november"] = 30;
months["december"] = 31;

cout << "september -> " << months["september"] << endl <<
"april -> " << months["april"] << endl <<
"june -> " << months["june"] << endl <<
"november -> " << months["november"] << endl;

}
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/*
Generated output:

september -> 30
april -> 30
june -> 30
november -> 30

*/

The hash_multimap, hash_set and hash_multiset containers are used analogously. For these
containers the equal and hash classes must also be defined. The hash_multimap also requires the
hash_map header file.

Before the hash_set and hash_multiset containers can be used the following preprocessor direc-
tive must have been specified:

#include <ext/hash_set>

12.4 The ‘complex’ container

The complex container is a specialized container in that it defines operations that can be performed
on complex numbers, given possible numerical real and imaginary data types.

Before complex containers can be used the following preprocessor directive must have been speci-
fied:

#include <complex>

The complex container can be used to define complex numbers, consisting of two parts, representing
the real and imaginary parts of a complex number.

While initializing (or assigning) a complex variable, the imaginary part may be left out of the ini-

tialization or assignment, in which case this part is 0 (zero). By default, both parts are zero.

When complex numbers are defined, the type definition requires the specification of the datatype of

the real and imaginary parts. E.g.,

complex<double>
complex<int>
complex<float>

Note that the real and imaginary parts of complex numbers have the same datatypes.

Below it is silently assumed that the used complex type is complex<double>. Given this assump-
tion, complex numbers may be initialized as follows:

• target: A default initialization: real and imaginary parts are 0.

• target(1): The real part is 1, imaginary part is 0

• target(0, 3.5): The real part is 0, imaginary part is 3.5

• target(source): target is initialized with the values of source.
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Anonymous complex values may also be used. In the following example two anonymous complex

values are pushed on a stack of complex numbers, to be popped again thereafter:

#include <iostream>
#include <complex>
#include <stack>

using namespace std;

int main()
{

stack<complex<double> >
cstack;

cstack.push(complex<double>(3.14, 2.71));
cstack.push(complex<double>(-3.14, -2.71));

while (cstack.size())
{

cout << cstack.top().real() << ", " <<
cstack.top().imag() << "i" << endl;

cstack.pop();
}

}
/*

Generated output:
-3.14, -2.71i
3.14, 2.71i

*/

Note the required extra blank space between the two closing pointed arrows in the type specification

of cstack.

The following member functions and operators are defined for complex numbers (below, value may
be either a primitve scalar type or a complex object):

• Apart from the standard container operators, the following operators are supported from the

complex container.

– complex complex::operator+(value):

this member returns the sum of the current complex container and value.

– complex complex::operator-(value):

this member returns the difference between the current complex container and
value.

– complex complex::operator*(value):

this member returns the product of the current complex container and value.

– complex complex::operator/(value):

this member returns the quotient of the current complex container and value.

– complex complex::operator+=(value):

this member adds value to the current complex container, returning the new
value.
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– complex complex::operator-=(value):

this member subtracts value from the current complex container, returning the
new value.

– complex complex::operator*=(value):

this member multiplies the current complex container by value, returning the
new value

– complex complex::operator/=(value):

this member divides the current complex container by value, returning the new
value.

• Type complex::real():

this member returns the real part of a complex number.

• Type complex::imag():

this member returns the imaginary part of a complex number.

• Severalmathematical functions are available for the complex container, such as abs(), arg(),
conj(), cos(), cosh(), exp(), log(), norm(), polar(), pow(), sin(), sinh() and sqrt().
These functions are normal functions, not member functions, accepting complex numbers as

their arguments. For example,

abs(complex<double>(3, -5));
pow(target, complex<int>(2, 3));

• Complex numbers may be extracted from istream objects and inserted into ostream objects.
The insertion results in an ordered pair (x, y), in which x represents the real part and y
the imaginary part of the complex number. The same form may also be used when extracting

a complex number from an istream object. However, simpler forms are also allowed. E.g.,
1.2345: only the real part, the imaginary part will be set to 0; (1.2345): the same value.
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Chapter 13

Inheritance

When programming inC, programming problems are commonly approached using a top-down struc-

tured approach: functions and actions of the program are defined in terms of sub-functions, which

again are defined in sub-sub-functions, etc.. This yields a hierarchy of code: main() at the top,
followed by a level of functions which are called from main(), etc..

In C++ the dependencies between code and data is also frequently defined in terms of dependencies

among classes. This looks like composition (see section 6.4), where objects of a class contain objects

of another class as their data. But the relation described here is of a different kind: a class can be

defined in terms of an older, pre-existing, class. This produces a new class having all the functionality

of the older class, and additionally introducing its own specific functionality. Instead of composition,

where a given class contains another class, we here refer to derivation, where a given class is another

class.

Another term for derivation is inheritance: the new class inherits the functionality of an existing

class, while the existing class does not appear as a data member in the definition of the new class.

When discussing inheritance the existing class is called the base class, while the new class is called

the derived class.

Derivation of classes is often used when the methodology of C++ program development is fully ex-

ploited. In this chapter we will first address the syntactical possibilities offered by C++ for deriving

classes from other classes. Then we will address some of the resulting possibilities.

As we have seen in the introductory chapter (see section 2.4), in the object-oriented approach to

problem solving classes are identified during the problem analysis, after which objects of the defined

classes represent entities of the problem at hand. The classes are placed in a hierarchy, where the

top-level class contains the least functionality. Each new derivation (and hence descent in the class

hierarchy) adds new functionality compared to yet existing classes.

In this chapter we shall use a simple vehicle classification system to build a hierarchy of classes.

The first class is Vehicle, which implements as its functionality the possibility to set or retrieve
the weight of a vehicle. The next level in the object hierarchy are land-, water- and air vehicles.

The initial object hierarchy is illustrated in Figure 13.1.

305
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Figure 13.1: Initial object hierarchy of vehicles.

13.1 Related types

The relationship between the proposed classes representing different kinds of vehicles is further

illustrated here. The figure shows the object hierarchy: an Auto is a special case of a Land vehicle,
which in turn is a special case of a Vehicle.

The class Vehicle is thus the ‘greatest common denominator’ in the classification system. For the
sake of the example in this class we implement the functionality to store and retrieve the vehicle’s

weight:

class Vehicle
{

size_t d_weight;

public:
Vehicle();
Vehicle(size_t weight);

size_t weight() const;
void setWeight(size_t weight);

};

Using this class, the vehicle’s weight can be defined as soon as the corresponding object has been

created. At a later stage the weight can be re-defined or retrieved.

To represent vehicles which travel over land, a new class Land can be defined with the functionality
of a Vehicle, while adding its own specific information and functionality. Assume that we are in-
terested in the speed of land vehicles and in their weights. The relationship between Vehicles and
Lands could of course be represented using composition, but that would be awkward: composition
would suggest that a Land vehicle contains a vehicle, while the relationship should be that the Land
vehicle is a special case of a vehicle.

A relationship in terms of composition would also needlessly bloat our code. E.g., consider the follow-

ing code fragment which shows a class Land using composition (only the setWeight() functionality
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is shown):

class Land
{

Vehicle d_v; // composed Vehicle
public:

void setWeight(size_t weight);
};

void Land::setWeight(size_t weight)
{

d_v.setWeight(weight);
}

Using composition, the setWeight() function of the class Land only serves to pass its argument
to Vehicle::setWeight(). Thus, as far as weight handling is concerned, Land::setWeight()
introduces no extra functionality, just extra code. Clearly this code duplication is superfluous: a

Land should be a Vehicle; it should not contain a Vehicle.

The intended relationship is achieved better by inheritance: Land is derived from Vehicle, in which
Vehicle is the derivation’s base class:

class Land: public Vehicle
{

size_t d_speed;
public:

Land();
Land(size_t weight, size_t speed);

void setspeed(size_t speed);
size_t speed() const;

};

By postfixing the class name Land in its definition by : public Vehicle the derivation is real-
ized: the class Land now contains all the functionality of its base class Vehicle plus its own specific
information and functionality. The extra functionality consists of a constructor with two arguments

and interface functions to access the speed data member. In the above example public derivation is
used. C++ also supports private derivation and protected derivation. In section 13.6 their differences

are discussed. A simple example showing the possibilities of of the derived class Land is:

Land veh(1200, 145);

int main()
{

cout << "Vehicle weighs " << veh.weight() << endl
<< "Speed is " << veh.speed() << endl;

}

This example shows two features of derivation. First, weight() is not mentioned as a member in
Land’s interface. Nevertheless it is used in veh.weight(). This member function is an implicit
part of the class, inherited from its ‘parent’ vehicle.

Second, although the derived class Land now contains the functionality of Vehicle, the private
fields of Vehicle remain private: they can only be accessed by Vehicle’s own member func-
tions. This means that Land’s member functions must use interface functions (like weight() and
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setWeight()) to address the weight field, just as any other code outside the Vehicle class. This
restriction is necessary to enforce the principle of data hiding. The class Vehicle could, e.g., be re-
coded and recompiled, after which the program could be relinked. The class Land itself could remain
unchanged.

Actually, the previous remark is not quite right: If the internal organization of Vehicle changes,
then the internal organization of Land objects, containing the data of Vehicle, changes as well.
This means that objects of the Land class, after changing Vehicle, might require more (or less)
memory than before the modification. However, in such a situation we still don’t have to worry about

member functions of the parent class (Vehicle) in the class Land. We might have to recompile the
Land sources, though, as the relative locations of the data members within the Land objects will
have changed due to the modification of the Vehicle class.

As a rule of thumb, classes which are derived from other classes must be fully recompiled (but don’t

have to be modified) after changing the data organization, i.e., the data members, of their base

classes. As adding new member functions to the base class doesn’t alter the data organization, no

recompilation is needed after adding new member functions. (A subtle point to note, however, is

that adding a new member function that happens to be the first virtual member function of a class

results in a new data member: a hidden pointer to a table of pointers to virtual functions. So, in this

case recompilation is also necessary, as the class’s data members have been silently modified. This

topic is discussed further in chapter 14).

In the following example we assume that the class Auto, representing automobiles, should contain
the weight, speed and name of a car. This class is conveniently derived from Land:

class Auto: public Land
{

char *d_name;

public:
Auto();
Auto(size_t weight, size_t speed, char const *name);
Auto(Auto const &other);

~Auto();

Auto &operator=(Auto const &other);

char const *name() const;
void setName(char const *name);

};

In the above class definition, Auto is derived from Land, which in turn is derived from Vehicle.
This is called nested derivation: Land is called Auto’s direct base class, while Vehicle is called the
indirect base class.

Note the presence of a destructor, a copy constructor and an overloaded assignment operator in the

class Auto. Since this class uses a pointer to reach dynamically allocated memory, these members
should be part of the class interface.
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13.2 The constructor of a derived class

As mentioned earlier, a derived class inherits the functionality from its base class. In this section

we shall describe the effects inheritance has on the constructor of a derived class.

As will be clear from the definition of the class Land, a constructor exists to set both the weight and
the speed of an object. The poor-man’s implementation of this constructor could be:

Land::Land (size_t weight, size_t speed)
{

setWeight(weight);
setspeed(speed);

}

This implementation has the following disadvantage. The C++ compiler will generate code calling

the base class’s default constructor from each constructor in the derived class, unless explicitly in-

structed otherwise. This can be compared to the situation we encountered in composed objects (see

section 6.4).

Consequently, in the above implementation the default constructor of Vehicle is called, which prob-
ably initializes the weight of the vehicle, only to be redefined immediately thereafter by the function

setWeight().

A more efficient approach is of course to call the constructor of Vehicle expecting an size_t
weight argument directly. The syntax achieving this is to mention the constructor to be called
(supplied with its arguments) immediately following the argument list of the constructor of the

derived class itself. Such a base class initializer is shown in the next example. Following the con-

structor’s head a colon appears, which is then followed by the base class constructor. Only then any

member initializer may be specified (using commas to separate multiple initializers), followed by the

constructor’s body:

Land::Land(size_t weight, size_t speed)
:

Vehicle(weight)
{

setspeed(speed);
}

13.3 The destructor of a derived class

Destructors of classes are automatically called when an object is destroyed. This also holds true for

objects of classes derived from other classes. Assume we have the following situation:

class Base
{

public:
~Base();

};

class Derived: public Base
{
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public:
~Derived();

};

int main()
{

Derived
derived;

}

At the end of the main() function, the derived object ceases to exists. Hence, its destructor
(~Derived()) is called. However, since derived is also a Base object, the ~Base() destructor
is called as well. It is not neccessary to call the base class destructor explicitly from the derived class

destructor.

Constructors and destructors are called in a stack-like fashion: when derived is constructed, the
appropriate base class constructor is called first, then the appropriate derived class constructor is

called. When the object derived is destroyed, its destructor is called first, automatically followed
by the activation of the Base class destructor. A derived class destructor is always called before its
base class destructor is called.

13.4 Redefining member functions

The functionality of all members of a base class (which are therefore also available in derived

classes) can be redefined. This feature is illustrated in this section.

Let’s assume that the vehicle classification system should be able to represent trucks, consisting of

two parts: the front engine, pulling the second part, a trailer. Both the front engine and the trailer

have their own weights, and the weight() function should return the combined weight.

The definition of a Truck therefore starts with the class definition, derived from Auto but it is then
expanded to hold one more size_t field representing the additional weight information. Here we
choose to represent the weight of the front part of the truck in the Auto class and to store the weight
of the trailer in an additional field:

class Truck: public Auto
{

size_t d_trailer_weight;

public:
Truck();
Truck(size_t engine_wt, size_t speed, char const *name,

size_t trailer_wt);

void setWeight(size_t engine_wt, size_t trailer_wt);
size_t weight() const;

};

Truck::Truck(size_t engine_wt, size_t speed, char const *name,
size_t trailer_wt)

:
Auto(engine_wt, speed, name)

{
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d_trailer_weight = trailer_wt;
}

Note that the class Truck now contains two functions already present in the base class Auto:
setWeight() and weight().

• The redefinition of setWeight() poses no problems: this function is simply redefined to per-
form actions which are specific to a Truck object.

• The redefinition of setWeight(), however, will hide Auto::setWeight(): for a Truck only
the setWeight() function having two size_t arguments can be used.

• The Vehicle’s setWeight() function remains available for a Truck, but it must now be
called explicitly, as Auto::setWeight() is now hidden from view. This latter function is
hidden, even though Auto::setWeight() has only one size_t argument. To implement
Truck::setWeight()we could write:

void Truck::setWeight(size_t engine_wt, size_t trailer_wt)
{

d_trailer_weight = trailer_wt;
Auto::setWeight(engine_wt); // note: Auto:: is required

}

• Outside of the class the Auto-version of setWeight() is accessed using the scope resolution
operator. So, if a Truck t needs to set its Auto weight, it must use

t.Auto::setWeight(x);

• An alternative to using the scope resolution operator is to include explicitly a member having

the same function prototype as the base class member. This derived class member may then

be implemented inline to call the base class member. This might be an elegant solution for the

occasional situation. E.g., we add the following member to the class Truck:

// in the interface:
void setWeight(size_t engine_wt);

// below the interface:
inline void Truck::setWeight(size_t engine_wt)
{

Auto::setWeight(engine_wt);
}

Now the single argument setWeight() member function can be used by Truck objects with-
out having to use the scope resolution operator. As the function is defined inline, no overhead

of an additional function call is involved.

• The function weight() is also already defined in Auto, as it was inherited from Vehicle. In
this case, the class Truck should redefine this member function to allow for the extra (trailer)
weight in the Truck:

size_t Truck::weight() const
{

return
( // sum of:

Auto::weight() + // engine part plus
d_trailer_weight // the trailer

);
}
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The next example shows the actual use of the member functions of the class Truck, displaying
several weights:

int main()
{

Land veh(1200, 145);
Truck lorry(3000, 120, "Juggernaut", 2500);

lorry.Vehicle::setWeight(4000);

cout << endl << "Truck weighs " <<
lorry.Vehicle::weight() << endl <<

"Truck + trailer weighs " << lorry.weight() << endl <<
"Speed is " << lorry.speed() << endl <<
"Name is " << lorry.name() << endl;

}

Note the explicit call of Vehicle::setWeight(4000): assuming setWeight(size_t engine_wt)
is not part of the interface of the class Truck, itmust be called explicitly, using the Vehicle:: scope
resolution, as the single argument function setWeight() is hidden from direct view in the class
Truck.

With Vehicle::weight() and Truck::weight() the situation is somewhat different: here the
function Truck::weight() is a redefinition of Vehicle::weight(), so in order to reach
Vehicle::weight() a scope resolution operation (Vehicle::) is required.

13.5 Multiple inheritance

Up to now, a class was always derived from a single base class. C++ also supports multiple deriva-

tion, in which a class is derived from several base classes and hence inherits functionality of mul-

tiple parent classes at the same time. In cases where multiple inheritance is considered, it should

be defensible to consider the newly derived class an instantiation of both base classes. Otherwise,

composition might be more appropriate. In general, linear derivation, in which there is only one

base class, is used much more frequently than multiple derivation. Most objects have a primary

purpose, and that’s it. But then, consider the prototype of an object for which multiple inheritance

was used to its extreme: the Swiss army knife! This object is a knife, it is a pair of scissors, it is a

can-operner, it is a corkscrew, it is ....

How can we construct a ‘Swiss army knife’ in C++? First we need (at least) two base classes. For

example, let’s assume we are designing a toolkit allowing us to construct an instrument panel of an

aircraft’s cockpit. We design all kinds of instruments, like an artifical horizon and an altimeter. One

of the components that is often seen in aircraft is a nav-com set: a combination of a navigational

beacon receiver (the ‘nav’ part) and a radio communication unit (the ‘com’-part). To define the nav-

com set, we first design the NavSet class. For the time being, its data members are omitted:

class NavSet
{

public:
NavSet(Intercom &intercom, VHF_Dial &dial);

size_t activeFrequency() const;
size_t standByFrequency() const;
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void setStandByFrequency(size_t freq);
size_t toggleActiveStandby();
void setVolume(size_t level);
void identEmphasis(bool on_off);

};

In the class’ss contructor we assume the availability of the classes Intercom, which is used by the
pilot to listen to the information transmitted by the navigational beacon, and a class VHF_Dial
which is used to represent visually what the NavSet receives.

Next we construct the ComSet class. Again, omitting the data members:

class ComSet
{

public:
ComSet(Intercom &intercom);

size_t frequency() const;
size_t passiveFrequency() const;

void setPassiveFrequency(size_t freq);
size_t toggleFrequencies();

void setAudioLevel(size_t level);
void powerOn(bool on_off);
void testState(bool on_off);
void transmit(Message &message);

};

Using objects of this class we can receive messages, transmitted though the Intercom, but we
can also transmit messages, using a Message object that’s passed to the ComSet object using its
transmit()member function.

Now we’re ready to construct the NavCom set:

class NavComSet: public ComSet, public NavSet
{

public:
NavComSet(Intercom &intercom, VHF_Dial &dial);

};

Done. Now we have defined a NavComSet which is both a NavSet and a ComSet: the possibilities of
either base class are now available in the derived class, using multiple derivation.

With multiple derivation, please note the following:

• The keyword public is present before both base class names (NavSet and ComSet). This
is so because the default derivation in C++ is private: the keyword public must be re-
peated before each base class specification. The base classes do not have to have the same

kind of derivation: one base class could have public derivation, another base class could use
protected derivation, yet another base class could use private derivation.

• The multiply derived class NavComSet introduces no additional functionality of its own, but
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merely combines two existing classes into a new aggregate class. Thus, C++ offers the possi-

bility to simply sweep multiple simple classes into one more complex class.

This feature of C++ is often used. Usually it pays to develop ‘simple’ classes each having a

simple, well-defined functionality. More complex classes can always be constructed from these

simpler building blocks.

• Here is the implementation of The NavComSet constructor:

NavComSet::NavComSet(Intercom &intercom, VHF_Dial &dial)
:

ComSet(intercom),
NavSet(intercom, VHF_Dial)

{}

The constructor requires no extra code: Its only purpose is to activate the constructors of its

base classes. The order in which the base class initializers are called is not dictated by their

calling order in the constructor’s code, but by the ordering of the base classes in the class

interface.

• the NavComSet class definition needs no extra data members or member functions: here (and
often) the inherited interfaces provide all the required functionality and data for the multiply

derived class to operate properly.

Of course, while defining the base classes, we made life easy on ourselves by strictly using different

member function names. So, there is a function setVolume() in the NavSet class and a function
setAudioLevel() in the ComSet class. A bit cheating, since we could expect that both units in
fact have a composed object Amplifier, handling the volume setting. A revised class might then
either use a Amplifier &amplifier() constmember function, and leave it to the application to
set up its own interface to the amplifier, or access functions for, e.g., the volume are made available

through the NavSet and ComSet classes as, normally, member functions having the same names
(e.g., setVolume()). In situations where two base classes use the same member function names,
special provisions need to be made to prevent ambiguity:

• The intended base class can explicitly be specified, using the base class name and scope reso-

lution operator in combination with the doubly occurring member function name:

NavComSet navcom(intercom, dial);

navcom.NavSet::setVolume(5); // sets the NavSet volume level
navcom.ComSet::setVolume(5); // sets the ComSet volume level

• The class interface is extended by member functions which do the explicitation for the user of

the class. These additional members will normally be defined as inline:

class NavComSet: public ComSet, public NavSet
{

public:
NavComSet(Intercom &intercom, VHF_Dial &dial);
void comVolume(size_t volume);
void navVolume(size_t volume);

};
inline void NavComSet::comVolume(size_t volume)
{

ComSet::setVolume(volume);



13.6. PUBLIC, PROTECTED AND PRIVATE DERIVATION 315

}
inline void NavComSet::navVolume(size_t volume)
{

NavSet::setVolume(volume);
}

• If the NavComSet class is obtained from a third party, and should not be altered, a wrapper
class could be used, which does the previous explicitation for us in our own programs:

class MyNavComSet: public NavComSet
{

public:
MyNavComSet(Intercom &intercom, VHF_Dial &dial);
void comVolume(size_t volume);
void navVolume(size_t volume);

};
inline MyNavComSet::MyNavComSet(Intercom &intercom, VHF_Dial &dial)
:

NavComSet(intercom, dial);
{}
inline void MyNavComSet::comVolume(size_t volume)
{

ComSet::setVolume(volume);
}
inline void MyNavComSet::navVolume(size_t volume)
{

NavSet::setVolume(volume);
}

13.6 Public, protected and private derivation

As we’ve seen, classes may be derived from other classes using inheritance. Usually the derivation

type is public, implying that the access rights of the base class’s interface is unaltered in the
derived class.

Apart from public derivation, C++ also supports protected derivation and private derivation

To use protected derivation. the keyword protected is specified in the inheritance list:

class Derived: protected Base

With protected derivation all the base class’s public and protected members receive protected access

rights in the derived class. Members having protected access rights are available to the class itself

and to all classes that are (directly or indirectly) derived from it.

To use private derivation. the keyword private is specified in the inheritance list:

class Derived: private Base

With private derivation all the base class’s members receive private access rights in the derived

class. Members having private access rights are only available to the class itself.
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Combinations of inheritance types do occur. For example, when designing a stream-class it is usually

derived from std::istream or std::ostream. However, before a stream can be constructed, a
std::streambuf must be available. Taking advantage of the fact that the inheritance order is
taken seriously by the compiler, we can use multiple inheritance (see section 13.5) to derive the class

from both std::streambuf and (then) from, e.g., std::ostream. As our class faces its clients as a
std::ostream and not as a std::streambuf, we use private derivation for the latter, and public
derivation for the former class:

class Derived: private std::streambuf, public std::ostream

13.7 Conversions between base classes and derived classes

When inheritance is used to define classes, it can be said that an object of a derived class is at the

same time an object of the base class. This has important consequences for the assignment of objects,

and for the situation where pointers or references to such objects are used. Both situations will be

discussed next.

13.7.1 Conversions in object assignments

Continuing our discussion of the NavCom class, introduced in section 13.5 We start by defining two
objects, a base class and a derived class object:

ComSet com(intercom);
NavComSet navcom(intercom2, dial2);

The object navcom is constructed using an Intercom and a Dial object. However, a NavComSet is
at the same time a ComSet, allowing the assignment from navcom (a derived class object) to com (a
base class object):

com = navcom;

The effect of this assignment should be that the object com will now communicate with intercom2.
As a ComSet does not have a VHF_Dial, the navcom’s dial is ignored by the assignment: when as-
signing a base class object from a derived class object only the base class data members are assigned,

other data members are ignored.

The assignment from a base class object to a derived class object, however, is problematic: In a

statement like

navcom = com;

it isn’t clear how to reassign the NavComSet’s VHF_Dial data member as they are missing in the
ComSet object com. Such an assignment is therefore refused by the compiler. Although derived class
objects are also base class objects, the reverse does not hold true: a base class object is not also a

derived class object.

The following general rule applies: in assignments in which base class objects and derived class

objects are involved, assignments in which data are dropped is legal. However, assignments in which

data would remain unspecified is not allowed. Of course, it is possible to redefine an overloaded
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assignment operator to allow the assignment of a derived class object by a base class object. E.g., to

achieve compilability of a statement

navcom = com;

the class NavComSetmust have an overloaded assignment operator function accepting a ComSet ob-
ject for its argument. It would be the responsibility of the programmere constructing the assignment

operator to decide what to do with the missing data.

13.7.2 Conversions in pointer assignments

We return to our Vehicle classes, and define the following objects and pointer variable:

Land land(1200, 130);
Auto auto(500, 75, "Daf");
Truck truck(2600, 120, "Mercedes", 6000);
Vehicle *vp;

Now we can assign the addresses of the three objects of the derived classes to the Vehicle pointer:

vp = &land;
vp = &auto;
vp = &truck;

Each of these assignments is acceptable. However, an implicit conversion of the derived class to

the base class Vehicle is used, since vp is defined as a pointer to a Vehicle. Hence, when using
vp only the member functions manipulating weight can be called as this is the Vehicle’s only
functionality. As far as the compiler can tell this is the object vp points to.

The same reasoning holds true for references to Vehicles. If, e.g., a function is defined having a
Vehicle reference parameter, the function may be passed an object of a class derived from Vehicle.
Inside the function, the specific Vehiclemembers remain accessible. This analogy between pointers
and references holds true in general. Remember that a reference is nothing but a pointer in disguise:

it mimics a plain variable, but actually it is a pointer.

This restricted functionality furthermore has an important consequence for the class Truck. After
the statement vp = &truck, vp points to a Truck object. So, vp->weight() will return 2600
instead of 8600 (the combined weight of the cabin and of the trailer: 2600 + 6000), which would have

been returned by truck.weight().

When a function is called using a pointer to an object, then the type of the pointer (and not the type

of the object) determines which member functions are available and executed. In other words, C++

implicitly converts the type of an object reached through a pointer to the pointer’s type.

If the actual type of the object to which a pointer points is known, an explicit type cast can be used

to access the full set of member functions that are available for the object:

Truck truck;
Vehicle *vp;

vp = &truck; // vp now points to a truck object
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Truck *trp;

trp = reinterpret_cast<Truck *>(vp);
cout << "Make: " << trp->name() << endl;

Here, the second to last statement specifically casts a Vehicle * variable to a Truck *. As is
usually the case with type casts, this code is not without risk: it will only work if vp really points to
a Truck. Otherwise the program may behave unexpectedly.



Chapter 14

Polymorphism

As we have seen in chapter 13, C++ provides the tools to derive classes from base classes, and to use

base class pointers to address derived objects. As we’ve also seen, when using a base class pointer

to address an object of a derived class, the type of the pointer determines which member function

will be used. This means that a Vehicle *vp, pointing to a Truck object, will incorrectly compute
the truck’s combined weight in a statement like vp->weight(). The reason for this should now be
clear: vp calls Vehicle::weight() and not Truck::weight(), even though vp actually points to
a Truck.

Fortunately, a remedy is available. In C++ a Vehicle *vp may call a function Truck::weight()
when the pointer actually points to a Truck.

The terminology for this feature is polymorphism: it is as though the pointer vp changes its type
from a base class pointer to a pointer to the class of the object it actually points to. So, vp might
behave like a Truck * when pointing to a Truck, and like an Auto * when pointing to an Auto
etc..1

Polymorphism is realized by a feature called late binding. It’s called that way because the decision

which function to call (a base class function or a function of a derived class) cannot be made compile-

time, but is postponed until the program is actually executed: only then it is determined which

member function will actually be called.

14.1 Virtual functions

The default behavior of the activation of a member function via a pointer or reference is that the type

of the pointer (or reference) determines the function that is called. E.g., a Vehicle * will activate
Vehicle’s member functions, even when pointing to an object of a derived class. This is referred
to as early or static binding, since the type of function is known compile-time. The late or dynamic

binding is achieved in C++ using virtual member functions.

A member function becomes a virtual member function when its declaration starts with the keyword

virtual. Once a function is declared virtual in a base class, it remains a virtual member function
in all derived classes; even when the keyword virtual is not repeated in a derived class.

As far as the vehicle classification system is concerned (see section 13.1) the two member functions

1In one of the StarTrek movies, Capt. Kirk was in trouble, as usual. He met an extremely beautiful lady who, however,
later on changed into a hideous troll. Kirk was quite surprised, but the lady told him: “Didn’t you know I am a polymorph?”
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weight() and setWeight() might well be declared virtual. The relevant sections of the class
definitions of the class Vehicle and Truck are shown below. Also, we show the implementations of
the member functions weight() of the two classes:

class Vehicle
{

public:
virtual int weight() const;
virtual void setWeight(int wt);

};

class Truck: public Vehicle
{

public:
void setWeight(int engine_wt, int trailer_wt);
int weight() const;

};

int Vehicle::weight() const
{

return (weight);
}

int Truck::weight() const
{

return (Auto::weight() + trailer_wt);
}

Note that the keyword virtual only needs to appear in the Vehicle base class. There is no need
(but there is also no penalty) to repeat it in derived classes: once virtual, always virtual. On the
other hand, a function may be declared virtual anywhere in a class hierarchy: the compiler will
be perfectly happy if weight() is declared virtual in Auto, rather than in Vehicle. The specific
characteristics of virtual member functions would then, for the member function weight(), only
appear with Auto (and its derived classes) pointers or references. With a Vehicle pointer, static
binding would remain to be used. The effect of late binding is illustrated below:

Vehicle v(1200); // vehicle with weight 1200
Truck t(6000, 115, // truck with cabin weight 6000, speed 115,

"Scania", 15000); // make Scania, trailer weight 15000
Vehicle *vp; // generic vehicle pointer

int main()
{

vp = &v; // see (1) below
cout << vp->weight() << endl;

vp = &t; // see (2) below
cout << vp->weight() << endl;

cout << vp->speed() << endl; // see (3) below
}

Since the function weight() is defined virtual, late binding is used:
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• at (1), Vehicle::weight() is called.

• at (2) Truck::weight() is called.

• at (3) a syntax error is generated. The member speed() is no member of Vehicle, and hence
not callable via a Vehicle*.

The example illustrates that when a pointer to a class is used only the functions which are members

of that class can be called. These functionsmay be virtual. However, this only influences the type
of binding (early vs. late) and not the set of member functions that is visible to the pointer.

A virtual member function cannot be a static member function: a virtual member function is still an

ordinary member function in that it has a this pointer. As static member functions have no this
pointer, they cannot be declared virtual.

14.2 Virtual destructors

When the operator delete releases memory occupied by a dynamically allocated object, or when an
object goes out of scope, the appropriate destructor is called to ensure that memory allocated by the

object is also deleted. Now consider the following code fragment (cf. section 13.1):

Vehicle *vp = new Land(1000, 120);

delete vp; // object destroyed

In this example an object of a derived class (Land) is destroyed using a base class pointer (Vehicle

*). For a ‘standard’ class definition this will mean that Vehicle’s destructor is called, instead of the
Land object’s destructor. This not only results in a memory leak when memory is allocated in Land,
but it will also prevent any other task, normally performed by the derived class’s destructor from

being completed (or, better: started). A Bad Thing.

In C++ this problem is solved using virtual destructors. By applying the keyword virtual to the
declaration of a destructor the appropriate derived class destructor is activated when the argument

of the delete operator is a base class pointer. In the following partial class definition the declaration
of such a virtual destructor is shown:

class Vehicle
{

public:
virtual ~Vehicle();
virtual size_t weight() const;

};

By declaring a virtual destructor, the above delete operation (delete vp) will correctly call Land’s
destructor, rather than Vehicle’s destructor.

From this discussion we are now able to formulate the following situations in which a destructor

should be defined:

• A destructor should be defined when memory is allocated and managed by objects of the class.
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• This destructor should be defined as a virtual destructor if the class contains at least one

virtual member function, to prevent incomplete destruction of derived class objects when de-

stroying objects using base class pointers or references pointing to derived class objects (see

the initial paragraphs of this section)

In the second case, the destructor doesn’t have any special tasks to perform. In these cases the

virtual destructor is given an empty body. For example, the definition of Vehicle::~Vehicle()
may be as simple as:

Vehicle::~Vehicle()
{}

Often the destructor will be defined inline below the class interface.

temporary note: With the gnu compiler 4.1.2 an annoying bug prevents virtual destructors to be

defined inline below their class interfaces without explicitly declaring the virtual destructor as inline

within the interface. Until the bug has been repaired, inline virtual destructors should be defined

as follows (using the class Vehicle as an example):

class Vehicle
{

...
public:

inline virtual ~Vehicle(); // note the ‘inline’
...

};

inline Vehicle::~Vehicle() // inline implementation
{} // is kept unaltered.

14.3 Pure virtual functions

Until now the base class Vehicle contained its own, concrete, implementations of the virtual func-
tions weight() and setWeight(). In C++ it is also possible only to mention virtual member func-
tions in a base class, without actually defining them. The functions are concretely implemented in

a derived class. This approach, in some languages (like C#, Delphi and Java) known as an inter-

face, defines a protocol, which must be implemented by derived classes. This implies that derived

classes must take care of the actual definition: the C++ compiler will not allow the definition of an

object of a class in which one or more member functions are left undefined. The base class thus

enforces a protocol by declaring a function by its name, return value and arguments. The derived

classes must take care of the actual implementation. The base class itself defines therefore only a

model ormold, to be used when other classes are derived. Such base classes are also called abstract

classes or abstract base classes. Abstract base classes are the foundation of many design patterns (cf.

Gamma et al. (1995)) , allowing the programmer to create highly reusable software. Some of these

design patterns are covered by the Annotations (e.g, the Template Method in section 20.3), but for a

thorough discussion of Design Patterns the reader is referred to Gamma et al.’s book.

Functions that are only declared in the base class are called pure virtual functions. A function is

made pure virtual by prefixing the keyword virtual to its declaration and by postfixing it with =
0. An example of a pure virtual function occurs in the following listing, where the definition of a
class Object requires the implementation of the conversion operator operator string():
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#include <string>

class Object
{

public:
virtual operator std::string() const = 0;

};

Now, all classes derived from Object must implement the operator string() member function,
or their objects cannot be constructed. This is neat: all objects derived from Object can now always
be considered string objects, so they can, e.g., be inserted into ostream objects.

Should the virtual destructor of a base class be a pure virtual function? The answer to this question

is no: a class such as Vehicle should not require derived classes to define a destructor. In contrast,
Object::operator string() can be a pure virtual function: in this case the base class defines a
protocol which must be adhered to.

Realize what would happen if we would define the destructor of a base class as a pure virtual de-

structor: according to the compiler, the derived class object can be constructed: as its destructor is

defined, the derived class is not a pure abstract class. However, inside the derived class destructor,

the destructor of its base class is implicitly called. This destructor was never defined, and the linker

will loudly complain about an undefined reference to, e.g., Virtual::~Virtual().

Often, but not necessarily always, pure virtual member functions are const member functions.
This allows the construction of constant derived class objects. In other situations this might not be

necessary (or realistic), and non-constant member functions might be required. The general rule for

const member functions applies also to pure virtual functions: if the member function will alter
the object’s data members, it cannot be a const member function. Often abstract base classes have
no data members. However, the prototype of the pure virtual member function must be used again

in derived classes. If the implementation of a pure virtual function in a derived class alters the

data of the derived class object, than that function cannot be declared as a const member function.
Therefore, the constructor of an abstract base class should well consider whether a pure virtual

member function should be a const member function or not.

14.3.1 Implementing pure virtual functions

Pure virtual member functions may be implemented. To implement a pure virtual member function:

pure virtual and implemented member function, provide it with its normal = 0; specification, but
implement it nonetheless. Since the = 0; ends in a semicolon, the pure virtual member is always
at most a declaration in its class, but an implementation may either be provided in-line below the

class interface or it may be defined as a non-inline member function in a source file of its own.

Pure virtual member functions may be called from derived class objects or from its class or derived

class members by specifying the base class and scope resolution operator with the function to be

called. The following small program shows some examples:

#include <iostream>

class Base
{

public:
virtual ~Base();
virtual void pure() = 0;

};
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inline Base::~Base()
{}

inline void Base::pure()
{

std::cout << "Base::pure() called\n";
}

class Derived: public Base
{

public:
virtual void pure();

};

inline void Derived::pure()
{

Base::pure();
std::cout << "Derived::pure() called\n";

}

int main()
{

Derived derived;

derived.pure();
derived.Base::pure();

Derived *dp = &derived;

dp->pure();
dp->Base::pure();

}
// Output:
// Base::pure() called
// Derived::pure() called
// Base::pure() called
// Base::pure() called
// Derived::pure() called
// Base::pure() called

Implementing a pure virtual function has limited use. One could argue that the pure virtual func-

tion’s implementation may be used to perform tasks that can already be performed at the base-class

level. However, there is no guarantee that the base class virtual function will actually be called

from the derived class overridden version of the member function (like a base class constructor that

is automatically called from a derived class constructor). Since the base class implementation will

therefore at most be called optionally its functionality could as well be implemented in a separate

member, which can then be called without the requirement to mention the base class explicitly.
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14.4 Virtual functions in multiple inheritance

As mentioned in chapter 13 a class may be derived from multiple base classes. Such a derived class

inherits the properties of all its base classes. Of course, the base classes themselves may be derived

from classes yet higher in the hierarchy.

Consider what would happen if more than one ‘path’ would lead from the derived class to the base

class. This is illustrated in the code example below: a class Derived is doubly derived from a class
Base:

class Base
{

int d_field;
public:

void setfield(int val);
int field() const;

};
inline void Base::setfield(int val)
{

d_field = val;
}
inline int field() const
{

return d_field;
}

class Derived: public Base, public Base
{
};

Due to the double derivation, the functionality of Base now occurs twice in Derived. This leads
to ambiguity: when the function setfield() is called for a Derived object, which function should
that be, since there are two? In such a duplicate derivation, C++ compilers will normally refuse to

generate code and will (correctly) identify an error.

The above code clearly duplicates its base class in the derivation, which can of course easily be

avoided by not doubly deriving from Base. But duplication of a base class can also occur through
nested inheritance, where an object is derived from, e.g., an Auto and from an Air (see the vehicle
classification system, section 13.1). Such a class would be needed to represent, e.g., a flying car2. An

AirAuto would ultimately contain two Vehicles, and hence two weight fields, two setWeight()
functions and two weight() functions.

14.4.1 Ambiguity in multiple inheritance

Let’s investigate closer why an AirAuto introduces ambiguity, when derived from Auto and Air.

• An AirAuto is an Auto, hence a Land, and hence a Vehicle.

• However, an AirAuto is also an Air, and hence a Vehicle.

The duplication of Vehicle data is further illustrated in Figure 14.1. The internal organization of
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Figure 14.1: Duplication of a base class in multiple derivation.

Figure 14.2: Internal organization of an AirAuto object.
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an AirAuto is shown in Figure 14.2 The C++ compiler will detect the ambiguity in an AirAuto
object, and will therefore fail to compile a statement like:

AirAuto cool;

cout << cool.weight() << endl;

The question of which member function weight() should be called, cannot be answered by the
compiler. The programmer has two possibilities to resolve the ambiguity explicitly:

• First, the function call where the ambiguity occurs can be modified. The ambiguity is resolved

using the scope resolution operator:

// let’s hope that the weight is kept in the Auto
// part of the object..
cout << cool.Auto::weight() << endl;

Note the position of the scope operator and the class name: before the name of the member

function itself.

• Second, a dedicated function weight() could be created for the class AirAuto:

int AirAuto::weight() const
{

return Auto::weight();
}

The second possibility from the two above is preferable, since it relieves the programmer who uses

the class AirAuto of special precautions.

However, apart from these explicit solutions, there is a more elegant one, discussed in the next

section.

14.4.2 Virtual base classes

As illustrated in Figure 14.2, an AirAuto represents two Vehicles. The result is not only an
ambiguity in the functions which access the weight data, but also the presence of two weight
fields. This is somewhat redundant, since we can assume that an AirAuto has just one weight.

We can achieve the situation that an AirAuto is only one Vehicle, yet used multiple derivation.
This is realized by defining the base class that is multiply mentioned in a derived class’ inheritance

tree as a virtual base class. For the class AirAuto this means that the derivation of Land and Air
is changed:

class Land: virtual public Vehicle
{

// etc
};

class Auto: public Land
{

2such as the one in James Bond vs. the Man with the Golden Gun...
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Figure 14.3: Internal organization of an AirAuto object when the base classes are virtual.

// etc
};

class Air: virtual public Vehicle
{

// etc
};

class AirAuto: public Auto, public Air
{
};

The virtual derivation ensures that via the Land route, a Vehicle is only added to a class when
a virtual base class was not yet present. The same holds true for the Air route. This means that
we can no longer say via which route a Vehicle becomes a part of an AirAuto; we can only say
that there is an embedded Vehicle object. The internal organization of an AirAuto after virtual
derivation is shown in Figure 14.3. Note the following:

• When base classes of a class using multiple derivation are themselves virtually derived from

a base class (as shown above), the base class constructor normally called when the derived

class constructor is called, is no longer used: its base class initializer is ignored. Instead,

the base class constructor will be called independently from the derived class constructors.

Assume we have two classes, Derived1 and Derived2, both (possibly virtually) derived from
Base. We will address the question which constructors will be called when a class Final:
public Derived1, public Derived2 is defined. To distinguish the several constructors
that are involved, we will use Base1() to indicate the Base class constructor that is called
as base class initializer for Derived1 (and analogously: Base2() belonging to Derived2),
while Base() indicates the default constructor of the class Base. Apart from the Base class
constructor, we use Derived1() and Derived2() to indicate the base class initializers for
the class Final. We now distinguish the following cases when constructing the class Final:
public Derived1, public Derived2:

– classes:

Derived1: public Base
Derived2: public Base

This is the normal, non virtual multiple derivation. There are two Base classes in
the Final object, and the following constructors will be called (in the mentioned
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order):

Base1(),
Derived1(),
Base2(),
Derived2()

– classes:

Derived1: public Base
Derived2: virtual public Base

Only Derived2 uses virtual derivation. For the Derived2 part the base class
initializer will be omitted, and the default Base class constructor will be called.
Furthermore, this ‘detached’ base class constructor will be called first:

Base(),
Base1(),
Derived1(),
Derived2()

Note that Base() is called first, not Base1(). Also note that, as only one derived
class uses virtual derivation, there are still two Base class objects in the even-
tual Final class. Merging of base classes only occurs with multiple virtual base
classes.

– classes:

Derived1: virtual public Base
Derived2: public Base

Only Derived1 uses virtual derivation. For the Derived1 part the base class ini-
tializer will now be omitted, and the default Base class constructor will be called
instead. Note the difference with the first case: Base1() is replaced by Base().
Should Derived1 happen to use the default Base constructor, no differencewould
be noted here with the first case:

Base(),
Derived1(),
Base2(),
Derived2()

– classes:

Derived1: virtual public Base
Derived2: virtual public Base

Here both derived classes use virtual derivation, and so only one Base class object
will be present in the Final class. Note that now only one Base class constructor
is called: for the detached (merged) Base class object:

Base(),
Derived1(),
Derived2()

• Virtual derivation is, in contrast to virtual functions, a pure compile-time issue: whether a

derivation is virtual or not defines how the compiler builds a class definition from other classes.

Summarizing, using virtual derivation avoids ambiguity when member functions of a base class are

called. Furthermore, duplication of data members is avoided.
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14.4.3 When virtual derivation is not appropriate

In contrast to the previous definition of a class such as AirAuto, situations may arise where the dou-
ble presence of the members of a base class is appropriate. To illustrate this, consider the definition

of a Truck from section 13.4:

class Truck: public Auto
{

int d_trailer_weight;

public:
Truck();
Truck(int engine_wt, int sp, char const *nm,

int trailer_wt);

void setWeight(int engine_wt, int trailer_wt);
int weight() const;

};

Truck::Truck(int engine_wt, int sp, char const *nm,
int trailer_wt)

:
Auto(engine_wt, sp, nm)

{
d_trailer_weight = trailer_wt;

}

int Truck::weight() const
{

return // sum of:
Auto::weight() + // engine part plus
trailer_wt; // the trailer

}

This definition shows how a Truck object is constructed to contain two weight fields: one via its
derivation from Auto and one via its own int d_trailer_weight data member. Such a definition
is of course valid, but it could also be rewritten. We could derive a Truck from an Auto and from
a Vehicle, thereby explicitly requesting the double presence of a Vehicle; one for the weight of
the engine and cabin, and one for the weight of the trailer. A small point of interest here is that a

derivation like

class Truck: public Auto, public Vehicle

is not accepted by the C++ compiler: a Vehicle is already part of an Auto, and is therefore not
needed. An intermediate class solves the problem: we derive a class TrailerVeh from Vehicle,
and Truck from Auto and from TrailerVeh. All ambiguities concerning the member functions are
then be solved for the class Truck:

class TrailerVeh: public Vehicle
{

public:
TrailerVeh(int wt);

};
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inline TrailerVeh::TrailerVeh(int wt)
:

Vehicle(wt)
{}

class Truck: public Auto, public TrailerVeh
{

public:
Truck();
Truck(int engine_wt, int sp, char const *nm, int trailer_wt);
void setWeight(int engine_wt, int trailer_wt);
int weight() const;

};

inline Truck::Truck(int engine_wt, int sp, char const *nm,
int trailer_wt)

:
Auto(engine_wt, sp, nm),
TrailerVeh(trailer_wt)

{}

inline int Truck::weight() const
{

return // sum of:
Auto::weight() + // engine part plus
TrailerVeh::weight(); // the trailer

}

14.5 Run-time type identification

C++ offers two ways to retrieve the type of objects and expressions while the program is running.

The possibilities of C++’s run-time type identification are limited compared to languages like Java.

Normally, C++ uses static type checking and static type identification. Static type checking and

determination is possibly safer and certainly more efficient than run-time type identification, and

should therefore be used wherever possible. Nonetheles, C++ offers run-time type identification by

providing the dynamic cast and typeid operators.

• The dynamic_cast<>() operator can be used to convert a base class pointer or reference to a
derived class pointer or reference. This is called down-casting.

• The typeid operator returns the actual type of an expression.

These operators operate on class type objects, containing at least one virtual member function.

14.5.1 The dynamic_cast operator

The dynamic_cast<>() operator is used to convert a base class pointer or reference to, respectively,
a derived class pointer or reference.

A dynamic cast is performed run-time. A prerequisite for using the dynamic cast operator is the

existence of at least one virtual member function in the base class.
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In the following example a pointer to the class Derived is obtained from the Base class pointer bp:

class Base
{

public:
virtual ~Base();

};

class Derived: public Base
{

public:
char const *toString();

};
inline char const *Derived::toString()
{

return "Derived object";
}

int main()
{

Base *bp;
Derived *dp,
Derived d;

bp = &d;

dp = dynamic_cast<Derived *>(bp);

if (dp)
cout << dp->toString() << endl;

else
cout << "dynamic cast conversion failed\n";

}

Note the test: in the if condition the success of the dynamic cast is checked. This must be done run-
time, as the compiler can’t do this all by itself. If a base class pointer is provided, the dynamic cast

operator returns 0 on failure and a pointer to the requested derived class on success. Consequently,

if there are multiple derived classes, a series of checks could be performed to find the actual derived

class to which the pointer points (In the next example derived classes are only declared):

class Base
{

public:
virtual ~Base();

};
class Derived1: public Base;
class Derived2: public Base;

int main()
{

Base *bp;
Derived1 *d1,
Derived1 d;
Derived2 *d2;
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bp = &d;

if ((d1 = dynamic_cast<Derived1 *>(bp)))
cout << *d1 << endl;

else if ((d2 = dynamic_cast<Derived2 *>(bp)))
cout << *d2 << endl;

}

Alternatively, a reference to a base class objectmay be available. In this case the dynamic_cast<>()
operator will throw an exception if it fails. For example:

#include <iostream>

class Base
{

public:
virtual ~Base();
virtual char const *toString();

};
inline Base::~Base()
{}
inline char const *Base::toString()
{

return "Base::toString() called";
}

class Derived1: public Base
{};

class Derived2: public Base
{};

void process(Base &b)
{

try
{

std::cout << dynamic_cast<Derived1 &>(b).toString() << std::endl;
}
catch (std::bad_cast)
{}

try
{

std::cout << dynamic_cast<Derived2 &>(b).toString() << std::endl;
}
catch (std::bad_cast)
{

std::cout << "Bad cast to Derived2\n";
}

}

int main()
{
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Derived1 d;

process(d);
}
/*

Generated output:

Base::toString() called
Bad cast to Derived2

*/

In this example the value std::bad_cast is introduced. The std::bad_cast exception is thrown
if the dynamic cast of a reference to a derived class object fails.

Note the form of the catch clause: bad_cast is the name of a type. In section 16.4.1 the construc-
tion of such a type is discussed.

The dynamic cast operator is a useful tool when an existing base class cannot or should not be

modified (e.g., when the sources are not available), and a derived class may be modified instead.

Code receiving a base class pointer or reference may then perform a dynamic cast to the derived

class to access the derived class’s functionality.

Casts from a base class reference or pointer to a derived class reference or pointer are called down-

casts.

One may wonder what the difference is between a dynamic_cast and a reinterpret_cast. Of
course, the dynamic_cast may be used with references and the reinterpret_cast can only be
used for pointers. But what’s the difference when both arguments are pointers?

When the reinterpret_cast is used, we tell the compiler that it literally should re-interpret a
block of memory as something else. A well known example is obtaining the individual bytes of an

int. An int consists of sizeof(int) bytes, and these bytes can be accessed by reinterpreting
the location of the int value as a char *. When using a reinterpret_cast the compiler offers
absolutely no safeguard. The compiler will happily reinterpret_cast an int * to a double *,
but the resulting dereference produces at the very least a meaningless value.

The dynamic_cast will also reinterpret a block of memory as something else, but here a run-time
safeguard is offered. The dynamic cast fails when the requested type doesn’t match the actual type

of the object we’re pointing at. The dynamic_cast’s purpose is also much more restricted than the
reinterpret_cast’s purpose, as it should only be used for downcasting to derived classes having
virtual members.

14.5.2 The ‘typeid’ operator

As with the dynamic_cast<>() operator, the typeid is usually applied to base class objects, that
are actually derived class objects. Similarly, the base class should contain one or more virtual func-

tions.

In order to use the typeid operator, source files must

#include <typeinfo>

Actually, the typeid operator returns an object of type type_info, which may, e.g., be compared to
other type_info objects.
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The class type_infomay be implemented differently by different implementations, but at the very
least it has the following interface:

class type_info
{

public:
virtual ~type_info();
int operator==(const type_info &other) const;
int operator!=(const type_info &other) const;
char const *name() const;

private:
type_info(type_info const &other);
type_info &operator=(type_info const &other);

};

Note that this class has a private copy constructor and overloaded assignment operator. This pre-

vents the normal construction or assignment of a type_info object. Such type_info objects are
constructed and returned by the typeid operator. Implementations, however, may choose to extend
or elaborate the type_info class and provide, e.g., lists of functions that can be called with a certain
class.

If the type_id operator is given a base class reference (where the base class contains at least one
virtual function), it will indicate that the type of its operand is the derived class. For example:

class Base; // contains at least one virtual function
class Derived: public Base;

Derived d;
Base &br = d;

cout << typeid(br).name() << endl;

In this example the typeid operator is given a base class reference. It will print the text “Derived”,
being the class name of the class br actually refers to. If Base does not contain virtual functions,
the text “Base” would have been printed.

The typeid operator can be used to determine the name of the actual type of expressions, not just
of class type objects. For example:

cout << typeid(12).name() << endl; // prints: int
cout << typeid(12.23).name() << endl; // prints: double

Note, however, that the above example is suggestive at most of the type that is printed. It may be

int and double, but this is not necessarily the case. If portability is required, make sure no tests
against these static, built-in text-strings are required. Check out what your compiler produces in

case of doubt.

In situations where the typeid operator is applied to determine the type of a derived class, it
is important to realize that a base class reference should be used as the argument of the typeid
operator. Consider the following example:

class Base; // contains at least one virtual function
class Derived: public Base;
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Base *bp = new Derived; // base class pointer to derived object

if (typeid(bp) == typeid(Derived *)) // 1: false
...

if (typeid(bp) == typeid(Base *)) // 2: true
...

if (typeid(bp) == typeid(Derived)) // 3: false
...

if (typeid(bp) == typeid(Base)) // 4: false
...

if (typeid(*bp) == typeid(Derived)) // 5: true
...

if (typeid(*bp) == typeid(Base)) // 6: false
...

Base &br = *bp;

if (typeid(br) == typeid(Derived)) // 7: true
...

if (typeid(br) == typeid(Base)) // 8: false
...

Here, (1) returns false as a Base * is not a Derived *. (2) returns true, as the two pointer
types are the same, (3) and (4) return false as pointers to objects are not the objects themselves.

On the other hand, if *bp is used in the above expressions, then (1) and (2) return false as
an object (or reference to an object) is not a pointer to an object, whereas (5) now returns true:

*bp actually refers to a Derived class object, and typeid(*bp) will return typeid(Derived). A
similar result is obtained if a base class reference is used: 7 returning true and 8 returning false.

When a 0-pointer is passed to the operator typeid a bad_typeid exception is thrown.

14.6 Deriving classes from ‘streambuf’

The class streambuf (see section 5.7 and figure 5.2) has many (protected) virtual member func-
tions (see section 5.7.1) that are used by the stream classes using streambuf objects. By deriving a
class from the class streambuf these member functions may be overriden in the derived classes,
thus implementing a specialization of the class streambuf for which the standard istream and
ostream objects can be used.

Basically, a streambuf interfaces to some device. The normal behavior of the stream-class objects
remains unaltered. So, a string extraction from a streambuf object will still return a consecutive
sequence of non white space delimited characters. If the derived class is used for input operations,

the following member functions are serious candidates to be overridden. Examples in which some of

these functions are overridden will be given later in this section:

• int streambuf::pbackfail(int c):

This member is called when

– gptr() == 0: no buffering used,

– gptr() == eback(): no more room to push back,
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– *gptr() != c: a different character than the next character to be read must be
pushed back.

If c == endOfFile() then the input device must be reset one character, otherwise
c must be prepended to the characters to be read. The function will return EOF on
failure. Otherwise 0 can be returned. The function is called when other attempts to

push back a character fail.

• streamsize streambuf::showmanyc():

This member must return a guaranteed lower bound on the number of characters

that can be read from the device before uflow() or underflow() returns EOF. By
default 0 is returned (meaning at least 0 characters will be returned before the latter

two functions will return EOF). When a positive value is returned then the next call
to the u(nder)flow()member will not return EOF.

• int streambuf::uflow():

By default, this function calls underflow(). If underflow() fails, EOF is returned.
Otherwise, the next character available character is returned as *gptr() following
a gbump(-1). The member also moves the pending character that is returned to the
backup sequence. This is different from underflow(), which also returns the next
available character, but does not alter the input position.

• int streambuf::underflow():

This member is called when

– there is no input buffer (eback() == 0)

– gptr() >= egptr(): there are no more pending input characters.

It returns the next available input character, which is the character at gptr(), or
the first available character from the input device.

Since this member is eventually used by other member functions for reading charac-

ters from a device, at the very least this member function must be overridden for new

classes derived from streambuf.

• streamsize streambuf::xsgetn(char *buffer, streamsize n):

This member function should act as if the returnvalues of n calls of snext() are as-
signed to consecutive locations of buffer. If EOF is returned then reading stops. The
actual number of characters read is returned. Overridden versions could optimize

the reading process by, e.g., directly accessing the input buffer.

When the derived class is used for output operations, the next member functions should be consid-

ered:

• int streambuf::overflow(int c):

This member is called to write characters from the pending sequence to the output

device. Unless c is EOF, when calling this function and it returns c it may be assumed
that the character c is appended to the pending sequence. So, if the pending sequence
consists of the characters ’h’, ’e’, ’l’ and ’l’, and c == ’o’, then eventually
‘hello’ will be written to the output device.

Since this member is eventually used by other member functions for writing charac-

ters to a device, at the very least this member function must be overridden for new

classes derived from streambuf.
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• streamsize streambuf::xsputn(char const *buffer, streamsize n):

This member function should act as if n consecutive locations of buffer are passed
to sputc(). If EOF is returned by this latter member, then writing stops. The actual
number of characters written is returned. Overridden versions could optimize the

writing process by, e.g., directly accessing the output buffer.

For derived classes using buffers and supporting seek operations, consider these member functions:

• streambuf *streambuf::setbuf(char *buffer, streamsize n):

This member function is called by the pubsetbuf()member function.

• pos_type streambuf::seekoff(off_type offset, ios::seekdir way, ios::openmode
mode = ios::in |ios::out):

This member function is called to reset the position of the next character to be pro-

cessed. It is called by pubseekoff(). The new position or an invalid position (e.g.,
-1) is returned.

• pos_type streambuf::seekpos(pos_type offset, ios::openmode mode = ios::in
|ios::out):

This member function acts similarly as seekoff(), but operates with absolute rather
than relative positions.

• int sync():

This member function flushes all pending characters to the device, and/or resets an

input device to the position of the first pending character, waiting in the input buffer

to be consumed. It returns 0 on success, -1 on failure. As the default streambuf is
not buffered, the default implementation also returns 0.

Next, consider the following problem, which will be solved by constructing a class CapsBuf derived
from streambuf. The problem is to construct a streambuf writing its information to the standard
output stream in such a way that all white-space delimited series of characters are capitalized. The

class CapsBuf obviously needs an overridden overflow()member and a minimal awareness of its
state. Its state changes from ‘Capitalize’ to ‘Literal’ as follows:

• The start state is ‘Capitalize’;

• Change to ‘Capitalize’ after processing a white-space character;

• Change to ‘Literal’ after processing a non-whitespace character.

A simple variable to remember the last character allows us to keep track of the current state. Since

‘Capitalize’ is similar to ‘last character processed is a white space character’ we can simply initialize

the variable with a white space character, e.g., the blank space. Here is the initial definition of the

class CapsBuf:

#include <iostream>
#include <streambuf>
#include <ctype.h>

class CapsBuf: public std::streambuf
{
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int d_last;

public:
CapsBuf()
:

d_last(’ ’)
{}

protected:
int overflow(int c) // interface to the device.
{

std::cout.put(isspace(d_last) ? toupper(c) : c);
return d_last = c;

}
};

An example of a program using CapsBuf is:

#include "capsbuf1.h"
using namespace std;

int main()
{

CapsBuf cb;

ostream out(&cb);

out << hex << "hello " << 32 << " worlds" << endl;

return 0;
}
/*

Generated output:

Hello 20 Worlds

*/

Note the use of the insertion operator, and note that all type and radix conversions (inserting hex
and the value 32, coming out as the ASCII-characters ’2’ and ’0’) is neatly done by the ostream
object. The real purpose in life for CapsBuf is to capitalize series of ASCII-characters, and that’s
what it does very well.

Next, we realize that inserting characters into streams can also be realized by a construction like

cout << cin.rdbuf();

or, boiling down to the same thing:

cin >> cout.rdbuf();

Realizing that this is all about streams, we now try, in the main() function above:

cin >> out.rdbuf();
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We compile and link the program to the executable caps, and start:

echo hello world | caps

Unfortunately, nothing happens.... Nor do we get any reaction when we try the statement cin >>

cout.rdbuf(). What’s wrong here?

The difference between cout << cin.rdbuf(), which does produce the expected results and our
using of cin >> out.rdbuf() is that the operator>>(streambuf *) (and its insertion coun-
terpart) member function performs a streambuf-to-streambuf copy only if the respective stream
modes are set up correctly. So, the argument of the extraction operator must point to a streambuf
into which information can be written. By default, no stream mode is set for a plain streambuf
object. As there is no constructor for a streambuf accepting an ios::openmode, we force the re-
quired ios::out mode by defining an output buffer using setp(). We do this by defining a buffer,
but don’t want to use it, so we let its size be 0. Note that this is something different than using

0-argument values with setp(), as this would indicate ‘no buffering’, which would not alter the
default situation. Although any non-0 value could be used for the empty [begin, begin) range,
we decided to define a (dummy) local char variable in the constructor, and use [&dummy, &dummy)
to define the empty buffer. This effectively defines CapsBuf as an output buffer, thus activating the

istream::operator>>(streambuf *)

member. As the variable dummy is not used by setp() it may be defined as a local variable. It’s only
purpose in life it to indicate to setp() that no buffer is used. Here is the revised constructor of the
class CapsBuf:

CapsBuf::CapsBuf()
:

d_last(’ ’)
{

char dummy;
setp(&dummy, &dummy);

}

Now the program can use either

out << cin.rdbuf();

or:

cin >> out.rdbuf();

Actually, the ostream wrapper isn’t really needed here:

cin >> &cb;

would have produced the same results.

It is not clear whether the setp() solution proposed here is actually a kludge. After all, shouldn’t
the ostream wrapper around cb inform the CapsBuf that it should act as a streambuf for doing
output operations?
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14.7 A polymorphic exception class

Earlier in the Annotations (section 8.3.1) we hinted at the possibility of designing a class Exception
whose process() member would behave differently, depending on the kind of exception that was
thrown. Now that we’ve introduced polymorphism, we can further develop this example.

By now it will probably be clear that our class Exception should be a virtual base class, from which
special exception handling classes can be derived. It could even be argued that Exception can be
an abstract base class declaring only pure virtual member functions. In the discussion in section

8.3.1 a member function severity() was mentioned which might not be a proper candidate for
a purely abstract member function, but for that member we can now use the completely general

dynamic_cast<>() operator.

The (abstract) base class Exception is designed as follows:

#ifndef _EXCEPTION_H_
#define _EXCEPTION_H_

#include <iostream>
#include <string>

class Exception
{

friend std::ostream &operator<<(std::ostream &str,
Exception const &e);

std::string d_reason;

public:
virtual ~Exception();
virtual void process() const = 0;
virtual operator std::string() const;

protected:
Exception(char const *reason);

};

inline Exception::~Exception()
{}
inline Exception::operator std::string() const
{

return d_reason;
}
inline Exception::Exception(char const *reason)
:

d_reason(reason)
{}
inline std::ostream &operator<<(std::ostream &str, Exception const &e)
{

return str << e.operator std::string();
}

#endif

The operator string() member function of course replaces the toString() member used in
section 8.3.1. The friend operator<<() function is using the (virtual) operator string()
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member so that we’re able to insert an Exception object into an ostream. Apart from that, notice
the use of a virtual destructor, doing nothing.

A derived class FatalException: public Exception could now be defined as follows (using a
very basic process() implementation indeed):

#ifndef _FATALEXCEPTION_H_
#define _FATALEXCEPTION_H_

#include "exception.h"

class FatalException: public Exception
{

public:
FatalException(char const *reason);
void process() const;

};
inline FatalException::FatalException(char const *reason)
:

Exception(reason)
{}
inline void FatalException::process() const
{

exit(1);
}

#endif

The translation of the example at the end of section 8.3.1 to the current situation can now eas-

ily be made (using derived classes WarningException and MessageException), constructed like
FatalException:

#include <iostream>
#include "message.h"
#include "warning.h"
using namespace std;

void initialExceptionHandler(Exception const *e)
{

cout << *e << endl; // show the plain-text information

if
(

!dynamic_cast<MessageException const *>(e)
&&
!dynamic_cast<WarningException const *>(e)

)
throw; // Pass on other types of Exceptions

e->process(); // Process a message or a warning
delete e;

}
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14.8 How polymorphism is implemented

This section briefly describes how polymorphism is implemented in C++. It is not necessary to

understand how polymorphism is implemented if using this feature is the only intention. However,

we think it’s nice to know how polymorphism is at all possible. Besides, the following discussion

does explain why there is a cost of polymorphism in terms of memory usage.

The fundamental idea behind polymorphism is that the compiler does not know which function to

call compile-time; the appropriate function will be selected run-time. That means that the address

of the function must be stored somewhere, to be looked up prior to the actual call. This ‘some-

where’ place must be accessible from the object in question. E.g., when a Vehicle *vp points to a
Truck object, then vp->weight() calls a member function of Truck; the address of this function is
determined from the actual object which vp points to.

A common implementation is the following: An object containing virtual member functions holds

as its first data member a hidden field, pointing to an array of pointers containing the addresses of

the virtual member functions. The hidden data member is usually called the vpointer, the array of

virtual member function addresses the vtable. Note that the discussed implementation is compiler-

dependent, and is by no means dictated by the C++ ANSI/ISO standard.

The table of addresses of virtual functions is shared by all objects of the class. Multiple classes may

even share the same table. The overhead in terms of memory consumption is therefore:

• One extra pointer field per object, which points to:

• One table of pointers per (derived) class storing the addresses of the class’s virtual functions.

Consequently, a statement like vp->weight() first inspects the hidden data member of the object
pointed to by vp. In the case of the vehicle classification system, this data member points to a
table of two addresses: one pointer for the function weight() and one pointer for the function
setWeight(). The actual function which is called is determined from this table.

The internal organization of the objects having virtual functions is further illustrated in figures

Figure 14.4 and Figure 14.5 (provided by Guillaume Caumon3).

As can be seen from figures Figure 14.4 and Figure 14.5, all objects which use virtual functions must

have one (hidden) data member to address a table of function pointers. The objects of the classes

Vehicle and Auto both address the same table. The class Truck, however, introduces its own
version of weight(): therefore, this class needs its own table of function pointers.

14.9 Undefined reference to vtable ...

Occasionaly, the linker will complain with a message like the following:

In function
‘Derived::Derived[in-charge]()’:
: undefined reference to ‘vtable for Derived’

This error is caused by the absence of the implementation of a virtual function in a derived class,

while the function is mentioned in the derived class’s interface.

3mailto:Guillaume.Caumon@ensg.inpl-nancy.fr
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Figure 14.4: Internal organization objects when virtual functions are defined.

Figure 14.5: Complementary figure, provided by Guillaume Caumon
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Such a situation can easily be created:

• Construct a (complete) base class defining a virtual member function;

• Construct a Derived class which mentions the virtual function in its interface;

• The Derived class’s virtual function, overriding the base class’s function having the same name,

is not implemented. Of course, the compiler doesn’t know that the derived class’s function is

not implemented and will, when asked, generate code to create a derived class object;

• However, the linker is unable to find the derived class’s virtual member function. Therefore, it

is unable to construct the derived class’s vtable;

• The linker complains with the message:

undefined reference to ‘vtable for Derived’

Here is an example producing the error:

class Base
{

public:
virtual void member();

};

inline void Base::member()
{}

class Derived
{

public:
virtual void member(); // only declared

};

int main()
{

Derived d; // Will compile, since all members were declared.
// Linking will fail, since we don’t have the
// implementation of Derived::member()

}

It’s of course easy to correct the error: implement the derived class’s missing virtual member func-

tion.

14.10 Virtual constructors

As we have seen (section 14.2) C++ supports virtual destructors. Like many other object oriented

languages (e.g., Java), however, the notion of a virtual constructor is not supported. The absence of

a virtual constructor turns into a problem when only a base class reference or pointer is available,

and a copy of a derived class object is required. Gamma et al. (1995) developed the Prototype Design

Pattern to deal with this situation.
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In the Prototype Design Pattern each derived class is given the task to make available a member

function returning a pointer to a new copy of the object for which the member is called. The usual

name for this function is clone(). A base class supporting ‘cloning’ only needs to define a virtual
destructor, and a virtual copy constructor, a pure virtual function, having the prototype virtual
Base *clone() const = 0.

Since clone() is a pure virtual function all derived classes must implement their own ‘virtual
constructor’.

This setup suffices in most situations where we have a pointer or reference to a base class, but

fails for example with abstract containers. We can’t create a vector<Base>, with Base featuring
the pure virtual copy() member in its interface, as Base() is called to initialize new elements of
such a vector. This is impossible as clone() is a pure virtual function, so a Base() object can’t be
constructed.

The intuitive solution, providing clone() with a default implementation, defining it as an ordinary
virtual function, fails too as the container calls the normal Base(Base const &) copy constructor,
which would then have to call clone() to obtain a copy of the copy constructor’s argument. At
this point it becomes unclear what to do with that copy, as the new Base object already exists, and
contains no Base pointer or reference data member to assign clone()’s return value to.

An alternative and preferred approach is to keep the original Base class (defined as an abstract base
class), and to manage the Base pointers returned by clone() in a separate class Clonable(). In
chapter 16 we’ll encounter means to merge Base and Clonable into one class, but for now we’ll
define them as separate classes.

The class Clonable is a very standard class. As it contains a pointer member, it needs a copy
constructor, destructor, and overloaded assignment operator (cf. chapter 7). It’s given at least one

non-standard member: Base &get() const, returning a reference to the derived object to which
Clonable’s Base * data member refers, and optionally a Clonable(Base const &) constructor
to allow promotions from objects of classes derived from Base to Clonable.

Any non-abstract class derived from Basemust implement Base *clone(), returning a pointer to
a newly created (allocated) copy of the object for which clone() is called.

Once we have defined a derived class (e.g., Derived1), we can put our Clonable and Base facilities
to good use.

In the next example we see main() in which a vector<Clonable> was defined. An anonymous
Derived1 object is thereupon inserted into the vector. This proceeds as follows:

• The anonymous Derived1 object is created;

• It is promoted to Clonable, using Clonable(Base const &), calling Derived1::clone();

• The just created Clonable object is inserted into the vector, using Clonable(Clonable
const &), again using Derived1::clone().

In this sequence, two temporary objects are used: the anonymous object and the Derived1 object
constructed by the first Derived1::clone() call. The third Derived1 object is inserted into the
vector. Having inserted the object into the vector, the two temporary objects are destroyed.

Next, the get() member is used in combination with typeid to show the actual type of the Base
& object: a Derived1 object.

The most interesting part of main() is the line vector<Clonable> v2(bv), where a copy of the
first vector is created. As shown, the copy keeps intact the actual types of the Base references.



14.10. VIRTUAL CONSTRUCTORS 347

At the end of the program, we have created two Derived1 objects, which are then correctly deleted
by the vector’s destructors. Here is the full program, illustrating the ‘virtual constructor’ concept:

#include <iostream>
#include <vector>
#include <typeinfo>

class Base
{

public:
virtual ~Base();
virtual Base *clone() const = 0;

};

inline Base::~Base()
{}

class Clonable
{

Base *d_bp;

public:
Clonable();
~Clonable();
Clonable(Clonable const &other);
Clonable &operator=(Clonable const &other);

// New for virtual constructions:
Clonable(Base const &bp);
Base &get() const;

private:
void copy(Clonable const &other);

};

inline Clonable::Clonable()
:

d_bp(0)
{}
inline Clonable::~Clonable()
{

delete d_bp;
}
inline Clonable::Clonable(Clonable const &other)
{

copy(other);
}

Clonable &Clonable::operator=(Clonable const &other)
{

if (this != &other)
{

delete d_bp;
copy(other);
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}
return *this;

}

// New for virtual constructions:
inline Clonable::Clonable(Base const &bp)
{

d_bp = bp.clone(); // allows initialization from
} // Base and derived objects
inline Base &Clonable::get() const
{

return *d_bp;
}

void Clonable::copy(Clonable const &other)
{

if ((d_bp = other.d_bp))
d_bp = d_bp->clone();

}

class Derived1: public Base
{

public:
~Derived1();
virtual Base *clone() const;

};

inline Derived::~Derived1()
{

std::cout << "~Derived1() called\n";
}
inline Base *Derived::clone() const
{

return new Derived1(*this);
}

using namespace std;

int main()
{

vector<Clonable> bv;

bv.push_back(Derived1());
cout << "==\n";

cout << typeid(bv[0].get()).name() << endl;
cout << "==\n";

vector<Clonable> v2(bv);
cout << typeid(v2[0].get()).name() << endl;
cout << "==\n";

}



Chapter 15

Classes having pointers to

members

Classes having pointer data members have been discussed in detail in chapter 7. As we have
seen, when pointer data-members occur in classes, such classes deserve some special treatment.

By now it is well known how to treat pointer data members: constructors are used to initialize

pointers, destructors are needed to delete the memory pointed to by the pointer data members.

Furthermore, in classes having pointer data members copy constructors and overloaded assignment

operators are normally needed as well.

However, in some situations we do not need a pointer to an object, but rather a pointer to members

of an object. In this chapter these special pointers are the topic of discussion.

15.1 Pointers to members: an example

Knowing how pointers to variables and objects are used does not intuitively lead to the concept of

pointers to members . Even if the return types and parameter types of member functions are taken

into account, surprises are likely to be encountered. For example, consider the following class:

class String
{

char const *(*d_sp)() const;

public:
char const *get() const;

};

For this class, it is not possible to let a char const *(*d_sp)() const data member point to
the get() member function of the String class: d_sp cannot be given the address of the member
function get().

One of the reasons why this doesn’t work is that the variable d_sp has global scope, while the
member function get() is defined within the String class, and has class scope. The fact that
the variable d_sp is part of the String class is irrelevant. According to d_sp’s definition, it points
to a function living outside of the class.

349
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Consequently, in order to define a pointer to a member (either data or function, but usually a func-

tion) of a class, the scope of the pointer must be within the class’s scope. Doing so, a pointer to a

member of the class String can be defined as

char const *(String::*d_sp)() const;

So, due to the String:: prefix, d_sp is defined as a pointer only in the context of the class String.
It is defined as a pointer to a function in the class String, not expecting arguments, not modifying
its object’s data, and returning a pointer to constant characters.

15.2 Defining pointers to members

Pointers to members are defined by prefixing the normal pointer notation with the appropriate

class plus scope resolution operator. Therefore, in the previous section, we used char const *
(String::*d_sp)() const to indicate:

• d_sp is a pointer (*d_sp),

• to something in the class String (String::*d_sp).

• It is a pointer to a const function, returning a char const *: char const * (String::*d_sp)()
const

• The prototype of the corresponding function is therefore:

char const *String::somefun() const;

a const parameterless function in the class String, returning a char const *.

Actually, the normal procedure for constructing pointers can still be applied:

• put parentheses around the function name (and its class name):

char const * ( String::somefun ) () const

• Put a pointer (a star (*)) character immediately before the function-name itself:

char const * ( String:: * somefun ) () const

• Replace the function name with the name of the pointer variable:

char const * (String::*d_sp)() const

Another example, this time defining a pointer to a data member. Assume the class String contains
a string d_text member. How to construct a pointer to this member? Again we follow the basic
procedure:

• put parentheses around the variable name (and its class name):

string (String::d_text)
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• Put a pointer (a star (*)) character immediately before the variable-name itself:

string (String::*d_text)

• Replace the variable name with the name of the pointer variable:

string (String::*tp)

In this case, the parentheses are superfluous and may be omitted:

string String::*tp

Alternatively, a very simple rule of thumb is

• Define a normal (i.e., global) pointer variable,

• Prefix the class name to the pointer character, once you point to something inside a class

For example, the following pointer to a global function

char const * (*sp)() const;

becomes a pointer to a member function after prefixing the class-scope:

char const * (String::*sp)() const;

Nothing in the above discussion forces us to define these pointers to members in the String class
itself. The pointer to a member may be defined in the class (so it becomes a data member itself), or

in another class, or as a local or global variable. In all these cases the pointer to member variable

can be given the address of the kind of member it points to. The important part is that a pointer to

member can be initialized or assigned without the need for an object of the corresponding class.

Initializing or assigning an address to such a pointer does nothing but indicating to which member

the pointer will point. This can be considered a kind of relative address: relative to the object for

which the function is called. No object is required when pointers to members are initialized or

assigned. On the other hand, while it is allowed to initialize or assign a pointer to member, it is (of

course) not possible to access these members without an associated object.

In the following example initialization of and assignment to pointers to members is illustrated (for

illustration purposes all members of PointerDemo are defined public). In the example itself, note
the use of the &-operator to determine the addresses of the members. These operators, as well as the
class-scopes are required. Even when used inside the class member implementations themselves:

class PointerDemo
{

public:
unsigned d_value;
unsigned get() const;

};

inline unsigned PointerDemo::get() const
{

return d_value;
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}

int main()
{ // initialization

unsigned (PointerDemo::*getPtr)() const = &PointerDemo::get;
unsigned PointerDemo::*valuePtr = &PointerDemo::d_value;

getPtr = &PointerDemo::get; // assignment
valuePtr = &PointerDemo::d_value;

}

Actually, nothing special is involved: the difference with pointers at global scope is that we’re now

restricting ourselves to the scope of the PointerDemo class. Because of this restriction, all pointer
definitions and all variables whose addresses are used must be given the PointerDemo class scope.
Pointers to members can also be used with virtual member functions. No further changes are
required if, e.g., get() is defined as a virtual member function.

15.3 Using pointers to members

In the previous section we’ve seen how to define pointers to member functions. In order to use these

pointers, an object is always required. With pointers operating at global scope, the dereferencing

operator * is used to reach the object or value the pointer points to. With pointers to objects the field
selector operator operating on pointers (->) or the field selector operating operating on objects (.)
can be used to select appropriate members.

To use a pointer to member in combination with an object the pointer to member field selector (.*)
must be used. To use a pointer to a member via a pointer to an object the ‘pointer to member field

selector through a pointer to an object’ (->*) must be used. These two operators combine the notions
of, on the one hand, a field selection (the . and -> parts) to reach the appropriate field in an object
and, on the other hand, the notion of dereferencing: a dereference operation is used to reach the

function or variable the pointer to member points to.

Using the example from the previous section, let’s see howwe can use the pointer to member function

and the pointer to data member:

#include <iostream>

class PointerDemo
{

public:
unsigned d_value;
unsigned get() const;

};

inline unsigned PointerDemo::get() const
{

return d_value;
}

using namespace std;

int main()
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{ // initialization
unsigned (PointerDemo::*getPtr)() const = &PointerDemo::get;
unsigned PointerDemo::*valuePtr = &PointerDemo::d_value;

PointerDemo object; // (1) (see text)
PointerDemo *ptr = &object;

object.*valuePtr = 12345; // (2)
cout << object.*valuePtr << endl;
cout << object.d_value << endl;

ptr->*valuePtr = 54321; // (3)
cout << object.d_value << endl;

cout << (object.*getPtr)() << endl; // (4)
cout << (ptr->*getPtr)() << endl;

}

We note:

• At statement (1) a PointerDemo object and a pointer to such an object is defined.

• At statement (2) we specify an object, and hence the .* operator, to reach themember valuePtr
points to. This member is given a value.

• At statement (3) the same member is assigned another value, but this time using the pointer

to a PointerDemo object. Hence we use the ->* operator.

• At statement (4) the .* and ->* are used once again, but this time to call a function through a
pointer to member. Realize that the function argument list has a higher priority than pointer

to member field selector operator, so the lattermust be protected by its own set of parentheses.

Pointers to members can be used profitably in situations where a class has a member which behaves

differently depending on, e.g., a configuration state. Consider once again a class Person from section
7.2. This class contains fields holding a person’s name, address and phone number. Let’s assume

we want to construct a Person data base of employees. The employee data base can be queried,
but depending on the kind of person querying the data base either the name, the name and phone

number or all stored information about the person is made available. This implies that a member

function like address()must return something like ‘<not available>’ in cases where the person
querying the data base is not allowed to see the person’s address, and the actual address in other

cases.

Assume the employee data base is opened with an argument reflecting the status of the employee

who wants to make some queries. The status could reflect his or her position in the organization,

like BOARD, SUPERVISOR, SALESPERSON, or CLERK. The first two categories are allowed to see all
information about the employees, a SALESPERSON is allowed to see the employee’s phone numbers,
while the CLERK is only allowed to verify whether a person is actually a member of the organization.

We now construct a member string personInfo(char const *name) in the data base class. A
standard implementation of this class could be:

string PersonData::personInfo(char const *name)
{

Person *p = lookup(name); // see if ‘name’ exists
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if (!p)
return "not found";

switch (d_category)
{

case BOARD:
case SUPERVISOR:

return allInfo(p);
case SALESPERSON:

return noPhone(p);
case CLERK:

return nameOnly(p);
}

}

Although it doesn’t take much time, the switchmust nonetheless be evaluated every time personCode()
is called. Instead of using a switch, we could define a member d_infoPtr as a pointer to a mem-
ber function of the class PersonData returning a string and expecting a Person reference as
its argument. Note that this pointer can now be used to point to allInfo(), noPhone() or
nameOnly(). Furthermore, the function that the pointer variable points to will be known by the
time the PersonData object is constructed, assuming that the employee status is given as an argu-
ment to the constructor of the PersonData object.

After having set the d_infoPtr member to the appropriate member function, the personInfo()
member function may now be rewritten:

string PersonData::personInfo(char const *name)
{

Person *p = lookup(name); // see if ‘name’ exists

return p ? (this->*d_infoPtr)(p) : "not found";
}

Note the syntactical construction when using a pointer to member fromwithin a class: this->*d_infoPtr.

The member d_infoPtr is defined as follows (within the class PersonData, omitting other mem-
bers):

class PersonData
{

string (PersonData::*d_infoPtr)(Person *p);
};

Finally, the constructor must initialize d_infoPtr to point to the correct member function. The
constructor could, for example, be given the following code (showing only the pertinent code):

PersonData::PersonData(PersonData::EmployeeCategory cat)
{

switch (cat)
{

case BOARD:
case SUPERVISOR:

d_infoPtr = &PersonData::allInfo;
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case SALESPERSON:
d_infoPtr = &PersonData::noPhone;

case CLERK:
d_infoPtr = &PersonData::nameOnly;

}
}

Note how addresses of member functions are determined: the class PersonData scope must be
specified, even though we’re already inside a member function of the class PersonData.

An example using pointers to data members is given in section 17.4.60, in the context of the stable_sort()
generic algorithm.

15.4 Pointers to static members

Static members of a class exist without an object of their class. They exist separately from any object

of their class. When these static members are public, they can be accessed as global entities, albeit

that their class names are required when they are used.

Assume that a class String has a public static member function int n_strings(), returning
the number of string objects created so far. Then, without using any String object the function
String::n_strings()may be called:

void fun()
{

cout << String::n_strings() << endl;
}

Public static members can usually be accessed like global entities (but see section 10.2.1). Private

static members, on the other hand, can be accessed only from within the context of their class: they

can only be accessed from inside the member functions of their class.

Since static members have no associated objects, but are comparable to global functions and data,

their addresses can be stored in ordinary pointer variables, operating at the global level. Actually,

using a pointer to member to address a static member of a class would produce a compilation error.

For example, the address of a static member function int String::n_strings() can simply be
stored in a variable int (*pfi)(), even though int (*pfi)() has nothing in common with the
class String. This is illustrated in the next example:

void fun()
{

int (*pfi)() = String::n_strings;
// address of the static member function

cout << (*pfi)() << endl;
// print the value produced by String::n_strings()

}
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15.5 Pointer sizes

A peculiar characteristic of pointers to members is that their sizes differ from those of ‘normal’

pointers. Consider the following little program:

#include <string>
#include <iostream>

class X
{

public:
void fun();
string d_str;

};
inline void X::fun()
{

std::cout << "hello\n";
}

using namespace std;

int main()
{

cout
<< "size of pointer to data-member: " << sizeof(&X::d_str) << "\n"
<< "size of pointer to member function: " << sizeof(&X::fun) << "\n"
<< "size of pointer to non-member data: " << sizeof(char *) << "\n"
<< "size of pointer to free function: " << sizeof(&printf) << endl;

}

/*
generated output:

size of pointer to data-member: 4
size of pointer to member function: 8
size of pointer to non-member data: 4
size of pointer to free function: 4

*/

Note that the size of a pointer to a member function is eight bytes, whereas all other pointers are

four bytes (Using the Gnu g++ compiler).

In general, these pointer sizes are not explicitly used, but their differing sizes may cause some

confusion in statements like:

printf("%p", &X::fun);

Of course, printf() is likely not the right tool to produce the value of these C++ specific pointers.
The values of these pointers can be inserted into streams when a union, reinterpreting the 8-byte
pointers as a series of size_t char values, is used:

#include <string>
#include <iostream>
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#include <iomanip>

class X
{

public:
void fun();
std::string d_str;

};

inline void X::fun()
{

std::cout << "hello\n";
}

using namespace std;

int main()
{

union
{

void (X::*f)();
unsigned char *cp;

}
u = { &X::fun };

cout.fill(’0’);
cout << hex;
for (unsigned idx = sizeof(void (X::*)()); idx-- > 0; )

cout << setw(2) << static_cast<unsigned>(u.cp[idx]);
cout << endl;

}
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Chapter 16

Nested Classes

Classes can be defined inside other classes. Classes that are defined inside other classes are called

nested classes. Nested classes are used in situations where the nested class has a close conceptual re-

lationship to its surrounding class. For example, with the class string a type string::iterator
is available which will provide all characters that are stored in the string. This string::iterator
type could be defined as an object iterator, defined as nested class in the class string.

A class can be nested in every part of the surrounding class: in the public, protected or private
section. Such a nested class can be considered a member of the surrounding class. The normal ac-

cess and rules in classes apply to nested classes. If a class is nested in the public section of a
class, it is visible outside the surrounding class. If it is nested in the protected section it is visible
in subclasses, derived from the surrounding class (see chapter 13), if it is nested in the private
section, it is only visible for the members of the surrounding class.

The surrounding class has no special privileges with respect to the nested class. So, the nested class

still has full control over the accessibility of its members by the surrounding class. For example,

consider the following class definition:

class Surround
{

public:
class FirstWithin
{

int d_variable;

public:
FirstWithin();
int var() const;

};
private:

class SecondWithin
{

int d_variable;

public:
SecondWithin();
int var() const;

};
};

359
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inline int Surround::FirstWithin::var() const
{

return d_variable;
}
inline int Surround::SecondWithin::var() const
{

return d_variable;
}

In this definition access to the members is defined as follows:

• The class FirstWithin is visible both outside and inside Surround. The class FirstWithin
therefore has global scope.

• The constructor FirstWithin() and the member function var() of the class FirstWithin
are also globally visible.

• The int d_variable datamember is only visible to the members of the class FirstWithin.
Neither the members of Surround nor the members of SecondWithin can access d_variable
of the class FirstWithin directly.

• The class SecondWithin is only visible inside Surround. The public members of the class
SecondWithin can also be used by the members of the class FirstWithin, as nested classes
can be considered members of their surrounding class.

• The constructor SecondWithin() and themember function var() of the class SecondWithin
can also only be reached by the members of Surround (and by the members of its nested
classes).

• The int d_variable datamember of the class SecondWithin is only visible to the mem-
bers of the class SecondWithin. Neither the members of Surround nor the members of
FirstWithin can access d_variable of the class SecondWithin directly.

• As always, an object of the class type is required before its members can be called. This also

holds true for nested classes.

If the surrounding class should have access rights to the private members of its nested classes or if

nested classes should have access rights to the private members of the surrounding class, the classes

can be defined as friend classes (see section 16.3).

The nested classes can be considered members of the surrounding class, but the members of nested

classes are not members of the surrounding class. So, a member of the class Surround may not ac-
cess FirstWithin::var() directly. This is understandable considering the fact that a Surround
object is not also a FirstWithin or SecondWithin object. In fact, nested classes are just type-
names. It is not implied that objects of such classes automatically exist in the surrounding class.

If a member of the surrounding class should use a (non-static) member of a nested class then the

surrounding class must define a nested class object, which can thereupon be used by the members

of the surrounding class to use members of the nested class.

For example, in the following class definition there is a surrounding class Outer and a nested class
Inner. The class Outer contains a member function caller() which uses the inner object that is
composed in Outer to call the infunction()member function of Inner:

class Outer
{

public:
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void caller();

private:
class Inner
{

public:
void infunction();

};
Inner d_inner; // class Inner must be known

};
void Outer::caller()
{

d_inner.infunction();
}

The mentioned function Inner::infunction() can be called as part of the inline definition of
Outer::caller(), even though the definition of the class Inner is yet to be seen by the compiler.
On the other hand, the compiler must have seen the definition of the class Inner before a data
member of that class can be defined.

16.1 Defining nested class members

Member functions of nested classes may be defined as inline functions. Inline member functions

can be defined as if they were functions defined outside of the class definition: if the function

Outer::caller() would have been defined outside of the class Outer, the full class definition
(including the definition of the class Inner) would have been available to the compiler. In that situ-
ation the function is perfectly compilable. Inline functions can be compiled accordingly: they can be

defined and they can use any nested class. Even if it appears later in the class interface.

As shown, when (nested) member functions are defined inline, their definition should be put below

their class interface. Static nested data members are also normally defined outside of their classes.

If the class FirstWithin would have a static size_t datamember epoch, it could be initialized
as follows:

size_t Surround::FirstWithin::epoch = 1970;

Furthermore, multiple scope resolution operators are needed to refer to public static members in

code outside of the surrounding class:

void showEpoch()
{

cout << Surround::FirstWithin::epoch = 1970;
}

Inside the members of the class Surround only the FirstWithin:: scope must be used; inside the
members of the class FirstWithin there is no need to refer explicitly to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin
are both nested within Surround, and can be considered members of the surrounding class. Since
members of a class may directly refer to each other, members of the class SecondWithin can refer
to (public) members of the class FirstWithin. Consequently, members of the class SecondWithin
could refer to the epoch member of FirstWithin as
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FirstWithin::epoch

16.2 Declaring nested classes

Nested classes may be declared before they are actually defined in a surrounding class. Such forward

declarations are required if a class contains multiple nested classes, and the nested classes contain

pointers, references, parameters or return values to objects of the other nested classes.

For example, the following class Outer contains two nested classes Inner1 and Inner2. The class
Inner1 contains a pointer to Inner2 objects, and Inner2 contains a pointer to Inner1 objects.
Such cross references require forward declarations. These forward declarations must be specified in

the same access-category as their actual definitions. In the following example the Inner2 forward
declaration must be given in a private section, as its definition is also part of the class Outer’s
private interface:

class Outer
{

private:
class Inner2; // forward declaration

class Inner1
{

Inner2 *pi2; // points to Inner2 objects
};
class Inner2
{

Inner1 *pi1; // points to Inner1 objects
};

};

16.3 Accessing private members in nested classes

To allow nested classes to access the private members of their surrounding class; to access the

private members of other nested classes; or to allow the surrounding class to access the private

members of its nested classes, the friend keyword must be used. Consider the following situation,
in which a class Surround has two nested classes FirstWithin and SecondWithin, while each
class has a static data member int s_variable:

class Surround
{

static int s_variable;
public:

class FirstWithin
{

static int s_variable;
public:

int value();
};
int value();

private:
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class SecondWithin
{

static int s_variable;
public:

int value();
};

};

If the class Surround should be able to access FirstWithin and SecondWithin’s private members,
these latter two classes must declare Surround to be their friend. The function Surround::value()
can thereupon access the private members of its nested classes. For example (note the friend dec-
larations in the two nested classes):

class Surround
{

static int s_variable;
public:

class FirstWithin
{

friend class Surround;
static int s_variable;
public:

int value();
};
int value();

private:
class SecondWithin
{

friend class Surround;
static int s_variable;
public:

int value();
};

};
inline int Surround::FirstWithin::value()
{

FirstWithin::s_variable = SecondWithin::s_variable;
return (s_variable);

}

Now, to allow the nested classes access to the private members of their surrounding class, the class

Surround must declare its nested classes as friends. The friend keyword may only be used when
the class that is to become a friend is already known as a class by the compiler, so either a forward

declaration of the nested classes is required, which is followed by the friend declaration, or the

friend declaration follows the definition of the nested classes. The forward declaration followed by

the friend declaration looks like this:

class Surround
{

class FirstWithin;
class SecondWithin;
friend class FirstWithin;
friend class SecondWithin;
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public:
class FirstWithin;

...

Alternatively, the friend declaration may follow the definition of the classes. Note that a class can

be declared a friend following its definition, while the inline code in the definition already uses the

fact that it will be declared a friend of the outer class. When defining members within the class

interface implementations of nested class members may use members of the surrounding class that

have not yet been seen by the compiler. Finally note that q‘s_variable’ which is defined in the
class Surround is accessed in the nested classes as Surround::s_variable:

class Surround
{

static int s_variable;
public:

class FirstWithin
{

friend class Surround;
static int s_variable;
public:

int value();
};
friend class FirstWithin;
int value();

private:
class SecondWithin
{

friend class Surround;
static int s_variable;
public:

int value();
};
static void classMember();

friend class SecondWithin;
};

inline int Surround::value()
{

FirstWithin::s_variable = SecondWithin::s_variable;
return s_variable;

}

inline int Surround::FirstWithin::value()
{

Surround::s_variable = 4;
Surround::classMember();
return s_variable;

}

inline int Surround::SecondWithin::value()
{



16.3. ACCESSING PRIVATE MEMBERS IN NESTED CLASSES 365

Surround::s_variable = 40;
return s_variable;

}

Finally, we want to allow the nested classes access to each other’s private members. Again this

requires some friend declarations. In order to allow FirstWithin to access SecondWithin’s
private members nothing but a friend declaration in SecondWithin is required. However, to allow
SecondWithin to access the private members of FirstWithin the friend class SecondWithin
declaration cannot plainly be given in the class FirstWithin, as the definition of SecondWithin is
as yet unknown. A forward declaration of SecondWithin is required, and this forward declaration
must be provided by the class Surround, rather than by the class FirstWithin.

Clearly, the forward declaration class SecondWithin in the class FirstWithin itself makes no
sense, as this would refer to an external (global) class SecondWithin. Likewise, it is impossible to
provide the forward declaration of the nested class SecondWithin inside FirstWithin as class
Surround::SecondWithin, with the compiler issuing a message like

‘Surround’ does not have a nested type named ‘SecondWithin’

The proper procedure here is to declare the class SecondWithin in the class Surround, before the
class FirstWithin is defined. Using this procedure, the friend declaration of SecondWithin is
accepted inside the definition of FirstWithin. The following class definition allows full access of
the private members of all classes by all other classes:

class Surround
{

class SecondWithin;
static int s_variable;
public:

class FirstWithin
{

friend class Surround;
friend class SecondWithin;
static int s_variable;
public:

int value();
};
friend class FirstWithin;
int value();

private:
class SecondWithin
{

friend class Surround;
friend class FirstWithin;
static int s_variable;
public:

int value();
};
friend class SecondWithin;

};
inline int Surround::value()
{

FirstWithin::s_variable = SecondWithin::s_variable;
return s_variable;
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}

inline int Surround::FirstWithin::value()
{

Surround::s_variable = SecondWithin::s_variable;
return s_variable;

}

inline int Surround::SecondWithin::value()
{

Surround::s_variable = FirstWithin::s_variable;
return s_variable;

}

16.4 Nesting enumerations

Enumerations too may be nested in classes. Nesting enumerations is a good way to show the close

connection between the enumeration and its class. In the class ioswe’ve seen values like ios::beg
and ios::cur. In the current Gnu C++ implementation these values are defined as values in the
seek_dir enumeration:

class ios: public _ios_fields
{

public:
enum seek_dir
{

beg,
cur,
end

};
};

For illustration purposes, let’s assume that a class DataStructuremay be traversed in a forward or
backward direction. Such a class can define an enumeration Traversal having the values forward
and backward. Furthermore, a member function setTraversal() can be defined requiring either
of the two enumeration values. The class can be defined as follows:

class DataStructure
{

public:
enum Traversal
{

forward,
backward

};
setTraversal(Traversal mode);

private:
Traversal

d_mode;
};
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Within the class DataStructure the values of the Traversal enumeration can be used directly.
For example:

void DataStructure::setTraversal(Traversal mode)
{

d_mode = mode;
switch (d_mode)
{

forward:
break;

backward:
break;

}
}

Ouside of the class DataStructure the name of the enumeration type is not used to refer to the
values of the enumeration. Here the classname is sufficient. Only if a variable of the enumeration

type is required the name of the enumeration type is needed, as illustrated by the following piece of

code:

void fun()
{

DataStructure::Traversal // enum typename required
localMode = DataStructure::forward; // enum typename not required

DataStructure ds;
// enum typename not required

ds.setTraversal(DataStructure::backward);
}

Again, only if DataStructure defines a nested class Nested, in turn defining the enumeration
Traversal, the two class scopes are required. In that case the latter example should have been
coded as follows:

void fun()
{

DataStructure::Nested::Traversal
localMode = DataStructure::Nested::forward;

DataStructure ds;

ds.setTraversal(DataStructure::Nested::backward);
}

16.4.1 Empty enumerations

Enum types usually have values. However, this is not required. In section 14.5.1 the std::bad_cast
type was introduced. A std::bad_cast is thrown by the dynamic_cast<>() operator when a
reference to a base class object cannot be cast to a derived class reference. The std::bad_cast
could be caught as type, irrespective of any value it might represent.
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Actually, it is not even necessary for a type to contain values. It is possible to define an empty enum,

an enum without any values, whose name may thereupon be used as a legitimate type name in, e.g.
a catch clause defining an exception handler.

An empty enum is defined as follows (often, but not necessarily within a class):

enum EmptyEnum
{};

Now an EmptyEnum may be thrown (and caught) as an exception:

#include <iostream>

enum EmptyEnum
{};

using namespace std;

int main()
try
{

throw EmptyEnum();
}
catch (EmptyEnum)
{

cout << "Caught empty enum\n";
}
/*

Generated output:

Caught empty enum

*/

16.5 Revisiting virtual constructors

In section 14.10 the notion of virtual constructors was introduced. In that section a class Base was
used as an abstract base class. A class Clonable was thereupon defined to manage Base class
pointers in containers like vectors.

As the class Base is a very small class, hardly requiring any implementation, it can well be defined
as a nested class in Clonable. This will emphasize the close relationship that exists between
Clonable and Base, as shown by the way classes are derived from Base. One no longer writes:

class Derived: public Base

but rather:

class Derived: public Clonable::Base

Other than defining Base as a nested class, and deriving from Clonable::Base rather than from
Base, nothing needs to be modified. Here is the program shown earlier in section 14.10, but now
using nested classes:
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#include <iostream>
#include <vector>
#include <typeinfo>

class Clonable
{

public:
class Base
{

public:
virtual ~Base();
virtual Base *clone() const = 0;

};

private:
Base *d_bp;

public:
Clonable();
~Clonable();
Clonable(Clonable const &other);
Clonable &operator=(Clonable const &other);

// New for virtual constructions:
Clonable(Base const &bp);
Base &get() const;

private:
void copy(Clonable const &other);

};

inline Clonable::Base::~Base()
{}

inline Clonable::Clonable()
:

d_bp(0)
{}
inline Clonable::~Clonable()
{

delete d_bp;
}
inline Clonable::Clonable(Clonable const &other)
{

copy(other);
}
inline Clonable &Clonable::operator=(Clonable const &other)
{

if (this != &other)
{

delete d_bp;
copy(other);

}
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return *this;
}

inline Clonable::Clonable(Base const &bp)
{

d_bp = bp.clone(); // allows initialization from
} // Base and derived objects

inline Clonable::Base &Clonable::get() const
{

return *d_bp;
}

inline void Clonable::copy(Clonable const &other)
{

if ((d_bp = other.d_bp))
d_bp = d_bp->clone();

}

class Derived1: public Clonable::Base
{

public:
~Derived1();
virtual Clonable::Base *clone() const;

};

inline Derived1::~Derived1()
{

std::cout << "~Derived1() called\n";
}
inline Clonable::Base *Derived1::clone() const
{

return new Derived1(*this);
}

using namespace std;

int main()
{

vector<Clonable> bv;

bv.push_back(Derived1());
cout << "==\n";

cout << typeid(bv[0].get()).name() << endl;
cout << "==\n";

vector<Clonable> v2(bv);
cout << typeid(v2[0].get()).name() << endl;
cout << "==\n";

}



Chapter 17

The Standard Template Library,

generic algorithms

The Standard Template Library (STL) is a general purpose library consisting of containers,
generic algorithms, iterators, function objects, allocators, adaptors and data structures. The data

structures used in the algorithms are abstract in the sense that the algorithms can be used on

(practically) every data type.

The algorithms can work on these abstract data types due to the fact that they are template based

algorithms. In this chapter the construction of templates is not discussed (see chapter 18 for that).

Rather, this chapter focuses on the use of these template algorithms.

Several parts of the standard template library have already been discussed in the C++ Annotations.

In chapter 12 the abstract containers were discussed, and in section 9.10 function objects were

introduced. Also, iterators were mentioned at several places in this document.

The remaining components of the STL will be covered in this chapter. Iterators, adaptors and generic

algorithms will be discussed in the coming sections. Allocators take care of the memory allocation

within the STL. The default allocator class suffices for most applications, and is not further discussed

in the C++ Annotations.

Forgetting to delete allocated memory is a common source of errors or memory leaks in a program.

The auto_ptr template class may be used to prevent these types of problems. The auto_ptr class
is discussed in section 17.3.

All elements of the STL are defined in the standard namespace. Therefore, a using namespace
std or comparable directive is required unless it is preferred to specify the required namespace
explicitly. This occurs in at least one situation: in header files no using directive should be used,
so here the std:: scope specification should always be specified when referring to elements of the
STL.

17.1 Predefined function objects

Function objects play important roles in combination with generic algorithms. For example, there

exists a generic algorithm sort() expecting two iterators defining the range of objects that should
be sorted, as well as a function object calling the appropriate comparison operator for two objects.

Let’s take a quick look at this situation. Assume strings are stored in a vector, and we want to sort

371
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the vector in descending order. In that case, sorting the vector stringVec is as simple as:

sort(stringVec.begin(), stringVec.end(), greater<std::string>());

The last argument is recognized as a constructor: it is an instantiation of the greater<>() tem-
plate class, applied to strings. This object is called as a function object by the sort() generic
algorithm. It will call the operator>() of the provided data type (here std::string) whenever
its operator()() is called. Eventually, when sort() returns, the first element of the vector will
be the greatest element.

The operator()() (function call operator) itself is not visible at this point: don’t confuse the
parentheses in greater<string>() with calling operator()(). When that operator is actu-
ally used inside sort(), it receives two arguments: two strings to compare for ‘greaterness’. In-
ternally, the operator>() of the data type to which the iterators point (i.e., string) is called by
greater<string>’s function operator (operator()()) to compare the two objects. Since greater<>’s
function call operator is defined inline, the call itself is not actually present in the code. Rather,

sort() calls string::operator>(), thinking it called greater<>::operator()().

Now that we know that a constructor is passed as argument to (many) generic algorithms, we can

design our own function objects. Assume we want to sort our vector case-insensitively. How do we

proceed? First we note that the default string::operator<() (for an incremental sort) is not ap-
propriate, as it does case sensitive comparisons. So, we provide our own case_less class, in which
the two strings are compared case insensitively. Using the standard C function strcasecmp(), the
following program performs the trick. It sorts its command-line arguments in ascending alphabeti-

cal order:

#include <iostream>
#include <string>
#include <algorithm>

using namespace std;

class case_less
{

public:
bool operator()(string const &left, string const &right) const
{

return strcasecmp(left.c_str(), right.c_str()) < 0;
}

};

int main(int argc, char **argv)
{

sort(argv, argv + argc, case_less());
for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";
cout << endl;

}

The default constructor of the class case_less is used with sort()’s final argument. There-
fore, the only member function that must be defined with the class case_less is the function
object operator operator()(). Since we know it’s called with string arguments, we define it
to expect two string arguments, which are used in the strcasecmp() function. Furthermore,
the operator()() function is made inline, so that it does not produce overhead when called by
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the sort() function. The sort() function calls the function object with various combinations of
strings, i.e., it thinks it does so. However, in fact it calls strcasecmp(), due to the inline-nature
of case_less::operator()().

The comparison function object is often a predefined function object, since these are available for

many commonly used operations. In the following sections the available predefined function objects

are presented, together with some examples showing their use. At the end of the section about

function objects function adaptors are introduced. Before predefined function objects can be used

the following preprocessor directive must have been specified:

#include <functional>

Predefined function objects are used predominantly with generic algorithms. Predefined function

objects exists for arithmetic, relational, and logical operations. In section 20.4 predefined function

objects are developed performing bitwise operations.

17.1.1 Arithmetic function objects

The arithmetic function objects support the standard arithmetic operations: addition, subtraction,

multiplication, division, modulus and negation. These predefined arithmetic function objects invoke

the corresponding operator of the associated data type. For example, for addition the function object

plus<Type> is available. If we set type to size_t then the + operator for size_t values is used,
if we set type to string, then the + operator for strings is used. For example:

#include <iostream>
#include <string>
#include <functional>
using namespace std;

int main(int argc, char **argv)
{

plus<size_t> uAdd; // function object to add size_ts

cout << "3 + 5 = " << uAdd(3, 5) << endl;

plus<string> sAdd; // function object to add strings

cout << "argv[0] + argv[1] = " << sAdd(argv[0], argv[1]) << endl;
}
/*

Generated output with call: a.out going

3 + 5 = 8
argv[0] + argv[1] = a.outgoing

*/

Why is this useful? Note that the function object can be used with all kinds of data types (not only

with the predefined datatypes), in which the particular operator has been overloaded. Assume that

we want to perform an operation on a common variable on the one hand and, on the other hand, in

turn on each element of an array. E.g., we want to compute the sum of the elements of an array; or

we want to concatenate all the strings in a text-array. In situations like these the function objects

come in handy. As noted before, the function objects are heavily used in the context of the generic

algorithms, so let’s take a quick look ahead at one of them.
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One of the generic algorithms is called accumulate(). It visits all elements implied by an iterator-
range, and performs a requested binary operation on a common element and each of the elements in

the range, returning the accumulated result after visiting all elements. For example, the following

program accumulates all command line arguments, and prints the final string:

#include <iostream>
#include <string>
#include <functional>
#include <numeric>
using namespace std;

int main(int argc, char **argv)
{

string result =
accumulate(argv, argv + argc, string(), plus<string>());

cout << "All concatenated arguments: " << result << endl;
}

The first two arguments define the (iterator) range of elements to visit, the third argument is

string(). This anonymous string object provides an initial value. It could as well have been
initialized to

string("All concatenated arguments: ")

in which case the cout statement could have been a simple

cout << result << endl;

Then, the operator to apply is plus<string>(). Note here that a constructor is called: it is not
plus<string>, but rather plus<string>(). The final concatenated string is returned.

Now we define our own class Time, in which the operator+() has been overloaded. Again, we can
apply the predefined function object plus, now tailored to our newly defined datatype, to add times:

#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <functional>
#include <numeric>

using namespace std;

class Time
{

friend ostream &operator<<(ostream &str, Time const &time)
{

return cout << time.d_days << " days, " << time.d_hours <<
" hours, " <<

time.d_minutes << " minutes and " <<
time.d_seconds << " seconds.";

}
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size_t d_days;
size_t d_hours;
size_t d_minutes;
size_t d_seconds;

public:
Time(size_t hours, size_t minutes, size_t seconds)
:

d_days(0),
d_hours(hours),
d_minutes(minutes),
d_seconds(seconds)

{}
Time &operator+=(Time const &rValue)
{

d_seconds += rValue.d_seconds;
d_minutes += rValue.d_minutes + d_seconds / 60;
d_hours += rValue.d_hours + d_minutes / 60;
d_days += rValue.d_days + d_hours / 24;
d_seconds %= 60;
d_minutes %= 60;
d_hours %= 24;

return *this;
}

};
Time const operator+(Time const &lValue, Time const &rValue)
{

return Time(lValue) += rValue;
}

int main(int argc, char **argv)
{

vector<Time> tvector;

tvector.push_back(Time( 1, 10, 20));
tvector.push_back(Time(10, 30, 40));
tvector.push_back(Time(20, 50, 0));
tvector.push_back(Time(30, 20, 30));

cout <<
accumulate
(

tvector.begin(), tvector.end(), Time(0, 0, 0), plus<Time>()
) <<
endl;

}
/*

produced output:

2 days, 14 hours, 51 minutes and 30 seconds.

*/
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Note that all member functions of Time in the above source are inline functions. This approach was
followed in order to keep the example relatively small and to show explicitly that the operator+=()
function may be an inline function. On the other hand, in real life Time’s operator+=() should
probably not be made inline, due to its size.

Considering the previous discussion of the plus function object, the example is pretty straightfor-
ward. The class Time defines a constructor, it defines an insertion operator and it defines its own
operator+(), adding two time objects.

In main() four Time objects are stored in a vector<Time> object. Then, the accumulate() generic
algorithm is called to compute the accumulated time. It returns a Time object, which is inserted in
the cout ostream object.

While the first example did show the use of a named function object, the last two examples showed

the use of anonymous objects which were passed to the (accumulate()) function.

The following arithmetic objects are available as predefined objects:

• plus<>(): as shown, this object’s operator()() member calls operator+() as a binary
operator, passing it its two parameters, returning operator+()’s return value.

• minus<>(): this object’s operator()() member calls operator-() as a binary operator,
passing it its two parameters and returning operator-()’s return value.

• multiplies<>(): this object’s operator()() member calls operator*() as a binary oper-
ator, passing it its two parameters and returning operator*()’s return value.

• divides<>(): this object’s operator()() member calls operator/(), passing it its two
parameters and returning operator/()’s return value.

• modulus<>(): this object’s operator()() member calls operator%(), passing it its two
parameters and returning operator%()’s return value.

• negate<>(): this object’s operator()() member calls operator-() as a unary operator,
passing it its parameter and returning the unary operator-()’s return value.

An example using the unary operator-() follows, in which the transform() generic algorithm
is used to toggle the signs of all elements in an array. The transform() generic algorithm expects
two iterators, defining the range of objects to be transformed, an iterator defining the begin of the

destination range (which may be the same iterator as the first argument) and a function object

defining a unary operation for the indicated data type.

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;

int main(int argc, char **argv)
{

int iArr[] = { 1, -2, 3, -4, 5, -6 };

transform(iArr, iArr + 6, iArr, negate<int>());

for (int idx = 0; idx < 6; ++idx)
cout << iArr[idx] << ", ";
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cout << endl;
}
/*

Generated output:

-1, 2, -3, 4, -5, 6,

*/

17.1.2 Relational function objects

The relational operators are called by the relational function objects. All standard relational opera-

tors are supported: ==, !=, >, >=, < and <=. The following objects are available:

• equal_to<>(): this object’s operator()() member calls operator==() as a binary opera-
tor, passing it its two parameters and returning operator==()’s return value.

• not_equal_to<>(): this object’s operator()() member calls operator!=() as a binary
operator, passing it its two parameters and returning operator!=()’s return value.

• greater<>(): this object’s operator()() member calls operator>() as a binary operator,
passing it its two parameters and returning operator>()’s return value.

• greater_equal<>(): this object’s operator()() member calls operator>=() as a binary
operator, passing it its two parameters and returning operator>=()’s return value.

• less<>(): this object’s operator()()member calls operator<() as a binary operator, pass-
ing it its two parameters and returning operator<()’s return value.

• less_equal<>(): this object’s operator()() member calls operator<=() as a binary op-
erator, passing it its two parameters and returning operator<=()’s return value.

Like the arithmetic function objects, these function objects can be used as named or as anonymous

objects. An example using the relational function objects using the generic algorithm sort() is:

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;

int main(int argc, char **argv)
{

sort(argv, argv + argc, greater_equal<string>());

for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";

cout << endl;

sort(argv, argv + argc, less<string>());

for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";

cout << endl;
}
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The sort() generic algorithm expects an iterator range and a comparator of the data type to which
the iterators point. The example shows the alphabetic sorting of strings and the reversed sorting

of strings. By passing greater_equal<string>() the strings are sorted in decreasing order (the
first word will be the ’greatest’), by passing less<string>() the strings are sorted in increasing
order (the first word will be the ’smallest’).

Note that the type of the elements of argv is char *, and that the relational function object expects
a string. The relational object greater_equal<string>() will therefore use the >= operator of
strings, but will be called with char * variables. The promotion from char const * to string is
performed silently.

17.1.3 Logical function objects

The logical operators are called by the logical function objects. The standard logical operators are

supported: and, or, and not. The following objects are available:

• logical_and<>(): this object’s operator()() member calls operator&&() as a binary
operator, passing it its two parameters and returning operator&&()’s return value.

• logical_or<>(): this object’s operator()() member calls operator||() as a binary op-
erator, passing it its two parameters and returning operator||()’s return value.

• logical_not<>(): this object’s operator()()member calls operator!() as a unary oper-
ator, passing it its parameter and returning the unary operator!()’s return value.

An example using operator!() is provided in the following trivial program, in which the transform()
generic algorithm is used to transform the logical values stored in an array:

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;

int main(int argc, char **argv)
{

bool bArr[] = {true, true, true, false, false, false};
size_t const bArrSize = sizeof(bArr) / sizeof(bool);

for (size_t idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";

cout << endl;

transform(bArr, bArr + bArrSize, bArr, logical_not<bool>());

for (size_t idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";

cout << endl;
}
/*

generated output:

1 1 1 0 0 0
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0 0 0 1 1 1

*/

17.1.4 Function adaptors

Function adaptors modify the working of existing function objects. There are two kinds of function

adaptors:

• Binders are function adaptors converting binary function objects to unary function objects.

They do so by binding one object to a constant function object. For example, with the minus<int>()
function object, which is a binary function object, the first argument may be bound to 100,

meaning that the resulting value will always be 100 minus the value of the second argument.
Either the first or the second argument may be bound to a specific value. To bind the first argu-

ment to a specific value, the function object bind1st() is used. To bind the second argument
of a binary function to a specific value bind2nd() is used. As an example, assume we want
to count all elements of a vector of Person objects that exceed (according to some criterion)
some reference Person object. For this situation we pass the following binder and relational
function object to the count_if() generic algorithm:

bind2nd(greater<Person>(), referencePerson)

What would such a binder do? First of all, it’s a function object, so it needs operator()().
Next, it expects two arguments: a reference to another function object and a fixed operand.

Although binders are defined as templates, it is illustrative to have a look at their implemen-

tations, assuming they were straight functions. Here is such a pseudo-implementation of a

binder:

class bind2nd
{

FunctionObject const &d_object;
Operand const &d_rvalue;
public:

bind2nd(FunctionObject const &object, Operand const &operand);
ReturnType operator()(Operand const &lvalue);

};
inline bind2nd::bind2nd(FunctionObject const &object,

Operand const &operand)
:

d_object(object),
d_operand(operand)

{}
inline ReturnType bind2nd::operator()(Operand const &lvalue)
{

return d_object(lvalue, d_rvalue);
}

When its operator()() member is called the binder merely passes the call to the object’s
operator()(), providing it with two arguments: the lvalue it itself received and the fixed
operand it received via its constructor. Note the simplicity of these kind of classes: all its

members can usually be implemented inline.

The count_if() generic algorithm visits all the elements in an iterator range, returning
the number of times the predicate specified as its final argument returns true. Each of the
elements of the iterator range is given to the predicate, which is therefore a unary function. By
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using the binder the binary function object greater() is adapted to a unary function object,
comparing each of the elements in the range to the reference person. Here is, to be complete,

the call of the count_if() function:

count_if(pVector.begin(), pVector.end(),
bind2nd(greater<Person>(), referencePerson))

• Negators are function adaptors converting the truth value of a predicate function. Since there

are unary and binary predicate functions, there are two negator function adaptors: not1() is
the negator used with unary function objects, not2() is the negator used with binary function
objects.

If we want to count the number of persons in a vector<Person> vector not exceeding a certain
reference person, we may, among other approaches, use either of the following alternatives:

• Use a binary predicate that directly offers the required comparison:

count_if(pVector.begin(), pVector.end(),
bind2nd(less_equal<Person>(), referencePerson))

• Use not2 combined with the greater() predicate:

count_if(pVector.begin(), pVector.end(),
bind2nd(not2(greater<Person>()), referencePerson))

Note that not2() is a negator negating the truth value of a binary operator()() member:
it must be used to wrap the binary predicate greater<Person>(), negating its truth value.

• Use not1() combined with the bind2nd() predicate:

count_if(pVector.begin(), pVector.end(),
not1(bind2nd(greater<Person>(), referencePerson)))

Note that not1() is a negator negating the truth value of a unary operator()()member: it
is used to wrap the unary predicate bind2nd(), negating its truth value.

The following little example illustrates the use of negator function adaptors, completing the

section on function objects:

#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
using namespace std;

int main(int argc, char **argv)
{

int iArr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

cout << count_if(iArr, iArr + 10, bind2nd(less_equal<int>(), 6)) <<
endl;

cout << count_if(iArr, iArr + 10, bind2nd(not2(greater<int>()), 6)) <<
endl;

cout << count_if(iArr, iArr + 10, not1(bind2nd(greater<int>(), 6))) <<
endl;
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}
/*

produced output:

6
6
6

*/

One may wonder which of these alternative approaches is fastest. Using the first approach, in which

a directly available function object was used, two actions must be performed for each iteration by

count_if():

• The binder’s operator()() is called;

• The operation <= is performed for int values.

Using the second approach, in which the not2 negator is used to negate the truth value of the
complementary logical function adaptor, three actions must be performed for each iteration by

count_if():

• The binder’s operator()() is called;

• The negator’s operator()() is called;

• The operation > is performed for int values.

Using the third approach, in which a not1 negator is used to negate the truth value of the binder,
three actions must be performed for each iteration by count_if():

• The negator’s operator()() is called;

• The binder’s operator()() is called;

• The operation > is performed for int values.

From this, one might deduce that the first approach is fastest. Indeed, using Gnu’s g++ compiler on
an old, 166 MHz pentium, performing 3,000,000 count_if() calls for each variant, shows the first
approach requiring about 70% of the time needed by the other two approaches to complete.

However, these differences disappear if the compiler is instructed to optimize for speed (using the

-O6 compiler flag). When interpreting these results one should keep in mind that multiple nested
function calls are merged into a single function call if the implementations of these functions are

given inline and if the compiler follows the suggestion to implement these functions as true inline

functions indeed. If this is happening, the three approaches all merge to a single operation: the

comparison between two int values. It is likely that the compiler does so when asked to optimize
for speed.

17.2 Iterators

Iterators are objects acting like pointers. Iterators have the following general characteristics:

• Two iterators may be compared for (in)equality using the == and != operators. Note that the
ordering operators (e.g., >, <) normally cannot be used.
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• Given an iterator iter, *iter represents the object the iterator points to (alternatively, iter->
can be used to reach the members of the object the iterator points to).

• ++iter or iter++ advances the iterator to the next element. The notion of advancing an it-
erator to the next element is consequently applied: several containers have a reversed_iterator

type, in which the iter++ operation actually reaches a previous element in a sequence.

• Pointer arithmetic may be used with containers having their elements stored consecutively in

memory. This includes the vector and deque. For these containers iter + 2 points to the
second element beyond the one to which iter points.

• An interator which is merely defined is comparable to a 0-pointer, as shown by the following

little example:

#include <vector>
#include <iostream>
using namespace std;

int main()
{

vector<int>::iterator vi;

cout << &*vi << endl; // prints 0
}

The STL containers usually define members producing iterators (i.e., type iterator) using mem-
ber functions begin() and end() and, in the case of reversed iterators (type reverse_iterator),
rbegin() and rend(). Standard practice requires the iterator range to be left inclusive: the no-
tation [left, right) indicates that left is an iterator pointing to the first element that is to be
considered, while right is an iterator pointing just beyond the last element to be used. The iterator-
range is said to be empty when left == right. Note that with empty containers the begin- and
end-iterators are equal to each other.

The following example shows a situation where all elements of a vector of strings are written to

cout using the iterator range [begin(), end()), and the iterator range [rbegin(), rend()).
Note that the for-loops for both ranges are identical:

#include <iostream>
#include <vector>
#include <string>
using namespace std;

int main(int argc, char **argv)
{

vector<string> args(argv, argv + argc);

for
(

vector<string>::iterator iter = args.begin();
iter != args.end();

++iter
)

cout << *iter << " ";
cout << endl;



17.2. ITERATORS 383

for
(

vector<string>::reverse_iterator iter = args.rbegin();
iter != args.rend();

++iter
)

cout << *iter << " ";
cout << endl;

return 0;
}

Furthermore, the STL defines const_iterator types to be able to visit a series of elements in a constant

container. Whereas the elements of the vector in the previous example could have been altered, the

elements of the vector in the next example are immutable, and const_iterators are required:

#include <iostream>
#include <vector>
#include <string>
using namespace std;

int main(int argc, char **argv)
{

vector<string> const args(argv, argv + argc);

for
(

vector<string>::const_iterator iter = args.begin();
iter != args.end();

++iter
)

cout << *iter << " ";
cout << endl;

for
(

vector<string>::const_reverse_iterator iter = args.rbegin();
iter != args.rend();

++iter
)

cout << *iter << " ";
cout << endl;

return 0;
}

The examples also illustrates that plain pointers can be used instead of iterators. The initialization

vector<string> args(argv, argv + argc) provides the args vector with a pair of pointer-
based iterators: argv points to the first element to initialize sarg with, argv + argc points just
beyond the last element to be used, argv++ reaches the next string. This is a general characteristic
of pointers, which is why they too can be used in situations where iterators are expected.

The STL defines five types of iterators. These types recur in the generic algorithms, and in order to

be able to create a particular type of iterator yourself it is important to know their characteristics.
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In general, iterators must define:

• operator==(), testing two iterators for equality,

• operator++(), incrementing the iterator, as prefix operator,

• operator*(), to access the element the iterator refers to,

The following types of iterators are used when describing generic algorithms later in this chapter:

• InputIterators.

InputIterators can read from a container. The dereference operator is guaranteed

to work as rvalue in expressions. Instead of an InputIterator it is also possible
to (see below) use a Forward-, Bidirectional- or RandomAccessIterator. With the

generic algorithms presented in this chapter. Notations like InputIterator1 and
InputIterator2may be observed as well. In these cases, numbers are used to indi-
cate which iterators ‘belong together’. E.g., the generic function inner_product()
has the following prototype:

Type inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, Type init);

Here InputIterator1 first1 and InputIterator1 last1 are a set of input it-
erators defining one range, while InputIterator2 first2 defines the beginning of
a second range. Analogous notations like these may be observed with other iterator

types.

• OutputIterators:

OutputIterators can be used to write to a container. The dereference operator is guar-

anteed to work as an lvalue in expressions, but not necessarily as rvalue. Instead
of an OutputIterator it is also possible to use, see below, a Forward-, Bidirectional- or

RandomAccessIterator.

• ForwardIterators:

ForwardIterators combine InputIterators and OutputIterators. They can be used to

traverse containers in one direction, for reading and/or writing. Instead of a For-

wardIterator it is also possible to use a Bidirectional- or RandomAccessIterator.

• BidirectionalIterators:

BidirectionalIterators can be used to traverse containers in both directions, for read-

ing and writing. Instead of a BidirectionalIterator it is also possible to use a Ran-

domAccessIterator. For example, to traverse a list or a deque a BidirectionalIterator

may be useful.

• RandomAccessIterators:

RandomAccessIterators provide random access to container elements. An algorithm

such as sort() requires a RandomAccessIterator, and can therefore not be used with
lists or maps, which only provide BidirectionalIterators.

The example givenwith the RandomAccessIterator illustrates how to approach iterators: look for the

iterator that’s required by the (generic) algorithm, and then see whether the datastructure supports

the required iterator. If not, the algorithm cannot be used with the particular datastructure.
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17.2.1 Insert iterators

Generic algorithms often require a target container into which the results of the algorithm are

deposited. For example, the copy() algorithm has three parameters, the first two defining the
range of visited elements, and the third parameter defines the first position where the results of the

copy operation should be stored. With the copy() algorithm the number of elements that are copied
are usually available beforehand, since the number is usually determined using pointer arithmetic.

However, there are situations where pointer arithmetic cannot be used. Analogously, the number

of resulting elements sometimes differs from the number of elements in the initial range. The

generic algorithm unique_copy() is a case in point: the number of elements which are copied
to the destination container is normally not known beforehand.

In situations like these, an inserter adaptor function may be used to create elements in the desti-
nation container when they are needed. There are three types of inserter() adaptors:

• back_inserter(): calls the container’s push_back() member to add new elements at the
end of the container. E.g., to copy all elements of source in reversed order to the back of
destination:

copy(source.rbegin(), source.rend(), back_inserter(destination));

• front_inserter() calls the container’s push_front()member to add new elements at the
beginning of the container. E.g., to copy all elements of source to the front of the destination
container (thereby also reversing the order of the elements):

copy(source.begin(), source.end(), front_inserter(destination));

• inserter() calls the container’s insert() member to add new elements starting at a speci-
fied starting point. E.g., to copy all elements of source to the destination container, starting at
the beginning of destination, shifting existing elements beyond the newly inserted elements:

copy(source.begin(), source.end(), inserter(destination,
destination.begin()));

Concentrating on the back_inserter(), this iterator expects the name of a container having a
member push_back(). This member is called by the inserter’s operator()() member. When a
class (other than the abstract containers) supports a push_back() container, its objects can also be
used as arguments of the back_inserter() if the class defines a

typedef DataType const &const_reference;

in its interface, where DataType const & is the type of the parameter of the class’s member func-
tion push_back(). For example, the following program defines a (compilable) skeleton of a class
IntStore, whose objects can be used as arguments of the back_inserter iterator:

#include <algorithm>
#include <iterator>
using namespace std;

class Y
{

public:
typedef int const &const_reference;
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void push_back(int const &)
{}

};

int main()
{

int arr[] = {1};
Y y;

copy(arr, arr + 1, back_inserter(y));
}

17.2.2 Iterators for ‘istream’ objects

The istream_iterator<Type>() can be used to define an iterator (pair) for istream objects. The
general form of the istream_iterator<Type>() iterator is:

istream_iterator<Type> identifier(istream &inStream)

Here, Type is the type of the data elements that are read from the istream stream. Type may be
any type for which operator>>() is defined with istream objects.

The default constructor defines the end of the iterator pair, corresponding to end-of-stream. For

example,

istream_iterator<string> endOfStream;

Note that the actual stream object which was specified for the begin-iterator is not mentioned here.

Using a back_inserter() and a set of istream_iterator<>() adaptors, all strings could be
read from cin as follows:

#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
using namespace std;

int main()
{

vector<string> vs;

copy(istream_iterator<string>(cin), istream_iterator<string>(),
back_inserter(vs));

for
(

vector<string>::iterator from = vs.begin();
from != vs.end();

++from
)
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cout << *from << " ";
cout << endl;

return 0;
}

In the above example, note the use of the anonymous versions of the istream_iterator adap-
tors. Especially note the use of the anonymous default constructor. The following (non-anonymous)

construction could have been used instead of istream_iterator<string>():

istream_iterator<string> eos;

copy(istream_iterator<string>(cin), eos, back_inserter(vs));

Before istream_iterators can be used the following preprocessor directive must have been spec-
ified:

#include <iterator>

This is implied when iostream is included.

17.2.3 Iterators for ‘istreambuf’ objects

Input iterators are also available for streambuf objects. Before istreambuf_iterators can be
used the following preprocessor directive must have been specified:

#include <iterator>

The istreambuf_iterator is available for reading from streambuf objects supporting input oper-
ations. The standard operations that are available for istream_iterator objects are also available
for istreambuf_iterators. There are three constructors:

• istreambuf_iterator<Type>():

This constructor represents the end-of-stream iterator while extracting values of type

Type from the streambuf.

• istreambuf_iterator<Type>(istream):

This constructor constructs an istreambuf_iterator accessing the streambuf of
the istream object, used as the constructor’s argument.

• istreambuf_iterator<Type>(streambuf *):

This constructor constructs an istreambuf_iterator accessing the streambuf
whose address is used as the constructor’s argument.

In section 17.2.4.1 an example is given using both istreambuf_iterators and ostreambuf_iterators.
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17.2.4 Iterators for ‘ostream’ objects

The ostream_iterator<Type>() can be used to define a destination iterator for an ostream
object. The general forms of the ostream_iterator<Type>() iterator are:

ostream_iterator<Type> identifier(ostream &outStream), // and:
ostream_iterator<Type> identifier(ostream &outStream, char const *delim);

Type is the type of the data elements that should be written to the ostream stream. Type may be
any type for which operator<<() is defined in combinations with ostream objects. The latter form
of the ostream_iterators separates the individual Type data elements by delimiter strings.
The former definition does not use any delimiters.

The following example shows how istream_iterators and an ostream_iteratormay be used to
copy information of a file to another file. A subtlety is the statement in.unsetf(ios::skipws): it
resets the ios::skipws flag. The consequence of this is that the default behavior of operator>>(),
to skip whitespace, is modified. White space characters are simply returned by the operator, and the

file is copied unrestrictedly. Here is the program:

Before ostream_iterators can be used the following preprocessor directive must have been spec-
ified:

#include <iterator>

17.2.4.1 Iterators for ‘ostreambuf’ objects

Before an ostreambuf_iterator can be used the following preprocessor directive must have been
specified:

#include <iterator>

The ostreambuf_iterator is available for writing to streambuf objects supporting output opera-
tions. The standard operations that are available for ostream_iterator objects are also available
for ostreambuf_iterators. There are two constructors:

• ostreambuf_iterator<Type>(ostream):

This constructor constructs an ostreambuf_iterator accessing the streambuf of
the ostream object, used as the constructor’s argument, to insert values of type Type.

• ostreambuf_iterator<Type>(streambuf *):

This constructor constructs an ostreambuf_iterator accessing the streambuf
whose address is used as the constructor’s argument.

Here is an example using both istreambuf_iterators and an ostreambuf_iterator, showing
yet another way to copy a stream:

#include <iostream>
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#include <algorithm>
#include <iterator>
using namespace std;

int main()
{

istreambuf_iterator<char> in(cin.rdbuf());
istreambuf_iterator<char> eof;
ostreambuf_iterator<char> out(cout.rdbuf());

copy(in, eof, out);

return 0;
}

17.3 The class ’auto_ptr’

One of the problems using pointers is that strict bookkeeping is required about their memory use and

lifetime. When a pointer variable goes out of scope, the memory pointed to by the pointer is suddenly

inaccessible, and the program suffers from a memory leak. For example, in the following function

fun(), a memory leak is created by calling fun(): the allocated int value remains inaccessibly
allocated:

void fun()
{

new int;
}

To prevent memory leaks strict bookkeeping is required: the programmer has to make sure that the

memory pointed to by a pointer is deleted just before the pointer variable goes out of scope. In the

above example the repair would be:

void fun()
{

delete new int;
}

Now fun() only wastes a bit of time.

When a pointer variable points to a single value or object, the bookkeeping requirements may be

relaxed when the pointer variable is defined as a std::auto_ptr object. Auto_ptrs are objects,
masquerading as pointers. Since they’re objects, their destructors are called when they go out of

scope, and because of that, their destructors will take the responsibility of deleting the dynamically

allocated memory.

Before auto_ptrs can be used the following preprocessor directive must have been specified:

#include <memory>

Normally, an auto_ptr object is initialized using a dynamically created value or object.
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The following restrictions apply to auto_ptrs:

• the auto_ptr object cannot be used to point to arrays of objects.

• an auto_ptr object should only point to memory that was made available dynamically, as only
dynamically allocated memory can be deleted.

• multiple auto_ptr objects should not be allowed to point to the same block of dynamically
allocated memory. The auto_ptr’s interface was designed to prevent this from happening.
Once an auto_ptr object goes out of scope, it deletes the memory it points to, immediately
changing any other object also pointing to the allocated memory into a wild pointer.

The class auto_ptr defines several member functions to access the pointer itself or to have
the auto_ptr point to another block of memory. These member functions and ways to construct
auto_ptr objects are discussed in the next sections.

17.3.1 Defining ‘auto_ptr’ variables

There are three ways to define auto_ptr objects. Each definition contains the usual <type> speci-
fier between angle brackets. Concrete examples are given in the coming sections, but an overview of

the various possibilities is presented here:

• The basic form initializes an auto_ptr object to point to a block of memory allocated by the
new operator:

auto_ptr<type> identifier (new-expression);

This form is discussed in section 17.3.2.

• Another form initializes an auto_ptr object using a copy constructor:

auto_ptr<type> identifier(another auto_ptr for type);

This form is discussed in section 17.3.3.

• The third form simply creates an auto_ptr object that does not point to a particular block of
memory:

auto_ptr<type> identifier;

This form is discussed in section 17.3.4.

17.3.2 Pointing to a newly allocated object

The basic form to initialize an auto_ptr object is to provide its constructor with a block of memory
allocated by operator new operator. The generic form is:

auto_ptr<type> identifier(new-expression);

For example, to initialize an auto_ptr to point to a string object the following construction can be
used:

auto_ptr<string> strPtr(new string("Hello world"));
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To initialize an auto_ptr to point to a double value the following construction can be used:

auto_ptr<double> dPtr(new double(123.456));

Note the use of operator new in the above expressions. Using new ensures the dynamic nature
of the memory pointed to by the auto_ptr objects and allows the deletion of the memory once
auto_ptr objects go out of scope. Also note that the type does not contain the pointer: the type
used in the auto_ptr construction is the same as used in the new expression.

In the example allocating an int values given in section 17.3, the memory leak can be avoided using
an auto_ptr object:

#include <memory>
using namespace std;

void fun()
{

auto_ptr<int> ip(new int);
}

All member functions available for objects allocated by the new expression can be reached via the
auto_ptr as if it was a plain pointer to the dynamically allocated object. For example, in the
following program the text ‘C++’ is inserted behind the word ‘hello’:

#include <iostream>
#include <memory>
using namespace std;

int main()
{

auto_ptr<string> sp(new string("Hello world"));

cout << *sp << endl;

sp->insert(strlen("Hello "), "C++ ");
cout << *sp << endl;

}
/*

produced output:

Hello world
Hello C++ world

*/

17.3.3 Pointing to another ‘auto_ptr’

An auto_ptr may also be initialized by another auto_ptr object for the same type. The generic
form is:

auto_ptr<type> identifier(other auto_ptr object);



392 CHAPTER 17. THE STANDARD TEMPLATE LIBRARY, GENERIC ALGORITHMS

For example, to initialize an auto_ptr<string>, given the variable sp defined in the previous
section, the following construction can be used:

auto_ptr<string> strPtr(sp);

Analogously, the assignment operator can be used. An auto_ptr object may be assigned to another
auto_ptr object of the same type. For example:

#include <iostream>
#include <memory>
#include <string>
using namespace std;

int main()
{

auto_ptr<string> hello1(new string("Hello world"));
auto_ptr<string> hello2(hello1);
auto_ptr<string> hello3;

hello3 = hello2;
cout << *hello1 << endl <<

*hello2 << endl <<

*hello3 << endl;
}
/*

Produced output:

Segmentation fault

*/

Looking at the above example, we see that

• hello1 is initialized as described in the previous section.

• Next hello2 is defined, and it receives its value from hello1, using a copy constructor type
of initialization. This effectively changes hello1 into a 0-pointer.

• Then hello3 is defined as a default auto_ptr<string>, but it receives its value through an
assignment from hello2, which then becomes a 0-pointer too.

The program generates a segmentation fault. The reason for this will now be clear: it is caused by

dereferencing 0-pointers. At the end, only hello3 actually points to a string.

17.3.4 Creating a plain ‘auto_ptr’

We’ve already seen the third form to create an auto_ptr object: Without arguments an empty
auto_ptr object is constructed not pointing to a particular block of memory:

auto_ptr<type> identifier;
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In this case the underlying pointer is set to 0 (zero). Since the auto_ptr object itself is not the
pointer, its value cannot be compared to 0 to see if it has not been initialized. E.g., code like

auto_ptr<int> ip;

if (!ip)
cout << "0-pointer with an auto_ptr object ?" << endl;

will not produce any output (actually, it won’t compile either...). So, how do we inspect the value

of the pointer that’s maintained by the auto_ptr object? For this the member get() is available.
This member function, as well as the other member functions of the class auto_ptr are described
in the next section.

17.3.5 Operators and members

The following operators are defined for the class auto_ptr:

• auto_ptr &auto_ptr<Type>operator=(auto_ptr<Type> &other):

This operator will transfer the memory pointed to by the rvalue auto_ptr object to
the lvalue auto_ptr object. So, the rvalue object loses the memory it pointed at, and
turns into a 0-pointer.

• Type &auto_ptr<Type>operator*():

This operator returns a reference to the information stored in the auto_ptr object.
It acts like a normal pointer dereference operator.

• Type *auto_ptr<Type>operator->():

This operator returns a pointer to the information stored in the auto_ptr object.
Through this operator members of a stored object an be selected. For example:

auto_ptr<string> sp(new string("hello"));

cout << sp->c_str() << endl;

The following member functions are defined for auto_ptr objects:

• Type *auto_ptr<Type>::get():

This operator does the same as operator->(): it returns a pointer to the informa-
tion stored in the auto_ptr object. This pointer can be inspected: if it’s zero the
auto_ptr object does not point to any memory. This member cannot be used to let
the auto_ptr object point to (another) block of memory.

• Type *auto_ptr<Type>::release():

This operator returns a pointer to the information stored in the auto_ptr object,
which loses the memory it pointed at (and changes into a 0-pointer). The member

can be used to transfer the information stored in the auto_ptr object to a plain Type
pointer. It is the responsibility of the programmer to delete the memory returned by

this member function.
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• void auto_ptr<Type>::reset(Type *):

This operator may also be called without argument, to delete the memory stored in

the auto_ptr object, or with a pointer to a dynamically allocated block of memory,
which will thereupon be the memory accessed by the auto_ptr object. This member
function can be used to assign a new block of memory (new content) to an auto_ptr
object.

17.3.6 Constructors and pointer data members

Now that the auto_ptr’s main features have been described, consider the following simple class:

// required #includes

class Map
{

std::map<string, Data> *d_map;
public:

Map(char const *filename) throw(std::exception);
};

The class’s constructor Map() performs the following tasks:

• It allocates a std::map object;

• It opens the file whose name is given as the constructor’s argument;

• It reads the file, thereby filling the map.

Of course, it may not be possible to open the file. In that case an appropriate exception is thrown.

So, the constructor’s implementation will look somewhat like this:

Map::Map(char const *fname)
:

d_map(new std::map<std::string, Data>) throw(std::exception)
{

ifstream istr(fname);
if (!istr)

throw std::exception("can’t open the file");
fillMap(istr);

}

What’s wrong with this implementation? Its main weakness is that it hosts a potential memory leak.

The memory leak only occurs when the exception is actually thrown. In all other cases, the function

operates perfectly well. When the exception is thrown, the map has just been dynamically allocated.

However, even though the class’s destructor will dutifully call delete d_map, the destructor is
actually never called, as the destructor will only be called to destroy objects that were constructed

completely. Since the constructor terminates in an exception, its associated object is not constructed

completely, and therefore that object’s destructor is never called.

Auto_ptrs may be used to prevent these kinds of problems. By defining d_map as

std::auto_ptr<std::map<std::string, Data> >



17.4. THE GENERIC ALGORITHMS 395

it suddenly changes into an object. Now, Map’s constructor may safely throw an exception. As d_map
is an object itself, its destructor will be called by the time the (however incompletely constructed)

Map object goes out of scope.

As a rule of thumb: classes should use auto_ptr objects, rather than plain pointers for their pointer
data members if there’s any chance that their constructors will end prematurely in an exception.

17.4 The Generic Algorithms

The following sections describe the generic algorithms in alphabetical order. For each algorithm the

following information is provided:

• The required header file;

• The function prototype;

• A short description;

• A short example.

In the prototypes of the algorithms Type is used to specify a generic data type. Also, the particular
type of iterator (see section 17.2) that is required is mentioned, as well as other generic types that

might be required (e.g., performing BinaryOperations, like plus<Type>()).

Almost every generic algorithm expects an iterator range [first, last), defining the range of
elements on which the algorithm operates. The iterators point to objects or values. When an iter-

ator points to a Type value or object, function objects used by the algorithms usually receive Type
const & objects or values: function objects can therefore not modify the objects they receive as their
arguments. This does not hold true for modifying generic algorithms, which are (of course) able to

modify the objects they operate upon.

Generic algorithms may be categorized. In the C++ Annotations the following categories of generic

algorithms are distinguished:

• Comparators: comparing (ranges of) elements:

Requires: #include <algorithm>

equal(); includes(); lexicographical_compare(); max(); min(); mismatch();

• Copiers: performing copy operations:

Requires: #include <algorithm>

copy(); copy_backward(); partial_sort_copy(); remove_copy(); remove_copy_if(); re-

place_copy(); replace_copy_if(); reverse_copy(); rotate_copy(); unique_copy();

• Counters: performing count operations:

Requires: #include <algorithm>

count(); count_if();

• Heap operators: manipulating a max-heap:

Requires: #include <algorithm>

make_heap(); pop_heap(); push_heap(); sort_heap();



396 CHAPTER 17. THE STANDARD TEMPLATE LIBRARY, GENERIC ALGORITHMS

• Initializers: initializing data:

Requires: #include <algorithm>

fill(); fill_n(); generate(); generate_n();

• Operators: performing arithmetic operations of some sort:

Requires: #include <numeric>

accumulate(); adjacent_difference(); inner_product(); partial_sum();

• Searchers: performing search (and find) operations:

Requires: #include <algorithm>

adjacent_find(); binary_search(); equal_range(); find(); find_end(); find_first_of(); find_if();

lower_bound(); max_element(); min_element(); search(); search_n(); set_difference();

set_intersection(); set_symmetric_difference(); set_union(); upper_bound();

• Shufflers: performing reordering operations (sorting, merging, permuting, shuffling, swap-

ping):

Requires: #include <algorithm>

inplace_merge(); iter_swap(); merge(); next_permutation(); nth_element(); partial_sort();

partial_sort_copy(); partition(); prev_permutation(); random_shuffle(); remove(); re-

move_copy(); remove_copy_if(); remove_if(); reverse(); reverse_copy(); rotate(); ro-

tate_copy(); sort(); stable_partition(); stable_sort(); swap(); unique();

• Visitors: visiting elements in a range:

Requires: #include <algorithm>

for_each(); replace(); replace_copy(); replace_copy_if(); replace_if(); transform(); unique_copy();

17.4.1 accumulate()

• Header file:

#include <numeric>

• Function prototypes:

– Type accumulate(InputIterator first, InputIterator last, Type init);

– Type accumulate(InputIterator first, InputIterator last, Type init,
BinaryOperation op);

• Description:

– The first prototype: operator+() is applied to all elements implied by the iterator range
and to the initial value init. The resulting value is returned.

– The second prototype: the binary operator op() is applied to all elements implied by the
iterator range and to the initial value init, and the resulting value is returned.

• Example:

#include <numeric>
#include <vector>
#include <iostream>
using namespace std;
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int main()
{

int ia[] = {1, 2, 3, 4};
vector<int> iv(ia, ia + 4);

cout <<
"Sum of values: " << accumulate(iv.begin(), iv.end(), int()) <<
endl <<
"Product of values: " << accumulate(iv.begin(), iv.end(), int(1),

multiplies<int>()) << endl;

return 0;
}
/*

Generated output:

Sum of values: 10
Product of values: 24

*/

17.4.2 adjacent_difference()

• Header file:

#include <numeric>

• Function prototypes:

– OutputIterator adjacent_difference(InputIterator first,
InputIterator last, OutputIterator result);

– OutputIterator adjacent_difference(InputIterator first,
InputIterator last, OutputIterator result, BinaryOperation op);

• Description: All operations are performed on the original values, all computed values are re-

turned values.

– The first prototype: the first returned element is equal to the first element of the input

range. The remaining returned elements are equal to the difference of the corresponding

element in the input range and its previous element.

– The second prototype: the first returned element is equal to the first element of the input

range. The remaining returned elements are equal to the result of the binary operator op
applied to the corresponding element in the input range (left operand) and its previous

element (right operand).

• Example:

#include <numeric>
#include <vector>
#include <iostream>
using namespace std;

int main()
{
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int ia[] = {1, 2, 5, 10};
vector<int> iv(ia, ia + 4);
vector<int> ov(iv.size());

adjacent_difference(iv.begin(), iv.end(), ov.begin());

copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));
cout << endl;

adjacent_difference(iv.begin(), iv.end(), ov.begin(), minus<int>());

copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

generated output:

1 1 3 5
1 1 3 5

*/

17.4.3 adjacent_find()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last);

– OutputIterator adjacent_find(ForwardIterator first, ForwardIterator last,
Predicate pred);

• Description:

– The first prototype: the iterator pointing to the first element of the first pair of two adja-

cent equal elements is returned. If no such element exists, last is returned.

– The second prototype: the iterator pointing to the first element of the first pair of two

adjacent elements for which the binary predicate pred returns true is returned. If no
such element exists, last is returned.

• Example:

#include <algorithm>
#include <string>
#include <iostream>

class SquaresDiff
{

size_t d_minimum;

public:
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SquaresDiff(size_t minimum)
:

d_minimum(minimum)
{}
bool operator()(size_t first, size_t second)
{

return second * second - first * first >= d_minimum;
}

};

using namespace std;

int main()
{

string sarr[] =
{

"Alpha", "bravo", "charley", "delta", "echo", "echo",
"foxtrot", "golf"

};
string *last = sarr + sizeof(sarr) / sizeof(string);
string *result = adjacent_find(sarr, last);

cout << *result << endl;
result = adjacent_find(++result, last);

cout << "Second time, starting from the next position:\n" <<
(

result == last ?
"** No more adjacent equal elements **"

:
"*result"

) << endl;

size_t iv[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
size_t *ilast = iv + sizeof(iv) / sizeof(size_t);
size_t *ires = adjacent_find(iv, ilast, SquaresDiff(10));

cout <<
"The first numbers for which the squares differ at least 10: "
<< *ires << " and " << *(ires + 1) << endl;

return 0;
}
/*

Generated output:

echo
Second time, starting from the next position:

** No more adjacent equal elements **
The first numbers for which the squares differ at least 10: 5 and 6

*/
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17.4.4 binary_search()

• Header file:

#include <algorithm>

• Function prototypes:

– bool binary_search(ForwardIterator first, ForwardIterator last,
Type const &value);

– bool binary_search(ForwardIterator first, ForwardIterator last,
Type const &value, Comparator comp);

• Description:

– The first prototype: value is looked up using binary search in the range of elements
implied by the iterator range [first, last). The elements in the range must have
been sorted by the Type::operator<() function. True is returned if the element was
found, false otherwise.

– The second prototype: value is looked up using binary search in the range of elements
implied by the iterator range [first, last). The elements in the range must have
been sorted by the Comparator function object. True is returned if the element was
found, false otherwise.

• Example:

#include <algorithm>
#include <string>
#include <iostream>
#include <functional>
using namespace std;

int main()
{

string sarr[] =
{

"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"

};
string *last = sarr + sizeof(sarr) / sizeof(string);
bool result = binary_search(sarr, last, "foxtrot");

cout << (result ? "found " : "didn’t find ") << "foxtrot" << endl;

reverse(sarr, last); // reverse the order of elements
// binary search now fails:

result = binary_search(sarr, last, "foxtrot");
cout << (result ? "found " : "didn’t find ") << "foxtrot" << endl;

// ok when using appropriate
// comparator:

result = binary_search(sarr, last, "foxtrot", greater<string>());
cout << (result ? "found " : "didn’t find ") << "foxtrot" << endl;

return 0;
}
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/*
Generated output:

found foxtrot
didn’t find foxtrot
found foxtrot

*/

17.4.5 copy()

• Header file:

#include <algorithm>

• Function prototype:

– OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator destination);

• Description:

– The range of elements implied by the iterator range [first, last) is copied to an out-
put range, starting at destination, using the assignment operator of the underlying
data type. The return value is the OutputIterator pointing just beyond the last element

that was copied to the destination range (so, ‘last’ in the destination range is returned).

• Example:

Note the second call to copy(). It uses an ostream_iterator for string objects. This
iterator will write the string values to the specified ostream (i.e., cout), separating the
values by the specified separation string (i.e., " ").

#include <algorithm>
#include <string>
#include <iostream>
#include <iterator>
using namespace std;

int main()
{

string sarr[] =
{

"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"

};
string *last = sarr + sizeof(sarr) / sizeof(string);

copy(sarr + 2, last, sarr); // move all elements two positions left

// copy to cout using an ostream_iterator
// for strings,

copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
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/*
Generated output:

charley delta echo foxtrot golf hotel golf hotel

*/

• See also: unique_copy()

17.4.6 copy_backward()

• Header file:

#include <algorithm>

• Function prototype:

– BidirectionalIterator copy_backward(InputIterator first,
InputIterator last, BidirectionalIterator last2);

• Description:

– The range of elements implied by the iterator range [first, last) are copied from
the element at position last - 1 until (and including) the element at position first to
the element range, ending at position last2 - 1, using the assignment operator of the
underlying data type. The destination range is therefore [last2 - (last - first),
last2).

The return value is the BidirectionalIterator pointing to the last element that was copied

to the destination range (so, ‘first’ in the destination range, pointed to by last2 - (last
- first), is returned).

• Example:

#include <algorithm>
#include <string>
#include <iostream>
#include <iterator>
using namespace std;

int main()
{

string sarr[] =
{

"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"

};
string *last = sarr + sizeof(sarr) / sizeof(string);

copy
(

copy_backward(sarr + 3, last, last - 3),
last,
ostream_iterator<string>(cout, " ")

);
cout << endl;
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return 0;
}
/*

Generated output:

golf hotel foxtrot golf hotel foxtrot golf hotel

*/

17.4.7 count()

• Header file:

#include <algorithm>

• Function prototype:

– size_t count(InputIterator first, InputIterator last, Type const &value);

• Description:

– The number of times value occurs in the iterator range [first, last) is returned. To
determine whehter value is equal to an element in the iterator range Type::operator==()
is used.

• Example:

#include <algorithm>
#include <iostream>
using namespace std;

int main()
{

int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "Number of times the value 3 is available: " <<
count(ia, ia + sizeof(ia) / sizeof(int), 3) <<
endl;

return 0;
}
/*

Generated output:

Number of times the value 3 is available: 3

*/

17.4.8 count_if()

• Header file:

#include <algorithm>
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• Function prototype:

– size_t count_if(InputIterator first, InputIterator last,
Predicate predicate);

• Description:

– The number of times unary predicate ‘predicate’ returns true when applied to the ele-
ments implied by the iterator range [first, last) is returned.

• Example:

#include <algorithm>
#include <iostream>

class Odd
{

public:
bool operator()(int value)
{

return value & 1;
}

};

using namespace std;

int main()
{

int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "The number of odd values in the array is: " <<
count_if(ia, ia + sizeof(ia) / sizeof(int), Odd()) << endl;

return 0;
}
/*

Generated output:

The number of odd values in the array is: 5

*/

17.4.9 equal()

• Header file:

#include <algorithm>

• Function prototypes:

– bool equal(InputIterator first, InputIterator last, InputIterator
otherFirst);

– bool equal(InputIterator first, InputIterator last, InputIterator
otherFirst, BinaryPredicate pred);
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• Description:

– The first prototype: the elements in the range [first, last) are compared to a range of
equal length starting at otherFirst. The function returns true if the visited elements in
both ranges are equal pairwise. The ranges need not be of equal length, only the elements

in the indicated range are considered (and must be available).

– The second prototype: the elements in the range [first, last) are compared to a range
of equal length starting at otherFirst. The function returns true if the binary predi-
cate, applied to all corresponding elements in both ranges returns true for every pair of
corresponding elements. The ranges need not be of equal length, only the elements in the

indicated range are considered (and must be available).

• Example:

#include <algorithm>
#include <string>
#include <iostream>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return !strcasecmp(first.c_str(), second.c_str());
}

};

using namespace std;

int main()
{

string first[] =
{

"Alpha", "bravo", "Charley", "delta", "Echo",
"foxtrot", "Golf", "hotel"

};
string second[] =

{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"

};
string *last = first + sizeof(first) / sizeof(string);

cout << "The elements of ‘first’ and ‘second’ are pairwise " <<
(equal(first, last, second) ? "equal" : "not equal") <<
endl <<
"compared case-insensitively, they are " <<
(

equal(first, last, second, CaseString()) ?
"equal" : "not equal"

) << endl;

return 0;
}
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/*
Generated output:

The elements of ‘first’ and ‘second’ are pairwise not equal
compared case-insensitively, they are equal

*/

17.4.10 equal_range()

• Header file:

#include <algorithm>

• Function prototypes:

– pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator
first, ForwardIterator last, Type const &value);

– pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator
first, ForwardIterator last, Type const &value, Compare comp);

• Description (see also identically named member functions of, e.g., the map (section 12.3.6) and
multimap (section 12.3.7)):

– The first prototype: starting from a sorted sequence (where the operator<() of the data
type to which the iterators point was used to sort the elements in the provided range), a

pair of iterators is returned representing the return value of, respectively, lower_bound()
(returning the first element that is not smaller than the provided reference value, see sec-

tion 17.4.25) and upper_bound()(returning the first element beyond the provided refer-
ence value, see section 17.4.66).

– The second prototype: starting from a sorted sequence (where the comp function object
was used to sort the elements in the provided range), a pair of iterators is returned repre-

senting the return values of, respectively, the functions lower_bound() (section 17.4.25)
and upper_bound()(section 17.4.66).

• Example:

#include <algorithm>
#include <functional>
#include <iterator>
#include <iostream>
using namespace std;

int main()
{

int range[] = {1, 3, 5, 7, 7, 9, 9, 9};
size_t const size = sizeof(range) / sizeof(int);

pair<int *, int *> pi;

pi = equal_range(range, range + size, 6);

cout << "Lower bound for 6: " << *pi.first << endl;
cout << "Upper bound for 6: " << *pi.second << endl;
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pi = equal_range(range, range + size, 7);

cout << "Lower bound for 7: ";
copy(pi.first, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Upper bound for 7: ";
copy(pi.second, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

sort(range, range + size, greater<int>());

cout << "Sorted in descending order\n";

copy(range, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

pi = equal_range(range, range + size, 7, greater<int>());

cout << "Lower bound for 7: ";
copy(pi.first, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Upper bound for 7: ";
copy(pi.second, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Lower bound for 6: 7
Upper bound for 6: 7
Lower bound for 7: 7 7 9 9 9
Upper bound for 7: 9 9 9
Sorted in descending order
9 9 9 7 7 5 3 1
Lower bound for 7: 7 7 5 3 1
Upper bound for 7: 5 3 1

*/

17.4.11 fill()

• Header file:

#include <algorithm>

• Function prototype:

– void fill(ForwardIterator first, ForwardIterator last, Type const &value);

• Description:
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– all the elements implied by the iterator range [first, last) are initialized to value,
overwriting the previous stored values.

• Example:

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;

int main()
{

vector<int> iv(8);

fill(iv.begin(), iv.end(), 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

8 8 8 8 8 8 8 8

*/

17.4.12 fill_n()

• Header file:

#include <algorithm>

• Function prototype:

– void fill_n(ForwardIterator first, Size n, Type const &value);

• Description:

– n elements starting at the element pointed to by first are initialized to value, overwrit-
ing the previous stored values.

• Example:

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;

int main()
{

vector<int> iv(8);
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fill_n(iv.begin() + 2, 4, 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

0 0 8 8 8 8 0 0

*/

17.4.13 find()

• Header file:

#include <algorithm>

• Function prototype:

– InputIterator find(InputIterator first, InputIterator last, Type const
&value);

• Description:

– Element value is searched for in the range of the elements implied by the iterator range
[first, last). An iterator pointing to the first element found is returned. If the ele-
ment was not found, last is returned. The operator==() of the underlying data type is
used to compare the elements.

• Example:

#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>
using namespace std;

int main()
{

string sarr[] =
{

"alpha", "bravo", "charley", "delta", "echo"
};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy
(

find(sarr, last, "delta"), last, ostream_iterator<string>(cout, " ")
);
cout << endl;

if (find(sarr, last, "india") == last)
{
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cout << "‘india’ was not found in the range\n";
copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << endl;

}

return 0;

}
/*

Generated output:

delta echo
‘india’ was not found in the range
alpha bravo charley delta echo

*/

17.4.14 find_end()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2)

– ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred)

• Description:

– The first prototype: the sequence of elements implied by [first1, last1) is searched
for the last occurrence of the sequence of elements implied by [first2, last2). If
the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator
pointing to the first element of the matching sequence is returned. The operator==() of
the underlying data type is used to compare the elements in the two sequences.

– The second prototype: the sequence of elements implied by [first1, last1) is searched
for the last occurrence of the sequence of elements implied by [first2, last2). If
the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator
pointing to the first element of the matching sequence is returned. The provided binary

predicate is used to compare the elements in the two sequences.

• Example:

#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>

class Twice
{

public:
bool operator()(size_t first, size_t second) const
{
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return first == (second << 1);
}

};

using namespace std;

int main()
{

string sarr[] =
{

"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel",
"foxtrot", "golf", "hotel",
"india", "juliet", "kilo"

};
string search[] =

{
"foxtrot",
"golf",
"hotel"

};
string *last = sarr + sizeof(sarr) / sizeof(string);

copy
(

find_end(sarr, last, search, search + 3), // sequence starting
last, ostream_iterator<string>(cout, " ") // at 2nd ’foxtrot’

);
cout << endl;

size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};
size_t nrs[] = {2, 3, 4};

copy // sequence of values starting at last sequence
( // of range[] that are twice the values in nrs[]

find_end(range, range + 9, nrs, nrs + 3, Twice()),
range + 9, ostream_iterator<size_t>(cout, " ")

);
cout << endl;

return 0;
}
/*

Generated output:

foxtrot golf hotel india juliet kilo
4 6 8 10

*/

17.4.15 find_first_of()

• Header file:
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#include <algorithm>

• Function prototypes:

– ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1
last1, ForwardIterator2 first2, ForwardIterator2 last2)

– ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1
last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate
pred)

• Description:

– The first prototype: the sequence of elements implied by [first1, last1) is searched
for the first occurrence of an element in the sequence of elements implied by [first2,
last2). If no element in the sequence [first2, last2) is found, last1 is returned,
otherwise an iterator pointing to the first element in [first1, last1) that is equal to
an element in [first2, last2) is returned. The operator==() of the underlying data
type is used to compare the elements in the two sequences.

– The second prototype: the sequence of elements implied by [first1, first1) is searched
for the first occurrence of an element in the sequence of elements implied by [first2,
last2). Each element in the range [first1, last1) is compared to each element in
the range [first2, last2), and an iterator to the first element in [first1, last1)
for which the binary predicate pred (receiving an the element out of the range [first1,
last1) and an element from the range [first2, last2)) returns true is returned.
Otherwise, last1 is returned.

• Example:

#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>

class Twice
{

public:
bool operator()(size_t first, size_t second) const
{

return first == (second << 1);
}

};

using namespace std;

int main()
{

string sarr[] =
{

"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel",
"foxtrot", "golf", "hotel",
"india", "juliet", "kilo"

};
string search[] =

{
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"foxtrot",
"golf",
"hotel"

};
string *last = sarr + sizeof(sarr) / sizeof(string);

copy
( // sequence starting

find_first_of(sarr, last, search, search + 3), // at 1st ’foxtrot’
last, ostream_iterator<string>(cout, " ")

);
cout << endl;

size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};
size_t nrs[] = {2, 3, 4};

copy // sequence of values starting at first sequence
( // of range[] that are twice the values in nrs[]

find_first_of(range, range + 9, nrs, nrs + 3, Twice()),
range + 9, ostream_iterator<size_t>(cout, " ")

);
cout << endl;

return 0;
}
/*

Generated output:

foxtrot golf hotel foxtrot golf hotel india juliet kilo
4 6 8 10 4 6 8 10

*/

17.4.16 find_if()

• Header file:

#include <algorithm>

• Function prototype:

– InputIterator find_if(InputIterator first, InputIterator last, Predicate
pred);

• Description:

– An iterator pointing to the first element in the range implied by the iterator range [first,
last) for which the (unary) predicate pred returns true is returned. If the element was
not found, last is returned.

• Example:

#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>



414 CHAPTER 17. THE STANDARD TEMPLATE LIBRARY, GENERIC ALGORITHMS

class CaseName
{

std::string d_string;

public:
CaseName(char const *str): d_string(str)
{}
bool operator()(std::string const &element)
{

return !strcasecmp(element.c_str(), d_string.c_str());
}

};

using namespace std;

int main()
{

string sarr[] =
{

"Alpha", "Bravo", "Charley", "Delta", "Echo",
};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy
(

find_if(sarr, last, CaseName("charley")),
last, ostream_iterator<string>(cout, " ")

);
cout << endl;

if (find_if(sarr, last, CaseName("india")) == last)
{

cout << "‘india’ was not found in the range\n";
copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << endl;

}

return 0;

}
/*

Generated output:

Charley Delta Echo
‘india’ was not found in the range
Alpha Bravo Charley Delta Echo

*/

17.4.17 for_each()

• Header file:
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#include <algorithm>

• Function prototype:

– Function for_each(ForwardIterator first, ForwardIterator last, Function
func);

• Description:

– Each of the elements implied by the iterator range [first, last) is passed in turn as a
reference to the function (or function object) func. The function may modify the elements
it receives (as the used iterator is a forward iterator). Alternatively, if the elements should

be transformed, transform() (see section 17.4.63) can be used. The function itself or a
copy of the provided function object is returned: see the example below, in which an extra

argument list is added to the for_each() call, which argument is eventually also passed
to the function given to for_each(). Within for_each() the return value of the function
that is passed to it is ignored.

• Example:

#include <algorithm>
#include <string>
#include <iostream>
#include <cctype>

void lowerCase(char &c) // ‘c’ *is* modified
{

c = static_cast<char>(tolower(c));
}

// ‘str’ is *not* modified
void capitalizedOutput(std::string const &str)
{

char *tmp = strcpy(new char[str.size() + 1], str.c_str());

std::for_each(tmp + 1, tmp + str.size(), lowerCase);

tmp[0] = toupper(*tmp);
std::cout << tmp << " ";
delete tmp;

};

using namespace std;

int main()
{

string sarr[] =
{

"alpha", "BRAVO", "charley", "DELTA", "echo",
"FOXTROT", "golf", "HOTEL",

};
string *last = sarr + sizeof(sarr) / sizeof(string);

for_each(sarr, last, capitalizedOutput)("that’s all, folks");
cout << endl;

return 0;
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}
/*

Generated output:

Alpha Bravo Charley Delta Echo Foxtrot Golf Hotel That’s all, folks

*/

• Here is another example, using a function object:

#include <algorithm>
#include <string>
#include <iostream>
#include <cctype>

void lowerCase(char &c)
{

c = tolower(c);
}

class Show
{

int d_count;

public:
Show()
:

d_count(0)
{}

void operator()(std::string &str)
{

std::for_each(str.begin(), str.end(), lowerCase);
str[0] = toupper(str[0]); // here assuming str.length()
std::cout << ++d_count << " " << str << "; ";

}

int count() const
{

return d_count;
}

};

using namespace std;

int main()
{

string sarr[] =
{

"alpha", "BRAVO", "charley", "DELTA", "echo",
"FOXTROT", "golf", "HOTEL",

};
string *last = sarr + sizeof(sarr) / sizeof(string);

cout << for_each(sarr, last, Show()).count() << endl;
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return 0;
}
/*

Generated output (all on a single line):

1 Alpha; 2 Bravo; 3 Charley; 4 Delta; 5 Echo; 6 Foxtrot;
7 Golf; 8 Hotel; 8

*/

The example also shows that the for_each algorithm may be used with functions defining const
and non-const parameters. Also, see section 17.4.63 for differences between the for_each() and
transform() generic algorithms.

The for_each() algorithm cannot directly be used (i.e., by passing *this as the function object
argument) inside a member function to modify its own object as the for_each() algorithm first
creates its own copy of the passed function object. A wrapper class whose constructor accepts a

pointer or reference to the current object and possibly to one of its member functions solves this

problem. In section 20.7 the construction of such wrapper classes is described.

17.4.18 generate()

• Header file:

#include <algorithm>

• Function prototype:

– void generate(ForwardIterator first, ForwardIterator last,
Generator generator);

• Description:

– All elements implied by the iterator range [first, last) are initialized by the return
value of generator, which can be a function or function object. Generator::operator()()
does not receive any arguments. The example uses a well-known fact from algebra: in or-

der to obtain the square of n + 1, add 1 + 2 * n to n * n.

• Example:

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>

class NaturalSquares
{

size_t d_newsqr;
size_t d_last;

public:
NaturalSquares(): d_newsqr(0), d_last(0)
{}
size_t operator()()
{ // using: (a + 1)^2 == a^2 + 2*a + 1
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return d_newsqr += (d_last++ << 1) + 1;
}

};

using namespace std;

int main()
{

vector<size_t> uv(10);

generate(uv.begin(), uv.end(), NaturalSquares());

copy(uv.begin(), uv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

1 4 9 16 25 36 49 64 81 100

*/

17.4.19 generate_n()

• Header file:

#include <algorithm>

• Function prototypes:

– void generate_n(ForwardIterator first, Size n, Generator generator);

• Description:

– n elements starting at the element pointed to by iterator first are initialized by the
return value of generator, which can be a function or function object.

• Example:

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>

class NaturalSquares
{

size_t d_newsqr;
size_t d_last;

public:
NaturalSquares(): d_newsqr(0), d_last(0)
{}
size_t operator()()
{ // using: (a + 1)^2 == a^2 + 2*a + 1
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return d_newsqr += (d_last++ << 1) + 1;
}

};

using namespace std;

int main()
{

vector<size_t> uv(10);

generate_n(uv.begin(), 5, NaturalSquares());

copy(uv.begin(), uv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

1 4 9 16 25 0 0 0 0 0

*/

17.4.20 includes()

• Header file:

#include <algorithm>

• Function prototypes:

– bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, InputIterator2 last2);

– bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: both sequences of elements implied by the ranges [first1, last1)
and [first2, last2) should be sorted, using the operator<() of the data type to
which the iterators point. The function returns true if every element in the second se-
quence [first2, second2) is contained in the first sequence [first1, second1) (the
second range is a subset of the first range).

– The second prototype: both sequences of elements implied by the ranges [first1, last1)
and [first2, last2) should be sorted, using the comp function object. The function re-
turns true if every element in the second sequence [first2, second2) is contained in
the first seqence [first1, second1) (the second range is a subset of the first range).

• Example:

#include <algorithm>
#include <string>
#include <iostream>
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class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return !strcasecmp(first.c_str(), second.c_str());
}

};

using namespace std;

int main()
{

string first1[] =
{

"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"

};
string first2[] =

{
"Alpha", "bravo", "Charley", "delta", "Echo",
"foxtrot", "Golf", "hotel"

};
string second[] =

{
"charley", "foxtrot", "hotel"

};
size_t n = sizeof(first1) / sizeof(string);

cout << "The elements of ‘second’ are " <<
(includes(first1, first1 + n, second, second + 3) ? "" : "not")
<< " contained in the first sequence:\n"

"second is a subset of first1\n";

cout << "The elements of ‘first1’ are " <<
(includes(second, second + 3, first1, first1 + n) ? "" : "not")
<< " contained in the second sequence\n";

cout << "The elements of ‘second’ are " <<
(includes(first2, first2 + n, second, second + 3) ? "" : "not")
<< " contained in the first2 sequence\n";

cout << "Using case-insensitive comparison,\n"
"the elements of ‘second’ are "
<<
(includes(first2, first2 + n, second, second + 3, CaseString()) ?

"" : "not")
<< " contained in the first2 sequence\n";

return 0;
}
/*

Generated output:
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The elements of ‘second’ are contained in the first sequence:
second is a subset of first1
The elements of ‘first1’ are not contained in the second sequence
The elements of ‘second’ are not contained in the first2 sequence
Using case-insensitive comparison,
the elements of ‘second’ are contained in the first2 sequence

*/

17.4.21 inner_product()

• Header file:

#include <numeric>

• Function prototypes:

– Type inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, Type init);

– Type inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, Type init, BinaryOperator1 op1, BinaryOperator2
op2);

• Description:

– The first prototype: the sum of all pairwise products of the elements implied by the range

[first1, last1) and the same number of elements starting at the element pointed to
by first2 are added to init, and this sum is returned. The function uses the operator+()
and operator*() of the data type to which the iterators point.

– The second prototype: binary operator op1 instead of the default addition operator, and
binary operator op2 instead of the default multiplication operator are applied to all pair-
wise elements implied by the range [first1, last1) and the same number of elements
starting at the element pointed to by first2. The final result is returned.

• Example:

#include <numeric>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>

class Cat
{

std::string d_sep;
public:

Cat(std::string const &sep)
:

d_sep(sep)
{}
std::string operator()

(std::string const &s1, std::string const &s2) const
{

return s1 + d_sep + s2;
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}
};

using namespace std;

int main()
{

size_t ia1[] = {1, 2, 3, 4, 5, 6, 7};
size_t ia2[] = {7, 6, 5, 4, 3, 2, 1};
size_t init = 0;

cout << "The sum of all squares in ";
copy(ia1, ia1 + 7, ostream_iterator<size_t>(cout, " "));
cout << "is " <<

inner_product(ia1, ia1 + 7, ia1, init) << endl;

cout << "The sum of all cross-products in ";
copy(ia1, ia1 + 7, ostream_iterator<size_t>(cout, " "));
cout << " and ";
copy(ia2, ia2 + 7, ostream_iterator<size_t>(cout, " "));
cout << "is " <<

inner_product(ia1, ia1 + 7, ia2, init) << endl;

string names1[] = {"Frank", "Karel", "Piet"};
string names2[] = {"Brokken", "Kubat", "Plomp"};

cout << "A list of all combined names in ";
copy(names1, names1 + 3, ostream_iterator<string>(cout, " "));
cout << "and\n";
copy(names2, names2 + 3, ostream_iterator<string>(cout, " "));
cout << "is:" <<

inner_product(names1, names1 + 3, names2, string("\t"),
Cat("\n\t"), Cat(" ")) <<

endl;

return 0;
}
/*

Generated output:

The sum of all squares in 1 2 3 4 5 6 7 is 140
The sum of all cross-products in 1 2 3 4 5 6 7 and 7 6 5 4 3 2 1 is 84
A list of all combined names in Frank Karel Piet and
Brokken Kubat Plomp is:

Frank Brokken
Karel Kubat
Piet Plomp

*/

17.4.22 inplace_merge()

• Header file:
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#include <algorithm>

• Function prototypes:

– void inplace_merge(BidirectionalIterator first, BidirectionalIterator
middle, BidirectionalIterator last);

– void inplace_merge(BidirectionalIterator first, BidirectionalIterator
middle, BidirectionalIterator last, Compare comp);

• Description:

– The first prototype: the two (sorted) ranges [first, middle) and [middle, last)
are merged, keeping a sorted list (using the operator<() of the data type to which the
iterators point). The final series is stored in the range [first, last).

– The second prototype: the two (sorted) ranges [first, middle) and [middle, last)
are merged, keeping a sorted list (using the boolean result of the binary comparison oper-

ator comp). The final series is stored in the range [first, last).

• Example:

#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(first.c_str(), second.c_str()) < 0;
}

};

using namespace std;

int main()
{

string range[] =
{

"alpha", "charley", "echo", "golf",
"bravo", "delta", "foxtrot",

};

inplace_merge(range, range + 4, range + 7);
copy(range, range + 7, ostream_iterator<string>(cout, " "));
cout << endl;

string range2[] =
{

"ALFA", "CHARLEY", "DELTA", "foxtrot", "hotel",
"bravo", "ECHO", "GOLF"

};
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inplace_merge(range2, range2 + 5, range2 + 8, CaseString());
copy(range2, range2 + 8, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

alpha bravo charley delta echo foxtrot golf
ALFA bravo CHARLEY DELTA ECHO foxtrot GOLF hotel

*/

17.4.23 iter_swap()

• Header file:

#include <algorithm>

• Function prototype:

– void iter_swap(ForwardIterator1 iter1, ForwardIterator2 iter2);

• Description:

– The elements pointed to by iter1 and iter2 are swapped.

• Example:

#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>
using namespace std;

int main()
{

string first[] = {"alpha", "bravo", "charley"};
string second[] = {"echo", "foxtrot", "golf"};
size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

for (size_t idx = 0; idx < n; ++idx)
iter_swap(first + idx, second + idx);

cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;
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return 0;
}
/*

Generated output:

Before:
alpha bravo charley
echo foxtrot golf
After:
echo foxtrot golf
alpha bravo charley

*/

17.4.24 lexicographical_compare()

• Header file:

#include <algorithm>

• Function prototypes:

– bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

– bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: the corresponding pairs of elements in the ranges pointed to by

[first1, last1) and [first2, last2) are compared. The function returns true

∗ at the first element in the first range which is less than the corresponding element in

the second range (using operator<() of the underlying data type),

∗ if last1 is reached, but last2 isn’t reached yet.

False is returned in the other cases, which indicates that the first sequence is not lexico-

graphical less than the second sequence. So, false is returned:

∗ at the first element in the first range which is greater than the corresponding element

in the second range (using operator<() of the data type to which the iterators point,
reversing the operands),

∗ if last2 is reached, but last1 isn’t reached yet,

∗ if last1 and last2 are reached.

– The second prototype: with this function the binary comparison operation as defined by

comp is used instead of operator<() of the data type to which the iterators point.

• Example:

#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>

class CaseString
{
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public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(first.c_str(), second.c_str()) < 0;
}

};

using namespace std;

int main()
{

string word1 = "hello";
string word2 = "help";

cout << word1 << " is " <<
(

lexicographical_compare(word1.begin(), word1.end(),
word2.begin(), word2.end()) ?

"before "
:

"beyond or at "
) <<
word2 << " in the alphabet\n";

cout << word1 << " is " <<
(

lexicographical_compare(word1.begin(), word1.end(),
word1.begin(), word1.end()) ?

"before "
:

"beyond or at "
) <<
word1 << " in the alphabet\n";

cout << word2 << " is " <<
(

lexicographical_compare(word2.begin(), word2.end(),
word1.begin(), word1.end()) ?

"before "
:

"beyond or at "
) <<
word1 << " in the alphabet\n";

string one[] = {"alpha", "bravo", "charley"};
string two[] = {"ALPHA", "BRAVO", "DELTA"};

copy(one, one + 3, ostream_iterator<string>(cout, " "));
cout << " is ordered " <<

(
lexicographical_compare(one, one + 3,

two, two + 3, CaseString()) ?
"before "
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:
"beyond or at "

);
copy(two, two + 3, ostream_iterator<string>(cout, " "));
cout << endl <<

"using case-insensitive comparisons.\n";

return 0;
}
/*

Generated output:

hello is before help in the alphabet
hello is beyond or at hello in the alphabet
help is beyond or at hello in the alphabet
alpha bravo charley is ordered before ALPHA BRAVO DELTA
using case-insensitive comparisons.

*/

17.4.25 lower_bound()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const Type &value);

– ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const Type &value, Compare comp);

• Description:

– The first prototype: the sorted elements indicated by the iterator range [first, last)
are searched for the first element that is not less than (i.e., greater than or equal to)

value. The returned iterator marks the location in the sequence where value can be
inserted without breaking the sorted order of the elements. The operator<() of the data
type to which the iterators point is used. If no such element is found, last is returned.

– The second prototype: the elements indicated by the iterator range [first, last)must
have been sorted using the comp function (-object). Each element in the range is compared
to value using the comp function. An iterator to the first element for which the binary
predicate comp, applied to the elements of the range and value, returns false is re-
turned. If no such element is found, last is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <iterator>
#include <functional>
using namespace std;

int main()
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{
int ia[] = {10, 20, 30};

cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<

*lower_bound(ia, ia + 3, 15) << endl;
cout << "35 can be inserted after " <<

(lower_bound(ia, ia + 3, 35) == ia + 3 ?
"the last element" : "???") << endl;

iter_swap(ia, ia + 2);

cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<

*lower_bound(ia, ia + 3, 15, greater<int>()) << endl;
cout << "35 can be inserted before " <<

(lower_bound(ia, ia + 3, 35, greater<int>()) == ia ?
"the first element " : "???") << endl;

return 0;
}
/*

Generated output:

Sequence: 10 20 30
15 can be inserted before 20
35 can be inserted after the last element
Sequence: 30 20 10
15 can be inserted before 10
35 can be inserted before the first element

*/

17.4.26 max()

• Header file:

#include <algorithm>

• Function prototypes:

– Type const &max(Type const &one, Type const &two);

– Type const &max(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: the larger of the two elements one and two is returned, using the
operator>() of the data type to which the iterators point.
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– The second prototype: one is returned if the binary predicate comp(one, two) returns
true, otherwise two is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(second.c_str(), first.c_str()) > 0;
}

};

using namespace std;

int main()
{

cout << "Word ’" << max(string("first"), string("second")) <<
"’ is lexicographically last\n";

cout << "Word ’" << max(string("first"), string("SECOND")) <<
"’ is lexicographically last\n";

cout << "Word ’" << max(string("first"), string("SECOND"),
CaseString()) << "’ is lexicographically last\n";

return 0;
}
/*

Generated output:

Word ’second’ is lexicographically last
Word ’first’ is lexicographically last
Word ’SECOND’ is lexicographically last

*/

17.4.27 max_element()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

– ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
Comparator comp);
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• Description:

– The first prototype: an iterator pointing to the largest element in the range implied by

[first, last) is returned. The operator<() of the data type to which the iterators
point is used.

– The second prototype: rather than using operator<(), the binary predicate comp is used
to make the comparisons between the elements implied by the iterator range [first,
last). The element for which comp returns most often true, compared with other ele-
ments, is returned.

• Example:

#include <algorithm>
#include <iostream>

class AbsValue
{

public:
bool operator()(int first, int second) const
{

return abs(first) < abs(second);
}

};

using namespace std;

int main()
{

int ia[] = {-4, 7, -2, 10, -12};

cout << "The max. int value is " << *max_element(ia, ia + 5) << endl;
cout << "The max. absolute int value is " <<

*max_element(ia, ia + 5, AbsValue()) << endl;

return 0;
}
/*

Generated output:

The max. int value is 10
The max. absolute int value is -12

*/

17.4.28 merge()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result);
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– OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result,
Compare comp);

• Description:

– The first prototype: the two (sorted) ranges [first1, last1) and [first2, last2)
are merged, keeping a sorted list (using the operator<() of the data type to which the
iterators point). The final series is stored in the range starting at result and ending just
before the OutputIterator returned by the function.

– The first prototype: the two (sorted) ranges [first1, last1) and [first2, last2)
are merged, keeping a sorted list (using the boolean result of the binary comparison op-

erator comp). The final series is stored in the range starting at result and ending just
before the OutputIterator returned by the function.

• Example:

#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(first.c_str(), second.c_str()) < 0;
}

};

using namespace std;

int main()
{

string range1[] =
{ // 5 elements

"alpha", "bravo", "foxtrot", "hotel", "zulu"
};

string range2[] =
{ // 4 elements

"echo", "delta", "golf", "romeo"
};

string result[5 + 4];

copy(result,
merge(range1, range1 + 5, range2, range2 + 4, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string range3[] =
{

"ALPHA", "bravo", "foxtrot", "HOTEL", "ZULU"
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};
string range4[] =

{
"delta", "ECHO", "GOLF", "romeo"

};

copy(result,
merge(range3, range3 + 5, range4, range4 + 4, result,

CaseString()),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

alpha bravo echo delta foxtrot golf hotel romeo zulu
ALPHA bravo delta ECHO foxtrot GOLF HOTEL romeo ZULU

*/

17.4.29 min()

• Header file:

#include <algorithm>

• Function prototypes:

– Type const &min(Type const &one, Type const &two);

– Type const &min(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: the smaller of the two elements one and two is returned, using the
operator<() of the data type to which the iterators point.

– The second prototype: one is returned if the binary predicate comp(one, two) returns
false, otherwise two is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(second.c_str(), first.c_str()) > 0;
}

};
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using namespace std;

int main()
{

cout << "Word ’" << min(string("first"), string("second")) <<
"’ is lexicographically first\n";

cout << "Word ’" << min(string("first"), string("SECOND")) <<
"’ is lexicographically first\n";

cout << "Word ’" << min(string("first"), string("SECOND"),
CaseString()) << "’ is lexicographically first\n";

return 0;
}
/*

Generated output:

Word ’first’ is lexicographically first
Word ’SECOND’ is lexicographically first
Word ’first’ is lexicographically first

*/

17.4.30 min_element()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

– ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
Comparator comp);

• Description:

– The first prototype: an iterator pointing to the smallest element in the range implied by

[first, last) is returned, using operator<() of the data type to which the iterators
point.

– The second prototype: rather than using operator<(), the binary predicate comp is used
to make the comparisons between the elements implied by the iterator range [first,
last). The element for which comp returns false most often is returned.

• Example:

#include <algorithm>
#include <iostream>

class AbsValue
{

public:
bool operator()(int first, int second) const
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{
return abs(first) < abs(second);

}
};

using namespace std;

int main()
{

int ia[] = {-4, 7, -2, 10, -12};

cout << "The minimum int value is " << *min_element(ia, ia + 5) <<
endl;

cout << "The minimum absolute int value is " <<

*min_element(ia, ia + 5, AbsValue()) << endl;

return 0;
}
/*

Generated output:

The minimum int value is -12
The minimum absolute int value is -2

*/

17.4.31 mismatch()

• Header file:

#include <algorithm>

• Function prototypes:

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
InputIterator1 last1, InputIterator2 first2);

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
InputIterator1 last1, InputIterator2 first2, Compare comp);

• Description:

– The first prototype: the two sequences of elements starting at first1 and first2 are
compared using the equality operator of the data type to which the iterators point. Com-

parison stops if the compared elements differ (i.e., operator==() returns false) or last1
is reached. A pair containing iterators pointing to the final positions is returned. The
second sequence may contain more elements than the first sequence. The behavior of

the algorithm is undefined if the second sequence contains fewer elements than the first

sequence.

– The second prototype: the two sequences of elements starting at first1 and first2 are
compared using the binary comparison operation as defined by comp, instead of operator==().
Comparison stops if the comp function returns false or last1 is reached. A pair con-
taining iterators pointing to the final positions is returned. The second sequence may

contain more elements than the first sequence. The behavior of the algorithm is unde-

fined if the second sequence contains fewer elements than the first sequence.
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• Example:

#include <algorithm>
#include <string>
#include <iostream>
#include <utility>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(first.c_str(), second.c_str()) == 0;
}

};

using namespace std;

int main()
{

string range1[] =
{

"alpha", "bravo", "foxtrot", "hotel", "zulu"
};

string range2[] =
{

"alpha", "bravo", "foxtrot", "Hotel", "zulu"
};

pair<string *, string *> pss = mismatch(range1, range1 + 5, range2);

cout << "The elements " << *pss.first << " and " << *pss.second <<
" at offset " << (pss.first - range1) << " differ\n";

if
(

mismatch(range1, range1 + 5, range2, CaseString()).first
==
range1 + 5

)
cout << "When compared case-insensitively they match\n";

return 0;
}
/*

Generated output:

The elements hotel and Hotel at offset 3 differ
When compared case-insensitively they match

*/

17.4.32 next_permutation()

• Header file:
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#include <algorithm>

• Function prototypes:

– bool next_permutation(BidirectionalIterator first, BidirectionalIterator
last);

– bool next_permutation(BidirectionalIterator first, BidirectionalIterator
last, Comp comp);

• Description:

– The first prototype: the next permutation, given the sequence of elements in the range

[first, last), is determined. For example, if the elements 1, 2 and 3 are the range
for which next_permutation() is called, then subsequent calls of next_permutation()
reorders the following series:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

This example shows that the elements are reordered such that each new permutation

represents the next bigger value (132 is bigger than 123, 213 is bigger than 132, etc.),

using operator<() of the data type to which the iterators point. The value true is
returned if a reordering took place, the value false is returned if no reordering took
place, which is the case if the sequence represents the last (biggest) value. In that case,

the sequence is also sorted using operator<().

– The second prototype: the next permutation given the sequence of elements in the range

[first, last) is determined. The elements in the range are reordered. The value true
is returned if a reordering took place, the value false is returned if no reordering took
place, which is the case if the resulting sequence would haven been ordered, using the

binary predicate comp to compare elements.

– Example:

#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(first.c_str(), second.c_str()) < 0;
}

};

using namespace std;

int main()
{

string saints[] = {"Oh", "when", "the", "saints"};
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cout << "All permutations of ’Oh when the saints’:\n";

cout << "Sequences:\n";
do
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}
while (next_permutation(saints, saints + 4, CaseString()));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString());

cout << "Sequences:\n";
do
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}
while (next_permutation(saints, saints + 4, CaseString()));

return 0;
}
/*

Generated output (only partially given):

All permutations of ’Oh when the saints’:
Sequences:
Oh when the saints
saints Oh the when
saints Oh when the
saints the Oh when
...
After first sorting the sequence:
Sequences:
Oh saints the when
Oh saints when the
Oh the saints when
Oh the when saints
...

*/

17.4.33 nth_element()

• Header file:

#include <algorithm>

• Function prototypes:
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– void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

– void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: all elements in the range [first, last) are sorted relative to the
element pointed to by nth: all elements in the range [left, nth) are smaller than
the element pointed to by nth, and alle elements in the range [nth + 1, last) are
greater than the element pointed to by nth. The two subsets themselves are not sorted.
The operator<() of the data type to which the iterators point is used to compare the
elements.

– The second prototype: all elements in the range [first, last) are sorted relative to the
element pointed to by nth: all elements in the range [left, nth) are smaller than the
element pointed to by nth, and alle elements in the range [nth + 1, last) are greater
than the element pointed to by nth. The two subsets themselves are not sorted. The comp
function object is used to compare the elements.

• Example:

#include <algorithm>
#include <iostream>
#include <iterator>
#include <functional>
using namespace std;

int main()
{

int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

nth_element(ia, ia + 3, ia + 10);

cout << "sorting with respect to " << ia[3] << endl;
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

nth_element(ia, ia + 5, ia + 10, greater<int>());

cout << "sorting with respect to " << ia[5] << endl;
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

sorting with respect to 4
1 2 3 4 9 7 5 6 8 10
sorting with respect to 5
10 8 7 9 6 5 3 4 2 1

*/
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17.4.34 partial_sort()

• Header file:

#include <algorithm>

• Function prototypes:

– void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last);

– void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: the middle - first smallest elements are sorted and stored in
the [first, middle), using the operator<() of the data type to which the iterators
point. The remaining elements of the series remain unsorted, and are stored in [middle,
last).

– The second prototype: the middle - first smallest elements (according to the provided
binary predicate comp) are sorted and stored in the [first, middle). The remaining
elements of the series remain unsorted.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

partial_sort(ia, ia + 3, ia + 10);

cout << "find the 3 smallest elements:\n";
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "find the 5 biggest elements:\n";
partial_sort(ia, ia + 5, ia + 10, greater<int>());
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

find the 3 smallest elements:
1 2 3 7 9 5 4 6 8 10
find the 5 biggest elements:
10 9 8 7 6 1 2 3 4 5

*/
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17.4.35 partial_sort_copy()

• Header file:

#include <algorithm>

• Function prototypes:

– void partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator dest_first, RandomAccessIterator dest_last);

– void partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator dest_first, RandomAccessIterator dest_last, Compare
comp);

• Description:

– The first prototype: the smallest elements in the range [first, last) are copied to the
range [dest_first, dest_last), using the operator<() of the data type to which
the iterators point. Only the number of elements in the smaller range are copied to the

second range.

– The second prototype: the elements in the range [first, last) are are sorted by the
binary predicate comp. The elements for which the predicate returns most often true are
copied to the range [dest_first, dest_last). Only the number of elements in the
smaller range are copied to the second range.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

int ia[] = {1, 10, 3, 8, 5, 6, 7, 4, 9, 2};
int ia2[6];

partial_sort_copy(ia, ia + 10, ia2, ia2 + 6);

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;
cout << "the 6 smallest elements: ";
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "the 4 smallest elements to a larger range:\n";
partial_sort_copy(ia, ia + 4, ia2, ia2 + 6);
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "the 4 biggest elements to a larger range:\n";
partial_sort_copy(ia, ia + 4, ia2, ia2 + 6, greater<int>());
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << endl;



17.4. THE GENERIC ALGORITHMS 441

return 0;
}
/*

Generated output:

1 10 3 8 5 6 7 4 9 2
the 6 smallest elements: 1 2 3 4 5 6
the 4 smallest elements to a larger range:
1 3 8 10 5 6
the 4 biggest elements to a larger range:
10 8 3 1 5 6

*/

17.4.36 partial_sum()

• Header file:

#include <numeric>

• Function prototypes:

– OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result);

– OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation op);

• Description:

– The first prototype: each element in the range [result, <returned OutputIterator>)
receives a value which is obtained by adding the elements in the corresponding range of

the range [first, last). The first element in the resulting range will be equal to the
element pointed to by first.

– The second prototype: the value of each element in the range [result, <returned
OutputIterator>) is obtained by applying the binary operator op to the previous ele-
ment in the resulting range and the corresponding element in the range [first, last).
The first element in the resulting range will be equal to the element pointed to by first.

• Example:

#include <numeric>
#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

int ia[] = {1, 2, 3, 4, 5};
int ia2[5];

copy(ia2,
partial_sum(ia, ia + 5, ia2),
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ostream_iterator<int>(cout, " "));
cout << endl;

copy(ia2,
partial_sum(ia, ia + 5, ia2, multiplies<int>()),
ostream_iterator<int>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

1 3 6 10 15
1 2 6 24 120

*/

17.4.37 partition()

• Header file:

#include <algorithm>

• Function prototype:

– BidirectionalIterator partition(BidirectionalIterator first,
BidirectionalIterator last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates
as true are placed before the elements which evaluate as false. The return value points
just beyond the last element in the partitioned range for which pred evaluates as true.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>

class LessThan
{

int d_x;
public:

LessThan(int x)
:

d_x(x)
{}
bool operator()(int value)
{

return value <= d_x;
}

};
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using namespace std;

int main()
{

int ia[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};
int *split;

split = partition(ia, ia + 10, LessThan(ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Last element <= 4 is ia[3]
1 3 4 2 9 10 7 8 6 5

*/

17.4.38 prev_permutation()

• Header file:

#include <algorithm>

• Function prototypes:

– bool prev_permutation(BidirectionalIterator first, BidirectionalIterator
last);

– bool prev_permutation(BidirectionalIterator first, BidirectionalIterator
last, Comp comp);

• Description:

– The first prototype: the previous permutation given the sequence of elements in the range

[first, last) is determined. The elements in the range are reordered such that the
first ordering is obtained representing a ‘smaller’ value (see next_permutation() (sec-
tion 17.4.32) for an example involving the opposite ordering). The value true is returned
if a reordering took place, the value false is returned if no reordering took place, which
is the case if the provided sequence was already ordered, according to the operator<()
of the data type to which the iterators point.

– The second prototype: the previous permutation given the sequence of elements in the

range [first, last) is determined. The elements in the range are reordered. The value
true is returned if a reordering took place, the value false is returned if no reordering
took place, which is the case if the original sequence was already ordered, using the binary

predicate comp to compare two elements.

• Example:

#include <algorithm>
#include <iostream>
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#include <string>
#include <iterator>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return strcasecmp(first.c_str(), second.c_str()) < 0;
}

};

using namespace std;

int main()
{

string saints[] = {"Oh", "when", "the", "saints"};

cout << "All previous permutations of ’Oh when the saints’:\n";

cout << "Sequences:\n";
do
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}
while (prev_permutation(saints, saints + 4, CaseString()));

cout << "After first sorting the sequence:\n";
sort(saints, saints + 4, CaseString());

cout << "Sequences:\n";
while (prev_permutation(saints, saints + 4, CaseString()))
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}
cout << "No (more) previous permutations\n";

return 0;
}
/*

Generated output:

All previous permutations of ’Oh when the saints’:
Sequences:
Oh when the saints
Oh when saints the
Oh the when saints
Oh the saints when
Oh saints when the
Oh saints the when
After first sorting the sequence:
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Sequences:
No (more) previous permutations

*/

17.4.39 random_shuffle()

• Header file:

#include <algorithm>

• Function prototypes:

– void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);

– void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,
RandomNumberGenerator rand);

• Description:

– The first prototype: the elements in the range [first, last) are randomly reordered.

– The second prototype: The elements in the range [first, last) are randomly re-
ordered, using the rand random number generator, which should return an int in the
range [0, remaining), where remaining is passed as argument to the operator()()
of the rand function object. Alternatively, the random number generator may be a func-
tion expecting an int remaining parameter and returning an int randomvalue in the
range [0, remaining). Note that when a function object is used, it cannot be an anony-
mous object. The function in the example uses a procedure outlined in Press et al. (1992)

Numerical Recipes in C: The Art of Scientific Computing (New York: Cambridge

University Press, (2nd ed., p. 277)).

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <time.h>
#include <iterator>

int randomValue(int remaining)
{

return static_cast<int>
( ((0.0 + remaining) * rand()) / (RAND_MAX + 1.0) );

}

class RandomGenerator
{

public:
RandomGenerator()
{

srand(time(0));
}
int operator()(int remaining) const
{

return randomValue(remaining);
}



446 CHAPTER 17. THE STANDARD TEMPLATE LIBRARY, GENERIC ALGORITHMS

};

void show(std::string *begin, std::string *end)
{

std::copy(begin, end,
std::ostream_iterator<std::string>(std::cout, " "));

std::cout << std::endl << std::endl;
}

using namespace std;

int main()
{

string words[] =
{ "kilo", "lima", "mike", "november", "oscar", "papa"};

size_t const size = sizeof(words) / sizeof(string);

cout << "Using Default Shuffle:\n";
random_shuffle(words, words + size);
show(words, words + size);

cout << "Using RandomGenerator:\n";
RandomGenerator rg;
random_shuffle(words, words + size, rg);
show(words, words + size);

srand(time(0) << 1);
cout << "Using the randomValue() function:\n";
random_shuffle(words, words + size, randomValue);
show(words, words + size);

return 0;
}
/*

Generated output (for example):

Using Default Shuffle:
lima oscar mike november papa kilo

Using RandomGenerator:
kilo lima papa oscar mike november

Using the randomValue() function:
mike papa november kilo oscar lima

*/

17.4.40 remove()

• Header file:

#include <algorithm>

• Function prototype:
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– ForwardIterator remove(ForwardIterator first, ForwardIterator last,
Type const &value);

• Description:

– The elements in the range pointed to by [first, last) are reordered in such a way that
all values unequal to value are placed at the beginning of the range. The returned for-
ward iterator points to the first element that can be removed after reordering. The range

[returnvalue, last) is called the leftover of the algorithm. Note that the leftover may
contain elements different from value, but these elements can be removed safely, as such
elements will also be present in the range [first, return value). Such duplication
is the result of the fact that the algorithm copies, rather than moves elements into new

locations. The function uses operator==() of the data type to which the iterators point
to determine which elements to remove.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"alpha", "alpha", "papa", "quebec" };
string *removed;
size_t const size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";
removed = remove(words, words + size, "alpha");
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Leftover elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Removing all "alpha"s:
kilo lima mike november oscar papa quebec
Trailing elements are:
oscar alpha alpha papa quebec

*/

17.4.41 remove_copy()

• Header file:

#include <algorithm>
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• Function prototypes:

– OutputIterator remove_copy(InputIterator first, InputIterator last,
OutputIterator result, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) not matching value are copied
to the range [result, returnvalue), where returnvalue is the value returned by the
function. The range [first, last) is not modified. The function uses operator==()
of the data type to which the iterators point to determine which elements not to copy.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string remaining

[
size -
count_if
(

words, words + size,
bind2nd(equal_to<string>(), string("alpha"))

)
];

string *returnvalue =
remove_copy(words, words + size, remaining, "alpha");

cout << "Removing all \"alpha\"s:\n";
copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Removing all "alpha"s:
kilo lima mike november oscar papa quebec

*/

17.4.42 remove_copy_if()

• Header file:
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#include <algorithm>

• Function prototype:

– OutputIterator remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, UnaryPredicate pred);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate
pred returns true are copied to the range [result, returnvalue), where returnvalue
is the value returned by the function. The range [first, last) is not modified.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string remaining[

size -
count_if
(

words, words + size,
bind2nd(equal_to<string>(), "alpha")

)
];

string *returnvalue =
remove_copy_if
(

words, words + size, remaining,
bind2nd(equal_to<string>(), "alpha")

);

cout << "Removing all \"alpha\"s:\n";
copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Removing all "alpha"s:
kilo lima mike november oscar papa quebec

*/
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17.4.43 remove_if()

• Header file:

#include <algorithm>

• Function prototype:

– ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
UnaryPredicate pred);

• Description:

– The elements in the range pointed to by [first, last) are reordered in such a way
that all values for which the unary predicate pred evaluates as false are placed at the
beginning of the range. The returned forward iterator points to the first element, after

reordering, for which pred returns true. The range [returnvalue, last) is called the
leftover of the algorithm. The leftover may contain elements for which the predicate pred
returns false, but these can safely be removed, as such elements will also be present in
the range [first, returnvalue). Such duplication is the result of the fact that the
algorithm copies, rather than moves elements into new locations.

• Example:

#include <functional>
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";

string *removed = remove_if(words, words + size,
bind2nd(equal_to<string>(), string("alpha")));

copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Removing all "alpha"s:
kilo lima mike november oscar papa quebec
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Trailing elements are:
oscar alpha alpha papa quebec

*/

17.4.44 replace()

• Header file:

#include <algorithm>

• Function prototype:

– ForwardIterator replace(ForwardIterator first, ForwardIterator last,
Type const &oldvalue, Type const &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced
by a copy of newvalue. The algorithm uses operator==() of the data type to which the
iterators point.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);

replace(words, words + size, string("alpha"), string("ALPHA"));
copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa quebec

*/

17.4.45 replace_copy()

• Header file:

#include <algorithm>
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• Function prototype:

– OutputIterator replace_copy(InputIterator first, InputIterator last,
OutputIterator result, Type const &oldvalue, Type const &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced
by a copy of newvalue in a new range [result, returnvalue), where returnvalue
is the return value of the function. The algorithm uses operator==() of the data type to
which the iterators point.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string remaining[size];

copy
(

remaining,
replace_copy(words, words + size, remaining, string("alpha"),

string("ALPHA")),
ostream_iterator<string>(cout, " ")

);
cout << endl;

return 0;
}
/*

Generated output:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa quebec

*/

17.4.46 replace_copy_if()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator replace_copy_if(ForwardIterator first, ForwardIterator
last, OutputIterator result, UnaryPredicate pred, Type const &value);
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• Description:

– The elements in the range pointed to by [first, last) are copied to the range [result,
returnvalue), where returnvalue is the value returned by the function. The elements
for which the unary predicate pred returns true are replaced by newvalue. The range
[first, last) is not modified.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november",

"alpha", "oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string result[size];

replace_copy_if(words, words + size, result,
bind1st(greater<string>(), string("mike")),
string("ALPHA"));

copy (result, result + size, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output (all on one line):

ALPHA ALPHA ALPHA mike ALPHA november ALPHA oscar ALPHA ALPHA
papa quebec

*/

17.4.47 replace_if()

• Header file:

#include <algorithm>

• Function prototype:

– ForwardIterator replace_if(ForwardIterator first, ForwardIterator last,
UnaryPredicate pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate
pred evaluates as true are replaced by newvalue.
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Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);

replace_if(words, words + size,
bind1st(equal_to<string>(), string("alpha")),
string("ALPHA"));

copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

}
/*

generated output:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa quebec

*/

17.4.48 reverse()

• Header file:

#include <algorithm>

• Function prototype:

– void reverse(BidirectionalIterator first, BidirectionalIterator last);

• Description:

– The elements in the range pointed to by [first, last) are reversed.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
using namespace std;

int main()
{

string line;

while (getline(cin, line))
{
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reverse(line.begin(), line.end());
cout << line << endl;

}

return 0;
}

17.4.49 reverse_copy()

• Header file:

#include <algorithm>

• Function prototype:

– OutputIterator reverse_copy(BidirectionalIterator first,
BidirectionalIterator last, OutputIterator result);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range [result,
returnvalue) in reversed order. The value returnvalue is the value that is returned
by the function.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
using namespace std;

int main()
{

string line;

while (getline(cin, line))
{

size_t size = line.size();
char copy[size + 1];

cout << "line: " << line << endl <<
"reversed: ";

reverse_copy(line.begin(), line.end(), copy);
copy[size] = 0; // 0 is not part of the reversed

// line !
cout << copy << endl;

}
return 0;

}

17.4.50 rotate()

• Header file:

#include <algorithm>
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• Function prototype:

– void rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator
last);

• Description:

– The elements implied by the range [first, middle) are moved to the end of the con-
tainer, the elements implied by the range [middle, last) are moved to the beginning
of the container, keeping the order of the elements in the two subsets intact.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "lima", "mike", "november", "oscar", "papa",
"echo", "foxtrot", "golf", "hotel", "india", "juliet" };

size_t const size = sizeof(words) / sizeof(string);
size_t const midsize = 6;

rotate(words, words + midsize, words + size);

copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

echo foxtrot golf hotel india juliet kilo lima mike november oscar papa

*/

17.4.51 rotate_copy()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

• Description:

– The elements implied by the range [middle, last) and then the elements implied
by the range [first, middle) are copied to the destination container having range
[result, returnvalue), where returnvalue is the iterator returned by the function.
The original order of the elements in the two subsets is not altered.
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• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string words[] =
{ "kilo", "lima", "mike", "november", "oscar", "papa",

"echo", "foxtrot", "golf", "hotel", "india", "juliet" };
size_t const size = sizeof(words) / sizeof(string);
size_t midsize = 6;
string out[size];

copy(out,
rotate_copy(words, words + midsize, words + size, out),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

echo foxtrot golf hotel india juliet kilo lima mike november oscar papa

*/

17.4.52 search()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);

• Description:

– The first prototype: an iterator into the first range [first1, last1) is returned where
the elements in the range [first2, last2) are found, using operator==() operator
of the data type to which the iterators point. If no such location exists, last1 is returned.

– The second prototype: an iterator into the first range [first1, last1) is returned
where the elements in the range [first2, last2) are found, using the provided bi-
nary predicate pred to compare the elements in the two ranges. If no such location exists,
last1 is returned.
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• Example:

#include <algorithm>
#include <iostream>
#include <iterator>

class absInt
{

public:
bool operator()(int i1, int i2)
{

return abs(i1) == abs(i2);
}

};

using namespace std;

int main()
{

int range1[] = {-2, -4, -6, -8, 2, 4, 6, 8};
int range2[] = {6, 8};

copy
(

search(range1, range1 + 8, range2, range2 + 2),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

copy
(

search(range1, range1 + 8, range2, range2 + 2, absInt()),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

return 0;
}
/*

Generated output:

6 8
-6 -8 2 4 6 8

*/

17.4.53 search_n()

• Header file:

#include <algorithm>

• Function prototypes:
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– ForwardIterator1 search_n(ForwardIterator1 first1, ForwardIterator1 last1,
Size count, Type const &value);

– ForwardIterator1 search_n(ForwardIterator1 first1, ForwardIterator1 last1,
Size count, Type const &value, BinaryPredicate pred);

• Description:

– The first prototype: an iterator into the first range [first1, last1) is returned where
n elements having value value are found, using operator==() of the data type to which
the iterators point to compare the elements. If no such location exists, last1 is returned.

– The second prototype: an iterator into the first range [first1, last1) is returned
where n elements having value value are found, using the provided binary predicate
pred to compare the elements. If no such location exists, last1 is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <iterator>

class absInt
{

public:
bool operator()(int i1, int i2)
{

return abs(i1) == abs(i2);
}

};

using namespace std;

int main()
{

int range1[] = {-2, -4, -4, -6, -8, 2, 4, 4, 6, 8};
int range2[] = {6, 8};

copy
(

search_n(range1, range1 + 8, 2, 4),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

copy
(

search_n(range1, range1 + 8, 2, 4, absInt()),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

return 0;
}
/*
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Generated output:

4 4
-4 -4 -6 -8 2 4 4

*/

17.4.54 set_difference()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result,
Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are not present in the range [first2, last2) is returned, starting at
result, and ending at the OutputIterator returned by the function. The elements in
the two ranges must have been sorted using operator<() of the data type to which the
iterators point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are not present in the range [first2, last2) is returned, starting at
result, and ending at the OutputIterator returned by the function. The elements in
the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>

class CaseLess
{

public:
bool operator()(std::string const &left, std::string const &right)
{

return strcasecmp(left.c_str(), right.c_str()) < 0;
}

};

using namespace std;

int main()
{

string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };
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string set2[] = { "papa", "quebec", "romeo"};
string result[7];
string *returned;

copy(result,
set_difference(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_difference(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

kilo lima mike november oscar
kilo lima mike november oscar

*/

17.4.55 set_intersection()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator set_intersection(InputIterator1 first1, InputIterator1
last1, InputIterator2 first2, InputIterator2 last2, OutputIterator
result);

– OutputIterator set_intersection(InputIterator1 first1, InputIterator1
last1, InputIterator2 first2, InputIterator2 last2, OutputIterator
result, Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are also present in the range [first2, last2) is returned, starting at
result, and ending at the OutputIterator returned by the function. The elements in
the two ranges must have been sorted using operator<() of the data type to which the
iterators point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are also present in the range [first2, last2) is returned, starting at
result, and ending at the OutputIterator returned by the function. The elements in
the two ranges must have been sorted using the comp function object.
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• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>

class CaseLess
{

public:
bool operator()(std::string const &left, std::string const &right)
{

return strcasecmp(left.c_str(), right.c_str()) < 0;
}

};

using namespace std;

int main()
{

string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};
string result[7];
string *returned;

copy(result,
set_intersection(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_intersection(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

papa quebec
papa quebec

*/

17.4.56 set_symmetric_difference()

• Header file:

#include <algorithm>



17.4. THE GENERIC ALGORITHMS 463

• Function prototypes:

– OutputIterator set_symmetric_difference( InputIterator1 first1,
InputIterator1 last1, InputIterator2 first2,
InputIterator2 last2, OutputIterator result);

– OutputIterator set_symmetric_difference( InputIterator1 first1,
InputIterator1 last1, InputIterator2 first2,
InputIterator2 last2, OutputIterator result,
Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are not present in the range [first2, last2) and those in the range
[first2, last2) that are not present in the range [first1, last1) is returned,
starting at result, and ending at the OutputIterator returned by the function. The
elements in the two ranges must have been sorted using operator<() of the data type
to which the iterators point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are not present in the range [first2, last2) and those in the range
[first2, last2) that are not present in the range [first1, last1) is returned,
starting at result, and ending at the OutputIterator returned by the function. The
elements in the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>

class CaseLess
{

public:
bool operator()(std::string const &left, std::string const &right)
{

return strcasecmp(left.c_str(), right.c_str()) < 0;
}

};

using namespace std;

int main()
{

string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};
string result[7];
string *returned;

copy(result,
set_symmetric_difference(set1, set1 + 7, set2, set2 + 3,

result),
ostream_iterator<string>(cout, " "));

cout << endl;
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string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_symmetric_difference(set1, set1 + 7, set3, set3 + 3,

result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

kilo lima mike november oscar romeo
kilo lima mike november oscar ROMEO

*/

17.4.57 set_union()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result,
Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements that are present in either the range

[first1, last1) or the range [first2, last2) or in both ranges is returned, start-
ing at result, and ending at the OutputIterator returned by the function. The ele-
ments in the two ranges must have been sorted using operator<() of the data type to
which the iterators point. Note that in the final range each element will appear only once.

– The second prototype: a sorted sequence of the elements that are present in either the

range [first1, last1) or the range [first2, last2) or in both ranges is returned,
starting at result, and ending at the OutputIterator returned by the function. The
elements in the two ranges must have been sorted using comp function object. Note that
in the final range each element will appear only once.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>

class CaseLess
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{
public:

bool operator()(std::string const &left, std::string const &right)
{

return strcasecmp(left.c_str(), right.c_str()) < 0;
}

};

using namespace std;

int main()
{

string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};
string result[7];
string *returned;

copy(result,
set_union(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_union(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

kilo lima mike november oscar papa quebec romeo
kilo lima mike november oscar papa quebec ROMEO

*/

17.4.58 sort()

• Header file:

#include <algorithm>

• Function prototypes:

– void sort(RandomAccessIterator first, RandomAccessIterator last);

– void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

• Description:
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– The first prototype: the elements in the range [first, last) are sorted in ascending
order, using operator<() of the data type to which the iterators point.

– The second prototype: the elements in the range [first, last) are sorted in ascending
order, using the comp function object to compare the elements. The binary predicate comp
should return true if its first argument should be placed earlier in the sorted sequence
than its second argument.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

string words[] = {"november", "kilo", "mike", "lima",
"oscar", "quebec", "papa"};

sort(words, words + 7);
copy(words, words + 7, ostream_iterator<string>(cout, " "));
cout << endl;

sort(words, words + 7, greater<string>());
copy(words, words + 7, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

kilo lima mike november oscar papa quebec
quebec papa oscar november mike lima kilo

*/

17.4.59 stable_partition()

• Header file:

#include <algorithm>

• Function prototype:

– BidirectionalIterator stable_partition(BidirectionalIterator first,
BidirectionalIterator last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates
as true are placed before the elements which evaluate as false. The relative order of
equal elements in the container is kept. The return value points just beyond the last

element in the partitioned range for which pred evaluates as true.
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• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

int org[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};
int ia[10];
int *split;

copy(org, org + 10, ia);
split = partition(ia, ia + 10, bind2nd(less_equal<int>(), ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

copy(org, org + 10, ia);
split = stable_partition(ia, ia + 10,

bind2nd(less_equal<int>(), ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Last element <= 4 is ia[3]
1 3 4 2 9 10 7 8 6 5
Last element <= 4 is ia[3]
1 3 2 4 5 7 9 10 8 6

*/

17.4.60 stable_sort()

• Header file:

#include <algorithm>

• Function prototypes:

– void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

– void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);



468 CHAPTER 17. THE STANDARD TEMPLATE LIBRARY, GENERIC ALGORITHMS

• Description:

– The first prototype: the elements in the range [first, last) are stable-sorted in as-
cending order, using operator<() of the data type to which the iterators point: the rela-
tive order of equal elements is kept.

– The second prototype: the elements in the range [first, last) are stable-sorted in
ascending order, using the comp binary predicate to compare the elements. This predicate
should return true if its first argument should be placed before its second argument in
the sorted set of element.

• Example (annotated below):

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <iterator>

typedef std::pair<std::string, std::string> pss; // 1 (see the text)

namespace std
{

ostream &operator<<(ostream &out, pss const &p) // 2
{

return out << " " << p.first << " " << p.second << endl;
}

}

class sortby
{

std::string pss::*d_field;
public:

sortby(std::string pss::*field) // 3
:

d_field(field)
{}

bool operator()(pss const &p1, pss const &p2) const // 4
{

return p1.*d_field < p2.*d_field;
}

};

using namespace std;

int main()
{

vector<pss> namecity; // 5

namecity.push_back(pss("Hampson", "Godalming"));
namecity.push_back(pss("Moran", "Eugene"));
namecity.push_back(pss("Goldberg", "Eugene"));
namecity.push_back(pss("Moran", "Godalming"));
namecity.push_back(pss("Goldberg", "Chicago"));
namecity.push_back(pss("Hampson", "Eugene"));
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sort(namecity.begin(), namecity.end(), sortby(&pss::first)); // 6

cout << "sorted by names:\n";
copy(namecity.begin(), namecity.end(), ostream_iterator<pss>(cout));

// 7
stable_sort(namecity.begin(), namecity.end(), sortby(&pss::second));

cout << "sorted by names within sorted cities:\n";
copy(namecity.begin(), namecity.end(), ostream_iterator<pss>(cout));

return 0;
}
/*

Generated output:

sorted by names:
Goldberg Eugene
Goldberg Chicago
Hampson Godalming
Hampson Eugene
Moran Eugene
Moran Godalming

sorted by names within sorted cities:
Goldberg Chicago
Goldberg Eugene
Hampson Eugene
Moran Eugene
Hampson Godalming
Moran Godalming

*/

Note that the example implements a solution to an often occurring problem: how to sort using

multiple hierarchical criteria. The example deserves some additional attention:

1. First, a typedef is used to reduce the clutter that occurs from the repeated use of pair<string,
string>.

2. Next, operator<<() is overloaded to be able to insert a pair into an ostream object. This
is merely a service function to make life easy. Note, however, that this function is put in

the std namespace. If this namespace wrapping is omitted, it won’t be used, as ostream’s
operator<<() operators must be part of the std namespace.

3. Then, a class sortby is defined, allowing us to construct an anonymous object which receives
a pointer to one of the pair data members that are used for sorting. In this case, as both
members are string objects, the constructor can easily be defined: its parameter is a pointer
to a string member of the class pair<string, string>.

4. The operator()()member will receive two pair references, and it will then use the pointer
to its members, stored in the sortby object, to compare the appropriate fields of the pairs.

5. In main(), first some data is stored in a vector.

6. Then the first sorting takes place. The least important criterion must be sorted first, and for

this a simple sort() will suffice. Since we want the names to be sorted within cities, the
names represent the least important criterion, so we sort by names: sortby(&pss::first).
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7. The next important criterion, the cities, are sorted next. Since the relative ordering of the

names will not be altered anymore by stable_sort(), the ties that are observed when cities
are sorted are solved in such a way that the existing relative ordering will not be broken. So,

we end up getting Goldberg in Eugene before Hampson in Eugene, before Moran in Eugene.

To sort by cities, we use another anonymous sortby object: sortby(&pss::second).

17.4.61 swap()

• Header file:

#include <algorithm>

• Function prototype:

– void swap(Type &object1, Type &object2);

• Description:

– The elements object1 and object2 exchange their values.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string first[] = {"alpha", "bravo", "charley"};
string second[] = {"echo", "foxtrot", "golf"};
size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

for (size_t idx = 0; idx < n; ++idx)
swap(first[idx], second[idx]);

cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:

Before:
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alpha bravo charley
echo foxtrot golf
After:
echo foxtrot golf
alpha bravo charley

*/

17.4.62 swap_ranges()

• Header file:

#include <algorithm>

• Function prototype:

– ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1
last1, ForwardIterator2 result);

• Description:

– The elements in the range pointed to by [first1, last1) are swapped with the el-
ements in the range [result, returnvalue), where returnvalue is the value re-
turned by the function. The two ranges must be disjoint.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

int main()
{

string first[] = {"alpha", "bravo", "charley"};
string second[] = {"echo", "foxtrot", "golf"};
size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

swap_ranges(first, first + n, second);

cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*
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Generated output:

Before:
alpha bravo charley
echo foxtrot golf
After:
echo foxtrot golf
alpha bravo charley

*/

17.4.63 transform()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryOperator op);

– OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result, BinaryOperator op);

• Description:

– The first prototype: the unary operator op is applied to each of the elements in the range
[first, last), and the resulting values are stored in the range starting at result.
The return value points just beyond the last generated element.

– The second prototype: the binary operator op is applied to each of the elements in the
range [first1, last1) and the corresponding element in the second range starting at
first2. The resulting values are stored in the range starting at result. The return
value points just beyond the last generated element.

• Example:

#include <functional>
#include <vector>
#include <algorithm>
#include <iostream>
#include <string>
#include <cctype>
#include <iterator>

class Caps
{

public:
std::string operator()(std::string const &src)
{

std::string tmp = src;

transform(tmp.begin(), tmp.end(), tmp.begin(), toupper);
return tmp;

}
};
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using namespace std;

int main()
{

string words[] = {"alpha", "bravo", "charley"};

copy(words, transform(words, words + 3, words, Caps()),
ostream_iterator<string>(cout, " "));

cout << endl;

int values[] = {1, 2, 3, 4, 5};
vector<int> squares;

transform(values, values + 5, values,
back_inserter(squares), multiplies<int>());

copy(squares.begin(), squares.end(),
ostream_iterator<int>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

ALPHA BRAVO CHARLEY
1 4 9 16 25

*/

the following differences between the for_each() (section 17.4.17) and transform() generic al-
gorithms should be noted:

• With transform() the return value of the function object’s operator()() member is used;
the argument that is passed to the operator()()member itself is not changed.

• With for_each() the function object’s operator()() receives a reference to an argument,
which itself may be changed by the function object’s operator()().

17.4.64 unique()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator unique(ForwardIterator first, ForwardIterator last);

– ForwardIterator unique(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

• Description:

– The first prototype: using operator==(), all but the first of consecutively equal elements
of the data type to which the iterators point in the range pointed to by [first, last)
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are relocated to the end of the range. The returned forward iterator marks the beginning

of the leftover. All elements in the range [first, return-value) are unique, all ele-
ments in the range [return-value, last) are equal to elements in the range [first,
return-value).

– The second prototype: all but the first of consecutive elements in the range pointed to

by [first, last) for which the binary predicate pred (expecting two arguments of
the data type to which the iterators point) returns true, are relocated to the end of the
range. The returned forward iterator marks the beginning of the leftover. For all pairs of

elements in the range [first, return-value) pred returns false (i.e., are unique),
while pred returns true for a combination of, as its first operand, an element in the range
[return-value, last) and, as its second operand, an element in the range [first,
return-value).

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return !strcasecmp(first.c_str(), second.c_str());
}

};

using namespace std;

int main()
{

string words[] = {"alpha", "alpha", "Alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);

string *removed = unique(words, words + size);
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

removed = unique(words, words + size, CaseString());
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return 0;
}
/*

Generated output:
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alpha Alpha papa quebec
Trailing elements are:
quebec
alpha papa quebec
Trailing elements are:
quebec quebec

*/

17.4.65 unique_copy()

• Header file:

#include <algorithm>

• Function prototypes:

– OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result);

– OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator Result, BinaryPredicate pred);

• Description:

– The first prototype: the elements in the range [first, last) are copied to the resulting
container, starting at result. Consecutively equal elements (using operator==() of the
data type to which the iterators point) are copied only once. The returned output iterator

points just beyond the last copied element.

– The second prototype: the elements in the range [first, last) are copied to the re-
sulting container, starting at result. Consecutive elements in the range pointed to by
[first, last) for which the binary predicate pred returns true are copied only once.
The returned output iterator points just beyond the last copied element.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <iterator>

class CaseString
{

public:
bool operator()(std::string const &first,

std::string const &second) const
{

return !strcasecmp(first.c_str(), second.c_str());
}

};

using namespace std;

int main()
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{
string words[] = {"oscar", "Alpha", "alpha", "alpha",

"papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
vector<string> remaining;

unique_copy(words, words + size, back_inserter(remaining));

copy(remaining.begin(), remaining.end(),
ostream_iterator<string>(cout, " "));

cout << endl;

vector<string> remaining2;

unique_copy(words, words + size,
back_inserter(remaining2), CaseString());

copy(remaining2.begin(), remaining2.end(),
ostream_iterator<string>(cout, " "));

cout << endl;

return 0;
}
/*

Generated output:

oscar Alpha alpha papa quebec
oscar Alpha papa quebec

*/

17.4.66 upper_bound()

• Header file:

#include <algorithm>

• Function prototypes:

– ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
Type const &value);

– ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
Type const &value, Compare comp);

• Description:

– The first prototype: the sorted elements stored in the iterator range [first, last) are
searched for the first element that is greater than value. The returned iterator marks the
first location in the sequence where value can be inserted without breaking the sorted
order of the elements, using operator<() of the data type to which the iterators point.
If no such element is found, last is returned.

– The second prototype: the elements implied by the iterator range [first, last) must
have been sorted using the comp function or function object. Each element in the range
is compared to value using the comp function. An iterator to the first element for which
the binary predicate comp, applied to the elements of the range and value, returns true
is returned. If no such element is found, last is returned.
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• Example:

#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;

int main()
{

int ia[] = {10, 15, 15, 20, 30};
size_t n = sizeof(ia) / sizeof(int);

cout << "Sequence: ";
copy(ia, ia + n, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<

*upper_bound(ia, ia + n, 15) << endl;
cout << "35 can be inserted after " <<

(upper_bound(ia, ia + n, 35) == ia + n ?
"the last element" : "???") << endl;

sort(ia, ia + n, greater<int>());

cout << "Sequence: ";
copy(ia, ia + n, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<

*upper_bound(ia, ia + n, 15, greater<int>()) << endl;
cout << "35 can be inserted before " <<

(upper_bound(ia, ia + n, 35, greater<int>()) == ia ?
"the first element " : "???") << endl;

return 0;
}
/*

Generated output:

Sequence: 10 15 15 20 30
15 can be inserted before 20
35 can be inserted after the last element
Sequence: 30 20 15 15 10
15 can be inserted before 10
35 can be inserted before the first element

*/

17.4.67 Heap algorithms

A heap is a kind of binary tree which can be represented by an array. In the standard heap, the key

of an element is not smaller than the key of its children. This kind of heap is called a max heap. A

tree in which numbers are keys could be organized as shown in figure 17.1. Such a tree may also be
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Figure 17.1: A binary tree representation of a heap

organized in an array:

12, 11, 10, 8, 9, 7, 6, 1, 2, 4, 3, 5

In the following description, keep two pointers into this array in mind: a pointer node indicates the
location of the next node of the tree, a pointer child points to the next element which is a child of
the node pointer. Initially, node points to the first element, and child points to the second element.

• *node++ (== 12). 12 is the top node. its children are *child++ (11) and *child++ (10),
both less than 12.

• The next node (*node++ (== 11)), in turn, has *child++ (8) and *child++ (9) as its chil-
dren.

• The next node (*node++ (== 10)) has *child++ (7) and *child++ (6) as its children.

• The next node (*node++ (== 8)) has *child++ (1) and *child++ (2) as its children.

• Then, node (*node++ (== 9)) has children *child++ (4) and *child++ (3).

• Finally (as far as children are concerned) (*node++ (== 7)) has one child *child++ (5)

Since child now points beyond the array, the remaining nodes have no children. So, nodes 6, 1, 2,
4, 3 and 5 don’t have children.

Note that the left and right branches are not ordered: 8 is less than 9, but 7 is larger than 6.

The heap is created by traversing a binary tree level-wise, starting from the top node. The top node

is 12, at the zeroth level. At the first level we find 11 and 10. At the second level 6, 7, 8 and 9 are

found, etc.

Heaps can be created in containers supporting random access. So, a heap is not, for example, con-

structed in a list. Heaps can be constructed from an (unsorted) array (using make_heap()). The
top-element can be pruned from a heap, followed by reordering the heap (using pop_heap()), a new
element can be added to the heap, followed by reordering the heap (using push_heap()), and the
elements in a heap can be sorted (using sort_heap(), which invalidates the heap, though).

The following subsections show the prototypes of the heap-algorithms, the final subsection provides

a small example in which the heap algorithms are used.
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17.4.67.1 The ‘make_heap()’ function

• Header file:

#include <algorithm>

• Function prototypes:

– void make_heap(RandomAccessIterator first, RandomAccessIterator last);

– void make_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

• Description:

– The first prototype: the elements in the range [first, last) are reordered to form a
max-heap, using operator<() of the data type to which the iterators point.

– The second prototype: the elements in the range [first, last) are reordered to form a
max-heap, using the binary comparison function object comp to compare elements.

17.4.67.2 The ‘pop_heap()’ function

• Header file:

#include <algorithm>

• Function prototypes:

– void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

– void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

• Description:

– The first prototype: the first element in the range [first, last) is moved to last - 1.
Then, the elements in the range [first, last - 1) are reordered to form a max-heap,
using the operator<() of the data type to which the iterators point.

– The second prototype: the first element in the range [first, last) is moved to last
- 1. Then, the elements in the range [first, last - 1) are reordered to form a max-
heap, using the binary comparison function object comp to compare elements.

17.4.67.3 The ‘push_heap()’ function

• Header file:

#include <algorithm>

• Function prototypes:

– void push_heap(RandomAccessIterator first, RandomAccessIterator last);

– void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
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• Description:

– The first prototype: assuming that the range [first, last - 2) contains a valid heap,
and the element at last - 1 contains an element to be added to the heap, the ele-
ments in the range [first, last - 1) are reordered to form a max-heap, using the
operator<() of the data type to which the iterators point.

– The second prototype: assuming that the range [first, last - 2) contains a valid
heap, and the element at last - 1 contains an element to be added to the heap, the
elements in the range [first, last - 1) are reordered to form a max-heap, using the
binary comparison function object comp to compare elements.

17.4.67.4 The ‘sort_heap()’ function

• Header file:

#include <algorithm>

• Function prototypes:

– void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

– void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

• Description:

– The first prototype: assuming the elements in the range [first, last) form a valid
max-heap, the elements in the range [first, last) are sorted, using operator<() of
the data type to which the iterators point.

– The second prototype: assuming the elements in the range [first, last) form a valid
heap, the elements in the range [first, last) are sorted, using the binary comparison
function object comp to compare elements.

17.4.67.5 An example using the heap functions

Here is an example showing the various generic algorithms manipulating heaps:

#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>

void show(int *ia, char const *header)
{

std::cout << header << ":\n";
std::copy(ia, ia + 20, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;

}

using namespace std;

int main()
{
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int ia[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

make_heap(ia, ia + 20);
show(ia, "The values 1-20 in a max-heap");

pop_heap(ia, ia + 20);
show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20);
show(ia, "Adding 20 (at the end) to the heap again");

sort_heap(ia, ia + 20);
show(ia, "Sorting the elements in the heap");

make_heap(ia, ia + 20, greater<int>());
show(ia, "The values 1-20 in a heap, using > (and beyond too)");

pop_heap(ia, ia + 20, greater<int>());
show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20, greater<int>());
show(ia, "Re-adding the removed element");

sort_heap(ia, ia + 20, greater<int>());
show(ia, "Sorting the elements in the heap");

return 0;
}
/*

Generated output:

The values 1-20 in a max-heap:
20 19 15 18 11 13 14 17 9 10 2 12 6 3 7 16 8 4 1 5
Removing the first element (now at the end):
19 18 15 17 11 13 14 16 9 10 2 12 6 3 7 5 8 4 1 20
Adding 20 (at the end) to the heap again:
20 19 15 17 18 13 14 16 9 11 2 12 6 3 7 5 8 4 1 10
Sorting the elements in the heap:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
The values 1-20 in a heap, using > (and beyond too):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Removing the first element (now at the end):
2 4 3 8 5 6 7 16 9 10 11 12 13 14 15 20 17 18 19 1
Re-adding the removed element:
1 2 3 8 4 6 7 16 9 5 11 12 13 14 15 20 17 18 19 10
Sorting the elements in the heap:
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

*/
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Chapter 18

Template functions

C++ supports syntactical constructs allowing programmers to define and use completely general (or

abstract) functions or classes, based on generic types and/or (possibly inferred) constant values. In

the chapters on abstract containers (chapter 12) and the STL (chapter 17) we’ve already used these
constructs, commonly known as the template mechanism.

The template mechanism allows us to specify classes and algorithms, fairly independently of the

actual types for which the templates will eventually be used. Whenever the template is used, the

compiler will generate code, tailored to the particular data type(s) used with the template. This code

is generated compile-time from the template’s definition. The piece of generated code is called an

instantiation of the template.

In this chapter the syntactical peculiarities of templates will be covered. The notions of template

type parameter, template non-type parameter, and template function will be introduced, and several

examples of templates will be offered, both in this chapter and in chapter 20, providing concrete

examples of C++. Template classes are covered in chapter 19.

Templates offered standard by the language already cover containers allowing us to construct both

highly complex and standard data structures commonly used in computer science. Furthermore,

the string (chapter 4) and stream (chapter 5) classes are commonly implemented using templates.
So, templates play a central role in present-day C++, and should absolutely not be considered an

esoteric feature of the language.

Templates should be approached somewhat similarly as generic algorithms: they’re a way of life; a

C++ software engineer should actively look for opportunities to use them. Initially, templates appear

to be rather complex, and you might be tempted to turn your back on them. However, in time their

strengths and benefits will be more and more appreciated. Eventually you’ll be able to recognize

opportunities for using templates. That’s the time where your efforts should no longer focus on

constructing concrete (i.e., non-template) functions or classes, but on constructing templates.

This chapter starts by introducing template functions. The emphasis is on the required syntax when

defining such functions. This chapter lays the foundation upon which the next chapter, introducing

template classes and offering several real-life examples, is built.

18.1 Defining template functions

A template function’s definition is very similar to the definition of a normal function. A template

function has a function head, a function body, a return type, possibly overloaded definitions, etc..

483
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However, different from concrete functions, template functions always use one or more formal types:

types for which almost any exising (class or primitive) type could be used. Let’s start with a simple

example. The following function add() expects two arguments, and returns their sum:

Type add(Type const &lvalue, Type const &rvalue)
{

return lvalue + rvalue;
}

Note how closely the above function’s definition follows its description: it gets two arguments, and

returns its sum. Now consider what would happen if we would have to define this function for, e.g.,

int values. We would have to define:

int add(int const &lvalue, int const &rvalue)
{

return lvalue + rvalue;
}

So far, so good. However, were we to add to doubles, we would have to overload this function so that

its overloaded version accepts doubles:

double add(double const &lvalue, double const &rvalue)
{

return lvalue + rvalue;
}

There is no end to the number of overloaded versions we might be forced to construct: an overloaded

version for std::string, for size_t, for .... In general, we would need an overloaded version
for every type supporting operator+() and a copy constructor. All these overloaded versions of
basically the same function are required because of the strongly typed nature of C++. Because of

this, a truly generic function cannot be constructed without resorting to the template mechanism.

Fortunately, we’ve already seen the meat and bones of a template function. Our initial function

add() actually is an implementation of such a function. However, it isn’t a full template definition
yet. If we would give the first add() function to the compiler, it would produce an error message
like:

error: ‘Type’ was not declared in this scope
error: parse error before ‘const’

And rightly so, as we failed to define Type. The error is prevented when we change add() into a
full template definition. To do this, we look at the function’s implementation and decide that Type
is actually a formal typename. Comparing it to the alternate implementations, it will be clear that

we could have changed Type into int to get the first implementation, and into double to get the
second.

The full template definition allows for this formal character of the Type typename. Using the key-
word template, we prefix one line to our initial definition, obtaining the following template function
definition:

template <typename Type>
Type add(Type const &lvalue, Type const &rvalue)
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{
return lvalue + rvalue;

}

In this definition we distinguish:

• The keyword template, starting a template definition or declaration.

• The angle bracket enclosed list following template: it is a list, containing one or more comma-
separated elements. This angle bracket enclosed list is called the template parameter list.

When multiple elements are used, it could look like, e.g.,

typename Type1, typename Type2

• Inside the template parameter list we find the formal type name Type. It is a formal type
name, comparable to a formal parameter name in a function’s definition. Up to now we’ve only

encountered formal variable names with functions. The types of the parameters were always

known by the time the function was defined. Templates escalate the notion of formal names

one step further up the ladder, allowing type names to be formalized, rather than just the

formal parameter variable names themselves. The fact that Type is a formal type name is
indicated by the keyword typename, prefixed to Type in the template parameter list. A formal
type name like Type is also called a template type parameter. Template non-type parameters
also exist, and are introduced below.

Other texts on C++ sometimes use the keyword class where we use typename. So, in other
texts template definitions might start with a line like:

template <class Type>

Using class instead of typename is now, however, considered an anachronism, and is depre-
cated: a template type parameter is, after all, a type name.

• The function head: it is like a normal function head, albeit that the template’s type param-

eters must be used in its parameter list. When the function is actually called, using actual

arguments having actual types, these actual types are then used by the compiler to determine

which version (overloaded to fit the actual argument types) of the template function must be

used. At this point (i.e., where the function is called), the compiler will create the concrete func-

tion, a process called instantiation. The function head may also use a formal type to specify its

return value. This feature was actually used in the add() template’s definition.

• The function parameters are specified as Type const & parameters. This has the usual
meaning: the parameters are references to Type objects or values that will not be modified
by the function.

• The function body: it is like a normal function body. In the body the formal type names may be

used to define or declare variables, which may then be used as any other local variable. Even

so, there are some restrictions. Looking at add()’s body, it is clear that operator+() is used,
as well as a copy constructor, as the function returns a value. This allows us to formulate the

following restrictions for the formal type Type:

– Type should support operator+()

– Type should support a copy constructor

Consequently, while Type could be a std::string, it could never be an ostream, as neither
operator+() nor the copy constructor are available for streams.
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Normal scope rules and identifier visibility rules apply to template definitions. Formal typenames

overrule, within the template definition’s scope, any identifiers having identical names having wider

scopes.

Look again at the function’s parameters, as defined in its parameter list. By specifying Type const
& rather than Type superfluous copying is prevented, at the same time allowing values of primitive
types to be passed as arguments to the function. So, when add(3, 4) is called, int(4) will be
assigned to Type const &rvalue. In general, function parameters should be defined as Type
const & to prevent unnecessary copying. The compiler is smart enough to handle ‘references to
references’ in this case, which is something the language normally does not supports. For example,

consider the following main() function (here and in the following simple examples assuming the
template and required headers and namespace declarations have been provided):

int main()
{

size_t const &uc = size_t(4);
cout << add(uc, uc) << endl;

}

Here uc is a reference to a constant size_t. It is passed as argument to add(), thereby initializing
lvalue and rvalue as Type const & to size_t const & values, with the compiler interpreting
Type as size_t. Alternatively, the parameters might have been specified using Type &, rather
than Type const &. The disadvantage of this (non-const) specification being that temporary values
cannot be passed to the function anymore. The following will fail to compile:

int main()
{

cout << add(string("a"), string("b")) << endl;
}

Here, a string const & cannot be used to initialize a string &. On the other hand, the following
will compile, with the compiler deciding that Type should be considered a string const:

int main()
{

string const &s = string("a");
cout << add(s, s) << endl;

}

What can we deduce from these examples?

• In general, function parameters should be specified as Type const & parameters to prevent
unnecessary copying.

• The template mechanism is fairly flexible, in that it will interpret formal types as plain types,

const types, pointer types, etc., depending on the actually provided types. The rule of thumb

is that the formal type is used as a generic mask for the actual type, with the formal type

name covering whatever part of the actual type must be covered. Some examples, assuming

the parameter is defined as Type const &:

argument type Type ==

size_t const size_t
size_t size_t
size_t * size_t *
size_t const * size_t const *
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As a second example of a template function, consider the following function definition:

template <typename Type, size_t Size>
Type sum(Type const (&array)[Size])
{

Type t = Type();

for (size_t idx = 0; idx < Size; idx++)
t += array[idx];

return t;
}

This template definition introduces the following new concepts and features:

• Its template parameter list has two elements. Its first element is a well-known template type

parameter, but its second element has a very specific type: an size_t. Template parameters
of specific (i.e., non-formal) types used in template parameter lists are called template non-type

parameters. A template non-type parameter represents a constant expression, which must be

known by the time the template is instantiated, and which is specified in terms of existing

types, such as an size_t.

• Looking at the function’s head, we see one parameter:

Type const (&array)[Size]

This parameter defines array as a reference parameter to an array having Size elements of
type Type, that may not be modified.

• In the parameter definition, both Type and Size are used. Type is of course the template’s type
parameter Type, but Size is also a template parameter. It is an size_t, whose value must
be inferable by the compiler when it compiles an actual call of the sum() template function.
Consequently, Size must be a const value. Such a constant expression is called a template
non-type parameter, and it is named in the template’s parameter list.

• When the template function is called, the compiler must be able to infer not only Type’s con-
crete value, but also Size’s value. Since the function sum() only has one parameter, the
compiler is only able to infer Size’s value from the function’s actual argument. It can do so if
the provided argument is an array (of known and fixed size), rather than a pointer to Type ele-
ments. So, in the following main() function the first statement will compile correctly, whereas
the second statement won’t:

int main()
{

int values[5];
int *ip = values;

cout << sum(values) << endl; // compiles ok
cout << sum(ip) << endl; // won’t compile

}

• Inside the function, the statement Type t = Type() is used to initialize t to a default value.
Note here that no fixed value (like 0) is used. Any type’s default value may be obtained using

its default constructor, rather than using a fixed numerical value. Of course, not every class

accepts a numerical value as an argument to one of its constructors. But all types, even the
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primitive types, support default constructors (actually, some classes do not implement a de-

fault constructor, but most do). The default constructor of primitive types will initialize their

variables to 0 (or false). Furthermore, the statement Type t = Type() is a true initializa-
tion: t is initialized by Type’s default constructor, rather than using Type’s copy constructor to
assign Type()’s copy to t. Alternatively, the syntactical construction Type t(Type()) could
have been used.

• Comparable to the first template function, sum() also assumes the existence of certain public
members in Type’s class. This time operator+=() and Type’s copy constructor.

Like class definitions, template definitions should not contain using directives or declarations: the
template might be used in a situation where such a directive overrides the programmer’s intentions:

ambiguities or other conflicts may result from the template’s author and the programmer using

different using directives (E.g, a cout variable defined in the std namespace and in the program-
mer’s own namespace). Instead, within template definitions only fully qualified names, including all

required namespace specifications should be used.

18.2 Argument deduction

In this section we’ll concentrate on the process by which the compiler deduces the actual types of the

template type parameters when a template function is called, a process called template parameter

deduction. As we’ve already seen, the compiler is able to substitute a wide range of actual types

for a single formal template type parameter. Even so, not every thinkable conversion is possible.

In particular when a function has multiple parameters of the same template type parameter, the

compiler is very restrictive in what argument types it will actually accept.

When the compiler deduces the actual types for template type parameters, it will only consider the

types of the arguments. Neither local variables nor the function’s return value is considered in this

process. This is understandable: when a function is called, the compiler will only see the template

function’s arguments with certainty. At the point of the call it will definitely not see the types of

the function’s local variables, and the function’s return value might not actually be used, or may be

assigned to a variable of a subrange (or super-range) type of a deduced template type parameter. So,

in the following example, the compiler won’t ever be able to call fun(), as it has no way to deduce
the actual type for the Type template type parameter.

template <typename Type>
Type fun() // can never be called
{

return Type();
}

In general, when a function has multiple parameters of identical template type parameters, the

actual types must be exactly the same. So, whereas

void binarg(double x, double y);

may be called using an int and a double, with the int argument implicitly being converted to a
double, the corresponding template function cannot be called using an int and double argument:
the compiler won’t itself promote int to double and to decide next that Type should be double:

template <typename Type>
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void binarg(Type const &p1, Type const &p2)
{}

int main()
{

binarg(4, 4.5); // ?? won’t compile: different actual types
}

What, then, are the transformations the compiler will apply when deducing the actual types of

template type parameters? It will perform only three types of parameter type transformations (and

a fourth one to function parameters of any fixed type (i.e., of a non-template function parameter

type)). If it cannot deduce the actual types using these transformations, the template function will

not be considered. These transformations are:

• lvalue transformations, creating an rvalue from an lvalue;

• qualification transformations, inserting a const modifier to a non-constant argument type;

• transformation to a base class instantiated from a class template, using a template base class

when an argument of a template derived class type was provided in the call.

• Standard transformations for template non-type function parameters. This isn’t a template

parameter type transformation, but it refers to any remaining template non-type parameter

of template functions. For these function parameters the compiler will perform any standard

conversion it has available (e.g., int to size_t, int to double, etc.).

The first three types of transformations will now be discussed and illustrated.

18.2.1 Lvalue transformations

There are three types of lvalue transformations:

• lvalue-to-rvalue transformations.

An lvalue-to-rvalue transformation is applied when an rvalue is required, and an
lvalue is used as argument. This happens when a variable is used as argument to
a function specifying a value parameter. For example,

template<typename Type>
Type negate(Type value)
{

return -value;
}
int main()
{

int x = 5;
x = negate(x); // lvalue (x) to rvalue (copies x)

}

• array-to-pointer transformations.

An array-to-pointer transformation is applied when the name of an array is assigned

to a pointer variable. This is frequently seen with functions defining pointer param-

eters. When calling such functions, arrays are often specified as their arguments.
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The array’s address is then assigned to the pointer-parameter, and its type is used to

deduce the corresponding template parameter’s type. For example:

template<typename Type>
Type sum(Type *tp, size_t n)
{

return accumulate(tp, tp + n, Type());
}
int main()
{

int x[10];
sum(x, 10);

}

In this example, the location of the array x is passed to sum(), expecting a pointer
to some type. Using the array-to-pointer transformation, x’s address is considered a
pointer value which is assigned to tp, deducing that Type is int in the process.

• function-to-pointer transformations.

This transformation is most often seen with template functions defining a parameter

which is a pointer to a function. When calling such a function the name of a function

may be specified as its argument. The address of the function is then assigned to

the pointer-parameter, deducing the template type parameter in the process. This is

called a function-to-pointer transformation. For example:

#include <cmath>

template<typename Type>
void call(Type (*fp)(Type), Type const &value)
{

(*fp)(value);
}
int main()
{

call(&sqrt, 2.0);
}

In this example, the address of the sqrt() function is passed to call(), expecting a
pointer to a function returning a Type and expecting a Type for its argument. Using
the function-to-pointer transformation, sqrt’s address is considered a pointer value
which is assigned to fp, deducing that Type is double in the process. Note that the
argument 2.0 could not have been specified as 2, as there is no int sqrt(int) pro-
totype. Also note that the function’s first parameter specifies Type (*fp)(Type),
rather than Type (*fp)(Type const &) as might have been expected from our
previous discussion about how to specify the types of template function’s parameters,

preferring references over values. However, fp’s argument Type is not a template
function parameter, but a parameter of the function fp points to. Since sqrt() has
prototype double sqrt(double), rather than double sqrt(double const &),
call()’s parameter fp must be specified as Type (*fp)(Type). It’s that strict.

18.2.2 Qualification transformations

A qualification transformation adds const or volatile qualifications to pointers. This transfor-
mation is applied when the template function’s parameter is explicitly defined using a const (or
volatile) modifier, and the function’s argument isn’t a const or volatile entity. In that case,
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the transformation adds const or volatile, and subsequently deduces the template’s type param-
eter. For example:

template<typename Type>
Type negate(Type const &value)
{

return -value;
}
int main()
{

int x = 5;
x = negate(x);

}

Here we see the template function’s Type const &value parameter: a reference to a const Type.
However, the argument isn’t a const int, but an int that can be modified. Applying a qualification
transformation, the compiler adds const to x’s type, and so it matches int const x with Type
const &value, deducing that Type must be int.

18.2.3 Transformation to a base class

Although the construction of template classes will only be constructed in chapter 19, template classes

have already extensively been used earlier. For example, abstract containers (covered in chapter 12)

are actually defined as template classes. Like concrete classes (i.e., non-template classes), template

classes can participate in the construction of class hierarchies. In section 19.9 it is shown how a

template class can be derived from another template class.

As template class derivation remains to be covered, the following discussion is necessarily some-

what abstract. Optionally, the reader may of course skip briefly to section 19.9, to read this section

thereafter.

In this section it should now be assumed, for the sake of argument, that a template class Vector
has somehow been derived from a std::vector. Furthermore, assume that the following template
function has been constructed to sort a vector using some function object obj:

template <typename Type, typename Object>
void sortVector(std::vector<Type> vect, Object const &obj)
{

sort(vect.begin(), vect.end(), obj);
}

To sort std::vector<string> objects case-insensitively, the class Caseless could be constructed
as follows:

class CaseLess
{

public:
bool operator()(std::string const &before,

std::string const &after) const
{

return strcasecmp(before.c_str(), after.c_str()) < 0;
}

};
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Now various vectors may be sorted, using sortVector():

int main()
{

std::vector<string> vs;
std::vector<int> vi;

sortVector(vs, CaseLess());
sortVector(vi, less<int>());

}

Applying the transformation transformation to a base class instantiated from a class template, the

template function sortVectors()may now also be used to sort Vector objects. For example:

int main()
{

Vector<string> vs; // note: not ‘std::vector’
Vector<int> vi;

sortVector(vs, CaseLess());
sortVector(vi, less<int>());

}

In this example, Vectors were passed as argument to sortVector(). Applying the transforma-
tion to a base class instantiated from a class template, the compiler will consider Vector to be a
std::vector, and is thus able to deduce the template’s type parameter. A std::string for the
Vector vs, an int for Vector vi.

Please realize the purpose of the various template parameter type deduction transformations. They

do not aim at matching function arguments to function parameters, but having matched arguments

to parameters, the transformations may be applied to determine the actual types of the various

template type parameters.

18.2.4 The template parameter deduction algorithm

The compiler uses the following algorithm to deduce the actual types of its template type parameters:

• In turn, the template function’s parameters are identified using the arguments of the called

function.

• For each template parameter used in the template function’s parameter list, the template type

parameter is matched with the corresponding argument’s type (e.g., Type is int if the argu-
ment is int x, and the function’s parameter is Type &value).

• While matching the argument types to the template type parameters, the three allowed trans-

formations (see section 18.2) for template type parameters are applied where necessary.

• If identical template type parameters are used with multiple function parameters, the deduced

template types must be exactly the same. So, the next template function cannot be called with

an int and a double argument:

template <typename Type>
Type add(Type const &lvalue, Type const &rvalue)
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{
return lvalue + rvalue;

}

When calling this template function, two identical types must be used (albeit that the three

standard transformations are of course allowed). If the template deduction mechanism does

not come up with identical actual types for identical template types, then the template function

will not be instantiated.

18.3 Declaring template functions

Up to now, we’ve only defined template functions. There are various consequences of including

template function definitions in multiple source files, none of them serious, but worth knowing.

• Like class interfaces, template definitions are usually included in header files. Every time a

header file containing a template definition is read by the compiler, the compiler must process

the definition in full, even though it might not actually need the template. This will relatively

slow-down the compilation. For example, compiling a template header file like algorithm on
my old laptop takes about four times the amount of time it takes to compile a plain header file

like cmath. The header file iostream is even harder to process, requiring almost 15 times the
amount of time it takes to process cmath. Clearly, processing templates is serious business for
the compiler.

• Every time a template function is instantiated, its code appears in the resulting object module.

However, if multiple instantiations of a template, using the same actual types for its template

parameter exist in multiple object files, then the linker will weed out superfluous instantia-

tions. In the final program only one instantiation for a particular set of actual template type

parameters will be used (see also section 18.4 for an illustration). Therefore, the linker will

have an additional task to perform (viz. weeding out multiple instantiations), which will slow

down the linking process.

• Sometimes the definitions themselves are not required, but only references or pointers to the

templates are required. Requiring the compiler to process the full template definitions in those

cases will unnecessarily slow down the compilation process.

Instead of including template definitions again and again in various source files, templates may

also be declared. When templates are declared, the compiler will not have to process the template’s

definitions again and again, and no instantiations will be created on the basis of template declara-

tions alone. Any actually required instantiation must, as holding true for declarations in general, be

available elsewhere. Unlike the situation we encounter with concrete functions, which are usually

stored in libraries, it is currently not possible to store templates in libraries (although precompiled

header files may be implemented in various compilers). Consequently, using template declarations

puts a burden on the shoulders of the software engineer, who has to make sure that the required

instantiations exist. Below a simple way to accomplish that is introduced.

A template function declaration is simply created: the function’s body is replaced by a semicolon.

Note that this is exactly identical to the way concrete function declarations are constructed. So, the

previously defined template function add() can simply be declared as

template <typename Type>
Type add(Type const &lvalue, Type const &rvalue);
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Actually, we’ve already encountered template declarations. The header file iosfwdmay be included
in sources not requiring instantiations of elements from the class ios and its derived classes. For
example, in order to compile the declaration

std::string getCsvline(std::istream &in, char const *delim);

it is not necessary to include the string and istream header files. Rather, a single

#include <iosfwd>

is sufficient, requiring about one-ninth the amount of time it takes to compile the declaration when

string and istream are included.

18.3.1 Instantiation declarations

So, if declaring template functions speeds up the compilation and the linking phases of a program,

how can we make sure that the required instantiations of the template functions will be available

when the program is eventually linked together?

For this a variant of a declaration is available, a so-called explicit instantiation declaration. An

explicit instantiation declaration contains the following elements:

• It starts with the keyword template, omitting the template parameter list.

• Next the function’s return type and name are specified.

• The function name is followed by a type specification list, a list of types between angle brack-

ets, each type specifying the actual type of the corresponding template type parameter in the

template’s parameter list.

• Finally the function’s parameter list is specified, terminated by a semicolon.

Although this is a declaration, it is actually understood by the compiler as a request to instantiate

that particular variant of the function.

Using explicit instantiation declarations all instantiations of template functions required by a pro-

gram can be collected in one file. This file, which should be a normal source file, should include

the template definition header file, and should next specify the required instantiation declarations.

Since it’s a source file, it will not be included by other sources. So namespace using directives and
declarations may safely be used once the required headers have been included. Here is an example

showing the required instantiations for our earlier add() template, instantiated for double, int,
and std::string types:

#include "add.h"
#include <string>
using namespace std;

template int add<int>(int const &lvalue, int const &rvalue);
template double add<double>(double const &lvalue, double const &rvalue);
template string add<string>(string const &lvalue, string const &rvalue);

If we’re sloppy and forget to mention an instantiation required by our program, then the repair can

easily be made: just add the missing instantiation declaration to the above list. After recompiling

the file and relinking the program we’re done.
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18.4 Instantiating template functions

A template is not instantiated when its definition is read by the compiler. A template is merely a

recipe telling the compiler how to create particular code once it’s time to do so. It’s very much like

a recipe in a cooking book: you reading a cake’s recipe doesn’t mean you have actually cooked that

cake by the time you’ve read the recipe.

So, when is a template function actually instantiated? There are two situations in which the com-

piler will decide to instantiate templates:

• They are instantiated when they’re actually used (e.g., the function add() is called with a pair
of size_t values);

• When addresses of template functions are taken they are instantiated. For example:

#include "add.h"

char (*addptr)(char const &, char const &) = add;

The location of statements causing the compiler to instantiate a template is called the template’s

point of instantiation. The point of instantiation has serious implications for the template function’s

code. These implications are discussed in section 18.9.

The compiler is not always able to deduce the template’s type parameters unambiguously. In that

case the compiler reports an ambiguity which must be solved by the software engineer. Consider the

following code:

#include <iostream>
#include "add.h"

size_t fun(int (*f)(int *p, size_t n));
double fun(double (*f)(double *p, size_t n));

int main()
{

std::cout << fun(add) << std::endl;
}

When this small program is compiled, the compiler reports an ambiguity it cannot resolve. It has

two candidate functions, as for each overloaded version of fun() a proper instantiation of add()
can be constructed:

error: call of overloaded ’fun(<unknown type>)’ is ambiguous
note: candidates are: int fun(size_t (*)(int*, size_t))
note: double fun(double (*)(double*, size_t))

Situations like these should of course be avoided. Template functions can only be instantiated if

there’s no ambiguity. Ambiguities arise whenmultiple functions emerge from the compiler’s function

selection mechanism (see section 18.8). It is up to us to resolve these ambiguities. Ambiguities like

the above can be resolved using a blunt static_cast (as we select among alternatives, all of them
possible and available):

#include <iostream>
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#include "add.h"

int fun(int (*f)(int const &lvalue, int const &rvalue));
double fun(double (*f)(double const &lvalue, double const &rvalue));

int main()
{

std::cout << fun(
static_cast<int (*)(int const &, int const &)>(add)

) << std::endl;
return 0;

}

But if possible, type casts should be avoided. How to avoid casts in situations like these is explained

in the next section (18.5).

As mentioned in section 18.3, the linker will remove identical instantiations of a template from the

final program, leaving only one instantiation for each unique set of actual template type parame-

ters. Let’s have a look at an example showing this behavior of the linker. To illustrate the linker’s

behavior, we will do as follows:

• First we construct several source files:

– source1.cc defines a function fun(), instantiating add() for int-type arguments, in-
cluding add()’s template definition. It displays add()’s address. Here is source1.cc:

union PointerUnion
{

int (*fp)(int const &, int const &);
void *vp;

};

#include <iostream>
#include "add.h"
#include "pointerunion.h"

void fun()
{

PointerUnion pu = { add };

std::cout << pu.vp << std::endl;
}

– source2.cc defines the same function, but only declares the proper add() template,
using a template declaration (not an instantiation declaration). Here is source2.cc:

#include <iostream>
#include "pointerunion.h"

template<typename Type>
Type add(Type const &, Type const &);

void fun()
{

PointerUnion pu = { add };
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std::cout << pu.vp << std::endl;
}

– main.cc again includes add()’s template definition, declares the function fun() and
defines main(), defining add() for int-type arguments as well and displaying add()’s
function address. It also calls the function fun(). Here is main.cc:

#include <iostream>
#include "add.h"
#include "pointerunion.h"

void fun();

int main()
{

PointerUnion pu = { add };

fun();
std::cout << pu.vp << std::endl;

}

• All sources are compiled to object modules. Note the different sizes of source1.o (2112 bytes,
using g++ version 4.0.4. All sizes reported here may differ somewhat for different compilers
and/or run-time libraries) and source2.o (1928 bytes). Since source1.o contains the in-
stantiation of add(), it is somewhat larger than source2.o, containing only the template’s
declaration. Now we’re ready to start our little experiment.

• Linking main.o and source1.o, we obviously link together two object modules, each contain-
ing its own instantiation of the same template function. The resulting program produces the

following output:

0x80486d8
0x80486d8

Furthermore, the size of the resulting program is 9152 bytes.

• Linking main.o and source2.o, we now link together an object module containing the in-
stantiation of the add() template, and another object module containing the mere declaration
of the same template function. So, the resulting program cannot but contain a single instanti-

ation of the required template function. This program has exactly the same size, and produces

exactly the same output as the first program.

So, from our little experiment we can conclude that the linker will indeed remove identical template

instantiations from a final program, and that using mere template declarations will not result in

template instantiations.

18.5 Using explicit template types

In the previous section (section 18.4) we’ve seen that the compiler may encounter ambiguities when

attempting to instantiate a template. We’ve seen an example in which overloaded versions of a func-

tion fun() existed, expecting different types of arguments, both of which could have been provided
by an instantiation of a template function. The intuitive way to solve such an ambiguity is to use a

static_cast type cast, but as noted: if possible, casts should be avoided.
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When template functions are involved, such a static_cast may indeed neatly be avoided, using
explicit template type arguments. When explicit template type arguments are used the compiler is

explicitly informed about the actual template type parameters it should use when instantiating a

template. Here, the function’s name is followed by an actual template parameter type list which may

again be followed by the function’s argument list, if required. The actual types mentioned in the

actual template parameter list are used by the compiler to ‘deduce’ the actual types of the corre-

sponding template types of the function’s template parameter type list. Here is the same example

as given in the previous section, now using explicit template type arguments:

#include <iostream>
#include "add.h"

int fun(int (*f)(int const &lvalue, int const &rvalue));
double fun(double (*f)(double const &lvalue, double const &rvalue));

int main()
{

std::cout << fun(add<int>) << std::endl;
return 0;

}

18.6 Overloading template functions

Let’s once again look at our add() template. That template was designed to return the sum of two
entities. If we would want to compute the sum of three entities, we could write:

int main()
{

add(2, add(3, 4));
}

This is a perfectly acceptable solution for the occasional situation. However, if we would have to add

three entities regularly, an overloaded version of the add() function, expecting three arguments,
might be a useful thing to have. The solution for this problems is simple: template functions may be

overloaded.

To define an overloaded version, merely put multiple definitions of the template in its definition

header file. So, with the add() function this would be something like:

template <typename Type>
Type add(Type const &lvalue, Type const &rvalue)
{

return lvalue + rvalue;
}

template <typename Type>
Type add(Type const &lvalue, Type const &mvalue, Type const &rvalue)
{

return lvalue + mvalue + rvalue;
}
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The overloaded function does not have to be defined in terms of simple values. Like all overloaded

functions, just a unique set of function parameters is enough to define an overloaded version. For

example, here’s an overloaded version that can be used to compute the sum of the elements of a

vector:

template <typename Type>
Type add(std::vector<Type> const &vect)
{

return accumulate(vect.begin(), vect.end(), Type());
}

Overloading templates does not have to restrict itself to the function’s parameter list. The template’s

type parameter list itself may also be overloaded. The last definition of the add() template allows
us to specify a std::vector as its first argument, but no deque or map. Overloaded versions for
those types of containers could of course be constructed, but where’s the end to that? Instead, let’s

look for common characteristics of these containers, and if found, define an overloaded template

function on these common characteristics. One common characteristic of the mentioned containers

is that they all support begin() and end() members, returning iterators. Using this, we could
define a template type parameter representing containers that must support these members. But

mentioning a plain ‘container type’ doesn’t tell us for what data type it has been instantiated. So we

need a second template type parameter representing the container’s data type, thus overloading the

template’s type parameter list. Here is the resulting overloaded version of the add() template:

template <typename Container, typename Type>
Type add(Container const &cont, Type const &init)
{

return std::accumulate(cont.begin(), cont.end(), init);
}

With all these overloaded versions in place, we may now start the compiler to compile the following

function:

using namespace std;

int main()
{

vector<int> v;

add(3, 4); // 1 (see text)
add(v); // 2
add(v, 0); // 3

}

• With the first statement, the compiler recognizes two identical types, both int. It will therefore
instantiate add<int>(), our very first definition of the add() template.

• With statement two, a single argument is used. Consequently, the compiler will look for an

overloaded version of add() requiring but one argument. It finds the version expecting a
std::vector, deducing that the template’s type parameter must be int. It instantiates

add<int>(std::vector<int> const &)

• With statement three, the compiler again encounters an argument list holding two arguments.

However, the types of the arguments are different, so it cannot use the add() template’s first
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definition. But it can use the last definition, expecting entities having different types. As

a std::vector supports begin() and end(), the compiler is now able to instantiate the
template function

add<std::vector<int>, int>(std::vector<int> const &, int const &)

Having defined add() using two different template type parameters, and a template function having
a parameter list containing two parameters of these types, we’ve exhausted the possibilities to define

an add() function template having a function parameter list showing two different types. Even
though the parameter types are different, we’re still able to define a template function add() as a
template function merely returning the sum of two differently typed entities:

template <typename T1, typename T2>
T1 add(T1 const &lvalue, T2 const &rvalue)
{

return lvalue + rvalue;
}

However, nowwe won’t be able to instantiate add() using two differently typed arguments anymore:
the compiler won’t be able resolve the ambiguity. It cannot choose which of the two overloaded

versions defining two differently typed function parameters to use:

int main()
{

add(3, 4.5);
}
/*

Compiler reports:

error: call of overloaded ‘add(int, double)’ is ambiguous
error: candidates are: Type add(const Container&, const Type&)

[with Container = int, Type = double]
error: T1 add(const T1&, const T2&)

[with T1 = int, T2 = double]

*/

Consider once again the overloaded function accepting three arguments:

template <typename Type>
Type add(Type const &lvalue, Type const &mvalue, Type const &rvalue)
{

return lvalue + mvalue + rvalue;
}

It may be considered as a disadvantage that only equally typed arguments are accepted by this

function: e.g., three ints, three doubles or three strings. To remedy this, we define yet another
overloaded version of the function, this time accepting arguments of any type. Of course, when

calling this function we must make sure that operator+() is defined between them, but apart
from that there appears to be no problem. Here is the overloaded version accepting arguments of

any type:

template <typename Type1, typename Type2, typename Type3>
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Type1 add(Type1 const &lvalue, Type2 const &mvalue, Type3 const &rvalue)
{

return lvalue + mvalue + rvalue;
}

Now that we’ve defined these two overloaded versions, let’s call add() as follows:

add(1, 2, 3);

In this case, one might expect the compiler to report an ambiguity. After all, the compiler might

select the former function, deducing that Type == int, but it might also select the latter func-
tion, deducing that Type1 == int, Type2 == int and Type3 == int. However, the compiler
reports no ambiguity. The reason for this is the following: if an overloaded template function is

defined using more specialized template type parameters (e.g., all equal types) than another (over-

loaded) function, for which more general template type parameters (e.g., all different) have been

used, then the compiler will select the more specialized function over the more general function

wherever possible.

As a rule of thumb: when overloaded versions of a template function are defined, each overloaded

version must use a unique combination of template type parameters to avoid ambiguities when the

templates are instantiated. Note that the ordering of template type parameters in the function’s

parameter list is not important. When trying to instantiate the following binarg() template, an
ambiguity will occur:

template <typename T1, typename T2>
void binarg(T1 const &first, T2 const &second)
{}
// and:
template <typename T1, typename T2>
void binarg(T2 const &first, T1 const &second) // exchange T1 and T2
{}

The ambiguity should come as no surprise. After all, template type parameters are just formal

names. Their names (T1, T2 or Whatever) have no concrete meanings whatsoever.

Finally, overloaded functions may be declared, either using plain declarations or instantiation dec-

larations, and explicit template parameter types may also be used. For example:

• Declaring a template function add() accepting containers of a certain type:

template <typename Container, typename Type>
Type add(Container const &container, Type const &init);

• The same function, but now using an instantiation declaration (note that this requires that the

compiler has already seen the template’s definition):

template int add<std::vector<int>, int>
(std::vector<int> const &vect, int const &init);

• To disambiguate among multiple possibilities detected by the compiler, explicit arguments may

be used. For example:

std::vector<int> vi;
int sum = add<std::vector<int>, int>(vi, 0);
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18.7 Specializing templates for deviating types

The initial add() template, defining two identically typed parameters works fine for all types sen-
sibly supporting operator+() and a copy constructor. However, these assumptions are not always
met. For example, when char *s are used, neither the operator+() nor the copy constructor is
(sensibly) available. The compiler does not know this, and will try to instantiate the simple template

function

template <typename Type>
Type add(Type const &t1, Type const &t2);

But it can’t do so, since operator+() is not defined for pointers. In situations like these it is clear
that a match between the template’s type parameter(s) and the actually used type(s) is possible, but

the standard implementation is senseless or produces errors.

To solve this problem a template explicit specialization may be defined. A template explicit spe-

cialization defines the template function for which a generic definition already exists, using specific

actual template type parameters.

In the abovementioned case an explicit specialization is required for a char const *, but probably
also for a char * type. Probably, as the compiler still uses the standard type-deducing process
mentioned earlier. So, when our add() template function is specialized for char * arguments, then
its return type must also be a char *, whereas it must be a char const * if the arguments are
char const * values. In these cases the template type parameter Type will be deduced properly.
With Type == char *, for example, the head of the instantiated function becomes:

char *add(char *const &t1, char *const &t2)

If this is considered undesirable, an overloaded version could be designed expecting pointers. The

following template function definition expects two (const) pointers, and returns a non-const pointer:

template <typename T>
T *add(T const *t1, T const *t2)
{

std::cout << "Pointers\n";
return new T;

}

But we might still not be where we want to be, as this overloaded version will now only accept

pointers to constant T elements. Pointers to non-const T elements will not be accepted. At first sight
it may come as a surprise that the compiler will not apply a qualification transformation. But there’s

no need for the compiler to do so: when non-const pointers are used the compiler will simply use the

initial definition of the add() template function expecting any two arguments of equal types.

So do we have to define yet another overloaded version, expecting non-const pointers? It is possible,

but at some point it should become clear that we’re overshooting our goal. Like concrete functions

and classes, templates should have well-described purposes. Trying to add overloaded template

definitions to overloaded template definitions quickly turns the template into a kludge. Don’t follow

this approach. A better approach is probably to construct the template so that it fits its original

purpose, make allowances for the occasional specific case, and to describe its purpose clearly in the

template’s documentation.

Nevertheless, there may be situations where a template explicit specialization may be worth consid-

ering. Two specializations for const and non-const pointers to characters might be considered for
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our add() template function. Template explicit specializations are constructed as follows:

• They start with the keyword template.

• Next, an empty set of angle brackets is written. This indicates to the compiler that there must

be an existing template whose prototype matches the one we’re about to define. If we err and

there is no such template then the compiler reports an error like:

error: template-id ‘add<char*>’ for ‘char* add(char* const&, char*
const&)’ does not match any template declaration

• Next the head of the function is defined, which must follow the same syntax as a template

explicit instantiation declaration (see section 18.3.1): it must specify the correct returntype,

function name, template type parameter explicitations, as well as the function’s parameter

list.

• The body of the function, definining the special implementation that is required for the special

actual template parameter types.

Here are two explicit specializations for the template function add(), expecting char * and char
const * arguments (note that the const still appearing in the first template specialization is un-
related to the specialized type (char *), but refers to the const & mentioned in the original tem-
plate’s definition. So, in this case it’s a reference to a constant pointer to a char, implying that the
chars may be modified):

template <> char *add<char *>(char * const &p1,
char * const &p2)

{
std::string str(p1);
str += p2;
return strcpy(new char[str.length() + 1], str.c_str());

}

template <> char const *add<char const *>(char const *const &p1,
char const *const &p2)

{
static std::string str;
str = p1;
str += p2;
return str.c_str();

}

Template explicit specializations are normally included in the file containing the other template

function’s implementations.

A template explicit specialization can be declared in the usual way. I.e., by replacing its body with a

semicolon.

Note in particular how important the pair of angle brackets are that follow the template keyword
when declaring a template explicit specialization. If the angle brackets were omitted, we would

have constructed a template instantiation declaration. The compiler would silently process it, at the

expense of a somewhat longer compilation time.

When declaring a template explicit specialization (or when using an instantiation declaration) the

explicit specification of the template type parameters can be omitted if the compiler is able to de-
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duce these types from the function’s arguments. As this is the case with the char (const) *
specializations, they could also be declared as follows:

template <> char const *add(char const *const &p1,
char const *const &p2);

template <> char const *add(char const *const &p1,
char const *const &p2);

In addition, template <> could be omitted. However, this would remove the template character
from the declaration, as the resulting declaration is now nothing but a plain function declaration.

This is not an error: template functions and non-template functions may overload each other. Ordi-

nary functions are not as restrictive as template functions with respect to allowed type conversions.

This could be a reason to overload a template with an ordinary function every once in a while.

18.8 The template function selection mechanism

When the compiler encounters a function call, it must decide which function to call when overloaded

functions are available. In this section this function selection mechanism is described.

In our discussion, we assume that we ask the compiler to compile the following main() function:

int main()
{

double x = 12.5;
add(x, 12.5);

}

Furthermore we assume that the compiler has seen the following six function declarations when it’s

about to compile main():

template <typename Type> // function 1
Type add(Type const &lvalue, Type const &rvalue);

template <typename Type1, typename Type2> // function 2
Type1 add(Type1 const &lvalue, Type2 const &rvalue);

template <typename Type1, typename Type2, typename Type3> // function 3
Type1 add(Type1 const &lvalue, Type1 const &mvalue, Type2 const &rvalue);

double add(float lvalue, double rvalue); // function 4
double add(std::vector<double> const &vd); // function 5
double divide(double lvalue, double rvalue); // function 6

The compiler, having read main()’s statement, must now decide which function must actually be
called. It proceeds as follows:

• First, a set of candidate functions is constructed. This set contains all functions that:

– are visible at the point of the call;

– have the same names as the called function.
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As function 6 has a different name, it is removed from the set. The compiler is left with a set

of five candidate functions: 1 until 5.

• Second, the set of viable functions is constructed. Viable functions are functions for which type

conversions exist that can be applied to match the types of the parameters of the functions and

the types of the actual arguments. This implies that the number of arguments must match the

number of parameters of the viable functions.

• As functions 3 and 5 have different numbers of parameters they are removed from the set.

• Now let’s ‘play compiler’ to decide among the remaining functions 1, 2 and 4. This is done

by assigning penalty points to the remaining functions. Eventually the function having the

smallest score will be selected. A point is assigned for every standard argument deduction

process transformation that is required (so, for every lvalue-, qualification-, or derived-to-base

class transformation that is applied).

• Eventually multiple functions might emerge at the top. Even though we have a draw in this

case, the compiler will not always report an ambiguity. As we’ve seen before, a more specialized

function is selected over a more general function. So, if a template explicit specialization and

its more general variant appear at the top, the specialization is selected. Similarly, a concrete

function will be selected over a template function (but remember: only if both appear at the

top of the ranking process).

• As a rule of thumb we have:

– when there are multiple viable functions at the top of the set of viable functions, then the

plain function template instantiations are removed;

– if multiple functions remain, template explicit specializations are removed;

– if only one function remains, it is selected;

– otherwise, the compiler can’t decide and reports an error: the call is ambiguous.

Now we’ll apply the above procedure to the viable functions 1, 2 and 4. As we will find function 1 to

contain a slight complication, we’ll start with function 2.

• Function 2 has prototype:

template <typename T1, typename T2>
T1 add(T1 const &a, T2 const &b);

The function is called as add(x, 12.5). As x is a double both T &x and T const &x would
be acceptable, albeit that T const &x will require a qualification transformation. Since the
function’s prototype uses T const & a qualification transformation is needed. The function is
charged 1 point, and tf(T1) is now determined as double.

Next, 12.5 is recognized as a double as well (note that float constants are recognized by
their ‘F’ suffix, e.g., 12.5F), and it is also a constant value. So, without transformations, we find

12.5 == T2 const & and at no charge T1 is recognized as double as well.

• Function 4 has prototype:

double add(float lvalue, double rvalue);

Although it is called as add(x, 12.5)with x being of type double; but a standard conversion
exists from type double to type float. Furthermore, 12.5 is a double, which can be used to
initialize rvalue.
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Thus, at this point we could ask the compiler to select among:

add(double const &, double const &b);

and

add(float, double);

This does not involve ‘template function selection’ since the first one has already been determined.

As the first function doesn’t require any standard conversion at all, it is selected, since a perfect

match is selected over one requiring a standard conversion.

As an intermezzo you are invited to take a closer look at this process by defining float x instead
of double x, or by defining add(float x, double x) as add(double x, double x): in these cases
the template function has the same prototype as the non-template function, and so the non-template

function is selected since it’s a more specific function. Earlier we’ve seen that process in action when

redefining ostream::operator»(ostream &os, string &str) as a non-template function.

Now it’s time to go back to template function 1.

• Function 1 has prototype:

template <typename T>
T add(T const &t1, T const &t2);

Once again we call add(x, 12.5) and will deduce template types. In this case there’s only
one template type parameter T. Let’s start with the first parameter:

– The argument x is of type double, so both T &x and T const &x are acceptable. Acoord-
ing to the function’s parameter list T const &xmust be used, which requires a qualifica-
tion transformation. So we’ll charge the function 1 point and T is determined as double.
This results in the instantiation of

add(double const &t1, double const &t2)

allowing us to call, at the expense of 1 point, add(x, 12.5).

But we can do better by starting our deduction process at the second parameter:

– Since 12.5 is a constant double value we see that 12.5 == T const &. So we conclude
(free of charge) that T is double. Our function becomes

add(double const &t1, double const &t2)

allowing us to call add(x, 12.5).

Earlier this section, we preferred function 2 over function 4. Function 2 is a template function

that required one qualification transformation. Function 1, on the other hand, did not require any

transformation at all, so it emerges as the function to be used.

As an exercise, feed the above six declarations and main() to the compiler and wait for the linker
errors: the linker will complain that the (template) function

double add<double>(double const&, double const&)

is an undefined reference.
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18.9 Compiling template definitions and instantiations

Consider the following definition of the add() template function:

template <typename Container, typename Type>
Type add(Container const &container, Type init)
{

return std::accumulate(container.begin(), container.end(), init);
}

In this template definition, std::accumulate() is called, using container’s begin() and end()
members.

The calls container.begin() and container.end() are said to depend on template type param-
eters. The compiler, not having seen container’s interface, cannot check whether container will
actually havemembers begin() and end() returning input iterators, as required by std::accumulate.

On the other hand, std::accumulate() itself is a function call which is independent of any tem-
plate type parameter. Its arguments are dependent of template parameters, but the function call

itself isn’t. Statements in a template’s body that are independent of template type parameters are

said not to depend on template type parameters.

When the compiler reads a template definition, it will verify the syntactical correctness of all state-

ments not depending on template type parameters. I.e., it must have seen all class definitions, all

type definitions, all function declarations etc., that are used in the statements not depending on the

template’s type parameters. If this condition isn’t met, the compiler will not accept the template’s

definition. Consequently, when defining the above template, the header file numeric must have
been included first, as this header file declares std::accumulate().

On the other hand, with statements depending on template type parameters the compiler cannot

perform these extensive checks, as it has, for example, no way to verify the existence of a member

begin() for the as yet unspecified type Container. In these cases the compiler will perform su-
perficial checks, assuming that the required members, operators and types will eventually become

available.

The location in the program’s source where the template is instantiated is called its point of in-

stantiation. At the point of instantiation the compiler will deduce the actual types of the template’s

type parameters. At that point it will check the syntactical correctness of the template’s statements

that depend on template type parameters. This implies that only at the point of instantiation the

required declarations must have been read by the compiler. As a rule of thumb, make sure that

all required declarations (usually: header files) have been read by the compiler at every point of

instantiation of the template. For the template’s definition itself a more relaxed requirement can be

formulated. When the definition is read only the declarations required for statements not depending

on the template’s type parameters must be known.

18.10 Summary of the template declaration syntax

In this section the basic syntactical constructions when declaring templates are summarized. When

defining templates, the terminating semicolon should be replaced by a function body. However,

not every template declaration may be converted into a template definition. If a definition may be

provided it is explicitly mentioned.

• A plain template declaration (a definition is possible):
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template <typename Type1, typename Type2>
void function(Type1 const &t1, Type2 const &t2);

• A template instantiation declaration (no definition):

template
void function<int, double>(int const &t1, double const &t2);

• A template using explicit types (no definition):

void (*fp)(double, double) = function<double, double>;
void (*fp)(int, int) = function<int, int>;

• A template specialization (a definition is possible):

template <>
void function<char *, char *>(char *const &t1, char *const &t2);

• A template declaration declaring friend template functions within template classes (covered in

section 19.8):

friend void function<Type1, Type2>(parameters);



Chapter 19

Template classes

Like function templates, templates can be constructed for complete classes. A template class can

be considered when the class should be able to handle different types of data. Template classes

are frequently used in C++: chapter 12 covered general data structures like vector, stack and
queue, defined as template classes. With template classes, the algorithms and the data on which the
algorithms operate are completely separated from each other. To use a particular data structure,

operating on a particular data type, only the data type needs to be specified when the template class

object is defined or declared, e.g., stack<int> iStack.

Below the construction of template classes is discussed. In a sense, template classes compete with

object oriented programming (cf. chapter 14), where a mechanism somewhat similar to templates is

seen. Polymorphism allows the programmer to postpone the definitions of algorithms, by deriving

classes from a base class in which the algorithm is only partially implemented, while the data upon

which the algorithms operatemay first be defined in derived classes, together with member functions

that were defined as pure virtual functions in the base class to handle the data. On the other hand,

templates allow the programmer to postpone the specification of the data upon which the algorithms

operate. This is most clearly seen with the abstract containers, completely specifying the algorithms

but at the same time leaving the data type on which the algorithms operate completely unspecified.

The correspondence between template classes and polymorphic classes is well-known. In their book

C++ Coding Standards (Addison-Wesley, 2005) Sutter and Alexandrescu (2005) refer to static

polymorphism and dynamic polymorphism. Dynamic polymorphism is what we use when overriding

virtual members: Using the vtable construction the function that’s actually called depends on the

type of object a (base) class pointer points to. Static polymorphism is used when templates are used:

depending on the actual types, the compiler creates the code, compile time, that’s appropriate for

those particular types. There’s no need to consider static and dynamic polymorphism as mutually

exlusive variants of polymorphism. Rather, both can be used together, combining their strengths.

A warning is in place, though. When a template class defines virtual members all virtual members

are instantiated for every instantiated type. This has to happen, since the compiler must be able to

construct the class’s vtable.

Generally, template classes are easier to use. It is certainly easier to write stack<int> istack
to create a stack of ints than to derive a new class Istack: public stack and to implement
all necessary member functions to be able to create a similar stack of ints using object oriented
programming. On the other hand, for each different type that is used with a template class the

complete class is reinstantiated, whereas in the context of object oriented programming the derived

classes use, rather than copy, the functions that are already available in the base class (but see also

section 19.9).

509
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19.1 Defining template classes

Now that we’ve covered the construction of template functions, we’re ready for the next step: con-

structing template classes. Many useful template classes already exist. Instead of illustrating how

an existing template class was constructed, let’s discuss the construction of a useful new template

class.

In chapter 17 we’ve encountered the auto_ptr class (section 17.3). The auto_ptr, also called
smart pointer, allows us to define an object, acting like a pointer. Using auto_ptrs rather than
plain pointers we not only ensure proper memory management, but we may also prevent memory

leaks when objects of classes using pointer data-members cannot completely be constructed.

The one disadvantage of auto_ptrs is that they can only be used for single objects and not for
pointers to arrays of objects. Here we’ll construct the template class FBB::auto_ptr, behaving like
auto_ptr, but managing a pointer to an array of objects.

Using an existing class as our point of departure also shows an important design principle: it’s

often easier to construct a template (function or class) from an existing template than to construct

the template completely from scratch. In this case the existing std::auto_ptr acts as our model.
Therefore, we want to provide the class with the following members:

• Constructors to create an object of the class FBB::auto_ptr;

• A destructor;

• An overloaded operator=();

• An operator[]() to retrieve and reassign the elements given their indices.

• All othermembers of std::auto_ptr, with the exception of the dereference operator (operator*()),
since our FBB::auto_ptr object will hold multiple objects, and although it would be entirely
possible to define it as a member returning a reference to the first element of its array of

objects, the member operator+(int index), returning the address of object index would
most likely be expected too. These extensions of FBB::auto_ptr are left as exercises to the
reader.

Now that we have decided which members we need, the class interface can be constructed. Like

template functions, a template class definition begins with the keyword template, which is also fol-
lowed by a non-empty list of template type and/or non-type parameters, surrounded by angle brack-

ets. The template keyword followed by the template parameter list enclosed in angle brackets is
called a template announcement in the C++ Annotations. In some cases the template announce-

ment’s parameter list may be empty, leaving only the angle brackets.

Following the template announcement the class interface is provided, in which the formal template

type parameter names may be used to represent types and constants. The class interface is con-

structed as usual. It starts with the keyword class and ends with a semicolon.

Normal design considerations should be followed when constructing template class member func-

tions or template class constructors: template class type parameters should preferably be defined as

Type const &, rather than Type, to prevent unnecessary copying of large data structures. Tem-
plate class constructors should use member initializers rather than member assignment within the

body of the constructors, again to prevent double assignment of composed objects: once by the default

constructor of the object, once by the assignment itself.

Here is our initial version of the class FBB::auto_ptr showing all its members:

namespace FBB
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{
template <typename Data>
class auto_ptr
{

Data *d_data;

public:
auto_ptr();
auto_ptr(auto_ptr<Data> &other);
auto_ptr(Data *data);
~auto_ptr();
auto_ptr<Data> &operator=(auto_ptr<Data> &rvalue);
Data &operator[](size_t index);
Data const &operator[](size_t index) const;
Data *get();
Data const *get() const;
Data *release();
void reset(Data *p = 0);

private:
void destroy();
void copy(auto_ptr<Data> &other);
Data &element(size_t idx) const;

};

template <typename Data>
inline auto_ptr<Data>::auto_ptr()
:

d_data(0)
{}

template <typename Data>
inline auto_ptr<Data>::auto_ptr(auto_ptr<Data> &other)
{

copy(other);
}

template <typename Data>
inline auto_ptr<Data>::auto_ptr(Data *data)
:

d_data(data)
{}

template <typename Data>
inline auto_ptr<Data>::~auto_ptr()
{

destroy();
}

template <typename Data>
inline Data &auto_ptr<Data>::operator[](size_t index)
{

return d_data[index];
}
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template <typename Data>
inline Data const &auto_ptr<Data>::operator[](size_t index) const
{

return d_data[index];
}

template <typename Data>
inline Data *auto_ptr<Data>::get()
{

return d_data;
}

template <typename Data>
inline Data const *auto_ptr<Data>::get() const
{

return d_data;
}

template <typename Data>
inline void auto_ptr<Data>::destroy()
{

delete[] d_data;
}

template <typename Data>
inline void auto_ptr<Data>::copy(auto_ptr<Data> &other)
{

d_data = other.release();
}

template <typename Data>
auto_ptr<Data> &auto_ptr<Data>::operator=(auto_ptr<Data> &rvalue)
{

if (this != &rvalue)
{

destroy();
copy(rvalue);

}
return *this;

}

template <typename Data>
Data *auto_ptr<Data>::release()
{

Data *ret = d_data;
d_data = 0;
return ret;

}

template <typename Data>
void auto_ptr<Data>::reset(Data *ptr)
{

destroy();
d_data = ptr;
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}

} // FBB

The class interface shows the following features:

• If it is assumed that the template type Data is an ordinary type, the class interface appears
to have no special characteristics at all. It looks like any old class interface. This is generally

true. Often a template class can easily be constructed after having constructed the class for one

or two concrete types, followed by an abstraction phase changing all necessary references to

concrete data types into generic data types, which then become the template’s type parameters.

• At closer inspection, some special characteristics can actually be discerned. The parameters

of the class’s copy constructor and overloaded assignment operators aren’t references to plain

auto_ptr objects, but rather references to auto_ptr<Data> objects. Template class objects
(or their references or pointers) always require the template type parameters to be specified.

• Different from the standard design of copy constructors and overloaded assignment operators,

their parameters are non-const references. This has nothing to do with the class being a
template class, but is a consequence of auto_ptr’s design itself: both the copy constructor and
the overloaded assignment operator take the other’s object’s pointer, effectively changing the

other object into a 0-pointer.

• Like ordinary classes, members can be defined inline. Actually, all template class members are

defined inline (when using precompiled templates precompiled templates this doesn’t change; it

only means that the compiler has reorganized the template definition so that it can process the

definition faster). As noted in section 6.3, the definition may be put inside the class interface

or outside (i.e., following) the class interface. As a rule of thumb the same design principles

should be followed here as with concrete classes: they should be defined below the interface to

keep the interface clean and readable. Long implementations in the interface tend to obscure

the interface itself.

• When objects of a template class are instantiated, the definitions of all the template’s member

functions that are used (but only those) must have been seen by the compiler. Although that

characteristic of templates could be refined to the point where each definition is stored in a

separate template function definition file, including only the definitions of the template func-

tions that are actually needed, it is hardly ever done that way (even though it would speed up

the required compilation time). Instead, the usual way to define template classes is to define

the interface, defining some functions inline, and to define the remaining template functions

immediately below the template class’s interface.

• Beside the dereference operator (operator*()), the well-known pair of operator[]()mem-
bers are defined. Since the class receives no information about the size of the array of objects,

these members cannot support array-bound checking.

Let’s have a look at some of the member functions defined beyond the class interface. Note in

particular:

• The definition below the interface is the actual template definition. Since it is a definition

it must start with a template phrase. The function’s declaration must also start with a
template phrase, but that is implied by the interface itself, which already provides the re-
quired phrase at its very beginning;

• Wherever auto_ptr is mentioned in the implementation, the template’s type parameter is
mentioned as well. This is obligatory.
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Some remarks about specific members:

• The advised copy() and destroy() members (see section 7.5.1) are very simple, but were
added to the implementation to promote standardization of classes containing pointer mem-

bers.

• The overloaded assignment constructor still has to check for auto-assignment.

Now that the class has been defined, it can be used. To use the class, its object must be instantiated

for a particular data type. The example defines a new std::string array, storing all command-line
arguments. Then, the first command-line argument is printed. Next, the auto_ptr object is used
to initialize another auto_ptr of the same type. It is shown that the original auto_ptr now holds
a 0-pointer, and that the second auto_ptr object now holds the command-line arguments:

#include <iostream>
#include <algorithm>
#include <string>
#include "autoptr.h"
using namespace std;

int main(int argc, char **argv)
{

FBB::auto_ptr<string> sp(new string[argc]);
copy(argv, argv + argc, sp.get());

cout << "First auto_ptr, program name: " << sp[0] << endl;

FBB::auto_ptr<string> second(sp);

cout << "First auto_ptr, pointer now: " << sp.get() << endl;
cout << "Second auto_ptr, program name: " << second[0] << endl;

return 0;
}
/*

Generated output:

First auto_ptr, program name: a.out
First auto_ptr, pointer now: 0
Second auto_ptr, program name: a.out

*/

19.1.1 Default template class parameters

Different from template functions, template parameters of template classes may be given default

values. This holds true both for template type- and template non-type parameters. If a template

class is instantiated without specifying arguments for its template parameters, and if default tem-

plate parameter values were defined, then the defaults are used. When defining such defaults keep

in mind that the defaults should be suitable for the majority of instantiations of the class. E.g., for

the template class FBB::auto_ptr the template’s type parameter list could have been altered by
specifying int as its default type:

template <typename Data = int>
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Even though default arguments can be specified, the compiler must still be informed that object

definitions refer to templates. So, when instantiating template class objects for which default pa-

rameter values have been defined the type specifications may be omitted, but the angle brackets

must remain. So, assuming a default type for the FBB::auto_ptr class, an object of that class may
be defined as:

FBB::auto_ptr<> intAutoPtr;

No defaults must be specified for template members defined outside of their class interface. Tem-

plate functions, even template member functions, cannot specify default parameter values. So, the

definition of, e.g., the release() member will always begin with the same template specification:

template <typename Data>

When a template class uses multiple template parameters, all may be given default values. However,

like default function arguments, once a default value is used, all remaining parameters must also

use their default values. A template type specification list may not start with a comma, nor may it

contain multiple consecutive commas.

19.1.2 Declaring template classes

Template classes may also be declared. This may be useful in situations where forward class decla-

rations are required. To declare a template class, replace its interface (the part between the curly

braces) by a semicolon:

namespace FBB
{

template <typename Type>
class auto_ptr;

}

Here default types may also be specified. However, default type values cannot be specified in both

the declaration and the definition of a template class. As a rule of thumb default values should be

omitted from declarations, as template class declarations are never used when instantiating objects,

but only for the occasional forward reference. Note that this differs from default parameter value

specifications for member functions in concrete classes. Such defaults should be specified in the

member functions’ declarations and not in their definitions.

19.1.3 Distinguishing members and types of formal class-types

Since a template type name may refer to any type, a template’s type name might also refer to a tem-

plate or a class itself. Let’s assume a template class Handler defines a typename Container as
its type parameter, and a data member storing the container’s begin() iterator. Furthermore, the
template class Handler has a constructor accepting any container supporting a begin() member.
The skeleton of our class Handler could then be:

template <typename Container>
class Handler
{
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Container::const_iterator d_it;

public:
Handler(Container const &container)
:

d_it(container.begin())
{}

};

What were the considerations we had in mind when designing this class?

• The typename Container represents any container supporting iterators.

• The container presumably supports a member begin(). The initialization d_it(container.begin())
clearly depends on the template’s type parameter, so it’s only checked for basic syntactical cor-

rectness.

• Likewise, the container presumably supports a type const_iterator, defined in the class
Container. Since container is a const reference, the iterator returned by begin() is a
const_iterator rather than a plain iterator.

Now, when instantiating a Handler using the following main() function we run into a compilation
error:

#include "handler.h"
#include <vector>
using namespace std;

int main()
{

vector<int> vi;
Handler<vector<int> > ph(vi);

}
/*

Reported error:

handler.h:4: error: syntax error before ‘;’ token

*/

Apparently the line

Container::const_iterator d_it;

in the Handler class causes a problem. The problem is the following: when using template type pa-
rameters, a plain syntax check allows the compiler to decide that ‘container’ refers to a Container
object. Such a Containermight very well support a begin()member, hence container.begin()
is syntactically correct. However, for a actual Container type that member begin() might not
have been implemented. Of course, whether or not begin() has in fact been implemented will only
be known by the time Container’s actual type has been specified.

On the other hand, note that the compiler is unable to determinewhat a Container::const_iterator
is. The compiler takes the easy way out, and assumes const_iterator is a member of the as yet
mysterious Container. Therefore, a plain syntax check clearly fails, as the statement

Container::const_iterator d_it;
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is always syntactically wrong when const_iterator is a member or enum-value of Container.
Of course, we know better, since we have a type that is nested under the class Container in mind.
The compiler, however, doesn’t know that and before it has parsed the complete definition, it has

already read Container::const_iterator. At that point the compiler has already made up its
mind, assuming that Container::const_iteratorwill be a member, rather than a type.

That the compiler indeed assumes X::a is a member a of the class X is illustrated by the error
message we get when we try to compile main() using the following implementation of Handler’s
constructor:

Handler(Container const &container)
:

d_it(container.begin())
{

size_t x = Container::ios_end;
}
/*

Reported error:

error: ‘ios_end’ is not a member of type ‘std::vector<int,
std::allocator<int> >’

*/

In cases like these, where the intent is to refer to a type defined in (or depending on) a template class

like Container, this must explicitly be indicated to the compiler, using the typename keyword.
Here is the Handler class once again, now using typename:

template <typename Container>
class Handler
{

typename Container::const_iterator d_it;
public:

Handler(Container const &container);
};

template <typename Container>
inline Handler<Container>::Handler(Container const &container)
:

d_it(container.begin())
{}

Now main() will compile correctly. The typename keyword may also be required when specifying
the proper return types of template class member functions returning values of nested types defined

within the template class. Section 19.11.2 provides an example of this situation.

19.1.4 Non-type parameters

As we’ve seen with template functions, template parameters are either template type parameters

or template non-type parameters. Template classes may also define non-type parameters. Like the

non-const parameters used with template functions they must be constants whose values are known

by the time an object is instantiated.
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However, their values are not deduced by the compiler using arguments passed to constructors. As-

sume we modify the template class FBB::auto_ptr so that it has an additional non-type parameter
size_t Size. Next we use this Size parameter in a new constructor defining an array of Size
elements of type Data as its parameter. The new FBB::auto_ptr template class becomes (showing
only the relevant constructors; note the two template type parameters that are now required, e.g.,

when specifying the type of the copy constructor’s parameter):

namespace FBB
{

template <typename Data, size_t Size>
class auto_ptr
{

Data *d_data;
size_t d_n;

public:
auto_ptr(auto_ptr<Data, Size> &other);
auto_ptr(Data2 *data);
auto_ptr(Data const (&arr)[Size]);
...

};

template <typename Data, size_t Size>
inline auto_ptr<Data, Size>::auto_ptr(Data const (&arr)[Size])
:

d_data(new Data2[Size]),
d_n(Size)

{
std::copy(arr, arr + Size, d_data);

}
}

Unfortunately, this new setup doesn’t satisfy our needs, as the values of template non-type parame-

ters are not deduced by the compiler. When the compiler is asked to compile the following main()
function it reports a mismatch between the required and actual number of template parameters:

int main()
{

int arr[30];

FBB::auto_ptr<int> ap(arr);
}
/*

Error reported by the compiler:

In function ‘int main()’:
error: wrong number of template arguments (1, should be 2)
error: provided for ‘template<class Data, size_t Size>

class FBB::auto_ptr’

*/

Making Size into a non-type parameter having a default value doesn’t work either. The compiler
will use the default, unless explicitly specified otherwise. So, reasoning that Size can be 0 unless
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we need another value, we might specify size_t Size = 0 in the templates parameter type list.
However, this causes a mismatch between the default value 0 and the actual size of the array arr
as defined in the above main() function. The compiler, using the default value, reports:

In instantiation of ‘FBB::auto_ptr<int, 0>’:
...
error: creating array with size zero (‘0’)

So, although template classes may use non-type parameters, they must be specified like the type

parameters when an object of the class is defined. Default values can be specified for those non-type

parameters, but then the default will be used when the non-type parameter is left unspecified.

Note that default template parameter values (either type or non-type template parameters) may

not be used when template member functions are defined outside the class interface. Template

function definitions (and thus: template class member functions) may not be given default template

(non) type parameter values. If default template parameter values are to be used for template class

members, they have to be specified in the class interface.

Similar to non-type parameters of template functions, non-type parameters of template classes may

only be specified as constants:

• Global variables have constant addresses, which can be used as arguments for non-type pa-

rameters.

• Local and dynamically allocated variables have addresses that are not known by the compiler

when the source file is compiled. These addresses can therefore not be used as arguments for

non-type parameters.

• Lvalue transformations are allowed: if a pointer is defined as a non-type parameter, an array

name may be specified.

• Qualification conversions are allowed: a pointer to a non-const object may be used with a non-

type parameter defined as a const pointer.

• Promotions are allowed: a constant of a ‘narrower’ data type may be used for the specification

of a non-type parameter of a ‘wider’ type (e.g., a short can be used when an int is called for,
a long when a double is called for).

• Integral conversions are allowed: if an size_t parameter is specified, an intmay be used too.

• Variables cannot be used to specify template non-type parameters, as their values are not

constant expressions. Variables defined using the const modifier, however, may be used, as
their values never change.

Although our attempts to define a constructor of the class FBB::auto_ptr accepting an array as
its argument, allowing us to use the array’s size within the constructor’s code has failed so far, we’re

not yet out of options. In the next section an approach will be described allowing us to reach our

goal, after all.

19.2 Member templates

Our previous attempt to define a template non-type parameter which is initialized by the compiler

to the number of elements of an array failed because the template’s parameters are not implicitly

deducedwhen a constructor is called, but they are explicitly specified, when an object of the template
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class is defined. As the parameters are specified just before the template’s constructor is called,

there’s nothing to deduce anymore, and the compiler will simply use the explicitly specified template

arguments.

On the other hand, when template functions are used, the actual template parameters are deduced

from the arguments used when calling the function. This opens an approach route to the solution of

our problem. If the constructor itself is made into a member which itself is a template function (con-

taining a template announcement of its own), then the compiler will be able to deduce the non-type

parameter’s value, without us having to specify it explicitly as a template class non-type parameter.

Member functions (or classes) of template classes which themselves are templates are calledmember

templates. Member templates are defined in the same way as any other template, including the

template <typename ...> header.

When converting our earlier FBB::auto_ptr(Data const (&array)[Size]) constructor into
a member template we may use the template class’s Data type parameter, but must provide the
member template with a non-type parameter of its own. The class interface is given the following

additional member declaration:

template <typename Data>
class auto_ptr
{

...
public:

template <size_t Size>
auto_ptr(Data const (&arr)[Size]);

...
};

and the constructor’s implementation becomes:

template <typename Data>
template <size_t Size>
inline auto_ptr<Data>::auto_ptr(Data const (&arr)[Size])
:

d_data(new Data[Size]),
d_n(Size)

{
std::copy(arr, arr + Size, d_data);

}

Member templates have the following characteristics:

• Normal access rules apply: the constructor can be used by the general program to construct an

FBB::auto_ptr object of a given data type. As usual for template classes, the data type must
be specified when the object is constructed. To construct an FBB::auto_ptr object from the
array int array[30] we define:

FBB::auto_ptr<int> object(array);

• Any member can be defined as a member template, not just a constructor.

• When a template member is defined below its class, the template class parameter list must

precede the template function parameter list of the template member. Furthermore:
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– The member should be defined inside its proper namespace environment. The organiza-

tion within files defining template classes within a namespace should therefore be:

namespace SomeName
{

template <typename Type, ...> // template class definition
class ClassName
{

...
};

template <typename Type, ...> // non-inline member definition(s)
ClassName<Type, ...>::member(...)
{

...
}

} // namespace closed

– Two template announcements must be used: the template class’s template announcement

is specified first, followed by the member template’s template announcement.

– The definition itself must specify the member template’s proper scope: the member tem-

plate is defined as a member of the class FBB::auto_ptr, instantiated for the formal
template parameter type Data. Since we’re already inside the namespace FBB, the func-
tion header starts with auto_ptr<Data>::auto_ptr.

– The formal template parameter names in the declaration and implementation must be

identical.

One small problem remains. When we’re constructing an FBB::auto_ptr object from a fixed-size
array the above constructor is not used. Instead, the constructor FBB::auto_ptr<Data>::auto_ptr(Data

*data) is activated. As the latter constructor is not a member template, it is considered a more spe-
cialized version of a constructor of the class FBB::auto_ptr than the former constructor. Since both
constructors accept an array the compiler will call auto_ptr(Data *) rather than auto_ptr(Data
const (&array)[Size]). This problem can be solved by simply changing the constructor auto_ptr(Data

*data) into a member template as well, in which case its template type parameter should be
changed into ‘Data’. The only remaining subtlety is that template parameters of member templates
may not shadow the template parameters of their class. Renaming Data into Data2 takes care of
this subtlety. Here is the (inline) definition of the auto_ptr(Data *) constructor, followed by an
example in which both constructors are actually used:

template <typename Data>
template <typename Data2> // data: dynamically allocated
inline auto_ptr<Data>::auto_ptr(Data2 *data)
:

d_data(data),
d_n(0)

{}

Calling both constructors in main():

int main()
{

int array[30];

FBB::auto_ptr<int> ap(array);
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FBB::auto_ptr<int> ap2(new int[30]);

return 0;
}

19.3 Static data members

When static members are defined in template classes, they are instantiated for every new instanti-

ation. As they are static members, there will be only one member when multiple objects of the same

template type(s) are defined. For example, in a class like:

template <typename Type>
class TheClass
{

static int s_objectCounter;
};

There will be one TheClass<Type>::objectCounter for each different Type specification. The
following instantiates just one single static variable, shared among the different objects:

TheClass<int> theClassOne;
TheClass<int> theClassTwo;

Mentioning static members in interfaces does not mean these members are actually defined: they

are only declared by their classes and must be defined separately. With static members of template

classes this is not different. The definitions of static members are usually provided immediately

following (i.e., below) the template class interface. The static member s_objectCounter will thus
be defined as follows, just below its class interface:

template <typename Type> // definition, following
int TheClass<Type>::s_objectCounter = 0; // the interface

In the above case, s_objectCounter is an int and thus independent of the template type param-
eter Type.

In a list-like construction, where a pointer to objects of the class itself is required, the template type

parameter Type must be used to define the static variable, as shown in the following example:

template <typename Type>
class TheClass
{

static TheClass *s_objectPtr;
};

template <typename Type>
TheClass<Type> *TheClass<Type>::s_objectPtr = 0;

As usual, the definition can be read from the variable name back to the beginning of the definition:

s_objectPtr of the class TheClass<Type> is a pointer to an object of TheClass<Type>.
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Finally, when a static variable of a template’s type parameter is defined, it should of course not be

given the initial value 0. The default constructor (e.g., Type() will usually be more appropriate):

template <typename Type> // s_type’s definition
Type TheClass<Type>::s_type = Type();

19.4 Specializing template classes for deviating types

Our earlier class FBB::auto_ptr can be used for many different types. Their common character-
istic is that they can simply be assigned to the class’s d_data member, e.g., using auto_ptr(Data

*data). However, this is not always as simple as it looks. What if Data’s actual type is char *? Ex-
amples of a char **, data’s resulting type, are well-known: main()’s argv and envp, for example
are char ** parameters.

It this special case we might not be interested in the mere reassignment of the constructor’s param-

eter to the class’s d_data member, but we might be interested in copying the complete char **
structure. To realize this, template class specializations may be used.

Template class specializations are used in cases where template member functions cannot (or should

not) be used for a particular actual template parameter type. In those cases specialized template

members can be constructed, fitting the special needs of the actual type.

Template class member specializations are specializations of existing class members. Since the class

members already exist, the specializations will not be part of the class interface. Rather, they are

defined below the interface as members, redefining the more generic members using explicit types.

Furthermore, as they are specializations of existing class members, their function prototypes must

exactly match the prototypes of the member functions for which they are specializations. For our

Data = char * specialization the following definition could be designed:

template <>
auto_ptr<char *>::auto_ptr(char **argv)
:

d_n(0)
{

char **tmp = argv;
while (*tmp++)

d_n++;
d_data = new char *[d_n];

for (size_t idx = 0; idx < d_n; idx++)
{

std::string str(argv[idx]);
d_data[idx] =

strcpy(new char[str.length() + 1], str.c_str());
}

}

Now, the above specialization will be used to construct the following FBB::auto_ptr object:

int main(int argc, char **argv)
{

FBB::auto_ptr<char *> ap3(argv);
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return 0;
}

Although defining a template member specialization may allow us to use the occasional exceptional

type, it is also quite possible that a single template member specialization is not enough. Actually,

this is the case when designing the char * specialization, since the template’s destroy() imple-
mentation is not correct for the specialized type Data = char *. When multiple members must be
specialized for a particular type, then a complete template class specialization might be considered.

A completely specialized class shows the following characteristics:

• The template class specialization follows the generic template class definition. After all, it’s a

specialization, so the compiler must have seen what is being specialized.

• All the class’s template parameters are given specific type names or (for the non-type parame-

ters) specific values. These specific values are explicitly stated in a template parameter spec-

ification list (surrounded by angle brackets) which is inserted immediately following the tem-

plate’s class name.

• All the specialized template members specify the specialized types and values where the generic

template parameters are used in the generic template definition.

• Not all the template’s members have to be defined, but, to ensure generality of the specializa-

tion, should be defined. If a member is left out of the specialization, it can’t be used for the

specialized type(s).

• Additional members may be defined in the specialization. However, those that are defined

in the generic template too must have corresponding members (using the same prototypes,

albeit using the generic template parameters) in the generic template class definition. The

compiler will not complain when additional members are defined, and will allow you to use

those members with objects of the specialized template class.

• Member functions of specialized template classes may be defined within their specializing class

or they may be declared in the specializing class. When they are only declared, then their

definitition should be given below the specialized template class’s interface. Such an imple-

mentation may not begin with a template <> announcement, but should immediately start
with the member function’s header.

Below a full specialization of the template class FBB::auto_ptr for the actual type Data = char

* is given, illustrating the above characteristics. The specialization should be appended to the file
already containing the generic template class. To reduce the size of the example members that are

only declared may be assumed to have identical implementations as used in the generic template.

#include <iostream>
#include <algorithm>
#include "autoptr.h"

namespace FBB
{

template<>
class auto_ptr<char *>
{

char **d_data;
size_t d_n;
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public:
auto_ptr<char *>();
auto_ptr<char *>(auto_ptr<char *> &other);
auto_ptr<char *>(char **argv);

// template <size_t Size> NI
// auto_ptr(char *const (&arr)[Size])

~auto_ptr();
auto_ptr<char *> &operator=(auto_ptr<char *> &rvalue);
char *&operator[](size_t index);
char *const &operator[](size_t index) const;
char **get();
char *const *get() const;
char **release();
void reset(char **argv);
void additional() const; // just an additional public

// member
private:

void full_copy(char **argv);
void copy(auto_ptr<char *> &other);
void destroy();

};

inline auto_ptr<char *>::auto_ptr()
:

d_data(0),
d_n(0)

{}

inline auto_ptr<char *>::auto_ptr(auto_ptr<char *> &other)
{

copy(other);
}

inline auto_ptr<char *>::auto_ptr(char **argv)
{

full_copy(argv);
}

inline auto_ptr<char *>::~auto_ptr()
{

destroy();
}

inline void auto_ptr<char *>::reset(char **argv)
{

destroy();
full_copy(argv);

}

inline void auto_ptr<char *>::additional() const
{}
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inline void auto_ptr<char *>::full_copy(char **argv)
{

d_n = 0;
char **tmp = argv;
while (*tmp++)

d_n++;
d_data = new char *[d_n];

for (size_t idx = 0; idx < d_n; idx++)
{

std::string str(argv[idx]);
d_data[idx] =

strcpy(new char[str.length() + 1], str.c_str());
}

}

inline void auto_ptr<char *>::destroy()
{

while (d_n--)
delete d_data[d_n];

delete[] d_data;
}

}

19.5 Partial specializations

In the previous section we’ve seen that it is possible to design template class specializations. It

was shown that both template class members and complete template classes could be specialized.

Furthermore, the specializations we’ve seen were specializing template type parameters.

In this section we’ll introduce a variant of these specializations, both in number and types of tem-

plate parameters that are specialized. Partial specializations may be defined for template classes

having multiple template parameters. With partial specializations a subset (any subset) of template

type parameters are given specific values.

Having discussed specializations of template type parameters in the previous section, we’ll discuss

specializations of non-type parameters in the current section. Partial specializations of template

non-type parameters will be illustrated using some simple concepts defined in matrix algebra, a

branch of linear algebra.

A matrix is commonly thought of as consisting of a table of a certain number of rows and columns,

filled with numbers. Immediately we recognize an opening for using templates: the numbers might

be plain double values, but they could also very well be complex numbers, for which our complex
container (cf. section 12.4) might prove useful. Consequently, our template class should be given

a DataType template type parameter, for which a concrete class can be specified when a matrix is
constructed. Some simple matrices, using double values, are:

1 0 0 An identity matrix,
0 1 0 a 3 x 3 matrix.
0 0 1

1.2 0 0 0 A rectangular matrix,
0.5 3.5 18 23 a 2 x 4 matrix.
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1 2 4 8 A matrix of one row,
a 1 x 4 matrix, also known as a
‘row vector’ of 4 elements.
(column vectors are analogously defined)

Since matrices consist of a specific number of rows and columns (the dimensions of the matrix),

which normally do not change when using matrices, we might consider specifying their values as

template non-type parameters. Since the DataType = double selection will be used in the ma-
jority of cases, double can be selected as the template’s default type. Since it’s having a sensible
default, the DataType template type parameter is put last in the template type parameter list. So,
our template class Matrix starts off as follows:

template <size_t Rows, size_t Columns, typename DataType = double>
class Matrix
...

Various operations are defined on matrices. They may, for example be added, subtracted or multi-

plied. We will not focus on these operations here. Rather, we’ll concentrate on a simple operation:

computing marginals and sums. The row marginals are obtained by computing, for each row, the

sum of all its elements, putting these Rows sum values in corresponding elements of a column vector
of Rows elements. Analogously, column marginals are obtained by computing, for each column, the
sum of all its elements, putting these Columns sum values in corresponding elements of a row vector
of Columns elements. Finally, the sum of the elements of a matrix can be computed. This sum is of
course equal to the sum of the elements of its marginals. The following example shows a matrix, its

marginals, and its sum:

matrix: row
marginals:

1 2 3 6
4 5 6 15

column 5 7 9 21 (sum)
marginals

So, what do we want our template class to offer?

• It needs a place to store its matrix elements. This can be defined as an array of ‘Rows’ rows each
containing ‘Columns’ elements of type DataType. It can be an array, rather than a pointer,
since the matrix’ dimensions are known a priori. Since a vector of Columns elements (a row of
the matrix), as well as a vector of Row elements (a column of the matrix) is often used, typedefs
could be used by the class. The class interface’s initial section therefore contains:

typedef Matrix<1, Columns, DataType> MatrixRow;
typedef Matrix<Rows, 1, DataType> MatrixColumn;

MatrixRow d_matrix[Rows];

• It should offer constructors: a default constructor and, for example, a constructor initializing

the matrix from a stream. No copy constructor is required, since the default copy constructor

performs its task properly. Analogously, no overloaded assignment operator or destructor is

required. Here are the constructors, defined in the public section:

template <size_t Rows, size_t Columns, typename DataType>
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Matrix<Rows, Columns, DataType>::Matrix()
{

std::fill(d_matrix, d_matrix + Rows, MatrixRow());
}

template <size_t Rows, size_t Columns, typename DataType>
Matrix<Rows, Columns, DataType>::Matrix(std::istream &str)
{

for (size_t row = 0; row < Rows; row++)
for (size_t col = 0; col < Columns; col++)

str >> d_matrix[row][col];
}

• The class’s operator[]() member (and its const variant) only handles the first index, re-
turning a reference to a complete MatrixRow. How to handle the retrieval of elements in a
MatrixRow will be covered shortly. To keep the example simple, no array bound check has
been implemented:

template <size_t Rows, size_t Columns, typename DataType>
Matrix<1, Columns, DataType>
&Matrix<Rows, Columns, DataType>::operator[](size_t idx)
{

return d_matrix[idx];
}

• Now we get to the interesting parts: computing marginals and the sum of all elements in

a Matrix. Considering that marginals are vectors, either a MatrixRow, containing the col-
umn marginals, a MatrixColumn, containing the row marginals, or a single value, either
computed as the sum of a vector of marginals, or as the value of a 1 x 1 matrix, initialized
from a generic Matrix, we can now construct partial specializations to handle MatrixRow
and MatrixColumn objects, and a partial specialization handling 1 x 1 matrices. Since we’re
about to define these specializations, we can use them when computing marginals and the

matrix’ sum of all elements. Here are the implementations of these members:

template <size_t Rows, size_t Columns, typename DataType>
Matrix<1, Columns, DataType>
Matrix<Rows, Columns, DataType>::columnMarginals() const
{

return MatrixRow(*this);
}

template <size_t Rows, size_t Columns, typename DataType>
Matrix<Rows, 1, DataType>
Matrix<Rows, Columns, DataType>::rowMarginals() const
{

return MatrixColumn(*this);
}

template <size_t Rows, size_t Columns, typename DataType>
DataType Matrix<Rows, Columns, DataType>::sum() const
{

return rowMarginals().sum();
}

Template class partial specializationsmay be defined for any (subset) of template parameters. They

can be defined for template type parameters and for template non-type parameters alike. Our first
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partial specialization defines the special case where we construct a row of a generic Matrix, specif-
ically aiming at (but not restricted to) the construction of column marginals. Here is how such a

partial specialization is constructed:

• The partial specialization starts by defining all template type parameters which are not spe-

cialized in the partial specialization. This partial specialization template announcement can-

not specify any defaults (like DataType = double), since the defaults have already been spec-
ified by the generic template class definition. Furthermore, the specialization must follow the

definition of the generic template class definition, or the compiler will complain that it doesn’t

know what class is being specialized. Following the template announcement, the class inter-

face starts. Since it’s a template class (partial) specialization, the class name is followed by a

template type parameter list specifying concrete values or types for all template parameters

specified in this specialization, and using the template’s generic (non-)type names for the re-

maining template parameters. In the MatrixRow specialization Rows is specified as 1, since
we’re talking here about one single row. Both Columns and DataType remain to be specified.
So, the MatrixRow partial specialization starts as follows:

template <size_t Columns, typename DataType> // no default specified
class Matrix<1, Columns, DataType>

• A MatrixRow contains the data of a single row. So it needs a data member storing Columns
values of type DataType. Since Columns is a constant value, the d_row data member can be
defined as an array:

DataType d_column[Columns];

• The constructors require some attention. The default constructor is simple. It merely initial-

izes the MatrixRow’s data elements, using DataType’s default constructor:

template <size_t Columns, typename DataType>
Matrix<1, Columns, DataType>::Matrix()
{

std::fill(d_column, d_column + Columns, DataType());
}

However, we also need a constructor initializing a MatrixRow object with the columnmarginals
of a generic Matrix object. This requires us to provide the constructor with a non-specialized
Matrix parameter. In cases like this, the rule of thumb is to define a member template al-
lowing us to keep the general nature of the parameter. Since the generic Matrix template
requires three template parameters, two of which are already provided by the template special-

ization, the third parameter must be specified in the member template’s template announce-

ment. Since this parameter refers to the generic matrix’ number of rows, let’s simply call it

Rows. Here then, is the definition of the second constructor, initializing the MatrixRow’s data
with the column marginals of a generic Matrix object:

template <size_t Columns, typename DataType>
template <size_t Rows>
Matrix<1, Columns, DataType>::Matrix(

Matrix<Rows, Columns, DataType> const &matrix)
{

std::fill(d_column, d_column + Columns, DataType());

for (size_t col = 0; col < Columns; col++)
for (size_t row = 0; row < Rows; row++)

d_column[col] += matrix[row][col];
}
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Note the way the constructor’s parameter is defined: it’s a reference to a Matrix template,
using the additional Row template parameter as well as the template parameters of the partial
specialization itself.

• We don’t really require additional members to satisfy our current needs. To access the data

elements of the MatrixRow an overloaded operator[]() is of course useful. Again, the const
variant can be implemented like the non-const variant. Here is its implementation:

template <size_t Columns, typename DataType>
DataType &Matrix<1, Columns, DataType>::operator[](size_t idx)
{

return d_column[idx];
}

Now that we have defined the generic Matrix class as well as the partial specialization defining a
single row, the compiler will select the row’s specialization whenever a Matrix is defined using Row
= 1. For example:

Matrix<4, 6> matrix; // generic Matrix template is used
Matrix<1, 6> row; // partial specialization is used

The partial specialization for a MatrixColumn is constructed similarly. Let’s present its high-
lights (the full Matrix template class definition as well as all its specializations are provided in the
cplusplus.yo.zip archive (at fpt.rug.nl1) in the file yo/templateclasses/examples/matrix.h):

• The template class partial specialization again starts with a template announcement. The

class definition itself now specifies a fixed value for the second (generic) template parameter,

illustrating that we can construct partial specializations for every single template parameter;

not just the first or the last:

template <size_t Rows, typename DataType>
class Matrix<Rows, 1, DataType>

• Its constructors are implemented completely analogously to the way the MatrixRow construc-
tors were implemented. Their implementations are left as an exercise to the reader (and they

can be found in matrix.h).

• An additional member sum() is defined to compute the sum of the elements of a MatrixColumn
vector. It’s implementation is simply realized using the accumulate() generic algorithm:

template <size_t Rows, typename DataType>
DataType Matrix<Rows, 1, DataType>::sum()
{

return std::accumulate(d_row, d_row + Rows, DataType());
}

The reader might wonder what happens if we specify the following matrix:

Matrix<1, 1> cell;

1ftp:://ftp.rug.nl/contrib/frank/documents/annotations/
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Is this a MatrixRow or a MatrixColumn specialization? The answer is: neither. It’s ambiguous,
precisely because both the columns and the rows could be used with a (different) template partial

specialization. If such a Matrix is actually required, yet another specialized template must be
designed. Since this template specialization can be useful to obtain the sum of the elements of a

Matrix, it’s covered here as well:

• This template class partial specialization also needs a template announcement, this time only

specifying DataType. The class definition specifies two fixed values, using 1 for both the num-
ber of rows and the number of columns:

template <typename DataType>
class Matrix<1, 1, DataType>

• The specialization defines the usual batch of constructors. Again, constructors expecting a

more generic Matrix type are implemented as member templates. For example:

template <typename DataType>
template <size_t Rows, size_t Columns>
Matrix<1, 1, DataType>::Matrix(

Matrix<Rows, Columns, DataType> const &matrix)
:

d_cell(matrix.rowMarginals().sum())
{}

template <typename DataType>
template <size_t Rows>
Matrix<1, 1, DataType>::Matrix(Matrix<Rows, 1, DataType> const &matrix)
:

d_cell(matrix.sum())
{}

• Since Matrix<1, 1> is basically a wrapper around a DataType value, we need members to
access that latter value. A type conversion operator might be usefull, but we’ll also need a

get()member to obtain the value if the conversion operator isn’t used by the compiler (which
happens when the compiler is given a choice, see section 9.3). Here are the accessors (leaving

out their const variants):

template <typename DataType>
Matrix<1, 1, DataType>::operator DataType &()
{

return d_cell;
}

template <typename DataType>
DataType &Matrix<1, 1, DataType>::get()
{

return d_cell;
}

The following main() function shows how the Matrix template class and its partial specializations
can be used:

#include <iostream>
#include "matrix.h"
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using namespace std;

int main(int argc, char **argv)
{

Matrix<3, 2> matrix(cin);

Matrix<1, 2> colMargins(matrix);
cout << "Column marginals:\n";
cout << colMargins[0] << " " << colMargins[1] << endl;

Matrix<3, 1> rowMargins(matrix);
cout << "Row marginals:\n";
for (size_t idx = 0; idx < 3; idx++)

cout << rowMargins[idx] << endl;

cout << "Sum total: " << Matrix<1, 1>(matrix) << endl;
return 0;

}
/*

Generated output from input: 1 2 3 4 5 6

Column marginals:
9 12
Row marginals:
3
7
11
Sum total: 21

*/

19.6 Instantiating template classes

Template classes are instantiated when an object of a template class is defined. When a template

class object is defined or declared, the template parameters must explicitly be specified.

Template parameters are also specified when a template class defines default template parameter

values, albeit that in that case the compiler will provide the defaults (cf. section 19.5 where double
is used as the default type to be used with the template’s DataType parameter). The actual values
or types of template parameters are never deduced, as with template functions: to define a Matrix
of elements that are complex values, the following construction is used:

Matrix<3, 5, std::complex> complexMatrix;

while the following construction defines a matrix of elements that are double values, with the
compiler providing the (default) type double:

Matrix<3, 5> doubleMatrix;

A template class object may be declared using the keyword extern. For example, the following
construction is used to declare the matrix complexMatrix:

extern Matrix<3, 5, std::complex> complexMatrix;
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A template class declaration is sufficient if the compiler encounters function declarations of func-

tions having return values or parameters which are template class objects, pointers or references.

The following little source file may be compiled, although the compiler hasn’t seen the definition

of the Matrix template class. Note that generic classes as well as (partial) specializations may be
declared. Furthermore, note that a function expecting or returning a template class object, refer-

ence, or parameter itself automatically becomes a template function. This is necessary to allow the

compiler to tailor the function to the types of various actual arguments that may be passed to the

function:

#include <stddef.h>

template <size_t Rows, size_t Columns, typename DataType = double>
class Matrix;

template <size_t Columns, typename DataType>
class Matrix<1, Columns, DataType>;

Matrix<1, 12> *function(Matrix<2, 18, size_t> &mat);

When template classes are used they have to be processed by the compiler first. So, template member

functions must be known to the compiler when the template is instantiated. This does not mean

that all members of a template class are instantiated when a template class object is defined. The

compiler will only instantiate those members that are actually used. This is illustrated by the

following simple class Demo, having two constructors and two members. When we create a main()
function in which one constructor is used and one member is called, we can make a note of the sizes

of the resulting object file and executable program. Next the class definition is modified such that

the unused constructor and member are commented out. Again we compile and link the main()
function and the resulting sizes are identical to the sizes obtained earlier (on my computer, using

g++ version 4.1.2) these sizes are 3904 bytes (after stripping). There are other ways to illustrate
the point that only members that are used are instantiated, like using the nm program, showing
the symbolic contents of object files. Using programs like nm will yield the same conclusion: only
template member functions that are actually used are initialized. Here is an example of the template

class Demo used for this little experiment. In main() only the first constructor and the first member
function are called and thus only these members were instantiated:

#include <iostream>

template <typename Type>
class Demo
{

Type d_data;

public:
Demo();
Demo(Type const &value);

void member1();
void member2(Type const &value);

};

template <typename Type>
Demo<Type>::Demo()
:

d_data(Type())
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{}

template <typename Type>
void Demo<Type>::member1()
{

d_data += d_data;
}

// the following members are commented out before compiling
// the second program

template <typename Type>
Demo<Type>::Demo(Type const &value)
:

d_data(value)
{}

template <typename Type>
void Demo<Type>::member2(Type const &value)
{

d_data += value;
}

int main()
{

Demo<int> demo;
demo.member1();

}

19.7 Processing template classes and instantiations

In section 18.9 the distinction between code depending on template parameters and code not depend-

ing on template parameters was introduced. The same distinction also holds true when template

classes are defined and used.

Code that does not depend on template parameters is verified by the compiler when the template is

defined. E.g., if a member function in a template class uses a qsort() function, then qsort() does
not depend on a template parameter. Consequently, qsort() must be known to the compiler when
it encounters the qsort() function call. In practice this implies that cstdlib or stdlib.h must
have been processed by the compiler before it will be able to process the template class definition.

On the other hand, if a template defines a <typename Type> template type parameter, which is
the return type of some template member function, e.g.,

Type member() ...

then we distinguish the following situations where the compiler encounters member() or the class
to which member() belongs:

• At the location in the source where template class objects are defined (called the point of instan-

tiation of the template class object), the compiler will have read the template class definition,

performing a basic check for syntactical correctness of member functions like member(). So, it
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won’t accept a definition or declaration like Type &&member(), because C++ does not support
functions returning references to references. Furthermore, it will check the existence of the

actual typename that is used for instantiating the object. This typenamemust be known to the

compiler at the object’s point of instantiation.

• At the location in the source where template member functions are used (which is called the

template member function’s point of instantiation), the Type parameter must of course still
be known, and member()’s statements that depend on the Type template parameter are now
checked for syntactical correctness. For example, if member() contains a statement like

Type tmp(Type(), 15);

then this is in principle a syntactically valid statement. However, when Type = int and
member() is called, its instantiation will fail, because int does not have a constructor ex-
pecting two int arguments. Note that this is not a problem when the compiler instantiates an
object of the class containing member(): at the point of instantiation of the object its member()
member function is not instantiated, and so the invalid int construction remains undetected.

19.8 Declaring friends

Friend functions are normally constructed as support functions of a class that cannot be constructed

as class members themselves. The well-known insertion operator for output streams is a case in

point. Friend classes are most often seen in the context of nested classes, where the inner class

declares the outer class as its friend (or the other way around). Here again we see a support mecha-

nism: the inner class is constructed to support the outer class.

Like concrete classes, template classes may declare other functions and classes as their friends.

Conversely, concrete classes may declare template classes as their friends. Here too, the friend is

constructed as a special function or class augmenting or supporting the functionality of the declaring

class. Although the friend keyword can thus be used in any type of class (concrete or template)
to declare any type of function or class as a friend, when using template classes the following cases

should be distinguished:

• A template class may declare a nontemplate function or class to be its friend. This is a common

friend declaration, such as the insertion operator for ostream objects.

• A template class may declare another template function or class to be its friend. In this case,

the friend’s template parameters may have to be specified. If the actual values of the friend’s

template parameters must be equal to the template parameters of the class declaring the

friend, the friend is said to be a bound friend template class or function. In this case the tem-

plate parameters of the template in which a friend declaration is used determine (bind) the
template parameters of the friend class or function, resulting in a one-to-one correspondence

between the template’s parameters and the friend’s template parameters.

• In the most general case, a template class may declare another template function or class to

be its friend, irrespective of the friend’s actual template parameters. In this case an unbound

friend template class or function is declared: the template parameters of the friend template

class or function remain to be specified, and are not related in some predefined way to the

template parameters of the class declaring the friend. For example, if a class has data members

of various types, specified by its template parameters, and another class should be allowed

direct access to these data members (so it should be a friend), we would like to specify any of

the current template parameters to instantiate such a friend. Rather than specifying multiple

bound friends, a single generic (unbound) friend may be declared, specifying the friend’s actual

template parameters only when this is required.
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• The above cases, in which a template is declared as a friend, may also be encountered when

concrete classes are used:

– The concrete class declaring concrete friends has already been covered (chapter 11).

– The equivalent of bound friends occurs if a concrete class specifies specific actual template

parameters when declaring its friend.

– The equivalent of unbound friends occurs if a concrete class declares a generic template

as its friend.

19.8.1 Non-template functions or classes as friends

A template class may declare a concrete function, concrete member function or complete concrete

class as its friend. Such a friend may access the template class’s private members.

Concrete classes and ordinary functions can be declared as friends, but before a single class member

function can be declared as a friend, the compiler must have seen the class interface declaring that

member. Let’s consider the various possibilities:

• A template class may declare a concrete function to be its friend. It is not completely clear why

we would like to declare a concrete function as a friend. In ordinary cases we would like to pass

an object of the class declaring the friend to the function. However, this requires us to provide

the function with a template parameter without specifying its types. As the language does not

support constructions like

void function(std::vector<Type> &vector)

unless function() itself is a template, it is not immediately clear how and why such a friend
should be constructed. One reason, though, is to allow the function to access the class’s private

static members. Furthermore, such friends could themselves instantiate objects of classes

declaring them as friends, and directly access such object’s private members. For example:

template <typename Type>
class Storage
{

friend void basic();
static size_t s_time;
std::vector<Type> d_data;
public:

Storage();
};

template <typename Type>
size_t Storage<Type>::s_time = 0;

template <typename Type>
Storage<Type>::Storage()
{}

void basic()
{

Storage<int>::s_time = time(0);
Storage<double> storage;
std::random_shuffle(storage.d_data.begin(), storage.d_data.end());

}
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• Declaring a concrete class to be a template class’s friend probably has more practical implica-

tions. Here the friend-class may instantiate any kind of object of the template class, to access

all of its private members thereafter. A simple forward declaration of the friend class in front

of the template class definition is enough to make this work:

class Friend;

template <typename Type>
class Composer
{

friend class Friend;
std::vector<Type> d_data;
public:

Composer();
};

class Friend
{

Composer<int> d_ints;
public:

Friend(std::istream &input);
};

inline::Friend::Friend(std::istream &input)
{

std::copy(std::istream_iterator<int>(input),
std::istream_iterator<int>(),
back_inserter(d_ints.d_data));

}

• Alternatively, just a single member function of a concrete class may be declared as a friend.

This requires that the compiler has read the friend class’s interface before the friend is de-

clared. Omitting the required destructor and overloaded assignment operators, the following

shows an example of a class whose member randomizer() is declared as a friend of the class
Composer:

template <typename Type>
class Composer;

class Friend
{

Composer<int> *d_ints;
public:

Friend(std::istream &input);
void randomizer();

};

template <typename Type>
class Composer
{

friend void Friend::randomizer();
std::vector<Type> d_data;
public:

Composer(std::istream &input)
{
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std::copy(std::istream_iterator<int>(input),
std::istream_iterator<int>(),
back_inserter(d_data));

}
};

inline Friend::Friend(std::istream &input)
:

d_ints(new Composer<int>(input))
{}

inline void Friend::randomizer()
{

std::random_shuffle(d_ints->d_data.begin(), d_ints->d_data.end());
}

In this example note that Friend::d_ints is a pointermember. It cannot be a Composer<int>
object, since the Composer class interface hasn’t yet been seen by the compiler when it reads
Friend’s class interface. Disregarding this and defining a data member Composer<int>
d_ints results in the compiler generating the error

error: field ‘d_ints’ has incomplete type

Incomplete type, as the compiler at this points knows of the existence of the class Composer
but as it hasn’t seen Composer’s interface it doesn’t know what size the d_ints data member
will have.

19.8.2 Templates instantiated for specific types as friends

With bound friend template classes or functions there is a one-to-one mapping between the actual

values of the template-friends’ template parameters and the template class’s template parameters

declaring them as friends. In this case, the friends themselves are templates too. Here are the

various possibilities:

• A template function may be declared as a friend of a template class. In this case we don’t ex-

perience the problems we encountered with concrete functions declared as friends of template

classes. Since the friend template function itself is a template, it may be provided with the

required template parameters allowing it to specify a template class parameter. Thus we can

pass an object of the class declaring the template function as its friend to the template function.

The organization of the various declarations thus becomes:

– The template class declaring the friend is itself declared;

– The template function (to be declared as a friend) is declared;

– The template class declaring the bound template friend function is defined;

– The (friend) template function is defined, now having access to all the template class’s

(private) members.

Note that the template friend declaration specifies its template parameters immediately fol-

lowing the template’s function name. Without the template parameter list affixed to the func-

tion name, it would be an ordinary friend function. Here is an example showing the use of a

bound friend to create a subset of the entries of a dictionary. For real life examples, a dedicated
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function object returning !key1.find(key2) is probably more useful, but for the current ex-
ample, operator==() is acceptable:

template <typename Key, typename Value>
class Dictionary;

template <typename Key, typename Value>
Dictionary<Key, Value>

subset(Key const &key, Dictionary<Key, Value> const &dict);

template <typename Key, typename Value>
class Dictionary
{

friend Dictionary<Key, Value> subset<Key, Value>
(Key const &key, Dictionary<Key, Value> const &dict);

std::map<Key, Value> d_dict;
public:

Dictionary();
};

template <typename Key, typename Value>
Dictionary<Key, Value>

subset(Key const &key, Dictionary<Key, Value> const &dict)
{

Dictionary<Key, Value> ret;

std::remove_copy_if(dict.d_dict.begin(), dict.d_dict.end(),
std::inserter(ret.d_dict, ret.d_dict.begin()),
std::bind2nd(std::equal_to<Key>(), key));

return ret;
}

• By declaring a full template class as a template class’s friend, all members of the friend class

may access all private members of the class declaring the friend. As the friend class only needs

to be declared, the organization of the declaration is much easier than when template functions

are declared as friends. In the following example a class Iterator is declared as a friend of
a class Dictionary. Thus, the Iterator is able to access Dictionary’s private data. There
are some interesting points to note here:

– To declare a template class as a friend, that class is simply declared as a template class

before it is declared as a friend:

template <typename Key, typename Value>
class Iterator;

template <typename Key, typename Value>
class Dictionary
{

friend class Iterator<Key, Value>;

– However, the friend class’ss interface may already be used, even before the compiler has

seen the friend’s interface:

template <typename Key, typename Value>
template <typename Key2, typename Value2>
Iterator<Key2, Value2> Dictionary<Key, Value>::begin()
{
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return Iterator<Key, Value>(*this);
}
template <typename Key, typename Value>
template <typename Key2, typename Value2>
Iterator<Key2, Value2> Dictionary<Key, Value>::subset(Key const &key)
{

return Iterator<Key, Value>(*this).subset(key);
}

– Of course, the friend’s interface must still be seen by the compiler. Since it’s a support

class for Dictionary, it can safely define a std::map data member, which is initialized
by its constructor, accessing the Dictionary’s private data member d_dict:

template <typename Key, typename Value>
class Iterator
{

std::map<Key, Value> &d_dict;

public:
Iterator(Dictionary<Key, Value> &dict)
:

d_dict(dict.d_dict)
{}

– The Iterator member begin() simply returns a map iterator. However, since it is
not known to the compiler what the instantiation of the map will look like, a map<Key,
Value>::iterator is a (deprecated) implicit typename. To make it an explicit typename,
simply prefix typename to begin()’s return type:

template <typename Key, typename Value>
typename std::map<Key, Value>::iterator Iterator<Key, Value>::begin()
{

return d_dict.begin();
}

• In the previous example we might decide that only a Dictionary should be able to construct
an Iterator, as Iterator is closely tied to Dictionary. This can be realized by defining
Iterator’s constructor in its private section, and declaring Dictionary Iterator’s friend.
Consequently, only Dictionary can create its own Iterator. By declaring Iterator’s con-
structor as a bound friend, we ensure that it can only create Iterators using template pa-
rameters identical to its own. Here is how it’s realized:

template <typename Key, typename Value>
class Iterator
{

friend Dictionary<Key, Value>::Dictionary();

std::map<Key, Value> &d_dict;

Iterator(Dictionary<Key, Value> &dict);

public:

In this example, Dictionary’s constructor is defined as Iterator’s friend. Here the friend is
a template member. Other members can be declared as a class’s friend as well, in which case

their prototypes must be used, including the types of their return values. So, assuming that

std::vector<Value> sortValues()
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is a member of Dictionary, returning a sorted vector of its values, then the corresponding
bound friend declaration would be:

friend std::vector<Value> Dictionary<Key, Value>::sortValues();

Finally, the following basic example can be used as a prototype for situations where bound friends

are useful:

template <typename T> // a function
void fun(T *t) // template
{

t->not_public();
};

template <typename X> // a template class
class A
{ // fun() is used as

// friend bound to A,
// instantiated for X,
// whatever X may be

friend void fun<A<X> >(A<X> *);

public:
A();

private:
void not_public();

};

template <typename X>
A<X>::A()
{

fun(this);
}

template <typename X>
void A<X>::not_public()
{}

int main()
{

A<int> a;

fun(&a); // fun instantiated for
// A<int>.

}

19.8.3 Unbound templates as friends

When a friend is declared as an unbound friend, it merely declares an existing template to be its

friend, no matter how it is instantiated. This may be useful in situations where the friend should

be able to instantiate objects of template classes declaring the friend, allowing the friend to access



542 CHAPTER 19. TEMPLATE CLASSES

the instantiated object’s private members. Again, functions, classes and member functions may be

declared as unbound friends.

Here are the syntactical conventions declaring unbound friends:

• Declaring an unbound template function as a friend: any instantiation of the template function

may instantiate objects of the template class and may access its private members. Assume the

following template function has been defined

template <typename Iterator, typename Class, typename Data>
Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

This template function can be declared as an unbound friend in the following template class

Vector2:

template <typename Type>
class Vector2: public std::vector<std::vector<Type> >
{

template <typename Iterator, typename Class, typename Data>
friend Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));
...

};

If the template function is defined inside some namespace, the namespace must be mentioned

as well. E.g., assuming that ForEach() is defined in the namespace FBB its friend declaration
becomes:

template <typename Iterator, typename Class, typename Data>
friend Class &FBB::ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

The following example illustrates the use of an unbound friend. The class Vector2 stores vec-
tors of elements of template type parameter Type. Its process() member uses ForEach()
to have its private rows() member called, which in turn uses ForEach() to call its pri-
vate columns() member. Consequently, Vector2 uses two instantiations of ForEach(), and
therefore an unbound friend is appropriate here. It is assumed that Type class objects can be
inserted into ostream objects (the definition of the ForEach() template function can be found
in the cplusplus.yo.zip archive at the ftp.rug.nl ftp-server). Here is the program:

template <typename Type>
class Vector2: public std::vector<std::vector<Type> >
{

typedef typename Vector2<Type>::iterator iterator;

template <typename Iterator, typename Class, typename Data>
friend Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));
public:

void process();

private:
void rows(std::vector<Type> &row);
void columns(Type &str);
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};

template <typename Type>
void Vector2<Type>::process()
{

ForEach<iterator, Vector2<Type>, std::vector<Type> >
(this->begin(), this->end(), *this, &Vector2<Type>::rows);

}

template <typename Type>
void Vector2<Type>::rows(std::vector<Type> &row)
{

ForEach(row.begin(), row.end(), *this,
&Vector2<Type>::columns);

std::cout << std::endl;
}

template <typename Type>
void Vector2<Type>::columns(Type &str)
{

std::cout << str << " ";
}

using namespace std;

int main()
{

Vector2<string> c;
c.push_back(vector<string>(3, "Hello"));
c.push_back(vector<string>(2, "World"));

c.process();
}
/*

Generated output:

Hello Hello Hello
World World

*/

• Analogously, a full template class may be declared as a friend. This allows all instantiations

of the friend’s member functions to instantiate the template declaring the friend class. In this

case, the class declaring the friend should offer useful functionality to different instantiations

(i.e., using different arguments for its template parameters) of its friend class. The syntactical

convention is comparable to the convention used when declaring an unbound friend template

function:

template <typename Type>
class PtrVector
{

template <typename Iterator, typename Class>
friend class Wrapper; // unbound friend class

};

All members of the template class Wrappermay now instantiate PtrVectors using any actual
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type for its Type template parameter, at the same time allowing Wrapper’s instantiation to
access all of PtrVector’s private members.

• When only some members of a template class need access to the private members of another

template class (e.g., the other template class has private constructors, and only some members

of the first template class need to instantiate objects of the second template class), then the

latter template class may declare only those members of the former template class requiring

access to its private members as its friends. Again, the friend class’s interface may be left

unspecified. However, the compiler must be informed that the friend member’s class is indeed

a class. A forward declaration of that class must therefore be given as well. In the following

example PtrVector declares Wrapper::begin() as its friend. Note the forward declaration
of the class Wrapper:

template <typename Iterator>
class Wrapper;

template <typename Type>
class PtrVector
{

template <typename Iterator> friend
PtrVector<Type> Wrapper<Iterator>::begin(Iterator const &t1);

...
};

19.9 Template class derivation

Template classes can be used in class derivation as well. When a template class is used in class

derivation, the following situations should be distinguished:

• An existing template class is used as base class when deriving a concrete class. In this case,

the resulting class is still partially a template class, but this is somewhat hidden from view

when an object of the derived class is constructed.

• An existing template class is used as the base class when deriving another template class.

Here the template-class characteristics remain clearly visible.

• A concrete class is used as the base class when deriving a template class. This interesting

hybrid allows us to construct template classes that are partially precompiled.

These three variants of template class derivation will now be elaborated.

Consider the following base class:

template<typename T>
class Base
{

T const &t;

public:
Base(T const &t);

};
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The above class is a template class, which can be used as a base class for the following derived

template class Derived:

template<typename T>
class Derived: public Base<T>
{

public:
Derived(T const &t);

};

template<typename T>
Derived<T>::Derived(T const &t)
:

Base(t)
{}

Other combinations are possible as well: by specifying concrete template type parameters of the

base class, the base class is instantiated and the derived class becomes an ordinary (non-template)

class:

class Ordinary: public Base<int>
{

public:
Ordinary(int x);

};

inline Ordinary::Ordinary(int x)
:

Base(x)
{}

// With the following object definition:
Ordinary

o(5);

This construction allows us in a specific situation to add functionality to a template class, without

the need for constructing a derived template class.

Template class derivation pretty much follows the same rules as ordinary class derivation, not in-

volving template classes. However, some subtleties associated with template class derivation may

easily cause confusion. In the following sections class derivation involving template classes will be

discussed. Some of the examples shown in these sections may contain unexpected statements and

expressions, like the use of this when members of a template base class are called from a derived
class. The ‘chicken and egg’ problem I encountered here was solved by first discussing the principles

of template class derivation; following that discussion the subtleties that are part of template class

derivation are discussed in section 19.11.

19.9.1 Deriving non-template classes from template classes

When an existing template class is used as a base class for deriving a non-template (concrete) class,

the template class parameters are specified when defining the derived class’s interface. If in a certain

context an existing template class lacks a particular functionality, then it may be useful to derive
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a concrete class from a template class. For example, although the class map can easily be used in
combination with the find_if() generic algorithm (section 17.4.16) to locate a particular element,
it requires the construction of a class and at least two additional function objects of that class. If

this is considered too much overhead in a particular context, extending a template class with some

tailor-made functionality might be considered.

A program executing commands entered at the keyboard might accept all unique initial abbrevi-

ations of the commands it defines. E.g., the command list might be entered as l, li, lis or
list. By deriving a class Handler from

map<string, void (Handler::*)(string const &cmd)>

and defining a process(string const &cmd) to do the actual command processing, the program
might simply execute the following main() function:

int main()
{

string line;
Handler cmd;

while (getline(cin, line))
cmd.process(line);

}

The class Handler itself is derived from a complex map, in which the map’s values are pointers to
Handler’s member functions, expecting the command line entered by the user. Here are Handler’s
characteristics:

• The class is derived from a std::map, expecting the command associated with each command-
processing member as its keys. Since Handler uses the map merely to define associations
between the commands and the processing member functions, we use private derivation here:

class Handler: private std::map<std::string,
void (Handler::*)(std::string const &cmd)>

• The actual association can be defined using static private data members: s_cmds is an array
of Handler::value_type values, and s_cmds_end is a constant pointer pointing beyond the
array’s last element:

static value_type s_cmds[];
static value_type *const s_cmds_end;

• The constructor simply initializes the map from these two static data members. It could be

implemented inline:

inline Handler::Handler()
:

std::map<std::string,
void (Handler::*)(std::string const &cmd)>

(s_cmds, s_cmds_end)
{}
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• The member process() iterates along the map’s elements. Once the first word on the com-
mand line matches the initial characters of the command, the corresponding command is exe-

cuted. If no such command is found, an error message is issued:

void Handler::process(std::string const &line)
{

istringstream istr(line);
string cmd;
istr >> cmd;
for (iterator it = begin(); it != end(); it++)
{

if (it->first.find(cmd) == 0)
{

(this->*it->second)(line);
return;

}
}
cout << "Unknown command: " << line << endl;

}

19.9.2 Deriving template classes from template classes

Although it’s perfectly acceptable to derive a concrete class from a template class, the resulting class

of course has limited generality compared to its template base class. If generality is important, it’s

probably a better idea to derive a template class from a template class. This allows us the extend an

existing template class with some additional functionality, like allowing hierarchical sorting of its

elements.

The following class SortVector is a template class derived from the existing template class Vector.
However, it allows us to perform a hierarchical sort of its elements, using any order of any members

its data elements may contain. To accomplish this there is but one requirement: the SortVector’s
data typemust have dedicatedmember functions comparing its members. For example, if SortVector’s
data type is an object of class MultiData, then MultiData should implement member functions
having the following prototypes for each of its data members which can be compared:

bool (MultiData::*)(MultiData const &rhv)

So, if MultiData has two data members, int d_value and std::string d_text, and both may
be required for a hierarchical sort, then MultiData should offer members like:

bool intCmp(MultiData const &rhv); // returns d_value < rhv.d_value
bool textCmp(MultiData const &rhv); // returns d_text < rhv.d_text

Furthermore, as a convenience it is also assumed that operator<<() and operator>>() have
been defined for MultiData objects, but that assumption as such is irrelevant to the current discus-
sion.

The template class SortVector is derived directly from the template class std::vector. Our
implementation inherits all members from that base class, as well as two simple constructors:

template <typename Type>
class SortVector: public std::vector<Type>
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{
public:

SortVector()
{}
SortVector(Type const *begin, Type const *end)
:

std::vector<Type>(begin, end)
{}

However, its member hierarchicalSort() is the actual reason why the class exists. This class
defines the hierarchical sort criteria. It expects an array of pointers to member functions of the

class indicated by sortVector’s template Type parameter as well as an size_t indicating the
size of the array. The array’s first element indicates the class’s most significant or first sort cri-

terion, the array’s last element indicates the class’s least significant or last sort criterion. Since

the stable_sort() generic algorithm was designed explicitly to support hierarchical sorting, the
member uses this generic algorithm to sort SortVector’s elements. With hierarchical sorting, the
least significant criterion should be sorted first. hierarchicalSort()’s implementation therefore,
is easy, assuming the existence of a support class SortWith whose objects are initialized by the
addresses of the member functions passed to the hierarchicalSort()member:

template <typename Type>
class SortWith
{

bool (Type::*d_ptr)(Type const &rhv) const;

The class SortWith is a simple wrapper class around a pointer to a predicate function. Since it’s
dependent on SortVector’s actual data type SortWith itself is also a template class:

template <typename Type>
class SortWith
{

bool (Type::*d_ptr)(Type const &rhv) const;

It’s constructor receives such a pointer and initializes the class’s d_ptr data member:

template <typename Type>
SortWith<Type>::SortWith(bool (Type::*ptr)(Type const &rhv) const)
:

d_ptr(ptr)
{}

Its binary predicate member operator()() should return true if its first argument should be
sorted before its second argument:

template <typename Type>
bool SortWith<Type>::operator()(Type const &lhv, Type const &rhv) const
{

return (lhv.*d_ptr)(rhv);
}

Finally, an illustration is provided by the following main() function.
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• First, A SortVector object is created for MultiData objects, using the copy() generic al-
gorithm to fill the SortVector object from information appearing at the program’s standard
input stream. Having initialized the object its elements are displayed to the standard output

stream:

SortVector<MultiData> sv;

copy(istream_iterator<MultiData>(cin),
istream_iterator<MultiData>(),
back_inserter(sv));

• An array of pointers to members is initialized with the addresses of two member functions.

The text comparison is considered the most significant sort criterion:

bool (MultiData::*arr[])(MultiData const &rhv) const =
{

&MultiData::textCmp,
&MultiData::intCmp,

};

• Next, the array’s elements are sorted and displayed to the standard output stream:

sv.hierarchicalSort(arr, 2);

• Then the two elements of the array of pointers to MultiData’s member functions are swapped,
and the previous step is repeated:

swap(arr[0], arr[1]);
sv.hierarchicalSort(arr, 2);

After compilation the program the following command can be given:

echo a 1 b 2 a 2 b 1 | a.out

This results in the following output:

a 1 b 2 a 2 b 1
====
a 1 a 2 b 1 b 2
====
a 1 b 1 a 2 b 2
====

19.9.3 Deriving template classes from non-template classes

An existing class may be used as the base class for deriving a template class. The advantage of such

an inheritance tree is that the base class’s members may all be compiled beforehand, so when objects

of the template class are instantiated only the used members of the derived (template) class need to

be instantiated.

This approach may be used for all template classes having member functions whose implementa-

tions do not depend on template parameters. These members may be defined in a separate class

which is then used as a base class of the template class derived from it.
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As an illustration of this approach we’ll develop such a template class in this section. We’ll develop

a class Table derived from a non-template class TableType. The class Table will display elements
of some type in a table having a configurable number of columns. The elements are either displayed

horizontally (the first k elements occupying the first row) or vertically (the first r elements occupying

a first column).

When displaying the table’s elements they are inserted into a stream. This allows us to define

the handling of the table in a separate class (TableType), implementing the table’s presentation.
Since the table’s elements are inserted into a stream, the conversion to text (or string) can be
implemented in Table, but the handling of the strings is left to TableType. We’ll cover some
characteristics of TableType shortly, concentrating on Table’s interface first:

• The class Table is a template class, requiring only one template type parameter: Iterator
refers to an iterator to some data type:

template <typename Iterator>
class Table: public TableType
{

• It requires no data members: all data manipulations are performed by TableType.

• It has two constructors. The constructor’s first two parameters are Iterators used to it-
erate over the elements to enter into the table. Furthermore, the constructors require us

to specify the number of columns we would like our table to have, as well as a FillDirec-

tion. FillDirection is an enum type that is actually defined by TableType, having values
Horizontal and Vertical. To allow Table’s users to exercise control over headers, footers,
captions, horizontal and vertical separators, one constructor has TableSupport reference pa-
rameter. The class TableSupport will be developed later as a virtual class allowing clients to
exercise this control. Here are the class’s constructors:

Table(Iterator const &begin, Iterator const &end,
size_t nColumns, FillDirection direction);

Table(Iterator const &begin, Iterator const &end,
TableSupport &tableSupport,
size_t nColumns, FillDirection direction);

• The constructors are Table’s only two public members. Both constructors use a base class
initializer to initialize their TableType base class and then call the class’s private member
fill() to insert data into the TableType base class object. Here are the constructor’s imple-
mentations:

template <typename Iterator>
Table<Iterator>::Table(Iterator const &begin, Iterator const &end,

TableSupport &tableSupport,
size_t nColumns, FillDirection direction)

:
TableType(tableSupport, nColumns, direction)

{
fill(begin, end);

}

template <typename Iterator>
Table<Iterator>::Table(Iterator const &begin, Iterator const &end,

size_t nColumns, FillDirection direction)
:
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TableType(nColumns, direction)
{

fill(begin, end);
}

• The class’s fill() member iterates over the range of elements [begin, end), as defined by
the constructor’s first two parameters. As we will see shortly, TableType defines a protected
data member std::vector<std::string> d_string. One of the requirements of the data
type to which the iterators point is that this data type can be inserted into streams. So, fill()
uses a ostringstream object to obtain the textual representation of the data, which is then
appended to d_string:

template <typename Iterator>
void Table<Iterator>::fill(Iterator it, Iterator const &end)
{

while (it != end)
{

std::ostringstream str;
str << *it++;
d_string.push_back(str.str());

}
init();

}

This completes the implementation of the class Table. Note that this template class only has three
members, two of them constructors. Therefore, in most cases only two template functions will have to

be instantiated: a constructor and the class’s fill()member. For example, the following constructs
a table having four columns, vertically filled by strings extracted from the standard input stream:

Table<istream_iterator<string> >
table(istream_iterator<string>(cin), istream_iterator<string>(),

4, TableType::Vertical);

Note here that the fill-direction is specified as TableType::Vertical. It could also have been
specified using Table, but since Table is a template class, the specification would become somewhat
more complex: Table<istream_iterator<string> >::Vertical.

Now that the Table derived class has been designed, let’s turn our attention to the class TableType.
Here are its essential characteristics:

• It is a concrete class, designed to operate as Table’s base class.

• It uses various private data members, among which d_colWidth, a vector storing the width
of the widest element per column and d_indexFun, pointing to the class’s member func-
tion returning the element in table[row][column], conditional to the table’s fill direction.
TableType also uses a TableSupport pointer and a reference. The constructor not requiring
a TableSupport object uses the TableSupport * to allocate a (default) TableSupport ob-
ject and then uses the TableSupport & as the object’s alias. The other constructor initializes
the pointer to 0, and uses the reference data member to refer to the TableSupport object
provided by its parameter. Alternatively, a static TableSupport object might have been used
to initialize the reference data member in the former constructor. The remaining private data

members are probably self-explanatory:

TableSupport *d_tableSupportPtr;
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TableSupport &d_tableSupport;
size_t d_maxWidth;
size_t d_nRows;
size_t d_nColumns;
WidthType d_widthType;
std::vector<size_t> d_colWidth;
size_t (TableType::*d_widthFun)

(size_t col) const;
std::string const &(TableType::*d_indexFun)

(size_t row, size_t col) const;

• The actual string objects populating the table are stored in a protected data member:

std::vector<std::string> d_string;

• The (protected) constructors perform basic tasks: they initialize the object’s data members.

Here is the constructor expecting a reference to a TableSupport object:

#include "tabletype.ih"

TableType::TableType(TableSupport &tableSupport, size_t nColumns,
FillDirection direction)

:
d_tableSupportPtr(0),
d_tableSupport(tableSupport),
d_maxWidth(0),
d_nRows(0),
d_nColumns(nColumns),
d_widthType(ColumnWidth),
d_colWidth(nColumns),
d_widthFun(&TableType::columnWidth),
d_indexFun(direction == Horizontal ?

&TableType::hIndex
:

&TableType::vIndex)
{}

• Once d_string has been filled, the table is initialized by Table::fill(). The init() pro-
tected member resizes d_string so that its size is exactly rows x columns, and it deter-
mines the maximum width of the elements per column. Its implementation is straightforward:

#include "tabletype.ih"

void TableType::init()
{

if (!d_string.size()) // no elements
return; // then do nothing

d_nRows = (d_string.size() + d_nColumns - 1) / d_nColumns;
d_string.resize(d_nRows * d_nColumns); // enforce complete table

// determine max width per column,
// and max column width

for (size_t col = 0; col < d_nColumns; col++)
{
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size_t width = 0;
for (size_t row = 0; row < d_nRows; row++)
{

size_t len = stringAt(row, col).length();
if (width < len)

width = len;
}
d_colWidth[col] = width;

if (d_maxWidth < width) // max. width so far.
d_maxWidth = width;

}
}

• The public member insert() is used by the insertion operator (operator<<()) to insert a
Table into a stream. First it informs the TableSupport object about the table’s dimensions.
Next it displays the table, allowing the TableSupport object to write headers, footers and
separators:

#include "tabletype.ih"

ostream &TableType::insert(ostream &ostr) const
{

if (!d_nRows)
return ostr;

d_tableSupport.setParam(ostr, d_nRows, d_colWidth,
d_widthType == EqualWidth ? d_maxWidth : 0);

for (size_t row = 0; row < d_nRows; row++)
{

d_tableSupport.hline(row);

for (size_t col = 0; col < d_nColumns; col++)
{

size_t colwidth = width(col);

d_tableSupport.vline(col);
ostr << setw(colwidth) << stringAt(row, col);

}

d_tableSupport.vline();
}
d_tableSupport.hline();

return ostr;
}

• The cplusplus.yo.zip archive contains TableSupport’s full implementation. This imple-
mentation is found in the directory yo/templateclasses/examples/table. Most of its re-
maining members are private. Among those, the following two members return table element

[row][column] for, respectively, a horizontally filled table and a vertically filled table:

inline std::string const &TableType::hIndex(size_t row, size_t col) const
{
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return d_string[row * d_nColumns + col];
}
inline std::string const &TableType::vIndex(size_t row, size_t col) const
{

return d_string[col * d_nRows + row];
}

The support class TableSupport is used to display headers, footers, captions and separators. It has
four virtual members to perform those tasks (and, of course, a virtual constructor):

• hline(size_t rowIndex): called just before the elements in row rowIndex will be dis-
played.

• hline(): called immediately after displaying the final row.

• vline(size_t colIndex): called just before the element in column colIndex will be dis-
played.

• vline(): called immediately after displaying all elements in a row.

The reader is referrred to the cplusplus.yo.zip archive for the full implementation of the classes
Table, TableType and TableSupport. Here is a small program showing their use:

/*
table.cc

*/

#include <fstream>
#include <iostream>
#include <string>
#include <iterator>
#include <sstream>

#include "tablesupport/tablesupport.h"
#include "table/table.h"

using namespace std;
using namespace FBB;

int main(int argc, char **argv)
{

size_t nCols = 5;
if (argc > 1)
{

istringstream iss(argv[1]);
iss >> nCols;

}

istream_iterator<string> iter(cin); // first iterator isn’t const

Table<istream_iterator<string> >
table(iter, istream_iterator<string>(), nCols,

argc == 2 ? TableType::Vertical : TableType::Horizontal);
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cout << table << endl;
return 0;

}
/*

Example of generated output:
After: echo a b c d e f g h i j | demo 3

a e i
b f j
c g
d h

After: echo a b c d e f g h i j | demo 3 h
a b c
d e f
g h i
j

*/

19.10 Template classes and nesting

When a class is nested within a template class, it automatically becomes a template class itself. The

nested class may use the template parameters of the surrounding class, as shown in the following

skeleton program. Within a class PtrVector, a class iterator is defined. The nested class receives
its information from its surrounding class, a PtrVector<Type> class. Since this surrounding class
should be the only class constructing its iterators, iterator’s constructor is made private, and
the surrounding class is given access to the private members of iterator using a bound friend
declaration. Here is the initial section of PtrVector’s class interface:

template <typename Type>
class PtrVector: public std::vector<Type *>

This shows that the std::vector base class will store pointers to Type values, rather than the
values themselves. Of course, a destructor is needed now, since the (externally allocated) mem-

ory for the Type objects must eventually be freed. Alternatively, the allocation might be part of
PtrVector’s tasks, when storing new elements. Here it is assumed that the PtrVector’s clients do
the required allocations, and that the destructor will be implemented later on.

The nested class defines its constructor as a private member, and allows PtrVector<Type> objects
to access its private members. Therefore only objects of the surrounding PtrVector<Type> class
type are allowed to construct their iterator objects. However, PtrVector<Type>’s clients may
construct copies of the PtrVector<Type>::iterator objects they use. Here is the nested class
iterator, containing the required friend declaration. Note the use of the typename keyword:
since std::vector<Type *>::iterator depends on a template parameter, it is not yet an in-
stantiated class, so iterator becomes an implicit typename. The compiler issues a corresponding
warning if typename has been omitted. In these cases typename must be used. Here is the class
interface:

class iterator
{

friend class PtrVector<Type>;
typename std::vector<Type *>::iterator d_begin;

iterator(PtrVector<Type> &vector);



556 CHAPTER 19. TEMPLATE CLASSES

public:
Type &operator*();

};

The implementation of the members shows that the base class’s begin() member is called to ini-
tialize d_begin. Also note that the return type of PtrVector<Type>::begin() must again be
preceded by typename:

template <typename Type>
PtrVector<Type>::iterator::iterator(PtrVector<Type> &vector)
:

d_begin(vector.std::vector<Type *>::begin())
{}

template <typename Type>
Type &PtrVector<Type>::iterator::operator*()
{

return **d_begin;
}

The remainder of the class is simple. Omitting all other functions that might be implemented, the

function begin() will return a newly constructed PtrVector<Type>::iterator object. It may
call the constructor since the class iterator called its surrounding class its friend:

template <typename Type>
typename PtrVector<Type>::iterator PtrVector<Type>::begin()
{

return iterator(*this);
}

Here is a simple skeleton program, showing how the nested class iterator might be used:

int main()
{

PtrVector<int> vi;

vi.push_back(new int(1234));

PtrVector<int>::iterator begin = vi.begin();

std::cout << *begin << endl;
}

Nested enumerations and typedefs can also be defined in template classes. The class Table, men-
tioned before (section 19.9.3) inherited the enumeration TableType::FillDirection. If Table
would have been implemented as a full template class, then this enumeration would have been

defined in Table itself as:

template <typename Iterator>
class Table: public TableType
{
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public:
enum FillDirection
{

Horizontal,
Vertical

};
...

};

In this case, the actual value of the template type parameter must be specified when referring to

a FillDirection value or to its type. For example (assuming iter and nCols are defined as in
section 19.9.3):

Table<istream_iterator<string> >::FillDirection direction =
argc == 2 ?

Table<istream_iterator<string> >::Vertical
:

Table<istream_iterator<string> >::Horizontal;

Table<istream_iterator<string> >
table(iter, istream_iterator<string>(), nCols, direction);

19.11 Subtleties with template classes

19.11.1 Type resolution for base class members

Consider the following example of a template base and a derived class:

#include <iostream>

template <typename T>
class Base
{

public:
void member();

};

template <typename T>
void Base<T>::member()
{

std::cout << "This is Base<T>::member()\n";
}

template <typename T>
class Derived: public Base<T>
{

public:
Derived();

};

template <typename T>
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Derived<T>::Derived()
{

member();
}

This example won’t compile, and the compiler tells us something like:

error: there are no arguments to ’member’ that depend on a template
parameter, so a declaration of ’member’ must be available

At first glance, this error may cause some confusion, since with non-template classes public and

protected base class members are immediately available. This holds also true for template classes,

but only if the compiler can figure out what we mean. In the above situation, the compiler can’t,

since it doesn’t know for what type T the member function member must be initialized.

To appreciate why this is true, consider the situation where we have defined a specialization:

template <>
Base<int>::member()
{

std::cout << "This is the int-specialization\n";
}

Since the compiler, when processing the class Derived, can’t be sure that no specialization will be
in effect once an instantiation of Derived is called for, it can’t decide yet for what type to instantiate
member, since member()’s call in Derived::Derived() doesn’t require a template type parameter.
In cases like these, where no template type parameter is available to determine which type to use,

the compiler must be told that it should postpone its decision about the template type parameter to

use for member() until instantiation time. This can be realized in two ways: either by using this,
or by explicitly mentioning the base class, instantiated for the derived class’s template type(s). In

the following main() function both forms are used. Note that with the int template type the int
specialization is used.

#include <iostream>

template <typename T>
class Base
{

public:
void member();

};

template <typename T>
void Base<T>::member()
{

std::cout << "This is Base<T>::member()\n";
}

template <>
void Base<int>::member()
{

std::cout << "This is the int-specialization\n";
}
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template <typename T>
class Derived: public Base<T>
{

public:
Derived();

};

template <typename T>
Derived<T>::Derived()
{

this->member();
Base<T>::member();

}

int main()
{

Derived<double> d;
Derived<int> i;

}

/*
Generated output:
This is Base<T>::member()
This is Base<T>::member()
This is the int-specialization
This is the int-specialization

*/

19.11.2 Returning types nested under template classes

In section 19.1.3 the keyword typenamewas introduced to allow the compiler to distinguish between
template class members and types that are defined within template classes. The typename keyword
allows us to tell the compiler that we have a type in mind that is nested under a template class.

Consider the following example in which a nested class, that is not depending on a template pa-

rameter, is defined within a template class. Furthermore, the template class member nested()
should return an object of the nested class. Note that in this example the (deprecated) member

implementation inside the class interface is used:

template <typename T>
class Outer
{

public:
class Nested
{
};

Nested nested() const
{

return Nested();
}

};
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The above example compiles flawlessly: within the class Outer there is no ambiguity with respect
to the meaning of nested()’s return type. Since it is advised to implement inline and template
members below their class interface (see section 6.3.1), we now remove the implementation from the

interface itself, and put it below the interface. Suddenly the compiler refuses to compile our member

nested():

template <typename T>
class Outer
{

public:
class Nested
{
};

Nested nested() const;
};

template <typename T>
Outer<T>::Nested Outer<T>::nested() const
{

return Nested();
}

The above implementation of nested() produces an error message like

error: expected constructor, destructor, or type conversion before ’Outer’.

In this case a type specification is required as Outer<T>::Nested refers to a type, nested under
Outer<T> rather than to a member of Outer<T>. In situations like these, where a type that is
defined as a nested type in a template class is returned, the typename keyword must be used to
coerce the compiler into interpreting Outer<T>::Nested as a type name. Writing typename in
front of Outer<T>::Nested removes the compilation error and the correct implementation of the
function nested() becomes:

template <typename T>
typename Outer<T>::Nested Outer<T>::nested() const
{

return Nested();
}

19.12 Constructing iterators

In section 17.2 the iterators used with generic algorithms were introduced. We’ve seen that several

types of iterators were distinguished: InputIterators, ForwardIterators, OutputIterators, Bidirec-

tionalIterators and RandomAccessIterators.

In section 17.2 the characteristics of iterators were introduced: all iterators should support an in-

crement operation, a dereference operation and a comparison for (in)equality.

However, when iterators must be used in the context of generic algorithms they must meet ad-

ditional requirements. This is caused by the fact that generic algorithms check the types of the

iterators they receive. Simple pointers are usually accepted, but if an iterator-object is used it must

be able to specify the kind of iterator it represents.
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To ensure that an object of a class is interpreted as a particular type of iterator, the class must be

derived from the class iterator. The particular type of iterator is defined by the template class’s
first parameter, and the particular data type to which the iterator points is defined by the template

class’s second parameter. Before a class may be inherited from the class iterator, the following
header file must have been included:

#include <iterator>

The particular type of iterator that is implemented by the derived class is specified using a so-called

iterator_tag, provided as the first template argument of the class iterator. For the five basic
iterator types, these tags are:

• std::input_iterator_tag. This tag defines an InputIterator. Iterators of this type allow
reading operations, iterating from the first to the last element of the series to which the iterator

refers.

• std::output_iterator_tag. This tag defines an OutputIterator. Iterators of this type allow
for assignment operations, iterating from the first to the last element of the series to which the

iterator refers.

• std::forward_iterator_tag. This tag defines a ForwardIterator. Iterators of this type
allow reading and assignment operations, iterating from the first to the last element of the

series to which the iterator refers.

• std::bidirectional_iterator_tag. This tag defines a BidirectionalIterator. Iterators of
this type allow reading and assignment operations, iterating step by step, possibly in alternat-

ing directions, over all elements of the series to which the iterator refers.

• std::random_access_iterator_tag. This tag defines a RandomAccessIterator. Iterators
of this type allow reading and assignment operations, iterating, possibly in alternating direc-

tions, over all elements of the series to which the iterator refers, using any available (random)

stepsize.

Each iterator tag assumes that a certain set of operators is available. The RandomAccessIterator is

the most complex of iterators, as it implies all other iterators.

Note that iterators are always defined over a certain range, e.g., [begin, end). Increment and
decrement operations may result in undefined behavior of the iterator if the resulting iterator value

would refer to a location outside of this range.

Often, iterators only access the elements of the series to which they refer. Internally, an iterator

may use an ordinary pointer, but it is hardly ever necessary for the iterator to allocate its own

memory. Therefore, as the overloaded assignment operator and the copy constructor do not have to

allocate any memory, the default implementation of the overloaded assignment operator and of the

copy constructor is usually sufficient. I.e., usually these members do not have to be implemented at

all. As a consequence there is usually also no destructor.

Most classes offering members returning iterators do so by having members constructing the re-

quired iterator, which is thereupon returned as an object by these member functions. As the caller

of these member functions only has to use or sometimes copy the returned iterator objects, there

is normally no need to provide any publicly available constructors, except for the copy constructor.

Therefore these constructors may usually be defined as private or protected members. To allow an

outer class to create iterator objects, the iterator class will declare the outer class as its friend.

In the following sections, the construction of a RandomAccessIterator, the most complex of all iter-

ators, and the construction of a reverse RandomAccessIterator is discussed. The container class for
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which a random access iterator must be developed may actually store its data elements in many

different ways, e.g., using various containers or using pointers to pointers. Therefore it is difficult

to construct a template iterator class which is suitable for a large variety of concrete (container)

classes.

In the following sections, the available std::iterator class will be used to construct an inner
class representing a random access iterator. This approach clearly shows how to construct an iter-

ator class. The reader may either follow this approach when constructing iterator classes in other

contexts, or a full template iterator class can be designed. An example of such a template iterator

class is provided in section 20.5.

The construction of the random access iterator as shown in the next sections aims at the realization

of an iterator reaching the elements of a series of elements only accessible through pointers. The

iterator class is designed as an inner class of a class derived from a vector of string pointers.

19.12.1 Implementing a ‘RandomAccessIterator’

When discussing containers (chapter 12) it was noted that containers own the information they con-

tain. If they contain objects, then these objects are destroyed once the containers are destroyed. As

pointers are no objects, and as auto_ptr objects cannot be stored in containers, using pointer data
types for containers was discouraged. However, we might be able to use pointer data types in spe-

cific contexts. In the following class StringPtr, a concrete class is derived from the std::vector
container using std::string * as its data type:

#ifndef _INCLUDED_STRINGPTR_H_
#define _INCLUDED_STRINGPTR_H_

#include <string>
#include <vector>

class StringPtr: public std::vector<std::string *>
{

public:
StringPtr(StringPtr const &other);
~StringPtr();

StringPtr &operator=(StringPtr const &other);
};

#endif

Note the declaration of the destructor: as the object stores string pointers, a destructor is required to

destroy the strings when the StringPtr object itself is destroyed. Similarly, a copy constructor and
overloaded assignment is required. Other members (in particular: constructors) are not explicitly

declared as they are not relevant to this section’s topic.

Let’s assume that we want to be able to use the sort() generic algorithm with StringPtr ob-
jects. This algorithm (see section 17.4.58) requires two RandomAccessIterators. Although these

iterators are available (via std::vector’s begin() and end() members), they return iterators to
std::string *s, which cannot sensibly be compared.

To remedy this, assume that we have defined an internal type StringPtr::iterator, not return-
ing iterators to pointers, but iterators to the objects these pointers point to. Once this iterator
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type is available, we can add the following members to our StringPtr class interface, hiding the
identically named, but useless members of its base class:

StringPtr::iterator begin(); // returns iterator to the first element
StringPtr::iterator end(); // returns iterator beyond the last

// element

Since these two members return the (proper) iterators, the elements in a StringPtr object can
easily be sorted:

in main()
{

StringPtr sp; // assume sp is somehow filled

sort(sp.begin(), sp.end()); // sp is now sorted
return 0;

}

To make this all work, the type StringPtr::iteratormust be defined. As suggested by its type
name, iterator is a nested type of StringPtr, suggesting that we may implement iterator as
a nested class of StringPtr. However, to use a StringPtr::iterator in combination with the
sort() generic algorithm, it must also be a RandomAccessIterator. Therefore, StringPtr::iterator
itself must be derived from the existing class std::iterator, available once the following prepro-
cessor directive has been specified:

#include <iterator>

To derive a class from std::iterator, both the iterator type and the data type the iterator points
to must be specified. Take caution: our iterator will take care of the string * dereferencing; so the
required data type will be std::string, and not std::string *. So, the class iterator starts
its interface as:

class iterator:
public std::iterator<std::random_access_iterator_tag, std::string>

Since its base class specification is quite complex, we could consider associating this type with a

shorter name, using the following typedef:

typedef std::iterator<std::random_access_iterator_tag, std::string>
Iterator;

However, if the defined type (Iterator) is used only once or twice, the typedefinition only adds
clutter to the interface, and is better not used.

Now we’re ready to redesign StringPtr’s class interface. It contains members returning (reverse)
iterators, and a nested iterator class. The members will be discussed in some detail next:

class StringPtr: public std::vector<std::string *>
{

public:
class iterator: public



564 CHAPTER 19. TEMPLATE CLASSES

std::iterator<std::random_access_iterator_tag, std::string>
{

friend class StringPtr;
std::vector<std::string *>::iterator d_current;

iterator(std::vector<std::string *>::iterator const &current);

public:
iterator &operator--();
iterator const operator--(int);
iterator &operator++();
bool operator==(iterator const &other) const;
bool operator!=(iterator const &other) const;
int operator-(iterator const &rhs) const;
std::string &operator*() const;
bool operator<(iterator const &other) const;
iterator const operator+(int step) const;
iterator const operator-(int step) const;
iterator &operator+=(int step); // increment over ‘n’ steps
iterator &operator-=(int step); // decrement over ‘n’ steps
std::string *operator->() const;// access the fields of the

// struct an iterator points
// to. E.g., it->length()

};

typedef std::reverse_iterator<iterator> reverse_iterator;

iterator begin();
iterator end();
reverse_iterator rbegin();
reverse_iterator rend();

};

Let’s first have a look at StringPtr::iterator’s characteristics:

• iterator defines StringPtr as its friend, so iterator’s constructor can remain private:
only the StringPtr class itself is now able to construct iterators, which seems like a sensi-
ble thing to do. Under the current implementation, copy-constructing remains of course possi-

ble. Furthermore, since an iterator is already provided by StringPtr’s base class, we can use
that iterator to access the information stored in the StringPtr object.

• StringPtr::begin() and StringPtr::end()may simply return iterator objects. Their
implementations are:

inline StringPtr::iterator StringPtr::begin()
{

return iterator(this->std::vector<std::string *>::begin());
}
inline StringPtr::iterator StringPtr::end()
{

return iterator(this->std::vector<std::string *>::end());
}

• All of iterator’s remainingmembers are public. It’s very easy to implement them, mainly ma-
nipulating and dereferencing the available iterator d_current. A RandomAccessIterator
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(which is the most complex of iterators) requires a series of operators. They usually have very

simple implementations, making them good candidates for inline-members:

– iterator &operator++(): the pre-increment operator:

inline StringPtr::iterator &StringPtr::iterator::operator++()
{

++d_current;
return *this;

}

– iterator &operator−−(): the pre-decrement operator:

inline StringPtr::iterator &StringPtr::iterator::operator--()
{

--d_current;
return *this;

}

– iterator operator−−(): the post-decrement operator:

inline StringPtr::iterator const StringPtr::iterator::operator--(int)
{

return iterator(d_current--);
}

– iterator &operator=(iterator const &other): the overloaded assignment oper-
ator. Since iterator objects do not allocate any memory themselves, the default assign-
ment operator will do.

– bool operator==(iterator const &rhv) const: testing the equality of two iterator
objects:

inline bool StringPtr::iterator::operator==(iterator const &other) const
{

return d_current == other.d_current;
}

– bool operator<(iterator const &rhv) const: tests whether the left-hand side
iterator points to an element of the series located before the element pointed to by the

right-hand side iterator:

inline bool StringPtr::iterator::operator<(iterator const &other) const
{

return **d_current < **other.d_current;
}

– int operator-(iterator const &rhv) const: returns the number of elements be-
tween the element pointed to by the left-hand side iterator and the right-hand side itera-

tor (i.e., the value to add to the left-hand side iterator to make it equal to the value of the

right-hand side iterator):

inline int StringPtr::iterator::operator-(iterator const &rhs) const
{

return d_current - rhs.d_current;
}

– Type &operator*() const: returns a reference to the object to which the current iter-
ator points. With an InputIterator and with all const_iterators, the return type of
this overloaded operator should be Type const &. This operator returns a reference to
a string. This string is obtained by dereferencing the dereferenced d_current value. As
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d_current is an iterator to string * elements, two dereference operations are required
to reach the string itself:

inline std::string &StringPtr::iterator::operator*() const
{

return **d_current;
}

– iterator const operator+(int stepsize) const: this operator advances the cur-
rent iterator by stepsize steps:

inline StringPtr::iterator const
StringPtr::iterator::operator+(int step) const

{
return iterator(d_current + step);

}

– iterator const operator-(int stepsize) const: this operator decreases the cur-
rent iterator by stepsize steps:

inline StringPtr::iterator const
StringPtr::iterator::operator-(int step) const

{
return iterator(d_current - step);

}

– iterators may be constructed from existing iterators. This constructor doesn’t have to be

implemented, as the default copy constructor can be used.

– std::string *operator->() const is an additionally added operator. Here only one
dereference operation is required, returning a pointer to the string, allowing us to access

the members of a string via its pointer.

inline std::string *StringPtr::iterator::operator->() const
{

return *d_current;
}

– Two more additionally added operators are operator+=() and operator-=(). They are
not formally required by RandomAccessIterators, but they come in handy anyway:

inline StringPtr::iterator &StringPtr::iterator::operator+=(int step)
{

d_current += step;
return *this;

}
inline StringPtr::iterator &StringPtr::iterator::operator-=(int step)
{

d_current -= step;
return *this;

}

The interfaces required for other iterator types are simpler, requiring only a subset of the inter-

face required by a random access iterator. E.g., the forward iterator is never decremented and

never incremented over arbitrary step sizes. Consequently, in that case all decrement operators and

operator+(int step) can be omitted from the interface. Of course, the tag to use would then be
std::forward_iterator_tag. The tags (and the set of required operators) varies accordingly for
the other iterator types.
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19.12.2 Implementing a ‘reverse_iterator’

Once we’ve implemented an iterator, the matching reverse iterator can be implemented in a jiffy.

Comparable to the std::iterator a std::reverse_iterator exists, which will nicely imple-
ment the reverse iterator for us, once we have defined an iterator class. Its constructor merely

requires an object of the iterator type for which we want to construct a reverse iterator.

To implement a reverse iterator for StringPtr, we only need to define the reverse_iterator
type in its interface. This requires us to specify only one line of code, which must be inserted after

the interface of the class iterator:

typedef std::reverse_iterator<iterator> reverse_iterator;

Finally, the well knownmembers rbegin() and rend() are added to StringPtr’s interface. Again,
they can easily be implemented inline:

inline StringPtr::reverse_iterator StringPtr::rbegin()
{

return reverse_iterator(end());
}
inline StringPtr::reverse_iterator StringPtr::rend()
{

return reverse_iterator(begin());
}

Note the arguments the reverse_iterator constructors receive: the begin point of the reversed
iterator is obtained by providing reverse_iterator’s constructor with end(): the endpoint of the
normal iterator range; the endpoint of the reversed iterator is obtained by providing reverse_iterator’s
constructor with begin(): the begin point of the normal iterator range.

The following little program illustrates the use of StringPtr’s RandomAccessIterator:

#include <iostream>
#include <algorithm>
#include "stringptr.h"
using namespace std;

int main(int argc, char **argv)
{

StringPtr sp;

while (*argv)
sp.push_back(new string(*argv++));

sort(sp.begin(), sp.end());
copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));

cout << "\n======\n";

sort(sp.rbegin(), sp.rend());
copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));

cout << endl;
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}
/*

when called as:
a.out bravo mike charlie zulu quebec

generated output:
a.out bravo charlie mike quebec zulu
======
zulu quebec mike charlie bravo a.out

*/

Although it is thus possible to construct a reverse iterator from a normal iterator, the opposite does

not hold true: it is not possible to initialize a normal iterator from a reverse iterator. Let’s assume

we would like to process all lines stored in a vector<string> lines up to any trailing empty lines
(or lines only containing blanks) it might contain. How would we proceed? One approach is to start

the processing from the first line in the vector, continuing until the first of the trailing empty lines.

However, once we encounter an empty line it does of course not have to be the first line of the set of

trailing empty lines. In that case, we would like to use the following algorithm:

• First, use

rit = find_if(lines.rbegin(), lines.rend(), NonEmpty());

to obtain a reverse_iterator rit pointing to the last non-empty line.

• Next, use

for_each(lines.begin(), --rit, Process());

to process all lines up to the first empty line.

However, we can’t mix iterators and reverse iterators when using generic algorithms. So how can

we initialize the second iterator using the available reverse_iterator? The solution is actually
not very difficult, as an iterator may be initialized by a pointer. The reverse iterator rit is not a
pointer, but &*(rit - 1) or &*-rit is. Thus, we can use

for_each(lines.begin(), &*--rit, Process());

to process all the lines up to the first of the set of trailing empty lines. In general, if rit is a
reverse_iterator pointing to some element, but we need an iterator to point to that element,
we may use &*rit to initialize the iterator. Here, the dereference operator is applied to reach the
element the reverse iterator refers to. Then the address operator is applied to obtain its address.



Chapter 20

Concrete examples of C++

In this chapter several concrete examples ofC++ programs, classes and templates will be presented.

Topics covered by this document such as virtual functions, static members, etc. are illustrated in
this chapter. The examples roughly follow the organization of earlier chapters.

First, examples using stream classes are presented, including some detailed examples illustrating
polymorphism. With the advent of the ANSI/ISO standard, classes supporting streams based on

file descriptors are no longer available, including the Gnu procbuf extension. These classes were
frequently used in olderC++ programs. This section of the C++Annotations develops an alternative:

classes extending streambuf, allowing the use of file descriptors, and classes around the fork()
system call.

Next, several templates will be developed, both template functions and full template classes.

Finally, we’ll touch the subjects of scanner and parser generators, and show how these tools may be

used inC++ programs. These final examples assume a certain familiarity with the concepts underly-

ing these tools, like grammars, parse-trees and parse-tree decoration. Once the input for a program

exceeds a certain level of complexity, it’s advantageous to use scanner- and parser-generators to

produce code doing the actual input recognition. One of the examples in this chapter describes the

usage of these tools in a C++ environment.

20.1 Using file descriptors with ‘streambuf’ classes

20.1.1 Classes for output operations

Extensions to the ANSI/ISO standard may be available allowing us to read from and/or write to

file descriptors. However, such extensions are not standard, and may thus vary or be unavailable

across compilers and/or compiler versions. On the other hand, a file descriptor can be considered a

device. So it seems natural to use the class streambuf as the starting point for constructing classes
interfacing file descriptors.

In this section we will construct classes which may be used to write to a device identified by a file

descriptor: it may be a file, but it could also be a pipe or socket. Section 20.1.2 discusses reading from

devices given their file descriptors, while section 20.3.1 reconsiders redirection, discussed earlier in

section 5.8.3.

Basically, deriving a class for output operations is simple. The only member function that must

569
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be overridden is the virtual member int overflow(int c). This member is responsible for
writing characters to the device once the class’s buffer is full. If fd is a file descriptor to which
information may be written, and if we decide against using a buffer then the member overflow()
can simply be:

class UnbufferedFD: public std::streambuf
{

public:
int overflow(int c);
...

};

int UnbufferedFD::overflow(int c)
{

if (c != EOF)
{

if (write(d_fd, &c, 1) != 1)
return EOF;

}
return c;

}

The argument received by overflow() is either written as a value of type char to the file descriptor,
or EOF is returned.

This simple function does not use an output buffer. As the use of a buffer is strongly advised (see

also the next section), the construction of a class using an output buffer will be discussed next in

somewhat greater detail.

When an output buffer is used, the overflow() member will be a bit more complex, as it is now
only called when the buffer is full. Once the buffer is full, we first have to flush the buffer, for

which the (virtual) function streambuf::sync() is available. Since sync() is a virtual function,
classes derived from std::streambuf may redefine sync() to flush a buffer std::streambuf
itself doesn’t know about.

Overriding sync() and using it in overflow() is not all that has to be done: eventually we might
have less information than fits into the buffer. So, at the end of the lifetime of our special streambuf
object, its buffer might only be partially full. Therefore, we must make sure that the buffer is flushed

once our object goes out of scope. This is of course very simple: sync() should be called by the
destructor as well.

Now that we’ve considered the consequences of using an output buffer, we’re almost ready to con-

struct our derived class. We will add a couple of additional features, though.

• First, we should allow the user of the class to specify the size of the output buffer.

• Second, it should be possible to construct an object of our class before the file descriptor is

actually known. Later, in section 20.3 we’ll encounter a situation where this feature will be

used.

In order to save some space, the successful operation of the various functions was not checked. In

‘real life’ implementations these checks should of course not be omitted. Our class ofdnstreambuf
has the following characteristics:

• The class itself is derived from std::streambuf. It defines three data members, keeping
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track of the size of the buffer, the file descriptor and the buffer itself. Here is the full class

interface

class ofdnstreambuf: public std::streambuf
{

size_t d_bufsize;
int d_fd;
char *d_buffer;

public:
ofdnstreambuf();
ofdnstreambuf(int fd, size_t bufsize = 1);
~ofdnstreambuf();
void open(int fd, size_t bufsize = 1);
int sync();
int overflow(int c);

};

• Its default constructor merely initializes the buffer to 0. Slightly more interesting is its con-

structor expecting a filedescriptor and a buffer size: it simply passes its arguments on to the

class’s open() member (see below). Here are the constructors:

inline ofdnstreambuf::ofdnstreambuf()
:

d_bufsize(0),
d_buffer(0)

{}

inline ofdnstreambuf::ofdnstreambuf(int fd, size_t bufsize)
{

open(fd, bufsize);
}

• The destructor calls the overridden function sync(), writing any characters stored in the
output buffer to the device. If there’s no buffer, the destructor needs to perform no actions:

inline ofdnstreambuf::~ofdnstreambuf()
{

if (d_buffer)
{

sync();
delete[] d_buffer;

}
}

Even though the device is not closed in the above implementation this may not always be

what one wants. It is left as an exercise to the reader to change this class in such a way

that the device may optionally remain open. This approach was followed in, e.g., the Bobcat
library1. See also section 20.1.2.2.

• The open() member initializes the buffer. Using setp(), the begin and end points of the
buffer are set. This is used by the streambuf base class to initialize pbase(), pptr(), and
epptr():

inline void ofdnstreambuf::open(int fd, size_t bufsize)

1http://bobcat.sourceforge.net
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{
d_fd = fd;
d_bufsize = bufsize == 0 ? 1 : bufsize;

d_buffer = new char[d_bufsize];
setp(d_buffer, d_buffer + d_bufsize);

}

• The member sync() will flush the as yet unflushed contents of the buffer to the device. Next,
the buffer is reinitialized using setp(). Note that sync() returns 0 after a successful flush
operation:

inline int ofdnstreambuf::sync()
{

if (pptr() > pbase())
{

write(d_fd, d_buffer, pptr() - pbase());
setp(d_buffer, d_buffer + d_bufsize);

}
return 0;

}

• Finally, the member overflow() is overridden. Since this member is called from the streambuf
base class when the buffer is full, sync() is called first to flush the filled up buffer to the de-
vice. As this recreates an empty buffer, the character c which could not be written to the
buffer by the streambuf base class is now entered into the buffer using the member func-
tions pptr() and pbump(). Notice that entering a character into the buffer is realized using
available streambufmember functions, rather than doing it ‘by hand’, which might invalidate
streambuf’s internal bookkeeping:

inline int ofdnstreambuf::overflow(int c)
{

sync();
if (c != EOF)
{

*pptr() = c;
pbump(1);

}
return c;

}

• The member function implementations use low-level functions to operate on the file descrip-

tors. So apart from streambuf the header file unistd.hmust have been read by the compiler
before the implementations of the member functions can be compiled.

Depending on the number of arguments, the following program uses the ofdstreambuf class to
copy its standard input to file descriptor STDOUT_FILENO, which is the symbolic name of the file
descriptor used for the standard output. Here is the program:

#include <string>
#include <iostream>
#include <istream>
#include "fdout.h"
using namespace std;
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int main(int argc)
{

ofdnstreambuf fds(STDOUT_FILENO, 500);
ostream os(&fds);

switch (argc)
{

case 1:
os << "COPYING cin LINE BY LINE\n";
for (string s; getline(cin, s); )

os << s << endl;
break;

case 2:
os << "COPYING cin BY EXTRACTING TO os.rdbuf()\n";

cin >> os.rdbuf(); // Alternatively, use: cin >> &fds;
break;

case 3:
os << "COPYING cin BY INSERTING cin.rdbuf() into os\n";
os << cin.rdbuf();

break;
}

}

20.1.2 Classes for input operations

When classes to be used for input operation are derived from std::streambuf, they should be
provided with an input buffer of at least one character. The one-character input buffer allows for

the use of the member functions istream::putback() or istream::ungetc(). Stream classes
(like istream) normally allow us to unget at least one character using their member functions
putback() or ungetc(). This is important, as these stream classes usually interface to streambuf
objects. Although it is strictly speaking not necessary to implement a buffer in classes derived from

streambuf, using buffers in these cases is strongly advised: the implementation is very simple and
straightforward, and the applicability of such classes will be greatly improved. Therefore, in all our

classes derived from the class streambuf at least a buffer of one character will be defined.

20.1.2.1 Using a one-character buffer

When deriving a class (e.g., ifdstreambuf) from streambuf using a buffer of one character, at least
its member streambuf::underflow() should be overridden, as this is the member to which all re-
quests for input are eventually directed. Since a buffer is also needed, the member streambuf::setg()
is used to inform the streambuf base class of the size of the input buffer, so that it is able to set
up its input buffer pointers correctly. This will ensure that eback(), gptr(), and egptr() return
correct values.

The required class shows the following characteristics:

• Like the class designed for output operations, this class is derived from std::streambuf as
well. The class defines two data members, one of them a fixed-sized one character buffer. The
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data members are defined as protected data members so that derived classes (e.g., see section
20.1.2.3) can access them. Here is the full class interface:

class ifdstreambuf: public std::streambuf
{

protected:
int d_fd;
char d_buffer[1];

public:
ifdstreambuf(int fd);
int underflow();

};

• The constructor initializes the buffer. However, this initialization is done so that gptr() will
be equal to egptr(). Since this implies that the buffer is empty, underflow() will immedi-
ately be called to refill the buffer:

inline ifdstreambuf::ifdstreambuf(int fd)
:

d_fd(fd)
{

setg(d_buffer, d_buffer + 1, d_buffer + 1);
}

• Finally underflow() is overridden. It will first ensure that the buffer is really empty. If not,
then the next character in the buffer is returned. If the buffer is really empty, it is refilled

by reading from the file descriptor. If this fails (for whatever reason), EOF is returned. More
sophisticated implementations could react more intelligently here, of course. If the buffer could

be refilled, setg() is called to set up streambuf’s buffer pointers correctly.

• The implementations of the member functions use low-level functions to operate the file de-

scriptors, so apart from streambuf the header file unistd.h must have been read by the
compiler before the implementations of the member functions can be compiled.

This completes the construction of the ifdstreambuf class. It is used in the following program:

#include <iostream>
#include <istream>
#include <unistd.h>
#include "ifdbuf.h"
using namespace std;

int main(int argc)
{

ifdstreambuf fds(STDIN_FILENO);
istream is(&fds);

cout << is.rdbuf();
}

20.1.2.2 Using an n-character buffer

How complex would things get if we would decide to use a buffer of substantial size? Not that

complex. The following class allows us to specify the size of a buffer, but apart from that it is
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basically the same class as ifdstreambuf developed in the previous section. To make things a bit
more interesting, in the class ifdnstreambuf developedhere, the member streambuf::xsgetn()
is also overridden, to optimize reading of series of characters. Furthermore, a default constructor

is provided which can be used in combination with the open() member to construct an istream
object before the file descriptor becomes available. Then, once the descriptor becomes available, the

open() member can be used to initiate the object’s buffer. Later, in section 20.3, we’ll encounter
such a situation.

To save some space, the success of various calls was not checked. In ‘real life’ implementations, these

checks should, of course, not be omitted. The class ifdnstreambuf has the following characteris-
tics:

• Once again, it is derived from std::streambuf: Like the class ifdstreambuf (section 20.1.2.1),
its data members are protected. Since the buffer’s size is configurable, this size is kept in a ded-

icated data member, d_bufsize:

class ifdnstreambuf: public std::streambuf
{

protected:
int d_fd;
size_t d_bufsize;
char* d_buffer;

public:
ifdnstreambuf();
ifdnstreambuf(int fd, size_t bufsize = 1);
~ifdnstreambuf();
void open(int fd, size_t bufsize = 1);
int underflow();
std::streamsize xsgetn(char *dest, std::streamsize n);

};

• The default constructor does not allocate a buffer, and can be used to construct an object be-

fore the file descriptor becomes known. A second constructor simply passes its arguments to

open() which will then initialize the object so that it can actually be used:

inline ifdnstreambuf::ifdnstreambuf()
:

d_bufsize(0),
d_buffer(0)

{}
inline ifdnstreambuf::ifdnstreambuf(int fd, size_t bufsize)
{

open(fd, bufsize);
}

• If the object has been initialized by open(), its destructor will both delete the object’s buffer
and use the file descriptor to close the device:

ifdnstreambuf::~ifdnstreambuf()
{

if (d_bufsize)
{

close(d_fd);
delete[] d_buffer;

}
}
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Even though the device is closed in the above implementation this may not always be what

one wants. In cases where the open file descriptor is already available the intention may be

to use that descriptor repeatedly, each time using a newly constructed ifdnstreambuf object.
It is left as an exercise to the reader to change this class in such a way that the device may

optionally be closed. This approach was followed in, e.g., the Bobcat library2.

• The open()member simply allocates the object’s buffer. It is assumed that the calling program
has already opened the device. Once the buffer has been allocated, the base class member

setg() is used to ensure that eback(), gptr(), and egptr() return correct values:

void ifdnstreambuf::open(int fd, size_t bufsize)
{

d_fd = fd;
d_bufsize = bufsize;
d_buffer = new char[d_bufsize];
setg(d_buffer, d_buffer + d_bufsize, d_buffer + d_bufsize);

}

• The overridden member underflow() is implemented almost identically to ifdstreambuf’s
(section 20.1.2.1) member. The only difference is that the current class supports a buffer of

larger sizes. Therefore, more characters (up to d_bufsize) may be read from the device at
once:

int ifdnstreambuf::underflow()
{

if (gptr() < egptr())
return *gptr();

int nread = read(d_fd, d_buffer, d_bufsize);

if (nread <= 0)
return EOF;

setg(d_buffer, d_buffer, d_buffer + nread);
return *gptr();

}

• Finally xsgetn() is overridden. In a loop, n is reduced until 0, at which point the func-
tion terminates. Alternatively, the member returns if underflow() fails to obtain more
characters. This member optimizes the reading of series of characters: instead of calling

streambuf::sbumpc() n times, a block of avail characters is copied to the destination,
using streambuf::gpumb() to consume avail characters from the buffer using one function
call:

std::streamsize ifdnstreambuf::xsgetn(char *dest, std::streamsize n)
{

int nread = 0;

while (n)
{

if (!in_avail())
{

if (underflow() == EOF)
break;

2http://bobcat.sourceforge.net
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}

int avail = in_avail();

if (avail > n)
avail = n;

memcpy(dest + nread, gptr(), avail);
gbump(avail);

nread += avail;
n -= avail;

}

return nread;
}

• The implementations of the member functions use low-level functions to operate the file de-

scriptors. So apart from streambuf the header file unistd.h must have been read by the
compiler before the implementations of the member functions can be compiled.

The member function xsgetn() is called by streambuf::sgetn(), which is a streambufmember.
The following example illustrates the use of this member function with a ifdnstreambuf object:

#include <unistd.h>
#include <iostream>
#include <istream>
#include "ifdnbuf.h"
using namespace std;

int main(int argc)
{

// internally: 30 char buffer
ifdnstreambuf fds(STDIN_FILENO, 30);

char buf[80]; // main() reads blocks of 80
// chars

while (true)
{

size_t n = fds.sgetn(buf, 80);
if (n == 0)

break;
cout.write(buf, n);

}
}

20.1.2.3 Seeking positions in ‘streambuf’ objects

When devices support seek operations, classes derived from streambuf should override the mem-
bers streambuf::seekoff() and streambuf::seekpos(). The class ifdseek, developed in
this section, can be used to read information from devices supporting such seek operations. The

class ifdseek was derived from ifdstreambuf, so it uses a character buffer of just one character.
The facilities to perform seek operations, which are added to our new class ifdseek, will make sure
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that the input buffer is reset when a seek operation is requested. The class could also be derived

from the class ifdnstreambuf; in which case, the arguments to reset the input buffer must be
adapted in such a way that its second and third parameters point beyond the available input buffer.

Let’s have a look at the characteristics of ifdseek:

• As mentioned, ifdseek is derived from ifdstreambuf. Like the latter class, ifdseek’s mem-
ber functions use facilities declared in unistd.h. So, the compiler must have seen unistd.h
before it can compile the class’s members functions. To reduce the amount of typing when

specifying types and constants from std::streambuf and std::ios, several typedefs are
defined at the class’s very top. These typedefs refer to types that are defined in the header

file ios, which must therefore be included as well before the compiler reads ifdseek’s class
definition. Here is the class’s interface:

class ifdseek: public ifdstreambuf
{

typedef std::streambuf::pos_type pos_type;
typedef std::streambuf::off_type off_type;
typedef std::ios::seekdir seekdir;
typedef std::ios::openmode openmode;

public:
ifdseek(int fd);
pos_type seekoff(off_type offset, seekdir dir, openmode);
pos_type seekpos(pos_type offset, openmode mode);

};

• The class is given a rather basic implementation. The only required constructor expects the

device’s file descriptor. It has no special tasks to perform and only needs to call its base class

constructor:

inline ifdseek::ifdseek(int fd)
:

ifdstreambuf(fd)
{}

• The member seek_off() is responsible for performing the actual seek operations. It calls
lseek() to seek a new position in a device whose file descriptor is known. If seeking succeeds,
setg() is called to define an already empty buffer, so that the base class’s underflow()
member will refill the buffer at the next input request.

ifdseek::pos_type ifdseek::seekoff(off_type off, seekdir dir, openmode)
{

pos_type pos =
lseek
(

d_fd, off,
(dir == std::ios::beg) ? SEEK_SET :
(dir == std::ios::cur) ? SEEK_CUR :

SEEK_END
);

if (pos < 0)
return -1;
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setg(d_buffer, d_buffer + 1, d_buffer + 1);
return pos;

}

• Finally, the companion function seekpos is overridden as well: it is actually defined as a call
to seekoff():

inline ifdseek::pos_type ifdseek::seekpos(pos_type off, openmode mode)
{

return seekoff(off, std::ios::beg, mode);
}

An example of a program using the class ifdseek is the following. If this program is given its own
source file using input redirection then seeking is supported, and with the exception of the first line,

every other line is shown twice:

#include "fdinseek.h"
#include <string>
#include <iostream>
#include <istream>
#include <iomanip>
using namespace std;

int main(int argc)
{

ifdseek fds(0);
istream is(&fds);
string s;

while (true)
{

if (!getline(is, s))
break;

streampos pos = is.tellg();

cout << setw(5) << pos << ": ‘" << s << "’\n";

if (!getline(is, s))
break;

streampos pos2 = is.tellg();

cout << setw(5) << pos2 << ": ‘" << s << "’\n";

if (!is.seekg(pos))
{

cout << "Seek failed\n";
break;

}
}

}
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20.1.2.4 Multiple ‘unget()’ calls in ‘streambuf’ objects

As mentioned before, streambuf classes and classes derived from streambuf should support at
least ungetting the last read character. Special care must be taken when series of unget() calls
must be supported. In this section the construction of a class supporting a configurable number of

istream::unget() or istream::putback() calls is discussed.

Support for multiple (say ‘n’) unget() calls is realized by reserving an initial section of the input
buffer, which is gradually filled up to contain the last n characters read. The class was implemented
as follows:

• Once again, the class is derived from std::streambuf. It defines several data members,
allowing the class to perform the bookkeeping required to maintain an unget-buffer of a con-

figurable size:

class fdunget: public std::streambuf
{

int d_fd;
size_t d_bufsize;
size_t d_reserved;
char* d_buffer;
char* d_base;

public:
fdunget(int fd, size_t bufsz, size_t unget);
~fdunget();
int underflow();

};

• The class’s constructor expects a file descriptor, a buffer size and the number of characters that

can be ungot or pushed back as its arguments. This number determines the size of a reserved

area, defined as the first d_reserved bytes of the class’s input buffer.

– The input buffer will always be at least one byte larger than d_reserved. So, a cer-
tain number of bytes may be read. Then, once reserved bytes have been read at least
reserved bytes can be ungot.

– Next, the starting point for reading operations is configured: it is called d_base, pointing
to a location reserved bytes from the start of d_buffer. This will always be the point
where the buffer refills start.

– Now that the buffer has been constructed, we’re ready to define streambuf’s buffer point-
ers using setg(). As no characters have been read yet, all pointers are set to point to
d_base. If unget() is called at this point, no characters are available, so unget() will
(correctly) fail.

– Eventually, the refill buffer’s size is determined as the number of allocated bytes minus

the size of the reserved area.

Here is the class’s constructor:

fdunget::fdunget(int fd, size_t bufsz, size_t unget)
:

d_fd(fd),
d_reserved(unget)

{
size_t allocate =
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bufsz > d_reserved ?
bufsz

:
d_reserved + 1;

d_buffer = new char[allocate];

d_base = d_buffer + d_reserved;
setg(d_base, d_base, d_base);

d_bufsize = allocate - d_reserved;
}

• The class’s destructor simply returns the memory allocated for the buffer to the common pool:

inline fdunget::~fdunget()
{

delete[] d_buffer;
}

• Finally, underflow() is overridden.

– Firstly, the standard check to determine whether the buffer is really empty is applied.

– If empty, it determines the number of characters that could potentially be ungot. At this

point, the input buffer is exhausted. So this value may be any value between 0 (the initial

state) or the input buffer’s size (when the reserved area has been filled up completely, and

all current characters in the remaining section of the buffer have also been read).

– Next the number of bytes to move into the reserved area is computed. This number is at

most d_reserved, but it is equal to the actual number of characters that can be ungot if
this value is smaller.

– Now that the number of characters to move into the reserved area is known, this number

of characters is moved from the input buffer’s end to the area immediately before d_base.

– Then the buffer is refilled. This all is standard, but notice that reading starts from d_base
and not from d_buffer.

– Finally, streambuf’s read buffer pointers are set up. Eback() is set to move locations
before d_base, thus defining the guaranteed unget-area, gptr() is set to d_base, since
that’s the location of the first read character after a refill, and egptr() is set just beyond
the location of the last character read into the buffer.

Here is underflow()’s implementation:

int fdunget::underflow()
{

if (gptr() < egptr())
return *gptr();

size_t ungetsize = gptr() - eback();
size_t move = std::min(ungetsize, d_reserved);

memcpy(d_base - move, egptr() - move, move);

int nread = read(d_fd, d_base, d_bufsize);
if (nread <= 0) // none read -> return EOF

return EOF;
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setg(d_base - move, d_base, d_base + nread);

return *gptr();
}

The following program illustrates the class fdunget. It reads at most 10 characters from the
standard input, stopping at EOF. A guaranteed unget-buffer of 2 characters is defined in a buffer
holding 3 characters. Just before reading a character, the program tries to unget at most 6 char-

acters. This is, of course, not possible; but the program will nicely unget as many characters as

possible, considering the actual number of characters read:

#include "fdunget.h"
#include <string>
#include <iostream>
#include <istream>
using namespace std;

int main(int argc)
{

fdunget fds(0, 3, 2);
istream is(&fds);
char c;

for (int idx = 0; idx < 10; ++idx)
{

cout << "after reading " << idx << " characters:\n";
for (int ug = 0; ug <= 6; ++ug)
{

if (!is.unget())
{

cout
<< "\tunget failed at attempt " << (ug + 1) << "\n"
<< "\trereading: ’";

is.clear();
while (ug--)
{

is.get(c);
cout << c;

}
cout << "’\n";
break;

}
}

if (!is.get(c))
{

cout << " reached\n";
break;

}
cout << "Next character: " << c << endl;

}
}
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/*
Generated output after ’echo abcde | program’:

after reading 0 characters:
unget failed at attempt 1
rereading: ’’

Next character: a
after reading 1 characters:

unget failed at attempt 2
rereading: ’a’

Next character: b
after reading 2 characters:

unget failed at attempt 3
rereading: ’ab’

Next character: c
after reading 3 characters:

unget failed at attempt 4
rereading: ’abc’

Next character: d
after reading 4 characters:

unget failed at attempt 4
rereading: ’bcd’

Next character: e
after reading 5 characters:

unget failed at attempt 4
rereading: ’cde’

Next character:

after reading 6 characters:
unget failed at attempt 4
rereading: ’de

’
reached

*/

20.2 Fixed-sized field extraction from istream objects

Usually when extracting information from istream objects operator>>(), the standard extrac-
tion operator, is perfectly suited for the task as in most cases the extracted fields are white-space

or otherwise clearly separated from each other. But this does not hold true in all situations. For

example, when a web-form is posted to some processing script or program, the receiving program

may receive the form field’s values as url-encoded characters: letters and digits are sent unaltered,

blanks are sent as + characters, and all other characters start with % followed by the character’s
ascii-value represented by its two digit hexadecimal value.

When decoding url-encoded information, a simple hexadecimal extraction won’t work, since that will

extract as many hexadecimal characters as available, instead of just two. Since the letters a-f and
0-9 are legal hexadecimal characters, a text like My name is ‘Ed’, url-encoded as

My+name+is+%60Ed%27

will result in the extraction of the hexadecimal values 60ed and 27, instead of 60 and 27. The name
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Ed will disappear from view, which is clearly not what we want.

In this case, having seen the %, we could extract 2 characters, put them in an istringstream
object, and extract the hexadecimal value from the istringstream object. A bit cumbersome, but
doable. Other approaches, however, are possible as well.

The following class fistream for fixed-sized field istream defines an istream class supporting both
fixed-sized field extractions and blank-delimited extractions (as well as unformatted read() calls).
The class may be initialized as a wrapper around an existing istream, or it can be initialized
using the name of an existing file. The class is derived from istream, allowing all extractions and
operations supported by istreams in general. The class will need the following data members:

• d_filebuf: a filebuffer used when fistream reads its information from a named (existing)
file. Since the filebuffer is only needed in that case, and since it must be allocated dynamically,

it is defined as an auto_ptr<filebuf> object.

• d_streambuf: a pointer to fistream’s streambuf. It will point to filebuf when fistream
opens a file by name. When an existing istream is used to construct an fistream, it will
point to the existing istream’s streambuf.

• d_iss: an istringstream object which is used for the fixed field extractions.

• d_width: an size_t indicating the width of the field to extract. If 0 no fixed field extrac-
tions will be used, but information will be extracted from the istream base class object using
standard extractions.

Here is the initial section of fistream’s class interface:

class fistream: public std::istream
{

std::auto_ptr<std::filebuf> d_filebuf;
std::streambuf *d_streambuf;
std::istringstream d_iss;
size_t d_width;

As mentioned, fistream objects can be constructed from either a filename or an existing istream
object. Thus, the class interface shows two constructors:

fistream(std::istream &stream);
fistream(char const *name,

std::ios::openmode mode = std::ios::in);

When an fistream object is constructed using an existing istream object, the fistream’s istream
part will simply use the stream’s streambuf object:

fistream::fistream(istream &stream)
:

istream(stream.rdbuf()),
d_streambuf(rdbuf()),
d_width(0)

{}

When an fstream object is constructed using a filename, the istream base initializer is given a
new filebuf object to be used as its streambuf. Since the class’s data members are not initialized
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before the class’s base class has been constructed, d_filebuf can only be initialized thereafter.
By then, the filebuf is only available as rdbuf(), which returns a streambuf. However, as it
is actually a filebuf, a reinterpret_cast is used to cast the streambuf pointer returned by
rdbuf() to a filebuf *, so d_filebuf can be initialized:

fistream::fistream(char const *name, ios::openmode mode)
:

istream(new filebuf()),
d_filebuf(reinterpret_cast<filebuf *>(rdbuf())),
d_streambuf(d_filebuf.get()),
d_width(0)

{
d_filebuf->open(name, mode);

}

There is only one additional public member: setField(field const &). This member is used to
define the size of the next field to extract. Its parameter is a reference to a field class, a manipu-
lator class defining the width of the next field.

Since a field & is mentioned in fistream’s interface, field must be declared before fistream’s
interface starts. The class field itself is simple: it declares fistream as its friend, and it has
two data members: d_width specifies the width of the next field, d_newWidth is set to true if
d_width’s value should actually be used. If d_newWidth is false, fistream will return to its stan-
dard extraction mode. The class field furthermore has two constructors: a default constructor,
setting d_newWidth to false and a second constructor expecting the width of the next field to
extract as its value. Here is the class field:

class field
{

friend class fistream;
size_t d_width;
bool d_newWidth;

public:
field(size_t width);
field();

};

inline field::field(size_t width)
:

d_width(width),
d_newWidth(true)

{}

inline field::field()
:

d_newWidth(false)
{}

Since field declares fistream as its friend, setField may inspect field’s members directly.

Time to return to setField(). This function expects a reference to a field object, initialized in
either of three different ways:
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• field(): When setField()’s argument is a field object constructed by its default construc-
tor the next extraction will use the same fieldwidth as the previous extraction.

• field(0): When this field object is used as setField()’s argument, fixed-sized field ex-
traction stops, and the fistream will act like any standard istream object.

• field(x): When the field object itself is initialized by a non-zero size_t value x, then
the next field width will be x characters wide. The preparation of such a field is left to
setBuffer(), fistream’s only private member.

Here is setField()’s implementation:

std::istream &fistream::setField(field const &params)
{

if (params.d_newWidth) // new field size requested
d_width = params.d_width; // set new width

if (!d_width) // no width?
rdbuf(d_streambuf); // return to the old buffer

else
setBuffer(); // define the extraction buffer

return *this;
}

The private member setBuffer() defines a buffer of d_width + 1 characters, and uses read()
to fill the buffer with d_width characters. The buffer is terminated by an ASCII-Z character. This
buffer is then used to initialize the d_str member. Finally, fistream’s rdbuf() member is used
to extract the d_str’s data via the fistream object itself:

void fistream::setBuffer()
{

char *buffer = new char[d_width + 1];

rdbuf(d_streambuf); // use istream’s buffer to
buffer[read(buffer, d_width).gcount()] = 0; // read d_width chars,

// terminated by ascii-Z
d_iss.str(buffer);
delete buffer;

rdbuf(d_iss.rdbuf()); // switch buffers
}

Although setField() could be used to configure fistream to use or not to use fixed-sized field
extraction, using manipulators is probably preferable. To allow field objects to be used as manipu-
lators, an overloaded extraction operator was defined, accepting an istream & and a field const
& object. Using this extraction operator, statements like

fis >> field(2) >> x >> field(0);

are possible (assuming fis is a fistream object). Here is the overloaded operator>>(), as well
as its declaration:

istream &std::operator>>(istream &str, field const &params)
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{
return reinterpret_cast<fistream *>(&str)->setField(params);

}

Declaration:

namespace std
{

istream &operator>>(istream &str, FBB::field const &params);
}

Finally, an example. The following program uses a fistream object to url-decode url-encoded infor-
mation appearing at its standard input:

int main()
{

fistream fis(cin);

fis >> hex;
while (true)
{

size_t x;
switch (x = fis.get())
{

case ’\n’:
cout << endl;

break;
case ’+’:

cout << ’ ’;
break;
case ’%’:

fis >> field(2) >> x >> field(0);
// FALLING THROUGH
default:

cout << static_cast<char>(x);
break;
case EOF:
return 0;

}
}

}
/*

Generated output after:
echo My+name+is+%60Ed%27 | a.out

My name is ‘Ed’

*/

20.3 The ‘fork()’ system call

From the C programming language, the fork() system call is well known. When a program needs
to start a new process, system() can be used, but this requires the program to wait for the child
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process to terminate. The more general way to spawn subprocesses is to call fork().

In this section we will see how C++ can be used to wrap classes around a complex system call like

fork(). Much of what follows in this section directly applies to the Unix operating system, and the
discussion will therefore focus on that operating system. However, other systems usually provide

comparable facilities. The following discussion is based heavily on the notion of design patterns, as

published by Gamma et al. (1995)

When fork() is called, the current program is duplicated in memory, thus creating a new process,
and both processes continue their execution just below the fork() system call. The two processes
may, however, inspect the return value of fork(): the return value in the original process (called the
parent process) differs from the return value in the newly created process (called the child process):

• In the parent process fork() returns the process ID of the child process created by the fork()
system call. This is a positive integer value.

• In the child process fork() returns 0.

• If fork() fails, -1 is returned.

A basic Fork class should hide all bookkeeping details of a system call like fork() from its users.
The class Fork developed here will do just that. The class itself only needs to take care of the
proper execution of the fork() system call. Normally, fork() is called to start a child process,
usually boiling down to the execution of a separate process. This child process may expect input at

its standard input stream and/or may generate output to its standard output and/or standard error

streams. Fork does not know all this, and does not have to know what the child process will do.
However, Fork objects should be able to activate their child processes.

Unfortunately, Fork’s constructor cannot know what actions its child process should perform. Simi-
larly, it cannot know what actions the parent process should perform. For this particular situation,

the template method design pattern was developed. According to Gamma c.s., the template method

design pattern

“Define(s) the skeleton of an algorithm in an operation, deferring some steps to sub-

classes. (The) Template Method (design pattern) lets subclasses redefine certain steps

of an algorithm, without changing the algorithm’s structure.”

This design pattern allows us to define an abstract base class already implementing the essential

steps related to the fork() system call and deferring the implementation of certain normally used
parts of the fork() system call to subclasses.

The Fork abstract base class itself has the following characteristics:

• It defines a data member d_pid. This data member will contain the child’s process id (in
the parent process) and the value 0 in the child process. Its public interface declares but two

members:

– a fork() member function, performing the actual forking (i.e., it will create the (new)
child process);

– an empty virtual destructor ~Fork(), which will be overridden by derived classes defin-
ing their own destructors.

inline Fork::~Fork()
{}
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Here is Fork’s interface:

class Fork
{

int d_pid;

public:
virtual ~Fork();
void fork();

protected:
int pid() const;
virtual void childRedirections();
virtual void parentRedirections();
virtual void childProcess() = 0; // both must be implemented
virtual void parentProcess() = 0;
int waitForChild(); // returns the status

};

• All remaining member functions are declared in the class’s protected section and can thus
only be used by derived classes. They are:

– The member function pid(), allowing derived classes to access the system fork()’s re-
turn value:

inline int Fork::pid() const
{

return d_pid;
}

– A member int waitForChild(), which can be called by parent processes to wait for the
completion of their child processes (as discussed below). This member is declared in the

class interface. Its implementation is

#include "fork.ih"

int Fork::waitForChild()
{

int status;

waitpid(d_pid, &status, 0);

return WEXITSTATUS(status);
}

This simple implementation returns the child’s exit status to the parent. The called system

function waitpid() blocks until the child terminates.

– When fork() system calls are used, parent processes and child processes may always
be distinguished. The main distinction between these processes is that d_pid will be
equal to the child’s process-id in the parent process, while d_pid will be equal to 0 in the
child process itself. Since these two processes may always be distinguished, they must

be implemented by classes derived from Fork. To enforce this requirement, the members
childProcess(), defining the child process’ actions and parentProcess(), defining
the parent process’ actions we defined as pure virtual functions:

– In addition, communication between parent- and child processesmay use standard streams

or other facilities, like pipes (cf. section 20.3.3). To facilitate this inter-process communi-

cation, derived classes may implement:
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∗ childRedirections(): this member should be implemented if any standard stream
(cin, cout) or cerr must be redirected in the child process (cf. section 20.3.1);

∗ parentRedirections(): this member should be implemented if any standard stream
(cin, cout) or cerr must be redirected in the parent process.

Redirection of the standard streams will be necessary if parent- and child processes should

communicate with each other via the standard streams. Here are their default definitions

provided by the class’s interface:

inline void Fork::childRedirections()
{}
inline void Fork::parentRedirections()
{}

The member function fork() calls the system function fork() (Caution: since the system function
fork() is called by a member function having the same name, the :: scope resolution operator
must be used to prevent a recursive call of the member function itself). After calling ::fork(),
depending on its return value, either parentProcess() or childProcess() is called. Maybe
redirection is necessary. Fork::fork()’s implementation calls childRedirections() just before
calling childProcess(), and parentRedirections() just before calling parentProcess():

#include "fork.ih"

void Fork::fork()
{

if ((d_pid = ::fork()) < 0)
throw "Fork::fork() failed";

if (d_pid == 0) // childprocess has pid == 0
{

childRedirections();
childProcess();

exit(1); // we shouldn’t come here:
// childProcess() should exit

}

parentRedirections();
parentProcess();

}

In fork.cc the class’s internal header file fork.ih is included. This header file takes care of
the inclusion of the necessary system header files, as well as the inclusion of fork.h itself. Its
implementation is:

#include "fork.h"
#include <cstdlib>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

Child processes should not return: once they have completed their tasks, they should terminate.

This happens automatically when the child process performs a call to a member of the exec...()
family, but if the child itself remains active, then it must make sure that it terminates properly.
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A child process normally uses exit() to terminate itself, but it should be realized that exit()
prevents the activation of destructors of objects defined at the same or more superficial nesting

levels than the level at which exit() is called. Destructors of globally defined objects are activated
when exit() is used. When using exit() to terminate childProcess(), it should either itself
call a support member function defining all nested objects it needs, or it should define all its objects in

a compound statement (e.g., using a throw block) calling exit() beyond the compound statement.

Parent processes should normally wait for their children to complete. The terminating child pro-

cesses inform their parent that they are about to terminate by sending out a signal which should be

caught by their parents. If child processes terminate and their parent processes do not catch those

signal then such child processes remain visible as so-called zombie processes.

If parent processesmust wait for their children to complete, theymay call the member waitForChild().
This member returns the exit status of a child process to its parent.

There exists a situation where the child process continues to live, but the parent dies. In nature this

happens all the time: parents tend to die before their children do. In our context (i.e. C++), this is

called a daemon program: the parent process dies and the child program continues to run as a child

of the basic init process. Again, when the child eventually dies a signal is sent to its ‘step-parent’
init. No zombie is created here, as init catches the termination signals of all its (step-) children.
The construction of a daemon process is very simple, given the availability of the class Fork (cf.
section 20.3.2).

20.3.1 Redirection revisited

Earlier, in section 5.8.3, it was noted that within a C++ program, streams could be redirected using

the ios::rdbuf() member function. By assigning the streambuf of a stream to another stream,
both stream objects access the same streambuf, thus realizing redirection at the level of the pro-
gramming language itself.

It should be realized that this is fine within the context of the C++ program, but if that context is

left, the redirection terminates, as the operating system does not know about streambuf objects.
This happens, e.g., when a program uses a system() call to start a subprogram. The program at
the end of this section uses C++ redirection to redirect the information inserted into cout to a file,
and then calls

system("echo hello world")

to echo a well-known line of text. Since echo writes its information to the standard output, this
would be the program’s redirected file if C++’s redirection would be recognized by the operating

system.

Actually, this doesn’t happen; and hello world still appears at the program’s standard output
instead of the redirected file. A solution of this problem involves redirection at the operating system

level, for which some operating systems (e.g., Unix and friends) provide system calls like dup() and
dup2(). Examples of these system calls are given in section 20.3.3.

Here is the example of the failing redirection at the system level following C++ redirection using

streambuf redirection:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace::std;



592 CHAPTER 20. CONCRETE EXAMPLES OF C++

int main()
{

ofstream of("outfile");

cout.rdbuf(of.rdbuf());
cout << "To the of stream" << endl;
system("echo hello world");
cout << "To the of stream" << endl;

}
/*

Generated output: on the file ‘outfile’

To the of stream
To the of stream

On standard output:

hello world

*/

20.3.2 The ‘Daemon’ program

Applications exist in which the only purpose of fork() is to start a child process. The parent
process terminates immediately after spawning the child process. If this happens, the child process

continues to run as a child process of init, the always running first process on Unix systems. Such
a process is often called a daemon, running as a background process.

Although the following example can easily be constructed as a plain C program, it was included in

the C++ Annotations because it is so closely related to the current discussion of the Fork class. I
thought about adding a daemon() member to that class, but eventually decided against it because
the construction of a daemon program is very simple and requires no features other than those

currently offered by the class Fork. Here is an example illustrating the construction of a daemon
program:

#include <iostream>
#include <unistd.h>
#include "fork.h"

class Daemon: public Fork
{

public:
virtual void parentProcess() // the parent does nothing.
{}

virtual void childProcess()
{

sleep(3); // actions taken by the child
// just a message...

std::cout << "Hello from the child process\n";
exit (0); // The child process exits.

}
};
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int main()
{

Daemon daemon;

daemon.fork(); // program immediately returns
return 0;

}

/*
Generated output:

The next command prompt, then after 3 seconds:
Hello from the child process

*/

20.3.3 The class ‘Pipe’

Redirection at the system level involves the use of file descriptors, created by the pipe() system
call. When two processes want to communicate using such file descriptors, the following takes place:

• The process constructs two associated file descriptors using the pipe() system call. One of the
file descriptors is used for writing, the other file descriptor is used for reading.

• Forking takes place (i.e., the system fork() function is called), duplicating the file descriptors.
Now we have four file descriptors as both the child process and the parent process have their

own copies of the two file descriptors created by pipe().

• One process (say, the parent process) will use the filedescriptors for reading. It should close its

filedescriptor intended for writing.

• The other process (say, the child process) will use the filedescriptors for writing. It should close

its filedescriptor intended for reading.

• All information written by the child process to the file descriptor intended for writing, can now

be read by the parent process from the corresponding file descriptor intended for reading, thus

establishing a communication channel between the child- and the parent process.

Though basically simple, errors may easily creep in: purposes of file descriptors available to the two

processes (child- or parent-) may easily get mixed up. To prevent bookkeeping errors, the bookkeep-

ing may be properly set up once, to be hidden therafter inside a class like the Pipe class constructed
here. Let’s have a look at its characteristics (before the implementations can be compiled, the com-

piler must have read the class’s header file as well as the file unistd.h):

• The pipe() system call expects a pointer to two int values, which will represent, respectively,
the file descriptors to use for accessing the reading end and the writing end of the constructed

pipe, after pipe()’s successful completion. To avoid confusion, an enum is defined associating
these ends with symbolic constants. Furthermore, the class stores the two file descriptors in a

data member d_fd. Here is the class header and its private data:

class Pipe
{

enum RW { READ, WRITE };
int d_fd[2];



594 CHAPTER 20. CONCRETE EXAMPLES OF C++

• The class only needs a default constructor. This constructor calls pipe() to create a set of
associated file descriptors used for accessing both ends of a pipe:

Pipe::Pipe()
{

if (pipe(d_fd))
throw "Pipe::Pipe(): pipe() failed";

}

• The members readOnly() and readFrom() are used to configure the pipe’s reading end. The
latter function is used to set up redirection, by providing an alternate file descriptor which can

be used to read from the pipe. Usually this alternate file descriptor is STDIN_FILENO, allowing
cin to extract information from the pipe. The former function is merely used to configure the
reading end of the pipe: it closes the matching writing end, and returns a file descriptor that

can be used to read from the pipe:

int Pipe::readOnly()
{

close(d_fd[WRITE]);
return d_fd[READ];

}
void Pipe::readFrom(int fd)
{

readOnly();

redirect(d_fd[READ], fd);
close(d_fd[READ]);

}

• writeOnly() and two writtenBy() members are available to configure the writing end of a
pipe. The former function is merely used to configure the writing end of the pipe: it closes the

matching reading end, and returns a file descriptor that can be used to write to the pipe:

int Pipe::writeOnly()
{

close(d_fd[READ]);
return d_fd[WRITE];

}
void Pipe::writtenBy(int fd)
{

writtenBy(&fd, 1);
}
void Pipe::writtenBy(int const *fd, size_t n)
{

writeOnly();

for (size_t idx = 0; idx < n; idx++)
redirect(d_fd[WRITE], fd[idx]);

close(d_fd[WRITE]);
}

For the latter member two overloaded versions are available:

– writtenBy(int fileDescriptor) is used to configure single redirection, so that a spe-
cific file descriptor (usually STDOUT_FILENO or STDERR_FILENO) may be used to write to
the pipe;
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– (writtenBy(int *fileDescriptor, size_t n = 2))may be used to configuremul-
tiple redirection, providing an array argument containing file descriptors. Information

written to any of these file descriptors is actually written into the pipe.

• The class has one private data member, redirect(), which is used to define a redirection us-
ing the dup2() system call. This function expects two file descriptors. The first file descriptor
represents a file descriptor which can be used to access the device’s information, the second file

descriptor is an alternate file descriptor which may also be used to access the device’s informa-

tion once dup2() has completed successfully. Here is redirect()’s implementation:

void Pipe::redirect(int d_fd, int alternateFd)
{

if (dup2(d_fd, alternateFd) < 0)
throw "Pipe: redirection failed";

}

Now that redirection can be configured easily using one or more Pipe objects, we’ll now use Fork
and Pipe in several demonstration programs.

20.3.4 The class ‘ParentSlurp’

The class ParentSlurp, derived from Fork, starts a child process which execs a program (like
/bin/ls). The (standard) output of the execed program is then read by the parent process. The
parent process will (for demonstration purposes) write the lines it receives to its standard output

stream, while prepending linenumbers to the received lines. It is most convenient here to redirect

the parents standard input stream, so that the parent can read the output from the child process

from its std::cin input stream. Therefore, the only pipe that’s used is used as an input pipe at the
parent, and an output pipe at the child.

The class ParentSlurp has the following characteristics:

• It is derived from Fork. Before starting ParentSlurp’s class interface, the compiler must
have read both fork.h and pipe.h. Furthermore, the class only uses one data member: a
Pipe object d_pipe.

• Since Pipe’s constructor automatically constructs a pipe, and since d_pipe is automatically
constructed by ParentSlurp’s default constructor, there is no need to define ParentSlurp’s
constructor explicitly. As no construtor needs to be implemented, all ParentSlurp’s members
can be declared as protectedmembers. Here is the class’s interface:

class ParentSlurp: public Fork
{

Pipe d_pipe;

protected:
virtual void childRedirections();
virtual void parentRedirections();
virtual void childProcess();
virtual void parentProcess();

};

• The childRedirections()member configures the pipe as a pipe for reading. So, all informa-
tion written to the child’s standard output stream will end up in the pipe. The big advantage

of this all is that no streams around file descriptors are needed to write to a file descriptor:



596 CHAPTER 20. CONCRETE EXAMPLES OF C++

inline void ParentSlurp::childRedirections()
{

d_pipe.writtenBy(STDOUT_FILENO);
}

• The parentRedirections()member, configures its end of the pipe as a reading pipe. It does
so by redirecting the reading end of the pipe to its standard input file descriptor (STDIN_FILENO),
thus allowing extractions from cin instead of using streams built around file descriptors.

inline void ParentSlurp::parentRedirections()
{

d_pipe.readFrom(STDIN_FILENO);
}

• The childProcess() member only has to concentrate on its own actions. As it only needs
to execute a program (writing information to its standard output), the member consists of but

one statement:

inline void ParentSlurp::childProcess()
{

execl("/bin/ls", "/bin/ls", static_cast<char *>(0));
}

• The parentProcess() member simply ‘slurps’ the information appearing at its standard in-
put. Doing so, it actually reads the child’s output. It copies the received lines to its standard

output stream after having prefixed line numbers to them:

void ParentSlurp::parentProcess()
{

std::string line;
size_t nr = 1;

while (getline(std::cin, line))
std::cout << nr++ << ": " << line << std::endl;

waitForChild();
}

The following program simply constructs a ParentSlurp object, and calls its fork() member. Its
output consists of a numbered list of files in the directory where the program is started. Note that the

program also needs the fork.o, pipe.o and waitforchild.o object files (see earlier sources):

int main()
{

ParentSlurp ps;

ps.fork();
return 0;

}
/*

Generated Output (example only, actually obtained output may differ):

1: a.out
2: bitand.h
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3: bitfunctional
4: bitnot.h
5: daemon.cc
6: fdinseek.cc
7: fdinseek.h
...

*/

20.3.5 Communicating with multiple children

The next step up the ladder is the construction of a child-process monitor. Here, the parent process

is responsible for all its child processes, but it also must read their standard output. The user may

enter information at the parent process’ standard input, for which a simple command language is

defined:

• startwill start a new child process. The parent will return the ID (a number) to the user. The
ID may thereupon be used to send a message to that particular child process

• <nr> text will send “text” to the child process having ID <nr>;

• stop <nr> will terminate the child process having ID <nr>;

• exit will terminate the parent as well as all of its children.

Furthermore, the child process that hasn’t received text for some time will complain, by sending a

message to the parent-process. The parent process will then simply transmit the received message

to the user, by copying it to the standard output stream.

A problem with programs like our monitor is that these programs allow asynchronous input from

multiple sources: input may appear at the standard input as well as at the input-sides of pipes. Also,

multiple output channels are used. To handle situations like these, the select() system call was
developed.

20.3.5.1 The class ‘Select’

The select() system call was developed to handle asynchronous I/O multiplexing. This system
call can be used to handle, e.g., input appearing simultaneously at a set of file descriptors.

The select() system function is rather complex, and its full discussion is beyond the C++ Annota-
tions’ scope. However, its use may be simplified by providing a class Selector, hiding its details
and offering an easy-to-use public interface. Here its characteristics are discussed:

• Most of Select’s members are very small, allowing us to define most of its members as inline
functions. The class requires quite a few data members. Most of them of types that were specif-

ically constructed for use by select(). Therefore, before the class interface can be handled
by the compiler, various header files must have been read by it:

#include <limits.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
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• The class definition and its data members may appear next. The data type fd_set is a type
designed to be used by select() and variables of this type contain the set of filedescriptors
on which select() has sensed some activity. Furthermore, select() allows us to fire an
asynchronous alarm. To specify alarm times, the class receives a timeval data member. The
remaining members are used by the class for internal bookkeeping purposes, illustrated below.

Here is the class’s interface:

class Selector
{

fd_set d_read;
fd_set d_write;
fd_set d_except;
fd_set d_ret_read;
fd_set d_ret_write;
fd_set d_ret_except;
timeval d_alarm;
int d_max;
int d_ret;
int d_readidx;
int d_writeidx;
int d_exceptidx;

public:
Selector();

int wait();
int nReady();
int readFd();
int writeFd();
int exceptFd();
void setAlarm(int sec, int usec = 0);
void noAlarm();
void addReadFd(int fd);
void addWriteFd(int fd);
void addExceptFd(int fd);
void rmReadFd(int fd);
void rmWriteFd(int fd);
void rmExceptFd(int fd);

private:
int checkSet(int *index, fd_set &set);
void addFd(fd_set *set, int fd);

};

The following member functions are part of the class’s public interface:

• Selector(): the (default) constructor. It clears the read, write, and execute fd_set variables,
and switches off the alarm. Except for d_max, the remaining data members do not require
initializations. Here is the implementation of Selector’s constructor:

Selector::Selector()
{

FD_ZERO(&d_read);
FD_ZERO(&d_write);
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FD_ZERO(&d_except);
noAlarm();
d_max = 0;

}

• int wait(): this member function will block() until activity is sensed at any of the file descrip-
tors monitored by the Selector object, or if the alarm times out. It will throw an exception
when the select() system call itself fails. Here is wait()’s implementation:

int Selector::wait()
{

timeval t = d_alarm;

d_ret_read = d_read;
d_ret_write = d_write;
d_ret_except = d_except;

d_readidx = 0;
d_writeidx = 0;
d_exceptidx = 0;

d_ret = select(d_max, &d_ret_read, &d_ret_write, &d_ret_except, &t);

if (d_ret < 0)
throw "Selector::wait()/select() failed";

return d_ret;
}

• int nReady: this member function’s return value is defined only when wait() has returned.
In that case it returns 0 for a alarm-timeout, -1 if select() failed, and the number of file
descriptors on which activity was sensed otherwise. It can be implemented inline:

inline int Selector::nReady()
{

return d_ret;
}

• int readFd(): this member function’s return value also is defined only after wait() has
returned. Its return value is -1 if no (more) input file descriptors are available. Otherwise the

next file descriptor available for reading is returned. Its inline implementation is:

inline int Selector::readFd()
{

return checkSet(&d_readidx, d_ret_read);
}

• int writeFd(): operating analogously to readFd(), it returns the next file descriptor to
which output is written. Using d_writeidx and d_ret_read, it is implemented analogously
to readFd();

• int exceptFd(): operating analogously to readFd(), it returns the next exception file de-
scriptor on which activity was sensed. Using d_except_idx and d_ret_except, it is imple-
mented analogously to readFd();
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• void setAlarm(int sec, int usec = 0): this member activates Select’s alarm facility.
At least the number of seconds to wait for the alarm to go off must be specified. It simply

assigns values to d_alarm’s fields. Then, at the next Select::wait() call, the alarm will fire
(i.e., wait() returns with return value 0) once the configured alarm-interval has passed. Here
is its (inline) implementation:

inline void Selector::setAlarm(int sec, int usec)
{

d_alarm.tv_sec = sec;
d_alarm.tv_usec = usec;

}

• void noAlarm(): this member switches off the alarm, by simply setting the alarm interval
to a very long period. Implemented inline as:

inline void Selector::noAlarm()
{

setAlarm(INT_MAX, INT_MAX);
}

• void addReadFd(int fd): this member adds a file descriptor to the set of input file descrip-
tors monitored by the Selector object. The member function wait() will return once input
is available at the indicated file descriptor. Here is its inline implementation:

inline void Selector::addReadFd(int fd)
{

addFd(&d_read, fd);
}

• void addWriteFd(int fd): this member adds a file descriptor to the set of output file de-
scriptors monitored by the Selector object. The member function wait() will return once
output is available at the indicated file descriptor. Using d_write, it is implemented analo-
gously as addReadFd();

• void addExceptFd(int fd): this member adds a file descriptor to the set of exception file
descriptors to be monitored by the Selector object. The member function wait() will return
once activity is sensed at the indicated file descriptor. Using d_except, it is implemented
analogously as addReadFd();

• void rmReadFd(int fd): this member removes a file descriptor from the set of input file
descriptors monitored by the Selector object. Here is its inline implementation:

inline void Selector::rmReadFd(int fd)
{

FD_CLR(fd, &d_read);
}

• void rmWriteFd(int fd): this member removes a file descriptor from the set of output file
descriptors monitored by the Selector object. Using d_write, it is implemented analogously
as rmReadFd();

• void rmExceptFd(int fd): this member removes a file descriptor from the set of exception
file descriptors to be monitored by the Selector object. Using d_except, it is implemented
analogously as rmReadFd();
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The class’s remaining (two) members are support members, and should not be used by non-member

functions. Therefore, they should be declared in the class’s private section:

• The member addFd() adds a certain file descriptor to a certain fd_set. Here is its implemen-
tation:

void Selector::addFd(fd_set *set, int fd)
{

FD_SET(fd, set);
if (fd >= d_max)

d_max = fd + 1;
}

• The member checkSet() tests whether a certain file descriptor (*index) is found in a certain
fd_set. Here is its implementation:

int Selector::checkSet(int *index, fd_set &set)
{

int &idx = *index;

while (idx < d_max && !FD_ISSET(idx, &set))
++idx;

return idx == d_max ? -1 : idx++;
}

20.3.5.2 The class ‘Monitor’

The monitor program uses a Monitor object to do most of the work. The class has only one pub-
lic constructor and one public member, run(), to perform its tasks. Therefore, all other member
functions described below should be declared in the class’s private section.

Monitor defines the private enum Commands, symbolically listing the various commands its in-
put language supports, as well as several data members, among which a Selector object and a map
using child order numbers as its keys, and pointer to Child objects (see section 20.3.5.3) as its val-
ues. Furthermore, Monitor has a static array member s_handler[], storing pointers to member
functions handling user commands.

A destructor should have been implemented too, but its implementation is left as an exercise to the

reader. Before the class interface can be processed by the compiler, it must have seen select.h and
child.h. Here is the class header, including the interface of the nested function object class Find:

class Monitor
{

enum Commands
{

UNKNOWN,
START,
EXIT,
STOP,
TEXT,
sizeofCommands

};
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class Find
{

int d_nr;
public:

Find(int nr);
bool operator()(std::map<int, Child *>::value_type &vt)

const;
};

Selector d_selector;
int d_nr;
std::map<int, Child *> d_child;

static void (Monitor::*s_handler[])(int, std::string const &);

public:
enum Done
{};

Monitor();
void run();

private:
static void killChild(std::map<int, Child *>::value_type it);
static void initialize();

Commands next(int *value, std::string *line);
void processInput();
void processChild(int fd);

void createNewChild(int, std::string const &);
void exiting(int = 0, std::string const &msg = std::string());
void sendChild(int value, std::string const &line);
void stopChild(int value, std::string const &);
void unknown(int, std::string const &);

};

Since there’s only one non-class type data member, the class’s constructor remains very short and

could be implemented inline. However, the array s_handler, storing pointers to functions needs to
be initialized as well. This can be accomplished in several ways:

• Since the Command enumeration only contains a fairly limited set of commands, compile-time
initialization could be considered:

void (Monitor::*Monitor::s_handler[])(int, string const &) =
{

&Monitor::unknown, // order follows enum Command’s
&Monitor::createNewChild, // elements
&Monitor::exiting,
&Monitor::stopChild,
&Monitor::sendChild,

};
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The advantage of this is that it’s simple, and not requiring any run-time effort. The disad-

vantage is of course relatively complex maintenance. If for some reason Commads is modified,
s_handlermust be modified as well. In cases like these, compile-time initialization is a little
bit asking for trouble. There is a simple alternative though, which admittedly does take some

execution time:

• A static member may be called before the first Monitor object is constructed, which initializes
the elements of the array explicitly. This has the advantage of robustness against reordering

of enumeration values, which is important: enumerations do receive modifications during the

development cycle of a class. Maintenance is still required if new values are added to the

enumeration, but in that case maintenance is required anyway.

• Using a static member that’s explicitly called from main() may become a burden, or may be
considered unacceptable, as it puts an additional responsibility with the software engineer,

rather than with the software. It’s a matter of taste whether that’s a consideration to take

seriously or not. If the initialization function is not called, the program will clearly fail and

repairing the error caused by not calling the initialization function is easily repaired. If that’s

considered bad practice, the initialization function may be called from the class constructors

as well. The following initialization function used in the current implementation of the class

Monitor:

void (Monitor::*Monitor::s_handler[sizeofCommands])(int, string const &);

void Monitor::initialize()
{

if (s_handler[UNKNOWN] != 0) // already initialized
return;

s_handler[UNKNOWN] = &Monitor::unknown;
s_handler[START] = &Monitor::createNewChild;
s_handler[EXIT] = &Monitor::exiting;
s_handler[STOP] = &Monitor::stopChild;
s_handler[TEXT] = &Monitor::sendChild;

}

Since the initialization function immediately returns if the initialization has already been per-

formed, Monitor’s constructor may call the initialization and still defensibly be implemented inline:

inline Monitor::Monitor()
:

d_nr(0)
{

initialize();
}

The core of Monitor’s activities are performed by run(). It performs the following tasks:

• Initially, the Monitor object only listens to its standard input: the set of input file descriptors
to which d_selector will listen is initialized to STDIN_FILENO.

• Then, in a loop d_selector’s wait() function is called. If input on cin is available, it is pro-
cessed by processInput(). Otherwise, the input has arived from a child process. Information
sent by children is processed by processChild().
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• To prevent zombies, the child processes must catch their children’s termination signals. This

will be discussed below (In an earlier version Monitor caught the termination signals. As
noted by Ben Simons (ben at mrxfx dot com) this is inappropriate: the child process itself
has that responsibility. Thanks, Ben).

Here is run()’s implementation:

#include "monitor.ih"

void Monitor::run()
{

d_selector.addReadFd(STDIN_FILENO);

while (true)
{

cout << "? " << flush;
try
{

d_selector.wait();

int fd;
while ((fd = d_selector.readFd()) != -1)
{

if (fd == STDIN_FILENO)
processInput();

else
processChild(fd);

}
cout << "NEXT ...\n";

}
catch (char const *msg)
{

exiting(1, msg);
}

}
}

The member function processInput() reads the commands entered by the user via the program’s
standard input stream. The member itself is rather simple: it calls next() to obtain the next
command entered by the user, and then calls the corresponding function using the matching element

of the s_handler[] array. The members processInput() and next() were defined as follows:

void Monitor::processInput()
{

string line;
int value;
Commands cmd = next(&value, &line);
(this->*s_handler[cmd])(value, line);

}

Monitor::Commands Monitor::next(int *value, string *line)
{
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if (!getline(cin, *line))
exiting(1, "Command::next(): reading cin failed");

if (*line == "start")
return START;

if (*line == "exit" || *line == "quit")
{

*value = 0;
return EXIT;

}

if (line->find("stop") == 0)
{

istringstream istr(line->substr(4));
istr >> *value;
return !istr ? UNKNOWN : STOP;

}

istringstream istr(line->c_str());
istr >> *value;
if (istr)
{

getline(istr, *line);
return TEXT;

}

return UNKNOWN;
}

All other input sensed by d_select has been created by child processes. Because d_select’s
readFd() member returns the corresponding input file descriptor, this descriptor can be passed
to processChild(). Then, using a ifdstreambuf (see section 20.1.2.1), its information is read
from an input stream. The communication protocol used here is rather basic: To every line of input

sent to a child, the child sends exactly one line of text in return. Consequently, processChild()
just has to read one line of text:

void Monitor::processChild(int fd)
{

ifdstreambuf ifdbuf(fd);
istream istr(&ifdbuf);
string line;

getline(istr, line);
cout << d_child[fd]->pid() << ": " << line << endl;

}

Please note the construction d_child[fd]->pid() used in the above source. Monitor defines the
data member map<int, Child *> d_child. This map contains the child’s order number as its
key, and a pointer to the Child object as its value. A pointer is used here, rather than a Child
object, since we do want to use the facilities offered by the map, but don’t want to copy a Child
object.

The implication of using pointers as map-values is of course that the responsibility to destruct the
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Child object once it becomes superfluous now lies with the programmer, and not any more with the
run-time support system.

Now that run()’s implementation has been covered, we’ll concentrate on the various commands
users might enter:

• When the start command is issued, a new child process is started. A new element is added to
d_child by the member createNewChild(). Next, the Child object should start its activi-
ties, but the Monitor object can not wait here for the child process to complete its activities,
as there is no well-defined endpoint in the near future, and the user will probably want to

enter more commands. Therefore, the Child process will run as a daemon: its parent pro-
cess will terminate immediately, and its own child process will continue in the background.

Consequently, createNewChild() calls the child’s fork() member. Although it is the child’s
fork() function that is called, it is still the monitor program wherein fork() is called. So,
the monitor program is duplicated by fork(). Execution then continues:

– At the Child’s parentProcess() in its parent process;

– At the Child’s childProcess() in its child process

As the Child’s parentProcess() is an empty function, returning immediately, the Child’s
parent process effectively continues immediately below createNewChild()’s cp->fork()
statement. As the child process never returns (see section 20.3.5.3), the code below cp->fork()
is never executed by the Child’s child process. This is exactly as it should be.

In the parent process, createNewChild()’s remaining code simply adds the file descriptor
that’s available for reading information from the child to the set of input file descriptors moni-

tored by d_select, and uses d_child to establish the association between that file descriptor
and the Child object’s address:

void Monitor::createNewChild(int, string const &)
{

Child *cp = new Child(++d_nr);

cp->fork();

int fd = cp->readFd();

d_selector.addReadFd(fd);
d_child[fd] = cp;

cerr << "Child " << d_nr << " started\n";
}

• Direct communication with the child is required for the stop <nr> and <nr> text com-
mands. The former command terminates child process <nr>, by calling stopChild(). This
function locates the child process having the order number using an anonymous object of the

class Find, nested inside Monitor. The class Find simply compares the provided nr with the
children’s order number returned by their nr() members:

inline Monitor::Find::Find(int nr)
:

d_nr(nr)
{}
inline bool Monitor::Find::operator()(

std::map<int, Child *>::value_type &vt) const
{
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return d_nr == vt.second->nr();
}

If the child process having order number nr was found, its file descriptor is removed from
d_selector’s set of input file descriptors. Then the child process itself is terminated by the
static member killChild(). The member killChild() is declared as a staticmember func-
tion, as it is used as function argument of the for_each() generic algorithm by erase() (see
below). Here is killChild()’s implementation:

void Monitor::killChild(map<int, Child *>::value_type it)
{

if (kill(it.second->pid(), SIGTERM))
cerr << "Couldn’t kill process " << it.second->pid() << endl;

}

Having terminated the specified child process, the corresponding Child object is destroyed and
its pointer is removed from d_child:

void Monitor::stopChild(int nr, string const &)
{

map<int, Child *>::iterator it =
find_if(d_child.begin(), d_child.end(), Find(nr));

if (it == d_child.end())
cerr << "No child number " << nr << endl;

else
{

d_selector.rmReadFd(it->second->readFd());

delete it->second;
d_child.erase(it);

}
}

• The command <nr> text> will send text to child process nr, using the member function
sendChild(). This function too, will use a Find object to locate the process having order
number nr, and will then simply insert the text into the writing end of a pipe connected to the
indicated child process:

void Monitor::sendChild(int nr, string const &line)
{

map<int, Child *>::iterator it =
find_if(d_child.begin(), d_child.end(), Find(nr));

if (it == d_child.end())
cerr << "No child number " << nr << endl;

else
{

ofdnstreambuf ofdn(it->second->writeFd());
ostream out(&ofdn);

out << line << endl;
}

}
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• When users enter exit the member exiting() is called. It terminates all child processes,
by visiting all elements of d_child, using the for_each() generic algorithm (see section
17.4.17). The program is subsequently terminated:

void Monitor::exiting(int value, string const &msg)
{

for_each(d_child.begin(), d_child.end(), killChild);
if (msg.length())

cerr << msg << endl;
throw value;

}

Finally, the program’s main() function is simply:

#include "monitor.h"

int main()
try
{

Monitor monitor;

monitor.run();
}
catch (int exitValue)
{

return exitValue;
}

/*
Example of a session:

# a.out
? start
Child 1 started
? 1 hello world
? 3394: Child 1:1: hello world
? 1 hi there!
? 3394: Child 1:2: hi there!
? start
Child 2 started
? 3394: Child 1: standing by
? 3395: Child 2: standing by
? 3394: Child 1: standing by
? 3395: Child 2: standing by
? stop 1
? 3395: Child 2: standing by
? 2 hello world
? 3395: Child 2:1: hello world
? 1 hello world
No child number 1
? exit3395: Child 2: standing by
?
#

*/
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20.3.5.3 The class ‘Child’

When the Monitor object starts a child process, it has to create an object of the class Child. The
Child class is derived from the class Fork, allowing its construction as a daemon, as discussed in
the previous section. Since a Child object is a daemon, we know that its parent process should be
defined as an empty function. its childProcess() must of course still be defined. Here are the
characteristics of the class Child:

• The Child class defines two Pipe data members, to allow communications between its own
child- and parent processes. As these pipes are used by the Child’s child process, their names
are aimed at the child process: the child process reads from d_in, and writes to d_out. Here
is the interface of the class Child:

class Child: public Fork
{

Pipe d_in;
Pipe d_out;

int d_parentReadFd;
int d_parentWriteFd;
int d_nr;

public:
Child(int nr);
virtual ~Child();
int readFd() const;
int writeFd() const;
int pid() const;
int nr() const;
virtual void childRedirections();
virtual void parentRedirections();
virtual void childProcess();
virtual void parentProcess();

};

• The Child’s constructor simply stores its argument, a child-process order number, in its own
d_nr data member:

inline Child::Child(int nr)
:

d_nr(nr)
{}

• The Child’s child process will simply obtain its information from its standard input stream,
and it will write its information to its standard output stream. Since the communication chan-

nels are pipes, redirections must be configured. The childRedirections() member is im-
plemented as follows:

void Child::childRedirections()
{

d_in.readFrom(STDIN_FILENO);
d_out.writtenBy(STDOUT_FILENO);

}
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• Although the parent process performs no actions, it must configure some redirections. Since

the names of the pipes indicate their functions in the child process, d_in is used for writing
by the parent, and d_out is used for reading by the parent. Here is the implementation of
parentRedirections():

void Child::parentRedirections()
{

d_parentReadFd = d_out.readOnly();
d_parentWriteFd = d_in.writeOnly();

}

• The Child object will exist until it is destroyed by the Monitor’s stopChild()member. By al-
lowing its creator, the Monitor object, to access the parent-side ends of the pipes, the Monitor
object can communicate with the Child’s child process via those pipe-ends. The members
readFd() and writeFd() allow the Monitor object to access these pipe-ends:

inline int Child::readFd() const
{

return d_parentReadFd;
}
inline int Child::writeFd() const
{

return d_parentWriteFd;
}

• The Child object’s child process basically has two tasks to perform:

– It must reply to information appearing at its standard input stream;

– If no information has appeared within a certain time frame (the implementations uses an

interval of five seconds), then a message should be written to its standard output stream

anyway.

To implement this behavior, childProcess() defines a local Selector object, adding STDIN_FILENO
to its set of monitored input file descriptors.

Then, in an eternal loop, childProcess() waits for selector.wait() to return. When
the alarm goes off, it sends a message to its standard output. (Hence, into the writing pipe).

Otherwise, it will echo the messages appearing at its standard input to its standard output.

Here is the implementation of the childProcess()member:

void Child::childProcess()
{

Selector selector;
size_t message = 0;

selector.addReadFd(STDIN_FILENO);
selector.setAlarm(5);

while (true)
{

try
{

if (!selector.wait()) // timeout
cout << "Child " << d_nr << ": standing by\n";

else
{
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string line;
getline(cin, line);
cout << "Child " << d_nr << ":" << ++message << ": " <<

line << endl;
}

}
catch (...)
{

cout << "Child " << d_nr << ":" << ++message << ": " <<
"select() failed" << endl;

}
}
exit(0);

}

• Next, twoaccessors allow the Monitor object to obtain the Child’s process ID and order num-
ber, respectively:

inline int Child::pid() const
{

return Fork::pid();
}
inline int Child::nr() const
{

return d_nr;
}

• A Child process terminates when the user enters a stop command. When an existing child
process number was entered, the corresponding Child object is removed from Monitor’s
d_child map. As a result, its destructor is called. In its turn, Child’s destructor will call
kill to terminate its child, and then waits for the child to terminate. Once the child has ter-
minated, the destructor has completed its work as well and returns, competing the erasure

from d_child. The implementation offered here will fail if the child process doesn’t react to
the SIGTERM signal. In this demonstration program this does not happen. In ‘real life’ imple-
mentations more elaborate killing-proceduresmay be required (e.g., using SIGKILL in addition
to SIGTERM). As discussed in section 8.8 it is important to ensure that the destruction succeeds.
Here is the implementation of the Child’s destructor:

Child::~Child()
{

if (pid())
{

cout << "Killing process " << pid() << "\n";
kill(pid(), SIGTERM);
int status;
wait(&status);

}
}

20.4 Function objects performing bitwise operations

In section 17.1 several types of predefined function objects were introduced. Predefined function

objects performing arithmetic operations, relational operations, and logical operations exist, corre-

sponding to a multitude of binary- and unary operators.
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Some operators appear to be missing: there appear to be no predefined function objects correspond-

ing to bitwise operations. However, their construction is, given the available predefined function

objects, not difficult. The following examples show a template class implementing a function object

calling the bitwise and (operator&()), and a template class implementing a function object calling
the unary not (operator~()). It is left to the reader to construct similar function objects for other
operators.

Here is the implementation of a function object calling the bitwise operator&():

#include <functional>

template <typename _Tp>
struct bit_and: public std::binary_function<_Tp, _Tp, _Tp>
{

_Tp operator()(_Tp const &__x, _Tp const &__y) const
{

return __x & __y;
}

};

Here is the implementation of a function object calling operator~():

#include <functional>

template <typename _Tp>
struct bit_not: public std::unary_function<_Tp, _Tp>
{

_Tp operator()(_Tp const &__x) const
{

return ~__x;
}

};

These and othermissing predefined function objects are also implemented in the file bitfunctional,
which is found in the cplusplus.yo.zip archive. It should be noted that these classes are derived
from existing template classes (e.g., std::binary_function and std::unary_function). These
base classes offer several typedefs which are expected (used) by various generic algorithms as de-

fined in the STL (cf. chapter 17), thus following the advice offered in, e.g., the C++ header file

bits/stl_function.h:

* The standard functors are derived from structs named unary_function

* and binary_function. These two classes contain nothing but typedefs,

* to aid in generic (template) programming. If you write your own

* functors, you might consider doing the same.

Here is an example using bit_and() removing all odd numbers from a vector of int values:

#include <iostream>
#include <algorithm>
#include <vector>
#include "bitand.h"
using namespace std;
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int main()
{

vector<int> vi;

for (int idx = 0; idx < 10; ++idx)
vi.push_back(idx);

copy
(

vi.begin(),
remove_if(vi.begin(), vi.end(), bind2nd(bit_and<int>(), 1)),
ostream_iterator<int>(cout, " ")

);
cout << endl;

}
/*

Generated output:

0 2 4 6 8

*/

20.5 Implementing a ‘reverse_iterator’

Earlier, in section 19.12.1, the construction of iterators and reverse iteraters was discussed. In that

section the iterator was constructed as an inner class in a class derived from a vector of pointers to

strings.

An object of this nested iterator class handled the dereferencing of the pointers stored in the vector.

This allowed us to sort the strings pointed to by the vector’s elements rather than the pointers.

A drawback of the approach taken in section 19.12.1 is that the class implementing the iterator is

closely tied to the derived class as the iterator class was implemented as a nested class. What if

we would like to provide any class derived from a container class storing pointers with an iterator

handling the pointer-dereferencing?

In this section a variant to the earlier (nested class) approach is discussed. The iterator class will be

defined as a template class, parameterizing the data type to which the container’s elements point as

well as the iterator type of the container itself. Once again, we will implement a RandomIterator as

it is the most complex iterator type.

Our class is named RandomPtrIterator, indicating that it is a random iterator operating on
pointer values. The template class defines three template type parameters:

• The first parameter specifies the derived class type (Class). Like the earlier nested class,
RandomPtrIterator’s constructor will be private. Therefore we need friend declarations to
allow client classes to construct RandomPtrIterators. However, a friend class Class
cannot be defined: template parameter types cannot be used in friend class ... decla-
rations. But this is no big problem: not every member of the client class needs to construct

iterators. In fact, only Class’s begin() and end() members must be able to construct itera-
tors. Using the template’s first parameter, friend declarations can be specified for the client’s

begin() and end() members.

• The second template parameter parameterizes the container’s iterator type (BaseIterator);
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• The third template parameter indicates the data type to which the pointers point (Type).

RandomPtrIterator uses one private data element, a BaseIterator. Here is the class interface,
including the constructor’s implementation:

#include <iterator>

template <typename Class, typename BaseIterator, typename Type>
class RandomPtrIterator:

public std::iterator<std::random_access_iterator_tag, Type>
{

friend RandomPtrIterator<Class, BaseIterator, Type> Class::begin();
friend RandomPtrIterator<Class, BaseIterator, Type> Class::end();

BaseIterator d_current;

RandomPtrIterator(BaseIterator const &current);

public:
bool operator!=(RandomPtrIterator const &other) const;
int operator-(RandomPtrIterator const &rhs) const;
RandomPtrIterator const operator+(int step) const;
Type &operator*() const;
bool operator<(RandomPtrIterator const &other) const;
RandomPtrIterator &operator--();
RandomPtrIterator const operator--(int);
RandomPtrIterator &operator++();
RandomPtrIterator const operator++(int);
bool operator==(RandomPtrIterator const &other) const;
RandomPtrIterator const operator-(int step) const;
RandomPtrIterator &operator-=(int step);
RandomPtrIterator &operator+=(int step);
Type *operator->() const;

};

template <typename Class, typename BaseIterator, typename Type>
RandomPtrIterator<Class, BaseIterator, Type>::RandomPtrIterator(

BaseIterator const &current)
:

d_current(current)
{}

Dissecting its friend declarations, we see that the members begin() and end() of a class Class,
returning a RandomPtrIterator object for the types Class, BaseIterator and Type are granted
access to RandomPtrIterator’s private constructor. That is exactly what we want. Note that
begin() and end() are declared as bound friends.

All RandomPtrIterator’s remaining members are public. Since RandomPtrIterator is just a
generalization of the nested class iterator developed in section 19.12.1, re-implementing the re-
quiredmember functions is easy, and only requires us to change iterator into RandomPtrIterator
and to change std::string into Type. For example, operator<(), defined in the class iterator
as

inline bool StringPtr::iterator::operator<(iterator const &other) const
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{
return **d_current < **other.d_current;

}

is re-implemented as:

template <typename Class, typename BaseIterator, typename Type>
bool RandomPtrIterator<Class, BaseIterator, Type>::operator<(

RandomPtrIterator const &other) const
{

return **d_current < **other.d_current;
}

As a second example: operator*(), defined in the class iterator as

inline std::string &StringPtr::iterator::operator*() const
{

return **d_current;
}

is re-implemented as:

template <typename Class, typename BaseIterator, typename Type>
Type &RandomPtrIterator<Class, BaseIterator, Type>::operator*() const
{

return **d_current;
}

The pre- and postfix increment operators are re-implemented as:

template <typename Class, typename BaseIterator, typename Type>
RandomPtrIterator<Class, BaseIterator, Type>
&RandomPtrIterator<Class, BaseIterator, Type>::operator++()
{

++d_current;
return *this;

}
template <typename Class, typename BaseIterator, typename Type>
RandomPtrIterator<Class, BaseIterator, Type> const
RandomPtrIterator<Class, BaseIterator, Type>::operator++(int)
{

return RandomPtrIterator(d_current++);
}

Remaining members can be implemented accordingly, their actual implementations are left as an

exercise to the reader (or can be obtained from the cplusplus.yo.zip archive, of course).

Reimplementing the class StringPtr developed in section 19.12.1 is not difficult either. Apart from
including the header file defining the template class RandomPtrIterator, it requires only a single
modification as its iterator typedef must now be associated with a RandomPtrIterator. Here
are the full class interface and inline member definitions:

#ifndef _INCLUDED_STRINGPTR_H_
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#define _INCLUDED_STRINGPTR_H_

#include <vector>
#include <string>
#include "iterator.h"

class StringPtr: public std::vector<std::string *>
{

public:
typedef RandomPtrIterator

<
StringPtr,
std::vector<std::string *>::iterator,
std::string

>
iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;

iterator begin();
iterator end();
reverse_iterator rbegin();
reverse_iterator rend();

};

inline StringPtr::iterator StringPtr::begin()
{

return iterator(this->std::vector<std::string *>::begin() );
}
inline StringPtr::iterator StringPtr::end()
{

return iterator(this->std::vector<std::string *>::end());
}
inline StringPtr::reverse_iterator StringPtr::rbegin()
{

return reverse_iterator(end());
}
inline StringPtr::reverse_iterator StringPtr::rend()
{

return reverse_iterator(begin());
}
#endif

Including StringPtr’s modified header file into the program given in section 19.12.2 will result
in a program behaving identically to its earlier version, albeit that StringPtr::begin() and
StringPtr::end() now return iterator objects constructed from a template definition.

20.6 A text to anything converter

The standard C library offers conversion functions like atoi(), atol(), and other functions, which
can be used to convert ASCII-Z strings to numerical values. In C++, these functions are still
available, but a more type safe way to convert text to other types is by using objects of the class
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std::istringsteam.

Using the std::istringstream class instead of the C standard conversion functions may have
the advantage of type-safety, but it also appears to be a rather cumbersome alternative. After all,

we will have to construct and initialize a std::istringstream object first, before we’re actually
able to extract a value of some type from it. This requires us to use a variable. Then, if the extracted

value is actually only needed to initialize some function-parameter, one might wonder whether the

additional variable and the istringstream construction can somehow be avoided.

In this section we’ll develop a class (A2x) preventing all the disadvantages of the standard C library
functions, without requiring the cumbersome definitions of std::istringstream objects over and
over again. The class is called A2x for ‘ascii to anything’.

A2x objects can be used to obtain a value for any type extractable from std::istream objects
given its textual representation. Since A2x represents the object-variant of the C functions, it is not
only type-safe but also extensible. Consequently, their use is greatly preferred over the standard C

functions. Here are its characteristics:

• A2x is derived from std::istringstream, so all members of the class std::istringstream
are available. Thus, extractions of values of variables can always be performed effortlessly.

Here’s the class’s interface:

class A2x: public std::istringstream
{

public:
A2x();
A2x(char const *txt);
A2x(std::string const &str);

template <typename T>
operator T();

A2x &operator=(char const *txt);

A2x &operator=(std::string const &str);
A2x &operator=(A2x const &other);

};

• A2x has a default constructor and a constructor expecting a std::string argument. The
latter constructor may be used to initialize A2x objects with text to be converted (e.g., a line of
text obtained from reading a configuration file):

inline A2x::A2x()
{}

inline A2x::A2x(char const *txt) // initialize from text
:

std::istringstream(txt)
{}

inline A2x::A2x(std::string const &str)
:

std::istringstream(str.c_str())
{}
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• A2x’s real strength comes from its operator Type() conversion member template. As it is
a member template, it will automatically adapt itself to the type of the variable that should

be given a value, obtained by converting the text stored inside the A2x object to the variable’s
type. When the extraction fails, A2x’s inherited good() member will return false:

template <typename Type>
inline A2x::operator Type()
{

Type t;

return (*this >> t) ? t : Type();
}
/=
inline A2x &A2x::operator=(std::string const &str)
{

return operator=(str.c_str());
}
//OP=
inline A2x &A2x::operator=(A2x const &other)
{

return operator=(other.str());
}

• Occasionally, the compiler may not be able to determine which type to convert to. In that case,

an explicit template type can be used:

A2x.operator int<int>();
// or just:
A2x.operator int();

Since neither syntax looks attractive, the member template to() was provided as well, allow-
ing constructions like:

A2x.to(int());

Here is its implementation:

• Once an A2x object is available, it may be reinitialized using its operator=()member:

#include "a2x.h"

A2x &A2x::operator=(std::string const &txt)
{

clear(); // very important!!! If a conversion failed, the object
// remains useless until executing this statement

str(txt);
return *this;

}

Here are some examples of its use:

int x = A2x("12"); // initialize int x from a string "12"
A2x a2x("12.50"); // explicitly create an A2x object
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double d;
d = a2x; // assign a variable using an A2x object

a2x = "err";
d = a2x; // d is 0: the conversion failed,

// and a2x.good() == false

a2x = " a"; // reassign a2x to new text
char c = a2x; // c now ’a’: internally operator>>() is used

// so initial blanks are skipped.

extern expectsInt(int x); // initialize a parameter using an
expectsInt(A2x("1200")); // anonymous A2x object

d = A2x("12.45").to(int()); // d is 12, not 12.45

Apart from a class A2x a complementary class (X2a) can easily be constructed as well. The construc-
tion of X2a is left as an exercise to the reader.

20.7 Wrappers for STL algorithms

Many generic algorithms (cf. chapter 17) use function objects to operate on the data to which their

iterators refer, or they require predicate function objects using some criterion to make a decision

about these data. The standard approach followed by the generic algorithms is to pass the infor-

mation to which the iterators refer to overloaded function call operators (i.e., operator()()) of
function objects that are passed as arguments to the generic algorithms.

Usually this approach requires the construction of a dedicated class implementing the required

function object. However, in many cases the class context in which the iterators exist already offers

the required functionality. Alternatively, the functionality might exist as member function of the

objects to which the iterators refer. For example, finding the first empty string object in a vector of
string objects could profitably use the string::empty()member.

Another frequently encountered situation is related to a local context. Once again, consider the

situation where the elements of a string vector are all visited: each object must be inserted in a
stream whose reference is only known to the function in which the string elements are visited, but
some additional information must be passed to the insertion function as well, making the use of the

ostream_inserter less appropriate.

The frustrating part of using generic algorithms is that these dedicated function objects often very

much look like each other, but the standard solution (using predefined function objects, using special-

ized iterators) seldomly do the required job: their fixed function interfaces (e.g., equal_to calling
the object’s operator==()) often are too rigid to be useful and, furthermore, they are unable to use
any additional local context that is active when they are used.

Nevertheless, one may wonder whether template classes might be constructed which can be used

again and again to create dedicated function objects. Such template class instantiations should offer

facilities to call configurable (member) functions, using a configurable local context.

In the upcoming sections, several wrapper templates supporting these requirements are developed.

To support a local context, a dedicated local context struct is introduced. Furthermore, the wrapper

templates will allow us to specify the member function that should be called in its constructor. Thus

the rigidness of the fixed member function as used in the predefined function objects is avoided.



620 CHAPTER 20. CONCRETE EXAMPLES OF C++

As an example of a generic algorithm usually requiring a simple function object, consider for_each().
The operator()() of the function object passed to this algorithm receives as its argument a ref-
erence to the object to which the iterators refer. Generally, the operator()() will do one of two
things:

• It may call a member function of the object defined in its parameter list (e.g., operator()(string
&str) may call str.length());

• It may call a function, passing it its parameter as argument (e.g., calling somefunction(str)).

Of course, the latter example is a bit overkill, since somefunction()’s address could actually di-
rectly have been passed to the generic algorithm, so why use this complex procedure? The answer is

context: if somefunction()would actually require other arguments, representing the local context
in which somefunction() was called, then the function object’s constructor could have received
the local context as its arguments, passing that local context on to somefunction(), together with
the object received by the function object’s operator()() function. There is no way to pass any
local context to the generic algorithm’s simple variant, in which a function’s address is passed to the

generic function.

At first sight, however, the fact that a local context differs from one situation to another makes it

hard to standardize the local context: a local context might consist of values, pointers, references,

which differ in number and types from one situation to another. Defining templates for all possible

situations is clearly impractical, and using C-style variadic functions is also not very attractive,

since the arguments passed to a variadic function object constructor cannot simply be passed on to

the function object’s operator()().

The concept of a local context struct is introduced to standardize the local context. It is based on the

following considerations:

• Usually, a function requiring a local context is a member function of some class.

• Instead of using the intuitive implementation where the member function is given the required

parameters representing a local context, it receives a single argument: a const & to a local
context struct.

• The local context struct is defined in the function’s class interface.

• Before the function is called, a local context struct is initialized, which is then passed as
argument to the function.

Of course, the organization of local context structs will differ from one situation to the next sit-
uation, but there is always just one local context required. The fact that the inner organization

of the local context differs from one situation to the next causes no difficulty at all to C++’s tem-

plate mechanism. Actually, having available a generic type (Context) together with several concrete

instantiations of that generic type is a mere text-book argument for using templates.

20.7.1 Local context structs

When a function is called, the context in which it is called is made known to the function by providing

the function with a parameter list. When the function is called, these parameters are initialized by

the function’s arguments. For example, a function show() may expect two arguments: an ostream
& into which the information is inserted and an object which will be inserted into the stream. For
example:

void State::show(ostream &out, Item const &item)
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{
out << "Here is item " << item.nr() << ":\n" <<

item << endl;
}

Functions clearly differ in their parameter lists: both the numbers and types of their parameters

vary.

A local context struct is used to standardize the parameter lists of functions, for the benefit of tem-

plate construction. In the above example, the function State::show() uses a local context con-
sisting of an ostream & and an Item const &. This context never changes, and may very well be
offered through a struct defined as follows:

struct ShowContext
{

ostream &out;
Item const &item;

};

Note that this structmimics State::show()’s parameter list. Since it is directly connected to the
function State::show() it is best defined in the class State, offering the function State::show().
Once we have defined this struct, State::show()’s implementation is modified so that it now ex-
pects a ShowContext &:

void State::show(ShowContext &context)
{

context.out << "Here is item " << context.item.nr() << ":\n" <<
context.item << endl;

}

(Alternatively, an overloaded State::show(ShowContext &context) could be defined, calling
the original show() member).

Using a local context struct any parameter list (except those of variadic functions) can be stan-
dardized to a parameter list consisting of a single element. Now that we have a single parameter to

specify any local context we’re ready for the ‘templatization’ of function object wrapper classes.

20.7.2 Member functions called from function objects

The member function called by function objects is the function operator()(), whichmay be defined
as a function having various parameters. In the context of generic algorithms, these parameters

are usually one or two elements, representing the data to which the algorithm’s iterators point.

Unfortunately from the point of view of the template class constructor, it is not known beforehand

whether these data elements are objects, primitive types, or pointers. Let’s assume that we would

like to create a function object changing all letters in string objects into capital letters. In that
case our operator()() function may receive a string & (e.g., when iterating over the elements
of a vector<string>), but our operator()() function may also receive a string * (e.g., when
iterating over the elements of a vector<string *>). Other parameter types can be conceived of
as well.

So, how can we define a generic function that can be called from operator()() if we don’t know
(when defining the template) whether we should call using .* or ->*? The issue whether to call
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a member function using a pointer to member in combination with an object or a pointer to object

does not have to be solved by the template. Instead it can be handled by the class itself, if the class

provides an appropriate static member.

An additional advantage of using a static function is that the static members do not have const
attributes. Consequently, no ambiguity can arise when calling a static member function from within

a function object’s operator()().

Generic algorithms, however, differ in their using of the function object’s operator()()’s return
value. As will be illustrated in the next section, the return type of called functions may also be

parameterized.

20.7.3 The configurable, single argument function object template

As an introductory example, let’s assume we have a class Strings holding a vector<string>
d_vs data member. We would like to change all letter-characters in the strings stored in d_vs
into upper case characters, and we would like to insert the original and modified strings into a

configurable ostream object. To accomplish this, our class offers a member uppercase(ostream
&out).

We would like to use the for_each() generic algorithm. This algorithm may be given a function’s
address, or it may be given a function object. Clearly, since we have a local context (the config-

urable ostream object), the function object is required here. Therefore, the following support class
is constructed:

class Support
{

std::ostream &d_out;

public:
Support(std::ostream &out);
void operator()(std::string &str) const;

};

inline Support::Support(std::ostream &out)
:

d_out(out)
{}

inline void Support::operator()(std::string &str) const
{

d_out << str << " ";
transform(str.begin(), str.end(), str.begin(), toupper);
d_out << str << std::endl;

}

An anonymous Support class object may now be used in the implementation of the class Strings.
Here is an example of its definition and use:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
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#include "support.h"

class Strings
{

std::vector<std::string> d_vs;

public:
void uppercase(std::ostream &out);

};

void Strings::uppercase(std::ostream &out)
{

for_each(d_vs.begin(), d_vs.end(), Support(out));
}

using namespace std;

int main()
{

Strings s;

s.uppercase(cout);
}

To ‘templatize’ the Support class, using the considerations discussed previously, we perform the
following steps:

• The local context will be put in a struct, which is then passed to the template’s constructor,
so Context becomes one of the template type parameters.

• The implementation of the template’s operator()() is standardized. In the template it will
call a function, receiving the operator()()’s argument (which also becomes a template pa-
rameter) and a reference to the context as its arguments. The address of the function to

call may be stored in a local variable of the template function object. In the Support class,
operator()() uses a void return type. This type is often the required type, but when defin-
ing predicates it may be a bool. Therefore, the return type of the template’s operator()()
(and thus the return type of the called function) is made configurable as well, offering a default

type void for convenience. Thus, we get the following definition of the variable holding the
address of the function to call:

ReturnType (*d_fun)(Type &argument, Context &context);

and the template’s operator()() implementation (passing it another template data member:
Context &d_context) becomes:

template<typename Type, typename Context, typename ReturnType>
ReturnType Wrap1<Type, Context, ReturnType>::operator()(

Type &param) const
{

return (*d_fun)(param, d_context);
}

• The template’s constructor is given two parameters: a function address and a reference to the

local context struct. Coining the classname Wrap1 (for unary (1) function object wrapper), its
implementation becomes:
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template<typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::
Wrap1(ReturnType (*fun)(Type &, Context &), Context &context)
:

d_fun(fun),
d_context(context)

{}

Now we’re almost ready to construct the full template class Wrap1. Two additional situations need
further consideration:

• Arguments passed to the template’s operator()() member may be of various kinds: values,
modifiable references, immutable (const) references, pointers to modifiable entities or pointers
to immutable entities. The template should offer facilities to use all these different argument

types.

• Algorithms defined in the standard template library, notably those requiring predicate function

objects (e.g., find_if()), assume that these objects define internal types, named result_type
for its operator()() member, and argument_type for its data type. With binary predicate
function objects (see section 20.7.4) first_argument_type and second_argument_type for
the respective types of its operator()()’s arguments are expected. Moreover, these types
must be ‘plain’ type names, no pointers nor references.

Various parameter types of the template’s operator()() function may be handled by overloaded
versions of both the template constructor and its operator()() member, defining four implemen-
tations handling Type const references and Type const pointers. For each of these situations a
function pointer to a corresponding function, called by the template’s operator()() must be de-
fined as well. Since in each instantiation of the template only one type of the overloaded functions

(constructor and associated operator()()) will be used, a union can be defined accomodating the
pointers to the various (i.e., four) types of functions that may be passed to the template’s construc-

tor. This union may be anonymous, as only its fields will be used. Note that value arguments may
be handled by Type const & parameters: no additional overloaded version is required to handle
value-type arguments.

The internal types expected by some of the STL functions can simply be made available by defining

internal typedefs. Since the various types of arguments (const, pointers, references) are handled
by the template’s overloaded constructors and member functions, the typedefs may simply set up

aliases for the template parameter types.

Here is the full implementation of the configurable, single argument function object template:

template <typename Type, typename Context, typename ReturnType = void>
class Wrap1
{

union
{

Context *d_context;
Context const *d_contextconst;

};
union
{

ReturnType (*d_ref)(Type &, Context &);
ReturnType (*d_refPtr)(Type &, Context *);
ReturnType (*d_refCref)(Type &, Context const &);
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ReturnType (*d_refCptr)(Type &, Context const *);

ReturnType (*d_ptr)(Type *, Context &);
ReturnType (*d_ptr2)(Type *, Context *);
ReturnType (*d_ptrCref)(Type *, Context const &);
ReturnType (*d_ptrCptr)(Type *, Context const *);

ReturnType (*d_crefRef)(Type const &, Context &);
ReturnType (*d_crefPtr)(Type const &, Context *);
ReturnType (*d_cref2)(Type const &, Context const &);
ReturnType (*d_crefCptr)(Type const &, Context const *);

ReturnType (*d_cptrRef)(Type const *, Context &);
ReturnType (*d_cptrPtr)(Type const *, Context *);
ReturnType (*d_cptrCref)(Type const *, Context const &);
ReturnType (*d_cptr2)(Type const *, Context const *);

};

public:
typedef Type argument_type;
typedef ReturnType result_type;

// Type may be &, *, const &, and const *
// Context may be &, *, const &. and const *
// This allows for 16 combinations which are now all implemented
// below

Wrap1(ReturnType (*fun)(Type &, Context &), Context &context);
Wrap1(ReturnType (*fun)(Type &, Context const &),

Context const &context);
Wrap1(ReturnType (*fun)(Type const &, Context &),

Context &context);
Wrap1(ReturnType (*fun)(Type const &, Context const &),

Context const &context);
Wrap1(ReturnType (*fun)(Type *, Context &),

Context &context);
Wrap1(ReturnType (*fun)(Type *, Context const &),

Context const &context);
Wrap1(ReturnType (*fun)(Type const *, Context &),

Context &context);
Wrap1(ReturnType (*fun)(Type const *, Context const &),

Context const &context);

// The following additional constructors are identical to the
// constructors listed above, but they accept a pointer to a
// context in various forms.

Wrap1(ReturnType (*fun)(Type &, Context *), Context *context);
Wrap1(ReturnType (*fun)(Type &, Context const *),

Context const *context);
Wrap1(ReturnType (*fun)(Type const &, Context *),

Context *context);
Wrap1(ReturnType (*fun)(Type const &, Context const *),
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Context const *context);
Wrap1(ReturnType (*fun)(Type *, Context *), Context *context);
Wrap1(ReturnType (*fun)(Type *, Context const *),

Context const *context);
Wrap1(ReturnType (*fun)(Type const *, Context *),

Context *context);
Wrap1(ReturnType (*fun)(Type const *, Context const *),

Context const *context);

ReturnType operator()(Type &param) const;
ReturnType operator()(Type const &param) const;
ReturnType operator()(Type *param) const;
ReturnType operator()(Type const *param) const;

};

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type &, Context &), Context &context)
:

d_context(&context),
d_ref(fun)

{}
// reference Wrap1::const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type &, Context const &),
Context const &context)

:
d_contextconst(&context),
d_refCref(fun)

{}

// const reference
template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const &, Context &),
Context &context)

:
d_context(&context),
d_crefRef(fun)

{}
// const reference const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const &, Context const &),
Context const &context)

:
d_contextconst(&context),
d_cref2(fun)

{}

// pointer
template <typename Type, typename Context, typename ReturnType>
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Wrap1<Type, Context, ReturnType>::Wrap1(
ReturnType (*fun)(Type *, Context &),

Context &context)
:

d_context(&context),
d_ptr(fun)

{}
// pointer const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type *, Context const &),
Context const &context)

:
d_contextconst(&context),
d_ptrCref(fun)

{}

// const pointer
template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const *, Context &),
Context &context)

:
d_context(&context),
d_cptrRef(fun)

{}
// const pointer const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const *, Context const &),
Context const &context)

:
d_contextconst(&context),
d_cptrCref(fun)

{}

// reference
template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type &, Context *), Context *context)
:

d_context(context),
d_refPtr(fun)

{}
// reference const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type &, Context const *),
Context const *context)

:
d_contextconst(context),
d_refCptr(fun)

{}
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// const reference
template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const &, Context *), Context *context)
:

d_context(context),
d_crefPtr(fun)

{}
// const reference const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const &, Context const *),
Context const *context)

:
d_contextconst(context),
d_crefCptr(fun)

{}

// pointer
template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type *, Context *), Context *context)
:

d_context(context),
d_ptr2(fun)

{}
// pointer const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type *, Context const *),
Context const *context)

:
d_contextconst(context),
d_ptrCptr(fun)

{}
// const pointer

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const *, Context *), Context *context)
:

d_context(context),
d_cptrPtr(fun)

{}
// const pointer const

template <typename Type, typename Context, typename ReturnType>
Wrap1<Type, Context, ReturnType>::Wrap1(

ReturnType (*fun)(Type const *, Context const *),
Context const *context)

:
d_contextconst(context),
d_cptr2(fun)

{}

template <typename Type, typename Context, typename ReturnType>
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ReturnType Wrap1<Type, Context, ReturnType>::operator()(Type &param) const
{

return (*d_ref)(param, *d_context);
}

template <typename Type, typename Context, typename ReturnType>
ReturnType

Wrap1<Type, Context, ReturnType>::operator()(Type const &param) const
{

return (*d_crefRef)(param, *d_context);
}

template <typename Type, typename Context, typename ReturnType>
ReturnType Wrap1<Type, Context, ReturnType>::operator()(Type *param) const
{

return (*d_ref)(*param, *d_context);
}

template <typename Type, typename Context, typename ReturnType>
ReturnType

Wrap1<Type, Context, ReturnType>::operator()(Type const *param) const
{

return (*d_crefRef)(*param, *d_context);
}

To use this template, the original dedicated implementation of Support::operator()() is now
defined in a static member function of the class String, also defining the required local context
struct. Here is the new implementation of the class Strings, using the template Wrap1:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

#include "wrap1.h"

class Strings
{

std::vector<std::string> d_vs;

struct Context
{

std::ostream &out;
};

public:
void uppercase(std::ostream &out);

private:
static void xform(std::string &str, Context &context);

};

void Strings::uppercase(std::ostream &out)
{
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Context context = {out};
for_each(d_vs.begin(), d_vs.end(),

Wrap1<std::string, Context>(&xform, context));
}

void Strings::xform(std::string &str, Context &context)
{

context.out << str << " ";
transform(str.begin(), str.end(), str.begin(), toupper);
context.out << str << std::endl;

}

using namespace std;

int main()
{

Strings s;

s.uppercase(cout);
}

To illustrate the use of the ReturnType template parameter, let’s assume that the transformations
are only required up to the first empty string. In this case, the find_if generic algorithm comes
in handy, since it stops once a predicate returns true. The xform() function should return a bool
value, and the uppercase() implementation specifies an explicit type (bool) for the ReturnType
template parameter:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

#include "wrap1.h"

class Strings
{

std::vector<std::string> d_vs;

struct Context
{

std::ostream &out;
};

public:
void uppercase(std::ostream &out);

private:
static bool xform(std::string &str, Context &context);

};

void Strings::uppercase(std::ostream &out)
{

Context context = {out};
find_if(d_vs.begin(), d_vs.end(),
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Wrap1<std::string, Context, bool>(&xform, context));
}

bool Strings::xform(std::string &str, Context &context)
{

context.out << str << " ";
transform(str.begin(), str.end(), str.begin(), toupper);
context.out << str << std::endl;

return str.empty();
}

using namespace std;

int main()
{

Strings s;

s.uppercase(cout);
}

Note that only the class Strings needed to be modified. The Wrap1 template could be used to create
both the plain, void returning function object and the unary predicate.

A final note: sometimes no context is required at all, but the approach taken with the Wrap1 tem-
plate class may be considered useful. In those cases, either a dummy context may be defined, or a

alternate wrapper class not using a context may be defined. Personally, I’ve done the latter.

20.7.4 The configurable, two argument function object template

Having constructed the unary template wrapper, the construction of the binary template wrapper

should offer no surprises. The function object’s operator()() is now called with two, rather than
one argument. Coining the classname Wrap2, it’s implementation is almost identical to Wrap1’s
implementation. It’s full implementation consists of slightly over 1100 lines, due to the various com-

binations of const and pointer or reference parameters and can be found in the Bobcat library3.
. An excerpt from that class, showing the use of const * parameters, is:

template <typename Type1, typename Type2,
typename Context, typename ReturnType = void>

class Wrap2c
{

union
{

Context *d_context;
Context const *d_contextconst;

};
union
{

// from right to left the following is varied:
// references, pointers,
// const references, const pointers

3http://bobcat.sourceforge.net
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// This makes for 4 variations on parameter 3,
// x 4 variations on parameter 2
// x 4 variations on parameter 1 = 64 variations

// 3 sets of 16 variations not shown
// set 4: 16 variations for Type1 const *:

// 12 variations not shown.

ReturnType (*d_cptr2ref)(Type1 const *, Type2 const *,
Context &);

ReturnType (*d_cptr2ptr)(Type1 const *, Type2 const *,
Context *);

ReturnType (*d_cptr2cref)(Type1 const *, Type2 const *,
Context const &);

ReturnType (*d_cptr3)(Type1 const *, Type2 const *,
Context const *);

};

public:
typedef Type1 first_argument_type;
typedef Type2 second_argument_type;
typedef ReturnType result_type;

// Type1 may be &, const &, * and const *
// Type2 may be &, const &, * and const *
// Context may be &, const &. * and const *
// This allows for 64 combinations

// Three blocks of 16 constructors not shown

// Fourth block of 16 constructors: Type1 const *
// Type 1: const *, Type2: & - not shown
// Type 1: const *, Type2: * - not shown
// Type 1: const *, Type2: const & - not shown

// Type 1: const *, Type2: const *
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *, Context &),

Context &context);
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *, Context *),

Context *context);
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *,

Context const &), Context const &context);
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *,

Context const *), Context const *context);

// Member functions: 16, for ref, ptr, const ref, const ptr,
// and two parameters per function
// Type 1: ref - not shown
// Type 1: ptr - not shown
// Type 2: const ref - not shown

// Type 2: const ptr
// ...
ReturnType operator()(Type1 const *param1, Type2 const *param2) const;



20.7. WRAPPERS FOR STL ALGORITHMS 633

};

// Fourth block of 16 constructors: Type1 const *

// Type 1: const *, Type2: const *

template<typename Type1, typename Type2, typename Context,
typename ReturnType>

Wrap2c<Type1, Type2, Context, ReturnType>::
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *, Context &),

Context &context)
:

d_context(&context),
d_cptr2ref(fun)

{}

template<typename Type1, typename Type2, typename Context,
typename ReturnType>

Wrap2c<Type1, Type2, Context, ReturnType>::
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *, Context *),

Context *context)
:

d_context(context),
d_cptr2ptr(fun)

{}

template<typename Type1, typename Type2, typename Context,
typename ReturnType>

Wrap2c<Type1, Type2, Context, ReturnType>::
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *, Context const &),

Context const &context)
:

d_contextconst(&context),
d_cptr2cref(fun)

{}

template<typename Type1, typename Type2, typename Context,
typename ReturnType>

Wrap2c<Type1, Type2, Context, ReturnType>::
Wrap2c(ReturnType (*fun)(Type1 const *, Type2 const *, Context const *),

Context const *context)
:

d_contextconst(context),
d_cptr3(fun)

{}

// Member functions: 16, for ref, ptr, const ref, const ptr,
// and two parameters per function
// ...

// Type 2: const ptr
// ...

template<typename Type1, typename Type2, typename Context,
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typename ReturnType>
ReturnType Wrap2c<Type1, Type2, Context, ReturnType>::
operator()(Type1 const *param1, Type2 const *param2) const
{

return (*d_cref2ref)(*param1, *param2, *d_context);
}

As with the unary template wrapper (see section 20.7.3), an additional class may be defined that

does not require a local context.

20.8 Using ‘bisonc++’ and ‘flex’

The example discussed in this section digs into the peculiarities of using a parser- and scanner gen-

erator generating C++ sources. Once the input for a program exceeds a certain level of complexity,

it’s advantageous to use a scanner- and parser-generator to create the code which does the actual

input recognition.

The current example assumes that the reader knows how to use the scanner generator flex and the
parser generator bison. Both bison and flex are well documented elsewhere. The original pre-
decessors of bison and flex, called yacc and lex are described in several books, e.g. in O’Reilly’s
book ‘lex & yacc’4.

However, scanner- and parser generators are also (and maybe even more commonly, nowadays)

available as free software. Both bison and flex are usually part of software distributions or they
can be obtained from ftp://prep.ai.mit.edu/pub/non-gnu. Flex creates a C++ class when
%option c++ is specified.

For parser generators the program bison is available. Back in the early 90’s Alain Coetmeur
(coetmeur@icdc.fr5) created a C++ variant (bison++) creating a parser class. Although bison++
program produces code that can be used in C++ programs it also shows many characteristics that

are more appropriate in a C context than in a C++ context. In January 2005 I rewrote parts of

Alain’s bison++ program, resulting in the original version of the program bisonc++. Then, in
May 2005 a complete rewrite of the bisonc++ parser gegerator was completed, which is avail-
able on the Internet having version numbers 0.98 and beyond. Bisonc++ can be downloaded from
http://bisoncpp.sourceforge.net/, where it is available as source archive and as binary
(i386) Debian6 binary package (including bisonc++’s documentation). Bisonc++ creates a cleaner
parser class setup than bison++. In particular, it derives the parser class from a base-class, con-
taining the parser’s token- and type-definitions as well as all member functions which should not be

(re)defined by the programmer. Most of these members might also be defined directly in the parser

class. Because of this approach, the resulting parser class is very small, declaring only members that

are actually defined by the programmer (as well as some other members, generated by bisonc++
itself, implementing the parser’s parse() member). Actually, parse() is initially the only public
member of bisonc++’s generated parser class. Remaining members are private. The only member
which is not implemented by default is lex(), producing the next lexical token. When the directive
%scanner (see section 20.8.2.1) is used, bisonc++will generate a standard implementation for this
member; otherwise it must be implemented by the programmer.

In this section of the Annotations we will focus on bisonc++ as our parser generator.

Using flex and bisonc++ class-based scanners and parsers can be generated. The advantage
of this approach is that the interface to the scanner and the parser tends to become cleaner than

4http://www.oreilly.com/catalog/lex
5mailto:coetmeur@icdc.fr
6http://www.debian.org
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without using the class interface. Furthermore, classes allow us to get rid of most if not all global
variables, making it easy to use multiple parsers in one program.

Below two examples are elaborated. The first example only uses flex. The scanner it generates
monitors the production of a file from several parts. This example focuses on the lexical scanner,

and on switching files while churning through the information. The second example uses both flex
and bisonc++ to generate a scanner and a parser transforming standard arithmetic expressions to
their postfix notations, commonly used in code generated by compilers and in HP-calculators. In the
second example the emphasis is mainly on bisonc++ and on composing a scanner object inside a
generated parser.

20.8.1 Using ‘flex’ to create a scanner

The lexical scanner developed in this section is used to monitor the production of a file from several

subfiles. The setup is as follows: the input-language knows of an #include directive, followed by a
text string specifying the file (path) which should be included at the location of the #include.

In order to avoid complexities irrelevant to the current example, the format of the #include state-
ment is restricted to the form #include <filepath>. The file specified between the pointed brack-
ets should be available at the location indicated by filepath. If the file is not available, the program
terminates after issuing an error message.

The program is started with one or two filename arguments. If the program is started with just

one filename argument, the output is written to the standard output stream cout. Otherwise, the
output is written to the stream whose name is given as the program’s second argument.

The program defines a maximum nesting depth. Once this maximum is exceeded, the program

terminates after issuing an error message. In that case, the filename stack indicating where which

file was included is printed.

One additional feature is that (standard C++) comment-lines are ignored. So, include directives in
comment-lines are ignored too.

The program is created along the following steps:

• First, the file lexer is constructed, containing the input-language specifications.

• From the specifications in lexer the requirements for the class Scanner evolve. The Scanner
class is a wrapper around the class yyFlexLexer generated by flex. The requirements result
in the interface specification for the class Scanner.

• Next, main() is constructed. A Scanner object is created inspecting the command-line argu-
ments. If successful, the scanner’s member yylex() is called to construct the output file.

• Now that the global setup of the program has been specified, the member functions of the

various classes are constructed.

• Finally, the program is compiled and linked.

20.8.1.1 The derived class ‘Scanner’

The code associated with the regular expression rules is located inside the class yyFlexLexer.
However, we would of course want to use the derived class’s members in this code. This causes a

little problem: how does a base-class member know about members of classes derived from it?
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Fortunately, inheritance helps us to realize this. In the specification of the class yyFlexLexer(),
we notice that the function yylex() is a virtual function. The header file FlexLexer.h declares
the virtual member int yylex():

class yyFlexLexer: public FlexLexer
{

public:
yyFlexLexer( istream* arg_yyin = 0, ostream* arg_yyout = 0 );

virtual ~yyFlexLexer();

void yy_switch_to_buffer( struct yy_buffer_state* new_buffer );
struct yy_buffer_state* yy_create_buffer( istream* s, int size );
void yy_delete_buffer( struct yy_buffer_state* b );
void yyrestart( istream* s );

virtual int yylex();

virtual void switch_streams( istream* new_in, ostream* new_out );
};

As this function is a virtual function it can be overridden in a derived class. In that case the over-

ridden function will be called from its base class (i.e., yyFlexLexer) code. Since the derived class’s
yylex() is called, it will now have access to the members of the derived class, and also to the public
and protected members of its base class.

By default, the context in which the generated scanner is placed is the function yyFlexLexer::yylex().
This context changes if we use a derived class, e.g., Scanner. To derive Scanner from yyFlexLexer,
generated by flex, do as follows:

• The function yylex() must be declared in the derived class Scanner.

• Options (see below) are used to inform flex about the derived class’s name.

Looking at the regular expressions themselves, notice that we need rules to recognize comment,

#include directives, and all remaining characters. This is all fairly standard practice. When an
#include directive is detected, the directive is parsed by the scanner. This too is common practice.
Here is what our lexical scanner will do:

• As usual, preprocessor directives are not analyzed by a parser, but by the lexical scanner;

• The scanner uses a mini scanner to extract the filename from the directive, throwing a Scanner::Error
value (invalidInclude) if this fails;

• If the filename could be extracted, it is stored in nextSource;

• When the #include directive has been processed, pushSource() is called to perform the
switch to another file;

• When the end of the file (EOF) is reached, the derived class’s member function popSource()
is called, popping the previously pushed file and returning true;

• Once the file-stack is empty, popSource() returns false, resulting in calling yyterminate(),
terminating the scanner.
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The lexical scanner specification file is organized similarly as the one used for flex in C contexts.
However, for C++ contexts, flex may create a class (yyFlexLexer) from which another class (e.g.,
Scanner) can be derived. The flex specification file itself has three sections:

• The lexer specification file’s first section is a C++ preamble, containing code which can be

used in the code defining the actions to be performed once a regular expression is matched.

In the current setup, where each class has its own internal header file, the internal header

file includes the file scanner.h, in turn including FlexLexer.h, which is part of the flex
distribution.

However, due to the complex setup of this latter file, it should not be read again by the code

generated by flex. So, we now have the following situation:

– First we look at the lexer specification file. It contains a preamble including scanner.ih,
since this declares, via scanner.h the class Scanner, so that we’re able to call Scanner’s
members from the code associated with the regular expressions defined in the lexer spec-

ification file.

– In scanner.h, defining class Scanner, the header file FlexLexer.h, declaring Scanner’s
base class,must have been read by the compiler before the class Scanner itself is defined.

– Code generated by flex already includes FlexLexer.h, and as mentioned, FlexLexer.h
may not be read again. However, flexwill also insert the specification file’s preamble into
the code it generates.

– Since this preamble includes scanner.ih, and so scanner.h, and so FlexLexer.h, we
now do include FlexLexer.h twice in code generated by flex. This must be prevented.

To prevent multiple inclusions of FlexLexer.h the following is suggested:

– Although scanner.ih includes scanner.h, scanner.h itself is modified such that it in-
cludes FlexLexer.h, unless the C preprocesser variable _SKIP_FLEXLEXER_ is defined.

– In flex’ specification file _SKIP_FLEXLEXER_ is defined just prior to including scanner.ih.

Using this scheme, code generated by flex will now re-include FlexLexer.h. At the same
time, compiling Scanner’s members proceeds independently of the lexer specification file’s
preamble, so here FlexLexer.h is properly included too. Here is the specification files’ pream-
ble:

%{
#define _SKIP_YYFLEXLEXER_
#include "scanner.ih"

%}

• The specification file’s second section is a flex symbol area, used to define symbols, like a mini
scanner, or options. The following options are suggested:

– %option 8bit: this allows the generated lexical scanner to read 8-bit characters (rather
than 7-bit, which is the default).

– %option c++: this results in flex generating C++ code.

– %option debug: this will include debugging code into the code generated by flex. Call-
ing the member function set_debug(true) will activate this debugging code run-time.
When activated, information about which rules are matched is written to the standard er-

ror stream. To suppress the execution of debug code themember function set_debug(false)
may be called.

– %option noyywrap: when the scanner reaches the end of file, it will (by default) call a
function yywrap() which may perform the switch to another file to be processed. Since
there exist alternatives which render this function superfluous (see below), it is suggested

to specify this option as well.
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– %option outfile="yylex.cc": this defines yylex.cc as the name of the generated
C++ source file.

– %option warn: this option is strongly suggested by the flex documentation, so it’s men-
tioned here as well. See flex’ documentation for details.

– %option yyclass="Scanner": this defines Scanner as the name of the class derived
from yyFlexLexer.

– %option yylineno: this option causes the lexical scanner to keep track of the line num-
bers of the files it is scanning. When processing nested files, the variable yylineno is
not automatically reset to the last line number of a file, when returning to a partially pro-

cessed file. In those cases, yylineno will explicitly have to be reset to a former value. If
specified, the current line number is returned by the public member lineno(), returning
an int.

Here is the specification files’ symbol area:

%option yyclass="Scanner" outfile="yylex.cc" c++ 8bit warn noyywrap yylineno
%option debug

%x comment
%x include

eolnComment "//".*
anyChar .|\n

• The specification file’s third section is a rules section, in which the regular expressions and

their associated actions are defined. In the example developed here, the lexer should copy

information from the istream *yyin to the ostream *yyout. For this the predefined macro
ECHO can be used. Here is the specification files’ symbol area:

%%
/*

The comment-rules: comment lines are ignored.

*/
{eolnComment}
"/*" BEGIN comment;
<comment>{anyChar}
<comment>"*/" BEGIN INITIAL;

/*
File switching: #include <filepath>

*/
#include[ \t]+"<" BEGIN include;
<include>[^ \t>]+ d_nextSource = yytext;
<include>">"[ \t]*\n {

BEGIN INITIAL;
pushSource(YY_CURRENT_BUFFER, YY_BUF_SIZE);

}
<include>{anyChar} throw invalidInclude;

/*
The default rules: eating all the rest, echoing it to output

*/
{anyChar} ECHO;
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/*
The <<EOF>> rule: pop a pushed file, or terminate the lexer

*/
<<EOF>> {

if (!popSource(YY_CURRENT_BUFFER))
yyterminate();

}
%%

Since the derived class’s members may now access the information stored within the lexical scanner

itself (it can even access the information directly, since the data members of yyFlexLexer are
protected, and thus accessible to derived classes), most processing can be left to the derived class’s

member functions. This results in a very clean setup of the lexer specification file, requiring no or

hardly any code in the preamble.

20.8.1.2 Implementing ‘Scanner’

The class Scanner is derived from the class yyFlexLexer, generated by flex. The derived class
has access to data controlled by the lexical scanner. In particular, it has access to the following data

members:

• char *yytext, containing the text matched by a regular expression. Clients may access this
information using the scanner’s YYText() member;

• int yyleng, the length of the text in yytext. Clients may access this value using the scan-
ner’s YYLeng() member;

• int yylineno: the current line number. This variable is only maintained if %option yylineno
is specified. Clients may access this value using the scanner’s lineno()member.

Other members are available as well, but are used less often. Details can be found in FlexLexer.h.

Objects of the class Scanner perform two tasks:

• They push file information about the current file to a file stack;

• They pop the last-pushed information from the stack once EOF is detected in a file.

Several member functions are used to accomplish these tasks. As they are auxiliary to the scanner,

they are private members. In practice, develop these private members once the need for them arises.

Note that, apart from the private member functions, several private data members are defined as

well. Let’s have a closer look at the implementation of the class Scanner:

• First, we have a look at the class’s initial section, showing the conditional inclusion of FlexLexer.h,
its class opening, and its private data. Its public section starts off by defining the enum
Error defining various symbolic constants for errors that may be detected:

#if ! defined(_SKIP_YYFLEXLEXER_)
#include <FlexLexer.h>
#endif

class Scanner: public yyFlexLexer
{
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std::stack<yy_buffer_state *> d_state;
std::vector<std::string> d_fileName;
std::string d_nextSource;

static size_t const s_maxDepth = 10;

public:
enum Error
{

invalidInclude,
circularInclusion,
nestingTooDeep,
cantRead,

};

• As they are objects, the class’s data members are initialized automatically by Scanner’s con-
structor. It activates the initial input (and output) file and pushes the name of the initial input

file. Here is its implementation:

#include "scanner.ih"

Scanner::Scanner(istream *yyin, string const &initialName)
{

switch_streams(yyin, yyout);
d_fileName.push_back(initialName);

}

• The scanning process proceeds as follows: once the scanner extracts a filename from an #include
directive, a switch to another file is performed by pushSource(). If the filename could not
be extracted, the scanner throws an invalidInclude exception value. The pushSource()
member and the matching function popSource() handle file switching. Switching to another
file proceeds as follows:

– First, the current depth of the include-nesting is inspected. If s_maxDepth is reached,
the stack is considered full, and the scanner throws a nestingTooDeep exception.

– Next, throwOnCircularInclusion() is called to avoid circular inclusions when switch-
ing to new files. This function throws an exception if a filename is included twice, using a

simple literal name check. Here is its implementation:

#include "scanner.ih"

void Scanner::throwOnCircularInclusion()
{

vector<string>::iterator
it = find(d_fileName.begin(), d_fileName.end(), d_nextSource);

if (it != d_fileName.end())
throw circularInclusion;

}

– Then a new ifstream object is created, for the filename in nextSource. If this fails, the
scanner throws a cantRead exception.

– Finally, a new yy_buffer_state is created for the newly opened stream, and the lexical
scanner is instructed to switch to that stream using yyFlexLexer’s member function
yy_switch_to_buffer().
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Here is pushSource()’s implementation:

#include "scanner.ih"

void Scanner::pushSource(yy_buffer_state *current, size_t size)
{

if (d_state.size() == s_maxDepth)
throw nestingTooDeep;

throwOnCircularInclusion();
d_fileName.push_back(d_nextSource);

ifstream *newStream = new ifstream(d_nextSource.c_str());

if (!*newStream)
throw cantRead;

d_state.push(current);
yy_switch_to_buffer(yy_create_buffer(newStream, size));

}

• The class yyFlexLexer provides a series of member functions that can be used to switch files.
The file-switching capability of a yyFlexLexer object is founded on the struct yy_buffer_state,
containing the state of the scan-buffer of the currently read file. This buffer is pushed on the

d_state stack when an #include is encountered. Then yy_buffer_state’s contents are re-
placed by the buffer created for the file to be processed next. Note that in the flex specification
file the function pushSource() is called as

pushSource(YY_CURRENT_BUFFER, YY_BUF_SIZE);

YY_CURRENT_BUFFER and YY_BUF_SIZE are macros that are only available in the rules sec-
tion of the lexer specification file, so they must be passed as arguments to pushSource().
Currently it is not possible to use these macros in the Scanner class’s member functions di-
rectly.

• Note that yylineno is not updated when a file switch is performed. If line numbers are to be
monitored, then the current value of yylineno should be pushed on a stack, and yylineno
should be reset by pushSource(), whereas popSource() should reinstate a former value
of yylineno by popping a previously pushed value from the stack. Scanner’s current im-
plementation maintains a simple stack of yy_buffer_state pointers. Changing that into a
stack of pair<yy_buffer_state *, size_t> elements would allow us to save (and restore)
line numbers as well. This modification is left as an exercise to the reader.

• The member function popSource() is called to pop the previously pushed buffer from the
stack, allowing the scanner to continue its scan just beyond the just processed #include direc-
tive. The member popSource() first inspects the size of the d_state stack: if empty, false
is returned and the function terminates. If not empty, then the current buffer is deleted,

to be replaced by the state waiting on top of the stack. The file switch is performed by the

yyFlexLexer members yy_delete_buffer() and yy_switch_to_buffer(). Note that
yy_delete_buffer() takes care of the closing of the ifstream and of deleting the memory
allocated for this stream in pushSource(). Furthermore, the filename that was last entered
in the d_fileName vector is removed. Having done all this, the function returns true:

#include "scanner.ih"

bool Scanner::popSource(yy_buffer_state *current)
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{
if (d_state.empty())

return false;

yy_delete_buffer(current);
yy_switch_to_buffer(d_state.top());
d_state.pop();
d_fileName.pop_back();

return true;
}

• Two service members are offered: stackTrace() dumps the names of the currently pushed
files to the standard error stream. It may be called by exception catchers. Here is its imple-

mentation:

#include "scanner.ih"

void Scanner::stackTrace()
{

for (size_t idx = 0; idx < d_fileName.size() - 1; ++idx)
cerr << idx << ": " << d_fileName[idx] << " included " <<

d_fileName[idx + 1] << endl;
}

• lastFile() returns the name of the currently processed file. It may be implemented inline:

inline std::string const &Scanner::lastFile()
{

return d_fileName.back();
}

• The lexical scanner itself is defined in Scanner::yylex(). Therefore, int yylex()must be
declared by the class Scanner, as it overrides FlexLexer’s virtual member yylex().

20.8.1.3 Using a ‘Scanner’ object

The program using our Scanner is very simple. It expects a filename indicating where to start
the scanning process. Initially the number of arguments is checked. If at least one argument was

given, then an ifstream object is created. If this object can be created, then a Scanner object is
constructed, receiving the address of the ifstream object and the name of the initial input file as
its arguments. Then the Scanner object’s yylex() member is called. The scanner object throws
Scanner::Error exceptions if it fails to perform its tasks properly. These exceptions are caught
near main()’s end. Here is the program’s source:

#include "lexer.h"
using namespace std;

int main(int argc, char **argv)
{

if (argc == 1)
{

cerr << "Filename argument required\n";
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exit (1);
}
ifstream yyin(argv[1]);
if (!yyin)
{

cerr << "Can’t read " << argv[1] << endl;
exit(1);

}
Scanner scanner(&yyin, argv[1]);
try
{

return scanner.yylex();
}
catch (Scanner::Error err)
{

char const *msg[] =
{

"Include specification",
"Circular Include",
"Nesting",
"Read",

};
cerr << msg[err] << " error in " << scanner.lastFile() <<

", line " << scanner.lineno() << endl;
scanner.stackTrace();
return 1;

}
return 0;

}

20.8.1.4 Building the program

The final program is constructed in two steps. These steps are given for a Unix system, on which

flex and the Gnu C++ compiler g++ have been installed:

• First, the lexical scanner’s source is created using flex. For this the following command can
be given:

flex lexer

• Next, all sources are compiled and linked. In situations where the default yywrap() function
is used, the libfl.a library should be linked against the final program. Normally, that’s not
required, and the program can be constructed as, e.g.:

g++ -o lexer *.cc

For the purpose of debugging a lexical scanner, the matched rules and the returned tokens provide

useful information. When the %option debug was specified, debugging code will be included in
the generated scanner. To obtain debugging info, this code must also be activated. Assuming the

scanner object is called scanner, the statement

scanner.set_debug(true);

will produce debugging info to the standard error stream.
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20.8.2 Using both ‘bisonc++’ and ‘flex’

When an input language exceeds a certain level of complexity, a parser is often used to control the

complexity of the input language. In this case, a parser generator can be used to generate the code

verifying the input’s grammatical correctness. The lexical scanner (preferably composed into the

parser) provides chunks of the input, called tokens. The parser then processes the series of tokens

generated by its lexical scanner.

Starting point when developing programs that use both parsers and scanners is the grammar. The

grammar defines a set of tokens which can be returned by the lexical scanner (commonly called the

lexer).

Finally, auxiliary code is provided to ‘fill in the blanks’: the actions performed by the parser and by

the lexer are not normally specified literally in the grammatical rules or lexical regular expressions,

but should be implemented in member functions, called from within the parser’s rules or which are

associated with the lexer’s regular expressions.

In the previous section we’ve seen an example of a C++ class generated by flex. In the current
section we concentrate on the parser. The parser can be generated from a grammar specification,

processed by the program bisonc++. The grammar specification required for bisonc++ is similar
to the specifications required for bison (and an existing program bison++, written in the early
nineties by the Frenchman Alain Coetmeur), but bisonc++ generates a C++ which more closely
follows present-day standards than bison++, which still shows many C-like features.

In this section a program is developed converting infix expressions, in which binary operators are

written between their operands, to postfix expressions, in which binary operators are written behind

their operands. Furthermore, the unary operator - will be converted from its prefix notation to a
postfix form. The unary + operator is ignored as it requires no further actions. In essence our little
calculator is a micro compiler, transforming numerical expressions into assembly-like instructions.

Our calculator will recognize a very basic set of operators: multiplication, addition, parentheses,

and the unary minus. We’ll distinguish real numbers from integers, to illustrate a subtlety in bison-

like grammar specifications. That’s all. The purpose of this section is, after all, to illustrate the

construction of aC++ program that uses both a parser and a lexical scanner, rather than to construct

a full-fledged calculator.

In the coming sections we’ll develop the grammar specification for bisonc++. Then, the regular
expressions for the scanner are specified according to flex’ requirements. Finally the program is
constructed.

20.8.2.1 The ‘bisonc++’ specification file

The grammar specification file required by bisonc++ is comparable to the specification file required
by bison. Differences are related to the class nature of the resulting parser. Our calculator will
distinguish real numbers from integers, and will support a basic set of arithmetic operators.

Bisonc++ should be used as follows:

• As usual, a grammar must be defined. With bisonc++ this is no different, and bisonc++
grammar definitions are for all practical purposes identical to bison’s grammar definitions.

• Having specified the grammar and (usually) some declarations bisonc++ is able to generate
files defining the parser class and the implementation of the member function parse().

• All class members (except those that are required for the proper functioning of the member

parse()) must be implemented by the programmer. Of course, they should also be declared
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in the parser class’s header. At the very least the member lex() must be implemented. This
member is called by parse() to obtain the next available token. However, bisonc++ offers
a facility providing a standard implementation of the function lex(). The member function

error(char const *msg) is given a simple default implementation which may be modified
by the programmer. The member function error() is called when parse() detects (syntacti-
cal) errors.

• The parser can now be used in a program. A very simple example would be:

int main()
{

Parser parser;
return parser.parse();

}

The bisonc++ specification file consists of two sections:

• The declaration section. In this section bison’s tokens, and the priority rules for the operators

are declared. However, bisonc++ also supports several new declarations. These new declara-
tions are important and are discussed below.

• The rules section. The grammatical rules define the grammar. This section is identical to the

one required by bison, albeit that some members that were available in bison and bison++
are considered obsolete in bisonc++, while other members can now be used in a wider con-
text. For example, ACCEPT() and ABORT() can be called from any member called from the

parser’s action blocks to terminate the parsing process.

Readers familiar with bison should note that there is no header section anymore. Header sections
are used by bison to provide for the necessary declarations allowing the compiler to compile the C

function generated by bison. In C++ declarations are part of or already used by class definitions.
Therefore, a parser generator generating a C++ class and some of its member functions does not

require a header section anymore.

The declaration section The declaration section contains several declarations, among which all

tokens used in the grammar and the priority rules of the mathematical operators. Moreover, several

new and important specifications can be used here. Those that are relevant to our current example

and only available in bisonc++ are discussed here. The reader is referred to bisonc++’sman-page
for a full description.

• %baseclass-header header
Defines the pathname of the file to contain (or containing) the parser’s base class. Defaults to

the name of the parser class plus the suffix base.h.

• %baseclass-preinclude header
Use header as the pathname to the file pre-included in the parser’s base-class header. This
declaration is useful in situations where the base class header file refers to types which might

not yet be known. E.g., with %union a std::string * field might be used. Since the class

std::string might not yet be known to the compiler once it processes the base class header file

we need a way to inform the compiler about these classes and types. The suggested procedure

is to use a pre-include header file declaring the required types. By default header will be
surrounded by double quotes (using, e.g., #include "header"). When the argument is sur-
rounded by angle brackets #include <header> will be included. In the latter case, quotes
might be required to escape interpretation by the shell (e.g., using -H ’<header>’).
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• %class-header header
Defines the pathname of the file to contain (or containing) the parser class. Defaults to the

name of the parser class plus the suffix .h

• %class-name parser-class-name
Declares the class name of this parser. This declaration replaces the%name declaration previ-

ously used by bison++. It defines the name of the C++ class that will be generated. Contrary
to bison++’s %name declaration, %class-name may appear anywhere in the first section of
the grammar specification file. It may be defined only once. If no %class-name is specified the

default class name Parser will be used.

• %debug

Provide parse() and its support functions with debugging code, showing the actual parsing

process on the standard output stream. When included, the debugging output is active by

default, but its activity may be controlled using the setDebug(bool on-off) member. Note

that no #ifdef DEBUG macros are used anymore. By rerunning bisonc++ without the –
debug option an equivalent parser is generated not containing the debugging code.

• %filenames header
Defines the generic name of all generated files, unless overridden by specific names. By default

the generated files use the class-name as the generic file name.

• %implementation-header header
Defines the pathname of the file to contain (or containing) the implementation header. Defaults

to the name of the generated parser class plus the suffix .ih. The implementation header
should contain all directives and declarations only used by the implementations of the parser’s

member functions. It is the only header file that is included by the source file containing

parse()’s implementation. It is suggested that user defined implementations of other class
members use the same convention, thus concentrating all directives and declarations that are

required for the compilation of other source files belonging to the parser class in one header

file.

• %parsefun-source source
Defines the pathname of the file containing the parser member parse(). Defaults to parse.cc.

• %scanner header
Use header as the pathname to the file pre-included in the parser’s class header. This file
should define a class Scanner, offering a member int yylex() producing the next token
from the input stream to be analyzed by the parser generated by bisonc++. When this option
is used the parser’s member int lex()will be predefined as (assuming the parser class name
is Parser):

inline int Parser::lex()
{

return d_scanner.yylex();
}

and an object Scanner d_scanner will be composed into the parser. The d_scanner ob-
ject will be constructed using its default constructor. If another constructor is required, the

parser class may be provided with an appropriate (overloaded) parser constructor after hav-

ing constructed the default parser class header file using bisonc++. By default header will
be surrounded by double quotes (using, e.g., #include "header"). When the argument is
surrounded by angle brackets #include <header> will be included.

• %stype typename

The type of the semantic value of tokens. The specification typename should be the name of
an unstructured type (e.g., size_t). By default it is int. See YYSTYPE in bison. It should
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not be used if a %union specification is used. Within the parser class, this type may be used

as STYPE.

• %union union-definition
Acts identically to the bison declaration. As with bison this generates a union for the parser’s
semantic type. The union type is named STYPE. If no %union is declared, a simple stack-type
may be defined using the %stype declaration. If no %stype declaration is used, the default

stacktype (int) is used.

An example of a %union declaration is:

%union
{

int i;
double d;

};

A union cannot contain objects as its fields, as constructors cannot be called when a union is created.

This means that a string cannot be a member of the union. A string *, however, is a possible
union member. By the way: the lexical scanner does not have to know about such a union. The

scanner can simply pass its scanned text to the parser through its YYText() member function. For
example, using a statement like

$$.i = A2x(scanner.YYText());

matched text may be converted to a value of an appropriate type.

Tokens and non-terminals can be associated with union fields. This is strongly advised, as it pre-

vents type mismatches, since the compiler will be able to check for type correctness. At the same

time, the bison specific variabels $$, $1, $2, etc. may be used, rather than the full field specification
(like $$.i). A non-terminal or a token may be associated with a union field using the <fieldname>
specification. E.g.,

%token <i> INT // token association (deprecated, see below)
<d> DOUBLE

%type <i> intExpr // non-terminal association

In the example developed here, note that both the tokens and the non-terminals can be associated

with a field of the union. However, as noted before, the lexical scanner does not have to know

about all this. In our opinion, it is cleaner to let the scanner do just one thing: scan texts. The

parser, knowing what the input is all about, may then convert strings like "123" to an integer
value. Consequently, the association of a union field and a token is discouraged. In the upcoming

description of the rules of the grammar this will be illustrated further.

In the %union discussion the %token and %type specifications should be noted. They are used
to specify the tokens (terminal symbols) that can be returned by the lexical scanner, and to specify

the return types of non-terminals. Apart from %token the token indicators %left, %right and
%nonassoc may be used to specify the associativity of operators. The tokens mentioned at these
indicators are interpreted as tokens indicating operators, associating in the indicated direction. The

precedence of operators is given by their order: the first specification has the lowest priority. To

overrule a certain precedence in a certain context, %prec can be used. As all this is standard
bisonc++ practice, it isn’t further elaborated here. The documentation provided with bisonc++’s
distribution should be consulted for further reference.
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Here is the specification of the calculator’s declaration section:

%filenames parser
%scanner ../scanner/scanner.h
%lines

%union {
int i;
double d;

};

%token INT
DOUBLE

%type <i> intExpr
%type <d> doubleExpr

%left ’+’
%left ’*’
%right UnaryMinus

In the declaration section %type specifiers are used, associating the intExpr rule’s value (see the
next section) to the i-field of the semantic-value union, and associating doubleExpr’s value to the
d-field. At first sight this may look complex, since the expression rules must be included for each
individual return type. On the other hand, if the union itself would have been used, we would still

have had to specify somewhere in the returned semantic values what field to use: less rules, but

more complex and error-prone code.

The grammar rules The rules and actions of the grammar are specified as usual. The grammar

for our little calculator is given below. There are quite a few rules, but they illustrate various

features offered by bisonc++. In particular, note that no action block requires more than a single
line of code. This keeps the organization of the grammar relatively simple, and therefore enhances

its readability and understandability. Even the rule defining the parser’s proper termination (the

empty line in the line rule) uses a single member function call done(). The implementation of that
function is simple, but interesting in that it calls Parser::ACCEPT(), showing that the ACCEPT()

member can be called indirectly from a production rule’s action block. Here are the grammar’s

production rules:

lines:
lines
line

|
line

;

line:
intExpr
’\n’
{

display($1);
}

|
doubleExpr
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’\n’
{

display($1);
}

|
’\n’
{

done();
}

|
error
’\n’
{

reset();
}

;

intExpr:
intExpr ’*’ intExpr
{

$$ = exec(’*’, $1, $3);
}

|
intExpr ’+’ intExpr
{

$$ = exec(’+’, $1, $3);
}

|
’(’ intExpr ’)’
{

$$ = $2;
}

|
’-’ intExpr %prec UnaryMinus
{

$$ = neg($2);
}

|
INT
{

$$ = convert<int>();
}

;

doubleExpr:
doubleExpr ’*’ doubleExpr
{

$$ = exec(’*’, $1, $3);
}

|
doubleExpr ’*’ intExpr
{

$$ = exec(’*’, $1, d($3));
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}
|

intExpr ’*’ doubleExpr
{

$$ = exec(’*’, d($1), $3);
}

|
doubleExpr ’+’ doubleExpr
{

$$ = exec(’+’, $1, $3);
}

|
doubleExpr ’+’ intExpr
{

$$ = exec(’+’, $1, d($3));
}

|
intExpr ’+’ doubleExpr
{

$$ = exec(’+’, d($1), $3);
}

|
’(’ doubleExpr ’)’
{

$$ = $2;
}

|
’-’ doubleExpr %prec UnaryMinus
{

$$ = neg($2);
}

|
DOUBLE
{

$$ = convert<double>();
}

;

The above grammar is used to implement a simple calculator in which integer and real values can

be negated, added, and multiplied, and in which standard priority rules can be circumvented using

parentheses. The grammar shows the use of typed nonterminal symbols: doubleExpr is linked to
real (double) values, intExpr is linked to integer values. Precedence and type association is defined
in the parser’s definition section.

The Parser’s header file Various functions called from the grammar are defined as template

functions. Bisonc++ generates various files, among which the file defining the parser’s class. Func-
tions called from the production rule’s action blocks are usually member functions of the parser, and

these member functions must be declared and defined. Once bisonc++ has generated the header
file defining the parser’s class it will not automatically rewrite that file, allowing the programmer to

add new members to the parser class. Here is the parser.h file as used for our little calculator:

#ifndef Parser_h_included
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#define Parser_h_included

#include <iostream>
#include <sstream>
#include <bobcat/a2x>

#include "parserbase.h"
#include "../scanner/scanner.h"

#undef Parser
class Parser: public ParserBase
{

std::ostringstream d_rpn;
// $insert scannerobject
Scanner d_scanner;

public:
int parse();

private:
template <typename Type>

Type exec(char c, Type left, Type right);
template <typename Type>

Type neg(Type op);
template <typename Type>

Type convert();

void display(int x);
void display(double x);
void done() const;
void reset();
void error(char const *msg);
int lex();
void print();

static double d(int i);

// support functions for parse():

void executeAction(int d_production);
void errorRecovery();
int lookup();
void nextToken();

};

inline double Parser::d(int i)
{

return i;
}

template <typename Type>
Type Parser::exec(char c, Type left, Type right)
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{
d_rpn << " " << c << " ";
return c == ’*’ ? left * right : left + right;

}

template <typename Type>
Type Parser::neg(Type op)
{

d_rpn << " n ";
return -op;

}

template <typename Type>
Type Parser::convert()
{

Type ret = FBB::A2x(d_scanner.YYText());
d_rpn << " " << ret << " ";
return ret;

}

inline void Parser::error(char const *msg)
{

std::cerr << msg << std::endl;
}

inline int Parser::lex()
{

return d_scanner.yylex();
}

inline void Parser::print()
{}

#endif

20.8.2.2 The ‘flex’ specification file

The flex-specification file used by our calculator is simple: blanks are skipped, single characters are

returned, and numerical values are returned as either Parser::INT or Parser::DOUBLE tokens.
Here is the complete flex specification file:

%{
#define _SKIP_YYFLEXLEXER_
#include "scanner.ih"

#include "../parser/parserbase.h"
%}

%option yyclass="Scanner" outfile="yylex.cc" c++ 8bit warn noyywrap
%option debug

%%
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[ \t] ;
[0-9]+ return Parser::INT;

"."[0-9]* |
[0-9]+("."[0-9]*)? return Parser::DOUBLE;

.|\n return *yytext;

%%

20.8.2.3 Generating code

The code is generated in the same way as with bison and flex. In order to have bisonc++
generate the files parser.cc and parser.h, issue the command:

bisonc++ -V grammar

The option -V will generate the file parser.output showing information about the internal struc-
ture of the provided grammar, among which its states. It is useful for debugging purposes, and can

be left out of the command if no debugging is required. Bisonc++may detect conflicts (shift-reduce
conflicts and/or reduce-reduce conflicts) in the provided grammar. These conflicts may be resolved

explicitly, using disambiguation rules or they are ‘resolved’ by default. A shift-reduce conflict is re-

solved by shifting, i.e., the next token is consumed. A reduce-reduce conflict is resolved by using the

first of two competing production rules. Bisonc++ uses identical conflict resolution procedures as
bison and bison++.

Once a parser class and parsing member function has been constructed flex may be used to create
a lexical scanner (in, e.g., the file yylex.cc) using the command

flex -I lexer

On Unix systems, linking and compiling the generated sources and the source for the main program

(given below) is then realized by a command comparable to:

g++ -o calc -Wall *.cc -s

Finally, here is a source file in which the main() function and the parser object is defined. The
parser features the lexical scanner as one of its data members:

#include "parser/parser.h"

using namespace std;

int main()
{

Parser parser;

cout << "Enter (nested) expressions containing ints, doubles, *, + and "
"unary -\n"
"operators. Enter an empty line to stop.\n";

return parser.parse();
}



654 CHAPTER 20. CONCRETE EXAMPLES OF C++

Bisonc++ can be downloaded from http://bisoncpp.sourceforge.net/. It requires the bobcat
library, which can be downloaded from http://bobcat.sourceforge.net/.
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call overloaded operators, 176

callable member functions, 321

calling order of base class initializers, 314

calloc(), 161

candidate functions, 504

CapsBuf, 338

case insensitive comparison of strings, 68

case sensitive, 372

cast, 219

catch, 188, 193, 199, 368

catch all expressions, 200

catch: all exceptions, 202

categories of generic algorithms, 395

cerr, 40, 100, 123, 216

chain of command, 114

char, 87

char *, 218

char const *, 294

Character set searches, 73

characteristics of iterators, 560

chardupnew(), 161

cheating, 314

child process, 587–589

child processes, 589

cin, 40, 90, 106, 123

class, 40, 55, 368, 485

class derivation, 544

class exception, 212

class hierarchies, 491

class hierarchy, 305, 320

class implementation, 133

class interface, 133, 308, 322, 536

class iterator, 561

class name, 335

class vs. typename, 485

class-type parameters, 157

class-type return values, 157
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class: abstract, 322

classes: derived from streambuf, 573

classes: having non-pointer data, 184

classes: without data members, 323

classless functions, 228

clear(), 127

Cline, 43

clog, 100

closed namespace, 56

closing streams, 103, 110

code generation, 653

Coetmeur, A., 644

collision, 294

combined reading and writing using streams, 90

command language, 597

command-line, 635

comment-lines, 635

common data fields, 243

common practice, 636

communication protocol, 605

comparator, 378

compilation error, 355

compile-time, 36, 319, 329, 343, 483

compiler, 19, 21, 23, 294, 323, 356

compiler flag: -O6, 381

complex, 301

complex container, 258, 526

complex numbers, 258, 301

complex::operator*(), 302

complex::operator*=(), 303

complex::operator+(), 302

complex::operator+=(), 302

complex::operator-(), 302

complex::operator-=(), 303

complex::operator/(), 302

complex::operator/=(), 303

composed const object, 151

composition, 150, 157, 305, 312

compound statement, 199

concatenated assignment, 179

concatenation of closing angle brackets, 278

concrete class, 483, 491

concrete function, 483

condition flags, 92

condition member functions, 92

condition state, 92

conflict resolution, 653

conj(), 303

const, 41, 490

const &, 214

const data and containers, 259

const data member initialization, 151

const function attribute, 34

const functions, 43

const member functions, 137, 142, 323

const objects, 153, 182, 225

const_cast<type>(expression), 29

constant expression, 487

constant function object, 379

constructing pointers, 350

construction: template class, 510

constructor, 116, 134, 161, 233, 240, 309, 314,

372, 387, 388, 640

constructor characteristics, 180

constructor: calling order, 310

constructor: implicit use, 223

constructor: primary function, 135

constructor: private, 185

constructor: throwing exceptions, 205

constructors having one parameter, 222

constructors: and unions, 647

container without angle brackets, 259

container: empty, 382

containers, 257, 371

containers storing pointers, 259

containers: basic operators, 258

containers: data type requirements, 258

containers: equality tests, 258

containers: initialization, 261

containers: nested, 278

containers: ordering, 258

containters and const data, 259

contrary to intuition, 278

conversion operator, 219, 322

conversion operator: with insertions, 220

conversion rules, 49

conversions, 105, 111, 519

copy constructor, 146, 180, 183, 185, 225, 261,

266, 271, 274, 275, 280, 288, 293, 308,

392

copy constructor: double call, 225

copy constructor: private, 335

copy files, 121

copy information, 638

copy non-involved data, 264

copy objects, 174

copy(), 183, 184, 401, 549

copy_backward(), 402

cos(), 303

cosh(), 303

count(), 403

count_if(), 379, 403

cout, 40, 90, 100, 123, 216, 591

cplusplusus, 19

create files, 102

create values, 277, 287

cstddef, 51, 230

cstdlib, 534
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Cygnus, 23

Cygwin, 23

daemon, 591, 592, 606, 609

data base, 127

data hiding, 24, 51, 245, 251, 253, 308

data integrity, 251

data members, 116, 308

data members: multiply included, 330

data members: static const, 246

data organization, 225

data structure, 509

data structures, 371, 510

Data Structures and Algorithms, 264

data type, 294, 509

data.cc, 244

database applications, 101, 108

deallocate memory, 233

Debian, 23

debugging, 643

dec, 96

decimal format, 112

declaration, 494

declaration section, 645

declarative region, 55

declare iostream classes, 87

decrement operator, 224

default, 233

default argument values, 222

default arguments, 36

default constructor, 136, 150, 163, 180, 233, 258,

261, 309, 372, 386

default copy constructor, 182

default exception handler, 201, 202

default implementation, 119

default initialization, 139

default operator delete, 233

default parameter values, 140

default template parameter value, 519

default value, 222, 261, 262, 268, 277

define members of namespaces, 62

definitions of static members, 522

delete, 161, 162, 232, 321, 393

delete[], 163, 166, 168

delete[]: ignored, 169

deletions, 264

delimiter, 388

dependencies between code and data, 305

deprecated, 485

deque, 275, 382, 384

deque constructors, 275

deque::back(), 276

deque::begin(), 276

deque::clear(), 276

deque::empty(), 276

deque::end(), 276

deque::erase(), 276

deque::front(), 276

deque::insert(), 276

deque::pop_back(), 276

deque::pop_front(), 276

deque::push_back(), 276

deque::push_front(), 276

deque::rbegin(), 277

deque::rend(), 277

deque::resize(), 276

deque::size(), 277

deque::swap(), 277

dereference, 352, 393

dereferencing, 352

derivation, 305, 307

derivation type, 315

derived class, 305, 309, 313, 317, 319, 322, 325,

327, 331, 367, 509

derived class destructor, 310

derived template class, 545

design considerations, 510

Design Pattern: Prototype, 345

design pattern: template method, 588

design patterns, 322, 588

destroy(), 183

destruction: anonymous objects, 145

destructor, 134, 165, 233, 308, 310, 321, 510, 570

destructor: and incomplete objects, 394

destructor: called at exit(), 591

destructor: calling order, 310

destructor: empty, 322

destructor: inline, 322

destructor: when to define, 321

device, 90, 91, 114, 120, 122, 336, 569

direct base class, 308

dirty trick, 19

disambiguate, 220

disambiguation rules, 653

disastrous event, 190

divides<>(), 376

division, 373

division by zero, 197

DOS, 126

doubly ended queue data structure, 275

down-casting, 331

downcasts, 334

dup(), 591

dup2(), 591, 595

duplication of data members, 329

dynamic arrays, 163, 164

dynamic binding, 319

dynamic cast, 331

dynamic cast: prerequisite, 331
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dynamic growth, 264

dynamic polymorphism, 509

dynamic_cast<>(), 30, 331, 334, 341, 367

dynamically allocated, 394

dynamically allocated memory, 308, 390

dynamically allocated variables, 519

early binding, 319

ECHO, 638

efficiency, 295

egptr(), 574

empty, 382

empty containers, 382

empty deque, 276

empty destructor, 322

empty enum, 368

empty function throw list, 203

empty list, 267, 268

empty parameter list, 30

empty strings, 75

empty throw, 202

empty vector, 262

encapsulation, 116, 230, 251, 253, 254

end of line comment, 27

end(), 382

end-of-stream, 386, 387

endl, 41

enlarge an array, 163, 164

enum, 37

enumeration: nested, 366, 556

equal(), 404

equal_range(), 406

equal_to<>(), 377

equality operator, 258

error code, 187

error(char const *msg), 645

escape mechanism, 251

exception, 95, 190, 193, 333, 640

exception handler, 197, 368

exception handler: order, 200

exception rethrowing, 18

exception specification list, 203, 212

exception: bad_alloc, 171

exception: cases, 201

exception: construction of, 201

exception: default handling, 199

exception: dynamically generated, 199

exception: levels, 199

exception: outside of try block, 199

exception: standard, 212

exception: uncaught, 205

exception::what(), 212

exceptions, 187

exceptions: when, 196

exec...(), 590

exercise, 132, 234, 506, 641

exit status, 589

exit(), 165, 187, 591

exit(): calling destructors, 591

exp(), 303

expandable array, 260

expected constructor, destructor, or type conver-

sion, 560

explicit, 223

explicit argument list, 236

explicit arguments, 232

explicit construction, 223

explicit insertion, 277

explicit instantiation declaration, 494

explicit return, 27

explicit template type arguments, 498

exponentiation, 49

expression, 292

expression: actual type, 331, 335

extendable array, 257

extern, 532

extern C|hyperpage, 30, 31

extra blank space, 302

extracting a string, 75

extracting information from memory buffers, 88

extracting strings, 107

extraction manipulators, 113

extraction operator, 40, 41, 106, 216

failure, 120

failure::what(), 205

false, 49, 78, 425, 436, 636

FBB::auto_ptr, 510

field ‘...’ has incomplete type, 538

field selector, 352

field selector operator, 38

field width, 239

FIFO, 257, 271

FILE, 87

file descriptor, 103, 123, 569, 578, 580

file descriptors, 90, 569, 593

file flags, 103

file is rewritten, 104

file modes, 103

file stack, 639

file switch, 641

filebuf, 90, 103, 121

filebuf::close(), 121

filebuf::filebuf(), 121

filebuf::is_open(), 121

filebuf::open(), 121

fill characters, 96

fill(), 407

fill_n(), 408

FILO, 257, 292
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find(), 409

find_end(), 410

find_first_of(), 411

find_if(), 413

first, 259, 278

first data member, 343

first in, first out, 257, 271

first in, last out, 257, 292

first_argument_type, 624

fistream, 584

fixed number of digits at insertion, 98

fixed size arrays, 163

flags: of ios objects, 94

flex, 634, 635, 639, 643, 644, 653

flex specification file, 637

flex yylineno, 639

flex: %option yylineno, 639

flex: debugging code, 637

flex: protected data members, 639

flex: set_debug(), 643

flex: yyleng, 639

flex: yytext, 639

FlexLexer.h, 637, 639

flow-breaking situations, 187

flushing a stream, 112

fool the compiler, 58

fopen(), 99, 106

for_each(), 414, 608

for_each(): compared to transform(), 473

fork(), 19, 569, 587, 588, 592

form(), 101

formal type name, 485

formal types, 484

format flags, 111

format flags: changed by ios::flags(), 98

formatted input, 106

formatted output, 95, 100

formatting, 91, 98

formatting flags, 95

forward class reference, 156

forward declaration, 363, 365

forward declarations, 87, 157, 362

ForwardIterators, 384, 560

fprintf(), 88

free compiler, 23

free functions, 228

Free Software Foundation, 23

free(), 161, 167

freeze(0), 105

friend, 251, 252, 362, 536

friend declarations, 253

friend function: synonym for a member, 254

friend: in template classes, 535

friendship among classes, 251

front_inserter(), 385

FSF, 23

fstream, 125

fstream: and cin, cout, 102

fstream: reading and writing, 125

ftp://ftp.rug.nl/.../annotations, 1

ftp://research.att.com/dist/c++std/WP/, 20

ftp::/prep.ai.mit.edu/pub/non-gnu, 634

fully qualified names, 62

function adaptors, 373, 379

function address, 20

function call operator, 236, 294, 372

function object, 294, 372

function object wrapper classes, 621

function objects, 236, 371

function overloading, 35

function prototype, 311

function selection mechanism, 504

function throw list, 203, 212

function try block, 207, 210

function-to-pointer transformation, 490

function: address, 343

functionality, 260

functions as part of a struct, 37

functions having identical names, 34, 38

g++, 19, 21, 23, 50, 294, 356, 643

Gamma, E., 322, 345, 588

general purpose library, 371

general rule, 316

generate(), 417

generate_n(), 418

generic algorithm, 237, 355, 371

generic algorithms, 20, 236, 258, 371, 395, 560

generic data type, 395

generic software, 87

generic type, 259

global, 355

global function, 247

global object, 135

global operator delete[], 235

global operator new[], 234

global scope, 349, 352

global variable, 519

global variables, 243, 292

global variables: avoid, 33

Gnu, 19, 21, 23, 50, 171, 227, 294, 356, 366, 569,

643

goto, 187

gptr(), 574

grammar, 569, 644

grammar specification file, 644

grammatical correctness, 644

grammatical rules, 644, 645

Graphical User Interface Toolkit, 134
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greater<>(), 372, 377

greater_equal<>(), 377

greatest common denominator, 306

hash function, 294

hash value, 294

hash_map, 19, 294

hash_multimap, 294

hash_multiset, 294

hash_set, 294

hashclasses.h, 295

hashing, 294

hashtable, 258

header file, 159, 295

header file: organization, 154

header files, 55, 90

header section, 645

heap, 477

hex, 96, 239, 339

hexadecimal, 239

hexadecimal format, 112

hidden constructor call, 225

hidden data member, 343

hidden object, 182

hidden pointer, 231

hiding member functions, 311

hierarchical sort, 547

hierarchical sort criteria, 548

hierarchy of code, 305

Hopcroft J.E., 264

html, 20

http://bisoncpp.sourceforge.net/, 654

http://bobcat.sourceforge.net, 571, 576, 631

http://bobcat.sourceforge.net/, 654

http://gcc.gnu.org, 23

http://publications.gbdirect.co.uk/c_book/, 17

http://sources.redhat.com, 23

http://www.cplusplus.com/ref, 22

http://www.csci.csusb.edu/dick/c++std, 22

http://www.debian.org, 23

http://www.gnu.org, 19, 23

http://www.gnu.org/licenses/, 17

http://www.linux.org, 23

http://www.oreilly.com/catalog/lex, 634

http://www.research.att.com/..., 42

http://www.sgi.com/.../STL, 259

http://www.trolltech.com, 134

http://www/parashift.com/c++-faq-lite/, 43

http://yodl.sourceforge.net, 17

human-readable, 95

hyperlinks, 22

I/O, 87, 204

I/O library, 87

I/O multiplexing, 597

icmake, 23

icmbuild, 23

identically named member functions, 314

identifier visibility, 486

ifdnstreambuf, 575

ifdseek, 577

ifdstreambuf, 573, 605

ifstream, 106, 109, 127, 132

ifstream constructors, 109

ifstream::close(), 110

ifstream::open(), 110

imaginary part, 301, 303

implementation, 244, 322

implementation dependent, 251

implementing pure virtual member functions, 323

implicit argument, 232

implicit conversion, 222, 317

implicit typename, 540, 555

import all the names, 57

INCLUDE, 155, 158

include guard, 31

INCLUDE path, 295

includes(), 419

increment operator, 224

index operator, 213, 252, 261, 275, 280, 285

indirect base class, 308

inequality operator, 258

infix expressions, 644

inheritance, 305, 307, 309, 636

inheritance: private derivation, 546

init, 591, 592

initialization, 162, 180, 261

initialization of objects, 142

initialization: any type, 487

initialization: static data member, 244

initialize a normal iterator from a reverse itera-

tor, 568

initialize memory, 161

inline, 147, 236–238, 248, 254, 322, 372

inline code, 148

inline function, 149

inline function: placement, 150

inline member functions, 361

inline static member functions, 248

inline: disadvantage, 150

inner_product(), 421

inplace_merge(), 422

input, 106, 115, 118, 123

input language, 644

input mode, 109

input operations, 336, 387

input-language, 635

InputIterator, 561

InputIterator1, 384
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InputIterator2, 384

InputIterators, 384, 560

insert formatting commands, 88

insert information in memory buffers, 88

insert streambuf *, 122

insert(), 385

inserter, 385

inserter(), 385

insertion operator, 40, 88, 99, 100, 216, 251, 535

insertion operator: with conversions, 220

insertion sequence, 240

insertions, 264

instantiated, 257

instantiation, 295, 372, 483, 485, 522

int main(), 27

int32_t, 51

integral conversions, 519

interface, 244, 322, 635

interface functions, 136

intermediate class, 330

internal, 96

internal buffer, 102

internal header, 158

internal header file, 590

internal organization, 308

Internet, 22

ios, 88, 91, 114, 123, 125, 366, 494, 578

ios object: as bool value, 94

ios::adjustfield, 95, 99

ios::app, 103, 125, 126

ios::ate, 104, 126

ios::ate: file rewritten, 104

ios::bad(), 92

ios::badbit, 92

ios::basefield, 96, 97, 99

ios::beg, 101, 109, 366

ios::binary, 104, 126

ios::boolalpha, 96

ios::clear(), 94

ios::copyfmt(), 98

ios::cur, 101, 109, 366

ios::dec, 96, 99

ios::end, 102, 109

ios::eof(), 93

ios::eofbit, 92

ios::exception, 205

ios::exceptions(), 204

ios::fail, 102, 103, 109, 110

ios::fail(), 93

ios::failbit, 92

ios::failure, 205

ios::fill(), 98

ios::fixed, 96, 99

ios::fixed and ios::precision(), 98

ios::flags(), 98

ios::floatfield, 96, 97, 99

ios::good(), 93

ios::goodbit, 92

ios::hex, 96, 99

ios::in, 104, 109, 125

ios::in: and std::ofstream, 104

ios::internal, 96, 99

ios::left, 96, 99

ios::oct, 97, 99

ios::openmode, 103, 121, 340

ios::operator bool(), 94

ios::out, 102, 104, 125

ios::precision(), 98

ios::precision() and ios::fixed, 98

ios::rdbuf(), 91, 123, 591

ios::rdstate(), 94

ios::right, 97, 99

ios::scientific, 97, 99

ios::seekdir, 101, 109, 116

ios::setf(), 99

ios::setf(fmtflags flags), 99

ios::setstate(), 95

ios::setstate(int flags), 95

ios::showbase, 97

ios::showpoint, 97

ios::showpos, 97

ios::skipws, 97, 388

ios::tie(), 92

ios::trunc, 104

ios::unitbuf, 97, 102

ios::unsetf(), 99

ios::uppercase, 97

ios::width(), 99

ios_base, 88, 91

ios_base.h, 91

ios_base::ios_base(), 91

iostate, 204

iostream, 40, 387

is_open, 103, 110

istream, 88, 106, 132, 216, 336, 386, 387, 573,

638

istream constructor, 106

istream::gcount(), 107

istream::get(), 107

istream::getline(), 108

istream::ignore(), 108

istream::peek(), 108

istream::putback(), 108, 573, 580

istream::read(), 108

istream::readsome(), 108

istream::seekg(), 109

istream::tellg(), 109

istream::unget(), 108, 580
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istream::ungetc(), 573

istream_iterator, 387

istream_iterator<Type>(), 386

istreambuf_iterator, 387, 388

istreambuf_iterator<>(), 387

istreambuf_iterator<Type>(istream), 387

istreambuf_iterator<Type>(streambuf *), 387

istreambuf_iterators, 387

istringstream, 88, 106, 110, 584

istringstream constructors, 110

istringstream::str(), 110

iter_swap(), 424

iterator, 261, 266, 276, 280, 288, 359, 382

iterator range, 262, 266, 276, 282, 289

iterator tag, 561

iterator: as 0-pointer, 382

iterator: as template class, 613

iterator: initialized by reverse iterator, 568

iterator_tag, 561

iterators, 258, 259, 261, 371, 560

iterators: characteristics, 383

iterators: general characteristics, 381

iterators: pointers as, 383

Java, 331

Java interface, 322

key, 277

key type, 294

key/value, 277

keywords, 51

kludge, 224, 340

Koenig lookup, 57

Lakos, J., 134, 158

late binding, 319, 320

late bining, 319

lazy mood, 159

left, 96

left-hand, 258

left-hand value, 213

leftover, 447, 474

legibility, 278, 287

less-than operator, 258

less<>(), 377

less_equal<>(), 377

letter (US paper size), 19

letters in literal constants, 49

lex, 634

lex(), 645

lexer, 644

lexical scanner, 636, 644, 647

lexical scanner specification, 637

lexical scanner specification file, 637

lexicographic comparison, 79

lexicographical ordering, 67

lexicographical_compare(), 425

libfl.a, 643

library, 159

lifetime, 292, 570

lifetime: anonymous objects, 146

LIFO, 257, 292

line number, 639

line numbers, 638

lineair search, 236

linear derivation, 312

linear search, 238

lineno(), 638, 639

linker, 323

linker: removing identical template instantiations,

496

Linux, 23

Lisp, 24

list, 257, 263, 384

list constructors, 264

list data structure, 263

list traversal, 263

list::back(), 266

list::begin(), 266

list::clear(), 266

list::empty(), 266

list::end(), 266

list::erase(), 266

list::front(), 266

list::insert(), 266

list::merge(), 267

list::pop_back(), 267

list::pop_front(), 267

list::push_back(), 268

list::push_front(), 268

list::rbegin(), 268

list::remove(), 268

list::rend(), 268

list::resize(), 268

list::reverse(), 269

list::size(), 268

list::sort(), 269

list::splice(), 269

list::swap(), 269

list::unique(), 269

literal constants, 49

literal float using F, 49

literal floating point value using E, 49

literal long int using L, 49

literal unsigned using U, 49

literal wchar_t string L, 49

local arrays, 163

local context, 210, 619

local context struct, 620, 621
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local object, 135

local variables, 32, 292, 519

location of throw statements, 197

log(), 303

logical function object, 378

logical operations, 378, 611

logical operators, 378

logical_and<>(), 378

logical_not<>(), 378

logical_or<>(), 378

long double, 49

long long, 49

longjmp(), 187, 190, 194

longjmp(): alternative to, 192

longjmp(): avoid, 192

lower_bound(), 427

lsearch(), 236

lseek(), 578

Ludlum, 57

lvalue, 213, 224, 384, 393

lvalue transformations, 489, 519

lvalue-to-rvalue transformation, 489

macro, 240

main(), 27

make, 23

make_heap(), 479

malloc(), 161, 167, 172

manipulator, 239, 586

manipulator class, 585

manipulators, 88, 98, 111, 134

manipulators requiring arguments, 240

map, 258, 277

map constructors, 278

map: member functions, 280

map::begin(), 280

map::clear(), 280

map::count(), 280, 285

map::empty(), 280

map::end(), 280

map::equal_range(), 280

map::erase(), 280

map::find(), 281

map::insert(), 281

map::lower_bound(), 282

map::rbegin(), 282

map::rend(), 283

map::size(), 283

map::swap(), 283

map::upper_bound(), 283

Marshall Cline, 43

mask value, 95, 96

matched text, 639, 647

matched text length, 639

mathematical functions, 303

max heap, 477

max(), 428

max-heap, 395, 479

max_element(), 429

member function, 65, 319

member function: called explicitly, 311

member function: pure virtual and implemented,

323

member functions, 48, 116, 203, 253, 266, 271,

274, 276, 293, 393

member functions: available, 317

member functions: callable, 321

member functions: hidden, 311

member functions: identically named, 314

member functions: not implemented, 185

member functions: omitting, 185

member functions: overloading, 36

member functions: preventing their use, 184

member functions: redefining, 310

member initialization, 150

member initialization order, 151

member initializer, 184

member initializer list, 211

member initializers, 510

member template, 520

member: class as member, 359

members of nested classes, 360

memory allocation, 161

memory consumption, 343

memory leak, 105, 166, 169, 185, 196, 199, 234,

259, 321, 389, 394

memory leaks, 161

merge(), 430

merging, 396

methods, 48

min(), 432

min_element(), 433

mini scanner, 636, 637

minus<>(), 376

missing predefined function objects, 612

mixing C and C++ I/O, 90

modifier, 252

modifiers, 217

modifying generic algorithms, 395

modulus, 373

modulus<>(), 376

MS-DOS, 104, 126

MS-WINDOWS, 126

MS-Windows, 23, 104

multimap, 285

multimap: member functions, 285

multimap: no operator[], 285

multimap::equal_range(), 285

multimap::erase(), 285
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multimap::find(), 286

multimap::insert(), 286

multimap::iterator, 286

multiple derivation, 312, 313

multiple inclusions, 31

multiple inheritance, 312

multiple inheritance: which constructors, 328

multiple parent classes, 312

multiple virtual base classes, 329

multiplexing, 597

multiplication, 373, 644

multiplies<>(), 376

multiset, 289

multiset: member functions, 290

multiset::equal_range(), 290

multiset::erase(), 290

multiset::find(), 290

multiset::insert(), 290

multiset::iterator, 290

mutable, 153

name collisions, 155

name conflicts, 26

name lookup, 32

name mangling, 35

names of people, 277

namespace, 26, 159

namespace alias, 62

namespace declarations, 56

namespaces, 54

nav-com set, 312

negate<>(), 376

negation, 373

negators, 380

nested blocks, 33

nested class, 359, 555

nested class members: access to, 364

nested classes: declaring, 362

nested classes: having static members, 361
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nested template class, 555
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object duplication, 174

object hierarchy, 305
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object oriented programming, 509
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oct, 97
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ofstream, 99, 102, 127, 132

ofstream constructors, 102
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ofstream::open(), 103

omit member functions, 185

openmode, 104

operating system, 588

operator, 176

operator delete, 232, 233

operator delete[], 233, 235

operator keywords, 51

operator new, 163, 212, 230, 233, 390

operator new[], 163, 233

operator overloading, 175, 213

operator overloading: within classes only, 242

operator string(), 322
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ostream_iterator, 388

ostream_iterator<Type>(), 388
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overloaded global operator, 216
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overloaded operator, 232
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overloading: template functions, 498
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pair<set::iterator, bool>, 289
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parameter list, 34, 235

parent, 307
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parse-tree, 569
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partial specialization, 526, 528

partial_sort(), 439
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plus<>(), 373, 376
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pointer data members, 185

pointer in disguise, 317

pointer juggling, 264
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pointer to a function, 240
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pointer to an object, 317

pointer to function, 248

pointer to function members: using (), 353
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predefined function objects, 373, 611
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preprocessor, 90, 240
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primitive value, 233
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priority_queue::size(), 274
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private copy constructor, 335
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prototyping, 22
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pubseekoff(), 338
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queue data structure, 271

queue::back(), 271
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queue::pop(), 272
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queue::size(), 272

radix, 95, 96, 339

random, 264, 275

random access, 384

random number generator, 445
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RandomIterator, 613
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real part, 301, 303

realloc(), 172

recompilation, 308

redefining member functions, 310

redirection, 123, 579, 591
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reference: to template class, 533
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template class: using friend, 535

template class: wrapper, 619
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value_type, 277, 287

variable number of arguments, 232

variadic functions, 620, 621

vector, 257, 260, 382

vector constructors, 261

vector: member functions, 261

vector::back(), 261

vector::begin(), 261

vector::clear(), 261

vector::empty(), 262

vector::end(), 262

vector::erase(), 262

vector::front(), 262

vector::insert(), 262

vector::pop_back(), 262

vector::push_back(), 262

vector::rbegin(), 262

vector::rend(), 262

vector::resize(), 262

vector::size(), 262

vector::swap(), 262

vform(), 19, 101

viable functions, 505

virtual, 319, 322, 570, 636

virtual base class, 327
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