Developing
Enterprise Applications
—An Impurist’s View

Developing Enterprise Applications-An Impurist's View

Preface

Acknowledgments

The Technical Validation Group for Developing Enterprise Applications—An
Impurist's View

Tell Us What You Think!

Foreword

I: An Overview of Tools and Technologies

1. An Introduction to the Enterprise
Enterprise Development
Patterns and Frameworks
Aim of the Book—A Framework Cookbook
Target Audience
Tools and Technologies
Organization of the Book
Chapter Layout

2. Layers and Tiers
Layers
The Application Spread Across Tiers
N-Tiered Architecture
Mapping Layers to Tiers
Mapping Layers and Tiers to Your Development Team
Summary

3. Objects, Components, and COM
Object Orientation
Class and Object Naming Conventions
Component-Based Development
Component Coupling
Summary

4. The Relational Database Management System
Data-Centric Database Design
User-Centric Database Design
Business-Centric Database Design
Table Orientation
Mapping Tables and Objects
Object Identifiers (OIDs)
OID Generation
Referential Integrity

Data Localization

Locking
Performance Tuning

Summary

5. Distribution Considerations
Data Marshalling
Remote Activation
Structured Data-Passing Techniques
Microsoft Transaction Server

Summary

6. Development Fundamentals and Design Goals of an Enterprise Application
Visual Basic
SQL Server
Internet Information Server (IIS) and Visual InterDev
Microsoft Transaction Server (MTS)
Design Goals
Summary

II: Implementation of an Enterprise Framework

7. The ClassManager Library
Design Theory
Implementation

Summary

8. The DataManager Library
Design Theory
Implementation

Summary

9. A Two-Part, Distributed Business Object
Design Theory
Implementation
Installing Components into MTS

Summary

10. Adding an ActiveX Control to the Framework
Design Theory
Implementation
The Tabbed Dialog

Summary

11. A Distributed Reporting Engine
Design Theory
Implementation

Summary

12. Taking the Enterprise Application to the Net
Layout Standardization Techniques
Building the Internal Intranet Site
Building the External Internet Site

Summary

13. Interoperability

Interoperability Defined
Interoperability Through Data Movement
Interoperability Through Data Sharing

Summary

14. Windows 2000 and COM+ Considerations
Component Services
Message Queuing
New Features in COM+

Summary

15. Concluding Remarks

Error Handling
Security Mechanisms
Scalability Concerns

Summary

Acknowledgments

I wish to thank the staff at Macmillan USA for their support and assistance in putting
this book together. Special thanks to Michelle Newcomb for helping me work around
my other schedules, to Bryan Morgan, Jay Aguilar, Christy Parrish, and Tonya
Simpson for applying their superb editing skills to my manuscripts, and to Tracy
Dunkelberger for giving me the opportunity to write this book. I would also like to
thank Fawcette Technical Publications for giving me my original avenues of writing,
with special thanks to Lee Thé for bringing this sort of content into the forefront of
technical media.

I also wish to thank the current and former management at Compaq Computer
Corporation for allowing me to work on the applications that led to the formation of
the techniques and architecture presented in this book. Thanks go to Marshall Bard
for allowing me to build the applications that we could not buy and supporting these
efforts every step of the way. Special thanks to George Bumgardner for constantly
being a champion (to both management and our customer base) for the applications
we were building. Finally, I would like to thank all the end users who validated the
value of our efforts. Without their constant feedback and push for ongoing added
value, these topics would not have come about.

I want to pay particular thanks to Bill Erzal of MSHOW in Austin, Texas. Bill has been
my partner in development of applications at Compaq for the last several years and
has been the original implementer of many of these techniques on a large scale. I
thank him for being candid with me when I have presented a bad architectural
decision, for biting his lip and pushing on when he was unsure of a design, and for
saying "this looks good" when he knew one was right. In addition, many of the user
interface design techniques covered in the book have been lifted directly from his
work, which has been the result of an aggregation of experiences from his broad
career in application development. I thank him for allowing me to include them with
this book.

The Technical Validation Group for Developing

Enterprise Applications—An Impurist's View

John E. Jackson (Eddie) is a senior software engineer with Computer Science
Corporation (CSC) in Shalimar, Florida. At CSC Eddie spends his time designing,
implementing, testing, debugging, and shipping applications designed for the
Microsoft Windows family of operating systems.

Jay Aguilar (jaguilar@OpenTable.com, aguilarjay@usa.net) iS a senior
software developer/architect/B2B (Business to Business) consultant currently
employed at OpenTable.com (http://www.OpenTable.com). He specializes in
developing enterprise n-tier solutions for corporate intranets and Internet
applications. Jay now focuses on developing and implementing the infrastructure for
Internet B2B commerce. In the future, he hopes to write more technical publications
and technical journals. His biggest passion is always trying to be on the cutting edge
of technology and not losing his edge. He enjoys relaxing in the great outdoors and
spending it still connected to the Internet.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we're doing right, what we could do
better, what areas you'd like to see us publish in, and any other words of wisdom
you're willing to pass our way.

As an associate publisher for Que, I welcome your comments. You can fax, email, or
write me directly to let me know what you did or didn't like about this book—as well
as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply
to every message.

When you write, please be sure to include this book's title and author as well as your
name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Fax: |317-581-4666

Email: /queprof@mcp.com

Mail: |Associate Publisher Que 201 West 103rd Street Indianapolis, IN 46290 USA

Foreword

This book is the culmination of many years of experience in using
Visual Basic and SQL Server to build first client/server, and then, with
the advent of MTS, distributed applications. Although many would say
that this combination of tools is incapable of developing sophisticated
enterprise applications, I offer up the techniques outlined in this book
as a counter-argument. I offer up all the positive user feedback about
how intuitive, user-friendly, and capable these applications are. These
same users do not provide similar positive comments for the other
commercial enterprise applications running on their desktops. A good
enterprise application designer must always remember that the user
is what drives the smarts under the hood. If you make your
application difficult to use, users will perceive it to be a poorly
designed application, no matter what value it is providing to the
underlying business. Similarly, a great user interface design means
nothing if the business value is not there. Thus, these applications
require a sophisticated balance between both the user and business
perspectives. This book provides the solutions to this problem.

With the advent of the Internet and the new user interface paradigm
and application delivery model it provides, we must rethink the
traditional development model. Many Internet models are patched
onto existing applications, sometimes effectively, but many times not.
The architecture in this book makes the Internet an integral part of
the application. Counter to this, it does not force an unwarranted
Internet basis when it is unnecessary.

The code samples in this book have been developed using Microsoft
Visual Basic 6, Enterprise Edition, Service Pack 3. SQL Server schema
were developed in version 6.5 but should also work on version 6.x ad
7.0.

The source code listings that appear in the book are also available at
http://www.mcp.com.

Part I: An Overview of Tools and Technologies

1 An Introduction to the Enterprise

2 Layers and Tiers

3 Objects, Components, and COM

4 The Relational Database Management System
5 Distribution Considerations

6 Development Fundamentals and Design Goals of an Enterprise
Application

Chapter 1. An Introduction to the Enterprise

You might be wondering about the reason for the word Impurist in the
title of this book. Before delving into an introductory definition, I
would like to state that the application development industry is
undergoing a significant transformation in how it develops
applications. New tools and technologies are emerging at a rapid pace.
With this emergence come experts that profess the techniques on
how to employ these tools and technologies to their best use to solve
the problems at hand. The tool vendors themselves provide guidance
in how to use their products to solve a broad range of problems. It
follows, then, that these techniques begin to coalesce within the
industry and form the conventional wisdom on how we must use these
tools and technologies. On the other end of the spectrum, we have the
theoretical view on how to perform application development, and we
chastise the tool vendors for not following a pure approach.
Somewhere in between are the upper-level managers screaming the
"on time, under budget" mantra, hoping to keep the development
team focused on the tasks at hand. The effect of this mantra is that
conventional wisdom typically takes on a "quick and dirty" component
that runs counter to what we would otherwise do as we develop
applications.

Thus, the approach of this book is not to necessarily utilize a
technique because it is part of the accepted conventional wisdom or
because it meets certain theoretical criteria. This is the root of the
statement on impurity in the title. Although we all strive for the
perfect solution to a given problem, we must remember that we
cannot always do so in the corporate application landscape. We must
perform a constant balancing act between the functionality we deliver,
the resources required to do so, and the time we take to arrive at
completion. These constraints invariably lead to conflicts in the
decision-making process that we have to deal with as managers,
architects, and developers. Thus, the intent of this book is to discuss
how to look at the possible solutions within the realm of the
constraints and make an appropriate decision. Although in many
cases we will provide a specific solution, we will provide supporting
reasons for why we have done something in a particular manner.

The underlying goal of corporate application development is not

necessarily to remain pure to the industry or theoretical trends simply
for the sake of doing so. We must realize that companies entrust us
with their resources of money and time with the expectation that we
will add value to their business processes. Good design decisions are

an investment that we make as developers to meet these
expectations. No value is added to a company when we constantly
rework already delivered functionality due to poor design decisions we
needlessly make because we follow a purist viewpoint. We add value
not only when we deliver functionality in the first round, but also when
we continue to deliver added functionality in following rounds. Our
stretch goal is that we can do so at a diminishing cost structure with
each round we successfully complete. Sound decision-making with
these latter goals in mind is how we should proceed through our
development efforts, even if it means being a little impure at times.

Enterprise Development

Although the term enterprise development is a common buzzword in
the software industry these days, it is an ambiguous term. Enterprise
application development is by no means a new concept to business
because mainframes have existed for some 20 years or so,
performing the daily chores to take care of corporate informational
needs. It is, however, a new concept to some software developers,
many of whom might have only had to implement simple
departmental productivity applications up to this point. Corporate IS
departments are becoming increasingly decentralized, with
functionality leaving the glass house and its mainframes and moving
toward organizations and their servers. At the same time, the
development tools used to build applications are simultaneously
becoming more powerful and easier to use. The same tools used to
build productivity applications of yesterday can now deploy
applications of today on a much grander scale. Indeed, it might be
some of the smaller applications of today that will become the de facto
enterprise applications of tomorrow. Because of this shift, the
organizational-level IS leaders, designers, and implementers must
pick up the reins and begin building the next generation of corporate
solutions. This is logical because each organization understands its
own business processes and informational needs best.

Coupled with this change in IS philosophy and the shift in application
development responsibilities is the globalization of corporations in
geography, business activities, and the underlying information driving
the corporate business processes. It should be clear by now that
planet Earth has become a much smaller space in which to do
business because of the Internet revolution. As such, corporate
competitive advantages are becoming more defined not only by their
capability to tap into their vast knowledge bases, but also by their
capability to transfer that knowledge into systems and information to

enforce best practices. After it is tapped, the company can raise the
level of capabilities across all geographical locations and business
practices.

Still one other factor helps to define the enterprise application—that
of flexibility in architecture. When a company fuels its growth through
mergers and acquisitions, it must meld disparate business processes
into a unified model. This invariably affects the applications running
the enterprise, because part of the impetus for the combination of
companies is to leverage greater economies of scale by eliminating
overlapping functions.

Some would argue that high availability is an absolute requirement of
the enterprise application as well. Although this is true in the ideal
sense, it is not necessarily a rigid requirement in all cases. In many
interpretations, "high availability" is synonymous with gargantuan
servers. Many enterprise applications, though critical to the business,
might need to support only several hundred users at any given time
and might not need to follow a 99.999999% uptime model. The cost
benefit justification of overly capable hardware might be difficult to
make. In these cases, only robust application design techniques and
appropriately matched hardware are needed to constitute high
availability. It is important to understand that we can be less than
perfect in an attempt to be economically prudent.

With these concepts in mind, we can start defining what the term
enterprise development embodies. At its most succinct level,
enterprise development means the capability to support multiple sites,
geographies, organizations, and users with their informational needs.
This support comes by way of focused applications embedded within
the business processes needed to run core activities of an
organization. The number of users supported by such an application
can range into the hundreds or even thousands. If one then considers
the capabilities afforded by the Internet and Dial-Up Networking, then
it also means the capability to support the mobility of the user base.
This would not only indicate a high level of application availability and
accessibility to the users, but also ease of administration and
maintenance for the developers and support teams over such diverse
connection modes.

Taken to the next level, corporations realize that information from
disparate systems becomes more valuable when taken in aggregate.
Thus, the term enterprise development takes on an additional form of
interfacibility—the capability to gather information from other
applications, coupled with the capability to provide information to

other applications. Some would also call this feature interoperability.
Examples of such systems would be the corporate Enterprise
Resource Planning (ERP) system, in-house applications supporting
other organizations, or third-party applications implemented by the
company.

Another feature of enterprise applications is that of extensibility.
Although it can be easy to throw an application together that meets
the needs of today, it is more difficult to anticipate the needs of
tomorrow and design accordingly. If we follow an incremental
develop-and-deploy approach, we must make sure that for every step
forward we make, we will not have to take a few backward with the
next release. Expanding our mode of thinking a bit more, we realize
that after we implement a successful application within an individual
organization, most likely other organizations will want to follow suit
after we demonstrate the benefits. If we design accordingly, it should
be trivial to replicate the majority of an application to meet new
business needs. Expanding our thinking yet again, we realize that as
a company goes through mergers and acquisitions, we might need to
enhance the business processes within our application. Again, if we
design accordingly, this should not be an issue. This leads us to define
"application extensibility" within the realm of enterprise development.

At yet another level, the corporation begins hooking its enterprise
applications together in modes beyond just simple information
sharing. Whether they are internal or external to the company, few
applications can drive a corporation's business processes in isolation.
As such, they must begin working together within the context of some
business workflow. Thus, the term enterprise development takes on a
collaborative definition. As an example, one system, in the course of
providing its functionality, can signal other systems into action; this in
turn can signal still other systems. Although human interaction might
be required somewhere in the process, it is not mandatory.

Because users with differing roles exist across the user base, no single
user typically exercises the entire breadth of functionality provided by
an enterprise application. The application is multifaceted, although
that can mean different things to different people. There can be many
human interfaces, both of the input and output variety. There are
information generators as well as consumers. In most cases, the
number of consumers far outweighs the nhumber of generators
because it is this dispersal of information and knowledge that drives
such applications.

Thus, we have a series of attributes that help define what an
enterprise application really entails. To summarize, an enterprise
application has the following features:

« Support for many sites, geographies, organizations, and users

« Extensibility by design because it will need enhancement over
its lifetime

« Two-way interoperability with other systems

o Collaboration capabilities with other systems, both internal and
external to the company

o Multi-faceted from a user perspective—a single user rarely
exercises the full breadth of functionality

Although these attributes are applicable to any application, they
become mandatory when we face the rigors of the enterprise.

Patterns and Frameworks

Other ambiguous terms abound when speaking of enterprise development, most
notably patterns and frameworks. Both are critical to successful enterprise
development, but they have different meanings. A pattern represents the design of
a core functional element in an abstract form, although it extends beyond pure
theory because it typically evolves from ideas and techniques proven out in
repeated, real-world situations. There are many industry-accepted patterns for
implementing a variety of tasks across a diverse range of development tools and
technologies. Because we typically implement patterns in an object-oriented
language, patterns and object orientation share a common modeling methodology.

A framework is the tangible, reusable implementation of multiple patterns on a
given platform using a specific set of development tools and technologies. A
framework can also define the necessary communication and distribution
mechanisms to make the pieces work together. Frameworks have existed for quite
some time in commercial form. In the not-too-distant past, they came to us as
Fourth Generation Languages (4GLs), used to develop client/server applications.
Alternatively, they existed in the form of source-level GUI and I/0 libraries meant to
deliver applications in a consistent, cross-platform manner. Before that, they came
in the form of mainframe development and control software, such as IBM's CICS
and JCL tools. Now, they manifest themselves in several incarnations.

Commercial Frameworks

One incarnation of a modern framework is that of modeling tools with accompanying
source-code generators. Here, an application or application component is first

defined using a standard or proprietary modeling language. With a few mouse clicks
after the model is complete, the tool generates source code. Some tools produce
database schemas as well. The framework might fully realize itself simply as a set of
runtime components referenced by the source code, as framework source code
interspersed with the application code, or as a combination somewhere in between
the two. Some of the more sophisticated tools can even generate code for multiple
deployment languages (Visual Basic, C++, Java, and so on), database servers (SQL
Server, Oracle, and so on), and distribution architectures (for example, COM/DCOM,
CORBA, Java RMI, and so on).

Some commercial frameworks extend beyond the infrastructure side and actually
begin to layer on some of the business process functionality. Examples include
IBM's San Francisco Project, which attempts to define a core set of frameworks
across several business domains. For some time, Oracle has provided business
frameworks for accounting, manufacturing, and other popular problem domains.

Application Servers

Another incarnation of a framework is that of an application server. The term
application server is itself a multi-aspect term because it attempts to implement
some or all of the components that make up an enterprise application. In this form,
the application server not only embodies the hardware and operating system, but
also inherently defines a framework through its programming model. This model
typically rests upon selected design patterns implemented by the application server
vendor. This form of framework has similarities to the modeling approach in that
support exists for multiple development languages, database servers, and
distribution architectures. Some in the industry feel that a full-function application
server is simply a reincarnation of the mainframe on updated hardware.

Custom Frameworks

With the emergence of enterprise development tools and components, it is not too
difficult to develop a framework suited to a specific business process or organization.
Microsoft has provided a suite of server products, development tools, and
distribution technologies to enable the development of a custom framework for
enterprise applications. The official moniker for this is the Microsoft Distributed
interNet Applications (Microsoft DNA) architecture. Although DNA is Microsoft's
attempt to fully define the tools, technologies, and implementation details needed
to build such applications, it is not itself a framework.

Microsoft DNA

Whether you are a devout promoter, a casual user, or merely an observer, Microsoft
is @ major player in the enterprise development market. No other set of tools and
technologies enable you to have a dynamic, database-driven Web site up and
running in a short amount of time. No other set of tools and technologies enables
you to build a robust, multi-tier application in a short amount of time. No other
company provides the set of online support and technical information that Microsoft
does. Although Microsoft has provided the tools, guidelines, and sample
applications, this does not mean it is the definitive source on how to build our
applications. It is merely a component of the conventional wisdom mix that we
mentioned earlier.

Microsoft presents sample architecture implementation in the form of DNA. This is a
bit of a misnomer in that it really does not use the Internet as much as one might
surmise. True, we can set up a dynamic Web site that enables users to connect to it
through the Internet, but we cannot create a DCOM link across the Internet unless
we have a virtual private network in place. DCOM, a technology that we will discuss
in further detail in Chapter 2, "Layers and Tiers," is what puts the "D" in DNA, but it
does not work with the "N" portion of the acronym (it should really be intraNet).
Although we use the same tools and technologies as DNA, the architectural concepts
presented by this book vary from the Microsoft model in ways that should bode well
for your enterprise application.

Although Microsoft can give us the tools and a basic model to follow through DNA,
they have to do so in such a way that is applicable to their entire customer base,
which means a lowest common denominator approach. In many cases, their efforts
at simplification work adversely to your application's requirements, potentially
reducing performance to a much lower level than the underlying technology is
capable of delivering. Microsoft's prime directive is to provide the horizontal
infrastructure for application development, whereas your job as an enterprise
application developer is to use these tools to provide the vertical applications that
your business needs. That they help you a bit by defining DNA is a bonus. We should
not hold Microsoft to blame for this approach because they do provide a viable
solution to cover a wide range of applications. It is only as we peel back the layers
that we can see room for improvement.

The Decision Process

The framework decision process can be complex based on individual project
situations. Unfortunately, it is probably the most important decision to make at the
outset of an application development project. The project team spends considerable
time and money for software licensing, developer training, and so on before the

actual start of the software project. A bad decision at this early stage can wreak
havoc after the team is further into the effort. The decision-making tree is not easy.
The capabilities of the development staff are only one of the factors. For a given
framework option, there are learning curves, costs of development, costs of
deployment, and feature lists to consider. A common issue with commercial
framework solutions is that the vendors spend a lot of effort trying to implement the
lowest common denominator of functionality required across their potential
customer base. In so doing, they can spend a significant amount of time perfecting
some feature you find unnecessary at the expense of a feature that is of higher
value to you.

The view of this book toward commercial frameworks is agnostic—it neither
supports nor condones them. The industry rule of thumb is that a commercial
framework provides between 40% and 60% of an application's functionality.
Although this sounds appealing, it is hard to determine the level of difficulty
encountered or success rate at implementing the remaining functionality required
by the application. In addition, the 80/20 rule applied to application development
says that 20% of the time is spent implementing 80% of the functionality, and 80%
of the time is spent implementing 20% of the functionality. In most cases, the
former 80% represents the template functionality of the application—for example,
database interaction, network access, system services, client/user-interface design,
and so on. The latter 20% represents the functionality that is more difficult to
implement and also what gives the application its character and competitive
advantage, along with the look and feel that matches the business process flow. Put
another way, this 20% represents the value-added business logic embedded within
the application. Looking back at the commercial framework and where the effort
savings resides—in the 80% realm or the 20% realm—is what should drive the
decision for using a particular commercial framework.

For example, if the effort savings reside completely in the 80% template
functionality area, it probably does not offer significant value. If, on the other hand,
it covers the 20% value-added functionality, it is probably worth a look. The former
category is indicative of horizontal frameworks, whereas the latter is where
vertical-based frameworks reside. We should note that good vertical frameworks
typically implement up to 60% of an application's code, as part of the framework.

Our Framework Approach

We will take the approach of building our own framework for the purpose of this
book. The framework topics presented in the rest of this book use several
fundamental patterns that have emerged over the course of successful enterprise
application development. These patterns are, in turn, implemented using a specific
set of development tools and deployment technologies loosely based on Microsoft
DNA. Itis important to note that the framework topics presented in this book are not

simply a rehash of DNA. There are many critical areas where we diverge from the
Microsoft model for various reasons. Although the remainder of this book is devoted
to presenting various framework design and implementation topics, it does not
necessarily represent all the implementation options. Please be sure to use the
topical information as a guideline to foster the appropriate design for your situation.

Aim of the Book—A Framework Cookbook

This book targets those readers interested in learning about the concepts of building
a distributed enterprise framework using industry-standard tools and technologies.
Specifically, this book covers the use of Visual Basic 6.0 Enterprise Edition,
Transaction Server 2.0, Internet Information Server 4.0, and SQL Server 6.5 as the
core components of an enterprise framework. It will also present pragmatic
examples in the form of sample applications and accompanying source code, to
further strengthen the topics of discussion.

Target Audience

This book targets the software architect, developer, and manager who wants to
understand both the capabilities and limitations of the Microsoft tools and
technologies available to them within the realm of enterprise applications. Readers
of this book should also want to understand how such tools and technologies could
be used to provide business-critical functionality in the form of world-class
applications to their organizational customer base. Readers of this book need to
have an intermediate to advanced understanding of the tools and technologies
outlined in the following sections. These readers will learn how to take their existing
skills in these areas and apply them to building enterprise applications.

Tools and Technologies

You can use a myriad of available development tools and implementation
technologies to create enterprise applications. For the purposes of this book, a
specific subset of these available tools and technologies will apply.

Windows NT Networking

Although it might seem strange to make an apparently obvious statement about
Windows NT Networking as a core component of an enterprise framework, it is still
worth mentioning because of several key features. Most importantly, Windows NT
Networking represents an integrated security model. If properly configured, a user
need only log in to the network once to gain access to areas beyond the network.

Because the other server products that make up this framework run on top of
Windows NT Server, they have access to this same security mechanism. This makes
it easier on both the end user, who does not have to remember another set of
passwords, and the developer, who does not have to implement a login and
password management process. Windows NT Networking also has the capability to
support various network configurations including Wide Area and Dial-Up
Networking.

SQL Server

In any large-scale application, it is important to have a database server that can
meet performance and load handling requirements. It is also important to have a
database server that has sufficient online backup facilities, recovery features,
transaction logging, two-phase commits, triggering, stored procedures, and so on.
Small-scale database systems simply will not hold up to the extreme needs of
managing enterprise-level data. Additionally, advanced features, such as integrated
replication and an administrative API, are highly desirable.

Although there are several server options here, SQL Server 6.x or 7.0 will meet
these requirements handily. In addition, SQL Server offers a graphical user
interface in the form of the SQL Enterprise Manager, eliminating the need to use a
query console window to perform administrative and developmental tasks. SQL
Server also exposes the underpinnings of the Enterprise Manager in the form of an
SQL-DMO (SQL-Data Management Objects). This programming module can be
invaluable when it comes to automating complex administrative tasks on the server.
This might include activities such as setting up a new server or simply running a
weekly re-index and recompile of the views and stored procedures that need to
follow a certain processing order.

Additionally, SQL Server has an SQL Executive component. This component is
responsible for managing the replication tasks, backups, restores, and so on. The
SQL Executive can also manage tasks that are external to SQL Server with its
capability to call the NT command processor.

COM/DCOM

We will cover COM (Component Object Model) and DCOM (Distributed COM) in
sufficient detail in Chapter 3. Still, we need some overview here before we can
proceed with the remaining tools and technologies that build upon COM.

The COM architecture is the foundation for Microsoft's OLE (Object Linking and
Embedding) and ActiveX technologies. COM is both a for mal specification and a
binary implementation. Technically, any platform can implement COM, not just

Win32. The reason that it is so ubiquitous on the Win32 platform is that Microsoft
has provided the reference (and hence the standard) implementation of the
specification. On the Win32 platform specifically, COM relies on Microsoft's Dynamic
Link Library (DLL) mechanism. The DLL architecture allows for a high level of
runtime modularity (as opposed to source-code level), allowing binary modules to
load in and out of a process address space at runtime. COM, and hence our
framework, relies heavily on this dynamic nature of COM to support long-term
flexibility over the life of the application.

Any programming language that can access the Win32 COM API and implement a
virtual function table can generate a COM class. Visual Basic, which we will discuss
shortly, is such a language, allowing a developer to build these types of classes
while simultaneously hiding the gory implementation details.

DCOM takes COM across process boundaries. Although applications frequently
implement DCOM boundaries on a single physical machine, it is really a technology
meant for communicating between machines. DCOM adds the necessary
functionality to make a client application think that it is simply invoking a local COM
object, when it is really invoking a COM-style proxy locally that invokes the object
remotely. There are some optimizations in the DCOM engine to minimize the effects
of remote invocation because COM's original design did not account for network
latency. DCOM also adds a modicum of a security infrastructure to ensure that only
privileged clients can invoke a given object.

Visual Basic 6.0, Enterprise Edition

The development of the user interface is one of the critical areas of overall
application development. It does not matter how elegant or robust your architecture
is underneath if it is difficult for the user because of a poorly designed interface.
After the development team clearly understands the business process flow for a
particular area of the application, it must be able to easily transform that into the
user interface. As such, the developer needs a capable development tool at his or
her disposal.

Visual Basic 6.0 (VB6) is just such a tool, but its capabilities extend far beyond form
design. One particularly nice feature of VB6 is that it enables the developer to build
custom ActiveX controls that encapsulate core business process flows into a
component that can run in a variety of locations. VB6 also enables the developer to
create ActiveX Dynamic Link Libraries (DLLs) that are also usable in a variety of
locations. Turning things around, VB6 is not only able to create these ActiveX
components, but also able to host many of those created by other development
tools.

VB development extends beyond simply the user interface and client machine,
allowing us to develop modules that run on a server as part of a distributed
application. We will discuss distribution in much more detail in Chapter 5.

Concerning the ease of development, VB6 has all sorts of goodies within the
Integrated Development Environment (IDE). These features include IntelliSense,
which can help the developer finish a variable reference with just the first few letters
being typed, or show the calling convention for a native or user-defined function or
method. VB6 also has a feature known as the Class Builder Utility, a simple class
modeler and code generator that can save significant time in generating
well-formed class modules. The IDE also performs an auto-correction of the code,
color-coding key words and comment blocks, and block indenting. Although these
features might seem minor, developers will spend the majority of their time during
the coding phase within the IDE; therefore, every little improvement in productivity
adds up over the life of the project.

Internet Explorer 4/5

The preferred browser in this architecture is the Internet Explorer 4/5 (IE4/5) based
on its DHTML and ActiveX control hosting capabilities. In many corporate settings,
IE4/5 has been adopted as the standard browser for a multitude of reasons.

The architecture we will present in Part II uses browser interfaces to support the
basic reporting needs, or output side of the application. Using standard HTTP form
processing techniques, the browser will work in conjunction with the IIS server,
using ASP to support simple data management. VB-based client applications, or
browser-hosted ActiveX controls, implement complex data management that is too
difficult to implement using the HTTP form approach.

Microsoft Transaction Server

Microsoft Transaction Server (MTS) provides several functions that might not be
apparent from its name. First, it is a DCOM surrogate, improving the management
and administration of these components on a server. Second, it is a transaction
coordinator, assisting in performing disparate database transactions as a group and
rolling them back as a group if any part fails. Third, MTS is a resource-pooling
manager, allowing multiple logical objects to run in the context of a pool of physical
ones. It also provides database connection pooling for the DCOM libraries to
minimize the performance issues associated with login and connection.

Internet Information Server 4.0/5.0

We choose Internet Information Server (1IS) as our Web server for several reasons.
First, it is the foundation for Active Server Pages (ASP), a VBScript-based
environment for the dynamic generation of browser-agnostic HTML pages. In
addition, IIS and MTS integrate tightly when the two are running on the same
physical machine, bypassing some of the normal activation processes to improve
overall performance.

Visual InterDev 6.0

We use Visual InterDev as our primary ASP development tool. It has a powerful IDE
much like Visual Basic, allowing us to develop our ASP pages more rapidly than we
could in a conventional text editor (which up until release 6.0 was the primary path).
In addition, Visual InterDev provides debug facilities that we can use to step
through some server-side pages during generation or through the completed page
on the client side, which might also have some embedded scripting code.

OLEDB/ADO

Database access is foundational to any enterprise application. Although many
applications might still be using ODBC or other forms of legacy driver methods,
OLEDB and ADO are the most appropriate choices for new application development
or significant refreshes to existing applications. In addition to providing access to an
RDBMS, OLEDB/ADO is the foundation upon which Microsoft plans to allow access to
other structured data, such as network directory services. Additionally, ADO
provides a mechanism to represent structured data created by your application and
can serve as a temporary storage space or a transport mechanism, as we will see
throughout the remainder of Part I.

XML and the MSMXL Parsing Engine

The Extensible Markup Language (XML) is currently one of the hottest topics in the
enterprise application community. Similar to HTML, XML is a textual format for
representing structured information. The difference between HTML and XML is that
the former represents format and the latter represents data.

Although XML is a straightforward specification, its flexibility makes the
development of a parser a nontrivial task. IBM has made a publicly available,
Java-based parser for some time. It has only been with the release of IE5 that
Microsoft has provided a standalone COM-based parser in the form of MSXML.DLL.

Now that Microsoft has provided this invaluable tool, we can divert our attention
from trying to build a complex parser and begin creating the value-added solutions
from it. XML is a data-transfer mechanism with multiple roles, including providing a
data conduit between processes within a system (P2P), processes across systems
(S2S interfaces), and processes across businesses (B2B interfaces).

What is powerful about MSXML is its COM basis that gives it the capability to run
within Visual Basic, ASP, and IE. Even more powerful is that data formatted as XML
in @ Windows-based COM environment is readable by a UNIX-based Java XML
reader in another environment.

CDONTS

The final technology that we will use is that of CDONTS, or Collaborative Data
Objects for NT Server. CDONTS provides many features, but the one of interest to
us is its SMTP (Simple Mail Transport Protocol) capability that bypasses MAPI (Mail
API). The reason that this is important is that MAPI requires the use of a mail service,
such as Exchange, that adds additional overhead in administration and performance.
Although there is a similar CDO (non-NT server) version, it lacks this SMTP-based
messaging engine that we need. Fortunately, we can run CDONTS on our NT
Workstation development machine. In production mode, we can use CDONTS with
both IIS and MTS to provide server-side mail processing for collaboration and
notification activities.

Organization of the Book

The remainder of Part I of this book first presents a quick overview of elements that
will be used throughout the rest of the book. This overview is purposefully just
that—an overview. The goal is to provide a quick familiarization of what we are
using and why we are using it. Many books are available that go into in-depth
coverage of these topics. This overview will then be followed by some fundamental
design topics concerning object orientation, components, databases, distribution,
and interface-based development.

Although the reader does not technically need to be a master of each of these areas
to understand the framework topics in this book, he or she will need to be
comfortable with each of the technologies. Along the way, hints and warnings
provide helpful implementation techniques that have come about after many long
hours and late nights of scouring through Microsoft documentation to find the
solution to some particular quirk.

Part II discusses actual enterprise components built upon the concepts outlined in
Part I. This book presents each framework component by first discussing the

architectural reasoning behind the component and the types of trade-off decisions
that were made during its development. The book then presents the component
design in detail accompanied by the full source code required for its proper
implementation.

Chapter Layout

Chapter 2, "Layers and Tiers," presents an overview of the layered approach to
application development. It then discusses 2-, 3-, and N-tier architectures. It
concludes with a summary on how application layers map to tiers.

Chapter 3, "Objects, Components, and COM," provides an overview of object
orientation. It then follows with a discussion on component-based development. It
concludes with a discussion on how object-orientation and component-based
development relate to Microsoft's Component Object Model.

Chapter 4, "The Relational Database Management System," discusses some basic
features of an RDBMS. It follows with a discussion on the persistence of the state of
an object. It concludes with the mapping of objects to databases.

Chapter 5, "Distribution Considerations," discusses the distribution of objects across
multiple tiers. It provides several approaches to set up the necessary
communication channels between objects across process boundaries. It concludes
with a discussion of MTS best practices for distributed development.

Chapter 6, "Development Fundamentals and Design Goals of an Enterprise
Application," discusses some best practices to follow for the programming
languages involved with the framework. This includes Visual Basic, used for the
application and its components, and Visual Basic Script, used by Active Server
Pages. It also suggests entity design standards for the RDBMS part of the system.
Finally, we will present the high-level design goals that we will use to drive the
development of the framework in subsequent chapters.

Chapter 7, "The ClassManager Library," introduces the ClassManager component
that is used to drive class definitions and the mapping of objects to databases.

Chapter 8, "The DataManager Library," introduces the DataManager component
that is used to provide a non-invasive data layer for the business layer objects of the
system.

Chapter 9, "A Two-Part, Distributed Business Object," discusses the splitting of the
traditional business object into several parts that run on multiple tiers.

Chapter 10, "Adding an ActiveX Control to the Framework," discusses the
development of the user interface using ActiveX control technology, allowing
front-end deployment in a variety of hosts.

Chapter 11, "A Distributed Reporting Engine," discusses how to leverage ASP as
your primary reporting engine. It is followed by a discussion on how to implement
more complex reporting through an MTS-based reporting component.

Chapter 12, "Taking the Enterprise Application to the Net," discusses how to make
your application functionality available to a larger client base through the corporate
intranet.

Chapter 13, "Interoperability," discusses how to set up links to other systems, both
internal and external to the corporation. It presents several models to deal with the
most common needs that arise in the corporate setting.

Chapter 14, "A Task Management Component," presents the issues surrounding
task automation, message queuing, and cross-system collaboration.

Chapter 15, "Concluding Remarks," presents several topics that have been left
uncovered. These include security and scalability.

Chapter 2. Layers and Tiers

In an effort to move from a monolithic application model to a modular one, industry
experience over the years has determined that there is a logical partitioning of
functionality into distinct groups known as layers. Furthermore, experience has
determined that there are certain physical locations where these layers
reside—whether they are different machines—that are referred to as tiers. Although
there is little debate in the industry on what these layers and tiers are, there are
various viewpoints on how to best accomplish the implementation of these elements
to arrive at a robust application.

Layers

Modern applications partition the system into at least three distinct logical layers of
code known as user, business, and data. The Microsoft DNA architecture names
these layers as presentation, application, and data, respectively. A fourth layer,
named system, provides access to the services provided by the network and
platform operating systems. This system layer should not be confused with
Microsoft's workflow layer because the two are different in nature. For the purposes
of the framework presented in this book, Microsoft's view of workflow logic is
embedded in the user and business layers as part of the distribution mechanism.

This partitioning of functionality across layers not only allows the distribution of
processing across multiple machines, but also creates a high level of modularity and
maintainability in the code base. Figure 2.1 shows an overview of these layers and
the interactions between them.

Figure 2.1. The layered development model.

User Layer |[«€— Business Layer [«—3{ Data Layer

»| System Layer |«

The User/Presentation Layer

User services provide the presentational and navigational aspects of the application.
The user services layer is the part of the system the user sees and interacts with
regularly. In most cases, the user considers the user interface to be the application
because they are unaware that any other parts of the system exist. We can define
a user interface within the context of an application screen that contains complex
interactive controls. These might include tables, drop-down lists, tree views, list
views, button bars, tab strips, and so on. Similarly, we can define a page with simple
form elements rendered in a Web browser as a simple user interface. In addition, we
can also define a user interface in terms of a Web page that hosts an ActiveX control
or Java applet.

To build a complex user interface, a language, such as Visual Basic, is required to
host the interactive controls and provide the navigational logic for the user to move
about the system. In a Web browser-based application, we can use a static HTML
page to present the interface, or we can rely on Active Server Pages to build the
interface for us based on dynamic requirements.

The Business/Application Layer

Although the user interface is what the end user sees, the business layer is what
defines the application in terms of what it does from an information management
perspective. It is logical to assume that all data input and output comes from the
user layer; however, this is not the case. It is convenient to first define the business
layer in these terms, but it will become clear in the development of the framework
that inputs and outputs can be comprised of interfaces to other applications as well
as to end users. The modularity of the layered approach drives the ability to support
both types of interfaces with a common business layer.

We often refer to the business layer as the heart of the system, and for good reason.
Besides being the location where we implement all business logic, it is also the
center point of a multilayer system. On one side of this layer stack, it interfaces with
the user layer, providing the information needed to populate the interface and the
validation logic needed to ensure proper data entry by the user. On the other side of
the layer stack, it interfaces with the data layer that in turn interacts with the data
storage and retrieval subsystems. The business layer can also communicate with
other business layers either within or external to the application.

With respect to the user interface, the business layer provides both inputs and
outputs. On the input side, the business layer handles the validation logic needed to
ensure appropriate information entry by the user. If we take an example from an
accounting application, a simple field-level validation might be necessary to ensure

that the posting date on a ledger transaction constitutes a valid date. Complex logic,
on the other hand, validates across an information set, but we still handle this on the
business layer. An example taken from the same accounting application might be to
make sure a check's posting date occurs before its clearing date. The business layer
also defines the output aspects of the system. This might be in the form of the
content that makes up human-readable reports or in data feeds to other systems.
This could go beyond just a simple dump from a database system, where a standard
query against a server provides the data, to a system that performs transformation
of the data from one or more data storage systems.

When we start the definition process for a new application, we must focus on how to
meet both the high-level business needs and the needs of the end user. Although
common sense might seem to indicate a user-layer focus, we should really look to
the business layer to drive our design efforts because the users understand the real
world the best. As we will see in the next chapter, we can model the real world using
object-oriented techniques, creating business-layer objects that drive the
application. By using this approach, we can avoid an initial focus on the user and
data layers that can sidetrack our efforts. Instead, we will implement a robust
framework that will allow these outer layers to become a natural extension of our
inner business layer.

The Data Services Layer

The data services layer performs all interactions with the data storage device, most
often a Relational Database Management System (RDBMS) server. This layer is
responsible for providing the rudimentary CRUD (Create, Retrieve, Update, and
Delete) functionality on behalf of the system. It can also enforce business-entity
relationship rules as part of its administrative duty. Typically, it not only involves the
database server itself, but also the underlying data access methodology, such as
Active Data Objects (ADO), and the formal database language, such as Structured
Query Language (SQL).

From an interaction standpoint, only the data layer should deal directly with the
business layer. If we look around, we will see many systems deployed wherein the
developer has directly coupled the user and data layers, effectively eliminating the
business layer. Data-bound controls follow just this approach. Although this is a
viable solution, it is inflexible in terms of extensions to the business processes
because it does not implement them to begin with. If we do not implement a solid
business process within our application, we have effectively created a dumb, fragile,
and data-centric solution to a business problem.

TIP

Do not use controls while in data-bound mode in enterprise applications. They offer
no flexibility for extensibility, minimal capability for business process
implementation, and represent a poor design.

The System Layer

The system layer is somewhat of a catch-all category for functionality that is
required but does not necessarily fit into one of the other layers. Each of the user,
business, and data layers can have its own unique system layer to assist in
providing its own requisite functionality. The system layer can include functionality
to interact with the file system, network, or registry. It can include the login
functionality, general-purpose functions, error handling, user messaging, and so on.
It can also include security verification, mailing functionality, event-logging
functions, and the like.

The Application Spread Across Tiers

Although often considered synonymous, tiers differ from layers in that they
represent the physical hardware employed by the system. It is the number of such
pieces of hardware that give a particular deployment strategy its tiering
nomenclature. Common sense says that increasing the number of pieces of
hardware has the effect of distributing the processing load, thereby increasing
application performance. Although this is the design intent of a tiered architecture,
simply adding hardware into the application does not necessarily improve the
overall application. We must be careful to add hardware in an appropriate manner
so that we achieve the desired effect.

Single-Tiered Architecture

In a single-tiered architecture, all the software layers that make up an application
reside on the same physical computer. This is typically the case of an application
running against a local database and a local database engine, such as Microsoft
Access. Single-tiered architectures usually represent a user base of one, because
multiple users cannot simultaneously share the database. This architecture is also
the worst-performing because the application and the database engine are running
on the same machine, eliminating any chance for cooperative processing. Figure 2.2
shows the single-tiered architecture.

Figure 2.2. The generic single-tiered architecture.

Machine A

User Layer |<— Business Layer [« Data Layer

»| System Layer |«€

2-Tiered Architecture

The 2-tiered architecture is synonymous with client/server technology. As the name
suggests, we are using two pieces of hardware in this scenario: a client side that
provides the user and business layers and a server side that provides the data layer.
The server side is typically the database server itself. This architecture is much
better at distributing the processing load between two machines—to be sure,
client/server applications represent the largest installation base within the
corporate world. One of the drawbacks to this approach is that it still places a
significant burden on the client machine to provide both the user and business
layers of the application. It also means that as we enhance (or fix) the business
layer, we will have to re-deploy the necessary files across the user base as well. This
can be a significant feat if the user base is large and extends across a vast
geographic space. Figure 2.3 shows the 2-tiered architecture.

Figure 2.3. The generic 2-tiered architecture.

Machine A (Client) Machine B (Server)

User Layer || Business Layer |- | Data Layer

I

System Layer System Layer

3-Tiered Architecture

A 3-tiered architecture fixes some of the problems of a 2-tiered model by
introducing a third computer. In this mode, we insert a special business-layer tier
between the client and server. This not only further improves performance
(assuming it is done correctly), but it also puts the business layer at a single point,
reducing the need to re-deploy the application as we make many of the
enhancements and fixes to the application.

Many developers feel that a 3-tiered architecture is the same as the
user/business/data layering approach. Although this is a technically valid
assumption, it represents a pure layer to tier mapping that is difficult to implement
in real-world situations for a variety of reasons that will be discussed later. Figure
2.4 shows a generic 3-tiered architecture.

Figure 2.4. The generic 3-tiered architecture.

Machine A (Client)

Machine B (Business)

User Layar [

System Layer

-

Business Layer

Machine C (Server)

B

System Layer

-

Data Layer

System Layer

N-Tiered Architecture

An N-tiered architecture starts with a 3-tiered approach but allows the addition of
new business or data layers running on additional hardware. This might be typical of
applications that interface with other applications, but can simply be an application

with multiple business, data, or user tiers. Figure 2.5 shows a realistic, albeit
contrived, complex N-tiered architecture. Figure 2.6 shows a similar, complex
N-tiered architecture specifically using our selected tools and technologies.

Figure 2.5. A complex, generic N-tiered architecture.

Maching D1

Data Layar

System Layer

Machine D2

Machina L1 Machine L2
Usar Layear Usar Layar
A -~
L 4 L
Systam Layer Systarmn Layer
Maching L3 Machine B1
User Layar > Business Layar [
-~ ~
L 4 L4
Machine 51
Syslam Layar Systam Layar
Systerm Layer |
Machine B2
Maching |14
Business Layer
User Layer - -
A
-~
Y
L 4
System Layer
Systam Layar

Data Layar

System Layer

Machina D3

Data Layar

System Layer

Figure 2.6. The N-tiered architecture using our

chosen tools and technologies.

IE4/S ns MTS S0L Server
{Data Consumer)

User Layer [= User Layer Business Layer [| Data Layer

Y

Visual Basic
(Data Generator)

User Layar |-

From Figure 2.5, we can see that for each tier, there can be a system layer to
support the primary layer implemented by the tier. It is important to note that a
middle tier might only be home to a system layer. This arises when we implement
the function- ality needed to drive administration tasks, workflow routing, and
collaboration activities that take place as part of the application's daily chores.

N-tier distribution is critical to successful implementation of enterprise applications
relative to the interfacibility and collaborative attributes discussed in Chapter 1, "An
Introduction to the Enterprise." It is on these middle tiers that we can build the
infrastructure for business layers from disparate systems to interface and work
together. This other system can constitute either internally developed or third-party
applications. We can see a good example of this in the form of a commercial ERP
system that provides access to its business layer through a Business Application
Programming Interface (BAPI). SAP is one such system that provides access to a
limited portion of its functionality through a BAPI interface, also known as the SAP
DCOM Connector, running on an MTS box. In implementing our business layers on
a middle tier, we effectively create our own BAPI into our application as a secondary

process.
NOTE

The cost and complexity of building either 3- or N-tier applications can be much
higher than that for a standard 2-tier model. This is especially true when going
through the first development project using such a model because the learning
curve is steep and the number of decision-making points is high. With these issues
in mind, you should plan to use such architectures only in applications with large
user bases, such as those found in medium to large corporate environments. If you
do decide to tackle a 3- or N-tier model in a smaller-scale application, start with

some of the framework components presented in Part II of this book. This will help
make the transition easier, whether the goal is a proof of concept or simply a plan
for the future.

Mapping Layers to Tiers

As we have shown, layers and tiers are different; yet they relate to each other in
that we have to decide where to physically put our functionality. Depending on how
we perform this mapping, we can define the level of client-side functionality
required by the application. This is important when it comes to the hardware cost
goals of the application, which the development team often has little or no control
over.

Thick Client

A thick client approach is indicative of the single- or 2-tiered models where a
significant amount of functionality resides on the client-side computer. In the
single-tier model, all three layers reside on the client. In the 2-tier model, only the
user and business layers reside on the client. In either case, this usually requires
client machines with higher performance than would otherwise be required.

Thin Client

When a thin client approach is used, only the user layer resides on the client
machine. The business and data layers reside elsewhere, leading us to a 3- or
N-tiered model. In this case, we need a machine with only minimal capabilities. In
this approach, we are limited to a user interface with little complexity because a
simple Web browser constitutes the application. Because of the lowered capabilities,
we use thin clients primarily for data consumption or only light-duty data
generation.

Typically in a thin client approach, we are providing a pure layer to tier mapping.
The user layer maps completely to the client, the business layer maps to a middle
tier (such as MTS), and the data layer maps to a back-end database server. Because
of this mapping approach, all user input must cross from the client to the middle tier
for simple activities, such as data validation, a process known as server
round-tripping. In input-intensive applications, this can be frustrating for the end
user because there is a performance penalty.

Plump Client

A plump client is somewhere in between the thin and thick varieties. Here we use a
3- or N-tiered model as well. In this mode, the user layer and a portion of the
business layer reside on the client side. The remainder of the business layer resides
on a middle tier. This solution represents a best-of-both-worlds scenario in which
we can isolate the business process logic on a middle tier server, yet still enable a
complex user interface. In this mode, we need a client machine that is somewhere
in between the requirements of the thin and thick client modes as well. Although we
can use a Web browser in this mode as well, it usually hosts a complex user layer
object, such as an ActiveX control or a Java applet. Because of the balance afforded
by a plump client, we use it primarily for heavy-duty data generation activities.

In a plump client mode, we modify the pure mapping described in the thin client
approach by making the lines between the tiers a bit fuzzier. In this mode, the client
tier has the user layer and a user-centric portion of the business layer. The middle
tier has the business layer and a data-centric portion of the data layer. The data tier
has the data layer and a business-centric portion of the business layer. While our
tongue is untwisting after reading that series of sentences, we should look at Figure
2.7.

Figure 2.7. The split-layer distribution model.

Simple S50L
Validation Composer
Cliert v Application ¢ Data
Business | > Data o -
Centric | Centric | .
User Business Dana
- o | Business
- Cenlric
A
Triggars

Mapping Layers and Tiers to Your Development Team

Beyond mapping layers to tiers, we also need to consider how the two relate to the
development team. Although it is important to have experts in each of the user,
business, and data layer categories, it is also important to maintain a breadth of
knowledge across the team. Any developer should be able to go into any layer of the

application and perform work on the code base. The reason for this is that the
layered approach means a certain level of cooperation is required between these
functional areas. As such, it is important for one layer to provide the functionality
needed by its attached layer, meaning, for example, that the user layer expert must
understand the requirements of the business layer expert, and vice-versa. Such a
full understanding of all layers by all developers will make the overall development
and maintenance process more robust.

We will also see as we get into the component-based development discussions in
Chapter 4, "The Relational Database Management System," that a one-to-one
mapping between expert and layer bodes well for the development process in
general. Because we have a clearly defined separation of functional areas, each
developer can work on a layer in isolation. In this mode, we can simulate the
functionality of the attached layer through code stubs. During development, we can
perform a high level of unit testing before hooking the application together for the
integrated testing phase. This form of development, with clearly defined interfaces
and stubs, also enables us to generate automated testing routines for regression
testing after the application enters a release candidate or production mode.

Summary

In this chapter, we learned that enterprise application development consists of
more than just code running on a single machine. With today's technologies, we can
put the various pieces of functionality on multiple machines in ways that increase
performance, decrease costs, and improve administration and maintenance. Such
splitting of the functionality also simplifies the implementation of the
interoperability and accessibility aspects of the application. In the next chapter, we
will discuss object orientation as it relates to Visual Basic, MTS, and Microsoft's
Component Object Model.

Chapter 3. Objects, Components, and COM

Whether you are a seasoned object-oriented developer or someone who is just
coming up to speed, it is important to understand some of the basic features that
object-oriented programming imparts. Because we will be leveraging these features
heavily in our framework in Part II of this book, we are providing a suitable overview
in this chapter. To add depth, we will intersperse notes and tips relative to using
object-orientation to your advantage in building enterprise applications throughout
this chapter.

Object Orientation

Object orientation is not an entirely new concept, but it is becoming more prevalent
in the underpinnings of modern applications. It has just been within the last ten
years or so that object-orientation migrated from academia and experimentation to
a true, commercial-grade development methodology. Since then,
non-object-oriented development has moved into the minority position.

NOTE

One important thing to remember is that simply using an object-capable language
does not constitute object-oriented development. In addition, simply defining
classes within an object-capable language, without taking advantage of the power
of object-orientation, does not necessarily make an enterprise application more
robust.

To start a definition of object-orientation is to understand that it is rooted in the
management of complexity. Modern applications, with their intrinsic business logic
and interactions among data elements, can become burdensome to develop and
maintain in a traditional procedural environment. Sometimes just the analysis of the
business problem domain can become increasingly overwhelming as the system's
scope grows from one of simple data management to one that embodies business
process knowledge. Object-orientation helps throughout application development
by allowing us to use a similar thought process across the analysis, design, and
implementation phases. The basic pillars of object-orientation are abstraction,
encapsulation, polymorphism, and inheritance. We will discuss these features of
object-orientation and how they enable us to build modular, maintainable, and
extensible applications.

Abstraction and Class Modeling

What is most striking about object-orientation is that it follows the true sense of the
business world. In this world, anything that a business deals with, whether it is a
widget that a company produces or a financial account that a bank maintains on
behalf of a client, is definable in software terms through a class model. This class
model defines the information pertinent to the business entity, along with the logic
that operates on that information. Additionally, a class definition can contain
references to one or more external classes through association or ownership
relationships. In the case of a financial account, informational elements might
include the account number, the names of the account owners, the current balance,
the type of account, and so on. We call these items properties (also known as
attributes) of the class. Similarly, the class can define a function to add a new
transaction to the account or modify/delete an existing transaction. We call these
items methods (also known as operations) of the class. What differentiates a class
from an object is that a class is a definition, whereas an object is an instance of that
definition.

We can also graphically represent our objects using a class diagram. There are
many different views on how to represent these diagrams, but the most pervading
forms are the Yourdon/Coad and the Rumbaugh methods, named after the
individuals who developed them. Many drawing programs have templates
predefined for these models, whereas many modeling tools can support some or all
of the more popular styles. You can also create your own object modeling technique
using simple lines and boxes. We have chosen to use the Rumbaugh model in this
book because of the popularity of the Unified Modeling Language (UML), of which it
is a component. It also happens to be the model used by the Microsoft Visual
Modeler that is bundled with Visual Studio 6.0 Enterprise Edition. Figure 3.1 shows
an example of a graphical depiction for a financial account class.

Figure 3.1. The caccount class using the UML graphical

model.

CAccount < Class Name

PrimaryOwner
SecondaryOwner
Number <€ Properties
Type
CurrentBalance

& AddTransaction()
& ModifyTransaction() <€ Methods
& DeleteTransaction()

TIP

It is important to decide on a graphical object representation model early in the
project. Make sure that everyone understands how to read it and feels comfortable
with it. This model will be your roadmap as you work your way through all phases of
the application development process and will be critical as the complexity starts to
build.

As you can see, we modeled our real-world Account business entity in terms of
properties and methods. We call this modeling process abstraction, which forms the
basis for object orientation. With this in mind, we can further our discussion of other
features of object-orientation.

Encapsulation

What should be apparent from Figure 3.1 is that we have bundled everything about
the class into a nice, neat package. We formally define everything that the outside
world needs to know about this class in terms of these properties and methods. We
call the public properties and methods of a class its interface, which represents the
concept of encapsulation. In the real-world account example, a customer does not
necessarily need to know how the current balance is calculated based on

transactions that are added, modified, or deleted. They just need to know their
current balance. Similarly, users of the account class do not need to know how the
class calculates the current balance either—just that the class properly handles it
when the transaction processing methods are called. Thus, we can say that
encapsulation has the effect of information hiding and the definition of narrow
interfaces into the class. This concept is critical to the development of robust,
maintainable applications.

A class might implement internal methods and properties but choose not to expose
them to the outside world through its interface. Because of this, we are free to
change the internal workings of these private items without affecting how the
outside world uses our class through its public interface. Figure 3.2 shows how a
public method calls a private method to perform a calculation that updates the value
of a public property.

Figure 3.2. The interactions between public and

private methods and properties.

ChAccount

' PrimaryOwner

* SecondaryOwner
' Number

*Type
»CurrantBalance &

—————| % AddTransaction() «<€t=| 1. Application calls
2. Which adds the transaction “ ModifyTransaction() this public method
and calls this private method DeleteTransaction()
—— | CalculateBalance(1=+ 3. Which calculates
the balance and sets
this public property

Suppose, for the sake of argument, we were to expose the internal function (also
known as a private method) that calculates current balances. We would do this by
defining it to be public versus private. An application using this class, for whatever
reason, might deem it acceptable to call this internal method directly and does so in
a multitude of places. Now suppose that we must change the calling convention of
this method by adding a new parameter to the parameter list, such that we have to
modify every piece of software that references this internal method. Assume also
that the public transaction methods would not have had to change, only the
formerly private method. We have effectively forced ourselves into a potentially
large code rewrite, debug, test, and deployment cycle that we could have otherwise
handled simply within the object's private methods while leaving the public interface
intact. We will see, in the COM model discussion to follow, that we can easily modify

only the class and redeploy it across the user base with a minimum of effort. In the
corporate world, this translates into time and money.

Because the term interface might be a difficult concept to grasp at first, it might be
easier to think of as an electrical socket. In the 220-volt parts of the world, there are
three-pronged sockets with one of the prongs oriented 90 degrees out from the
other two. In the 110-volt parts of the world, there are two- and three-pronged
plugs with a different geometry such that you cannot plug a 110-volt oriented plug
into a 220-volt socket and vice-versa. Imagine if the 110-volt world suddenly began
using 220-volt-style plugs and sockets (assuming voltage will not change). We
would have to replace the plug on every electrical device along with all the wall
sockets. It would be a huge mess. The same goes for properties and methods. After
we define the interfaces of a class and write applications against them, making
changes becomes difficult and costly.

TIP

When defining a class, assume every method is to be defined as private in scope
(that is, hidden) unless there is good reason to make it public. When making a
method public, take steps to ensure the stability of the calling convention (that is,
the parameter list) over the life of the application. Use optional parameters as
necessary to cover anticipated future needs.

Encapsulation also has the effect of protecting the integrity of objects, which are
instantiated using the class definition. We have already touched on this when we
stated that a class is responsible for its own inner workings. Outsiders cannot
meddle in its internal affairs. Similarly, property definitions can be implemented
such that the class rejects invalid property states during the setting process. For
example, a date-based property could reject a date literal, such as "June 31, 1997,"
because it does not constitute a date on any calendar. Again, because the validation
logic is contained within the class definition itself, modifying it to meet changing
business needs occurs in a single place rather than throughout the application base.
This aspect of encapsulation is important, especially for enterprise applications,
when we discuss the implementation of validation logic in Chapter 9, "A Two-Part,
Distributed Business Object." It further adds to our ability to develop robust,
maintainable, and extensible applications.

NOTE

One of the common comments that newcomers to object-oriented development
make is that it seems like unnecessary effort to package data and functionality
together into a unit called a class. It also seems like extra work to define properties
and methods, deciding what is to be public and what is to be private. It is much

easier to just take a seat behind the keyboard and begin banging out some code.
Although it is true that object-oriented development requires a different mindset
and a somewhat formal approach to analysis and design, it is this formalization
process that leads to less complex development over the long term. The old saying
"penny-wise and dollar-foolish" applies here because some time saved up front will
lead to potentially huge problems further into the development, and worse yet, the
application launch process.

Let us switch gears by defining a class with some complexity—with a financial
bond—so we can illustrate some other points and begin setting the stage for other
features of object-orientation. Let us call it cBond (for Class Bond). We define
several properties in tabular form in Table 3.1, methods in Table 3.2, and we
provide a graphical depiction in Figure 3.3.

Figure 3.3. UML representation of a ceona class.

CBond

FaceValue : Currency
» PurchasePrice : Currency
CouponRate : Single
¢« BondTerm : Integer
BondType : Integer
* Name : String

& YieldToMaturity(YearsToMaturity : Integer)
& BondPrice(IntRate : Single)

& DiscountYield(DaysToMaturity : Integer)
N CurrentYield()

Table 3.1. Properties of a Cbond Class

Property Data Type Description

Name String The descriptive name of the bond.

FaceValue Single (Currency) The final redemption value of the
bond.

PurchasePrice|Single (Currency) The price to purchase the bond.

CouponRate Single (Percent) The yearly bond coupon payment

as a percentage of its face value.

BondTerm Integer The length of time to maturity for
the bond, expressed in years, in
the primary market.

BondType Integer: (Enumeration|The bond type used to drive
[CouponBond, DiscountBond,|calculation algorithms.
ConsolBond])

Table 3.2. Methods of a CBond Class

Method Description

YieldToMaturity|Calculates the interest rate that equates the present value of the
coupon payments over the life of the bond to its value today.
Used in the secondary bond market.

BondPrice Calculates the bond price as the sum of the present values of all
the payments for the bond.

CurrentYield Calculates the current yield as an approximation of the yield to
maturity using a simplified formula. Note: Available only on
CouponBond types.

DiscountYield |Calculates the discount yield based on the percentage gain on
the face value of a bond and the remaining days to maturity.

Each method uses one or more of the public property values to perform the
calculation. Some methods require additional information in the form of its
parameter list, as can be seen in Figure 3.3. As you might guess, the BondType
property helps each method determine how to perform the calculation. A sample
Visual Basic implementation of the BondpPrice method might be as follows in Listing
3.1.

Example 3.1. The Bondprice Method

Public Function BondPrice (IntRate as Single) as Single
Dim CouponPayment as Single
Dim j as integer

Dim p as single

CouponPayment = CouponRate * FaceValue
Select Case BondType
Case btCouponBond
For j = 1 to BondTerm
p = p + CouponPayment/ (1 + IntRate)™]
Next j
p = p + FinalvValue/ (1 + IntRate)"BondTerm
BondPrice = p
Case btDiscountBond
BondPrice = FaceValue/ (1 + IntRate)
Case btConsolBond
BondPrice = CouponPayment/IntRate
End Select
End Sub

As you can see, each value of the BondType property requires a different use of the
properties to perform the correct calculation. The application using the class is not
concerned with how the method performs the calculation, but only with the result.
Now suppose that you need to modify the calculation algorithm for the Bondprice
method. Because of encapsulation, you only need to modify the contents of the
BondPrice method and nothing more. Better yet, because you have not changed
the calling convention, the applications using the cBond class are none the wiser
that a change occurred.

Polymorphism

Polymorphism is another standard feature of object-oriented programming.
Fundamentally, polymorphism means the capability to define similar properties and
methods on dissimilar classes. In essence, we define a common interface on a set of
classes such that a calling application can use these classes with a standard set of
conventions. Because this sounds complex, let us provide an example.

Suppose you are developing classes that must interact with a relational database.
For each of these classes, there can be a standard set of methods to retrieve
property values for an object instance from a database. We call this process of
storing and retrieving property values object persistence, a topic we will discuss in
detail in Chapter 5, "Distribution Considerations." We can illustrate an abstract
definition of a couple of methods as follows:

Public Function RetrieveProperties (ObjectId As Long) As Variant
' code to retrieve the property values

End Function

Public Sub SetStateFromVariant (ObjectData As Variant)
' code to set the property values from ObjectData

End Sub

For each class that is to follow this behavior, it must not only define, but also provide
the implementation for these two methods. Suppose you have three such
classes—CClassOne, CClassTwo, and CClassThree. An application that creates
and loads an object might implement polymorphic code in the following manner

(see Listing 3.2).
Example 3.2. The RetrieveObject Method

Public Function RetrieveObject (ClassType As Integer,
ObjectId As Long) As Object

Dim OClassAny As Object
Dim ObjectData as Variant
Select Case ClassType

Case CLASS TYPE ONE

Set OClassAny = New CClassOne

Case CLASS TYPE TWO

Set OClassAny = New CclassTwo

Case CLASS TYPE THREE

Set OClassAny = New CClassThree

End Select
ObjectData = OClassAny.RetrieveProperties (ObjectId)
Call OClassAny.SetStateFromVariant (ObjectData)
SetRetrieveObject = OClassAny

End Function

In the preceding code example, we use a technique known as /ate binding, wherein
Visual Basic performs type checking at runtime rather than at compile time. In this
mode, we can declare a generic object (a variable type intrinsic to Visual Basic) to
represent the instantiated object based on any of the three class definitions. We
must assume that each of these classes defines and implements the
RetrieveProperties and SetStateFromVariant methods as mandated by our
polymorphic requirements. If the classes deviate from these conventions, a runtime
error will occur. If the classes meet these requirements, we can simplify the coding
of the object retrieval process into a single function call on the application. This not
only leads to code that is easier to maintain over the life of the application, but also
makes extending the application to support new class types much simpler.

The late binding technique of Visual Basic presents us with some concerns. Because
late binding performs type checking at runtime, some errors might escape early
testing or even propagate into the production application. Furthermore, late binding
has a performance penalty because Visual Basic must go through a process known
as runtime discovery with each object reference to determine the actual methods
and properties available on the object. This said, we should scrutinize the use of
late-binding approaches in the application wherever possible and choose alternative
approaches. We will discuss several approaches to circumvent these issues when we
discuss the framework components in Part II of the book.

Inheritance

The final pillar of object orientation is that of inheritance. Fundamental to this
concept is the capability to define the common methods and properties of a related
group of classes in a base class. Descendants of this base class can choose to retain
the implementation provided by the base class or can override the implementation
on its own. In some cases, the base class provides no implementation whatsoever,
and it is focused solely on the definition of an interface. We consider these types of
base classes abstract because each subclass must provide the complete
implementation. Regardless of the mode, the descendent class must maintain the
definition of all properties and methods of its base class. Said in another way, the
descendent class must define the same interface as its base. This is similar in
concept to polymorphism, except that inheritance forces the implementation in a
formal manner, such that Visual Basic can perform type checking at compile time.

Looking again at our cBond class, we notice that there is a BondType property to
force certain alternative behaviors by the calculation methods. We can modify our
CBond class into a single 1Bond base class and three subclasses called cCouponBond,
CDhiscountBond, and CConsolBond. We use IBond here (for Interface Bond)
instead of cBond to coincide with Microsoft's terminology for interface
implementation. Graphically, we represent this as shown in Figure 3.4.

Figure 3.4. An inheritance diagram for the 1zona base

class.

<<Interface>>
IBond

* FaceValue : Currency
* PurchasePrice : Currency
*CouponRate : Single
BondTerm : Integer
* Name : String

& YieldToMaturity()
% BondPrice()

% DiscountYield()
~ CurrentYield()

CCouponBond CDiscountBond CConsolBond

If we revisit our bond calculation functions in the context of inheritance, they might
look something like Listing 3.3. Disregard the 1Bond syntax for now because it is a
concept that we gain a thorough understanding of in our work in Part II of this book.

Example 3.3. The Calculate BondPrice Method

' From the application
Public Function CalculateBondPrice (BondType as Integer,
IntRate as Single) As Single
Dim OBond As IBond
Select Case BondType
Case BOND TYPE COUPON
Set OBond = New CCouponBond
Case BOND TYPE DISCOUNT

Set OBond = New CDiscountBond
Case BOND TYPE CONSOL
Set OBond = New CConsolBond
End Select
CalculateBondPrice = OBond.BondPrice (IntRate)

End Function

' From CCouponBond
Implements IBond
Public Function IBond BondPrice (IntRate As Single) As Single
Dim CouponPayment as Single
Dim j as integer
Dim p as single
CouponPayment = IBond CouponRate * IBond FaceValue
For j = 1 to IBond BondTerm
p = p + CouponPayment/ (1 + IntRate)’j
Next j
p = p + IBond FinalValue/ (1 + IntRate)”IBond BondTerm
IBond BondPrice = p

End Function

' From CDiscountBond

Implements IBond

Public Function IBond BondPrice (IntRate As Single) As Single
IBond BondPrice = FaceValue/ (1 + IntRate)

End Function

' From CConsolBond

Implements IBond

Public Function IBond BondPrice (IntRate As Single) As Single
Dim CouponPayment as Single

CouponPayment = IBond CouponRate * IBond FaceValue

IBond BondPrice = CouponPayment/IntRate

End Function

Although the application portion of this example might look somewhat similar to the
polymorphic mechanism from before, there is an important distinction. Because we
have defined these subclasses in the context of a base class 1Bond, we have forced
the interface implementation of the base class. This, in turn, allows Visual Basic to
perform early binding and therefore type checking at compile time. In contrast to
late binding, this leads to better application performance, stability, and
extensibility.

TIP

Any class definition that contains a Type property is a candidate for
inheritance-based implementation.

Critics have chastised Microsoft for not implementing inheritance properly in Visual
Basic in that it does not support a subclass descending from more than one base
class, a concept known as multiple-inheritance. Although this lack of
implementation technically is a true statement, in reality, multiple inheritance
scenarios arise so infrequently that it is not worth the extra complexity that
Microsoft would have had to add to Visual Basic to implement it.

Many critics would further argue that Visual Basic and COM, through their interface
implementation technique, do not even support single inheritance properly and that
the notion of the capability to subclass in this environment is ludicrous. Without
taking a side in this debate, we can sufficiently state that interface implementation
gives you some of the features afforded by single-inheritance, whether or not you
want to formally define them in this manner. The particular side of the debate you
might fall into is immaterial for the purposes of our framework development in Part
II of this book.

Interface inheritance lends itself to maintainability and extensibility—essential
attributes of enterprise applications as discussed in Chapter 1, "An Introduction to
the Enterprise." If the implementation of a base method or property must change,
we have to make the modifications only to the base class. Each descendent then
inherits this new implementation as part of its interface implementation. If the base
class physically resides in a different component than its descendants, something
we will discuss later in this chapter, we only have to redeploy the component
defining the base class.

Association Relationships

After we have defined the basics of classes with simple property types, we can
expand our view to show that classes can have associative relationships with other
classes. For example, a class might reference another class in a one-to-one manner,
or a class might reference a group of other classes in a one-to-many fashion.

One-to-One Relationships

We might consider one-to-one relationships as strong or weak in nature. Weak
relationships are just simple references to other classes that are shareable across
multiple object instances. For example, a CPerson class can be referenced by many
other classes, with a particular OPerson instance being referenced by multiple

object instances of disparate classes. Strong relationships, on the other hand, are
usually the result of containment relationships, where one object is the sole user of
a subordinate object. In an automotive manufacturing application that tracks the
serial numbers of finished units, an example might include the cserializedEngine
and CSerializedAutomobile classes, where each 0OSerializedEngine object can
belong to only one 0SerializedAutomobile object. Figure 3.5 shows a weak
reference, whereas Figure 3.6 shows its strong counterpart.

Figure 3.5. A Weak association relationship.

CAccount CLoan
Number # OriginalAmount
Type # InterestRate
« CurrentBalance # Type
« Term
% AddTransaction() « CurrentBalance
& ModifyTransaction()
: N ApplyPayment

~ DeleteTransaction() pplyPayment()

CalculateBalance()

~ CPerson 7
+ PrimaryOwner # FirtsName + PrimaryBorrower
\ # LastName
« Middlelnitial
AddressOne
AddressTwo
City
State
» ZipCode
WorkNumber
» HomeNumber

Figure 3.6. A strong association relationship.

CSerializedAutomobile
(3 Make
(3 Model
(3 Year
(3 VIN
/
+ ?alizedEngine + SerializedTransmission
CSerializedEngine CSerializedTransmission
(9 EngineType (2 TransmissionType
(3 SerialNumber (3 SerialNumber

In Figure 3.5, we show a graphical representation of a weak reference. In this
example, the crerson class (and thus, object instances based on the class) is
referenced by both the CAccount and CLoan classes. In the real world that forms the
basis for this mini-model, the relationship diagram indicates that it is possible for
the same person to have both a checking account and a house or car loan at the
bank. The same person could have multiple accounts or loans at the same bank.

In Figure 3.6, we show the graphical representation of a strong, or containment,
reference. In this example, we show how a finished, serialized automobile has an
engine and transmission, both of which the manufacturer serializes as well for
tracking purposes. Each 0SerializedEngine and OSerializedTransmission
instance will reference only one instance of the CSerializedAutomobile class.

One-To-Many Relationships

One-to-many references occur so often that we have developed a special class,
known as a collection, to implement this type of relationship, as shown graphically
in Figure 3.7. In this example, the c1Bonds class indicates a collection of 1Bond
interfaces, each of which can be subclassed as before. This cCIBonds class has
several methods associated with group management, such as Add, Remove, Item,
and count. If we defined a cportfolio class, it might have a reference to a
CIBonds class, as well as CIstocks and CIAssets classes, each of which are
collections of 1Bond, IStock, and IAsset classes, respectively. Again, each of

these final interface classes can be subclassed to provide specific implementations,
yet the collection can manage them in their base interface class.

Figure 3.7. A one-to-many relationship and the

collection class.

ClBonds
(2 mCol : Collection

% Add()

» Remove()

* Count()
ltem()

0.7 l -Collection

<<Interface>>
IBond

<<(Class Module>>| J<<Class Module>>| |<<Class Module>>
CCouponBond CDiscountBond CConsolBond

One-to-many relationships and the collection classes that implement them are
synonymous with the master-detail relationships found across many applications.
We will be using these collection classes frequently throughout our framework
architecture. We will cover collections in detail in Chapter 7, "The ClassManager

Library."

Class and Object Naming Conventions

Throughout our discussions in this chapter, we have been alluding to a naming
convention for classes and objects without having given any formal definitions.
Although the naming convention is arbitrary, it is important to decide on one and
adhere to it throughout all phases of the project. This will not only provide a degree

of standardization across multiple developers, but also make it easier for developers
and maintainers to understand the code without the need for an abundant supply of
comments. Standardization is important in classes and objects because the two are
often confused. In our examples and throughout the remainder of this book, we will
be using an uppercase c prefix to denote a class. Similarly, we will be using an
uppercase o prefix for an object. Furthermore, we will be using the same suffix for
both the class and its object instances, as in the case of the cperson class and its
OPerson instances. For example:

Set OPerson = New CPerson

Component-Based Development

With some object-orientation fundamentals behind us, we turn our discussion to
component-based development (CBD). Many people feel that objects and
components are synonymous, when in fact, they are more like siblings. Objects can
exist without components, and vice-versa. A component is a reusable,
self-contained body of functionality that we can use across a broad application base.
Imagine an application suite that has a core piece of functionality contained in an
includable source code module. Making a change to this functionality requires that
we modify and recompile the source code, testing all applications that are using it.
We must then distribute every application that references it. In large applications,
this compile time can be extensive. In a component-based model, we can simply
modify the component and do the same recompile, test, and distribute just on that
component without affecting the applications.

As we alluded in our discussion on layers and tiers in Chapter 2, "Layers and Tiers,"
a CBD approach has some distinct advantages during the development process.
Chief among these is the ability to develop and test components in isolation before
integrated testing.

Component-Based Development and COM

Object-based CBD allows the packaging of class definitions into a deployable entity.
Under the Microsoft Component Object Model (COM) architecture, these packages
are special Dynamic Link Libraries (DLLs), a dynamic runtime technology that has
been available since the earliest days of Microsoft Windows. Microsoft renamed
these COM-style DLLs to ActiveX to indicate that there is a difference. An application
gains access to classes in an ActiveX DLL by loading the library containing the class
definitions into memory, followed by registration of the classes by the COM engine.
Applications can then instantiate objects based on these classes using the COM
engine.

The traditional DLL (non-ActiveX) meets the definition for CBD, but it is procedurally
based (that is, non-object-based). ActiveX DLLs also meet this definition, being
object-based in nature. Because an object-based approach is already rooted in the
reusability of functionality, the ActiveX DLL implementation of CBD is widely
considered the most powerful and flexible technology when working solely on the
Win32 platform.

Although COM is both a component and object engine, it differs from other CBD
technologies in that it represents binary reusability of components versus
source-code level reusability. Because of its binary basis, we can write COM libraries
in any language on the Win32 platform that adheres to the COM specification and its
related API. The basic requirement to support the COM API is the capacity of a
language to implement an array of function pointers that follow a C-style calling
syntax.

The COM engine uses this array as a jumping point into the public methods and
properties defined on the object. Visual Basic is one of many languages with this
capability.

COM actually has two modes of operation: local and remote invocation. The
distinction between these two will become important as we discuss distribution in
Chapter 6, "Understanding Development Fundamentals and Design Goals of an
Enterprise Application."

In local invocation, a component is loaded into the memory space of a single
computer. This component can load directly into an application's process space, or
it can be loaded in a separate process space with an interprocess communication
mechanism. In this latter approach, we must establish a communication channel
between the process spaces. In the case of distributed computing, these processes
reside on physically different machines, and the communication channel must occur
over a network connection. We call the local invocation method an in-process
invocation, and we call the remote invocation method out-of-process. We can
actually make a local, out-of-process reference as well, which effectively removes
the network portion of the communication channel. Microsoft developed a local,
out-of-process mode of invocation for application automation, for example, when a
Microsoft Word document activates an embedded Microsoft Excel worksheet.

With in-process servers, an application can reference an object, its methods, and its
properties using memory pointers as it shares a memory space with the component.
Figure 3.8 depicts the local, in-process invocation.

Figure 3.8. The local, in-process invocation mode of

COM.

Machine A

Process A

Application |g— Memory Pointers —» Component

In the out-of-process server mode, all data must be serialized (that is, made
suitable for transport), sent over the interprocess boundary, and then deserialized.
We call this serialization process marshalling, a topic that we will cover in detail in
Chapter 6. Additionally, the out-of-process mode must set up a "proxy" structure on
the application (or client) side, and a "stub" structure on the component (or server)
side. Figure 3.9 depicts the local, out-of-process mode.

Figure 3.9. The local, out-of-process invocation mode

of COM.

Machine A
Process A Process B

Application Component

Proxy &+ Marshalled Data_{3 Stub

The reason for this proxy/stub setup is to allow the client and server sides of the
boundary to maintain their generic COM programming view, without having to be
concerned about the details of crossing a process boundary. In this mode, neither
side is aware that a process boundary is in place. The client thinks that it is invoking
a local, in-process server. The server thinks that we have called it in an in-process
manner. The in-process mode of COM is fast and efficient, whereas the
out-of-process mode adds extra steps and overhead to accomplish the same tasks.

TIP

We should not use an out-of-process approach in speed-critical areas of an
application. Examples of where not to use an out-of-process approach would include
graphic rendering or genetic algorithm processing.

If the processes reside on different machines, we must add a pair of network
interface cards (NICs) to the diagram. Additionally, we must use the remote
procedure call (RPC) mechanism to allow the proxy/stub pair to communicate. We
refer to the remote, out-of-process mode of COM as Distributed COM (DCOM).
Figure 3.10 depicts DCOM. As we might imagine, DCOM is expensive from an overall
performance standpoint relative to standard COM.

Figure 3.10. The remote, out-of-process invocation

mode of COM.

Machine A Machine B
Process A Process B
Application Component
Proxy Stub
Marshalled Data Marshalled Data
NIC |&t++RPC 443 nNIC

COM-Definable Entities

A COM library not only enables us to define classes in terms of properties and
methods, but also to define enumerations, events, and interfaces used in
inheritance relationships. We already have talked about properties, methods, and
interfaces, so let us complete the definition by talking about enumerations and
events.

Enumerations are nothing more than a list of named integral values, no different
from global constants. What differentiates them is that they become a part of the
COM component. In essence, the COM component predefines the constants needed
by the application in the form of these enumerations. By bundling them with the

classes that rely on them and giving them human-readable names, we can ensure a
certain level of robustness and ease of code development throughout the overall
application.

TIP

Use public enumerations in place of constants when they tie intrinsically to the
operation of a class. This will keep you from having to redefine the constants for
each application that uses the class, because they become part of the COM
component itself. Where goes the class, so go its enumerations.

Events defined for a class are formal messages sent from an object instance to its
application. The application can implement an event handler to respond to these
messages in whatever manner deemed necessary.

NOTE

Visual Basic and COM define events as part of a class, alongside properties and
methods. One might assume then that we can define events on an interface,
thereby making them available to classes implementing the interface. Although this
is a reasonable assumption and a desirable feature, Visual Basic and COM do not
support this. As such, do not plan to use events in conjunction with interface
implementation.

Component Coupling

With the flexibility to place COM classes into components and then have these
components reference each other, it can become easy to create an environment of
high coupling. Coupling occurs when we create a reference from a COM class in one
component to the interface of a COM class in another component. Because
components are different physical entities, this has the effect of hooking the two
components together relative to distribution. Wherever we distribute a component
that references other components, we also must distribute all the referenced
components, all their referenced components, and so on. One reason for coupling is
that we might not properly group functionality into common components.
Functionality that represents a single subpart of the overall business application
might be a good candidate for a single component. Alternatively, functionality that
represents similar design patterns might belong in a single component.

TIP

It is important during the analysis and design phases to group components based on
similar functionality. Although we invariably need to create system-level classes for
use by other classes, we should try to minimize the creation of a chain of component
references. These chains lead to administration and maintenance issues after the
application is in production.

Another issue that leads to coupling is that we try to over-modularize the application
by placing small snippets of subparts into components. Beyond the coupling aspects,
each ActiveX DLL has a certain amount of overhead to load and retain in memory.

Placing functionality in ten components when two would suffice adds unnecessary

performance overhead and complexity to your application.

From a performance perspective, we can look at the time necessary to initialize the
two scenarios. There are two initialization times to look at: the first is the time
required to initialize the component, and the second is the time required to initialize
the object. Remembering that a component in the COM world is a specialized DLL,
we can infer that some initialization time is associated with the DLL. When Visual
Basic must load an ActiveX DLL, it must go through a process of "learning" what
objects are defined in the component in terms of properties, methods, and events.
In the two scenarios, the 10-DLL case will have five times the load time of the 2-DLL
case, assuming negligible differences in the aggregate learning time of the objects
within the components.

From a complexity perspective, the more components created means more work on
the development team. One of the problematic issues with any object-oriented or
interface implementation project is that of recompilation and distribution when
something changes, especially in the early development phases of the application.
For example, if the definition of a core class referenced throughout the project
changes, it is much easier to recompile the two components versus the ten. As you
might already know from multitiered development in the DCOM environment,
propagating such seemingly simple changes across tiers can be very difficult. Thus,
appropriate minimization of the number of components up front is desirable.

We are not trying to say that you should place all your functionality into one
component—this leads to its own set of problems. The moral of the story is that one
should not force modularity purely for the sake of doing so. You should find an
appropriate balance that can come only from experience in developing these sorts
of systems. The framework presented in Part II is a good starting point for
understanding where these lines of balance should be drawn.

When we need to provide a superset of functionality based on classes in separate
components, there is a tendency to have one class directly reference the other to do
this. In this case, we can put the new functionality on an existing class or we can

implement a new class within one of the components to handle this. Remember that
the tenant of CBD is ultimately a high level of modularity. If we design our
components well, there might be other applications that need the base functionality
afforded by one component, but not that of the secondary component or the
bridging functionality binding them together. If we design our components in the
manner just discussed, we must distribute both components just to get to the little
bit of functionality that we need in one.

TIP
To minimize coupling between loosely related components, it is always better to

build a third component to provide the bridge between the two components. In this
manner, each can be distributed independent of the other.

Figure 3.11 shows tight coupling, whereas Figure 3.12 shows its bridged
counterpart.

Figure 3.11. A graphical representation of tight

coupling.

A
-

<--->»

Figure 3.12. A graphical representation of bridged

coupling.

In Figure 3.11, it should be clear that components A and B must travel together
wherever they go. An application that only needs component A must bring along
component B as well. An application that uses component A might go through test,
debug, and redistribution whenever component B changes, although it is not using
it.

In Figure 3.12, we show components A and B bridged together by component C. In
this implementation, both A and B can be used singularly in applications, whereas
applications that need the bridged functionality can use component C to provide
this.

Summary

We have learned some of the important concepts of object orientation and
component-based development in this chapter. We have also learned how
Microsoft's Visual Basic and the Component Object Model implement these concepts
and how we can begin to use them to build modular, flexible applications. In the
next chapter, we turn our attention to understanding the Relational Database
Management system because it is the foundation for the information storage and
retrieval component of our application. We will also begin laying the groundwork for
good database design techniques, specifically as they pertain to our framework.

Chapter 4. The Relational Database

Management System

Although the COM model is good for defining and implementing classes in the form
of binary reusable components, it offers nothing in the form of persistence or the
long-term storage of object state. By state, we mean the values of the properties at
any given moment in time. Perhaps this is something that Microsoft will address in
a future release of the COM standard, but until then, a common solution to this
problem is to store and retrieve data using a relational database management
system (RDBMS).

Object-oriented databases are beginning to make their way into mainstream
application development. Although they provide a solution to the issue of object
persistence, object-oriented databases are still a relatively minor player. This is
partly because they have proprietary programming interfaces, limited scalability,
and in some cases, worse performance. Relational database management systems
(RDBMS), on the other hand, have been around for many years and represent one
of the most robust server-side pieces of software available. Many existing internal
and external applications, whether they are mainframe- or PC-based, most likely
use some form of an RDBMS as their data storage device. As such, we will be using
an RDBMS in our framework architecture as well.

One of the greatest challenges faced when developing any application that interacts
with an RDBMS is how to provide a mapping between the database, the business
objects, and the user interface. There are several different theories on how to
accomplish this, but the prevalent models involve taking a data-centric, a
user-centric, or a business-centric view.

Data-Centric Database Design

The data-centric view defines the database structure independently of any other
considerations. Following this model, we can sacrifice functionality in our business
and data layers, severely impeding our ability to cleanly implement the application.

The data-centric view sometimes presents itself simply because of the organization
of the development team. On many teams, there is a database expert focused on
data integrity, normalization, and performance. This person might care about
nothing else. Many database design decisions come about strictly because of what
the database expert perceives to be best for the application. In some cases, this
works adversely to the rest of the development team from an implementation and
flexibility standpoint. For example, the database designer might want to have all
database access take the form of stored procedures, disallowing any direct

manipulation by dynamic SQL calls generated by the application. The reasoning
behind this, in the database expert's mind, is to protect the integrity of the database
from developers who do not necessarily understand the database structure. It might
also come about simply because of territorial infringement issues. Using this model,
we must code specific data access procedures on each business object because the
calling convention will be different depending on the properties defined. It is
extremely difficult to define a generic database layer using this approach or using a
polymorphic method on the class.

From our examples in the last chapter, let us define how we can implement a
RetrieveProperties method on CBond using a stored procedure approach (see

Listing 4.1).

Example 4.1. The RetrieveProperties Method on

CBond Using Stored Procedure Approach

'From CBond

Public Sub RetrieveProperties (ByVal ObjectId As Long,
ByRef FaceValue As Currency,

ByRef CouponRate As Single,

ByRef BondTerm As Intger,

ByRef BondType As EnumBondType,

ByRef Name As String)

Dim rs As ADODB.Recordset

cmd.CommandText = "sp RetrieveBond"

cmd.CommandType = adCmdStoredProc

Call cmd.Parameters.Append(cmd.CreateParameter ("ObjectId",
adInteger,

adParamInput,

ObjectId))

Call cmd.Parameters.Append (cmd.CreateParameter ("FaceValue",
adCurrency,

adParamOutput,

FaceValue))

Call cmd.Parameters.Append (cmd.CreateParameter ("CouponRate",
adSingle,

adParamOutput,

CouponRate))

Call cmd.Parameters.Append (cmd.CreateParameter ("BondTerm",
adInteger,

adParamOutput,

BondType))

Call cmd.Parameters.Append (cmd.CreateParameter ("BondType",

adInteger,

adParamOutput,

BondType))

Call cmd.Parameters.Append(cmd.CreateParameter ("Name",
advarChar,

adParamOutput,

Name))

Set cmd.ActiveConnection = cnn ' global connection for COM 1lib
Call cmd.Execute

Set cmd = Nothing

End sub

Now imagine having to write a RetrieveProperties method on a Cperson class.
Because the properties on such a class are different from our cBond class, we cannot
implement a polymorphic procedure for the RetrieveProperties method across
various classes. This means a significant amount of coding overhead during the
initial development phase, followed by more issues during maintenance. Similarly,
our overall code base will be bloated because we have not effectively followed good
object- oriented design principles, simply because the database expert wanted to
use stored procedures versus a dynamic SQL approach.

In terms of extensibility, suppose that we need to add a new field to the database to
support a new property on a business object. The stored procedures driving this
business object will need updating along with the business object code. Because we
will be changing the RetrieveProperties method, we will be changing an interface
on the class, which means that we will need to modify, recompile, and redeploy the
applications using this class to make this change.

User-Centric Database Design

The user-centric view defines the database by how we present the information to
the user. This is probably the worst approach to use in defining a database and is
akin to the issues with data-bound controls. Most likely, these sorts of interfaces are
simple master/detail type screens, with little to no data normalization on the
information making up the detail portion.

Business-Centric Database Design

Because object-orientation enables us to model the real world, and the business
layer is the realization of that model, we should be able to follow a business-centric
view during database design. This is precisely what we have done because it is
simple when we have a good object model. In so doing, we guarantee that the
database structure closely follows the business object structure.

Table Orientation

In an RDBMS, information is stored in tables. Each table defines a series of columns
that make up an individual data record. We call these records rows. A single
database can have an unlimited number of tables (or at least a maximum number
defined by the database vendor). All data insertions, updates, and deletions occur at
a single table at the row level. We can relate tables using the primary/foreign key
pairs on the tables. These keys are special columns that we use solely to enforce
relationships between rows in one table and rows in other tables. We define a
primary key on a table as the unique identifier for a given row. External tables that
reference the primary key on a given table use foreign keys on the external table.
We can retrieve data from a single table or join multiple tables to give us a broader
data set. We can predefine these joins using a database view that looks and acts like
a table with retrieval-only properties.

An important concept in RDBMS theory is that of data normalization. The
fundamental principal of normalization is to eliminate redundant information. This
not only improves capacity utilization, but it also ensures that we do not have
multiple copies of the same information floating around within the database. For
example, if we were to define an AccountPerson table and a LoanPerson table to
coincide with Figure 3.5 from Chapter 3, we might have a duplicate record for a
given person. If we have to make an address change, we might remember to do it
in one of the tables and not the other. With this example, we begin to see a similarity
between RDBMS normalization and object-orientation in that any given entity
should exist only once, just as in the real world.

Mapping Tables and Objects

With our wonderful object-orientation and RDBMS worlds at our disposal, a problem
arises when it comes to marrying the two together. We call this the impedance
mismatch problem, where we have to programmatically map objects into our
database structure. Tables are row- and column-based; classes are object- and
property-based.

Our mapping process is actually simple. We create a table for every class and define
columns of the appropriate data type for each property. Thus, a class maps to a
table and properties map to columns, with a table row representing an object
instance. In the case of an inheritance relationship, we map all subclasses of a base
class to a single table, with a classType field to indicate the particular subclass. In
this mode, we must ensure that there are columns defined to represent all
properties across the subclasses. Although this might create "empty" column
conditions on some rows, it is a much more efficient approach. Our data layer will
know which columns are safe to ignore during our insert and update processing.

We handle object relationships with primary/foreign key pairs. In our CAccount and
CPerson association example, we would have tables Table Account and

Table Person defined. Following this object relationship, Table Account would
have a column (foreign key) known as Person Id to reference the 1d column
(primary key) of Table Person. In this mode, we reference the associated object
from the object that makes the association. We sometimes refer to this as
downward referencing.

In a collection-oriented relationship, such as our CPortfolio and CIBonds example,
we make our relationships in an upward fashion. Because these are one-to-many

ownership relationships, we must place foreign keys on the owned object to point
back to its owner's primary key. In this example, we would define tables

Table Portfolio and Table Bond for the class tables. On Table Bond, we place a
Portfolio Id column to reference the portfolio that "owns" this bond. Again, we

will design our data layer with these conventions in mind so it will know how to react
accordingly.

Object Identifiers (OIDs)

In our framework, there is an integer-based 1d field on every table. We define it to
be the primary key on the table. Good database design practice says that a primary
key should have no business meaning. The reason for this is to minimize the impact
of a change in business processes on the database. If we define a column solely to
serve as the OID and primary key, we insulate it from any change brought about by
business process changes, meaning that our table relationships are forever
preserved.

For example, suppose you had developed a system that used a 10-digit part number
string as its primary key on a table. Now suppose that through mergers and
acquisitions this part number changes to a 15-digit part number loosely based on
the formats from the combined companies. To accommodate this change, you not
only have to update your primary table with the new numbers, but also update
every table that references the primary table with this key. This level of work also
includes the expansion of the effected fields and the synchronization of the values in
all tables, a task that can grow to be quite complex.

Another benefit of the approach of using a single 1d field as the primary key is that
of overall database size. On SQL Server, an integer field requires four bytes of
storage space. In the preceding example, the 10-digit part number required 10
bytes of space, and the expanded version required 15 bytes. Let us assume from the
preceding example that the primary table has 10,000 records. Let us also assume
that an additional 50,000 records among 10 other tables reference this primary
table. In the 10-digit scenario, the key values alone would consume 585KB of space
in the database, whereas the 15-digit version would jump to 879KB. In the

1d-based approach, the keys require only 234KB of space. These numbers might
seem small given the relatively low cost of storage space, but it should be easy to
extrapolate this 73% reduction in key storage space across a much larger data set.

OID Generation

With the need of OIDs in mind, we must be able to generate unique OID values in an
efficient fashion. Some developers prefer to create a single table with a single row
that does nothing other than track the last OID value used. In this mode, our OID
values are unique across a database when they only need to be unique within a table.
This has the effect of under-utilizing the key storage capacity of the long integer
field by disbursing its values across all tables. To solve this problem, some
developers have modified the previous approach by creating a last used row for
each table. Although this does solve the under-utilization problem, it forces a
database read followed by an update (to increment the key value) for each row
inserted elsewhere in the database. This is in conjunction with the overhead
associated with the data row access in the target table.

To further circumvent this issue, some developers have resorted to a multi-key
approach in OID generation. Here, we generate a session-based identifier from a
database table as in the previous example. The application is then responsible for
iterating through a low value used in conjunction with the high value. Although this
approach satisfies the read/update issue of OID generation, it leaves holes in the
key sequence, again under-utilizing the capacity of the underlying integer data

type.

A third approach to OID generation is to have an insert trigger on the table calculate
the next 1d value and perform an update with the appropriate value. For
performance and uniqueness reasons, this technique relies on there being a unique
clustered index on the 1d column. Such an index has the property that the 1d value
is unique across all rows and that the RDBMS physically orders the rows according
to their logical sort order based on the index. Database administrators normally
apply these types of indexes to the primary key, with the intent of improving search
times on the most commonly used index. Just prior to our row insert, we perform an
SQL query to get the maximum current 1d value, increment it by one, and use the
result as our new OID. There are some issues with this approach. The most
problematic is that, to ensure concurrency, a lock must be placed on the table from
the time the SQL statement to generate the 1d is executed until the update has
completed. For high transaction situations, this can create significant deadlock
issues that can force one or more client operations to fail at the expense of others.

In our model, we are relying on the underlying capabilities of the Identity column
type, also known as an AutoNumber field in Access. The Identity type is a special
column that is based on the integer type, but one in which SQL Server automatically

increments with each row insertion. Until version 2.1 of ADO, there was no reliable
way to retrieve this value from the server so it could be used to programmatically
formulate the necessary relationships to other tables in the database. With the 2.1
release, we are able to retrieve these values as long as triggers do not insert
additional rows into other tables with Identity columns. A complete discussion of
this issue can be found on Microsoft's KnowledgeBase in an article titled "Identity
and Auto-Increment Fields in ADO 2.1 and Beyond."

NOTE

It is important to note that for the sample code accompanying the text to work on
the provided Access database, the Microsoft Jet OLE DB Provider 4.0 must be used
in conjunction with the Microsoft Jet 4.0 version database. Both are installed by
Microsoft Access 2000.

The primary issue with this approach is that currently it is guaranteed to work only
with SQL Server and Jet 4.0 databases. The insert trigger issue might also present
a problem if the development team cannot move the functionality implemented by
these triggers to the Application tier.

Referential Integrity

Most, if not all, RDBMS systems have some mechanism for defining referential
integrity (RI). When we speak of RI, we mean that the database server makes sure
that we do not cause invalid primary/foreign key pair references in the database.
For example, in the Table Portfolio example, when we delete a row in table, we
should also delete every referenced row in Table Bonds. There are several ways to
accomplish this. Most RDBMS servers have declarative RI, where we formally define
the primary/foreign key pairs and the server takes care of RI natively. Although this
is efficient, on many servers, the names of the columns must be unique across the
entire database, meaning we cannot implement a standard naming convention
across all the tables as discussed in the previous section.

An issue arises with this approach when we might want to nullify a foreign key
column when its parent row is deleted, versus simply deleting the row with the
foreign key. In the CSerializedAutomobile and CSerializedEngine example
from Chapter 3, "Objects, Components, and COM," we might not want to delete the
engine when we delete the automobile. By nullifying the foreign key, we simply
indicate that no automobile owns the engine.

Another issue arises in that we might want to perform more than just RI during a
delete process, such as inactivating an account if we delete all its transactions or

providing complex validation logic. In these cases, we will be using database
triggers to perform this work. A database trigger is a programming hook provided
by the vendor that allows us to write code for the insert, update, and delete events
of a given database row. Part of this logic could be to abort the transaction if
something is not valid.

TIP

For maximum flexibility and maintainability and the issues with declarative RI, we
should consolidate our RDBMS side logic into triggers.

Data Localization

When we begin discussing an enterprise scale application, geographies invariably
enter the picture. During our analysis phases, we will find that we need to manage
some data at a global corporate level while we need to manage other data at the
local site level. Because of this, we need a mechanism to ensure that every site has
suitable access to the global data. In SQL Server 6.5, joins can occur only across
tables located on the server. Joins that cross servers cannot be accomplished.
Therefore, we need a local copy of the global data if we need to join our local data
to it.

To accomplish this, we have to set up a replication environment where we maintain
global data in a master server and then copy it at periodic intervals to the local
servers. We determine the frequency of replication and required server connection
mode by the need for real-time data at the remote sites. If we need real-time access,
replication cycles in one- or five-minute intervals over a WAN are required. If we
need near- real-time response, we can get by with an hourly cycle over a WAN or
dial-up connection. If we need only periodic synchronization, a daily cycle over a
WAN or dial-up is sufficient.

What is important about global data is that we should try to maintain it at the master
server level. Although it is possible to enable bidirectional replication, it is extremely
painful to keep global data synchronized if we are generating global data at the local
level. It is also difficult to ensure that there are not any OID collisions. Because we
are generating OID values based on the 1d field of a table in a site-based server we
might have to go to a multi-key approach where we include a site Id column on
every table.

Locking

With an RDBMS system, we are concerned with data locking. At one level, we want
to ensure that two users are not trying to update the same row simultaneously.

Fortunately, the RDBMS takes care of this for us in conjunction with our lock settings
controlled through the data access library (ADO). In SQL Server 6.5 and later,
locking occurs at the page level, which means not only the row being altered is
locked, but also every row on the same data page as the locked row. This can cause
some issues in high-volume situations. We will provide workarounds to this problem
in Chapter 10, "Adding an ActiveX Control to the Framework."

When we instantiate an object, we retrieve the state information from the RDBMS.
Only during this retrieval process is the row locked because we return our database
connection to the pool when we are finished. After this happens, there are no
safeguards to prevent another user from instantiating another editable copy of the
object. Because of this, we must provide an object-locking mechanism. We will
discuss such details in Chapter 10.

Performance Tuning

One of the significant issues faced in enterprise applications is the performance of
the system as the number of records managed by the underlying RDBMS grows.
One of the most difficult problems to tackle is the fact that as the composition of the
data changes, what was once an optimal query path suddenly becomes suboptimal.
A specific manifestation of this issue is related to the fact that the SQL Server query
optimizer, just like the optimizers of many RDBMS products, relies on indexes and
the statistics on those indexes to determine an optimal query plan. SQL Server does
not specifically update these statistics automatically, so over time the optimizer can
begin making inefficient query plans as the database becomes more populated. A
few weeks or months after the launch date of the application, the performance of
the RDBMS can noticeably degrade because of incorrect assumptions made by the
query optimizer when the development team originally defined these views. It is a
common misconception that the degradation is due to an increasing user load when
it might simply be a sign that the RDBMS is ready for tuning.

For example, SQL Server's goal in query optimization is to generate an initial
working table based on one or more of the WHERE clause conditions. From there, it
joins this working result set to the table that should produce the next-smallest result
of the remaining tables, creating yet a new result set in the process. This process of
joining repeats for all remaining tables, with a scan through the final result to return
the rows that satisfy the conditions of the WHERE clause. The optimizer relies on table
indexes and their associated statistics to make these decisions. If these statistics do
not properly reflect the underlying data or indexes on the data, the query optimizer
can produce a very large initial result set or choose an inefficient index.

For example, assume that one of the conditions in the WHERE clause produces a
working result set of 10,000 rows. If the optimizer incorrectly picks an inefficient
index because of stale statistics, it might spend a significant amount of time

retrieving these rows, although it thinks it is being efficient. Worse, the optimizer
might have forgone an initial working result set that would have produced only five
rows because of bad statistics.

Although this is a simple concept to grasp, what is difficult about it is how SQL
Server can determine that one condition will produce the five-row result set while
the other will produce the 10,000-row result set. SQL Server will not know how
many rows a given condition will generate until it actually performs the query; by
that time, it is too late. Instead, SQL Server tries to use index statistics as an
approximation of result set size and row-selection efficiency. To do this, it first
makes a list of which indexes it can use based on the columns in the indexes and the
columns in the WHERE clause and join portions of the query. For each possible index,
it looks at a statistic known as average row hits to estimate how many rows will
need examining to find a specific row using this index. A unique clustered index on
the primary key of the table will have this value set to 2, whereas other indexes on
the table might be in the thousands. SQL Server will also express this value as a
percentage of the total rows in the table that it must examine to select a row. It will
also provide a subjective, textual rating.

For example, in the unique clustered index case, the percentage is 0.00% for very
good selectivity, while another index might have a percentage of 5% and a rating of
very poor selectivity. You can access this information for an index by clicking the
Distribution button in the Manage Indexes dialog box in the SQL Enterprise
Manager.

NOTE

Indexes with selectivity indexes greater than 5% should be considered for removal
from the RDBMS because they add little value but have some maintenance
overhead.

Using the efficiencies of all available indexes combined with the relative table sizes,
SQL Server proceeds to pick the order in which it will filter and join to arrive at the
result set. There is little you can do other than to provide SQL Server with good
indexes, fresh statistics, and occasional optimizer hints when it comes to
performance tuning. Because of this, database tuning can seem like an art more
than a science. Following several essential steps can provide a method to the
madness:

1. Verify that you have indexes on all columns that are participating as part of
a table join operation. Normally, these should be the primary and foreign
keys of each table, with one index for the primary key columns and another
for the foreign key columns.

2. Verify that you have indexes on one or more columns that are participating
in the WHERE clause. These are sometimes known as covering indexes.

3. Rebuild the indexes used by the queries in question to have them placed on
sequential pages in the database. This will also update the statistics on the
index.

4. Verify the results using an SQL query window within Enterprise Manager with
the Show Query Plan option turned on. You might still need to override the
SQL Server query plan optimizer using optimizer hints.

After you have gotten through the initial tuning phase of your RDBMS, you still must
periodically repeat the last few steps to maintain optimal efficiencies. In the long run,
you might need to re-tweak certain queries by adding or modifying indexes and
repeating the steps. Many production SQL Server implementations use the Task
Manager to schedule weekly or monthly re-indexing operations during off-peak load
times. You can accomplish this by selecting the Execute as Task button when
rebuilding an index from the Manage Indexes dialog box within the Executive
Manager.

Summary

This chapter covered the basics of an RDBMS system. Specifically, we talked about
simple database design techniques and methods for mapping objects to tables for
the purpose of persistence. We have also talked about some of the issues related to
generating an OID value and returning that value to the client application so we can
maintain the proper table references in the database. We also touched on secondary
issues such as data replication, locking, and performance tuning to address the
scalability and accessibility issues associated with enterprise applications.

In the next chapter, we will begin discussing the issues involved with creating a
distributed application. We will focus our efforts on how we can place objects on
different machines and make them communicate through Distributed COM (DCOM)
technologies. We will also explore some of the tradeoff decisions that must be made
relative to moving data efficiently between machines.

Chapter 5. Distribution Considerations

Regardless of the technology chosen for communication between distributed
objects—in our case DCOM—there are some basic considerations relative to how
objects are instantiated and how information travels between the tiers of the system.
Although the distribution mechanism itself handles most of the headaches, there
are still some areas for trade-off decision-making. It is prudent for the system
architect and development team to be aware of the options available to them and
their associated issues before making what will be a long-term decision.

Data Marshalling

An important concept to understand is that object orientation is a development and
programming convenience, as we said earlier, to manage complexity. Although
there might be standard ways to diagram classes in terms of properties and
methods, each object-oriented environment can internally implement
object-orientation differently. Thus, there is not a standard way to pass an object
over a network boundary. The foundation on which DCOM resides, the Remote
Procedure Call (RPC) mechanism, itself is not object-oriented, but procedural. From
our DCOM overview, we know that for objects to "move" around the network, the
distribution engine must first convert them into a data stream that fits nicely into
the packet structure of the network transport protocol.

A process known as data marshalling executes this conversion process. The
counter-activity, known as de-marshaling, converts the marshaled data back into
an object on the receiving end. The COM engine has an auto marshaller that is good
at providing this functionality in the background, so in most cases, you do not have
to worry about the details of handling this yourself. For complex objects, you can
override the auto marshaller by implementing a specific IMarshal interface on your
COM class. Alternatively, you can programmatically move the state data of your
object into an intermediate format that is much easier for the auto marshaller to
deal with, a concept known as pre-marshalling. We will discuss several
pre-marshalling techniques later, because we will exploit this method for our
architecture.

Remote Activation

One of the most important design considerations relative to a distributed
architecture is how objects are instantiated and how data is transferred between the
two sides of a DCOM boundary that spans a network connection.

In the DCOM world, remote objects are instantiated on the server side of the
boundary with an object reference pointer sent back to the client. In this mode,
DCOM creates a proxy process on the client that looks and feels just like a COM
object to the client process. DCOM then creates a stub process on the server that
communicates with the client-side proxy and the server-side COM object requested
by the client. Because the remote object physically resides on the server, DCOM
sends all method calls and property accesses through this proxy/stub pair over the
network, using RPC as discussed earlier.

The calling convention for this mode might look something like in Listing 5.1.

Example 5.1. Instantiating a Remote DCOM Object to

Pull Properties

Sub LoadPerson (Id as Long)

Dim Person As CPerson

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)

110 txtLastName.Text = Person.LastName

115 txtFirstName.Text = Person.FirstName
195 txtDomainName.Text = Person.DomainName
End Sub

On line 100, the object is created on the remote server "MTs-HOUO5" and the
resulting object reference is sent back to the client and set to the person object
reference. At this point, DCOM has created the proxy and stub. On line 105, we call
the r.oad method of the person object to populate the state from the data store.
DCOM must marshal the 1d parameter during this call. By line 110, our Person
object is instantiated and its state has been set from the data store. We begin
moving the data from the object into our UI elements for presentation to the user.
Each of the property accesses result in a trip through the proxy/stub layer to the
server, because that is where the object is physically living. DCOM must also call the
marshaller into action for each of these property accesses.

An equivalent subroutine to save the object back to the data store might be as
shown in Listing 5.2.

Example 5.2. Instantiating a Remote DCOM Object to

Push Properties

Sub SavePerson (Id as Long)

Dim Person As CPerson

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUO5")
105 Person.Id = Id

110 Person.LastName = txtLastName.Text

115 Person.FirstName = txtFirstName.Text

195 Person.DomainName = txtDomainName.Text
200 Person.Save

End Sub

Again, each property access requires the same proxy/stub layer traversal and
passes through the marshaller.

Although this simple example might seem trivial, we only need to imagine an
application with five to ten objects per UI form and a user base of several hundred
to see the implications of this approach. There will be many server round trips
through the proxy/stub layer to perform relatively simple tasks. One common way
to solve some of the round-tripping overhead is to bundle all the individual property
accesses into batch methods.

The same LoadPerson subroutine when re-written with a batch call might look
something like Listing 5.3.

Example 5.3. An Optimized DCOM Call That Pulls

Properties as a UDT

Sub LoadPerson (Id as Long)

Dim Person As CPerson

Dim PersonData As PersonDataType

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUOS5")
105 Call Person.Load (Id)

110 Call Person.SetStateToUDT (PersonData)

115 txtLastName.Text = PersonData.LastName

120 txtFirstName.Text PersonData.FirstName

195 txtDomainName.Text = PersonData.DomainName
End Sub

In this incarnation, the subroutine puts the state data of the entire pPerson object
into a User Defined Type (UDT) and sets the object state in a single call, a method
we will discuss later in this chapter. Because of the single method call, only one pass
through the proxy/stub layer is required, as well as a single pass through the
marshaller. This results in a more efficient use of network bandwidth and better
response time over slower networks.

A similarly developed savePerson subroutine might look like Listing 5.4.

Example 5.4. An Optimized DCOM Call That Pushes

Properties as a UDT

Sub SavePerson (Id as Long)

Dim Person As CPerson

Dim PersonData As PersonDataType

100 Set Person = CreateObject ("OfficelibServer.CPerson","MTS-HOUO5")
105 PersonData.Id = Id

110 PersonData.LastName = txtLastName.Text

115 PersonData.FirstName = txtFirstName.Text

195 PersonData.DomainName = txtDomainName.Text
200 Call Person.SetStateFromUDT (PersonData)
210 Person.Save (Id)

End Sub

Again, by using a UDT in a single call, we are making judicious use of network and
system resources.

Structured Data-Passing Techniques

As might have become apparent by now, one of the primary issues to solve when
implementing distributed objects is how to optimally communicate object state
information between the tiers. We have already discussed using a UDT as a
mechanism to pass a structured data packet that represents the state of all
properties. By doing this, we can accommodate the setting or getting of all
properties with a single call across the DCOM boundary. The next sections expand
on this technique with several alternatives that are commonly used to solve this
problem.

Disconnected Recordsets

The disconnected recordset approach to pass structured data is the one
recommended by Microsoft and many books on the subject matter. The reason for
this recommendation is that it offers a flexible and programmer-friendly mechanism
to transfer information. In this mode, the server creates a recordset on the server
and sends it to the client. The client can then move the information from the
recordset into an object, or can work with the recordset directly. This recordset, if
sourced by the server, might be the direct result of a database query, or it might be
the result of programmatic activity on the server to explicitly build it.

The LoadPerson subroutine written with a recordset passing convention would look
like Listing 5.5.

Example 5.5. An Optimized DCOM Call That Pulils

Properties as an ADO Recordset

Sub LoadPerson (Id as Long)

Dim Person As CPerson

Dim rsPersonData As ADOR.RecordSet

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)

110 Call Person.SetStateToRS (rsPersonData)

115 txtLastName.Text = rsPersonData.Fields.Item("LastName") .Value

120 txtFirstName.Text = rsPersonData.Fields.Item("FirstName") .Value
195 txtDomainName.Text = rsPersonData.Fields.Item ("DomainName") .Value
End Sub

The implementation of the setstateToRS method on cperson might look something
like Listing 5.6.

Example 5.6. An Optimized DCOM Call That Pushes

Properties as an ADO Recordset

Public Sub SetStateToRS (ByRef rsRet as ADOR.RecordSet)
100 If Not rsState Is Nothing Then

' NOTE: rsState is a private member of this class
110 rsState.MoveFirst

115 Set rsRet = rsState

140 Else

145 Set rsRet = Nothing
150 End If

End Sub

In the case of collections of objects, we can return the information for the multiple
objects with the single call. The need for this might arise quite frequently when we
talk about the detail side of a master/detail relationship. In this case, the return
parameter would still be the recordset, but it would have a row for each object
instance. The client-side object is responsible for iterating through each row.

Although the recordset approach is programmatically simple on both sides of the
DCOM boundary, there are several issues with its use. The first issue is with the
overhead in the form of metadata that must accompany the actual data during the
transfer. For example, in addition to the actual result set, each recordset has a
Fields collection to describe the column layout of the information. Each rField object
in this collection has information about the column name, its data type, and two
collections of attributes and properties. Additionally, if a database query creates the
recordset, there is extra information associated with the SQL grammar and
database connection used to generate the result set. Marshalling must occur on all
this extra overhead data in conjunction with the actual data before sending it across
the DCOM boundary. Because of this overhead, the use of a recordset to send
information across processes is expensive. Additionally, it appears that the
recordset custom marshaller is pre-marshalling the information before marshalling.
With these overhead issues, it appears that ADO recordsets recover this extra cost
somewhere above 10,000 records.

NOTE

For result sets above 10,000 records, ADO recordsets are the most efficient method
for sending information across a DCOM boundary. In such cases, you should
consider redesigning an application that needs to send so many records across a
DCOM boundary.

Another potential issue is that the client side not only must have the ADO library
installed (or its lighter-weight ADOR sibling), but its version must be compatible
with the version running on the server. Because this is a technology just entering
widespread use, expect Microsoft to make revisions over time and include such
revisions in their full range of products. Confounding this issue is that the names
Microsoft uses for the primary DLLs to support ADO and ADOR are the same,
regardless of the version. For example, the ADO library is found in a DLL called
MSADO15.DLL whether it is version 1.5, 2.0, or 2.1; the same is true for
MSADOR15.DLL. Although the libraries are backward compatible with each other,

you might have ADO or ADOR upgraded on your client machine as part of some
other installation process without it becoming evident to you. If you start using
some of the newer properties, you might experience difficulty when deploying to an
MTS machine with older libraries installed. Worse, it can take you several days to
determine the source of the problem because the filenames for the libraries are the
same across versions.

As of the writing of this book, Microsoft has gone through three revisions (1.5, 2.0,
and 2.1) of ADO, whereas 2.5 is currently in beta. In addition, because ADO might
actually interface with ODBC to get to the database server, it too will need installing
and administering on the client side.

TIP

Do not use ADO on the client unless you are prepared to maintain it and potentially
distribute and maintain ODBC across the user base.

Property Bags

Microsoft developed the PropertyBag object to support the saving of design time
settings for ActiveX controls created in Visual Basic. Although we can extrapolate
their use to support structured information communication, they are still just a
collection of name/value pairs. In one sense, however, we can think of a
PropertyBag as a portable collection with one important caveat. The PropertyBag
has a Contents property that converts the name/value pairs into an intermediate
byte array that then converts directly to a string representation. On the receiving
end of the DCOM boundary, another PropertyBag object can use this string to
re-create the byte array and subsequently set its Contents property, effectively
re-creating the information.

The LoadPerson subroutine written with a PropertyBag passing convention would
look like Listing 5.7.

Example 5.7. An Optimized DCOM Call That Pulls

Properties as a PropertyBag

Sub LoadPerson (Id as Long)

Dim Person As CPerson

Dim pbPersonData As New PropertyBag
Dim sData As String

Dim baData () As Byte

100 Set Person = CreateObject ("OfficelibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)

110 Call Person.SetStateToPBString (sData)

115 baData = sData

120 pbPersonData.Contents = baData

125 txtLastName.Text = pbPersonData.ReadProperty ("LastName")
130 txtFirstName.Text = pbPersonData.ReadProperty ("FirstName")

195 txtDomainName.Text = pbPersonData.ReadProperty ("DomainName™)
End Sub

Although the marshalling aspect of the string generated by the Contents property is
of minimal concern, creating a PropertyBag is more expensive than other options in
terms of speed and information bloat. If we assume that an ADO recordset is the
original source of most information, we will have to traverse the entire recordset
programmatically in VB to move the data into the PropertyBag.

The implementation of the setStateToPBString method on CPerson might look
something like Listing 5.8.

Example 5.8. An Optimized DCOM Call That Pushes

Properties as a PropertyBag

Public Sub SetStateToPBString(ByRef sRet as String)
Dim pb As New PropertyBag
Dim rsField As ADOR.Field
Dim ba () As Byte
100 If Not rsState Is Nothing Then
' NOTE: rsState is a private global member of this class
110 rsState.MoveFirst
115 For Each rsField In rsState.Fields
120 pb.WriteProperty rsField.Name, rsField.Value
125 Next
130 ba = pb.Contents
135 sRet = ba
140 Else
145 sRet = ""
150 End If
End Sub

In the preceding example, a significant amount of programmatic overhead is
associated with building the return string. First, we must create the PropertyBag

object. Second, we must traverse the recordset's Fields collection (line 115). For
each iteration, we add the current field/value pair to the bag (line 120). After we
complete the traversal, we create the byte array (line 130) and create the final
return string (line 135).

This process is complicated further if there are multiple records requiring a
collection or array of Contents strings. In this case, the return parameter would be
an array of strings representing individual property bags, each re-creating the field
name metadata that corresponds to a particular value.

User-Defined Types

User-Defined Types (UDTs) are simple in concept in that they follow the structural
definition common to many procedural languages. In Visual Basic, we define a UDT
using a Type..End Type block in the declaration section of a code module.

A sample UDT definition corresponding to the cperson class might look something
like Listing 5.9.

Example 5.9. The PersonDataType UDT

Public Type PersonDataType
Id As Long

LastName As String
FirstName As String
MiddleIntital As String
EmployeeNumber As String
OfficePhone As String
OfficeFax As String
Pager As String
RoomNumber As String
DepartmentId As Long
UserName As String
DomainName As String

End Type

To reiterate here, the LoadPerson subroutine with a UDT passing convention would
look like Listing 5.10.

Example 5.10. An Optimized DCOM Call That Pulls

Properties as a UDT

Sub LoadPerson (Id as Long)

Dim Person As CPerson

Dim PersonData As PersonDataType

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)

110 Call Person.SetStateToUDT (PersonData)

115 txtLastName.Text = PersonData.LastName

120 txtFirstName.Text = PersonData.FirstName
195 txtDomainName.Text = PersonData.DomainName
End Sub

The implementation of the setstateToUDT method on cPerson might look
something like Listing 5.11.

Example 5.11. Moving Data from an ADO Recordset to

a uUDT

Public Sub SetStateToUDT (ByRef udtRet as PersonDataType)

100 If Not rsState Is Nothing Then

' NOTE: rsState is a private global member of this class

105 rsState.MoveFirst

110 If Not rsState Is Nothing

115 With udtRet

120 .Id = rsState.Fields.Item("Id") .Value

125 .LastName = rsState.Fields.Item("LastName") .Value

130 .FirstName = rsState.Fields.Item("FirstName") .Value

135 .MiddleInitial = rsState.Fields.Item("MiddleInitial") .Value

140 ' code to copy the remainder of the field values into the UDT
195 .DomainName = rsState.Fields.Item("DomainName") .Value

200 End With

210 Else

' code to set every member of the UDT to an
' appropriate zeroed state

215 End If
End Sub

The UDT approach is simple and easily managed because the type definition is
visible to both the client and server sides of the boundary when it is declared Public
within a public class module on the server. As in the case of the other options
discussed so far, we might need to handle multiple records as an array of the UDT
type. This is still an efficient approach because only data travels across the
boundary. No metadata describing the data is necessary because it is inherent in the
type definition.

With all the benefits of UDTs, it might be difficult to understand why any other
approach might be necessary. At issue is the only major drawback to a UDT—it
cannot be supported by VBScript. At first glance, this might seem insignificant until
we remember that the basis for Active Server Pages is VBScript. With more
application functionality moving to the IIS server, this becomes a crippling
limitation.

Variant Arrays

Variant arrays are the most flexible and the simplest form of data transfer across a
DCOM boundary. Although it does require the development of some indexing
structures to handle them effectively, such development is relatively minor when
viewed against the long-term benefits.

The LoadPerson subroutine written with a variant passing convention would look
like Listing 5.12.

Example 5.12. An Optimized DCOM Call That Pulls

Properties as a Variant Array

Sub LoadPerson (Id as Long)

Dim Person As CPerson

Dim vData As Variant

Dim vFields As Variant

Dim diFields as Scripting.Dictionary

Dim i as Integer

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)

110 Call Person.SetStateToVariant (vFields,vData)

115 If IsArray(vData) Then

120 Set diFields = CreateObject ("Scripting.Dictionary")
125 For i1 = LBound(vFields) To UBound (vFields)

130 diFields.Add vFields (i), CStr (i)

135 Next I

140 txtLastName.Text = vData (diFields.Item("LastName"),0)
145 txtFirstName.Text = vData (diFields.Item("FirstName"),0)

195 txtDomainName.Text = vData (diFields.Item ("DomainName"),0)
200 End Ff
End Sub

In the preceding example, we are receiving two return parameters from the
SetStateToVariant method: vFields and vData. The former is a variant array of
string values representing the field names. The ordinal position of the values in this
array corresponds to the same ordinal positions in the vData array, which is the
actual data being returned. So that we can more easily manage the data array, we
create a Dictionary object keyed on the field name so that we can index into it. ASP
again drives an implementation decision to use the Dictionary object instead of a
standard VBA Collection object, which VBScript does not support. Regardless of
whether we are returning data for single or multiple rows, vbData will always be a
two-dimensional array, hence the second index dimension on lines 140-195. This
directly relates to the use of the GetrRows functionality on the ADO recordset to
generate the variant array.

The implementation of the setstateTovariant method on CpPerson might look
something like Listing 5.13.

Example 5.13. An Optimized DCOM Call That Pushes

Properties as a Variant Array

Public Sub SetStateToVariant (ByRef vFields As Variant, ByRef vData As
Variant)

Dim rsField As ADOR.Field

Dim i as Integer

100 If Not rsState Is Nothing Then

' NOTE: rsState is a private global member of this class
105 rsState.MoveFirst

110 If Not rsState Is Nothing

115 vData = rsState.GetRows

115 ReDim vFields (0 to rsState.Fields.Count - 1)

120 1 =0

115 For Each rsField In rsState.Fields

120 vFields (i) = rsField.Name

1251 =1 + 1

125 Next

210 Else

215 vData = vbEmpty

220 vFields = vbEmpty
215 End If
End Sub

The variant array approach is simple and fast. It also represents the utmost in
flexibility because neither the server nor the client requires UDT definitions. As in
the case of the other options discussed so far, we might need to handle multiple
records. The variant array approach handles this naturally because it is a
two-dimensional array with the first dimension representing the field and the
second indicating the row. The metadata needed to describe the data is simply an
ordered list of string values that apply to the entire data set.

If we consider that most data originates as a database query, Microsoft must realize
something here because they provide a highly optimized method in the form of the
GetRows method. Although the method must be performing a memory copy, the
internal structure of the recordset must be similar to that of the variant array that it
generates. We can make this inference from the fact that even for large recordsets,
the GetrRows method returns quickly. The auto marshaller then processes this
resulting array quickly for passage across the DCOM boundary. This approach is not
only of minimal cost in performance and of overhead, but it also represents the best
solution in flexi-bility in supporting both the typed VB language and the
variant-based VBScript within ASP.

XML

Although we will cover XML (eXtensible Markup Language) in detail in Chapter 13,
"Interoperability," it is important to note that although it is usable as a
cross-process communication mechanism, it is the one with the highest cost.
Because of this, we relegate it to boundaries that cross platforms or applications
rather than simple cross-process communication within a platform. In these cases,
the boundary might cross over the Internet, something that DCOM does not handle
cleanly.

XML is simply a textual stream of data, similar in style to the HTML pages that your
browser pulls down from the Internet and renders on-the-fly to present to you.
What differentiates XML from HTML is that XML represents data, whereas HTML
represents content and format. Because XML is capable of representing complex
object hierarchies within the confines of a textual stream, it is easy to see how we
can employ it as a communication vehicle.

A simple XML stream corresponding to the crerson class might look something like
Listing 5.14.

Example 5.14. A Simple XML Stream

<?xml version="1.0"?>

<!DOCTYPE Person [

<!ELEMENT Person EMPTY>

<!ATTLIST Person
Id PCDATA #REQUIRED
LastName PCDATA #REQUIRED
FirstName PCDATA #REQUIRED
MiddleInitial PCDATA #REQUIRED
EmployeeNumber PCDATA #REQUIRED
OfficePhone PCDATA #REQUIRED
OfficeFax PCDATA #REQUIRED
Pager PCDATA #REQUIRED
RoomNumber PCDATA #REQUIRED
DepartmentId PCDATA #REQUIRED
UserName PCDATA #REQUIRED
DomainName PCDATA #REQUIRED

>

1>

<Person Id="1234"
LastName="Smith"
FirstName="Joe"
MiddleInitial="M"
EmployeeNumber="5678"
OfficePhone="(212) 555-5555"
OfficeFax="(212) 555-5556"
Pager="(212) 555-5557"
RoomNumber="13256"
DepartmentId="52"
UserName="JMSmith"
DomainName="XYZCORP"

/>

The LoadPerson subroutine rewritten using an XML strategy and the Microsoft XML
parser would look like Listing 5.15.

Example 5.15. An Optimized DCOM Call That Pulls

Properties as XML

Sub LoadPerson (Id as Long)

Dim Person As Cperson

Dim sXMLData As String
Dim i as Integer, 7 as Integer
Dim XMLDoc As New MSXML.DOMDocument
Dim XMLNode As MSXML.IXMLDOMNode
Dim XMLAttribute As MSXML.IXMLDOMAttribute
100 Set Person = CreateObject ("OfficelibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)
110 Call Person.SetStateToXML (sXMLData)
115 Call XMLDoc.loadXML (sXMLData)
120 If XMLDoc.parseError.errorCode = 0 Then
125 For 1 = 0 to XMLNode.childNodes.length-1
130 Set XMLNode = XMLNode.childNodes.item (1)
135 If XMLNode.nodeType = MSXML.NODE ELEMENT Then
140 For j = 0 to XMLNode.attributes.length-1
145 With XMLNode.attributes.item(j)
150 Select Case .baseName

Case "Id"
155 lPersonId = .value

Case "LastName"
160 txtLastName.Text = .value

Case "FirstName"

165 txtFirstName.Text = .value

Case "DomainName"
195 txtDomainName.Text = .value
200 End Select
205 Next j
210 End If
215 Next i
220 End If
End Sub

Although it is easy to generate an XML text stream to represent structured
information, there is a relatively high cost in doing so. As can be seen by the
preceding code example, there is also a high cost on the receiving end to parse the
XML stream and to use the resulting data to set the state of an object. Additionally,
as can be seen from the sample XML definition, there is a high ratio of metadata to
data in this format, especially when we are only communicating the state for a
single object.

The implementation of the setstateToxML method on CPerson might look
something like Listing 5.16.

Example 5.16. An Optimized DCOM Call That Pushes

Properties as XML

Public Sub SetStateToXML (ByRef sXML As String)
Dim rsField As ADOR.Field
Dim XMLStream As New Stream ' MDAC 2.5 only
100 If Not rsState Is Nothing Then
' NOTE: rsState is a private global member of this class
105 rsState.MoveFirst
110 If Not rsState Is Nothing
rsState.Save XMLStream, adPersistXML
sXML = XMLStream.ReadText
210 Else
215 sXML = ""
215 End If
End Sub

The LoadPerson subroutine written using an XML strategy and the ADO recordset's
capability to load an XML stream would look like Listing 5.17.

Example 5.17. Tight Integration Between ADO

Recordset and ADO

Sub LoadPerson (Id as Long)

Dim Person As CPerson

Dim sXML As String

Dim rsPersonData As New ADOR.RecordSet

Dim XMLStream As New Stream ' MDAC 2.5 only

100 Set Person = CreateObject ("OfficelLibServer.CPerson","MTS-HOUO5")
105 Call Person.Load(Id)

110 Call Person.SetStateToXML (sXMLData)

115 Stream.WriteText sXML

120 rsPersonData.Open Stream, "Provider=MSPersist;", , , adCmdFile
125 If Not (rsPersonData.BOF or rsPersonData.EOF) Then

130 RsPersonData.MoveFirst

135 txtLastName.Text = rsPersonData.Fields.Item("LastName") .Value

140 txtFirstName.Text = rsPersonData.Fields.Item("FirstName") .Value
195 txtDomainName.Text = rsPersonData.Fields.Item ("DomainName") .Value
200 End If

End Sub

From this example, it is clear that the ADO recordset approach to XML streaming is
more programmatically friendly, and we can assume that it is less costly from a
performance perspective than the MSXML approach. Although the ADO recordset
can support XML, the memory stream-based version is available only with ADO 2.5,
which is in beta at the time of this writing. With the ADO 2.1 release, the only
manner in which XML streaming can be accomplished is by saving the recordset to
a file in XML format and then re-reading the file back into a string variable.

If the file-based approach is used, then both the client and server sides of the DCOM
boundary must deal with temporary file management issues in addition to the extra
overhead of file access. If the Stream object is used instead, then everything
happens in memory, which is both more efficient and faster. Nonetheless, the same
issues associated with using an ADO recordset on the client concern us here as well.
As programming-unfriendly as it can be, it is much easier to install and administer
the MSXML parser on the client than is ADO.

Comparative Costs—A Technical Overview

Because it is difficult to find objective data covering the various forms of
cross-process communication, we will try to provide a comparative testing
methodology and summary here that you can replicate in your environment. To test
the various methods, we have devised a method that considers various factors of
the distributed communication process. In this test, we assume that all data
originates from an ADO query and therefore is held constant across all
communication modes.

Thus, we are concerned with the remainder of the micro-level timing parameters
that make up the total time. These micro-level elements include the following:

e The time to package the data, if any, into a form suitable for transfer
(premarshalling).

e The time to marshal/transfer/de-marshal the data.

e The time to move the data into client-side elements.

Methodology

The best test environment is that of your own corporate infrastructure, including
clients, servers, and the underlying network connecting them. One critical factor is
to perform the testing first under light network loads. It is common sense that a
corporate network is most heavily loaded in the morning, after lunch, and just
before closing time because people sift through their emails at these times of day.
After you have developed your test bed during the evening hours and weekends,

you can validate your findings during the peak times to make sure the relative
timings are still valid.

It is also important to understand what your performance requirements really are.
To a user on a 56Kbps dial-up modem connection, minor timing differences might
be negligible. On the other end of the spectrum, a 100Mbps network will expose
underlying performance issues in your architecture. It is also important to
understand your user base. If you can guarantee the proper installation and
administration of ADO on the client, then ADO recordset-based approaches might
be sufficient. If, on the other hand, a thin-client, IIS/ASP approach is used, a
lightning-fast, variant-array approach is probably more suitable.

To test in your environment, create a collection of n simple objects of the same class
within the context of an MTS component. Each object should consist of various
randomly generated data types, such as strings, integers, floating points, and dates.
Create a disconnected recordset from the collection, followed by a variant array
created from the recordset (using the GetRows function). From a client-side
component, repeatedly request the data set to be sent to the client under several
scenarios. The exact same data set should be sent with each test run. Average the
total time for each scenario and divide by the number of requests to determine the
average time.

The scenarios are as follows:

1. As a collection of native objects.
As the native ADO recordset.

3. As the variant array created from the ADO recordset (one GetRows call per
test run).

4. As a variant array created from the ADO recordset with each request (n
GetRows calls per test run).

Under many environments up to about 10,000 records, you might find that
scenarios 1 and 3 are the fastest and on par with each other. Scenario 4 is the next
fastest, but about 100 times slower than 1 and 3. Scenario 3 is the worst performer,
about 500 times slower than 1 and 3.

Microsoft Transaction Server

We have spent a significant amount of time in the last several chapters talking about
DCOM, remote activation, and distribution considerations. Underlying all this is the
use of MTS in the server side of these discussions. Although MTS is not a
requirement for implementing DCOM, it makes things significantly easier. Several of
the reasons that we use MTS are for its DCOM hosting capability coupled with its

sophisticated object and database connection pooling. It also makes the DCOM
administrative process much easier.

Using MTS

One of the most important things to remember is that the development team must
be using Windows NT Workstation or Server as its development platform. The
reason for this is that MTS runs only on these platforms, so for many debugging
purposes, this will simplify things. We will call this the local MTS when we refer to
debugging activities. If we are using an MTS instance on another machine—whether
we are talking about debug or production modes—we refer to it as the remote MTS.

TIP

When in development, it is important to have the remote MTS as physically nearby
as possible. You will need to go to it often, so don't put it on the 12th floor if you are
in the basement, unless you want to ensure that you are getting sufficient exercise
during coding sessions.

NOTE

Walking to the snack machine does not constitute an acceptable form of exercise.

How you structure the directories and component packages within MTS is important.
If you do not already have a standard structure within your organization, consider
employing the ones presented here.

MTS Packages

In MTS, DCOM components run within the context of a package. A package is a unit
of management for MTS relative to security, lifetime, and so on. Each package can
contain one or more components, whether they belong to one or multiple
applications. Although it is possible to place all your DCOM components into a single
package on MTS, it is easier to manage the development and maintenance aspects
of the application base if you group components under some logical mechanism.
This package is the unit of distribution for the components of your distributed
application. Fixing a class in one of the components in the package means a
redistribution of the entire package.

You may create a package that groups the components driving one of the subparts
of the application. You might alternatively decide to group based on a similar set of
functionality that the components provide. The reason that such grouping is
important is that after a developer begins working on a single component within a
package, other components within the package are not available to other
developers.

TIP

It is prudent to align your development team and MTS package layout, or vice-versa,
as much as possible. After the application begins coming together, you might have
one developer waiting on another to complete his or her work if their components

are co-mingled in the same package.

Summary

This chapter has addressed the issues associated with communication between
distributed objects. Several widely used techniques can be used to pass object state
information between tiers: user-defined types, ADO disconnected recordsets,
PropertyBags, variant arrays, and XML. Each technique has its own advantages and
disadvantages, although our framework will follow the variant array approach in
future chapters.

The next chapter covers the development fundamentals and design goals for
enterprise applications. It lays the final groundwork for our work in Part II,
"Implementation of an Enterprise Framework."

Chapter 6. Development Fundamentals and

Design Goals of an Enterprise Application

Although a rich set of development tools and technologies are at our disposal, they
sit before us with minimal structure. We are free to do with them what we please.
Although this level of flexibility is important, we must decide on a standard approach
to implementation when we begin using these tools. The importance of
standardization spans both small and large development teams. Standardization
creates consistent implementation techniques, nomenclatures, and methodologies
that become the underlying fabric and texture of your application. Standardization
also forces a best-practice implementation that, in turn, promotes the fundamental
stability of the application. If one development team member reviews a piece of
work by another team member, it should make some reasonable level of sense or it
should provide the information for another developer to understand it relatively
quickly. Similarly, when you look at the code six to twelve months from now in a
maintenance mode, you should be able to re-acclimate yourself to it quickly.

In this chapter, I will outline some of the fundamental design and implementation
decisions that we must make, regardless of which part of the application is under
construction. In the process of outlining this, I will provide some sample techniques
or argue for one approach over another. This chapter covers Visual Basic 6.0,
Microsoft Transaction Server (MTS) 2.0, Internet Information Server (IIS) 4.0, and
Structured Query Language (SQL) Server.

Visual Basic

We will begin by taking a look at some of the capabilities of the Visual Basic
programming language. A thorough understanding of these concepts will allow you
to utilize the language to its full extent.

Option Explicit

Visual Basic has the capability to force or ignore compile-time type checking. We
can only assume that Microsoft chose to allow this for flexibility purposes, although
it has such significant consequences that perhaps Microsoft should consider
eliminating this option in future releases, or at least making it the default option. It
is important to note before proceeding that this topic differs slightly from the
discussions on runtime versus compile-time type checking in Chapter 3, "Objects,
Components, and COM." In the current chapter, the reference to type checking is
relative to variable declarations versus the object binding methods discussed before.
Unless it is told otherwise, Visual Basic will implicitly dimension variables upon first

use. If Visual Basic does this, it has no other option but to dimension the variables
as variant data types. As previously discussed, the use of these data types reduces
application performance because Visual Basic must perform extra steps when
assigning values to, and accessing the values from, variables of the variant type.

It just so happens that this implicit declaration of variables is the default mode for
Visual Basic. To switch this behavior, an Option Explicit statement is required at
the beginning of the declaration section of every module. In this mode, Visual Basic
will generate a compile-time error if it encounters a variable in the source code that
has not been declared in the current scope.

There are other important reasons to use the Option Explicit mode and not allow
Visual Basic to implicitly declare each variable as variant. When assigning a value to
a variant type variable, Visual Basic must make some assumptions as to the intrinsic
underlying type of the variable. If the value being assigned is the result of a function
of a known type, Visual Basic's job is relatively easy. For example, the statement
ThisDate = Now () tells Visual Basic that the underlying type of ThisDate, which is
implicitly a variant if it has not been declared in the current scope, is a date because
that is the type returned by the Now function. It is important to understand that a
variant data type has both data and a data-type descriptor. Within the first few
bytes of the storage allocated for the variant variable is information defining this
type information. The vbvarType enumeration defined under Visual Basic for
Applications (VBA) provides the list of these types. If the varType function were
performed on ThisDate, it would return vbDate.

If Visual Basic cannot determine the underlying data type, it must make some
assumptions that might not correlate with the assumptions you would make. For
example, consider the following function:

Public Function Add(PartOne, PartTwo) As Variant
Add = PartOne + PartTwo

End Function

The preceding example compiles without issue because it is syntactically correct.
Visual Basic considers the command-line parameters as variant types because they
have not been explicitly declared as any explicit type. When Visual Basic performs
the addition in the first ling, it has to determine at runtime whether the underlying
storage values are of some type of numeric or string format. Depending on whether
two numbers, two strings, or a string and a number are passed in, the return value
will be either a number or a string.

If, when we call the add function elsewhere in the code, and a specific result type is
expected, problems will arise at runtime if Visual Basic expects something else. For
example, consider the following:

Public Sub DoSomething (A, B)
C = Add (A, B)

D=C*25

End Sub

Again, the preceding example will compile without issue. If the data types of
parameters of A and B are always numeric, we have no issue. The assignment of D
will fail, however, if either parameter, A or B, is of a string type. This problem arises
when the user of the bosomething routine is unaware of what is happening within in
it. Although this is a trivial example given for exposition, the manifestations of these
issues can become complex in real-world situations.

In essence, by following an implicit data type approach, you are allowing both Visual
Basic and your development team to make possibly incompatible assumptions
throughout your code base. Although you will catch many of these issues during the
development and debug stages, your team will spend non-value-added time
tracking them down and fixing them. Worse still, your team might not catch all
these issues and they can escape into production, where the cost to fix them can
affect you in terms of additional time (which is measurable) and lowered customer
satisfaction (which is immeasurable). Remember that being penny-wise might
result in being dollar-foolish here. Although many would argue that not setting
Option Explicit is acceptable development practice for small-scale applications, it
is inappropriate when building robust enterprise applications. The following is an
example of its implementation:

Option Explicit
Private mName As String

Private mAddress As String

Enumerations

Component Object Model (COM) defines enumerations as their own first-class entity,
making them shareable across all the classes defined within the COM component
and visible to users of the component. Visual Basic does not have a mechanism to
natively support the definition of enumerations. To do so would mean that a new
type of code module would have to be developed to support them. If enumerations

are placed in a standard code module (bas module), they become visible to the
classes defined in the component but invisible to anything externally. To solve this,
the developer must place the enumeration definitions within any public class
module defined in the component. This technique has the effect of making the
enumeration visible both internally and externally to the component. Although the
choice of which class module within the component is used to define the
enumeration does not matter, a good practice is to place it in one of the classes that
will be using it. In essence, one of the class modules is acting as a gracious host for
the enumeration definition, so it makes sense that the class that needs it should be
the one that defines it. Although this makes no sense, Microsoft has taken this
approach to enable COM development within Visual Basic. If you look at the bigger
picture, this quirky enumeration implementation is a relatively minor issue.

Enumerations can be used in place of global constants that are used by more than
one component. In the cBond example in Chapter 4, "The Relational Database
Management System," we defined a BondType field with possible values of
CouponBond, DiscountBond, and ConsolBond. A code sample for these definitions
using constants would be as follows:

' in global.bas of Bonds.DLL

' Public Const COUPON BOND As Integer = 1
' Public Const DISCOUNT BOND As Integer
' Public Const CONSOL BOND As Integer = 3

Il
N

' in global.bas of PortfolioManager.EXE

' Public Const COUPON BOND As Integer = 1
' Public Const DISCOUNT BOND As Integer
' Public Const CONSOL BOND As Integer = 3

Il
N

What should be apparent is that these types of constants must be defined in both
the component itself and the application that uses the component. Furthermore, the
definitions in both places must be synchronized as changes are made to the CBond
class.

If instead we use an enumeration, changes made during code development or
maintenance activities will have minimal impact. Changes in the enumeration
defined in the component become immediately and automatically visible to the
applications using the component. For completeness, you should realize that simple
recompilations of the component and its host applications must be performed when
changing enumeration values. For highly modular applications, this can lead to a
significant number of recompilation steps.

The same set of values, defined as an enumeration, would be as follows:

' in CBond.cls

Public Enum EnumBondTypes
btCouponBond = 1
btDiscountBond = 2
btConsolBond = 3

End Enum

One of the greatest benefits from a productivity standpoint is that using
enumerations enables the Visual Basic IntelliSense feature, in many situations, to
prompt you with the list of possible values as you are editing your code.
Furthermore, you can usually select from this list with just a few keystrokes. Figure
6.1 shows how this prompting mechanism works.

Figure 6.1. The code completion function of the Visual

Basic IntelliSense editor for enumerations.

D ataM anages - Microsolt Virwal Bavic [dessgn] - [O0wery arms [Code]] =] E3
£ Bie ot Uiew Dot Fgmst Debug Bun sy Disgrae Jodk fddlre Window Heb =1 x|
H-E-TEd A o, « MNP W2H M
-EI |l'3-:-'|eral- :] |'|-'4'I‘1-ertl:l|:-|:|'nlur [Propertylet) j ml
Ganens - ; C 5
x B N
A [=
= _ -
F o~ T
™ - T E T
= ==
T s ErumUher
o =
- E * BT
=
m E Ftur ey th P OB 2008
m bo idenbf & Foem, conibrol, or
L'j I_Cj_ 2 HI

This not only saves the time to remember or look up the particular constant name,
but also the time required typing it into the editor. This might seem like trivial
savings, but over the course of many hours of code development, it can actually
produce some significant savings.

With so many positive aspects to using enumerations, you should be acutely
cognizant of one of its major drawbacks in the component-based world. As you
begin debugging your MTS components, Visual Basic will require that you compile
them using the Binary Compatibility option. This has the effect of freezing the

Globally Unique Identifier (GUID) values for each component that has this option set.
Without this option set, Visual Basic can generate new GUID values as necessary
during the code modification and recompilation process, keeping everything
synchronized between the components transparently to the developer. The COM
engine uses these GUID values to identify the various components in the system.

After a component is compiled with this option, any changes to class interfaces or
enumerations force the developer to break compatibility, which means generation
of a new GUID and a forced recompilation of each component that references the
changed component. Each of these components referencing the original component
must also break compatibility in the process, generating more new GUID values.
This occurs whether the change in the original component would have had any
impact on the current component's functionality. This process repeats until all
components in the referencing chain are recompiled. In a highly layered
environment, this can be very frustrating. After an application is placed into a
production mode, changing an enumeration in a component running on an MTS
server can force a recompilation of all components such that the application must be
redistributed all the way back to the client. This runs counter to one of the main
goals of a distributed architecture: being able to make simple changes on the
application tier without affecting the client.

NOTE

You should seriously consider whether to use enumerations on the application and
data tiers or whether a set of constants would be more appropriate. Only when you
are 99.99% sure that an enumeration on these tiers would not change over the
lifetime of the application should you consider using one.

Naming Conventions

As is evident in the biblical story of the Tower of Babel, things are much more
efficient when we are using a common language. We will extrapolate this here and
apply it to the importance of developing standardized naming conventions for
various parts of your code.

Variables

It is easy to clearly understand the data type associated with a variable if you are
within the declaration section of a code module, Function, Sub, or Property block.
However, you quickly lose focus of that if that section is no longer physically visible
on the screen within the editor. One method the industry has adopted, sometimes

referred to as Hungarian notation, is to prefix the variable name with something to
indicate its data type. Examples include an j to designate integer types, an / for long,
an s for string, a b for boolean, an o for object, a c for class, an sng for single, a dt
for date, and so on. Similarly, we also want to use suffixes that have some sort of
embedded meaning reflecting their use. Examples include LastName, FirstName,
HomePhoneNumber, Balance, and so on. By combining these prefixes and suffixes,
we can derive useful variable names. For example, sLastName tells us that that the
variable is a string used to store a value representing a last name.

Functions and Subroutines

Function naming might not seem like something with which we should concern
ourselves. Again, we would argue that standardization is vital to making it easier for
developers to be able to grasp what an area of code is trying to accomplish with
minimal effort. It is important to understand that most functions and subroutines do
something. More precisely, some type of action is performed. That said, each
function and subroutine should contain a verb fragment in its name, such as belete,
Create, Make, Run, Do, Get, and so on. Likewise, there should be a receiver of
the action, such as Report, Query, and so on. If there is a series of functions or
subroutines that provide similar functionality, their names should provide some
indication of the difference. For example, rather than having two names like
SetStateOne and SetStateTwo, we would prefer to name them
SetStateFromVariant and SetStateFromXML.

Many developers over the years have chosen to abbreviate or shorten functional
names to the point where they are cryptic. A quick glance at the functions defined
within the Windows Application Programming Interface (API) will provide you with
some great examples. The reasoning behind this is that as names become more
descriptive, their length increases, making it more time-consuming to fully type
them out in the editor. This is especially true in a procedural-based language. This
same problem does not exist in the Visual Basic editor for long method and property
names because the IntelliSense feature will help complete the code with minimal
keystrokes.

Files

As you add files to your project, Visual Basic attempts to name each one for you,
depending upon its intended use. Classes would be named Cclassl.cls,
Class2.cls, Class3.cls, and so on if you allowed Visual Basic to handle it. Forms
and basic modules will follow an identical pattern. The framework presented in Part
II will be following the approach shown in Table 6.1.

Table 6.1. File/Source Naming Conventions

Item Type Item Name Filename
Forms FrmXYZ frmXYZ. frm
Class Modules Csomething CSomething.cls
Basic Modules BasSomething basSomething.bas
User Control CtlSomething ctlSomething.ctl
Project Names - EXE MyApplication MyApplication.exe
Project Names - DLL LibSomething LibSomething.dll

Commenting Conventions

Any general-purpose programming course will stress the need for comments.
Although comments are vital to good programming, these courses tend go
overboard. Most courses insist that you place a nice block of comments at the
beginning of each function or subroutine to explain the inputs and outputs. However,
if proper naming conventions were followed, the need for many of the comments is
diminished. In one sense, the code should document itself as much as possible
through these conventions. It is painful to follow code that has more comments than
code.

Although it would be wonderful if such a minimalist approach were sufficient for all
code, there still exists a need to ensure that code written today can still be
understood six months from now when maintenance or enhancement phases are
started. Some of the areas that need particular attention are the areas in which
business logic is being implemented. In many cases, this is a step-based process, so
it makes sense to make a comment like the following:

' Step 1 - Check that start date is less than end date
. code

' Step 2 - Get a list of transactions between start and end dates
. code

' Step 3 - etc.

Whatever the approach, make sure that it is followed consistently by all developers.
Do not make it so burdensome that your team begins skipping proper commenting
during late-hour coding sessions.

Property Lets and Gets

In the COM API, properties are implemented as special types of functions known in
the object-orientation world as mutator and accessor functions. The former name
implies a change in the state of the object—in this case, the property to which a new
value is assigned. In the latter case, the state of the object is returned, or accessed.
In Visual Basic, these special functions take the form of Property Let and Property
Get statements. For properties that are object references, the Let statement is
replaced with a set statement. The Get statement returns the value of the property,
whereas the Let/set statement assigns a value to the property. For example, an
OpenDate property might be implemented as in the following:

Private mOpenDate As Date ' in class declarations section
Public Property Get OpenDate As Date
OpenDate = mOpenDate
End Property
Public Property Let OpenDate (RHS As Date)
If IsDate(RHS) Then

mOpenDate = RHS

Else

Err.Raise vbObjectError + ERR BAD DATE
End If
End Property

Visual Basic does not require explicit programming of the Get and Let/Set functions
because declaring public variables in the declaration section of the class module will
have the same effect. The reason that you should formally program property Get
and Let/set statements is so there is a place for validation logic. Whether this logic
is implemented today is irrelevant because you are protecting against the need for
future change by putting the framework in place today. The use of Get and Let/Set
statements also imparts standardization throughout the code base, an important
feature in multi-developer environments. The maintenance teams will thank you as
well because they will not have to break compatibility to add functionality under a
Get or Let/Set statement in the future. As discussed in the enumeration section,
breaking compatibility necessitates the recompilation of all the code that uses that
component, which might lead to redistribution.

The use of a private variable to store the state of a non-derived property—one that
is not calculated by its accessor function but is retrieved from a static variable—is
common among object-oriented languages. In many cases, normal Hungarian
notation requirements are relaxed by prefixing the variable with the letter m to
designate member. This approach loses visibility to the underlying data type. This is

a common naming convention used throughout Visual Basic code development, and
it is the default mechanism used in the code generated by the Visual Modeler, which
is discussed later in this chapter in the section titled "Modeling Tools." Some
developers do not like the loss of data type visibility by the convention, so an
indication of the underlying variable type can be added back in. For example, the
private variable mOpenData for the OpenDate property can be named mdtOpenDate.

This is a matter of preference. Again, just be sure to standardize across your
development team.

As mentioned earlier, the accessor function can be implemented in a mode that does
not simply reference a private variable, but instead derives itself from other
information and functionality available to the statement. Examples include using a
case statement to select among several values or using a logic set traversed with
If..Then..Else blocks. Another example of a derived property is one that calculates
its final result, such as a property named TotalCost thatis the sum of several other
properties defined on the class.

Registry-Based Configuration

As we develop our solutions, there inevitably are times when our applications need
some form of configuration information. A configured approach is preferred over a
"hard-coded" one as a means to ensure flexibility. This configuration information
might be the name of the MTS server used by the application, publication path
names to Web servers whose content is generated by the application, application
login names, or simply general-purpose information needed by the application.

The Win32 system has a Registry that is just the place to store this information. In
most cases, the standard Visual Basic functions of GetSetting and SetSetting can
be used to perform this Registry access. These functions place Registry keys in a
specific, Visual Basic area of the Registry. In some cases, an application might be
integrating with other applications and will need access to the full Registry.

Collection Classes

Collections are some of the most fundamental classes in the framework presented in
Part II. Everywhere there is a one-to-many relationship in the model there will be a
collection class in the code. Visual Basic already provides a Collection class, but
the framework creates its own collection, employing the Visual Basic version to do
most of the dirty work. The reason for this is that, as a developer, I might want to
add more business-specific functionality onto a collection class than is available on
the Visual Basic version. For example, I might have a cAccount class that contains
a CTransactionItems collection of CTransactionItem objects. Aside from the

standard Add, Item, Remove, and Count methods and properties available on the

Visual Basic collection, we might want to add a method called calculateBalance.
This method will loop through the collection, adding debits and credits to the
account along the way to produce a result.

It is important to get into the habit of defining all collection classes in this manner,
even if you do not plan to extend the standard collection with business functionality.
Although it might not seem necessary today, a week or a month from now you might
realize that you do and it will be much more difficult to put in. It is relatively trivial
to set up a collection class in this manner, especially when the code generation tools
discussed later in the "Modeling Tools" section are used.

Inheritance and Polymorphism Using Interfaces

As discussed in Chapter 3, interfaces are the fundamental mechanism of inheritance
and polymorphism in the COM world. Again, it is important to understand the
difference between polymorphism and inheritance at the source code versus
runtime level. Inheritance and polymorphism at the source code level means a
recompile of the code to add a new variation of a base class. Although there are
several issues with this approach, the constant recompile, debug, and redistribution
is what causes headaches for both the developers and end users.

In discussing polymorphism through COM interfaces, examples routinely use simple,
real-world examples such as dogs or modes of transportation. Microsoft even uses
dinosaurs in its own literature to make the same points. Although these are good
primers on interfaces, there is much more that can and should be done with them to
build flexible applications.

When using interfaces to implement polymorphism at the runtime level, a single
component can constitute one or more variations of a base class, simply by
implementing the COM interface defining the class one or more times. Similarly, a
single COM interface can be implemented in multiple components, with each
implementation providing its own behavior variation. Thus, if a new variation of a
base class is needed, it is simply a matter of adding an interface implementation to
a new or existing component. This is useful if a segregation of functionality is
required.

An example might be when an application has a basic file import process that
supports a multitude of file formats. Some customers might need one set of
importers, while others might need a completely different set. Rather than place all
importers in the same component, they can be separated out into logical groups and
implemented in several components. Adding support for new importers can require
creation of a new component or modification of an existing component. If you bind
these components to the client application in a configurable manner, then the
application does not have to be recompiled and redistributed with each release of a

new importer. Instead, a new or existing component is distributed and changes are
made to the configuration information. In essence, the application can be
configured in an a la carte fashion using this technique.

Modeling Tools

If you begin to explore all the extras that come with Visual Basic Enterprise Edition,
you will find two modeling tools: One is the Class Builder Utility and the other is the
Visual Modeler. Both enable you to formally define classes and class hierarchies with
subsequent code generation. The idea is that using either of these tools reduces
much of the basic coding of class properties and methods and enforces a certain
standard coding style implicitly with what it generates.

Class Builder Utility

The Class Builder Utility is the simpler tool, but there are several issues and
limitations with it. The Class Builder Utility enables you to define new classes in
terms of properties, methods, and events using a simple dialog. After the definitions
are made, the utility creates the necessary class modules and generates the
skeleton code to support the properties and methods just defined. To access this
utility, you must first add it using the Add-In Manager in Visual Basic. Figure 6.2
shows the Class Builder Utility being used to edit properties on a class, while Figure
6.3 shows it being used to edit methods.

Figure 6.2. The Class Builder Utility—Property Editor.

S L Elner i Hme:

Figure 6.3. The Class Builder Utility—Methods Editor.

Clage Duilder 1§
fie Ect Niew Help

2| & @] || 2| ¥[m]e]
I

Brepotos Methods |Events |41 |
Clarianage

& At Hane lewatipe | srgmerts
..ﬂl.ﬂrrh.lﬂ DAprandMArTnG Progetydinns &8 Srng, Columnlisms L2 S, Colrmnd anEasd G2 Bnalesn, ©
‘.ﬂ I:U. Fief L phamnTolropeityDel CPropertyDef ke A SErng
2] CClaszDiefs B Hekel TDripp=t Srirg
2] CCchamint Siopsrylocoenvet cooumos AR |
¥ CCohumints Bropertes |attsbutes |
£ ProgertyDel
2 orroperyoals Lame:
[restiarnd
Feprneria!
By'vel Testing Bs Varlant E:
i
4|
L]
Fetuen Dats Type:
[pociesn =
™ ks s Ertered?
™ Dgfauk Msthod?
o | caca I

Uf =

The first issue is that as you are going through and adding property names, this
utility does not enable you to add a property hamed Name. This just happens to be
one of the most frequently used property names in object-oriented design. To
circumvent this issue, you must name your property something else and then edit
the generated code.

The second issue is that the Class Builder Utility does not enable you to override the
Add method on the collection classes that it generates, using the long calling
convention that we spoke of earlier. This can lead to broken compatibility issues
when making changes to the underlying class that we are collecting.

The third issue is that the Class Builder Utility does not enable you to make a
collection containing another collection, a design requirement that can occasionally
surface within the application.

The fourth issue is that the Class Builder Utility does not generate any code with the
Option Explicit statement, so you will have to go back and add this information
yourself.

The fifth issue is that the Class Builder Utility does not support the definition or
implementation of interfaces within your design. As discussed earlier, we should be
taking advantage of the features of object-orientation to make our application more
robust and skewed toward the expectations of enterprise-level users.

Overall, the Class Builder Utility is inferior to the Visual Modeler that Microsoft has
also bundled with Visual Basic. It is perfectly legitimate to ask why Microsoft has
chosen to bundle two similar utilities. The answer is that the Visual Modeler only
comes with the Enterprise Edition of Visual Basic, because it is really the product of
another company (Rational Software) to which Microsoft must pay royalties. The
Class Builder Utility, on the other hand, ships with lesser editions of Visual Basic as
a simple productivity utility in those editions.

Visual Modeler

The Visual Modeler is a much more sophisticated and powerful tool that we should
use for any large-scale application development. The functionality of this tool
extends far beyond the simple class-building mechanism as in the Class Builder
Utility. It represents a complete modeling tool that enables you to plan your
application across a three-tiered deployment model using the standardized UML
notation. It is highly flexible in how it generates its code, allowing the user to set
many of the generation options. It also allows for reverse engineering, whereby you
can make changes in the source code and have the model easily updated. It also
exhibits none of the issues outlined in the Class Builder Utility case. To access the
Visual Modeler, you must first add the Visual Modeler Menus add-in using the Add-In

Manager in Visual Basic. Figure 6.4 shows the Visual Modeler in action, while Figure
6.5 shows it being used to edit properties on a class and Figure 6.6 shows it being
used to edit methods.

Figure 6.4. The Visual Modeler.

3 Micinsoll Yisaal Models - [entitled] - [Class Disgiam Logical View / Thize-Tieied Service Model|

B Ele ESt Vew Pows Eepot Queny Tock Mindow Heb 218 x|

Dislal @ (wsle| slzivio] glalol o] 2lelgs)| |
= L7 LogoadView [Cortiet Sensitve Help] = u... Business Services Datn Ser

3 Theso T Senvics Hadkd P e — il
= IJ Lzew Servces CClessDafy
= L] Buiwess Seivited
X Paciage Overvew T
=B Clazs Modules > CouR0 | Cliasbanaos) kDot
ik At A Y
& mitesdLocaton = st MocLias 5
& wiwrieLocation ksl
% i ohamnd e
& mEubldCobamnMlame
& miPwentdColrellame J'f h!
t et St b e | | Kr‘ \\
milrceElyCiobarnnl sres ol rrrCck:
& mEmCounrdlam I 'mwtﬂh
8 Wi Elsmertll e € odas Modhakes » <ol Mok >
[T, CCobrrrCefs CProperbyDets
@ o e il el o

% mﬂucm i l

ol oPropesty
% telets Dabsbanehame coClans Modules > rc:._‘_l.:-“:“ﬂm:
& colet > Datsbasetane ClohamriDel CPrigoes byDied
& paletn Typeld
& paliets Tyoskd
% Lo TypeCohurrdl s
B ol TypeC ok M T o P -

% colistys CobmmnDiels | moclissManagerib | CAttrinfes
W coGatys PropetaDsty

| % coleos 3LEkmentChidien I ""I |
i L3

Ditplaus el kot chickad on butbons. mers and vandows [W

N5

Figure 6.5. The Visual Modeler Properties Editor.

Property Specification for mD atabaseName K E3

General I Visual Basic [

Name: Class: CClassDef
Type: IString _ﬂ [V Show classes
Iritial value: |
— Export Control

(" Public ¢ Protected & Prnvate © Implementation

Documentation:

B

oK Cancel Aopl) Browse « | Help

Figure 6.6. The Visual Modeler Methods Editor.

Method Specification for AppendMapping

General Argument | Visual Basic |

Arguments:
Name Type Default
PropertyMN ame v
ColurnnMame Date &
ColurmnCanRead Decimal
ColuranCan\wnite Double
O ptional »MLAttributeN ame Integer
Long
Object
Single
Vanant =

i} I Lancel | Browse « Help

The Visual Modeler not only has the capability to generate source code from the
model information, it also has the capability to reverse-engineer the model from the
code. This latter feature is important when changes are made in the code in terms
of properties and methods that must be annotated back into the model. This is
crucial when multiple developers are working on the same component but only one
copy of the model exists. During standard code check-in processes, a single
individual can be responsible for updating the model to reflect the most recent
changes.

Another important feature is that the Visual Modeler is fully aware of COM interface
implementation, and can even generate code to support this concept, if modeled
appropriately.

Because of the rich feature set and the fact that the framework presented in Part II,
"Implementation of an Enterprise Framework," will be using interface
implementation, the Visual Modeler will be used exclusively in the course of
development activities throughout the remainder of the book.

SQL Server

Setting up an RDBMS such as SQL Server presents the development team and
database administrator (DBA) with several decision points. Although many of the
administrative tasks are not necessarily crucial to the operation of a given
framework, some database design decisions must be made to coincide with the
application architecture being implemented.

Logins

The configuration of SQL Server offers many options related to setting up user
logins and mapping security rights to users. SQL Server provides both standard and
integrated security models. In the former model, user logins are created on the
server as in most other RDBMSs. In the latter model, users are implicitly logged in
using their standard Windows NT login. These NT logins must then be mapped to
SQL Server user groups, which then define the various levels of access to the
underlying entities on the server. Although this might be acceptable for a small user
base, this process of mapping NT to SQL Server users can become administratively
burdensome for a large user base. In the framework in Part II, a decision has been
made to provide a common application login to the server and to administer user
rights programmatically. Although this adds a bit more development complexity
throughout the application, it offers more flexibility and moves security off the data
tier and into a service tier. It is important to note that the database is still protected
from malicious individuals through this common login, as long as login hames and
passwords are safely hidden.

Views

In the framework presented in Part 11, views will be defined that join the underlying
tables in the manners needed by the application data objects. Although this join
logic can be provided as part of the ad hoc SQL that is being issued to the database
by the application, a performance hit is associated with this technique. When views
are created in SQL Server, the SQL is parsed into an efficient format known as a
normalized query tree. This information is stored in the database in a system table
know as sysprocedures. Upon the first access of the view after the SQL Server has
started, this query tree is placed into an in-memory procedure cache for quicker
performance. Using this tree, SQL Server must only generate a query plan based on

the current index statistics to access the information. In the ad hoc approach, SQL
Server must first compile the SQL into the normalized query tree before generating
the query plan. After SQL Server has satisfied the ad hoc request, it discards the

query tree because it has no basis for knowing which queries might be used again in
the near future. Management of such a cache can degrade performance more than
improve it in highly loaded situations. Because these ad hoc query trees cannot be
cached, there is a high likelihood of degraded performance over the view approach.

Keys and Indexes

As will be further discussed in Chapter 9, "A Two-Part, Distributed Business Object,"
each table will be created with a specific 1d field to designate its primary key.
Furthermore, foreign keys will be defined on child tables that will reference this
primary key for table joins. Because of this architecture, a unique clustered index
will be defined on each 1d field. This will not only ensure that keys are unique, but
also that the rows in the database are consistent between their physical and logical
order. Because new 1d values will be generated sequentially as rows are added,
there will not be a performance hit associated with maintaining this index. Likewise,
an index will be placed on each foreign key in the table because it is often used as
part of the WHERE clause of the SQL statements generated by this framework.

Indexes will also be added to the fields that are designated to be part of the name
uniqueness pattern. An example of such a pattern may be when an application
needs to guarantee that there are not two rows with the same values in the
FirstName, LastName, MiddleInitial, and SocialSecurityNumber fields.
Although a unique index can be implemented to force the RDBMS to generate name
uniqueness violations, the resulting error messages returned from the server will
not be sufficient to inform the user of the problem. In this case, the application will
receive a "Unique index xyz had been violated" message from the server, which is
non-informative to the user and will most likely generate a hotline call. Instead, a
better choice is not to make this a unique index but instead handle the name
uniqueness pattern in the INSERT and UPDATE triggers where an explicit and much
more descriptive error message can be generated. Here, an error can be raised that
reads "The First Name, Last Name, Middle Initial, and Social Security Number must
be unique," which tells the user exactly what the issue is without the need for a
hotline call. This is one of the deviations from an academically pure n-tier model, in
that this represents a portion of the business logic that resides on the RDMBS. It is
important to note that not all tables will need this name uniqueness pattern;
therefore, this type of index will not need implementation on all tables.

Stored Procedures

The use of stored procedures in the framework presented in Part II is limited to
performance-sensitive areas of the application. Although many system architects
are proponents of using stored procedures for handling the CRUD (Create, Retrieve,
Update, and Delete) processing, it has already been discussed how this limits
flexibility and requires more redistribution of the code when object definitions
change. A slight performance hit will be taken in exchange for such flexibility in this
architecture. If, in your analysis you determine that this performance is more
important than flexibility, switch over to stored procedures.

Triggers

As mentioned earlier, we will be using triggers to enforce our name uniqueness
pattern requirements. We will also be using triggers to enforce referential integrity
explicitly, rather than allowing the RDBMS to do it implicitly. The reasoning for this
was discussed the "Referential Integrity" section of Chapter 4.

Binary Fields

It is important to note that the framework presented in this book does not support
the use of binary large object (BLOB) or text fields. SQL Server includes these data
types as a means to store large amounts of binary or textual data. Because most of
the aggregate and query functionality becomes limited on these data types, there is
little impetus for having them in an RDBMS to begin with. For these types of fields,
in most cases, it is much more efficient to place them on a file server and to simply
store in the database a path to their location. This is the recommended approach
followed by the framework presented in Part II.

Internet Information Server (IIS) and Visual InterDev

ITS has been chosen as the framework Web server for the reasons as outlined in
Chapter 1, "An Introduction to the Enterprise." Visual InterDev has been chosen as
our tool for editing Active Server Pages (ASP). With the ASP application model, we
have several options as to how we might structure our application, which we will
discuss here.

Global Configurations

For the same reasons as those outlined in the previous Registry-based configuration
discussion, application variables within the global.asa file will be used to control
such configuration settings on the IIS machine. Some sample settings might be MTS
server names, administrator mailto: addresses, and so on.

Stylesheets

Although not an IIS-specific feature, stylesheets are used extensively to control the
look and feel of the Web site portion of the framework discussed in Part II. This
allows for easy modifications to the formatting aspects of the application over time,
which can include font formats as well as colors. In cases where an MTS object is
generating a complex HTML stream directly, most of the formatting tasks can be
driven by the stylesheet. This enables minor format changes to be made without
having to recompile the object.

Include Files

If you dig through the IIS documentation, you might find it difficult to learn anything
about the notion of server-side include files. The framework in Part II will be using
include files to help modularize the Web site portion of the application. For example,
the script code to check the user's login status is in one include file. The script code
to generate the header and footer parts of each page is also implemented as include
files. If the header or footer needs changing, it can be made in just those places
versus the potential hundreds of pages that would otherwise be affected.

Creating an IIS Service Layer Component

The framework discussed in Part II will have its own 1IS-specific service-layer
component that will be used across multiple ASP pages. One set of functionality will
be to provide the user login and verification services that must be handled. Several
utility functions will also be implemented that will enable extraction of information
from the object state information needed to generate the ASP page.

This service-layer component will be used also to gain access to functionality
provided in Visual Basic that is missing in VBScript. Examples include string and
date formatting functions.

Business Layer

ASP will be used as a simple scripting tool to glue MTS components together in the
form of a cohesive application. In the framework, IIS is used as a surrogate for the
user interface layer in the form of the HTML pages sent back to the client browser.
Business-layer activities will not be performed on the IIS server, but instead will be
relegated to the business-layer components in MTS. Stated another way, no direct
business-layer logic will be embedded with ASP script. Instead, ASP will call the

appropriate functionality found within a business-layer object running within MTS.

This notion is difficult to grasp and is one of our major divergences from a traditional
viewpoint. Although ASP can directly access data bases through ADO, it does so in
a scripting context that is inefficient. It is important to remember that everything is
a variant data type in this environment, that the ASP page must be compiled with
every access, and that itis run in an interpreted, rather than compiled, format. MTS
offers not only resource pooling, but also the capability to run components in a
compiled binary format. Even if the functionality to be delivered is only to the
intranet portion of the application, it is more prudent to place it in a business-layer
component under MTS. Resorting to MTS is a minor issue because the infrastructure
to do so is already in place since other parts of the application are already using it.

Indeed, Microsoft must have recognized these issues, making the integration
between IIS and MTS highly efficient when the two are running on the same physical
server.

Microsoft Transaction Server (MTS)

As we have mentioned many times over, MTS forms the core of the application
framework discussed in Part II. Although there are many ways in which to configure
MTS and install components, some practices enable efficient development, debug,
and deployment activities.

Directories

In MTS, you will need a place to put the ActiveX DLL files that will be loaded as
DCOM processes. You might also have a series of ActiveX DLL files to support these
DCOM libraries, but are themselves in-process COM servers. When moving
component packages, you will need a location to which you can export the
necessary files for both the clients and servers.

A possible directory structure for a server named MTS-HOUO5 and an application
named MOJO might be as follows:

MTS-HOUO5\DS\MTS\MOJO\ INPROC
MTS-HOUO5\DS\MTS\MOJO\DCOM
MTS-HOUO5\DS\MTS\MOJO\EXPORTS

You might choose to share the MTS-HOU05\D$\MTS\MOJO directory as simply
MTS-HOU05\MOJO. Obviously, you want to limit access to this directory to
administrative use only.

The 1NPROC directory is where service layer components reside on the server. These
are the components required by the MTS components, but they are not MTS
components themselves. You will need a mechanism to register these components
on the server using a program, such as REGSVR32.EXE or some other remote
registration utility. At some point, when your application reaches a production
phase, you can build an installer to install and register these components more
efficiently.

The pcoMm directory is where the MTS objects reside on the server. You should copy
your ActiveX DLL files to this location, and then import them into a package on the
MTS server. This process will be discussed in more detail in Chapter 9.

The ExPORTS directory is where you export the packages so that you can move them
to other MTS servers. This process will also generate the client-side installers
needed by the application. Again, this topic will be discussed this topic in more detail
in Chapter 9.

Debugging

It is important to perform development on a computer with an NT Workstation or
Server installed because you can run an instance of MTS on these configurations
and step through your code during component debug. Although this method does
not represent a pure debugging model in that issues on the MTS server in compiled
mode might not be visible in debug mode, it does help to identify many of the
possible issues that will arise.

As the component count increases in an application, it becomes harder to debug on
a development machine. The reason for this is that the entire MTS structure must be
re-created and/or synchronized on the local machine just to debug a single
component that might be of interest. This means that if 10 developers are running
local MTS instances for debug purposes, then all 10 developers must constantly pull
the components under development from the other nine development machines
over to their machines. This becomes more pronounced as the number of changes
being made increases or the application gets closer to production release. Because

of these issues, it is sometimes better to maintain one or two remote MTS instances
that are run for debug purposes. Unfortunately, this solution creates its own
problems in that it can become very difficult to debug an application on a remote
MTS machine.

For those issues that are difficult to find in debug mode on a development machine,
a developer can take advantage of the NT event log to write out debug or exception
information. The ERL variable becomes very important when debugging MTS
components in this mode. This little-known variable tracks the last line number
encountered before an exception occurred. By writing this information out to the
event log along with the error information, the location of errors can be more easily
pinpointed in the source. An important thing to note is that the Visual Basic
functionality used to write to the event log works only when the component is
running in compiled mode, so do not expect to see events being logged while you
are stepping through the code.

One important thing to remember about the event log is that when it fills up, MTS
stops for all components. With this in mind, the event log should not be used to write
out volumes of data such as the value of a variable within a loop that repeats 100
times. The event viewer application is available under the Administrative Tools
section of the Start menu. Be sure to switch the log view mode from System to
Application when looking for information logged from the application.

Figure 6.7 shows the Event Viewer and an event written to the event log from within
Visual Basic.

Figure 6.7. The Event Viewer and a VB logged event.

i Evert Vicwes - Application Log on VWALEXTS

10:0430 40 YBRumima
11/25/53 10:04:38 Ak WERuMrma =
D11/23/88 104207 Fm MESOLSenver 17058 Ty ALEAS
GHE 338 104207 Fra BB B ana B, v 1THEE ik Al ERS
@123 04205 F1 ALFHS
@1/2388 04205 R ALEXIS
@11/2383 104205 F Dee 11/2509 Evert it 1 ALEYIS -
@11/2383 104205 F1 Teme IDDSEEAM Source VEFunhne ALEXIS
@11/2389 104204P1 Ueee HA Tipe waming ALEMS
192333 10:4204F1 Compuber: ALESFE Category: Mone ALEMS
; ALEME
NEVE R W
117238 104204F1 Ditabervat ey Threod D: 204 Logyed Ew | aeas
3”??33 eI F [y e o nea =T i+
142 1032 id. ane . ALE
@12y WRsTR 3l_Hame Cale . Alequi i, Sheped_Dale ALEWIS
@12y ITS5F e i oy e e ALEXIS
@11/233 IS5 _Hine22], sounced by Miciosoht JET Databaie Engine [125 ALEXIS
@11/235 IS5 R Chatabdanager Gelaia ALEXS
12399 103255 R = ALEMS
12339 10:3255 PSSR e ALEHS
M2 WRSF = ALEXS
/2350 103255F =] ALEMS
@ziEs 0323R ALEAS
Ozam Iz ALEFS
G123 02ERR - ALEAS
@12y R | ¥ ALEMIS
@zyEs ETarF ALEXIS
QneiEs war [k | B | | Het Eek ALEXS
11238 02T 9F _I _I ALEXAS
@11235 02T P MESOLEgror Kemel 17055 MiA, ALEMS
123,89 W0:2739PW MSSOLServer Kemel 17055 HiA ALEIS
12333 102739 FM MSS0LSenver Server 17055 i ALEAS
111 S8 1127349 E | ¥ i | '-'\.m- Sgeinar 1 HGE hlid ﬂ %15 ot

Design Goals

As we work our way through the framework beginning with the next chapter, we
must have some basic design goals to drive our efforts. Our overarching goal is to
follow an n-tier, distributed approach. Figure 6.8 shows an overview of where Part
II will head with this architecture.

Figure 6.8. Our guidepost of where we are headed.

Portlolio Manager - Portiolio XYZ

Bonds | Stocks| Assets|
| Name | Face Value | Term | Rate Tk Fortioko
CPortiaba B

i 1 . £ ¥ a Tabig_Bond
: : CBonds | | CStocks | | Chssets Portiolio_ld
: : : + + + Tabba_Sicck
[ox | [Apely | [cancel| CBand CStock CAssel Portiolio_ld
Q Tabla_Asset
f— Portiolio_ld

User Interface

We want to offer our users a simple Web browser interface where it is appropriate.
Many of our users will need only simple data retrieval services, so this allows us to
project our application to the widest possible audience. Still, we must also preserve
our ability to provide a rich user interface for the more complex, entry-intensive
tasks. These users will be fewer in number, but they will be responsible for the vast
majority of the information going into the system. We do not want to penalize them
by unnecessarily forcing them to use a Web browser for input purposes. The issues
with a Web browser interface, as a data entry mechanism, is that we want to
provide user input validation as soon as possible, as well as a high level of
responsiveness from our application. These are two things we cannot easily achieve
using a browser and client-side scripting code. If we must use the browser as the
user-interface delivery vehicle, then we want the ability to use ActiveX controls as
needed. If we are smart in our design, we should be able to use the same ActiveX
controls in both the Visual Basic client and Web browser.

For the rich client, we want to preserve the user interface metaphors that users
have already become accustomed to from using Windows (95, 98, NT4), such as the
Explorer, Finder, tabbed dialogs, and so on.

Business Logic

We want to keep our business logic in one place so that it is easier to maintain over
time. We want the same business objects supporting our Visual Basic client as our

Web browser. We do not want client-side business logic muddled up in our Web
pages. We do not want business logic muddled up in our ASP pages.

Database Server

We want to preserve the ability to switch out RDBMS vendors at any point in time;
therefore, we must minimize the use of any one server-vendor's proprietary
functionality.

Summary

This chapter has provided an overview of the design goals and development
fundamentals that will be followed from this point forward. It has done so with a
very broad brush, first covering the development technologies (Visual Basic, SQL
Server, IIS, and MTS). For each of these technologies, you learned a series of best
practices and common pitfalls as a preparation going forward so it will be more clear
why a particular design or implementation decision is being made. This was followed
by a discussion of specific design goals for the application as a whole, and then
broken down into the User, Business, and Data layers of the system. A discussion on
modeling tools, specifically comparing the Class Builder Utility to the Visual Modeler,
was also provided.

Next, you learn the long-awaited implementation of the framework that we have
spent so much time building up to. Chapter 7, "The ClassManager Library,"
introduces the concept of metadata-driven class definitions and provides the initial
building block for the application framework.

Part II: Implementation of an

Framework

7 The ClassManager Library

8 The DataManager Library

9 A Two-Part, Distributed Business Object

10 Adding an ActiveX Control to the Framework
11 A Distributed Reporting Engine

12 Taking the Enterprise Application to the Net
13 Interoperability

14 Windows 2000 and COM+ Considerations

15 Concluding Remarks

Enterprise

Chapter 7. The ClassManager Library

With the completion of Part I and its overview material, we can now turn our
attention to the presentation and development of the framework for which you
bought this book. This presentation starts with one of the core components of the
business layer—the ClassManager Library. This ActiveX DLL library is primarily
responsible for managing the metadata necessary to map class definitions to
database tables.

Remembering the section titled "Mapping Tables and Objects" in Chapter 4, "The
Relational Database Management System," there is a need in an object-based
application to persist state information to the database. A technique was discussed
that mapped classes to tables and properties to the columns in those tables. The
ClassManager Library presented in this chapter provides the necessary objects to
implement this mapping and class definition process.

In addition to defining the mapping between objects and tables, the ClassManager
library enables developers to define arbitrary attributes at the property level. These
attributes can be used to track any form of additional metadata needed by the
application, such as validation rule parameters, XML tag names and so on.
Examples of both types of additional metadata will be shown; the XML tag name
information is particularly important for topics discussed in Chapter 13,
"Interoperability."

Design Theory

The underlying design goal of the ClassManager library is to provide the definition
mechanism necessary to drive both the CRUD (Create, Retrieve, Update, and Delete)
capabilities and the simple property-level validation required by the business and
data layers. The overarching design goal is to provide a generic solution that can
easily be modified through metadata changes at the business layer and schema
changes on the RDMBS when support for new properties is needed. To do this with
a minimal level of effort, we will place this library on the application tier running on
MTS. This particular library is not itself an MTS object, but provides a service to the
business objects running on MTS.

Many object-oriented languages have a facility known as reflection, which means
that the runtime environment has access to the type information of the classes
currently running. In essence, the code can see pieces of itself and understand the
class definitions defined by the code. Unfortunately, Visual Basic is not one of those
languages. Lack of runtime-type information indicates that this information must be
provided explicitly in a programmatic fashion. Such is the goal behind this chapter.

Implementation

To provide this metadata-oriented definition process, we need to create several
Visual Basic classes.

The first requirement is to create one class to support the definition of a database
column, and another to support the definition of an object property. For the former,
we will create a class called ccolumnbDef, while for the latter, we will create one
called CcpropertybDef. To augment the cPropertyDef class, we will create a
CAttribute class to allow us to add other important metadata to our property
definitions. The second requirement is to provide a mechanism to link a column to a
property. After these base classes have been established, a class known as
CClassDef is defined to pull everything together and provide the core functionality
of the library. As discussed in Chapter 4, "The Relational Database Management
System," we perform a one-to-one mapping of a class to a database table. In the
case of class inheritance, all subclasses are mapped to the same table and use a
ClassType field within the definition to designate the specific implementation.

The ccolumnpef Class

The cCcolumnDef class is simple, containing only properties. See Figure 7.1 for the
Unified Modeling Language (UML) representation.

Figure 7.1. The ccoiumnpes class in the UML graphical

model.

<<Class Module>>
CColumDef

¢&Name : String

¢ CanRead : Boolean

¢ CanWrite : Boolean

@ ColumnType : EnumColumnTypes

Properties

The Name property is used to provide the name of the column within the RDMBS
system. The canRead property indicates whether the column can be read from the
database, whereas the canwrite property determines whether the column can be
written to. The canrRead property is used in conjunction with the ReadLocation
property on the cClassDef to generate the SQL column list for data retrieval
purposes. Similarly, the canwrite property is used in conjunction with the
WriteLocation property on CClassDef to generate the SQL column list for data
updates. The cclassbDef class is discussed in more detail in the "CClassDef" section
later in this chapter.

We must explicitly provide both a canRead and cantwrite indicator for a given
column versus using a singular approach because there are times when we might
want to read without writing, or vice-versa. If we are storing a foreign key reference
to another table, we must be able to read columns from the referenced tables within
the context of a view, but we will not want to write those same columns back out.
Only the column with the foreign key reference can be written to in this case.

We also define a ColumnType property to help us during the SQL generation process
in our data layer. Sometimes, the system cannot explicitly determine an underlying
data type in order for the appropriate SQL grammar to be generated to support a
given database request. For example, a property might be defined as a string type,
but the underlying column in the database, for whatever reason, is an integer. In
this case, when building an SQL WHERE clause using this property, a varType
performed on the property would infer a string, causing the SQL generator logic to
place quotes around it in the SQL statement. The RDBMS would generate an error
because the column is an integer. Thus, for robustness, we provide a mechanism to
explicitly define a particular column type.

Building this ccolumnDef class using the Visual Modeler is rather straightforward.
Start the Visual Modeler from the Start menu of Windows (95/98/NT) under the
Programs, Visual Studio 6.0 Enterprise Tools, Microsoft Visual Modeler submenus.
When Visual Modeler starts, expand the Logical View node, followed by the Business
Services node in the tree view. Right-click the Business Services node followed by
New, followed by Class, as shown in Figure 7.2.

Figure 7.2. Defining a new class in the Visual

Modeler.
e Miciosall Visual Modalsr - [untibed) . [Class Disgrame Logical Ve £ Thise-Tiored Seivics Modsl)
o Fie Ed View Browsz Feoon Quey Took Window Heb =18 =]
o] =21 = 8) o ™ A W A1 o S WAVl <
= I User Scrvices Busincss Scrvices Dala Services
= L Logecal Ve
B Thiee-Tissed Sanece Model i|
* L Urer Sanaces
’JW""
oy Pacl Dpen
+ 3 Do Y
[Comooneri " GeesiseCode Clast Ly
£ Ceployneni” Gy Irdeitace
Backage
iz [hagrae
Renage Trese-Tiesed Disgram
Eefrach
o Al Dockirg
btz
4] | ﬂJ
| Fr bk ryeers 5] (NN

When you tell Visual Modeler to create a new class, a new child node is added to the
Business Services node, a UML graphical symbol for a class is placed into the

right-hand view under the Business Services column, and the newly added node is
placed into edit mode so the class name can be entered. Figure 7.3 shows the Visual
Modeler after the new class has been named CcolumnbDef.

Figure 7.3. The ccoiumnpes class created within Visual

Modeler.

B Miczozolt Visual Madeles - [untithed) - [Clas: Disgian Logical Wiew # Thiee-Tiered Servica Model]

7 Flo B Yw Browie Fopet Quey Took Window Heb S TES|
Dl =] = |6s|F| &% Wi;ll A0|0 2 =|els=]
-, User Services Business Services Dizta Services
=1 [Logcal iew
e, ThimeTimoed Secvice Mol ﬂ
B LT Ues Senacss

= CCoirmrDef
L] Hussmss Senaces: i 1
. Faciags Ovensas
B Coumniiet
& 7 Diste Sanice:
¥ [Cormpsresnt Wiees
{7 Deployment View

o o

LEsx Helo, gregs F1 HaM

To add property definitions to the ccolumnbef class, simply right-click the
CColumnDef node and select New, Property. Again, a new child node is added with
the name of NewProperty, this time to the CColumnDef node, and a property name
NewProperty is added to the graphical representation. There is also a symbol that
looks like a lock with a blue rectangle at an angle. The blue rectangle signifies that
this is a property. A purple rectangle signifies a method. The lock indicates that the
property is private, whereas a key indicates protected mode (or Friend mode in
Visual Basic parlance); a hammer indicates implementation mode, and a rectangle
by itself indicates public mode.

Public mode indicates that the property will be visible both internal and external to
the component; protected mode means that it will be visible to all classes within the
component but not visible external to the component; private mode means it will be
visible within the class itself but not visible elsewhere; and implementation mode is
similar in meaning to private mode. The Visual Modeler can be used to generate
C++ code, and the Rational Rose product on which it is based can generate for Java
as well; both are true object-oriented languages with multilevel inheritance. In
these cases, the protected and private modes take on expanded meanings because
visibility is now concerned with the subclassing. This explains why the
implementation and private modes are similar for Visual Basic.

Turning back to the Visual Modeler, the NewProperty property is renamed Name.
Double-clicking the new Name property node launches the Property Specifications
dialog. The Type field is set to string, and the Export Control selection is set to
pPublic. There is also a Documentation field in which you can enter text that
describes the property. If this is done, the information will be placed above the
property implementation in the generated code as commented text. At this point,
this information does not make it into the COM property help field that is displayed
by the object browser. The end result of these edits appears in Figure 7.4.

Figure 7.4. The nane property added to the ccolumnpes

class within Visual Modeler.

% e Edi Yew Biowe Reoot Quey Took Windw Heb =18 =
D|s|@| (%= & 2(w0| &lalo] oo 2le==)
= - User Services | Dusiness Services Dota Services
=L Loppesl s
T Thons-Tuwad Sarvice Madel i|
3L Lswr Suevices COohmirDef
= LT Bastwerss Sarec: Jams
F,. Pachage Ovaniew
ﬂg{mcﬁ
Harme ity 5 preahcslion Lo Hamne
(7 Data Services EP P PR AR EX
[Component Yisw G‘I""."‘d]
ol - e M Chazz: CLobarnDel
Tipe Sy w| B Shema claines
el veie: |
Ereent Comiral
= Pyblic ™ Piglected ™ Pivale © jmplemeniation
Docureent st
Tha name of the column ot | sppeasn l'wdu'\t-:luﬂab-cj
o Ve
L
J[TI Cancel | ol | frowno = | [] Jﬂ
4 3
LEryt Hisley ppscts F1 Bl 164

As you continue to add the properties to complete the ccolumnbef class, you might
begin thinking that this is too tedious a process and that it just might be easier to
manually type the code. If this is the case, there is a faster way to enter these
properties than what was just described. Double-click the CColumnDef node to
launch the Class Specifications dialog box. Click the Properties tab to show a list of
all the currently defined properties. Right-click this list to bring up a menu with an
Insert option. Select this option to insert a new property into the list in an edit mode.
After you enter the name, if you slowly double-click the icon next to the property
name, a graphical list box of all the visibility modes appears, as shown in Figure 7.5.
If you do the same in the Type column, a list of available data types appears as well,
as shown in Figure 7.6.

Figure 7.5. Changing the visibility of a property in the

Class Specification dialog in the Visual Modeler.

29 Class Specification for CColumnDef

Generall Methods Properties l F’Ee!atiunsl Cumpunents]

[V Show inherited

MName Class Type Ir
MName CColumnDef Shing
CanFead CColumnDef Boolean
Canwrite CColumnDef Boolean
ReadLocation CColumnD ef

‘WiiteLocation CColurnD ef

ST Ple ¢ ¢ ¢

| | Jol
|—| Cancel aoply Browse » | Help

Figure 7.6. Changing the data type of a property in

the Class Specification dialog in the Visual Modeler.

Class Specification for CColumnD ef
Relations | Components] Visual Basic]
General] Methods Properties
[V Show inherited
Name Class Type Initial
¢ MName CColumnC String
¢ CanRead CColumnC Boolean
& CanWrite CColumnC Boolean
& FReadlocation CColurnC String
& ‘WiiteLocation CColumnC || v
Date - |
Decimal
Double
Integer
Long
Object
Single
Vanant w
i} [Lancel EOpY | Browse = | Help

To add the columnType property, follow the same procedure as for the other
properties. Because the Visual Modeler has no way to define an enumeration for
generation (they can only be reverse engineered from an ActiveX DLL), you will
have to manually enter the name of the enumeration in the Type field. After the
code is generated, the enumeration must be manually entered into the source.

To generate code for this class, several other pieces of information must be defined.
The first is a component to contain this class. To do this, right-click the Component
View folder, select New, and then select Component. Enter ClassManager for the
component name. Double-click the ClassManager node to launch the Component

Specification dialog. From this dialog, select ActiveX for the Stereotype field. This
tells the Visual Modeler to generate an ActiveX DLL for the component. The
Language field should be set to Visual Basic. The last item before generation is to
assign the class to this newly created component. The easiest way to accomplish
this is to drag the CColumnDef node and drop it onto the ClassManager node. From
this point, code generation can occur.

Right-click the CColumnDef node and select GenerateCode to launch the Code
Generation Wizard. Step through this wizard until the Preview Classes step appears,
as indicated in the title bar of the dialog. Select the cColumnDef class in the list and
click the Preview button. The wizard switches into Class Options mode, as shown in
Figure 7.7. From this wizard, set the Instancing Mode to MultiUse. In the Collection
Class field, enter the name ccolumnDefs. Anything other than the word Collection
in this field will tell the Visual Modeler to generate a collection class for this class.

Figure 7.7. The Class Options step of the Code
Generation Wizard (Preview Classes subwizard) in

the Visual Modeler.

Code Generation Wizard - Clazs Dptions

Sel class propeties for elass: CColumnDef

Inctancing
IM ultill e j
ou ks
aline Collection Class
PP |I:I:DlumnD efs 3

Helb | Cancel cBack |[Mew> | Ewin

Click the Next button in the wizard to go to the Property Options step. Select the
CanRead property in the list, and then check the Generate Variable, Property Get,
and Property Let options. This tells the Visual Modeler to generate a private variable

named mCanRead, followed by the Property Let and Property Get statements.
This activity is summarized in the text box at the bottom of the screen. Repeat this
for every property in the list. For the columnType property that is defined as
EnumColumnType, the Visual Modeler only allows for the property set and cet
options. After generation, this set will have to be changed to a Let in the source
code. The results of this step are shown in Figure 7.8.

Figure 7.8. The Property Options step of the Code
Generation Wizard (Preview Classes subwizard) in

the Visual Modeler.

Code Generation Wizard - Property Options

Set property properties for clazs: CColumnDef
Froperty name | Property Type | S _
&P Canflead Boolean ¥ Genersle Varisble
@™ Caniwinte Boolean o
@ Mame Slring wmll;
2# ReadLocabon Shing -]
o D" ritel ocation Sting Az bounds:
Akl |
Property Procedures
[¥ Piopeity Get
=
[¥ Froperty Let
Private mivw/reLocation Az Sting =]
Public Property Get WikeLocation() As Sting
Public Fropedty Let WriteLocation[yalue Az Sting) J
Help Next > Firish |

Click the Next button in the wizard to go to the Role Options. Skip over this for now.
Click the Next button again to go to the Methods Options step. Because no methods
are defined on this class, the list is empty. Click the Finish button to return to the
Preview Classes step of the wizard. If multiple classes were being generated, you
would preview each class in the manner just described. Click the Next button to get
to the General Options step. Deselect the Include Debug Code and Include Err.Raise
in All Generated Methods options. Click the Finish button, and the wizard first
prompts for a model name and then launches Visual Basic. The result of this
generation effort is shown in Figure 7.9.

Figure 7.9. The code generated in Visual Basic by the

Visual Modeler.

#. ClassM anager - Miciosoft Yisual Basic [design]

B B Wew Pomol Fomel Debug Bun Quey Diegan Tods S0 Widew el

HB-a-" 8 @ v] oo MEFRYE P nenca

ﬁrﬁl ==
& E s, ClassM anages - CColumnDio. . 9 [=] E3 = B Uasatanager (Classtanager)
A =155 Clars Mod
2 CCdumnDesl (QCohmnled)
["'J = £ CCchamnieds (CCobrnle’s)
& [slabadd Dasmiimsitd
F &
local warisble to hold
3 ;‘ AANOAE] IA=1MICESSIOLAL
Private mCol As Collssts
G = Peopsitins - CLobannDels
usad whe o - g
=L smad vhen refscensing
vt IndexFey contains &
o -~ ‘ as & Va
Synvax: et w.Tee) CCokmwliels
n E BENode 1Id=183EBSS4030A 0 - e

Fublic Propeziy Get Item celichavior 0 - vhlione
= Set Item = ®mCol(vntIn 5 - Muit ks =
Fnd Propesrty Transactioniiods 0 - Motk TS0bsd

used when e |""|'il'|__ L1 '-"
== 11| Ld

Notice that a Form1 is generated by the Visual Modeler. This is actually a by-product
of the automation steps in Visual Basic. When you return to the Visual Modeler, the
wizard is on the Delete Classes step with this Forml selected in the Keep These
Classes list. Click it to move it to the Delete These Classes list. Click OK to delete it
from the project and display a summary report of the Visual Modeler's activities.

To add the enumeration for the columnType property, go to the Visual Basic class
module for the ccolumnbef class and manually enter the enumeration as shown in
the following code fragment:

Public Enum EnumColumnType
ctNumber = 0

ctString = 1

Il
N

ctDateTime

End Enum

Listing 7.1 provides the code to implement the cColumnDef class. The comments
generated by the Visual Modeler have been omitted for the sake of brevity.

Example 7.1. The CColumnDef Class

Option Base O
Option Explicit

Public Enum EnumColumnType
ctNumber = 0

ctString = 1

Il
[\)

ctDateTime

End Enum

Private mName As String

Private mCanRead As Boolean
Private mCanWrite As Boolean
Private mReadLocation As String
Private mWriteLocation As String

Private mColumnType As EnumColumnType

Public Property Get ColumnType () As EnumColumnType
Set ColumnType = mColumnType
End Property

Public Property Let ColumnType (ByVal Value As EnumColumnType)
Let mColumnType = Value
End Property

Public Property Get WriteLocation() As String
Let WriteLocation = mWriteLocation

End Property

Public Property Let WriteLocation (ByVal Value As String)
Let mWriteLocation = Value

End Property

Public Property Get ReadLocation() As String
Let ReadLocation = mReadLocation

End Property
Public Property Let ReadLocation (ByVal Value As String)
Let mReadLocation = Value

End Property

Public Property Get CanWrite() As Boolean

Let CanWrite = mCanWrite

End Property

Public Property Let CanWrite (ByVal Value As Boolean)
Let mCanWrite = Value

End Property

Public Property Get CanRead() As Boolean
Let CanRead = mCanRead
End Property

Public Property Let CanRead(ByVal Value As Boolean)
Let mCanRead = Value

End Property

Public Property Get Name () As String
Let Name = mName

End Property

Public Property Let Name (ByVal Value As String)
Let mName = Value

End Property

Listing 7.2 shows the code generated by the Visual Modeler for the cColumnbDefs
class, again with comments omitted.

Example 7.2. The CColumnDefs Collection Class

' declarations section
Option Explicit

Private mCol As Collection

' code section

Public Property Get Item(vntIndexKey As Variant) As CColumnDef
Set Item = mCol (vntIndexKey)

End Property

Public Sub Remove (vntIndexKey As Variant)
mCol.Remove vntIndexKey

End Sub

Public Sub Add(Item As CColumnbDef,

Optional Key As String,
Optional Before As Variant,
Optional After As Variant)
If IsMissing(Key) Then
mCol.Add Item
Else
mCol.Add Item, Key
End If
End Sub

Public Property Get Count () As Long
Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown
Set NewEnum = mCol.[NewEnum]

End Property

Private Sub Class Initialize()
Set mCol = New Collection
End Sub

Private Sub Class Terminate ()
Set mCol = Nothing
End Sub

We should point out several things about how the Visual Modeler generates
collection classes. The first is that it generates a NewEnum property that has a bizarre
bit of code in the form of the following statement:

Set NewEnum = mCol.[NewEnum]

This syntax enables users of this collection class to use a special COM iteration
construct to iterate through the elements in a collection. For example, consider the
following code fragment:

For Each ColumnDef In ColumnDefs

Next

According to Microsoft, this is faster than using a standard iteration method as the
following code fragment demonstrates:

For i = 1 To ColumnDefs.Count
Set ColumnDef = ColumnDefs.Item (i)

Next i

The second item to notice is that the Visual Modeler has declared a private variable
mCol of type Collection to use as the underlying storage mechanism. In this case,
however, it does not instantiate the variable until the Class Initialize event, and
it does not destroy it until the class Terminate event. This generation mode can
be overridden in the Visual Modeler based on the preference of the development
team. One school of thought says that the code size will be smaller using this
technique because Visual Basic will not allocate space for the mCol variable at
compile time, but rather at runtime. Conversely, the object will take longer to
instantiate because it must allocate memory for this variable at runtime during
startup. The preference of this book is to use the default mode of Visual Modeler.

The cAattributeItem Class

Before we can define our CPropertyDef class, we must first define a simple
CAttributeltem class and its associated CAttributeltems collection class.
CAttributeltem has a simple Name and value property. These attributes will be
used to allow extra information needed by the application to be added to the
property definition information. This approach provides for a significant amount of
flexibility over time because a developer can just add another property to the
CAttributeItems collection without forcing any changes to the interface of a class.
The Visual Modeler can once again be used to generate the cAttributelItem class
and its associated cAttributeItems collection class. Listing 7.3 shows the code for
the cattributelItem class.

Example 7.3. The Cattribute Class

' declarations section

Option Explicit
Private mName As String

Private mValue As Variant

' code section
Public Property Get Value() As Variant
If IsObject (mValue) Then
Set Value = mValue
Else
Let Value = mValue
End If
End Property

Public Property Let Value(ByVal Value As Variant)
Let mValue = Value

End Property

Public Property Get Name () As String
Let Name = mName

End Property

Public Property Let Name (ByVal Value As String)
Let mName = Value

End Property

Although there is nothing overly exciting Listing 7.3, one area in particular deserves
closer investigation. Looking at the code generated by the Visual Modeler for the
Property Get statement for the value property shows that it is implemented
slightly differently than what has been seen in the past. Because we have declared
the property as a variant type, it can contain an object reference and therefore
needs the set construct in these cases. The 1s0bject function enables Visual Basic
to check whether the variant contains an object reference so that the code can react
accordingly.

Again, we now need to use the Visual Modeler to generate a collection class for
CattributeItem. The complete code listing will not be shown because it differs only
slightly from the code generated in the cColumnDefs case. However, several
changes have been made to the Add method, as shown in the following code
fragment:

Public Sub Add(Name As String, Value As Variant)
Dim ThisAttribute As New CAttribute

ThisAttribute.Name = Name
ThisAttribute.Value = Value

' for this collection, we want to replace values if their key

' already exists

If KeyExists (mCol, ThisAttribute.Name) Then

Call mCol.Remove (ThisAttribute.Name)

End If

mCol.Add ThisAttribute, ThisAttribute.Name
End Sub

Because we will be adding only name-value pairs to this collection, a lot of
programming time and overhead is needed to create an AttributeItem object, set
its properties, and pass it into the add method. Instead, we are just passing in the
name-value pairs, allowing the add method to perform the instantiation. In addition,
the Add method checks for the existence of the key in the collection before
attempting to add a new item. If the key exists, it removes the previous element
and replaces it with the new one. This implementation decision to check first, rather
than letting mCo1l raise an error, is made because duplicates here will be from a
programming issue and not from a data entry issue by an end user. Therefore, there
is little concern with replacement, and this method makes the code more robust.
The KeyExists function referenced by the Add method is a public function inside a
basic code module in the component. This function is simple to implement and will
be used throughout all components in this framework, so the following code
fragment is presented:

Public Function KeyExists(c As Collection, sKey As String) As Boolean
On Error GoTo KeyNotExists

c.Item (sKey)

KeyExists = True

Exit Function

KeyNotExists:

KeyExists = False

End Function

The CPropertyDef Class

The CpropertyDef class, like its CColumnDef cousin, is composed only of simple
properties. Figure 7.10 shows the UML representation for this class.

Figure 7.10. The crropertypes Class in the UML graphical

model.

<<Class Module>>
CPropertyDef

<&Name : String
& XMLAttributeName : String
& Attributes : CAttributes

Properties

Here, the Name property is used to identify the name that will be used to refer to this
property throughout the business and user layers. Although the Name property here
can exactly match the Name property on its mapped cColumnDef object, it does not
have to do so. The only other property is AttributeItems, which as discussed
previously, is used as a freeform mechanism to store additional information related
to a property. We can use this information throughout the business layer, and we
can pass it to the user layer if necessary. The flexibility exists to add whatever
information at a property level is needed by the application. Some examples of
standard items that could be simple property validation might include
PropertyType, ListId, MinimumValue, MaximumValue, DefaultValue, and
Decimals. In this framework, a standard XMLAttributeName property for XML
generation is defined, a topic covered in Chapter 13. Once again, the Visual Modeler
is used to define both a cpropertyDef class and its associated CPropertyDefs
collection class. Listing 7.4 provides the code to implement the CPropertyDef class.

Example 7.4. The CpropertyDef Class

' declarations section

Option Explicit

Public Enum EnumPropertyTypes
ptString = 0

ptiInteger =1

ptReal = 2

ptDate = 3
ptList = 4

End Enum

Private mName As String

Private mAttributes As CAttributeltems

Public Property Get Attributes() As CAttributeltems
Set Attributes = mAttributes
End Property

Public Property Get Name () As String
Let Name = mName

End Property

Public Property Let Name (ByVal Value As String)
Let mName = Value

End Property

Private Sub Class Initialize()
Set mAttributes = New CAttributeltems
End Sub

Private Sub Class Terminate ()
Set mAttributes = Nothing
End Sub

Looking at the code, you will see that we have done a few things differently than
before. First, only a Property Get statement has been created for the Attributes
property. The corresponding Property Set statement has been omitted because
this subordinate object is being managed directly by the cPropertyDef class, so
there is no reason for any external code to set its value to something other than the
internal, private mAttributes variable. Doing so would potentially wreak havoc on
the application; therefore, access to it is protected under the principle of
encapsulation and data hiding that was talked about in Chapter 3, "Objects,
Components, and COM." In addition, you will note that the contained objects are
instantiated in the class Initialize event as was done for collections earlier in
the chapter. The same reasoning applies here.

Because the cpropertyDefs collection class is not changed from the code
generated by the Visual Modeler, the listing is omitted here.

The cclasspef Class

Now that the ccolumnDef and CPropertyDef classes and their supporting collection
classes have been created, it is time to generate the cClassbDef class, which is
responsible for pulling everything together to drive the metadata model. Figure
7.11 shows the UML representation for this class.

Figure 7.11. The cciasspes class in the UML graphical

model.

<<Class Module>>
CClassDef

¢ReadLocation : String

<& WriteLocation : String

& IDColumnName : String

< SubldColumnName : String

& ParentldColumnName : String

& ParentSubldColumnName : String
& OrderByColumnName : String

& KeyColumnName : String

& XMLElementName : String

& XMLElementChildren : String

O AppendMapping()
OMakeDTDSnippet()
QOPropertyToColumn()
O ColumnToProperty()

Properties

To provide the class-to-RDBMS mapping, both the name of the table that we will be
using to save object state information and the name of the view that will be used to
retrieve object state information must be known to the application. The mapping
technique was discussed in detail in Chapter 4. To meet these needs, the properties
WriteLocation and ReadLocation are defined.

After the names of the table and views have been defined, the columns that act as
the primary keys on the table must be defined. Recall from Chapter 4 that these
keys also serve as the Object Identifier (OID) values for an object instance. This
framework can support two-column keys, or OIDs; so, the properties 1dColumnName
and subIdColumnName are defined. The framework assumes that an empty value for
SubIdColumnName indicates that only a single key is used. The response of the
framework when IdColumnName is empty is not defined.

If the particular class that is being defined by an instance of the cclassbef class is
the child in a parent-child-style relationship, the columns that represent the foreign
keys to the table containing the parent object instances must be defined as well. The
properties ParentIdColumnName and ParentSubIdColumnName are defined for just
this purpose. The data layer, discussed in Chapter 8, "The DataManager Library,"
will use this information during its SQL generation process for retrieval statements.
Similarly, for a parent-child-style relationship, there can be many child objects as in
the case of a one-to-many or master-detail relationship. In these cases, the
developer might need to order the items in a particular way, so an
OrderByColumnName property is defined. If more than one column is required, a
comma-separated list of column names on which to sort can be provided. These
columns do not necessarily have to appear in the ColumnDefs property that we will
discuss shortly.

If one-level inheritance structure is being created (through an interface
implementation), we must be able to discern which subclass of the base class a
given record in the database represents. Therefore, the properties TypeColumnName
and TypeId have been defined to drive this. If a value for TypeColumnName is
defined, then the framework assumes that an inheritance structure is in force and
handles data retrieval, inserts, and updates accordingly.

There are many instances where we want to reference an object by a
human-friendly name rather than by its OID, such as in an object browser, explorer,
or lookup mechanism. To support this, a property called KeyColumnName is defined
to indicate which column to use for this purpose. In this case, the KeyColumnName
must correspond to a ColumnDef in the ColumnDefs collection.

To support the XML functionality discussed in Chapter 13, we must define the
information necessary to generate an XML Document Type Definition (DTD) for the
class. The properties XMLElementName and XMLElementChildren are defined for
this purpose. These properties are used in conjunction with the MakeDTDSnippet
method defined on the class and discussed in the "Methods" section, later in this
chapter.

Finally, the cclassDef class contains a property of type pPropertyDefs and another
of type ColumnDefs. Because these two sets of definitions are built
programmatically at runtime, these two properties store the column and property
definition information for use by the business and data layers. In addition to these
two properties, two other properties are implemented to help map between
ColumnDef objects and PropertyDef objects. They are called PropertyToColumn
and ColumnToProperty, both of which are implemented as simple Visual Basic
Collection classes. The keying mechanism of the collection will be used to help
provide this mapping.

Once again, the Visual Modeler can be used to implement both the cclassbef class
and cClassDefs collection class. Be sure to use the same model that has been used
throughout this chapter so that there is visibility to the propertybefs and
ColumnDefs collection classes.

Listing 7.5 provides the code to implement the properties of the cclassbef class.

Example 7.5. Properties of the CClassDef Class

declarations section

Option Explicit

Private mReadLocation As String

Private mWriteLocation As String
Private mIdColumnName As String

Private mSubIdColumnName As String
Private mParentIdColumnName As String
Private mParentSubIdColumnName As String
Private mOrderByColumnName As String
Private mTypeColumnName As String
Private mTypeId As Long

Private mKeyColumnName As String
Private mXMLElementName As String
Private mXMLElementChildren As String
Private mPropertyToColumn As Collection
Private mColumnToProperty As Collection
Private mPropertyDefs As CPropertyDefs

Private mColumnDefs As CColumnDefs

' code section
Public Property Get ColumnDefs () As CColumnDefs
Set ColumnDefs = mColumnDefs

End Property

Public Property Get PropertyDefs () As CPropertyDefs
Set PropertyDefs = mPropertyDefs
End Property

Public Property Get XMLElementChildren() As String
Let XMLElementChildren = mXMLElementChildren
End Property

Public Property Let XMLElementChildren (ByVal Value As String)
Let mXMLElementChildren = Value
End Property

Public Property Get XMLElementName () As String
Let XMLElementName = mXMLElementName
End Property

Public Property Let XMLElementName (ByVal Value As String)
Let mXMLElementName = Value
End Property

Public Property Get TypeId() As Long
Let Typeld = mTypeld
End Property

Public Property Let Typeld(ByVal Value As Long)
Let mTypelId = Value
End Property

Public Property Get TypeColumnName () As String
Let TypeColumnName = mTypeColumnName
End Property

Public Property Let TypeColumnName (ByVal Value As String)
Let mTypeColumnName = Value
End Property

Public Property Get KeyColumnName () As String
Let KeyColumnName = mKeyColumnName

End Property

Public Property Let KeyColumnName (ByVal Value As String)
Let mKeyColumnName = Value

End Property

Public Property Get OrderByColumnName () As String
Let OrderByColumnName = mOrderByColumnName

End Property

Public Property Let OrderByColumnName (ByVal Value As String)
Let mOrderByColumnName = Value

End Property

Public Property Get ParentSubIdColumnName () As String
Let ParentSubIdColumnName = mParentSubIdColumnName

End Property

Public Property Let ParentSubIdColumnName (ByVal Value As String)
Let mParentSubIdColumnName = Value

End Property

Public Property Get ParentIdColumnName () As String
Let ParentIdColumnName = mParentIdColumnName

End Property

Public Property Let ParentIdColumnName (ByVal Value As String)
Let mParentIdColumnName = Value

End Property

Public Property Get SubIdColumnName () As String
Let SubIdColumnName = mSubIdColumnName
End Property

Public Property Let SubIdColumnName (ByVal Value As String)
Let mSubIdColumnName = Value
End Property

Public Property Get IdColumnName () As String
Let IdColumnName = mIdColumnName

End Property

Public Property Let IdColumnName (ByVal Value As String)
Let mIdColumnName = Value

End Property

Public Property Get WriteLocation() As String
Let WriteLocation = mWriteLocation

End Property

Public Property Let WriteLocation (ByVal Value As String)
Let mWriteLocation = Value

End Property

Public Property Get ReadLocation() As String
Let ReadLocation = mReadLocation

End Property

Public Property Let ReadLocation (ByVal Value As String)
Let mReadLocation = Value

End Property

Private Sub Class Initialize()
Set mPropertyToColumn = New Collection
Set mColumnToProperty = New Collection
End Sub

Private Sub Class Terminate ()
Set mPropertyToColumn = Nothing
Set mColumnToProperty = Nothing
End Sub

Methods

Four methods are defined on the cCclassbef class to implement creation of the
metadata model at runtime. The first of these is AppendMapping, a method that is
responsible for creating ColumnDef and PropertyDef instances, adding them to the
necessary collections, and providing the mapping between the two. Listing 7.6
provides the code listing for this method.

Example 7.6. The AppendMapping Method of the

CClassDef Class

Public Sub AppendMapping (PropertyName As String,
ColumnName As String,
ColumnCanRead As Boolean,

ColumnCanWrite As Boolean,

ColumnType As EnumColumnType,
XMLAttributeName As String)
Dim ColumnDef As New CColumnDef
Dim PropertyDef As New CPropertyDef
Dim AttributeItem As CAttributeItem

On Error GoTo ErrorTrap

100 ColumnDef.Name = ColumnName

105 ColumnDef.CanRead = ColumnCanRead

110 ColumnDef.CanWrite = ColumnCanWrite

120 ColumnDef.ColumnType = ColumnType

125 mColumnDefs.Add ColumnDef, ColumnDef.Name

130 PropertyDef.Name = PropertyName

135 Call PropertyDef.Attributes.Add ("XMLAttributeName",
XMLAttributeName)

140 mPropertyDefs.Add PropertyDef, PropertyDef.Name

145 mColumnToProperty.Add PropertyDef, ColumnName

150 mPropertyToColumn.Add ColumnDef, PropertyName

Exit Sub

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("CClassDef:AppendMapping"”, Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "CClassDef:AppendMapping",
Err.Description & " [" & Erl & "]"
End Sub

In an effort to minimize the mapping creation process in the business layer, only the
minimal information needed to create a column and property, and subsequently
generate a mapping, is passed into the method. This information is all that is needed
to drive the basic architecture. If additional information is needed by your
implementation of this framework, then the AppendMapping method can be
modified, although the recommended approach is to utilize the Attributes

property on the propertyDef class. The reasoning behind this is so that flexibility
going forward is preserved by not having to modify the AppendMapping method.

The AppendMapping method is self-explanatory up until line 145, where the actual
mappings are created. It is here that the keying feature of a Collection is used to
provide the bidirectional mappings. For the private mColumnToProperty collection,
the propertyDef object is added, keyed on the column name. For the private
mPropertyToColumn collection, the opposite is performed and the columnDef object
is added, keyed on the property name. Rather than provide direct access to these
underlying collections, two methods to expose this mapping facility in a cleaner
fashion are implemented. These methods are PropertyToColumnDef and
ColumnToPropertyDef. The code for these two methods is provided in Listing 7.7.

Example 7.7. The PropertyToColumnDef and
ColumnToPropertyDef Methods of the CClassDef

Class

Public Function PropertyToColumnDef (PropertyName As String) As
CColumnDef
On Error GoTo NotFound

Set PropertyToColumnDef = mColumnDefs.Item(PropertyName)
Exit Function
NotFound:

Set PropertyToColumnDef = Nothing

End Function

Public Function ColumnToPropertyDef (ColumnName As String) As
CPropertyDef
On Error GoTo NotFound

Set ColumnToPropertyDef = mPropertyDefs.Item (ColumnName) Exit Function
NotFound:

Set ColumnToPropertyDef = Nothing

End Function

Finally, the MakeDTDSnippet method that will be used in the XML DTD generation
facility of the framework is implemented. Although a detailed discussion of this
functionality will be deferred until Chapter 13, I'll make a few comments. The code
is provided in Listing 7.8.

Example 7.8. The MakeDTDSnippet Method of the

CClassDef Class

Public Function MakeDTDSnippet () As String
Dim sXML As String
Dim PropertyDef As CPropertyDef

Call Append (sXML, "<!ELEMENT" & vbTab)

Call Append(sXML, XMLElementName & " ")

Call Append (sXML, XMLElementChildren & ">" & vbCrLf)

Call Append(sXML, "<!ATTLIST" & vbTab & XMLElementName & vbCrLf)
Call Append (sXML, "<!ATTLIST" & vbTab & XMLElementName & vbCrLf)

For Each PropertyDef In PropertyDefs

If PropertyDef.XMLAttributeName <> "" Then
Call Append(sXML, vbTab & XMLAttributeName)
Call Append (sXML, " CDATA #REQUIRED" & vbCrLf)
End If

Next
Call Append(sXML, ">" & vbCrLf)
MakeDTDSnippet = sXML

End Function

Looking at the For Each PropertyDef In PropertyDefs statement in the preceding
code, we can see a use of the strange Item. [NewEnum] syntax that the Visual
Modeler generates for collection classes. An Append method has also been defined
within the basic code module for this component to facilitate the appending of
information to a string.

Using the cliassManager COmponent

Now that we have completely defined our class manager component, it is time to
put it to work. Figure 7.12 shows the completed class hierarchy for the
ClassManager library.

Figure 7.12. The ClassManager Iibrary in the UML

graphical model.

<<Class Module>>
CClassDefs

/

-mColumnDefs

4

<<Class Module>>
CColumnDefs

N\

-mPropertyDefs

<<Class Module>>
CPropertyDefs

0..* -Collection

L4

<<Class Module>>
CColumnDef

-Collection 0..*

v

<<Class Module>>
CPropertyDef

-mAttributes

v

<<Class Module>>
CAttributes

-Collection 0..*

v

<<Class Module>>
CAttribute

Suppose that we want to define the persistence information for the example using
bonds discussed in Chapter 3. Table 7.1 provides the property and column
information from that example.

Table 7.1. Meta Information for the CBond Class Example

Property Name Column Name Readable Writeable
Id Id Yes No
Name Name Yes Yes
FaceValue Face Value Yes Yes
CouponRate Coupon_ Rate Yes Yes
BondTerm Bond Term Yes Yes
BondType Bond Type Yes Yes

Recalling this cBond example from Chapter 3, a class inheritance structure has been
defined as shown in Figure 7.13.

Figure 7.13. The bond inheritance structure.

<<Interface>>
IBond

¢ FaceValue : Currency

¢ PurchasePrice : Currency
¢ CouponRate : Single

¢ BondTerm : Integer

< Name : String

QYieldToMaturity()
< BondPrice()

< DiscountYield()
< CurrentYield()

CCouponBond CDiscountBond CConsolBond

To implement the cBond object structure, a new ActiveX DLL called BondLibrary is
created in Visual Basic. Class modules for Ibond, CdiscountBond, CconsolBond,
and cCouponBond are added, and a reference to the ClassManager DLL is set.

Because this example follows an interface implementation mechanism, and the
metadata for all subclasses is identical except for the TypeId property, it is more
efficient to implement the majority of the mapping functionality in the IBond class.
Each subclass implementing 1Bond will delegate most of this mapping functionality
to 1bond. The subclass implementing the specific functionality will simply set the
TypeId property. For example, using the information from Table 7.1, the
initialization code for 1Bond in shown in Listing 7.9. Listings 7.10, 7.11, and 7.12
provide the specific initialization code needed by the cdiscountBond, CcouponBond,
and CConsolBond classes, respectively.

Example 7.9. The CClassDef Instantiation code

IBond

Option Explicit

' declarations section

Private mClassDef As CClassDef

' code section

Private Sub Class Initialize()
Set mClassDef = New CClassDef

With mClassDef

.ReadLocation = "dbo.fdb.Table Bond"

.WriteLocation = "dbo.fdb.Table Bond"

.IdColumnName = "Id"

.KeyColumnName = "Name"

.TypeColumnName = "Bond Type"

.AppendMapping "Id", "Id", True, False,

.AppendMapping "Name", "Name", True,

.AppendMapping "FaceValue", "Face Value",
"FaceValue"

.AppendMapping "CouponRate", "Coupon Rate",

ctNumber, "CouponRate"

.AppendMapping "BondTerm", "Bond Term",

"BondTerm"

.AppendMapping "BondType", "Bond Type",

"BondType"
End With
End Sub

ctNumber,

ctString,

ctNumber,

ctNumber,

for

ctNumber,

Example 7.10. The CDiscountBond Initialization Code

Relative to CClassDef

Option Explicit
' declarations section
Private mIBondObject As IBond
' code section

Private Sub Class Initialize()
Set mIBondObject = New IBond
mIBondObject.ClassDef.Typeld = 1

End Sub

Example 7.11. The CCouponBond Initialization Code

Relative to CClassDef

Option Explicit
' declarations section
Private mIBondObject As IBond
' code section

Private Sub Class Initialize()
Set mIBondObject = New IBond
mIBondObject.ClassDef.Typeld = 2

End Sub

Example 7.12. The CConsolBond Initialization Code

Relative to CClassDef

Option Explicit

' declarations section

Private mIBondObject As IBond

' code section

Private Sub Class Initialize()
Set mIBondObject = New IBond
mIBondObject.ClassDef.Typeld = 3
End Sub

The previous set of code listings shows the initialization process that provides the
complete population of a ClassDef object for a given subclass. For example, looking
at Listing 7.12, you can see that when a cConsolBond object is instantiated, the first
statement in its Class Initialize event instantiates an IBond object, which
transfers control to the 1Bond object initialization routine. This routine proceeds to
populate the vast majority of the classDef object. After returning to the
initialization routine of cconsolBond, the only property left to set is the TypeId
associated with the subclass.

Summary

This chapter has developed the first major component of the framework, the
ClassManager. This component is responsible for managing the metadata that
describes class definitions and the object-to-table mappings needed for object
persistence. In development of this component, the Visual Modeler was used

extensively to generate both the base classes and their collection class
counterparts.

In the next chapter, attention turns to defining the second core component, the
DataManager. This component will be used to interact with the database on behalf
of the application. It will use information found in the columnDefs collection, defined
in the cclassDef class, as one of its primary tools for generating the appropriate
SQL needed to accomplish the tasks required by the application.

Chapter 8. The DataManager Library

Now that we have defined and implemented the classManager components, the
capability exists to create class definitions programmatically through metadata.
This component also provides the infrastructure to define the mappings of classes to
tables and properties to columns within an RDBMS. Now, we need a mechanism to
interact with the database itself. This mechanism, aptly called bataManager, is also
an ActiveX DLL residing in the data services layer and is enlisted by the business
layer. Its design is such that it is the sole interface into the database by the
application. The business services layer is the only one, by design, that can enlist it
into action because the user services layer does not have visibility to it. Although
this library physically runs on the MTS machine, it does not run under an MTS
package. Instead, the business layer running under an MTS package calls this
library into action directly as an in-process COM component.

Design Theory

The goal in creating the DataManager component is to provide a library that can
handle all interactions with a Relational Database Management System (RDBMS) on
behalf of the application. The majority of these requests are in the form of basic
CRUD (Create, Retrieve, Update, and Delete) processing that makes up a significant
portion of any application. Create processing involves implementing the logic to
create a new row in the database, copy the object state information into it, and
generate a unique Object Identifier (OID) for the row and object. Retrieve
processing involves formulating the necessary SQL seELECT statement to retrieve
the desired information. Update processing involves implementing the logic to
retrieve a row from the database for a given OID, copying the object state
information into it and telling the RDMS to commit the changes back to the row.
Delete processing involves formulating the necessary SQL DELETE statement to
delete a specific row from the database based on a given OID.

In addition, stored procedure-calling capability might be needed as well to
implement business functionality on the RDBMS. Such capability might also be
needed to augment the standard CRUD routines if there are performance issues
with the generic approach. Nonetheless, this framework attempts to remain as
generic as possible and utilize just the core CRUD routines that will be implemented.

For the Retrieve and Delete portions of CRUD, an SQL composer is implemented. An
SQL composer is nothing more than a generator that can take minimal information
and create a valid SQL statement from it. The information used by the composer
logic is taken directly from the metadata in a classDef object. Pieces of the
composer logic that is used by the retrieve and delete methods are also used to
assist in the create and update portions of CRUD. Abstracting this composition logic

in the bataManager component in such a manner allows the application to
automatically adapt to database changes. For example, as new column names are
added to support new properties, existing functionality in the pataManager
component is not broken. Because all database access is driven through the
metadata in a ClassDef object, the DataManager component never must be
redeveloped to support changes in the object hierarchy or database schema.

Although this approach is very flexible, the dynamic SQL generation implemented
by the composer logic does have compilation overhead that repeats with every
database transaction. As discussed in Chapter 6, "Development Fundamentals and
Design Goals of an Enterprise Application," SQL Server views are precompiled and
cached in a manner similar to stored procedures; thus, much of the overhead
associated with the compilation process does not exist on retrievals from views.
Assuming that the highest percentage of database activity on many applications is
in retrievals and those retrievals are from views, the penalty from dynamic SQL
generation might be negligible. On high-volume objects though, this might not be
acceptable. On some database servers (although not on SQL Server 6.x), the
system caches dynamic SQL statements so that it does not have to recompile. A
significant amount of such dynamic SQL can overflow the cache and degrade overall
database performance. In either case—high-volume objects or caching of
dynamically generated SQL statements—a stored-procedure approach might be

necessary.

Implementation

As in the previous chapters, the implementation discussion starts by defining a few
core functions and helper classes, the latter of which allow for cleaner
communication between the business and data layers.

Component-Level Functions

First, several core functions are defined within the context of a basic code module
that is used by all classes within the component. The first function is a generic
RaiseError function (see Listing 8.1), whose purpose is to wrap outbound errors
with information to indicate that the source was within this component—an
approach that will be adopted with many of the server-side components to be
implemented in future chapters.

Example 8.1. A Core RaiseError Function Defined

Within the DataManager Component

Public Sub RaiseError (ErrorNumber As Long,
Source As String,
Description As String)
Err.Raise ErrorNumber,
"[CDataManager]" & Source,
CStr (ErrorNumber) & " " & Description

End Sub

The second is a function (see Listing 8.2) to write error messages to the NT event
log, called aptly WriteNTLogEvent. This is important for libraries running on a
remote server, as discussed in the "Debugging" section in Chapter 6.

Example 8.2. The WriteNTEventLog Function

Public Sub WriteNTLogEvent (ProcName As String,
ErrNumber As Long,
ErrDescription As String,
ErrSource As String)

Dim sMsg As String

sMsg = "Error " & ErrNumber & " (" & ErrDescription & "), sourced by "
&7
ErrSource & " was reported in " & ProcName
App.StartLogging "", vbLogToNT
App.LogEvent sMsg, vbLogEventTypeWarning ' will only write in compiled
mode
Debug.Print sMsg ' will only write in run-time mode
End Sub

As can be seen from the code in Listing 8.2, two messages are actually written. One
message is to the NT event log, which can occur only when the component is
running in non-debug mode. The other message is to the debug window, which can
only occur when the component is running in debug mode.

The cstringList Class

Because SQL statements are composed of lists of strings, a cCstringList class is
implemented to help manage this information. This class is used to store the

individual string values that make up the select column list, the order by column list,
and the where clause list necessary to formulate an SQL select statement. Figure

8.1 shows a Unified Modeling Language (UML) representation of the cStringList
class.

Figure 8.1. The cstringrist class in the UML graphical

model.

CStringLlst

SAdd()

OClear()

OExtractClausel()
B0 Exists()

QO County()

Qltem()

Methods

The cstringList class is straightforward in its design and implementation. The
CstringList is modeled on the collection class metaphor, with the exception that
the Add method has been modified to handle multiple strings at a time. Additionally,
the 1tem method returns a string versus an object, as has otherwise been the case
to this point. Several other methods have been added as well. A Clear method
removes all the strings from the internal collection. An ExtractClause method
formats the collection of strings into a single string separated by a delimiter
character provided to the method. Additionally, a private method Exists has been
created for use by the Add method to check to see whether a string already exists in
the collection. The reason for this is so that errors are not raised because of an
inadvertent programming error that attempts to add a duplicate key to the internal
collection. Standard count and 1tem methods are provided as well for iteration
purposes, consistent with collection design. The code listing for cstringList is

shown in Listing 8.3.

Example 8.3. Method Implementations

CStringlList

Option Explicit

Private mCol As Collection

Public Sub Add(ParamArray StringItems () As Variant)

Dim i1 As Integer

For 1 = LBound(StringItems) To UBound(StringIltems)
If Not Exists(CStr(StringItems(i))) Then
mCol.Add CStr(StringItems(i)), CStr(Stringltems(i))
End If

Next 1

End Sub

Private Sub Class Initialize()
Set mCol = New Collection
End Sub

Private Sub Class Terminate ()
Set mCol = Nothing
End Sub

Public Sub Clear ()

Dim i As Integer

For 1 = 1 To mCol.Count
mCol.Remove 1

Next i

End Sub

Public Function Count () As Integer
Count = mCol.Count

End Function

Public Function Item(Index) As String
Item = mCol.Item(Index)

End Function

Public Function ExtractClause (Delimiter As String) As String

Dim i As Integer
Dim s As String
If mCol.Count > 0 Then

for

For i = 1 To mCol.Count - 1

s = s & mCol.Item(i) & " " & Delimiter & " "
Next i
s = s & mCol.Item(1i)
Else
g = nn
End If
ExtractClause = s

End Function

Private Function Exists(SearchString As String) As Boolean
On Error GoTo ErrorTrap

Call mCol.Item(SearchString)

Exists = True

Exit Function

ErrorTrap:

Exists = False

End Function

The Add method has been designed to accept multiple string values through a
ParamArray parameter named StringItems. The method iterates through the
individual strings in this stringItems array, adding them one at a time to the
internal collection. A calling convention to this method might look like the following:

StringList.Add ("Id", "Name", "Addressl", "Address2")

This design technique allows for a dynamically sized parameter list, making it easier
to build the string list from the calling code.

The ExtractClause is implemented to help quickly turn the list of strings stored in
the internal collection into a delimited version of itself. This is needed by the
composer logic to create the select, from, and where predicates needed for the
SQL statements. Continuing with the preceding example, a call to the
ExtractClause method is simply

StringList.ExtractClause(",")

This call would produce the string "1d , Name , Addressl , Address 2" as its result.

The CQueryParms Class

With the capability to create lists of strings in tidy cstringList objects, attention
turns to defining the parameters necessary to form an SQL query to support CRUD
processing. To generate a retrieve or delete statement, the table name (or possible
view name) as well as the row specification criteria must be known. Furthermore,
for the select statement, the list of columns and optionally an order by list needs to
be known. A cQueryParms class is defined to accommodate these requirements.
Figure 8.2 shows a UML representation of the cQueryparms class.

Figure 8.2. The coueryrarms class in the UML graphical

model.

CQueryParms

¢ TableName : String

& ColumnList : CStringList

&WhereList : CStringList

& OrderList : CStringList
&WhereOperator : EnumWhereOperator

OClear()

Properties

The coueryParms class has a simple TableName property, along with three other
properties that are instances of the cstringList class. These properties are
ColumnList, WhereList, and OrderList. If a list of where conditions are used, a
mechanism to tell the composer logic how to concatenate them together must be
defined; therefore, a WhereOperator property is defined for this purpose.

NOTE

This framework does not support complex concatenation of where clauses in the
CRUD processing because it occurs relatively infrequently and because

implementation of such support would be extremely difficult. Anything that requires
this level of complexity is usually outside the capabilities of basic CRUD, and instead
within the realm of the business logic domain. For these types of queries, a
secondary pathway on CbhataManager is provided that can accept ad hoc SQL.

The code required to support these properties appears in Listing 8.4.

Example 8.4. CQueryParms Properties

Public Enum EnumWhereOperator
woAnd = 0
woOr =1

End Enum

Private mTableName As String

Private mColumnList As CStringList
Private mWhereList As CStringList
Private mOrderList As CStringList

Private mWhereOperator As EnumWhereOperator

Public Property Get TableName () As String
TableName = mTableName

End Property

Public Property Let TableName (RHS As String)
mTableName = RHS
End Property

Public Property Get ColumnList() As CStringList
Set ColumnList = mColumnList

End Property

Public Property Get WherelList() As CStringList
Set Wherelist = mWherelist
End Property

Public Property Get OrderList() As CStringList
Set OrderList = mOrderList
End Property

Public Property Get WhereOperator () As EnumWhereOperator

WhereOperator = mWhereOperator

End Property

Public Property Let WhereOperator (RHS As EnumWhereOperator)
mWhereOperator = RHS
End PropertyWith

Private Sub Class Initialize()

Set mColumnList = New CStringList

Set mWhereList New CStringList
Set mOrderList = New CStringList

End Sub

Private Sub Class Terminate ()

Set mColumnList = Nothing

Set mWhereList Nothing
Set mOrderList = Nothing

End Sub

Methods

Because CQueryParms is primarily a data container, its only method is clear, which
simply calls the clear method of its ColumnList, WhereList, and OrderList
properties.

Public Sub Clear()
mColumnList.Clear
mWherelList.Clear
mOrderList.Clear

End Sub

The cpataManager Class

With these two base helper classes (CstringList and CQueryParms) defined, we
can turn our attention to the implementation of the cbataManager class itself.
Figure 8.3 shows a UML representation of ChataManager.

Figure 8.3. The cpatamanager class in the UML graphical

model.

CDataManager

¢ Timeout : Long

QO GetData()
ODeleteData()

O DoConnect()

QO DoDisconnect()

QO ExecuteCommand()
OExecuteSQLY()
QGetlnsertableRS()
QO GetUpdateableRS()
QO GetMaxld()

Properties

The cbhataManager class is relatively property-free, save for a simple Timeout
setting (see Listing 8.5). This property enables the developer to override the
standard timeout setting if we think it will be exceeded. This property first checks to
see if the instance has connected to the database, as would be the case if this
property were set before the boconnect method, discussed in the next section, is
called. Although we can raise an error at this point, this framework has not
implemented it in this manner.

Example 8.5. CdataManager Properties

Private mTimeout As Long

Public Property Let Timeout (RHS As Long)
mTimeout = RHS

If Not cnn Is Nothing Then
cnn.CommandTimeout = RHS

End If

End Property

Public Property Get Timeout () As Long

Timeout = mTimeout

End Property

Methods

Because the underlying data repository is an RDBMS, and because Active Data
Objects (ADO) is used to access it, we need to define methods that enable the class
to connect to, and disconnect from, the database. These methods are called
DoConnect and DoDisconnect, respectively, and they are shown in Listing 8.6. It is
assumed that the business layer provides some form of direction on how to connect
through a connectstring parameter that follows ADO syntactical requirements.

Example 8.6. The DoConnect and DoDisconnect

Methods on CDataManager

Private cnn As ADODB.Connection

Public Function DoConnect (ConnectString As String)

On Error GoTo DoConnectErr

Set cnn = New ADODB.Connection

' do not change the cursor to server side
' in the following statement.

' there is a bug during insert

' operations when ODBC is used in

' conjunction with server side cursors..
cnn.CursorLocation = adUseClient

Call cnn.Open (ConnectString)

DoConnect = True

Exit Function
DoConnectErr:

Call RaiseError (Err.Number,

"CDataManager:DoConnect Method",

Err.Description)

As Boolean

DoConnect = False

End Function

Public Function DoDisconnect () As Boolean

On Error GoTo DoDisconnectErr

Call cnn.Close
DoDisconnect = True

Exit Function

DoDisconnectErr:

Call RaiseError (Err.Number,
"CDataManager:DoDisconnect Method",
Err.Description)

DoDisconnect = False

End Function

The DoConnect method is straightforward, following the requirements of ADO to set
up a Connection object. One item to note is that the connection object's
CursorLocation property is set to aduseClient because there are bugs if an ODBC
provider is used, versus a native OLEDB provider. The DoDisconnect method is
equally straightforward, requiring no further comment.

After a connection has been established, the capability to interact in CRUD fashion
with the database exists using one of four methods. The first two methods, Getbata
and DeleteData, implement the retrieve and delete functionality, respectively. The
second two methods, GetInsertableRS and GetUpdatableRS, are helpers to the
business layer to implement the create and update functionality, respectively. The
GetData, DeleteData, and GetUpdatableRS methods each take a CqueryParms
object as an argument to provide the necessary information for the composer logic
within the methods. The logic within the Get InsertableRs needs only a table name,
so it does not require the cquerypParms object. A fifth method, ExecutesQL, is
implemented to accept ad hoc SQL statements for execution. This SQL statement
can be the name of a stored procedure that does not have any ouT arguments
defined. If the need to support such a stored procedure exists, a new method will
have to be added to the cdataManager class.

The GetbData method returns a Recordset object that can contain zero or more
records. The GetData code is shown in Listing 8.7.

Example 8.7. The GetData Method of CDataManager

Public Function GetData (QueryParms As CQueryParms) As ADODB.Recordset
Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field
Dim strColumns As String
Dim strWhere As String

Dim strOrder As String

Dim SQL As String

Dim i As Integer

Dim strWhereOperator As String

On Error GoTo GetDataErr

If QueryParms.TableName = "" Then

Err.Raise dmeErrorNoTableName + vbObjectError, "",
LoadResString (dmeErrorNoTableName)

End If

striWhereOperator = IIf (QueryParms.WhereOperator = woAnd, "AND", "OR")
strColumns = QueryParms.ColumnList.ExtractClause (", ")
striWWhere = QueryParms.WherelList.ExtractClause (striWWhereOperator)

strOrder = QueryParms.OrderList.ExtractClause(",")

If strColumns = "" Then

Err.Raise dmeErrorNoFromClause + vbObjectError, "",
LoadResString (dmeErrorNoFromClause)

End If

If strWhere = "" Then
Err.Raise dmeErrorNoWhereClause + vbObjectError, "",

LoadResString (dmeErrorNoWhereClause)
End If

striWhere = " WHERE " & strWhere
If strOrder <> "" Then strOrder = " ORDER BY " & strOrder

125 SQL = "SELECT DISTINCT " & strColumns & _
" FROM " & QueryParms.TableName & " " &

strWhere & " " & strOrder

Set rs = ExecuteSQL (SQL)

130 If Not (rs.EOF Or rs.BOF) Then
Set GetData = rs
Set rs = Nothing

Else

Set GetData = Nothing
End If

Exit Function

GetDataErr:
If Erl >= 125 Then
'l. Details to EventLog
Call WriteNTLogEvent ("CDataManager:GetData",
Err.Number,
Err.Description & " <<CMD: " & SQL & ">>",
Err.Source & " [" & Erl & "]1")
'2. Generic to client
Err.Raise Err.Number, "CDataManager:GetData",
Err.Description & " <<CMD: " & SQL & ">>" & " [" & Erl &
myw
Else
'l. Details to EventLog
Call WriteNTLogEvent ("CDataManager:GetData",
Err.Number,
Err.Description,

Err.Source & " [" & Erl & "]")

'2. Generic to client
Err.Raise Err.Number, "CDataManager:GetData",
HJ "

Err.Description & " [" & Erl &
End If

End Function

The GetData method starts by checking to make sure that the TableName property
has been set, and then proceeds to expand the cstringList properties of the
CQueryParm object. After these expanded strings are built, checks are made to
ensure that there are rroM and WHERE clauses. If any violations of these conditions
are found, errors are raised and the method is exited. The order by list is optional,
so no checks for this property are made.

After all the necessary information has been expanded and validated, the method
proceeds to form an SQL statement from the pieces. A brsTINCT keyword is placed
in the statement to ensure that multiple identical rows are not returned, a condition
that can happen if malformed views are in use. Although this offers some protection,
it also limits the processing of Binary Large Object (BLOB) columns that cannot
support this keyword. If your application requires BLOB support, you must
implement specific functionality in addition to the framework presented.

After the SQL statement is ready, it is simply passed off to the ExecutesQL method
that will be discussed at the end of this section. To check for the existence of records,
the If Not (rs.EOF Or rs.BOF) syntax is used. Although a RecordCount property
is available on the rRecordset object, it is not always correctly populated after a call,
so the previous convention must be used for robustness.

Several other items to note relate to error handling. From the code, you can see that
an error enumeration is used with a resource file providing the error messages. The
purpose of this is to make it easier to modify the error messages without
recompiling the code, as well as reducing the overall compiled code size. This also
allows for multi-language support if so required by your application. The Visual
Basic Resource Editor add-in can be used for this purpose. Figure 8.4 shows the Edit
String Tables dialog that is used to build the resource file.

Figure 8.4. The Resource Editor.

Edit String Tables B
xmE | - YEBBE B | 2

Id English (United States)

1001 |Could not connect to the database
1002 |Could not disconnect from the database
1003 [No TableName property was provided
1004 |MNo FROM clause could be extracted
1005 [No WHERE clause could be extracted
9999 [An unknown error has occured

The other item to note is that the error-handling routine has been designed to
operate differently based on the line number at which the error occurred. For line
items greater than 125, the SQL has been generated. Thus, it might be helpful to
see the potentially offending SQL statement in the error stream for debugging
purposes. Otherwise, the absence of an SQL statement in the error stream indicates
that the error occurred prior to SQL formation.

The DeleteData method works in a fashion similar to Getbata, and is able to delete
one or more rows from the database. This method expects that the TableName and
WhereList properties on the cQueryParms argument object have been populated.
All other properties are ignored. This method proceeds to extract the wHERE clause
and ensure that it has information, similar to the checking performed in the Getbata

method. In this case, the existence of WHERE clause information is vital, or else the
resulting SQL statement will delete all rows in the table—a lesson learned the hard
way. Again, the necessary SQL DELETE statement is generated and passed off to the
ExecuteSQL method. The DeleteData code is shown in Listing 8.8.

Example 8.8. The DeleteData Method of

CDataManager

Public Function DeleteData (QueryParms As CQueryParms) As Boolean
Dim rs As ADODB.Recordset

Dim strWhere As String

Dim sSQL As String

Dim strWhereOperator As String

On Error GoTo ErrorTrap
If QueryParms.TableName = "" Then

Err.Raise dmeErrorNoTableName + vbObjectError, "",

LoadResString (dmeErrorNoTableName)

End If

StrWhereOperator = IIf (QueryParms.WhereOperator = woAnd, "AND", "OR")
striWWhere = QueryParms.WherelList.ExtractClause (striWhereOperator)

If strWhere = "" Then

Err.Raise dmeErrorNoWhereClause + vbObjectError, "",

LoadResString (dmeErrorNoWhereClause)

End If
strWWhere = " WHERE " & strWhere
125 SQL = "DELETE FROM " & QueryParms.TableName & strWhere

Set rs = ExecuteSQL (SQL)

ExitFunction:
Exit Function
ErrorTrap:
If Erl >= 125 Then
'l. Details to EventLog
Call WriteNTLogEvent ("CDataManager:DeleteData",
Err.Number,
Err.Description & " <<CMD: " & SQL & ">>",

Err.Source & " [" & Erl & "]1")

'2. Generic to client

Err.Raise Err.Number, "CDataManager:DeleteData",
Err.Description & " <<CMD: " & SQL & ">>" & " [" & Erl & "]"
Else
'l. Details to EventLog
Call WriteNTLogEvent ("CDataManager:DeleteData",
Err.Number, Err.Description,

Err.Source & " [" & Erl & "1")

'2. Generic to client
Err.Raise Err.Number, "CDataManager:DeleteData",
Err.Description & " [" & Erl & "]"
End If

End Function

Now that the two simpler components of CRUD have been implemented, attention
turns to the more complex Create and Update portions of the acronym. Although the
dynamic SQL generation process can be followed as in the previous two methods,
there are issues with this approach. Specifically, there are concerns with how to
handle embedded quotes in the SQL data. Rather than dealing with this issue in
INSERT and UPDATE statements, it is easier to work with Recordset objects.

The GetInsertableRs is defined to support creates, requiring only a TableName
parameter. The code for GetInsertableRS is shown in Listing 8.9.

Example 8.9. The GetInsertableRS Method on

CDataManagers

Public Function GetInsertableRS (TableName As String) As ADODB.Recordset
Dim rs As ADODB.Recordset
Dim SQL As String

On Error GoTo ErrorTrap

SQL = "select * from " & TableName & " where Id = 0"

'should populate with an empty row, but all column definitions

Set rs = ExecuteSQL (SQL)
Set GetInsertableRS = rs
Set rs = Nothing

Exit Function

ErrorTrap:

Call RaiseError (Err.Number, "CDataManager:UpdateData Method",
Err.Description)

End Function

This method forms a simple SQL seLECT statement of the form "SELECT * FROM
TableName WHERE Id=0". This has the effect of creating an empty Recordset object
that has all the columns of the underlying table. This empty Recordset object is
passed back to the business layer to receive the object state information. The
business layer calls the Update method on the Recordset object, retrieves the
auto-generated OID field generated by SQL Server, and sets the value in the object.

Update processing is done in a similar fashion, except that a cQueryprParms object is
required as an argument. This coueryParms object exactly matches the criteria set
forth in the GetData case, except that the TableName property must be the
underlying table rather than a view. Because the composition logic to retrieve an
updateable rRecordset object is the same as that already implemented in the
GetData method, the GetUpdatableRs method taps in to it simply by passing the
CQueryParm object through to it and passing the result back out. The simple code for
GetUpdatableRsS is given in Listing 8.10.

Example 8.10. The GetUpdatableRS Method on

CDataManager

Public Function GetUpdatableRS (QueryParms As CQueryParms) As
ADODB.Recordset

On Error GoTo ErrorTrap

Set GetUpdatableRS = GetData (QueryParms)

Exit Function

ErrorTrap:

Call RaiseError (Err.Number,
"CDataManager:GetUpdatableRS Method",
Err.Description)

End Function

The final data access method of the cbataManager class is the ExecutesQL method
that is used by each of the other four CRUD components. This method is also
exposed to the outside world for use directly by the business layer if something
beyond normal CRUD processing must be accomplished. As stated several times in
this chapter already, an example might include the one-shot execution of a stored
procedure. As discussed in Chapter 13, "Interoperability," these types of needs
arise when integrating to legacy systems that do not follow the framework outlined
here. The code for the ExecutesQl method is shown in Listing 8.11.

Example 8.11. The ExecuteSQL Method on

CDataManager

Public Function ExecuteSQL(SQL As String, _
Optional CursorMode As CursorTypeEnum,
Optional LockMode As LockTypeEnum) As
ADODB.Recordset
Dim rs As New ADODB.Recordset

If IsMissing(CursorMode) Then
CursorMode = adOpenKeyset
End If

If IsMissing(LockMode) Then
LockMode = adLockOptimistic
End If

rs.Open SQL, cnn, CursorMode, LockMode, adCmdText
Set ExecuteSQL = rs

End Function

The ExecuteSQL method can accept simply an SQL statement as an argument, or it
can be more finely controlled through the use of two optional parameters to control
the cursor and lock types used by the query. Although the default values are
acceptable for most situations, there might be times when these values need to be
adjusted for performance or concurrency reasons.

With all the effort that has gone into creating the cbataManager class, you might
dread having to manually create the collection class associated with this
ChataManager class. Even though the Visual Modeler was not used to create the
CDhataManager class, it can still be used to generate a collection class. To do this, the
DataManager component must be reverse engineered. Follow these steps to do so:

1. First, click the pataManager component in Visual Basic's Project Explorer
window.

2. Next, select the Add-Ins menu, Visual Modeler, Reverse Engineering Wizard.

3. In the Selection of a Model dialog box that appears, click the New button.
This will start the Visual Modeler and launch the Reverse Engineering Wizard
dialog.

4. Click the Next button to arrive at the Selection of Project Items step, as
shown in Figure 8.5.

Figure 8.5. The Reverse Engineering Wizard,
Selection of Project Items step in the Visual

Modeler.

Reverse Engineering Wizard - Selection of Project ltems

Select thoze progect #em: that should be reverse engneered into the modal

¢ Save model and progect before reverse engnsenng

= FE-!‘; Piojact: F\B ook \D slaM ansged D stab snaget. vibp
=¥ 4 Class Modules

¥ 2 CSiringList
ﬁmf; W 21 COuenPams
W &) CDalaManages
= ¥4 Modules
F it modGlobal
[T Active References
Adding mang Activel
references will lengthen
the time needed to
TBVEISE BNOINSe],

Helo I Lancel

Leaving the default items selected, click the Next button to arrive at the
Assignment of Project Items step. Drag each project item onto the Data
Services logical package to make the appropriate layer assignment.

Click once again on the Next button to bring up a summary of the activities
that the Visual Modeler is about to perform, along with an estimated time to
complete.

Click the Finish button to start the reverse engineering process. Upon
completion, a summary step appears. When you close the wizard, the newly
reverse-engineered classes appear under the Data Services folder of the tree
view on the left side of the Visual Modeler screen.

Right-click the cbataManager class, and then select the Generate Code
menu item to launch the Code Generation Wizard discussed in Chapter 7,
"The ClassManager Library."

On the Class Options step of the Preview step, give the collection class the
name CbhataManagers. The only other changes in this preview process are to
deselect any of the Generate Variable options in the wizard to prevent
regeneration of existing properties.

10. When generation is complete, be sure to move all the members in the Delete
These Members list to the Keep These Members List during the Delete
Members in Class step of the wizard.

Although this might seem a bit cumbersome, it is much faster to generate collection
classes in this manner when you are familiar with the Visual Modeler.

Summary

In this chapter, we built the data-layer component pataManager that implements
the business layer's interface into the RDBMS. This component also provides the
SQL composition necessary to enable row creation, retrieval, update and deletion
using metadata from the classManager component.

The next chapter introduces and implements the multipart business object
paradigm. It uses both the DataManager and ClassManager components as its
foundation, and also incorporates the distribution topics covered in Chapter 5,
"Distribution Considerations." The next chapter also implements the first
component that is run under the control of Microsoft Transaction Server.

Chapter 9. A Two-Part, Distributed Business
Object

We have spent a significant amount of time getting ready for this chapter. The
multi-part business object defined here represents impurity at its finest, not only in
how we define our business layer, but also in how we make it work across the client
and application tiers of the system. Before we delve into the subject matter, be
prepared to become slightly upset when we split our "pure" business object into two
"impure" components. Also be prepared for further distress when we remove many
of the business-specific methods on our classes and move them onto an application-
specific surrogate class. Our reasoning for breaking with traditional object-oriented
design theory has to do with our goal of maximum reuse and performance in a
distributed object world. Hopefully, we will make our decision factors clear as we
work our way through this chapter.

Design Theory

If we analyze the drawbacks of a pure layer-to-tier mapping, the most obvious issue
is that of round trip calls that must be made between the user layer that receives the
user input and the business layer that validates the input. Well-designed
applications should be capable of providing validation to the user as soon as possible.
If the entire business layer resides on a middle tier, then even simple property
validation becomes programmatically tedious. To accomplish this, the client must
move one or more of the object properties into the chosen transport structure,
make a validation request with this information over the DCOM boundary, wait for a
response, and handle the results accordingly. This technique represents a
significant amount of effort and bandwidth to find out that the user entered an
invalid date of "June 31, 1999." This is even more frustrating if the client is sitting in
Singapore and the server is sitting in Texas over a WAN connection. Thus, it would
be advantageous to move some of this simple functionality to the client tier without
having to move the entire business layer with it.

Thus, we base our design goals for a multi-part business object upon our desire to
have as much business functionality in a centrally controlled location as possible.
These design goals include the following:

e Provide fast response time to user validation over a potentially slow network
connection.

e Make our business layer functionality available to the widest range of
consumers, whether they connect by a Visual Basic (VB) client or an Active
Server Pages (ASP)-driven Web interface.

e Give the capability to add support for new business objects in as
straightforward a manner as possible.

e Build our client as thin as possible without sacrificing an efficient interface in
the process.

How do we make such a split in the business object? The most obvious solution is to
move the property level validation over to the client tier while leaving the core
business logic and data layer interfaces on the application tier. In fact, this is exactly
what this framework does. Although this approach does not necessarily represent a
new concept, we take it a bit further with our architecture. If we simply make the
split and nothing more, we create two halves of a business object—one that lives on
the application tier and one that lives on the client tier. This approach can lead to
some duplication of similar functionality across the two halves of the business object.
To avoid such duplication, we define our business class on the client tier and
implement basic property-level validation. On the application tier, we implement a
single business application class that can serve the CRUD (Create, Retrieve, Update,
and Delete) requirements of all business classes implemented on the client, in
essence creating a pseudo object-request broker. To do this, we use metadata
defined using our ClassManager component developed in the previous chapter. We
use this same application tier component as a surrogate to implement
application-level business logic. Thus, we have created a user-centric component
(the object that resides on the client) and a business-centric component (the
application-tier component).

From this point forward, we use a modified version of the Northwind database that
ships with Visual Basic as the example for our architecture. Figure 9.1 shows the
object model for this database.

Figure 9.1. The Northwind object model.

Order

City
Region
Customer Country
City
Region
{Gtﬁtal::Tr::Ie} Country
Employee
City
Region
Iﬁ‘tiltll.z;n Country
Listltem
(TileCourtesyOf)
Supplier
OrderDetail
Product
Supplier
City

Ragion

The modifications we have made to the database include normalization and the
implementation of our database development standards to support our architecture.
We have created a ListItem object to provide a lookup mechanism for simple data
normalization purposes. We have also made objects out of the city, region, and
country entities. The reasons for doing this are for normalization and a desire to
preserve future flexibility. At some point in the future, we might want to extend our
application to track information specific to a city, region, or country. An example
might be a country's telephone dialing prefix. By having an object instead of a
simple text field that stores the country name, we can simply add the
DialingPrefix property to the definition for the country class.

We can define a business layer component called Nnwserver that runs on a
server-based tier. For congruence, let us call the client-side mate to this component
NWClient. Although we can implement NWServer directly with minimal issue, if we
were to implement a second and then third such application tier component for
other applications, we would see that there is a significant amount of similar
functionality between them. The major difference is just in the setup of the
ClassDefs collection used to store the metadata for our classes. This being the case,
we define an interface definition that we call TappServer, primarily to deliver the
CRUD functionality needed by our business objects. Through several specific
methods implemented on IappServer, we can generate the object state
information necessary to instantiate existing user-centric business objects defined
within Nnwclient (thatis, from the application server to client). Going the other
direction (from the client to the application server), IaAppServer can also create new
instances, receive state information necessary to update existing object instances,
and delete instances of business objects on behalf of NWCclient. Figure 9.2 shows
the server side of this set of components.

Figure 9.2. The UML representation for iappserver and

NWServer.

<<Class Module>=
CMNWServer

Pbinitialized : Boolean

®E>Class_Initialize()

Class_Terminate()

<<Get>> |AppServer ClassDefs()
B <<Get>> |AppServer_DataManagers()
> 1AppServer_DeleteObject()
& |AppServer DeleteObjectListData()
E>1AppServer_GatClassDef()
E>1AppServer_GetObjectDatal()
(@ |AppServer_GetObjectListData()
E>1AppServer_GetPropertyNames()
®>1AppServer_InitServer()
E>1AppServer_InsertObjectData()
(®>IAppServer_InsertObjectListData()
&>1AppServer_UpdateObjectData()

!

==Class Module==
IAppServer

G <=Get== DataManagers()
& GetObjectData)

& GetObjectListDatal)

< DeleteObject()

G DeleteObjectListDatal()

& GetPropertyNames()

<<Class Module>>
CDataManagers

E?mﬂol . Collection

& GetClassDef()
&inseriObjectDatal)
$lInsertObjectListData()
UpdateQbjectDatal)
& <<Get>> ClassDefs()
lnitServer()

B> Class_Initialize()

B Class_Terminate()

h 4

<<(Class Modules»
CClassDefs

B2>mCol : Collection

Cr=<Get>> ltem()
<rRemove()
SAdd()
DecGet=> Count()
$r<<Get=> NewEnum)
B Class_Initialize()
B Class_Terminate()
$Exists()

Gre<Get>> Item()

<»Remove()

SAdd()

Sr=<Get=> Count()

w<<Get>> NewEnum()
E>Class_Initialize()
®yClass_Terminate()

Implementation

Because we have already spent a lot of effort in building helper classes in previous
chapters, our server-side component of the business layer does not need any
additional direct helper classes of its own. We define the data-centric form of the
multi-part business object first in terms of an interface definition 1AppServer. This
interface implements the majority of the functionality necessary to implement
CRUD processing using our ClassManager and DataManager libraries. By
subsequently implementing this interface on a class called cNWServer, we gain
access to that functionality.

COM purity would have us define an enumeration to identify our class types that we
are implementing on the server side. The real world tells us that binary compatibility
issues down the road will have us rolling the dice too many times with each series of
recompilations of the server, so we stick to using constants. Although we still force
a recompile whenever we add a new class type to our server, VB is not going to see
any changes in the enumeration that would otherwise break compatibility. Breaking
compatibility across the DCOM boundary forces us to redeploy server- and
client-side components. Another benefit of the constant approach is that it enables
us to build the 1appServer component for use by many applications, where an
enumeration would force us to have to reimplement the CRUD functionality in a
cut-and-paste fashion.

An MTS Primer

Before going into the details of our I1AppServer and CNWServer classes, we must

spend a few paragraphs talking about Microsoft Transaction Server (MTS) and the
features we are interested in for our framework. Although we can easily drop any
ActiveX DLL into MTS, we cannot take advantage of its transactional features and
object pooling mechanisms unless we program specifically for them.

The objectcontrol INterface

Implementation of the objectControl interface allows our MTS-hosted object to
perform the necessary initialization and cleanup activities as it is activated and
deactivated. To do this, we simply implement the Activate and Deactivate
methods of this interface. The interface also defines a method called canBePooled,
which should simply return ralse. Microsoft put this last method in without
implementing anything in MTS that actually uses it. For future compatibility safety,
leave it set to False. The following code shows the use of the simple
implementation of these methods:

Private Sub ObjectControl Activate()
Set ObjCtx = GetObjectContext
End Sub

Private Function ObjectControl CanBePooled() As Boolean
ObjectControl CanBePooled = False

End Function

Private Sub ObjectControl Deactivate ()
Set ObjCtx = Nothing
End Sub

The Activate and Deactivate methods can be viewed similarly to the

Class Initialize and Class Terminate events in non-MTS objects. These
methods are called as objects are activated and deactivated. Although we will not be
maintaining state in our MTS objects, the Activate event would be the mechanism
used to reestablish state. Similarly, the Deactivate event can be used to restore
the object back to the state in which you found it.

The ObjectContext Class

The ObjectContext class is defined in the Microsoft Transaction Server Type Library
(mtxas.d11l). As the name implies, the ObjectContext is an object that accesses
the current object's context. Context, in this case, provides information about the
current object's execution environment within MTS. This includes information about
our parent and, if used, the transaction in which we are running. A transaction is a
grouping mechanism that allows a single object or disparate set of objects to
interact with a database in a manner such that all interactions must complete
successfully or every interaction is rolled back.

Examples of transactional processing include a series of database insertions that
must all complete successfully for the entire set to be valid. For example, suppose
we are inserting information for a customer and its associated billing address using
a CCustomer class and a CAddress class. Let us also assume that an address must
be present for the customer to be valid. Suppose the ccustomer object inserts its
state into the database without issue. Next, the caddress object attempts to insert
itself into the database, but it fails. The cAddress object has no mechanism to know
what dependent inserts have happened before it to signal to them that there was a
problem. However, by grouping all such interactions within the context of a
transaction, any downstream failure will signal to MTS to roll back all interactions
within the same transaction that have happened up to the point of failure.

To create an instance of an ObjectContext class, an MTS object must call the
GetObjectContext function that is also defined in the MTS Type Library. By
performing the GetObjectContext function, we are requesting MTS to either create
a transaction on our behalf or enlist us into the existing transaction of our parent
object. In either case, MTS starts monitoring our interactions with the database.
Within Visual Basic, we can set our transaction mode for a class within the class
properties page. The specific property is MTSTransactionMode, which can take on
values of NotAnMTSObject, NoTransactions, RequiresTransactions,
UsesTransactions, and RequiresNewTransactions. Table 9.1 provides the uses
of these property settings.

Table 9.1. The Property Settings for MTSTransactionMode

Property Setting Description

NotAnMTSObject The class does not support Transaction Server. No
object context is created for this class.

NoTransactions The class does not support transactions and does not
run within the scope of a transaction. An object context
is created but no transaction is created.

RequiresTransactions The class requires transactions. When an object is
created, it inherits the transaction of its parent. If no
parent transaction exists then one is created.

UsesTransactions The class can use transactions. When an object is
created, it inherits the transaction of its parent. If no
parent transaction exists, one is not created.

RequiresNewTransactions|The class must use its own transaction. When an object
is created, a new transaction is created.

If we want to create any further MTS objects from within our existing MTS object
that can access our transaction, we must use the CreateInstance method of the
ObjectContext class to do so.

For an object to force a rollback of the transaction, the setAbort method of
ObjectContext must be called. This tells MTS to start the rollback process. This
method call also has the caveat that the object that calls the setaAbort method is
immediately deactivated. Likewise, ObjectContext contains a SetComplete
method that signals to MTS that the object has completed successfully. Again, a call
to this method immediately deactivates the object.

Database Connection Pooling

MTS is capable of sharing a database connection across multiple objects, even if
those connections are not created directly from MTS objects. The reason for this
latter statement is that MTS is not performing the work necessary to enable pooling.
Instead, the OLE DB provider or the ODBC resource dispenser takes ownership of
this task. In either case, this pooling is based simply on the connection string. If a
connection with a given connection string has been used before, and that database
connection is inactive, then the existing connection is used. If the database
connection is either in use or non-existent then a new connection is created.

For ODBC version 3.x, pooling is controlled at the database driver level through a
CPTimeout registry setting. Values greater than zero tell the ODBC driver to keep
the driver in the connection pool for the specified humber of seconds.

IAppServer/CNWServer

We will build out our application side classes, IAppServer and CNWServer, in a
parallel fashion. In some cases, we will implement methods on IAppServer and
provide hooks into it by simply calling into an IAppServer object instantiated on
CNwWServer. In other cases, the methods on IAppServer are simply abstract in
nature and will require full implementation by our cNwserver class with no calls into
IAppServer.

Getting Started

To start our development of our IAppServer and CNWServer classes, we must first
create two new ActiveX DLL projects within Visual Basic. The first project will be
called AppServer, and the second will be called Nwserver. We define our
IAppServer class within our AppServer project. Likewise, we define in our
NWServer the CNWserver class that implements IAppServer. Both the IAppServer
and Nwserver components will be hosted in MTS, so our normal programming
model for interface implementation will change somewhat as we go through our
development. To start with, for our cNwWserver object to create a reference to an
IAppServer object, it must use a CreateObject statement, and it must do so within
the Activate event of the ObjectControl ratherthanthe class Initialize event,
The following code shows this new initialization mechanism:

Private Sub ObjectControl Activate()
Set ObjCtx = GetObjectContext
Set mIAppServer = ObjCtx.Createlnstance ("AppServer.IAppServer")

End Sub

Private Function ObjectControl CanBePooled() As Boolean
ObjectControl CanBePooled = False

End Function

Private Sub ObjectControl Deactivate ()
Set mIAppServer = Nothing
Set ObjCtx = Nothing

End Sub

Note that we are using the CreateInstance method of the objectContext object to
create our IAppServer object. This is because we want to enlist IAppServer in our
transaction.

Our next step is to define the set of classes supported by the cNwserver component.
We first do this by adding a basic code module with class-type constants to our
NWServer project. These constants will be used as indexes into our class definitions.
They also will form the common language with the cNwclient class. If we are using
SourceSafe, we can share this file between both the client and application tiers;
otherwise, we must create matching copies of the file. The following listing shows
the constant definitions for the Northwind application:

Public Const CT CATEGORY As Integer = 1
Public Const CT CITY As Integer = 2
Public Const CT COUNTRY As Integer = 3
Public Const CT CUSTOMER As Integer = 4
Public Const CT EMPLOYEE As Integer = 5
Public Const CT LIST ITEM As Integer = 6
Public Const CT ORDER As Integer = 7
Public Const CT _ORDER DETAIL As Integer = 8
Public Const CT PRODUCT As Integer = 9
Public Const CT REGION As Integer = 10
Public Const CT SHIPPER As Integer = 11
Public Const CT SUPPLIER As Integer = 12

To create the class definitions, we must define an abstract method InitServer on
IAppServer and provide its implementation on cNwServer. This method is
responsible for defining and connecting to each cbataManager object required by
NWServer (One DataManager object is required for each database). This method will
be called before any external activity to ensure that the object context is valid and

the databases are defined and connected. Listing 9.1 shows the implementation of
the 1nitserver method for our NWServer class.

Example 9.1. The InitServer Method Implemented on

CNWServer

Private Function IAppServer InitServer () As Boolean
Dim DataManager As CDataManager
Dim ClassDef As CClassDef
Dim ConnectString As String

On Error GoTo NoInit
If ObjCtx Is Nothing Then

Set ObjCtx = GetObjectContext

Set mIAppServer = ObjCtx.Createlnstance ("AppServer.IAppServer")
End If

If mIAppServer.DataManagers.Count = 0 Then
Set DataManager = New CDataManager

ConnectString = GetSetting ("Northwind", "Databases", "NWIND", "")
If ConnectString = "" Then GoTo NoInit
If Not DataManager.DoConnect (ConnectString) Then GoTo NoInit

Call mIAppServer.DataManagers.Add (DataManager, "NWIND")
End If

Init:
IAppServer InitServer = True

Exit Function

NoInit:

IAppServer InitServer = False

'l. Details to EventLog

Call WriteNTLogEvent ("NWServer:InitServer", Err.Number,
Err.Description, Err.Source)

'2. Generic to client - passed back on error stack

Err.Raise Err.Number, "NWServer:InitServer",
Err.Description & " [" & Erl & "]"

ObjCtx.SetAbort

End Function

Although the code in Listing 9.1 looks relatively simple, there are several very
important elements to it. First, notice the 1f 0ObjCtx Is Nothing Then statement.
We must perform this check here because the objctx might be invalid at this point.
As we will see later in this chapter, some of the methods on IAppServer and
cNwserver call other internal methods to perform database updates or inserts.
When those methods complete, the setComplete method must be called to indicate
to MTS that the transaction can be committed. Calling setComplete invalidates our
object context, so we must reestablish it here.

Also notice that if we enter into the error-handling region of the code at the bottom,
we call the setabort method of the object context. The reason for this call is so we
can signal to MTS that something went awry and we cannot participate in the
transaction. We call it last because it immediately passes control to the Deactivate
method on the object control, and our error-handling activities would not complete
otherwise.

Also notice that we are retrieving the connection strings for the database from the
registry. These connection strings correspond to the ADO ConnectString property
on the connection object. At this point, we have created a DSN to the NWND2 .MDB
database; therefore, the Connectstring parameter is set to "Provider=MSDASQL;
DSN=NORTHWIND". For a DSN-less version, we can have a connection string that
looks something like

"Provider=Microsoft.Jet.OLEDBR.4.0;Data Source=F: \NWServer\Nwind2.mdb"

The second abstract method to implement is GetClassDef. The GetClassDef
method is responsible for defining the cclassDef object for each class type
implemented by the system. Rather than defining all class types at the initialization
of the object, we build them in a Just-In-Time (JIT) fashion, as we need them. We
implement this method as a simple case statement switched on the class type
constant. If we have not defined the requested class type yet, we build and save it.
Subsequent requests within the same object activation session are then much faster.
This technique enables us to balance between fast initialization and fast response
time. The code for the GetClassDef method for NWAppServer appears in Listing 9.2.

Example 9.2. The GetClassDef Method Implemented

on CNWServer

Private Function IAppServer GetClassDef (ByVal ClassId As Integer) As
CClassDef

Dim ClassDef As CClassDef

Call IAppServer InitServer
If Not mIAppServer.ClassDefs.Exists (CStr(ClassId)) Then

Select Case ClassId
Case CT CATEGORY

Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "Table Category"
.WriteLocation = "Table Category"
.IdColumnName = "Id"
.OrderByColumnName = "Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "Name", "Name", True, True, "NAME"
.AppendMapping "Description", "Description", True, True,
"DESCRIPTION"
End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_ CATEGORY))

Case CT_CITY
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "Table City"
.WriteLocation = "Table City"

. IdColumnName = "Id"
.ParentIdColumnName = "Region Id"
.OrderByColumnName = "Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "RegionId", "Region Id", True, True, "REGION ID"
.AppendMapping "Name", "Name", True, True, "NAME"

End With

Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT _CITY))

Case CT_COUNTRY
Set ClassDef = New CClassDef
With ClassDef
.DatabaseName = "NWIND"

.ReadLocation "Table Country"

.WriteLocation = "Table Country"
.IdColumnName = "Id"

.OrderByColumnName = "Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "Name", "Name", True, True, "NAME"
End With

Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_COUNTRY))

Case CT_ CUSTOMER
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "View Customer"
.WriteLocation = "Table Customer"
.IdColumnName = "Id"
.OrderByColumnName = "Company Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "CustomerCode", "Customer Code", True,
"CUSTOMER CODE"

.AppendMapping "CompanyName", "Company Name", True, True,

"COMPANY NAME"

.AppendMapping "ContactName", "Contact Name", True, True,

"CONTACT NAME"

.AppendMapping "ContactTitleId", "Contact Title Id", True, True,

"CONTACT TITLE ID"

.AppendMapping "ContactTitle", "Contact Title", True, False, _

"CONTACT TITLE"

.AppendMapping "Address", "Address", True, True, "ADDRESS"

.AppendMapping "PostalCode", "Postal Code", True, True,

"POSTAL CODE"
.AppendMapping "CountryId", "Country Id", True, False,
"COUNTRY ID"

.AppendMapping "Country", "Country", True, False, "COUNTRY"

.AppendMapping "RegionId", "Region Id", True, False,
"REGION ID"

.AppendMapping "Region", "Region", True, False, "REGION"
.AppendMapping "CityId", "City Id", True, True, "CITY ID"

.AppendMapping "City", "City", True, False, "CITY"
.AppendMapping "Phone", "Phone", True, True, "PHONE"
.AppendMapping "Fax", "Fax", True, True, "FAX"

End With

Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT CUSTOMER))

Case CT EMPLOYEE
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"

.ReadLocation = "View Employee"
.WriteLocation = "Table Employee"

. IdColumnName = "Id"

.OrderByColumnName = "Last Name, First Name"

.AppendMapping "Id", "Id", True, False, "ID"

.AppendMapping "LastName", "Last Name", True, True, "LAST NAME"

.AppendMapping "FirstName", "First Name", True, True,

"FIRST NAME"
.AppendMapping "TitleId", "Title Id", True, True, "TITLE ID"
.AppendMapping "Title", "Title", True, False, "TITLE"
.AppendMapping "TitleOfCourtesyId", "Title Of Courtesy Id",

True, True, "TITLE OF COURTESY ID"

.AppendMapping

"TitleOfCourtesy", "Title Of Courtesy",

True, False, "TITLE OF COURTESY"

.AppendMapping "BirthDate", "Birth Date", True, True,

"BIRTH DATE"
.AppendMapping "HireDate", "Hire Date", True, True, "HIRE DATE"
.AppendMapping "Address", "Address", True, True, "ADDRESS"
.AppendMapping "PostalCode", "Postal Code", True, True,

"POSTAL CODE"

.AppendMapping "HomePhone", "Home Phone", True, True,
"HOME PHONE"

.AppendMapping "Extension", "Extension", True, True,
"EXTENSION"

.AppendMapping "Notes", "Notes", True, True, "NOTES"

.AppendMapping "ReportsToId", "Reports To Id",

True, True, "REPORTS TO ID"

.AppendMapping

"ReportsToLastName", "Reports To Last Name",

True, False, "REPORTS TO LAST NAME"

.AppendMapping

"ReportsToFirstName", "Reports To First Name",

True, False, "REPORTS TO FIRST NAME"

.AppendMapping
"COUNTRY ID"
.AppendMapping

"CountryId", "Country Id", True, False,

"Country", "Country", True, False, "COUNTRY"

.AppendMapping "RegionId", "Region Id", True, False,
"REGION ID"
.AppendMapping "Region", "Region", True, False, "REGION"
.AppendMapping "CityId", "City Id", True, True, "CITY ID"
.AppendMapping "City", "City", True, False, "CITY"
End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_EMPLOYEE))

Case CT_LIST ITEM
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "Table List"
.WriteLocation = "Table List"
.IdColumnName = "Id"
.ParentIdColumnName = "List Id"
.OrderByColumnName = "Sort"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "ListId", "List Id", True, True, "LIST ID"
.AppendMapping "Item", "Item", True, True, "ITEM"
.AppendMapping "Sort", "Sort", True, True, "SORT"

End With

Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT LIST ITEM))

Case CT_ORDER
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "View Order"
.WriteLocation = "Table Order"
.IdColumnName = "Id"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "CustomerId", "Customer Id", True, True,
"CUSTOMER ID"
.AppendMapping "CustomerName", "Customer Name",
True, False, "CUSTOMER"
.AppendMapping "EmployeeId", "Employee Id", True, True,
"EMPLOYEE ID"

.AppendMapping "EmployeeLastName", "Employee Last Name",
True, False, "EMPLOYEE LAST NAME"
.AppendMapping "EmployeeFirstName", "Employee First Name",
True, False, "EMPLOYEE FIRST NAME"
.AppendMapping "OrderDate", "Order Date", True, True,
"ORDER DATE"
.AppendMapping "RequiredDate", "Required Date",
True, True, "REQUIRED DATE"
.AppendMapping "ShippedDate", "Shipped Date",
True, True, "SHIPPED DATE"
.AppendMapping "ShipperId", "Shipper Id", True, True,
"SHIPPER ID"
.AppendMapping "ShipperName", "Shipper Name",
True, False, "SHIPPER NAME"
.AppendMapping "FreightCost", "Freight Cost",
True, True, "FREIGHT COST"
.AppendMapping "ShipToName", "Ship To Name",
True, True, "SHIP TO NAME"
.AppendMapping "ShipToAddress", "Ship To Address",
True, True, "SHIP TO ADDRESS"
.AppendMapping "ShipToPostalCode", "Ship To Postal Code",
True, True, "SHIP TO POSTAL CODE"
.AppendMapping "ShipToCountryId", "Ship To Country Id",
True, False, "SHIP TO COUNTRY ID"
.AppendMapping "ShipToCountry", "Ship To Country",
True, False, "SHIP TO COUNTRY"
.AppendMapping "ShipToRegionId", "Ship To Region_ Id",
True, False, "SHIP TO REGION ID"
.AppendMapping "ShipToRegion", "Ship To Region",
True, False, "SHIP TO REGION"
.AppendMapping "ShipToCityId", "Ship To City Id",
True, True, "SHIP TO CITY ID"
.AppendMapping "ShipToCity", "Ship To City",
True, False, "SHIP TO CITY"
End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_ORDER))

Case CT_ORDER DETAIL
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "View Order Detail"
.WriteLocation = "Table Order Detail"

.IdColumnName = "Id"

.ParentIdColumnName = "Order Id"

.OrderByColumnName = "Id"
.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "OrderId", "Order Id", True, True, "ORDER ID"
.AppendMapping "ProductId", "Product Id", True, True,
"PRODUCT_ID"
.AppendMapping "Product", "Product", True, False, "PRODUCT"
.AppendMapping "Supplier", "Supplier", True, False, "SUPPLIER"
.AppendMapping "UnitPrice", "Unit Price", True, True,
"UNIT PRICE"
.AppendMapping "Discount", "Discount", True, True, "DISCOUNT"
End With

Call mIAppServer.ClassDefs.Add(ClassDef,
Case CT_PRODUCT
Set ClassDef
With ClassDef

New CClassDef

CStr (CT_ORDER DETAIL))

.DatabaseName = "NWIND"
.ReadLocation = "View Product"
.WriteLocation = "Table Product"
.IdColumnName = "Id"
.OrderByColumnName = "Name"
.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "Name", "Name", True, True, "NAME"
.AppendMapping "SupplierId", "Supplier Id",
True, True, "SUPPLIER ID"

.AppendMapping "Supplier", "Supplier",
.AppendMapping "CategoryId",
"CATEGORY ID"

True, True,

.AppendMapping "Category", "Category",
.AppendMapping "QuantityPerUnit",
True, True,
.AppendMapping "UnitPrice",
True, True, "UNIT PRICE"
.AppendMapping "UnitsInStock",
True, True,
.AppendMapping "UnitsOnOrder",
True, True,
.AppendMapping "ReorderLevel",
True, True,
.AppendMapping "IsDiscontinued",

True, True,

"Units
"UNITS IN STOCK"
"Units On Order",

"UNITS ON_ORDER"

True, False, "SUPPLIER"

"Category Id",

True, False, "CATEGORY"

"Quantity Per Unit",
"QUANTITY PER UNIT"

"Unit Price",

In Stock",

"Reorder Level",
"REORDER_LEVEL"
"Is Discontinued",

"IS DISCONTINUED"

End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_ PRODUCT))

Case CT_REGION
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "Table Region"
.WriteLocation = "Table Region"

. IdColumnName = "Id"
.ParentIdColumnName = "Country Id"
.OrderByColumnName = "Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "CountryId", "Country Id", True, True,
"COUNTRY ID"
.AppendMapping "Name", "Name", True, True, "NAME"
End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_REGION))

Case CT_SHIPPER
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"
.ReadLocation = "Table Shipper"
.WriteLocation = "Table Shipper"

. IdColumnName = "Id"
.OrderByColumnName = "Company Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "CompanyName", "Company Name",
True, True, "COMPANY NAME"
.AppendMapping "Phone", "Phone", True, True, "PHONE"
End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT SHIPPER))

Case CT_ SUPPLIER
Set ClassDef = New CClassDef
With ClassDef
.DatabaseName = "NWIND"
.ReadLocation = "View Supplier"

.WriteLocation = "Table Supplier"

.IdColumnName = "Id"

.OrderByColumnName = "Company Name"

.AppendMapping "Id", "Id", True, False, "ID"
.AppendMapping "CompanyName", "Company Name",
True, True, "COMPANY NAME"
.AppendMapping "ContactName", "Contact Name",
True, True, "CONTACT NAME"
.AppendMapping "ContactTitleId", "Contact Title Id",
True, True, "CONTACT TITLE ID"
.AppendMapping "ContactTitle", "Contact Title",
True, False, "CONTACT TITLE"
.AppendMapping "Address", "Address", True, True, "ADDRESS"
.AppendMapping "CountryId", "Country Id", True, False,
"COUNTRY ID"
.AppendMapping "Country", "Country", True, False, "COUNTRY"
.AppendMapping "RegionId", "Region Id", True, False,
"REGION ID"
.AppendMapping "Region", "Region", True, False, "REGION"
.AppendMapping "CityId", "City Id", True, True, "CITY ID"
.AppendMapping "City", "City", True, False, "CITY"
.AppendMapping "PostalCode", "Postal Code",
True, True, "POSTAL CODE"
.AppendMapping "Phone", "Phone", True, True, "PHONE"
.AppendMapping "Fax", "Fax", True, True, "FAX"
End With
Call mIAppServer.ClassDefs.Add(ClassDef, CStr (CT_SUPPLIER))
End Select
End If
Set IAppServer GetClassDef =
mIAppServer.ClassDefs.Item (CStr (ClassId))

End Function

Although this appears to be a significant amount of code for one method, it
represents the core of the application framework. Let us look at one of the class
types, say cT sUPPLIER. We start by creating a new cClassDef object and setting
its DatabaseName, ReadLocation, and WriteLocation properties. We then
proceed to state that its 1dColumnName is simply 1d and that we want to have our
OrderByColumnName as the Company Name column. We then define our property and
column definitions using the AppendMapping method. If we look more closely at the
ContactTitleId and ContactTitle property definitions, we see that the cantirite
property of the latter is False. This is because the contactTitle is a field in the
database view (ReadLocation) but not in the table (WiriteLocation). We have also

put XML tags into the AppendMapping call, which we will use in Chapter 13,
"Interoperability."

We define all our other methods as part of IaAppServer. Components implementing
the Iappserver interface need only call into these methods to gain access to the
functionality. The first method that we define is GetPropertyNames, which returns
an array of the property names for a given class type. This function is important for
both our Nnwclient and our ASP consumers because it is the basis for indexing into
variant data arrays. The code for GetPropertyNames appears in Listing 9.3.

Example 9.3. The GetPropertyNames Method on

IappServer

Public Function GetPropertyNames (ByVal ClassId As Integer) As Variant
Dim pn As Variant
Dim ClassDef As CClassDef
Dim PropertyDef As CPropertyDef

Dim i As Integer

On Error GoTo ErrorTrap

Set ClassDef = ClassDefs.Item(ClassId)

ReDim pn(l To ClassDef.PropertyDefs.Count)
i=1
For Each PropertyDef In ClassDef.PropertyDefs
pn (i) = PropertyDef.Name
i=1i+1
Next
GetPropertyNames = pn

Exit Function
ErrorTrap:

'l. Details to EventLog

Call WriteNTLogEvent ("IAppServer:GetPropertyNames",
Err.Number, Err.Description, Err.Source)

'2. Generic to client - passed back on error stack

Err.Raise Err.Number, "IAppServer:GetPropertyNames",
Err.Description & " [" & Erl & "]"

End Function

This method simply iterates through the propertyDefs collection of the class type
defined for the requested class type. Remember that we have already defined this

information using the GetClassDef method of cNwWServer. Our implementation of
this method on cNwserver is as follows:

Private Function IAppServer GetPropertyNames (ByVal ClassId As Integer)
As Variant
Call TAppServer GetClassDef (ClassId)
IAppServer GetPropertyNames = mIAppServer.GetPropertyNames (ClassId)

End Function

We now turn our attention to hooking into our CRUD processing routines, which we
so cleverly built into our cbataManager library. We start with data retrieval by
defining two public methods, GetObjectbData and GetObjectListData. The
GetObjectData method requires that we pass in a class type, an Object1id, and an
ObjectSubId. It returns a list of property names and the actual object data. We
declare these two return parameters as variants because of the need to support ASP,
whose underlying VBScript engine supports only this data type. GetObjectbata
proceeds to build a couerypParms object, moving the associated ReadLocation
property of the cClassDef object into the TableName property of the CQueryParms
object. Similarly, we iterate through the columnDefs collection of the cClassbef
object to build the ColumnList property of the cQueryParm object.

Next, the WwherelList is built using the ObjectId and ObjectSubId values passed in,
combined with the 1dColumnName and SubIdColumnName fields of the cClassbef
object. After the couerypParm object is complete, we call the Getbata method of a
ChataManager object to retrieve the data from the database. If data is returned,
then the fields collection of the resultset is iterated with a call to the
ColumnToPropertyDef method of the class definition to generate the
PropertyNames array that are sent back. Finally, we make a call to the GetRows
method of the recordset to generate the pata return parameter. The code for the
GetData method is provided in Listing 9.4.

Example 9.4. The GetObjectData Method on

IAppServer

Public Sub GetObjectData (ByVal ClassId As Integer,
ByVal ObjectId As Long,
ByVal ObjectSubId As Long,
PropertyNames As Variant,
Data As Variant,

Errors As Variant)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager
Dim ColumnDef As CColumnDef

Dim QueryParms As New CQueryParms
Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field

Dim vData As Variant

Dim i As Integer

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)
Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)
QueryParms.TableName = ClassDef.ReadLocation
For Each ColumnDef In ClassDef.ColumnDefs
If ColumnDef.CanRead Then
QueryParms.ColumnList.Add ColumnDef.Name
End If
Next
If ObjectId > 0 Then
QueryParms.WhereList.Add (ClassDef.IdColumnName & "=" &
CStr (ObjectId))

End If
If ObjectSubId > 0 Then
QueryParms.WhereList.Add (ClassDef.SubIdColumnName & "=" &
CStr (ObjectSubId))

End If
Set rs = DataManager.GetData (QueryParms)
If Not rs Is Nothing Then
ReDim PropertyNames (0 To QueryParms.ColumnList.Count - 1)
i=0
For Each rsField In rs.Fields
PropertyNames (i) =
ClassDef.ColumnToPropertyDef (rsField.Name) .Name
i=1+1
Next
vData = rs.GetRows
Else
vData = vbEmpty
End If
Data = vData

Exit Sub

ErrorTrap:

'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:GetObjectData", Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:GetObjectData",
Err.Description & " [" & Erl & "]"
End Sub

As you can see, the overall method is straightforward because we are relying
heavily on our DataManager component to perform the bulk of the data access for us.
From our cNwServer component, the implementation of this method looks like

Listing 9.5.

Example 9.5. The GetObjectData Method

Implemented on CNWServer

Private Sub IAppServer GetObjectData (ByVal ClassId As Integer,
ByVal ObjectId As Long,
ByVal ObjectSubId As Long,
PropertyNames As Variant,
Data As Variant,
Errors As Variant)
Call TAppServer GetClassDef (ClassId)
Call mIAppServer.GetObjectData (ClassId, ObjectId, ObjectSubld,
PropertyNames, Data, Errors)
End Sub

In the previous method implementation, we first call the GetClassDef method to
make sure the class definitions for the requested class type have been generated.
Next, we simply call into our GetObjectData method on our IAppServer object
instance to complete the call.

If we need to retrieve a list of objects, as in a master-detail relationship, we define
a GetObjectListbData method. Again, we pass in a class type and expect in return
PropertyNames and Data arrays. In this case, we also add parentid and
ParentSubId parameters to the list. Again, we form a cQueryParms object, setting
its TableName and ColumnList properties as we did in the GetData case. However,
in the GetObjectListData case, we construct our Where clause using the
ParentIdColumnName in conjunction with the parent1d value, and the
ParentSubIdColumnName in conjunction with the parentsub1d value. We also copy
the orderByColumnName property of our cCClassDef object to our OrderList
property of our CQueryParms object. Finally, we call the GetData method on the
appropriate cbataManager object, generating the PropertyNames and Data arrays

as in the GetObjectData case. The code for the GetObjectListData method is
provided in Listing 9.6.

Example 9.6. The GetObjectListData Method on

IAppServer

Public Sub GetObjectListData (ByVal ClassId As Integer,

ByVal ParentId As Long,
ByVal ParentSubId As Long,
PropertyNames As Variant,
Data As Variant,
Errors As Variant)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager

Dim ColumnDef As CColumnDef

Dim QueryParms As New CQueryParms

Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field

Dim vData As Variant

Dim vErrors As Variant

Dim i As Integer

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)

Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

QueryParms.TableName = ClassDef.ReadLocation
For Each ColumnDef In ClassDef.ColumnDefs
If ColumnDef.CanRead Then
QueryParms.ColumnList.Add ColumnDef.Name
End If
Next

If ParentId > 0 Then
QueryParms.WhereList.Add
(ClassDef.ParentIdColumnName & "=" & CStr (ParentId))
End If
If ParentSubId > 0 Then
QueryParms.WhereList.Add
(ClassDef.ParentSubIdColumnName & "=" & CStr (ParentSubId))
End If

If ClassDef.OrderByColumnName <> "" Then

QueryParms.OrderList.Add ClassDef.OrderByColumnName
End If

Set rs = DataManager.GetData (QueryParms)
If Not rs Is Nothing Then
ReDim PropertyNames (0 To QueryParms.ColumnList.Count - 1)
i=0
For Each rsField In rs.Fields
PropertyNames (i) =
ClassDef.ColumnToPropertyDef (rsField.Name) .Name
i=1+1
Next
vData = rs.GetRows
Else
vData = vbEmpty
End If
Data = vData

Exit Sub

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:GetObjectListData", Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:GetObjectListData",
Err.Description & " [" & Erl & "]"
End Sub

Again, you should be able to see that this method is straightforward, with the
ChataManager object performing the bulk of the work. Again, our CNWServer
component hooks into this component in a straightforward fashion as shown in
Listing 9.7.

Example 9.7. The GetObjectListData Method

Implemented on CNWServer

Private Sub IAppServer GetObjectListData (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
PropertyNames As Variant,
Data As Variant,

Errors As Variant)

If Not bInitialized Then IAppServer InitServer
Call TAppServer GetClassDef (ClassId)
Call mIAppServer.GetObjectListData (ClassId, ParentId, ParentSubId,
PropertyNames, Data, Errors)
End Sub

Now that we can retrieve individual objects or lists of objects, we turn our attention
to the deletion of objects. To delete an object or list of objects from the system, we
define DeleteObject and DeleteObjectList methods on IAppServer. As you
might surmise, DeleteObject deletes a single object, whereas DeleteObjectList
deletes a list of objects based on a master-detail or parent-child relationship.

DeleteObject takes a ClassId parameter along with an Objectid and
ObjectSubId. The class type is used to look up the cclassbef object so that we can
build the appropriate coueryParms object. In this case, we use the WritelLocation
property of the cClassDef object to set the TableName property of the CQueryParms
object. We use the ObjectId and ObjectSubId in conjunction with the
IdColumnName and SubIdColumnName properties to form the WwhereList object of
the coueryparms object. We then pass this couerypParms object off to the
DeleteData method of our cbataManager object, which performs the delete. The
code for DeleteObject follows in Listing 9.8.

Example 9.8. The DeleteObject Method on

IAppServer

Public Sub DeleteObject (ByVal ClassId As Integer,
ByVal ObjectId As Long,
ByVal ObjectSubId As Long,
Errors As Variant)
Dim ClassDef As CClassDef
Dim DataManager As CDataManager

Dim QueryParms As New CQueryParms
On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)
Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)
QueryParms.TableName = ClassDef.WriteLocation
If ObjectId > 0 Then
QueryParms.WherelList.Add (ClassDef.IdColumnName & "=" &
CStr (ObjectId))

End If
If ObjectSubId > 0 Then

QueryParms.WhereList.Add (ClassDef.SubIdColumnName & "=" &
CStr (ObjectSubId))
End If
QueryParms.WhereOperator = woAnd
Call DataManager.DeleteData (QueryParms)
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:DeleteObject", Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:DeleteObject",
Err.Description & " [" & Erl & "]"
ObjCtx.SetAbort
End Sub

Note that we have introduced the use of the object context in this method with the
SetComplete and SetAbort calls. The reason for this is that we are altering the
state of the database with this call, so it should operate within a transaction. Our
previous methods have been simple retrievals that do not require transactional
processing.

Again, we implement this in cNwserver in a straightforward fashion as shown in
Listing 9.9.

Example 9.9. The DeleteObject Method Implemented

on CNWServer

Private Sub IAppServer DeleteObject (ByVal ClassId As Integer,
ByVal ObjectId As Long, _
ByVal ObjectSubId As Long,
Errors As Variant)
On Error GoTo ErrorTrap
Call IAppServer GetClassDef (ClassId)
Call mIAppServer.DeleteObject (ClassId, ObjectId, ObjectSubId, Errors)
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
ObjCtx.SetAbort
End Sub

Notice that we have taken our wrapping approach a little further with this method,
with the implementation of the setComplete and setAbort methods as well. This is
because our transaction has been completed or aborted by our enlisted T1AppServer
object, so we must follow suit as well. Although technically this is not required
because one abort is sufficient, it is good programming practice to follow as the
system becomes more complex.

If you handle your referential integrity on the RDBMS, then nothing else must be
done here. If, on the other hand, you want the business layer to manage this
functionality, you can modify this DeleteObject method to do just this using a case
statement. Such a modification might look like the code shown in Listing 9.10.

Example 9.10. The Modified DeleteObject Method

Implemented on CNWServer

Private Sub IAppServer DeleteObject (ByVal ClassId As Integer,
ByVal ObjectId As Long,
ByVal ObjectSubId As Long,
Errors As Variant)

On Error GoTo ErrorTrap

Call TAppServer GetClassDef (ClassId)
Select Case ClassId
Case CT_ CATEGORY
Call TAppServer GetClassDef (CT_PRODUCT)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT PRODUCT, "CategoryId", "") Then
Call mIAppServer.DeleteObject (CT_CATEGORY, ObjectId,
ObjectSubId, Errors)
End If
Case CT _CITY
Call TAppServer GetClassDef (CT_ ORDER)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT ORDER, "ShipToCityId", "") Then
GoTo NoDelete
End If
Call TAppServer GetClassDef (CT_CUSTOMER)
If Not mIAppServer.IsReferenced (ObjectId, ObjectSubId,
CT CUSTOMER, "CityId", "") Then
GoTo NoDelete
End If
Call TAppServer GetClassDef (CT _EMPLOYEE)
If Not mIAppServer.IsReferenced (ObjectId, ObjectSubId,

CT EMPLOYEE, "CityId", "") Then
GoTo NoDelete
End If
Call TAppServer GetClassDef (CT SUPPLIER)
If Not mIAppServer.IsReferenced (ObjectId, ObjectSubId,
CT SUPPLIER, "CityId", "") Then
GoTo NoDelete
End If
Call TAppServer GetClassDef (CT_REGION)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT REGION, "CityId", "") Then
GoTo NoDelete
End If
Call mIAppServer.DeleteObject (CT _CITY, ObjectId, ObjectSubId,
Errors)
Case CT_REGION
Call TAppServer GetClassDef (CT _CITY)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT _CITY, "RegionId", "") Then
Call mIAppServer.DeleteObjectListData (CT _REGION, ObjectId,
ObjectSubId, Errors)
End If
Case CT_ CUSTOMER
Call TAppServer GetClassDef (CT_ ORDER)
If Not mIAppServer.IsReferenced (ObjectId, ObjectSubId,
CT_ORDER, "CustomerId", "") Then
Call mIAppServer.DeleteObject (CT_CUSTOMER, ObjectId,
ObjectSubId, Errors)
End If
Case CT EMPLOYEE
Call TAppServer GetClassDef (CT_ ORDER)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT ORDER, "EmployeeId", "") Then
Call mIAppServer.DeleteObject (CT_EMPLOYEE, ObjectId,
ObjectSubId, Errors)
End If
Case CT_ORDER
Call TAppServer GetClassDef (CT _ORDER DETAIL)
Call mIAppServer.DeleteObjectListData (CT _ORDER DETAIL, ObjectId,

ObjectSubId, Errors)
Call mIAppServer.DeleteObject (ClassId, ObjectId,
ObjectSubId, Errors)
Case CT_PRODUCT

Call TAppServer GetClassDef (CT ORDER)
If Not mIAppServer.IsReferenced (ObjectId, ObjectSubId,
CT ORDER, "ProductId", "") Then
Call mIAppServer.DeleteObject (CT_PRODUCT, ObjectId,
ObjectSubId, Errors)
End If
Case CT_ SHIPPER
Call TAppServer GetClassDef (CT_ ORDER)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT ORDER, "ShipperId", "") Then
Call mIAppServer.DeleteObject (CT _ORDER, ObjectId,
ObjectSubId, Errors)
End If
Case CT SUPPLIER
Call TAppServer GetClassDef (CT_SUPPLIER)
If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId,
CT PRODUCT, "SupplierId", "") Then
Call mIAppServer.DeleteObject (CT_SUPPLIER, ObjectId,
ObjectSubId, Errors)
End If
Case Else
Call TAppServer GetClassDef (ClassId)
Call mIAppServer.DeleteObject (ClassId, ObjectId,
ObjectSublId, Errors)
End Select
ObjCtx.SetComplete
Exit Sub

NoDelete:
ErrorTrap:

ObjCtx.SetAbort
End Sub

In this modified version of the DeleteObject method on cNWServer, we perform a
Select Case statement to determine what sort of action we should take given the
ClassId. In most cases, we simply want to ensure that the record we are about to
delete is not being referenced anywhere. For this purpose, we have defined an
IsReferenced method on our IappServer. This approach moves all referential
integrity functionality to the business layer and away from the RDBMS. This has the
effect of enabling us to develop for multiple RDBMSes, but at the cost of lower
performance because the data must move from the RDBMS to the MTS component
for the verification to take place. If you do not need this added flexibility then
putting the referential integrity on the RDBMS might be easier to implement and

more performance beneficial. The code for the IsReferenced method appears in

Listing 9.11.

Example 9.11.

IAppServer

The IsReferenced Method on

Public Function IsReferenced(ObjectId As Long,

ObjectSubId As Long,
TargetClassId As Integer,
TargetPropertyName As String,
TargetSubPropertyName As String)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager
Dim rs As ADODB.Recordset
Dim rsField As ADODB.Field

Dim QueryParms As New CQueryParms

On Error GoTo ErrorTrap

Set ClassDef =

mClassDefs.Item(TargetClassId)

Set DataManager

QueryParms.TableName

ClassDef.WriteLocation

QueryParms.ColumnList.Add "Count (*)"

As Boolean

mDataManagers.Item(ClassDef.DatabaseName)

If ObjectId > 0 And TargetPropertyName <> "" Then
QueryParms.WhereList.Add
ClassDef.PropertyToColumnDef (TargetPropertyName) .Name & "=" §&
ObjectId
End If
If ObjectSubId > 0 And TargetSubPropertyName <> "" Then

QueryParms.WhereList.Add

ClassDef.PropertyToColumnDef (TargetSubPropertyName) .Name &
"=" & ObjectSubId

End If

Set rs = DataManager.GetData (QueryParms)

If Not rs Is Nothing Then

rs.MoveFirst

IsReferenced
Else

IsReferenced
End If

rs.Fields.Item(0) .Value > 0

True

ObjCtx.SetComplete

better safe than sorry

Exit Function

ErrorTrap:

'l. Details to EventLog

Call WriteNTLogEvent ("IAppServer:IsReferenced", Err.Number,
Err.Description, Err.Source)

'2. Generic to client - passed back on error stack

Err.Raise Err.Number, "IAppServer:IsReferenced",
Err.Description & " [" & Erl & "]"

ObjCtx.SetAbort

End Function

We implement the IsrReferenced method similar to our other CRUD methods in that
we build a coueryParms object, populate our whereList, and make a call to
GetData. However, the major difference here is that our ColumnList contains a
"count (*) " clause versus a standard column list. We retrieve this value to
determine whether any records exist that reference a given objectId and
ObjectSubId. Note that we have added the sethAbort and SetComplete calls on our
object context for the IsrReferenced method. The reason for this is that if we have
an issue determining whether an object is referenced, we do not want a delete being
performed on the database.

Our DeleteObjectList method builds a couerypParms object using the same
WriteLocation to TableName copy. For the WhereList, we use the
ParentIdColumnName and ParentSubIdColumnName properties of the CClassbef in
conjunction with the parentId and ParentSubId values. Again, the DeleteData
method of chataManager handles the dirty work. The code for DeleteObjectList

appears in Listing 9.12.

Example 9.12. The DeleteObjectList Method on

IAppServer

Public Sub DeleteObjectList (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
Errors As Variant)
Dim ClassDef As CClassDef
Dim DataManager As CDataManager

Dim QueryParms As New CQueryParms

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)
Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)
QueryParms.TableName = ClassDef.WriteLocation
If ParentId > 0 Then
QueryParms.WhereList.Add
(ClassDef.ParentIdColumnName & "=" & ParentId)
End If
If ParentSubId > 0 Then
QueryParms.WhereList.Add
(ClassDef.ParentSubIdColumnName & "=" & ParentSubId)
End If
QueryParms.WhereOperator = woAnd
Call DataManager.DeleteData (QueryParms)
ObjCtx.SetComplete
Exit Sub

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:DeleteObjectList", Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:DeleteObjectList",
Err.Description & " [" & Erl & "]"
ObjCtx.SetAbort
End Sub

On cNwserver, we call into DeleteObjectList in the following manner:

Private Sub IAppServer DeleteObjectList (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
Errors As Variant)
Call IAppServer GetClassDef (ClassId)
Call mIAppServer.DeleteObjectList (ClassId, ParentlId, ParentSublId,
Errors)
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
ObjCtx.SetAbort
End Sub

Again, we simply verify that we have defined the cclassbef object for the given
ClassId. We then call the DeleteObjectList method on our mIAppServer object.

NOTE

In our framework, to delete an object with contained objects or collections of
objects, we must call the DeleteObject and/or DeleteObjectList methods
explicitly for each of these contained items. We finish with a call to DeleteObject
for the parent object.

With retrievals and deletes out of the way, we turn our attention to inserts and
updates. As before, we have the capability to handle single objects or collections of
objects, the latter being for a master-detail or parent-child-style relationship. Our
InsertObjectData function looks similar in calling convention to our
GetObjectData method, except that now we are receiving a variant array of object
state information. The first step of the InsertObjectData function is to call the
GetInsertableRS method of the cbataManager object. We then use the
PropertyNames array to loop through the pata variant array, moving values into the
associated recordset fields. We use our PropertybDefToColumn mapping here to
assist us in this process. We also check to ensure that we do not overwrite fields
with the cantWirite property setto ralse. If we have validation functionality in place,
we would perform that checking here as well.

After all the data has been moved into the updateable recordset, we have a choice
on how we generate our primary key value. One option is to retrieve a value for the
primary key before the insert, while another is to allow the RDBMS to generate the
key. In the first case, we can create a method on our cbataManager object to do this,
or we can implement it on our IAppServer. This method can be called something
like GetNextKey with a parameter of ClassId or TableName. How it is implemented
will depend on how you choose to define your keys. In the case of the RDBMS
generating the key, an aAutoNumber type column (in the case of Microsoft Access) or
an Identity type column (in the case of SQL Server) is used that will automatically
generate the next integer sequence. For our purposes, we will be allowing the
RDBMS to generate our keys, but you can change this to suit your needs.

The code for InsertObjectData appears in Listing 9.13.

Example 9.13. The InsertObjectData Method on

IAppServer

Public Sub InsertObjectData (ByVal ClassId As Integer, _
ByVal PropertyNames As Variant,
ByVal Data As Variant,

Errors As Variant,

ObjectId As Long,
ObjectSubId As Long)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager

Dim 1 As Long

Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field

Dim i As Integer

Dim 1Ret As Long

Dim pName as String

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)

Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)
Set rs = DataManager.GetInsertableRS(ClassDef.WriteLocation)
rs.AddNew

For i = LBound (PropertyNames) To UBound (PropertyNames)
pName = PropertyNames (1)
With ClassDef
If .ColumnDefs.Item(.PropertyToColumnDef (pName) .Name) .CanWrite
Then
Set rsField = rs.Fields(.PropertyToColumnDef (pName) .Name)
If rsField.Type = adLongVarBinary Or rsField.Type = adLongVarChar

Then
' requires chunk operations
Else
If IsEmpty(Data (i, 0)) Then
rsField.Value = vbEmpty
Else
rsField.Value = Data (i, 0)
End If
End If
End If
End If
Next i
rs.Update

L}

the following code only works for certain combinations of

L}

drivers and database engines (see MS KnowledgeBase)

L}

note that if there are triggers that fire and insert additional records

L}

with Identity/Autonumber columns, this number retrieved below

' will be wrong.
If ClassDef.IdColumnName <> "" Then

ObjectId = rs.Fields(ClassDef.IdColumnName)
End If

If ClassDef.SubIdColumnName <> "" Then
ObjectSubId = rs.Fields (ClassDef.SubIdColumnName)

End If

ObjCtx.SetComplete
Exit SubErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:InsertObjectData",
Err.Number, Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:InsertObjectData",
Err.Description & " [" & Erl & "]"
ObjCtx.SetAbort
End Sub

From our CNuwserver class, the implementation of this method looks like Listing
9.14.

Example 9.14. The InsertObjectData Method

Implemented on CNWServer

Private Sub IAppServer InsertObjectData (ByVal ClassId As Integer,
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant,
ObjectId As Long,
ObjectSubId As Long)
Call TAppServer GetClassDef (ClassId)
Call mIAppServer.InsertObjectData (ClassId, PropertyNames, Data,
Errors,
ObjectId, ObjectSubId)
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
ObjCtx.SetAbort
End Sub

Likewise, we have our InsertObjectListData method to insert objects based on a
parent object (see Listing 9.15). Here, we pass in a PropertyNames array along with
the variant array of data elements. The Data array is two-dimensional because we
are inserting more than one object. The layout of this array mimics the layout
produced by the cetrRows method of a recordset object. We also passin ourclassid,
ParentId, and ParentSubId values. The first activity we perform is to delete the
previous list using the DeleteObjectList method. We then proceed to obtain a
recordset to work with using the GetInsertableRS method as before. We follow a
similar process to move the information from the variant array into the recordset,
performing validation if we have implemented such functionality. We call the
UpdateBatch method of the recordset object to commit the data to the database.
Because object lists are the child part of a parent-child relationship, we do not need
to know the ID values that the database is generating here.

Example 9.15. The InsertObjectListData Method on

IAppServer

Public Sub InsertObjectListData (ByVal ClassId As Integer,

ByVal ParentId As Long,
ByVal ParentSubId As Long,
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager

Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field

Dim i As Integer, J As Integer

Dim pName As String

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)

Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)
Call DeleteObjectList (ClassId, ParentId, ParentSubId, Errors)

Set rs = DataManager.GetInsertableRS(ClassDef.WriteLocation)
For i = LBound(Data, 2) To UBound(Data, 2)
rs.AddNew
For j = LBound(PropertyNames) To UBound (PropertyNames)
pName = PropertyNames (J)
With ClassDef

If .ColumnDefs.Item(.PropertyToColumnDef (pName) .Name) .CanWrite

Then
Set rsField = rs.Fields(.PropertyToColumnDef (pName) .Name)
If rsField.Type = adLongVarBinary Or
rsField.Type = adLongVarChar Then
' chunk operations required
Else
If IsEmpty(Data(j, i)) Then
rsField.Value = vbEmpty
Else
rsField.Value = Data(j, 1)
End If
End If
End If
End With
Next j
Next i

Call rs.UpdateBatch
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:InsertObjectListData", Err.Number,

Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:InsertObjectListData",
Err.Description & " [" & Erl & "]"
ObjCtx.SetAbort
End Sub

From our CNuwserver class, the implementation of this method looks like Listing
9.16.

Example 9.16. The InsertObjectListData Method

Implemented on CNWServer

Private Sub IAppServer InsertObjectListData (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
ByVal PropertyNames As Variant,
ByVal Data As Variant,

Errors As Variant)

Call TAppServer GetClassDef (ClassId)
Call mIAppServer.InsertObjectListData (ClassId,
ParentId,
ParentSubId,
PropertyNames,
Data, _
Errors)
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
ObjCtx.SetAbort
End Sub

Our last component of CRUD is that of update. Here, we only provide a mechanism
to update a single object. As in the insert case, this method calls the
GetUpdateableRS method of the appropriate chataManager object. Again, we form
a CoueryParm object to help us make the appropriate call by first setting the
TableName property from the ReadLocation of the cClassbef object. We loop
through the columnDefs property of the cclassDef object, adding the columns,
whose canWrite property is set to True, to the columnList property of the
CQueryParm object. We also add both the IdColumnName and SubIdColumnName to
the columnList to ensure that OLE DB has the necessary keys for the update that
is to follow. If we do not do this, OLE DB is not able to perform the update.
Remember that the Add method of our cstringList, which forms our ColumnList,
is designed to ignore duplicates, so we are safe in adding these two columns without
first checking to see if they have already been added.

After we have called our GetUpdateableRS method in our chataManager object, we
can proceed to move data from the variant-array—based Data parameter into the
recordset, using our PropertyNames array and the PropertyToColumnDef method
of the cclassbef object. Again, if we are implementing server-side validation, we
perform the necessary validation in this process, raising any errors back in the
Errors array. The code for UpdateObjectData appears in Listing 9.17.

Example 9.17. The UpdateObjectData Method on

IAppServer

Public Sub UpdateObjectData (ByVal ClassId As Integer, _
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant,
ObjectId As Long, _
ObjectSubId As Long)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager
Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field

Dim i As Integer

Dim QueryParms As New CQueryParms
Dim ColumnDef As CColumnDef

Dim pName As String

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)
Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)
QueryParms.TableName = ClassDef.WriteLocation
For Each ColumnDef In ClassDef.ColumnDefs
If ColumnDef.CanWrite Then
QueryParms.ColumnList.Add ColumnDef.Name
ElseIf ClassDef.IdColumnName = ColumnDef.Name Then
QueryParms.ColumnList.Add ColumnDef.Name
ElseIf ClassDef.SubIdColumnName = ColumnDef.Name Then
QueryParms.ColumnList.Add ColumnDef.Name
End If
Next

If ObjectId > 0 Then
QueryParms.WhereList.Add (ClassDef.IdColumnName & "=" &
CStr (ObjectId))

End If
If ObjectSubId > 0 Then
QueryParms.WhereList.Add (ClassDef.SubIdColumnName & "=" &
CStr (ObjectSubId))
End If

Set rs = DataManager.GetUpdatableRS (QueryParms)
For i = LBound (PropertyNames) To UBound (PropertyNames)
pName = PropertyNames (1)
With ClassDef
If .ColumnDefs.Item(.PropertyToColumnDef (pName) .CanWrite Then
Set rsField = rs.Fields(.PropertyToColumnDef (pName))
If rsField.Type = adLongVarBinary Or rsField.Type = adLongVarChar
Then
' requires chunk operations

Else

If IsEmpty(Data (i, 0)) Then
rsField.Value = vbEmpty
Else
rsField.Value = Data (i, 0)
End If
End If
End If
End With
Next i
rs.Update
ObjCtx.SetComplete
Exit Sub
ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:UpdateObjectData",
Err.Number, Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:UpdateObjectData",
Err.Description & " [" & Erl & "]"
ObjCtx.SetAbort
End Sub

From our CcNwserver class, the implementation of this method looks like Listing
9.18.

Example 9.18. The UpdateObjectData Method

Implemented on CNWServer

Private Sub IAppServer UpdateObjectData (ByVal ClassId As Integer,
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant,
ObjectId As Long,
ObjectSubId As Long)
Call TAppServer GetClassDef (ClassId)
Call mIAppServer.UpdateObjectData (ClassId,
PropertyNames,
Data,
Errors,
ObjectId,
ObjectSubId)
ObjCtx.SetComplete
Exit Sub

ErrorTrap:
ObjCtx.SetAbort
End Sub

Finally, we want to give our system the added flexibility of querying for individual
objects or lists of objects. This becomes important as we build our ASP-based
reporting engine in Chapter 11, "A Distributed Reporting Engine." To implement this,
we define a method QueryoObjectListbData, which looks similar to a standard
GetObjectListData call, except we have replaced the parentId and ParentSubId
parameters with a Criteria array and a Sort array.

We implement our QueryObjectListbData method by once again building a
CQueryParm object. We copy the ReadLocation of our cCClassbDef object over to our
TableName property name of the cQuerypParm object. We then create our
ColumnList, as in our other cases. Next, we form the WhereList from our
Criteria array, which is an array of arrays. Each inner array contains three
elements: PropertyName, Operator, and value. We then build our OrderByList
from the sort array and call our chataManager with the GetData method. We
perform our normal PropertyName array creation, as well as the GetrRows call. The
code for QueryObjectListData appears in Listing 9.19.

Example 9.19. The QueryObjectListData Method on

IAppServer

Public Sub QueryObjectListData (ByVal ClassId As Integer,

ByVal Criteria As Variant,
ByVal Sort As Variant,
ByRef PropertyNames As Variant,
Data As Variant,
Errors As Variant)

Dim ClassDef As CClassDef

Dim DataManager As CDataManager

Dim ColumnDef As CColumnDef

Dim QueryParms As New CQueryParms

Dim rs As ADODB.Recordset

Dim rsField As ADODB.Field

Dim vData As Variant

Dim i As Integer

Dim p As String
On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)

Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

QueryParms.TableName = ClassDef.ReadLocation
For Each ColumnDef In ClassDef.ColumnDefs
If ColumnDef.CanRead Then
QueryParms.ColumnList.Add ColumnDef.Name
End If
Next

If IsArray(Criteria) Then

' Criteria (i) (0) = PropertyName

' Criteria (i) (1) = Operator

' Criteria(i) (2) = Value

For i = LBound(Criteria, 1) To UBound(Criteria,
p = Criteria (i) (0)
If IsNumeric (Criteria (i) (2)) Then

1)

QueryParms.WhereList.Add ClassDef.PropertyToColumnDef (p) .Name &

Criteria(i) (1) & Criteria(i) (2)

Else

QueryParms.WhereList.Add ClassDef.PropertyToColumnDef (p) .Name &

Criteria(i) (1) & "'" & Criteria(i) (2)

End If
Next i
QueryParms.WhereOperator = woAnd

End If

If IsArray(Sort) Then
For i = LBound(Sort) To UBound(Sort)
QueryParms.OrderList.Add

ClassDef.PropertyToColumnDef (CStr (Sort (i))) .Name
Next i
End If
Set rs = DataManager.GetData (QueryParms)

If Not rs Is Nothing Then

ReDim PropertyNames (0 To QueryParms.ColumnList.Count - 1)

i=0

For Each rsField In rs.Fields

& mwrn

PropertyNames (i) =
ClassDef.ColumnToPropertyDef (rsField.Name) .Name
i=1+1
Next
vData = rs.GetRows
Else
vData = vbEmpty
End If

Data = vData
Exit Sub
ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:QueryObjectListData", Err.Number,

Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:QueryObjectListData",
Err.Description & " [" & Erl & "]"
End Sub

From our CNWiserver class, the implementation of this method is provided in Listing
9.20.

Example 9.20. The QueryObjectListData Method

Implemented on CNWServer

Private Sub IAppServer QueryObjectListData (ByVal ClassId As Integer,
ByVal Criteria As Variant,
ByVal Sort As Variant,
PropertyNames As Variant,
Data As Variant,
Errors As Variant)
Call TAppServer GetClassDef (ClassId)
Call mIAppServer.QueryObjectListData (ClassId,
Criteria,
Sort,
PropertyNames,
Data,

Errors)
End Sub

IAppClient/CNWClient

With our server-side IAppServer and CNWServer classes in place, we can move
from the application tier to the user tier and build the client-side mates. In a similar
fashion to the server side, we define an interface called IAappClient. Unlike
IAppServer though, our implementing class cNwClient is responsible for
implementing all methods defined by IappClient. Our NwWClient ActiveX DLL that
contains cNwClient is responsible for defining a class for each class type of the
library that is to be exposed to the client application. This definition takes the form
of Visual Basic class modules, which define the same properties spelled out in the
CClassDef on the server side. Our first order of business is to define an InitClient
method that connects to the DCOM object using the passed-in server name. We
always override our InitClient method with code similar to that shown for the
CNWClient implementation in Listing 9.21.

Example 9.21. The InitClient Method Implemented on
CNW(Client

' From the declarations section
Option Explicit

Implements IAppClient

Private mIAppClient As IAppClient

Private NWServer As CNWServer

Private Sub IAppClient InitClient (Server As String)
Set NWServer = CreateObject ("NWServer.CNWServer", Server)
Set mIAppClient.AppServer = NWServer
Call mIAppClient.AppServer.InitServer

End Sub

The InitClient method uses the createObject construct to create an instance of
the cNwserver object. We use this rather than a New operator because this is the
only mechanism that creates a DCOM object on a remote computer. The server
name that is passed in is the same as the computer name of the machine running
MTS which has a package installed that hosts the cnwserver class.

Now that we can connect to the DCOM client, we turn our attention to defining two
more interfaces in the same ActiveX library as 1AppClient. These two interfaces
are IAppObject and IAppCollection, both of which we use to implement our final
objects and collection of objects, respectively. Our IAppCollection contains a
collection of TAppObjects. On our IAppObject, we define the methods of
SetStateToVariant and SetStateFromvVariant that we must override in our

implementations. These methods are responsible for converting between native
objects and variant Data arrays. We also define an 1svalid method to help us check
for validity across properties. Finally, we define properties 1d and subId used during
our CRUD processing that we will be implementing. The interface definition for
IAppObject appears in Listing 9.22.

Example 9.22. The IAppObject Interface Definition

Option Explicit

Private mId As Long

Private mSubId As Long
Private mClassId As Integer
Private mIsLoaded As Boolean

Private mIsDirty As Boolean

Public Sub SetStateToVariant (PropertyNames As Collection, Data As
Variant)
\}

override this method
End Sub

Public Sub SetStateFromVariant (PropertyNames As Collection, Data As
Variant,
Optional RowIndex As Integer)
\}

override this method
End Sub

Public Function IsValid() As Boolean
\

override this method

End Function

Public Property Get Id() As Long
Id = mId
End Property

Public Property Let Id(RHS As Long)
mId = RHS
End Property

Public Property Get SubId() As Long
SubId = mSubId
End Property

Public Property Let SubId(RHS As Long)

mSubId = RHS
End Property

Public Property Get ClassId() As Long
ClassId = mClassId
End Property

Public Property Let ClassId(RHS As Long)
mClassId = RHS
End Property

Public Property Let IsLoaded(RHS As Boolean)
mIsLoaded = RHS
End Property

Public Property Get IsLoaded() As Boolean
IsLoaded = mIsLoaded
End Property

Public Property Let IsDirty(RHS As Boolean)
mIsDirty = RHS
End Property

Public Property Get IsDirty () As Boolean
IsDirty = mIsDirty
End Property

Our IAppCollection interface is a bit more complicated, but it implements many of
the methods itself. This method also contains a setStateFromvariant method to

convert a two-dimensional variant Data array into a collection of objects. We also

define a setStateTovVariant method for the reverse process. The other methods

and properties are those required to implement a collection, including I1tem, Add,
Count, and NewEnum. The interface definition for IAppCollection appears in

Listing 9.23.

Example 9.23. The IAppCollection Interface
Definition

Option Explicit

Private mCol As Collection
Private mClassId As Integer
Private mIsLoaded As Boolean

Private mIsDirty As Boolean

Public Sub SetStateFromVariant (PropertyNames As Collection, Data As
Variant)
' override this method

End Sub

Public Sub SetStateToVariant (PropertyNames As Collection, Data As
Variant)
' override this method

End Sub

Public Property Get Item(vntIndexKey As Variant) As IAppObject
Set Item = mCol (vntIndexKey)
End Property

Public Sub Add(AppObject As IAppObject, vntKey As Variant)
mCol.Add AppObject, vntKey
End Sub

Public Property Get Count () As Long
Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown
Set NewEnum = mCol.[NewEnum]

End Property

Private Sub Class Initialize()
Set mCol = New Collection
End Sub

Private Sub Class Terminate ()
Set mCol = Nothing
End Sub

Public Property Get ClassId() As Long
ClassId = mClassId
End Property

Public Property Let ClassId(RHS As Long)
mClassId = RHS
End Property

Public Property Let IsLoaded(RHS As Boolean)
mIsLoaded = RHS
End Property

Public Property Get IsLoaded() As Boolean
IsLoaded = mIsLoaded
End Property

Public Property Let IsDirty(RHS As Boolean)
mIsDirty = RHS
End Property

Public Property Get IsDirty () As Boolean
IsDirty = mIsDirty
End Property

Again, we must override the SetStateFromvVariant and SetStateToVariant
methods for each class implementing this interface.

Now that we can connect to the DCOM client and we have our IAppObject and
IAppCollection interfaces defined, we turn our attention to the data retrieval
methods of LoadObject and LoadCollection. As you might guess, we will be
calling the corresponding GetObjectData and GetObjectbataList methods on our
CNWServer object.

We call LoadObject with a cClassId and an I1d/SubId pair. It returns an IAppObject
reference. Within the Loadobject method, we dimension a variable of each class
type, along with an I1appObject object. We perform a select Case statement to
determine which object to create based on the classid. After we have identified
the correct class type, we call the GetObjectData method of our CNWServer class.
The code for LoadObject for our CNWClient class appears in Listing 9.24.

Example 9.24. The LoadObject Method Implemented

on CNWClient

Private Function IAppClient LoadObject (ClassId As Integer,
Id As Long,
SubId As Long) As
AppClient.IAppObject
Dim AppObject As IAppObject
Dim Order As COrder
Dim CityItem As CCityItem

Dim CategoryItem As CCategoryItem

Dim CountryItem As CCountryItem
Dim RegionItem As CRegionItem

Dim CustomerItem As CCustomerItem
Dim Employeeltem As CEmployeeltem
Dim ProductItem As CProductItem
Dim ShipperItem As CShipperItem
Dim SupplierItem As CSupplierItem
Dim Data As Variant

Dim Errors As Variant

Dim PropertyNames () As String

On Error GoTo ErrorTrap

Select Case ClassId

Case CT_ORDER
Set Order = New COrder
Set AppObject = Order

Case CT CATEGORY
Set Categoryltem = New CCategoryItem
Set AppObject = Categoryltem

Case CT _CITY
Set CityItem = New CCityItem
Set AppObject = CityItem

Case CT_ COUNTRY
Set CountrylItem = New CCountrylItem
Set AppObject = Countryltem

Case CT_REGION
Set RegionItem = New CRegionItem
Set AppObject = RegionItem

Case CT_ CUSTOMER
Set CustomerItem = New CCustomerItem
Set AppObject = CustomerItem

Case CT EMPLOYEE
Set Employeeltem = New CEmployeeltem
Set AppObject = Employeeltem

Case CT_PRODUCT
Set ProductItem = New CProductItem
Set AppObject = ProductItem

Case CT_ SHIPPER
Set ShipperItem = New CShipperItem
Set AppObject = ShipperItem

Case CT SUPPLIER
Set SupplierItem = New CSupplierItem

Set AppObject = SupplierItem
Case Else
GoTo SkipLoadObject
End Select

Call mIAppClient.AppServer.GetObjectData (ClassId, Id, SubId,
PropertyNames, Data, Errors)
If IsArray(Data) Then
AppObject.SetStateFromVariant (MakePropertyIndex (PropertyNames),
Data
End If
Set IAppClient LoadObject = AppObject

SkipLoadObject:
Exit Function
ErrorTrap:
Err.Raise ERR_CANNOT LOAD + vbObjectError, "CNWClient:LoadObject",
LoadResString (ERR_CANNOT LOAD) & "[" & Err.Description & "]"

End Function

As can be seen from the previous code sample, we must dimension each class type.
We then perform a select Case statement on the classid, creating the specific
object instance of the requested class. We then set the instance of the generic
AppObject variable to our specific instance of an object that has implemented the
IAppObject interface. From there, we fall through to the GetoObjectbata method of
our CAppServer variable. If the method returns a non-empty Data variable, we call
the generic setStateFromvariant method of our AppObject to move the
information from the variant data array into the property values of the specific
object. We then return our AppObiject to the calling routine. The reason for the use
of AppObiject is to prevent the late binding that can slow performance. Using this
approach can make our code base more modular.

To illustrate a specific implementation of the setstateFromvariant method of an
IAppObject, we offer the code for our corder class in Listing 9.25.

Example 9.25. The COrder Class That Implements
IAppObject

Option Explicit
Implements IAppObject

Private mCustomerId As Long 'local copy

Private mCustomerName As String 'local copy
Private mEmployeeId As Long 'local copy

Private mEmployeelLastName As String 'local copy
Private mEmployeeFirstName As String 'local copy
Private mOrderDate As Date 'local copy

Private mRequiredDate As Date 'local copy
Private mShippedDate As Date 'local copy
Private mShipperId As Long 'local copy

Private mShipperName As String 'local copy
Private mFreightCost As Double 'local copy
Private mShipToName As String 'local copy
Private mShipToAddress As String 'local copy
Private mShipToPostalCode As String 'local copy
Private mShipToCountry As String 'local copy
Private mShipToRegion As String 'local copy
Private mShipToCityId As Long 'local copy
Private mShipToCity As String 'local copy
Private mIAppObject As IAppObject

Private Property Let IAppObject Id(RHS As Long)
mIAppObject.Id = RHS
End Property

Private Property Get IAppObject Id() As Long
IAppObject Id = mIAppObject.Id
End Property

Private Property Let IAppObject SubId(RHS As Long)
mIAppObject.SubId = RHS
End Property

Private Property Get IAppObject SubId() As Long
IAppObject SubId = mIAppObject.SubId
End Property

Public Property Let ShipToCity(ByVal RHS As String)
mShipToCity = RHS
End Property

Public Property Get ShipToCity() As String
ShipToCity = mShipToCity
End Property

Public Property Let ShipToCityId(ByVal RHS As Long)
mShipToCityId = RHS
End Property

Public Property Get ShipToCityId() As Long
ShipToCityId = mShipToCityId
End Property

Public Property Let ShipToRegion (ByVal RHS As String)
mShipToRegion = RHS
End Property

Public Property Get ShipToRegion() As String
ShipToRegion = mShipToRegion
End Property

Public Property Let ShipToCountry(ByVal RHS As String)
mShipToCountry = RHS
End Property

Public Property Get ShipToCountry () As String
ShipToCountry = mShipToCountry
End Property

Public Property Let ShipToPostalCode (ByVal RHS As String)
mShipToPostalCode = RHS
End Property

Public Property Get ShipToPostalCode() As String
ShipToPostalCode = mShipToPostalCode
End Property

Public Property Let ShipToAddress (ByVal RHS As String)
mShipToAddress = RHS
End Property

Public Property Get ShipToAddress () As String
ShipToAddress = mShipToAddress
End Property

Public Property Let ShipToName (ByVal RHS As String)
mShipToName = RHS
End Property

Public Property Get ShipToName() As String
ShipToName = mShipToName
End Property

Public Property Let FreightCost (ByVal RHS As Double)
mFreightCost = RHS
End Property

Public Property Get FreightCost () As Double
FreightCost = mFreightCost
End Property

Public Property Let ShipperName (ByVal RHS As String)
mShipperName = RHS
End Property

Public Property Get ShipperName() As String
ShipperName = mShipperName
End Property

Public Property Let ShipperId(ByVal RHS As Long)
mShipperId = RHS
End Property

Public Property Get ShipperId() As Long
ShipperId = mShipperId
End Property

Public Property Let ShippedDate (ByVal RHS As Date)
mShippedDate = RHS
End Property

Public Property Get ShippedDate() As Date
ShippedDate = mShippedDate
End Property

Public Property Let RequiredDate (ByVal RHS As Date)
mRequiredDate = RHS
End Property

Public Property Get RequiredDate () As Date

RequiredDate = mRequiredDate

End Property

Public Property Let OrderDate (ByVal RHS As Date)
mOrderDate = RHS
End Property

Public Property Get OrderDate() As Date
OrderDate = mOrderDate
End Property

Public Property Let EmployeeFirstName (ByVal RHS As String)
mEmployeeFirstName = RHS
End Property

Public Property Get EmployeeFirstName () As String
EmployeeFirstName = mEmployeeFirstName

End Property

Public Property Let EmployeelastName (ByVal RHS As String)
mEmployeelLastName = RHS
End Property

Public Property Get EmployeelastName () As String
EmployeelLastName = mEmployeelLastName

End Property

Public Property Let EmployeeId(ByVal RHS As Long)
mEmployeeId = RHS
End Property

Public Property Get EmployeeId() As Long
EmployeelId = mEmployeeld
End Property

Public Property Let CustomerName (ByVal RHS As String)
mCustomerName = RHS

End Property
Public Property Get CustomerName () As String
CustomerName = mCustomerName

End Property

Public Property Let CustomerId(ByVal RHS As Long)

mCustomerId = RHS
End Property

Public Property Get CustomerId() As Long
CustomerId = mCustomerId

End Property

Private Sub IAppObject SetStateFromVariant (PropertyNames As Collection,

Data As Variant,
Optional RowIndex As Integer)
If IsMissing(RowIndex) Then RowIndex = 0
mIAppObject.Id = Data (PropertyNames ("Id"), RowlIndex)
CustomerId =
GetValue (Data (PropertyNames ("CustomerId"), RowIndex), vbLong)
CustomerName =
GetValue (Data (PropertyNames ("CustomerName"), RowIndex), vbString)
Employeeld =
GetValue (Data (PropertyNames ("EmployeeId"), RowIndex), vbLong)
EmployeelLastName =
GetValue (Data (PropertyNames ("EmployeelLastName"), RowlIndex),
vbString)
EmployeeFirstName =
GetValue (Data (PropertyNames ("EmployeeFirstName"), RowIndex),
vbString)
OrderDate =
GetValue (Data (PropertyNames ("OrderDate"), RowlIndex), vbDate)
RequiredDate =
GetValue (Data (PropertyNames ("RequiredDate"), RowIndex), vbDate)
ShippedDate =
GetValue (Data (PropertyNames ("ShippedDate"), RowIndex), vbDate)
ShipperId =
GetValue (Data (PropertyNames ("ShipperId"), RowlIndex), vbLong)
ShipperName =
GetValue (Data (PropertyNames ("ShipperName"), RowIndex), vbString)
FreightCost =
GetValue (Data (PropertyNames ("FreightCost"), RowIndex), vbDouble)
ShipToName =
GetValue (Data (PropertyNames ("ShipToName"), RowIndex), vbString)
ShipToAddress =
GetValue (Data (PropertyNames ("ShipToAddress"), RowlIndex), vbString)
ShipToPostalCode =
GetValue (Data (PropertyNames ("ShipToPostalCode"), RowIndex),
vbString)

ShipToCountry =

GetValue (Data (PropertyNames ("ShipToCountry"), RowIndex), vbString)
ShipToRegion =

GetValue (Data (PropertyNames ("ShipToRegion"), RowIndex), vbString)
ShipToCityId = _

GetValue (Data (PropertyNames ("ShipToCityId"), RowIndex), vbLong)
ShipToCity = _

GetValue (Data (PropertyNames ("ShipToCity"), RowIndex), vbString)

End Sub

As you can see from the code, we have defined all our properties using Let and Get
statements. If we choose, this technique allows us to provide to the client instant
feedback about data validation. We also define an 1svalid method on IAppObject,
which performs validation across properties. If we look at the
SetStateFromVariant method, we see that we have received a PropertyNames
collection. This collection is a list of integers keyed on property names. The numeric
values correspond to column positions in the pData array for a given property. We
also receive an optional RowIndex parameter in case this Data array is the result of
a multirow resultset.

We have also defined a simple helper function called Getvalue to help us trap null
values and convert them to a standard set of empty values. The simple code for this

appears in Listing 9.26.

Example 9.26. The GetValue () Function

Public Function GetValue (Data As Variant,
Optional vbType As VbVarType)
As Variant
If Not IsMissing(vbType) Then
Select Case vbType
Case vbString
GetValue = IIf(IsNull (Data), "", Data)
Case vbDate
GetValue = IIf(IsNull (Data), vbEmpty, Data)
Case Else
GetValue = IIf (IsNull(Data), 0, Data)
End Select
Else
GetValue = IIf(IsNull (Data), vbEmpty, Data)
End If

End Function

We call our LoadCollection method with a ClassId and a ParentId/ParentSubIld
pair. Within the LoadCollection method, we dimension a variable of each
collection class type along with an IAppCollection object. We perform a Select
case statement to determine which collection to create based on the c1ass1d. After
we have identified the correct class type, we call the GetObjectListbData method of
our CNWsServer. The code for LoadCollection for our CNWClient object appears in

Listing 9.27.

Example 9.27. The LoadCollection Method

Implemented on CNWClient

Private Function IAppClient LoadCollection(ClassId As Integer,

ParentId As Long,
ParentSubId As Long)
As AppClient.IAppCollection

Dim AppCollection As IAppCollection

Dim ListItems As CListItems

Dim OrderDetailltems As COrderDetailltems

Dim CategoryItems As CCategoryltems

Dim CityItems As CCityItems

Dim CountryItems As CCountryItems

Dim RegionItems As CRegionItems

Dim CustomerItems As CCustomerItems

Dim EmployeeItems As CEmployeeltems

Dim ProductItems As CProductItems

Dim ShipperItems As CShipperItems

Dim SupplierItems As CSupplierItems

Dim Data As Variant
Dim Errors As Variant

Dim PropertyNames () As String

On Error GoTo ErrorTrap

Select Case ClassId

Case CT LIST ITEM
Set ListItems = New CListItems
Set AppCollection = ListItems

Case CT ORDER DETATL
Set OrderDetailIlItems = New COrderDetailltems
Set AppCollection = OrderDetailltems

Case CT CATEGORY

Set Categoryltems = New CCategoryltems

Set AppCollection = Categoryltems
Case CT CITY

Set CityItems = New CCityItems

Set AppCollection = CityItems
Case CT_ COUNTRY

Set CountrylItems = New CCountryltems
Set AppCollection = Countryltems
Case CT_REGION
Set RegionItems = New CRegionItems
Set AppCollection = RegionItems
Case CT_ CUSTOMER

Set CustomerItems = New CCustomerItems

Set AppCollection = CustomerItems
Case CT EMPLOYEE
Set Employeeltems = New CEmployeeltems
Set AppCollection = Employeeltems
Case CT_PRODUCT
Set ProductItems = New CProductItems

Set AppCollection = Productltems
Case CT_ SHIPPER
Set ShipperItems = New CShipperItems

Set AppCollection = ShipperItems

Case CT_ SUPPLIER
Set SupplierItems = New CSupplierItems
Set AppCollection = SupplierItems

Case Else
GoTo SkipLoadCollection
End Select

Call mIAppClient.AppServer.GetObjectListData (ClassId,
ParentId,
ParentSublId,
PropertyNames,
Data,
Errors)

If IsArray(Data) Then

AppCollection.SetStateFromVariant (MakePropertyIndex (PropertyNames),
Data

End If

Set IAppClient LoadCollection = AppCollection

SkipLoadCollection:

Exit Function
ErrorTrap:

Err.Raise ERR _CANNOT LOAD + vbObjectError, "CNWClient:LoadCollection",

LoadResString (ERR_CANNOT LOAD) & "[" & Err.Description & "]"

End Function

We define LoadCollection in @ manner similar to Loadobject, except that we
dimension collection classes and an AppCollection of type IAppCollection. We
also call GetObjectListData on our CAppServer object, and we define a
SetStateFromVariant ONn our IAppCollection interface. The code for our
COrderDetailItems collection appears in Listing 9.28.

Example 9.28. The COrderDetailltems Collection

Option Explicit

Implements IAppCollection
Dim mIAppCollection As IappCollection
Private Sub Class Initialize()

Set mIAppCollection = New IAppCollection
End Sub

Private Sub Class Terminate ()
Set mIAppCollection = Nothing
End Sub

Private Sub IAppCollection Add
(AppObject As AppClient.IAppObject, vntKey As Variant)
Call mIAppCollection.Add (AppObject, vntKey)

End Sub

Private Property Get IAppCollection Count () As Long
IAppCollection Count = mIAppCollection.Count
End Property

Private Property Get IAppCollection Item

(vntIndexKey As Variant) As AppClient.IAppObject

Set IAppCollection Item = mIAppCollection.Item(vntIndexKey)
End Property

Private Property Get IAppCollection NewEnum() As stdole.IUnknown
Set IAppCollection NewEnum = IAppCollection.NewEnum
End Property

Private Sub IAppCollection SetStateFromVariant (PropertyNames As
Collection,
Data As Variant)
Dim AppObject As IAppObject
Dim OrderDetaillItem As COrderDetailIltem

Dim i As Integer

For i = LBound(Data, 2) To UBound(Data, 2)
Set OrderDetailltem = New COrderDetailItem
Set AppObject = OrderDetailltem
Call AppObject.SetStateFromVariant (PropertyNames, Data, 1)
Call IAppCollection Add(AppObject, CStr (OrderDetailltem.Id))
Next i

End Sub

Private Property Get IAppCollection ClassId() As Long
IAppCollection ClassId = mIAppCollection.ClassId
End Property

Private Property Let IAppCollection ClassId(RHS As Long)
mIAppCollection.ClassId = RHS
End Property

Private Property Get IAppCollection IsDirty() As Boolean
IAppCollection IsDirty = mIAppCollection.IsDirty
End Property

Private Property Let IAppCollection IsDirty(RHS As Boolean)
mIAppCollection.IsDirty = RHS
End Property

Private Property Let IAppCollection IsLoaded(RHS As Boolean)
mIAppCollection.IsLoaded = RHS
End Property

Private Property Get IAppCollection IsLoaded() As Boolean
IAppCollection IsLoaded = mIAppCollection.IsLoaded
End Property

Private Function IAppCollection IsValid(Errors As Variant) As Boolean
Dim i As Integer
Dim AppObject As IAppObject
IAppCollection IsValid = True

For i = 1 To mIAppCollection.Count
Set AppObject = mIAppCollection.Item(i)
IAppCollection IsValid = IAppCollection IsValid And
AppObject.IsValid (Errors)

Next i

End Function

Private Sub IAppCollection Remove (vntIndexKey As Variant)
Call mIAppCollection.Remove (vntIndexKey)

End Sub

The Add, Count, Item, and NewEnum methods tap directly into the
mIAppCollection variable for functionality. Similarly, the IsLoaded, IsDirty, and
ClassId properties are inherited from our mIAppCollection variable. The only
methods that we override are the SetStateFromvariant and Isvalid methods. In
the setstateFromvariant method, we loop through the pata array a row at a time.
For each row, we instantiate our specific COrderDetailItem, set a generic
IAppObject reference to it, and call the setStateFromvariant method on the
generic object reference. After the state has been set, we add the IAppObject
reference onto the collection. We proceed for all rows of the pata array.

The setStateFromVariant method for COrderDetailItem appears in Listing 9.29.

Example 9.29. The SetStateFromVariant Method

Implemented on COrderDetailltem

Private Sub IAppObject SetStateFromVariant (PropertyNames As Collection,
Data As Variant, _
Optional RowIndex As Integer)
If IsMissing(RowIndex) Then RowIndex = 0

mIAppObject.Id = Data (PropertyNames ("Id"), RowIndex)

OrderId = GetValue (Data (PropertyNames ("OrderId"), RowIndex), vbLong)

ProductId = GetValue (Data (PropertyNames ("ProductId"), RowIndex),
vbLong)

Product = GetValue (Data (PropertyNames ("Product"), RowlIndex),
vbString)

Supplier = GetValue (Data (PropertyNames ("Supplier"), RowIndex),
vbString)

UnitPrice = GetValue (Data (PropertyNames ("UnitPrice"), RowIndex),

vbDouble)

Discount = GetValue (Data (PropertyNames ("Discount"), RowlIndex),
vbDouble)

IAppObject IsDirty = False
End Sub

We implement all left-side variables on the object as Property Let/Get statements.
We do not present the code for all objects here in the chapter, but the
implementations are included in the code for the chapter.

We now define the delete portion of CRUD on the client side. Here, we define
DeleteObject and DeleteCollection methods. Because of simplicity, we can
implement the DeleteObject functionality in our IAppClient class and call into it
from our cCNWClient implementation. Within the 1appClient implementation of the
DeleteObject method, we pass in our desired Classid, 1Id, and subid values. We
then pass this information off to the DeleteObject method of our IAppServer
object. The code for the DeleteObject method appears in Listing 9.30.

Example 9.30. The DeleteObject Method

Implemented on CNWClient

Public Sub DeleteObject (ClassId As Integer, Id As Long, SubId As Long,

Errors As Variant)
On Error GoTo ErrorTrap
If Id > 0 Then
Call mIAppServer.DeleteObject (ClassId, Id, SubId, Errors)

End If

Exit Sub
ErrorTrap:

Err.Raise ERR CANNOT DELETE + vbObjectError,
"IAppClient:DeleteObject",

LoadResString (ERR_CANNOT DELETE) & "[" & Err.Description & "]"

End Sub

As you can see, this method implementation is straightforward. The call into this
method from CNWClient appears in Listing 9.31.

Example 9.31. The DeleteObject Method on

CNWClient

Private Sub IAppClient DeleteObject (ClassId As Integer, Id As Long,

SubId As Long, Errors As Variant)
Call mIAppClient.DeleteObject (ClassId, Id, SubId, Errors)
End Sub

Likewise, we implement a DeleteCollection method that substitutes a parentid
and ParentSublId in its parameter list. The code for the DeleteCollection method

appears in Listing 9.32.

Example 9.32. The DeleteCollection Method on

CNWClient

Public Sub DeleteCollection(ClassId As Integer, ParentId As Long,
ParentSubId As Long, Errors As Variant)
On Error GoTo ErrorTrap
If ParentId > 0 Then
Call mIAppServer.DeleteObjectList (ClassId, ParentId, ParentSubId,

Errors)

End If

Exit Sub
ErrorTrap:

Err.Raise ERR CANNOT DELETE + vbObjectError,
"IAppClient:DeleteCollection",

LoadResString (ERR_CANNOT DELETE) & "[" & Err.Description & "]"

End Sub

Again, the cnwclient implementation is simple, as follows:

Private Sub IAppClient DeleteCollection(ClassId As Integer,
ParentId As Long,
ParentSubId As Long,
Errors As Variant)
Call mIAppClient.DeleteCollection(ClassId, ParentId, ParentSubId,
Errors)

End Sub

Our attention now turns to the data insertion activity. We define an InsertObject
method that takes classId and AppObject parameters with the latter being a
return value. Again, we must dimension a variable of every supported class type.
Using a select Case statement, we instantiate our specific object reference and set
it to the generic rAppObject. We fall through to a block of code that creates the
necessary property index for a subsequent call to the setstateTovariant method

of our generic AppObject. We then call the InsertObjectbData method on our
AppServer object to perform the insert. We expect the method to return objectid
and ObjectSubId parameters, which we set to our 1d and subId properties of our
AppObject. The code for the InsertObject method on cNwClient appears in

Listing 9.33.

Example 9.33. The InsertObject Method

Implemented on CNWClient

Private Sub IAppClient InsertObject(ClassId As Integer,
AppObject As AppClient.IAppObject)
Dim ObjectId As Long, ObjectSubId As Long
Dim Order As COrder
Dim CityItem As CCityItem
Dim CategoryItem As CCategoryltem
Dim CountryItem As CCountryItem
Dim RegionItem As CRegionItem
Dim CustomerItem As CCustomerItem
Dim EmployeeItem As CEmployeeltem
Dim ProductItem As CProductItem
Dim ShipperItem As CShipperItem
Dim SupplierItem As CSupplierItem
Dim Data As Variant
Dim Errors As Variant
Dim PropertyNames As Variant

Dim PropertyIndex As Collection

On Error GoTo ErrorTrap

Select Case ClassId

Case CT_ ORDER

Set Order = AppObject
Case CT CATEGORY

Set Categoryltem = AppObject
Case CT CITY

Set CityItem = AppObject
Case CT COUNTRY

Set CountryItem = AppObject
Case CT REGION

Set RegionItem = AppObject
Case CT CUSTOMER

Set CustomerItem = AppObject

Case CT EMPLOYEE

Set Employeeltem = AppObject
Case CT_ PRODUCT

Set ProductItem = AppObject
Case CT_ SHIPPER

Set ShipperItem
Case CT SUPPLIER

AppObject

Set SupplierItem = AppObject
Case Else
GoTo SkipInsertObject
End Select

PropertyNames = mIAppClient.AppServer.GetPropertyNames (ClassId)

Set PropertyIndex = MakePropertyIndex (PropertyNames)

ReDim Data(l To PropertyIndex.Count, 0)

Call AppObject.SetStateToVariant (PropertyIndex, Data)

Call mIAppClient.AppServer.InsertObjectData (ClassId, PropertyNames,
Data, Errors,
ObjectId, ObjectSubId)

AppObject.Id = ObjectId

AppObject.SubId = ObjectSubId

SkipInsertObject:
Exit Sub
ErrorTrap:
Err.Raise ERR CANNOT INSERT + vbObjectError,
"CNWClient:InsertObject",
LoadResString (ERR_CANNOT INSERT) & "[" & Err.Description & "]"
End Sub

The InsertCollection method follows a similar pattern whereby an
AppCollection is passed in on the parameter list along with ParentId and
ParentSubId values. Again, we dimension a variable of each type, setting the
appropriate value in a select Case statement. We fall through to a block of code
that creates the necessary property index for a subsequent call to the
SetStateToVariant method of the collection. We follow this by a call to our
InsertObjectListData method of our AppServer object. The code for the
InsertCollection method of cNWClient appears in Listing 9.34.

Example 9.34. The |InsertCollection Method

Implemented on CNWClient

Private Sub IAppClient InsertCollection(ClassId As Integer,

ParentId As Long,
ParentSubId As Long,
AppCollection As AppClient
Errors As Variant)

Dim ListItems As CListItems

Dim OrderDetailltems As COrderDetailItems

Dim CategorylItems As CCategoryIltems

Dim CityItems As CCityItems

Dim CountryItems As CCountryItems

Dim RegionItems As CRegionItems

Dim CustomerItems As CCustomerItems

Dim EmployeelItems As CEmployeeltems

Dim ProductItems As CProductItems

Dim ShipperItems As CShipperItems

Dim SupplierItems As CSupplierItems

Dim Data As Variant
Dim PropertyNames As Variant

Dim PropertyIndex As Collection

On Error GoTo ErrorTrap

Select Case ClassId

Case CT LIST ITEM

Set ListItems = AppCollection
Case CT_ORDER DETAIL

Set OrderDetaillItems = AppCollection
Case CT CATEGORY

Set CategorylItems = AppCollection
Case CT _CITY

Set CityItems = AppCollection
Case CT_ COUNTRY

Set CountryItems = AppCollection
Case CT_REGION

Set RegionItems = AppCollection
Case CT_ CUSTOMER

Set CustomerItems = AppCollection
Case CT EMPLOYEE

Set Employeeltems = AppCollection
Case CT_PRODUCT

Set ProductItems = AppCollection
Case CT_ SHIPPER
Set ShipperItems = AppCollection

.IAppCollection,

Case CT SUPPLIER
Set SupplierItems = AppCollection
Case Else
GoTo SkipInsertCollection
End Select

PropertyNames = mIAppClient.AppServer.GetPropertyNames (ClassId)

Set PropertyIndex = MakePropertyIndex (PropertyNames)

ReDim Data(l To PropertyIndex.Count, 1 To AppCollection.Count)

Call AppCollection.SetStateToVariant (PropertyIndex, Data)

Call mIAppClient.AppServer.InsertObjectListData (ClassId,
ParentId, _
ParentSubId,
PropertyNames,
Data,

Errors)

SkipInsertCollection:
Exit Sub
ErrorTrap:
Err.Raise ERR CANNOT INSERT + vbObjectError,
"CNWClient:InsertCollection",
LoadResString (ERR_CANNOT INSERT) & "[" & Err.Description & "]"
End Sub

For our OrderDetailItems collection, we simply hook into the SetStateTovVariant
method of our IAppCollection interface. The simple code on cNwClient follows:

Private Sub IAppCollection SetStateToVariant (PropertyNames As
Collection,
Data As Variant)
Call mIAppCollection.SetStateToVariant (PropertyNames, Data)
End Sub

Our UpdateObject method is similar in calling convention to our InsertObject
method. Here, we pass in our generic AppObject reference in conjunction with a
ClassId. Again, we dimension a variable of each class type for which we plan to
provide update functionality. We use a select Case statement to identify the class
type, creating our specific reference followed by a setting to our generic AppObiject
reference. We fall through to a block of code that creates the necessary property
index for a subsequent call to the setstateTovariant method of our generic
AppObject. We then call the UpdateObjectData method on our AppServer object

to perform the insert. The code for the UpdateObject method on CNWClient
appears in Listing 9.35.

Example 9.35. The UpdateObject Method

Implemented on CNWClient

Private Sub IAppClient UpdateObject (ClassId As Integer,
AppObject As AppClient.IAppObject)
Dim ObjectId As Long, ObjectSubId As Long
Dim Order As COrder
Dim CityItem As CCityItem
Dim CategoryItem As CCategoryltem
Dim CountryItem As CCountryItem
Dim RegionItem As CRegionItem
Dim CustomerItem As CCustomerItem
Dim EmployeeItem As CEmployeeltem
Dim ProductItem As CProductItem
Dim ShipperItem As CShipperItem
Dim SupplierItem As CSupplierItem
Dim Data As Variant
Dim Errors As Variant
Dim PropertyNames As String
Dim PropertyIndex As Collection

On Error GoTo ErrorTrap

ObjectSubId = 0
Select Case ClassId
Case CT ORDER
Set Order = AppObject
Case CT CATEGORY
Set Categoryltem = AppObject
Case CT CITY
Set CityItem = AppObject
Case CT COUNTRY
Set CountryItem = AppObject
Case CT REGION
Set RegionItem = AppObject
Case CT CUSTOMER

Set CustomerItem

Case CT EMPLOYEE

AppObject

Set Employeeltem = AppObject
Case CT_ PRODUCT

Set ProductItem = AppObject
Case CT SHIPPER

Set ShipperItem
Case CT SUPPLIER

AppObject

Set SupplierItem = AppObject
Case Else
GoTo SkipUpdateObject
End Select

ObjectId = AppObject.Id

ObjectSubId = AppObject.SubId

PropertyNames = mIAppClient.AppServer.GetPropertyNames (ClassId)

Set PropertyIndex = MakePropertyIndex (PropertyNames)

Call AppObject.SetStateToVariant (PropertyIndex, Data)

Call mIAppClient.AppServer.UpdateObjectData (ClassId, PropertyNames,
Data, Errors,

ObjectId, ObjectSubId)

SkipUpdateObject:
Exit Sub
ErrorTrap:
Err.Raise ERR CANNOT UPDATE + vbObjectError,
"CNWClient:UpdateObject",
LoadResString (ERR_CANNOT UPDATE) & "[" & Err.Description & "]"
End Sub

Our setstateTovariant method does the reverse of our setStateFromvVariant
method by moving the state information of the object into a variant array. The code
for our corder object appears in Listing 9.36.

Example 9.36. The SetStateToVariant Method

Implemented on COrder

Private Sub IAppObject SetStateToVariant (PropertyNames As Collection,
Data As Variant,
Optional RowIndex As Integer)
If IsMissing(RowIndex) Then RowIndex = 0

Data (PropertyNames ("Id"), RowIndex) = mIAppObject.Id

Data (PropertyNames ("CustomerId"), RowIndex) = CustomerId
Data (PropertyNames ("EmployeeId"), RowIndex) = Employeeld
Data (PropertyNames ("OrderDate"), RowIndex) = OrderDate

Data (PropertyNames ("ShippedDate"), RowIndex) = ShippedDate
Data (PropertyNames ("RequiredDate"), RowIndex) = RequiredDate

Data (PropertyNames ("ShipperId"), RowIndex) = ShipperId

((
Data (PropertyNames ("FreightCost"), RowIndex) = FreightCost
Data (PropertyNames ("ShipToName"), RowIndex) = ShipToName
Data (PropertyNames ("ShipToAddress"), RowIndex) = ShipToAddress
Data (PropertyNames ("ShipToPostalCode"), RowIndex) = ShipToPostalCode
Data (PropertyNames ("ShipToCityId"), RowIndex) = ShipToCityId

End Sub

We assume that the calling function has already dimensioned our Data array to the
appropriate size. We start by creating a variant array of the same size as the
number of property names. We again use the PropertyNames collection to index
into the appropriate element of the pata array to set the state value.

Finally, we implement our LoadQueryCollection method. Again, because this is for
programmatic use, we do not need a high level of sophistication in its
implementation. Here, we take our classid, along with WwhereClause and
OrderClause arrays, and return an IAppCollection. Again, we dimension
variables of our specific collections and use a select Case statement to set our
specific reference. We pass the WhereClause and OrderClause parameters through
to the QueryobjectListData method of our AppServer. This call returns Data and
PropertyNames arrays. Again, we pass these values into our setStateFromvariant
method to retrieve our final collection. The code for our LoadQueryCollection
method appears in Listing 9.37.

Example 9.37. The LoadQueryCollection Method on

CNWClient

Private Function IAppClient LoadQueryCollection(ClassId As Integer,

WhereClause As Variant,
OrderClause As Variant)
As AppClient.IAppCollection

Dim AppCollection As IAppCollection

Dim ListItems As CListItems

Dim OrderDetailltems As COrderDetailltems

Dim CategorylItems As CCategoryltems

Dim CityItems As CCityItems

Dim CountryItems As CCountryltems

Dim RegionItems As CRegionItems

Dim CustomerItems As CCustomerItems

Dim Employeeltems As CEmployeeltems

Dim ProductItems As CProductItems

Dim ShipperItems As CShipperItems

Dim SupplierItems As CSupplierItems

Dim Orders As COrders

Dim Data As Variant
Dim Errors As Variant
Dim PropertyNames () As String

On Error GoTo ErrorTrap

Select Case ClassId
Case CT LIST ITEM
Set ListItems

N

Set AppCollection
Case CT_ORDER
Set Orders

New

Set AppCollection

ew CListItems

ListItems

COrders

Orders

Case CT_ORDER DETATIL

Set OrderDetaillt
Set AppCollection
Case CT CATEGORY
Set Categoryltems
Set AppCollection
Case CT _CITY
Set CityItems

N
Set AppCollection

Case CT_ COUNTRY
Set CountrylItems
Set AppCollection

Case CT_REGION

Set RegionlItems =
Set AppCollection
Case CT_ CUSTOMER
Set CustomerItems
Set AppCollection
Case CT EMPLOYEE
Set Employeeltems
Set AppCollection
Case CT_PRODUCT
Set ProductItems
Set AppCollection
Case CT_ SHIPPER
Set ShipperItems
Set AppCollection
Case CT SUPPLIER

ems

OrderDetailltems

New CCategoryItems

Categoryltems

ew CCityItems

CityItems

New CCountryItems

CountryItems

New CRegionItems

RegionItems

New CCustomerItems

CustomerItems

New CEmployeeltems

EmployeelItems

New CProductItems

ProductItems

New CShipperItems

ShipperItems

New COrderDetailltems

Set SupplierItems = New CSupplierItems

Set AppCollection = SupplierItems
Case Else
GoTo SkipQueryCollection
End Select

Call mIAppClient.AppServer.QueryObjectListData (ClassId, WhereClause,

OrderClause, PropertyNames,
Data, Errors)
If IsArray(Data) Then

AppCollection.SetStateFromVariant (MakePropertyIndex (PropertyNames),
Data

End If

Set IAppClient LoadQueryCollection = AppCollection

SkipQueryCollection:
Exit Function
ErrorTrap:
Err.Raise ERR CANNOT LOAD + vbObjectError,
"CNWClient:LoadQueryCollection",
LoadResString (ERR_CANNOT LOAD) &
"[" & Err.Description & "]"

End Function

What We Have Accomplished

We have covered a significant amount of material in this chapter to introduce and
define the multi-part business object. Because it might be all jumbled at this point,
the simple diagram in Figure 9.3 shows what we have done.

Figure 9.3. The relationship between the parts of the

business layer.

IAppClient IAppServer DataManager
C InsertObject — |nsertObjectData — GetlnsertableRS
InsertCollection — |nsertObjectListData —— GetlnsertableRS
R LoadObject — LoadObjectData — GetData
LoadCollection —» LoadObjectListData = GetData

LoadQueryCollection —— QueryObjectListData — GetData

U UpdateObject — UpdateObjectData ——» GetUpdateableRS
D DeleteObject ——> DeleteObject —> DeleteData
DeleteCollection — DeleteObjectList — DeleteData

Installing Components into MTS

Now that we have completed our AppServer and NWServer components, we must
install them into MTS so that our AppClient and NWClient can access them.
Components within MTS are placed into groups called packages. One package can
host multiple components, but one component can reside within only one package.
A package is an administration convenience when installing and transferring these
components between MTS machines and creating client-side installation routines to
access these components.

Creating the Package

To start our installation process, we must start the MTS Explorer. From within the
MTS Explorer, open the Packages Installed folder under the My Computer folder, as
shown in Figure 9.4. This assumes that we are running the MTS Explorer on the
same computer that will host our MTS components.

Figure 9.4. Navigating to the Packages folder in MTS.

“ta mizeap - [Console Rool\Miciotelt Trarsaction Server\Compulers\My Compute\Packages Irstalled]

) Comole ‘Wrdow Help
eien Yuu || 0= @@ X TEH 2|0 2R EmE R
Lebpets]

] Conoole ool y y

=] Mceuoll Tiansaction Sener r
8 Tiarmaction Sever Home Page IS5 InPiocess 15 Uilites Sydlem Utise:
&) Tisrsacton Server Suppot Appheahioed

=] Conpitenz
= H My Compuiss

DNEE @ -8l

115 IrrProcess Applcaon:
115 Uilties
Syl
0 Ll

w] () Fermein Commpormnis

W B, i Hesape

. M Tiariachon Ll

o T T ionachon Staletics

From the Packages folder, right-click, select New, and then Package. This brings up
the Package Wizard dialog as shown in Figure 9.5.

Figure 9.5. Launching the Package Wizard.

Package Wizard E

What do you want to do?

@ Install pre-built pack ages.

Create an emply package,

Computer. My Computer

Cancel

From the Package Wizard, select the Create an Empty Package button. In the Create
Empty Package dialog that appears, type the name of our package, in this case
Northwind Traders. Click on the Next button, which takes us to the Set Package
Identity page of the wizard. Next, select the Interactive User option and click the
Next button. Note that this option can be changed later after the package is installed.
Click the Finish button to complete the process. We now see that our new package
has been added in the MTS Explorer, as shown in Figure 9.6.

Figure 9.6. The newly added Northwind Traders

package.
Ta mizeap - [Concobs Hoot\Miciosodt T rantatton ServanCamouters My Compiste\Fact ages Installad] :
|1 Conale Wirdow Heo |0 | m -l8ix
| beten ¥om || =+ @@ >R RO FRAlm-EwEE T
5 oyt 4]

| Covsche Flact
= | Mucroaodt Tiseacbon Sercer & 3 & 3

] Traraction Server Hone Fage U5 inFrocess 15 Utiies 1r:1r-m Systen Usities

3] Trareaction S emver Suppot Aesha abEnd

, IIS In. =‘n:-m Mpkﬂ‘m!
g (15 Likbes
i Moittwersd Tiadeis

Cl _]HWMUC#W:IF
A1, Tucs Maags
A" Tracion List

4) Twracmn Siatec

To add our AppServer and NWServer components to the package, we first must
expand the Northwind Traders package to gain visibility to the Components folder.

This appears in Figure 9.7.

Figure 9.7. Navigating to the Components folder.

M Gonsde Window |Help OEFE @) =l
dton Yew |o= B@E| < TR =E =08 R
0 object]z)
) Conaoie oo

=) Mot Transaction Sener
E Transacion Serer Homs Page
_:E Triansacion Saver Suppos
= [Compuber:
= Mo} Hy Comgen
=] Pack g lrvitaledd
5 lerPrcess Appcalin:
G et
- Hnthenrd Tiadens
¥
L
o % Syiben
o £ Uil
#|_] Fersobe Comporents
+ EI.. T e Messape:
+ 72" Trancacton List
+ B Tnsacion Sisaics

If we right-click on the Components folder, and then select New, Component, the
Component Wizard appears as shown in Figure 9.8.

Figure 9.8. Launching the Component Wizard.

[74 mizewp - [Console Aoct\Microzolt Tranaaction Serve\Computers\My ComputerPackages Instaled\Worthwind Tradess\Congo. . M1
t) Commle iWindow Heb DR M| .l
beien Yo | == 2@ X "RHE2QAEREEWME T

1 alkiamilall

| Cevvahe Flast
5[] Mucrrsnlt T ineiachin Sene
{3 Teareaction Seever Ho What da wou veard 13 37
3] Tearvachon Sersl Su
=] Comgadaiz
= &) My Compuber ——
= 1 Pachages Inst [|

s 11§ koo Inatall reres comporants]
¥ 15 Ubkbes |_ - i
= MNowteamd

&] Compe
#_] Aok

* g Cyslem

* Uil
o [- Tt componsnd{s] it aee shandy momtsed
L, Tracs Masiag

% " Teargacton Li
i) Trarsaction 51

Package: Hathwnd Tiaders
Conputer: My Comgaiten

From the first page of the Component Wizard, select the Install New Component(s)
option. From the Install Components dialog, click the Add Files button. From there
we browse to our directory with our AppServer component and click on the Open
button. Click on the Add Files button once again and select the NWServer
component. After both files have been selected, our dialog looks like Figure 9.9.

Figure 9.9. Adding components to the package.

Install Components E3

Click Add Files to choose the file{z) that contain the components you want to install
iles to nstalk
£ v Details
File | Contents |
C:\BookMppServer\appServer. d components, lypelib dd i
C:\Book\MNwServer\N'\wServer dl components, typeLib & i
Components found:
Component | Properties | Interfaces |
CHWServer MTx found
|AppServer MTH found
<Back [Finish | Cancel

We click on the Finish button to add our components to the package. If we take a
look at our MTS Explorer, we will see that the two new components appear under
the Components folder and in the right pane. This is shown in Figure 9.10.

Figure 9.10. Our newly added components.

ya mierp - [Console Aool\Hicrosolt Transaction ServerUConputers’'My Compulen \Packages Installed M wthwind Tosdess\Compo. . HEE

M Coede Window Hsk =4 = W co RS T-TE |
goion Yow || & = @@ X # DR |07 D5 W] 0
2 phyertt]
] Cormmie Root
=1 | Moot Tesmackon Jevvm e e
] Tranaachion Serve Home Page AppServer. NWSsrem
@] Tesnaaction Serve Suppot lappSernve CHwWiera
= 1 Computsis
=& Wy Compuber

=) Packeges Installsd
+ NE InPhocsas Apphc stion
+ WS Uiies

Nostrwered Tiadens
BHE
+ - i dpoferver ppheve
T D kv Sgiver, DWW S arvsi
v] Fode:
L Sigallern
v AL
¥) Pl Congrareri;
v ﬁ. Trace Mesiage:
v '.,'f Tramacixr Lui
v Fl Tramachon Stalahcs

Creating Client-Side Stubs

With our components now running inside MTS, we must make them accessible to
our client machines. The easiest way to do this is to use MTS to create an Export
Package. This package not only creates a client-side installer, it also creates a file
necessary to move a package from one MTS machine to another.

To create the export package, we right-click on the Northwind Traders package in
the MTS Explorer and select the Export menu item. The Export Package dialog
appears as shown in Figure 9.11.

Figure 9.11. Exporting our package.

Export Package E3

Export the MNorthwind Traders' package:

Enter the full path for the package file to be created. Comporent files will be
copied into the directory you specify for the package file,

C:\MTSAE sports\NorthwindT raders Erowse... |

— Options

[v Save'Windows NT user ids associated with roles

E xport Cancel

We enter the name of the path to which we want to export, and click the Export
button. Upon completion of this process, MTS has created a NorthwindTraders.Pak
file in the directory that we specified. It has also placed a copy of AppServer.DLL
and Nwserver.DLL into the same directory as the PAK file. Additionally, a
subdirectory named Cclients has been created that contains a file named
NorthwindTraders.exe. This executable program is the setup program that sets
the appropriate registry settings on the client machine to enable remote access. If
we were to look at our references to our AppServer and NWiServer components

within Visual Basic after running this installer, it would look something like Figure
9.12.

Figure 9.12. Our remote components installed on our

client.

References - NWClient.vbp E3

&vaiable References: oK
| Visual Basic For Applications El Cancel
v Visual Basic runtime objects and procedures —_—
| Yisual Basic objects and procedures
v OLE Autamation Browse. ..
v SErVEr -
| W Server ﬂ
v AppClient
Active DS I1S Namespace Provider Priority
Active DS Type Library Help
Active Setup Control Library ﬂ

ActiveMovie control type library
Activel Conference Control

Activel DLL to perform Migration of M5 Repositary V1
IHF'E Database Setup Wizard | _ILI
4 k

AppServer

Location: C:\Program Files\Remote Applications\{A6SCASFC-BADD-110x
Language: Standard

From Figure 9.12, you can see how the file reference to our AppServer component
is now set to C:\Program Files\Remote Applications\{A65CASFC-BADD-11D3..}.
The client-side installer set up this directory and remapped our AppServer reference
to it via the registry. It also modified the registry to inform the DCOM engine that
this component runs on a remote server.

Moving the Package

Each time we install a component into an MTS server, a new GUID is generated for
that component. If we want to move our package to another MTS machine without
generating a new GUID, we must import into the new MTS machine the PAK file we
generated in the previous section. By doing this, our client applications do not need
to be recompiled with the new GUID, but instead simply point to the new MTS
server.

To import a PAK file, we simply right-click on our Packages folder on the target MTS
server and select the New menu item. From the Package Wizard that appears, we
select the Install Pre-Built Package option. On the Select Packages page, we browse
to the PAK file we created and select it. We click the Next button to arrive at the Set

Package Identity page, where we once again choose the Interactive User option. We
click the Next button once again, and enter the target location of where the files
should be installed. We click the Finish button to complete the process.

Summary

In this chapter, we discussed the heart of our application framework—the multipart
distributed business object. In so doing we have abstracted as much functionality

into several interfaces on both the client and server sides so that build-out of our

specific application is as easy as possible. We have also provided that build-out for
our sample Northwind application.

We also talked about some of the fundamentals of MTS. At one level, we looked at
the programming model that must be used to take full advantage of its transactional
and object pooling features. We also looked at how to deploy our MTS objects from
both a server- and client-side perspective.

In the next chapter, we will complete the last layer of the system, the user layer. We
will look at building reusable ActiveX controls that interface tightly with our
multipart distributed business object that we built in this chapter.

Chapter 10. Adding an ActiveX Control to the

Framework

User interface design can take on many different forms based on the many different
views on the subject. Indeed, such topics can be the subject matter of a book in
itself. In Part I, "An Overview of Tools and Technologies," we discussed how the
central design issue for an enterprise system is focused first on the business layer
and how the data and user layers are a natural outgrowth of this within our
framework. We also demonstrated the manifestation of the business and data
layers in Chapter 8," The DataManager Library," and Chapter 9," A Two-Part,
Distributed Business Object;" so now let us turn our attention to the user layer.

Design Theory

Although we can define our user layer directly using Visual Basic forms, we have
chosen to implement our user interface with ActiveX controls that are subsequently
placed into these forms. The reason for this is that it gives us the added flexibility of
placing these elements into an (IE) Internet Explorer-based browser, enabling us to
provide a rich interface that cannot be provided with simple HTML form elements.
Our design also enables us to transparently place these same controls into any other
environment that enables the use of ActiveX control hosting. The ultimate benefit
derived from this architecture is that we can place our controls in any VBA-enabled
application, giving us powerful integration opportunities.

To start our design, we must define our basic user interface metaphors. The entry
point into an application can vary, but here we follow a simple Microsoft Explorer
approach. Other approaches can include the Microsoft Outlook version, a simple
Single Document Interface (SDI) or a Multiple Document Interface (MDI) interface.
We use the Explorer here because it maps easily to an object-oriented framework
and is simpler to build for the sake of exposition. For our individual dialogs, we are
following a simple tabbed dialog approach, again because of the natural mapping to
object orientation.

Implementation

This section discusses the details of building the Explorer- and Tabbed Dialog-style
interfaces necessary for our application framework.

Our Explorer interface is covered first. This interface mechanism is more generically
called an outliner because it is especially well suited for representing an object
hierarchy or set of hierarchies. This representation enables us to build a

navigational component for the user to quickly browse to an area of the system in
which he is particularly interested. It is easy to extend the infrastructure provided
by our outliner to implement an object selection mechanism, as well.

Our Tabbed Dialog interface is covered next. This interface has a more generic name,
often referred to as a property page. It is well suited to represent an object within
our system. Through the browsing mechanism provided by the outliner, we can
choose a particular object that interests us and open it up for viewing and potential
editing.

The Explorer Interface

The initial development of our Explorer interface is easy because Visual Basic
provides a wizard to do most of the dirty work. For our Explorer, we have chosen not
to implement any menus but instead to rely solely on a toolbar. After we have used
Visual Basic's wizard to create an Explorer application, we create a new User Control
project named NWExplorer and copy over the objects and code. Before copying, we
delete the common dialog control that Visual Basic creates because we will not be
using it. In the target User Control project, we must set a component reference to
the Microsoft Windows Common Controls 6.0 control. We then create a Standard
EXE project, called Northwind, and add a form with the name frmNorthwWind. We
set a component reference to our newly created NWExplorer component and drop it
onto frmNorthWind. We show the end result of this effort in Figure 10.1, albeit after
we have implemented the NWExplorer control that is to follow.

Figure 10.1. The Northwind Explorer entry point.

[Morthwind E[=]
D X - EIM ¢
| TreeView: | Contents of: Products Beverages
—1 Northwind Traders 2| Name |oPU | Price |in.. [oOn. | Discons
=3 Orders (2 Chai 10... 18 39 0 No
_1 Al Orders [E Chang 24 19 17 0 Mo
_1 Open Orde [B Chartreuse verte 75 18 69 0 Mo
_1 Categones [8) Céte de Blaye 12... 2635 17 0 Mo
=3 Products [Guarana Fantd... 12.. 4.5 20 0 Yes
®lCeverages [8 lpoh Coffee 16... 46 17 1] Mo
] Condiment:— [B) Lakkalikddri 80... 18 57 0 Mo
] Confections [E Laughing Lumb... 24 .. 14 52 0 Mo
1 Dairy Prod, | Outback Lager 24 ... 15 15 0 No
" Grains/Cere B Rhonbrau Klost... 24 .. 7.75 125 0 Mo =
S eupoye] [BSeswai e 2 T U0 My
a o 9 | »
12 Objects. 11/15/9 5:46 AM

We are using the Explorer control not only for navigational purposes through our
various objects but also for the implementation of simple add and delete
functionality. We also take advantage of the fact that the Treeview component of
the Explorer natively understands the object hierarchy that we can use to help us
maintain our parent/child relationships more efficiently. For example, in managing
our country, region, and city object hierarchies, it is much easier for the user to click
on a region node and have a pop-up menu with the option of adding a new city to it.
The counter-option to this would be to have a dialog with multiple ComboBox controls,
managing the loading between them based on inputs from the others. For example,
choosing a new country would reload a region ComboBox. Choosing a new region
would reload a city ComboBox.

Many third-party Explorer-style controls are on the market, many of which you
might prefer to use rather than one implemented in these examples. We do not
intend for the code samples that follow to constitute a complete coverage of the
design theory of an Explorer control. Instead, our goal is to discuss how to use our
client components covered in the last chapter to complete the application. As such,
we do not spend any time going over the code that Visual Basic generates to
implement the Explorer. Instead, we focus on the code that we are adding to hook
this Explorer code into our IAppClient, IAppCollection, and IAppObject
components created in Chapter 9, "A Two-Part, Distributed Business Object."

The first item to discuss is another interface, which, in this case, we define to
support our Explorer control. We use this interface, which we call IExplorerItemn,
to help us manage the information necessary to manage the Treeview and
ListView controls that make up the Explorer. It is convenient that Microsoft defines
the Tag property of a TreevView Node oObject as a variant so that we can use this to
hold a reference to an IExplorerItem object associated with the node. We use this
bound reference to help us determine the actions that the NWExplorer control must
take relative to user interaction. As with most of our interface definitions, the
majority of the properties are common and thus implemented by TExplorerItem.
However, there is one property that we must override for our specific
implementation.

Creating a Client-Side Common Support Library

To start with, we create a new ActiveX DLL in which to put our IExplorerItem
interface definition. Because we must create several other client-side classes to help
drive these ActiveX controls and the application in general, we call this project
AppCommon. This library constitutes our system layer on the client tier. We will be
adding other classes to this DLL throughout this chapter.

The properties on IExplorerItem are straightforward. They include several
Boolean-based properties to indicate how the state management for the toolbar

should be handled, as well as how the Treeview of the Explorer can be traversed.
Specifically, we call these properties CanAdd, CanDelete, CanUpdate, and CanGoUp.
We also have several other properties to handle how a given node of the Treeview
component appears. These properties include Caption, ImageIndex, and
ImageIndexExpanded. These latter two properties represent indexes into the image
lists associated with the Treeview and ListView controls. We have populated our
image lists with simple open and closed folder icons, but you can add images that
correspond directly to the type of object related to a given node. If both large and
small icons are to be used, it is assumed that two image lists are set up in a parallel
manner. Next, we have a property, Loaded, to tell us whether we have already
loaded our child nodes so that we potentially do not repeat a long-running load. We
also define two other properties to hold references to either 1AppObject or
IAppCollection objects. The use of these latter properties becomes apparent later
in the chapter.

The only property that we override on IExplorerItem is Mode. It is here that we
add our application-specific information. To implement this property, we must first
create a CNWExplorerItem class within our NWExplorer user control project. We
must also define a set of constants to represent our Explorer-type items. For our
Northwind application, we place these constants into a code module within the
NWExplorer project. We define these constants as follows in Listing 10.1.

Example 10.1. Constants Defined Within Our

NWEXxplorer User Control Project

Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

Const

EIT INIT =

EIT ROOT

-1
0

EIT CATEGORY =

EIT CRC = 2

EIT CUSTOMER =
EIT EMPLOYEE =

EIT LISTITEM =
EIT ORDER ROOT
EIT ORDER = 7
EIT PRODUCT =
EIT SHIPPER
EIT SUPPLIER =
EIT ORDER ALL
EIT ORDER_OPEN

oo W

Il
o))

8
9
10

=11

=12

13

EIT PRODUCT ROOT As Integer =
EIT PRODUCT CATEGORY As Integer =
EIT COUNTRY ROOT As Integer = 15

EIT COUNTRY REGION ROOT As Integer =

Public
Public
Public

Const 14
Const

Const 16

Public Const EIT COUNTRY REGION CITY As Integer = 17
Public Const EIT ADMIN = 100
Public Const EIT ALL = 999

You might notice that many of the names look conspicuously close to our class type
constants, whereas others look a little different. These constants are purely
arbitrary because we tie them to our CT xxx constants logically in our code. We use
the EIT INIT, EIT ROOT, EIT CRC, EIT ADMIN, and EIT ALL constants for control
purposes. We demonstrate their use in code samples that follow. Note that our
Explorer not only provides navigation for the Northwind system but also selection
functions for the various dialogs we will be creating. This is the reason for the

EIT ALL constant. We can place this control in Explorer mode by setting the
SelectMode property to EIT ALL, while any other setting constitutes a selection
mode for a particular class.

Back to the implementation of our Mode property on CNWExplorerItem, it looks like
the code in Listing 10.2.

Example 10.2. The Implementation of the Mode

Property Within Our CNWEXxplorerItem Class

Public Property Let IExplorerItem Mode (ByVal RHS As Integer)
With mIExplorerItem
Select Case RHS
Case EIT ROOT
.Caption = "Northwind Traders"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = False
.CanDelete

False
.CanUpdate = False
.CanGoUp = False

Case EIT ADMIN
.Caption = "Administration"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = False

.CanDelete False

.CanUpdate = False
.CanGoUp = True

Case EIT COUNTRY ROOT

.Caption = "Countries"

.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = True

.CanDelete = True

.CanUpdate = True

.CanGoUp = True

Case EIT COUNTRY REGION ROOT
.Caption = "Regions"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = True
.CanDelete = True

.CanUpdate

True

.CanGoUp = True

Case EIT COUNTRY REGION CITY
.Caption = "Cities"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = False
.CanDelete
.CanUpdate

False

False

.CanGoUp = True

Case EIT COUNTRY
.Caption = "Country"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = True
.CanDelete = True

.CanUpdate

True

.CanGoUp = True

Case EIT REGION
.Caption = "Country"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = True
.CanDelete = True

.CanUpdate

True

.CanGoUp = True

Case EIT CITY
.Caption = "Country"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = True
.CanDelete

True
.CanUpdate = True
.CanGoUp = True

Case EIT LISTITEM
.Caption = "Lists"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDER
.CanAdd = False
.CanDelete

False
.CanUpdate = False
.CanGoUp = True

Case EIT CATEGORY
.Caption = "Categories"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete

True
.CanUpdate = True
.CanGoUp = False

Case EIT PRODUCT
.Caption = "Products"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete

True
.CanUpdate = True
.CanGoUp = False

Case EIT PRODUCT ROOT
.Caption = "Products"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = False
.CanDelete

False
.CanUpdate = False
.CanGoUp = True

Case EIT PRODUCT CATEGORY
.Caption = "Products Categories"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete = True
.CanUpdate = True
.CanGoUp = True

Case EIT EMPLOYEE
.Caption = "Employees"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete = True
.CanUpdate = True
.CanGoUp = False

Case EIT CUSTOMER
.Caption = "Customers"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete = True
.CanUpdate = True
.CanGoUp = False

Case EIT ORDER ROOT
.Caption = "Orders"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = False
.CanDelete = False

.CanUpdate

False

.CanGoUp = True

Case EIT ORDER OPEN
.Caption = "Open Orders"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete = True

.CanUpdate = True

.CanGoUp = True

Case EIT ORDER ALL
.Caption = "All Orders"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete = True

.CanUpdate

True

.CanGoUp = True

Case EIT SUPPLIER
.Caption = "Suppliers"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True
.CanDelete = True

.CanUpdate

True

.CanGoUp = False

Case EIT SHIPPER
.Caption = "Shippers"
.ImageIndex = IML16 FOLDER
.ImageIndexExpanded = IML16 FOLDEROPEN
.CanAdd = True

.CanDelete = True
.CanUpdate = True
.CanGoUp = False
End Select
.Mode = RHS

End Property

As you can see from the previous code sample, we are simply setting the various
properties based on the type of Explorer item we are creating.

Although the startup process for the Northwind application is not complicated, it
helps to have a flowchart to help us through our discussion. We show this in Figure
10.2.

Figure 10.2. The Northwind Explorer startup process.

frmMorthWind.Form_Activate

¥

NWExplorer. RegisterContral

MWExplorer. ParseCommandLine

'

AppClient. InitClient

Y

NWExplorer.InitControl

MNWExplorer.LoadRoot

The code for our Activate event for frmNorthWind appears in Listing 10.3.

Example 10.3. The Activate Event on Our

frmNorthWind Form

Private Sub Form Activate ()
Dim Server As String
Dim SecurityKey As String
Dim sCMD As String
' should make this a registry setting or command line parameter
Server = "NORTHWIND"
If bLoading Then
With NWExplorer
SCMD = "server=" & Server & "&" & "securitykey=" & CStr (SecurityKey)
.RegisterControl sCMD
.SelectMode = EIT ALL
Call .InitControl
End With

bLoading = False

End If
End Sub

From the flowchart, we initially follow Path 1, which has us calling the
RegisterControl method of our NWExplorer user control. We format our
CommandLine parameter in @ manner similar to an HTML-form post command line.
More specifically, the format is defined as "varl=valuels&var2=value2." Using this
method, we can arbitrarily define and communicate parameters that are of interest.
For our example, we pass in Server and SecurityKey parameters. This latter
parameter is used by the security mechanism that is discussed in Chapter 15,
"Concluding Remarks." We use this strange calling approach to simplify the
integration of our ActiveX controls with our IE browser. The code for the
RegisterControl method appears in Listing 10.4.

Example 10.4. The RegisterControl Method of Our

NWEXxplorer User Control

Public Sub RegisterControl (CommandLine As String)
Call ParseCommandLine (CommandLine)
Call AppClient.InitClient (Server)

End Sub

As can be seen in the preceding listing, our RegisterControl method immediately
calls a parseCommandLine method that splits out the string and sets control-level
properties based on the information passed. These properties include server,
SecurityKey, and BrowserMode. The code for our ParseCommandLine method on
the NWExplorer control appears in Listing 10.5.

Example 10.5. The ParseCommandLine Method of Our

NWEXxplorer User Control

Public Sub ParseCommandLine (ByVal CommandLine As String)
Dim Args () As String
Dim ArgValue () As String

Dim i As Integer, 7 As Integer

If Left (CommandLine, 1) = Chr(34) Then
CommandLine Mid (CommandLine, 2)
End If
If Right (CommandLine, 1) = Chr(34) Then
CommandLine Left (CommandLine, Len (CommandLine) - 1)

End If

For i = LBound(Args) To UBound (Args)
ArgValue = Split(Args(i), "=")
Select Case UCase (ArgValue (0))

Case "SERVER"
Server = ArgValue (1)
Case "SECURITYKEY"
SecurityKey = ArgValue (1)
Case "BROWSERMODE"
Select Case UCase (ArgValue(l))
Case "TRUE", "Y", "YES"
BrowserMode = True

Case Else

BrowserMode False
End Select
End Select
Next T

End Sub

After this method completes, the RegisterControl method proceeds to call the

InitClient method on our AppClient object of the control. This object is initially
instantiated as cNwclient and then mapped to AppClient, which is an instance of
IAppClient. We define both of these variables to be global in scope relative to the
user control and instantiate them on the UserControl Initialize event, as seen

in Listing 10.6.

Example 10.6. The Implementation of the Initialize

Event on Our NWExplorer User Control

Private Sub UserControl Initialize()
Set NWClient = New CNWClient
Set AppClient = NWClient
lvListView.View = lvwReport
tbToolBar.Buttons (LISTVIEW MODE3) .Value = tbrPressed
End Sub

The InitClient method attempts to establish the connection to the remote MTS
object running on the server that we identified with our "server=" portion of the
command line.

After we have completed Path 1, we fall back to our Form Activate method of
frmNorthWind and proceed down Path 2. Now, we call the TnitControl method of

our NiWExplorer control, which then calls our LoadrRoot method. This final method is

responsible for setting up the Treeview, binding its nodes to the necessary
IExplorerItem objects. From that point on, we are ready to respond to user
interaction. Our Loadroot method follows in Listing 10.7.

Example 10.7. The LoadRoot and Supporting Methods

in Our NWEXxplorer User Control

Private Sub LoadRoot ()

Dim oNode As Node, oRootNode As Node

Dim oChildNode As Node, oDummyNode As Node
Dim ExplorerItem As IExplorerItem

Dim NWExplorerItem As CNWExplorerItem

Dim i As Integer
On Error GoTo ExitSub

With tvTreeView.Nodes

.Clear

'root item.
Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT ROOT
With ExplorerItem
Set oRootNode = .Add(, , , .Caption, .Imagelndex, .Imagelndex)
End With
oRootNode.ExpandedImage = ExplorerItem.ImagelndexExpanded
Set oRootNode.Tag = ExplorerItem

If SelectMode = EIT ALL Or SelectMode = EIT ORDER ROOT Then
Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT ORDER ROOT
Set oNode = AddNode (oRootNode, ExplorerItem)

Set NWExplorerItem = New CNWExplorerItem

Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT ORDER ALL

Set oChildNode = AddNode (oNode, ExplorerItem)

Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

ExplorerItem.Mode = EIT ORDER OPEN

Set oChildNode = AddNode (oNode,
End If

ExplorerItem)

If SelectMode = EIT ALL Or SelectMode = EIT CATEGORY Then

New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

Set NWExplorerItem =

ExplorerItem.Mode = EIT CATEGORY

Set oNode = AddNode (oRootNode,
End If

ExplorerItem)

If SelectMode = EIT ALL Or SelectMode = EIT PRODUCT ROOT Then

New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

Set NWExplorerItem =

ExplorerItem.Mode = EIT PRODUCT ROOT

Set oNode = AddNode (oRootNode, ExplorerItem)

Set oChildNode = .Add(oNode, tvwChild,

, "DUMMY", 0O, 0)
End If

If SelectMode = EIT ALL Or SelectMode = EIT EMPLOYEE Then

New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

Set NWExplorerItem =

ExplorerItem.Mode = EIT EMPLOYEE

Set oNode = AddNode (oRootNode,
End If

ExplorerItem)

If SelectMode = EIT ALL Or SelectMode = EIT CUSTOMER Then

New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

Set NWExplorerItem =

ExplorerItem.Mode = EIT CUSTOMER

Set oNode = AddNode (oRootNode,
End If

ExplorerItem)

If SelectMode = EIT ALL Or SelectMode = EIT SHIPPER Then

New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

Set NWExplorerItem =

ExplorerItem.Mode = EIT SHIPPER

Set oNode = AddNode (oRootNode,
End If

ExplorerItem)

If SelectMode = EIT ALL Or SelectMode = EIT SUPPLIER Then

New CNWExplorerItem
Set ExplorerItem = NWExplorerItem

Set NWExplorerItem =

ExplorerItem.Mode = EIT SUPPLIER
Set oNode = AddNode (oRootNode, ExplorerItem)
End If

If SelectMode = EIT ALL Or SelectMode = EIT COUNTRY ROOT Then
Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT COUNTRY ROOT
Set oNode = AddNode (oRootNode, ExplorerItem)
Set oChildNode = .Add(oNode, tvwChild, , "buMMY", 0, 0)
End If
End With

'initial settings...
Set tvTreeView.SelectedItem = oRootNode
CurrentNode = oRootNode
Call SetListViewHeader (EIT INIT)
oRootNode.Expanded = True

If SelectMode <> EIT ALL Then
' preselect the first child node
CurrentNode = CurrentNode.Child
tvTreeView.SelectedItem = CurrentNode
Call tvTreeView NodeClick (CurrentNode)
End If

ExitSub:
Exit Sub
End Sub

Private Function AddNode (ANode As Node, ExplorerItem As IExplorerItem)
As Node
Dim oNode As Node

With ExplorerItem
Set oNode = tvTreeView.Nodes.Add (ANode, tvwChild, , .Caption,
.ImageIndex, .ImagelIndexExpanded)
oNode.ExpandedImage = .ImagelndexExpanded
End With

Set oNode.Tag = ExplorerItem
Set AddNode = oNode

End Function

The Expand and NodeClick events of the Treeview are responsible for driving the
navigational aspects of the Explorer control. In either of these events, we call a
LoadChildren method to process the event. The code for L.oadChildren appears in

Listing 10.8.

Example 10.8. The LoadChildren Method on Our
NWEXxplorer User Control to Handle Events Generated

by the User

Private Const TRE NODECLICK As Integer = 0
Private Const TRE EXPAND As Integer = 1
Private Const LVW DBLCLICK As Integer = 2

Private Function LoadChildren (oTreeNode As Node, iEventType As Integer)
As Boolean

Dim i1 As Integer

Dim sCriteria As String

Dim oItem As ListItem

Dim oNode As Node, ChildNode As Node, oDummyNode As Node

Dim NWExplorerItem As CNWExplorerItem

Dim ExplorerItem As IExplorerItem

Dim iMode As Integer

Dim CategoryItems As CCategoryItems
Dim Categoryltem As CCategoryItem
Dim CountryItem As CCountryItem

Dim CountryItems As CCountryItems
Dim RegionItem As CRegionItem

Dim RegionItems As CRegionItems

Dim CityItem As CCityItem

Dim CityItems As CCityItems

Dim AppCollection As IAppCollection
Dim AppObject As IappObject

On Error GoTo ErrorTrap
Screen.MousePointer = vbHourglass
If TypeOf oTreeNode.Tag Is IExplorerItem Then

' check for our dummy node.we put it there to get the +
If Not oTreeNode.Child Is Nothing Then

If oTreeNode.Child.Text = "DUMMY" Then
tvTreeView.Nodes.Remove (oTreeNode.Child.Index)
End If
End If

Set ExplorerItem = oTreeNode.Tag
iMode = ExplorerItem.Mode
Select Case iMode
Case EIT PRODUCT ROOT
If Not ExplorerItem.Loaded Then

ExplorerItem.Loaded = True

Set Categoryltems = AppClient.LoadCollection (CT CATEGORY, 0, 0)

Set AppCollection = Categoryltems

For 1 = 1 To AppCollection.Count
Set Categoryltem = AppCollection.Item (i)
Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT PRODUCT CATEGORY
ExplorerItem.AppObject = Categoryltem

Set oNode = tvTreeView.Nodes.Add (oTreeNode, tvwChild,

CategoryItem.Name

14

14

IML16 FOLDER, IML16 FOLDEROPEN)

Set oNode.Tag = ExplorerItem
Next
End If

Case EIT COUNTRY ROOT
If Not ExplorerItem.Loaded Then

ExplorerItem.Loaded = True

Set CountryItems = AppClient.LoadCollection (CT_ COUNTRY,

Set AppCollection = CountryIltems

For 1 = 1 To AppCollection.Count
Set CountryItem = AppCollection.Item (i)
Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT COUNTRY REGION ROOT
ExplorerItem.AppObject = CountryItem
Set oNode = tvTreeView.Nodes.Add (oTreeNode,

Countryltem.Name,

tvwChild,

0,

14

0)

IML16 FOLDER, IML16 FOLDEROPEN)

Set ChildNode = tvTreeView.Nodes.Add (oNode,
"DUMMY", 0, O0)

Set oNode.Tag = ExplorerItem
Next

tvwChild,

14

End If

Case EIT COUNTRY REGION ROOT
If Not ExplorerItem.Loaded Then
ExplorerItem.Loaded = True
Set AppObject = ExplorerItem.AppObject
Set RegionItems = AppClient.LoadCollection (CT REGION,
AppObject.Id,
AppObject.SubId)

Set AppCollection = RegionItems
For 1 = 1 To AppCollection.Count
Set RegionItem = AppCollection.Item (i)
Set NWExplorerItem = New CNWExplorerItem
Set ExplorerItem = NWExplorerItem
ExplorerItem.Mode = EIT COUNTRY REGION CITY
ExplorerItem.AppObject = RegionItem
Set oNode = tvTreeView.Nodes.Add (oTreeNode, tvwChild, ,
RegionItem.Name,
IML16 FOLDER, IML16 FOLDEROPEN)
Set ChildNode = tvTreeView.Nodes.Add (oNode, tvwChild, ,
"pumMmy", 0, 0)

Set oNode.Tag = ExplorerItem
Next
End If

End Select

If iEventType = TRE NODECLICK Or iEventType = LVW DBLCLICK Then
CurrentListViewMode = iMode
If Not oTreeNode.Child Is Nothing Then
' transfer child nodes
Set oNode = oTreeNode.Child
i = oNode.FirstSibling.Index
Set oItem = lvListView.ListItems.Add(, , oNode.FirstSibling.Text,

IML32 FOLDER, IML16 FOLDER)

Set oItem.Tag = oNode.FirstSibling

While i <> oNode.LastSibling.Index
Set ChildNode = tvTreeView.Nodes (i)
Set oltem = 1lvListView.ListItems.Add(, , ChildNode.Next.Text,

IML32 FOLDER, IML16 FOLDER)

Set oItem.Tag = ChildNode.Next

i = tvTreeView.Nodes (i) .Next.Index

Wend
RaiseEvent ItemSelectable (False)

Else
Call LoadDetail

End If

End If
End If

ExitFunction:
Screen.MousePointer = vbDefault
LoadChildren = ErrorItems.Count = 0

Exit Function

ErrorTrap:
Call HandleError (Err.Number, Err.Source, Err.Description)
Resume Next

End Function

The parameters for this method include the Node object that received the event and
the event type indicated by iEventType. We define three constants that let us know
what type of event generated this method call so that we can handle it appropriately.
We define them as TRE NODECLICK, TRE EXPAND, and LVW DBLCLICK. We first
ensure that the Tag property of the Node object contains a reference to an
IExplorerItem object. If so, we proceed to extract its mode property, which tells us
the type of Explorer item it is. Typically, we add special processing here only if we
have to build the child list dynamically as part of a database request. In this case,
we have two nodes of this type: "Products" and "Cities." We define all other
child nodes statically as part of the Loadroot method, with the Treeview
automatically handling expansion. After we check for a child expansion, we proceed
to transfer any child nodes over to the Listview, mimicking the functionality of the
Microsoft Windows Explorer. If we are not performing a child expansion, we proceed
to call the Loadpetail method that populates our Listview.

Our Loadbetail method is similar to many of our business layer methods in that we
must dimension variable references for all our potential object collections that we
load into the Listview. The code for the LoadbDetail method appears in Listing
10.9.

Example 10.9. The LoadDetail Method on Our
NWEXxplorer User Control that Manages the ListView

on the Right Side of the Control

Private Sub LoadDetail ()

Dim i As Integer, iMode As Integer
Dim 1Id As Long

Dim oItem As ListItem

Dim NWExplorerItem As CNWExplorerItem
Dim ExplorerItem As IExplorerItem

Dim vCriteria As Variant

Dim vOrder As Variant

Dim AppCollection As IAppCollection

Dim AppObject As IAppObject

Dim CategorylItems As CCategoryltems

Dim CategoryItem As CCategoryltem

Dim ShipperItems As CShipperItems

Dim ShipperItem As CShipperItem

Dim ProductItem As CProductItem

Dim ProductItems As CProductItems

Dim EmployeeProxyltem As CEmployeeProxyIltem
Dim EmployeeProxyltems As CEmployeeProxyIltems
Dim CustomerProxyltem As CCustomerProxyIltem
Dim CustomerProxyltems As CCustomerProxyIltems
Dim SupplierProxyltem As CSupplierProxyIltem
Dim SupplierProxyItems As CSupplierProxyIltems
Dim OrderProxyItem As COrderProxyIltem

Dim OrderProxyItems As COrderProxyltems

Dim CityItems As CCityIltems

Dim CityItem As CCityItem

On Error GoTo ErrorTrap

'load the detail items if any...

If TypeOf CurrentNode.Tag Is IExplorerItem Then
Set ExplorerItem = CurrentNode.Tag
iMode = ExplorerItem.Mode

CurrentListViewMode = iMode

Select Case iMode

Case EIT CATEGORY
Set Categoryltems = AppClient.LoadCollection (CT CATEGORY, O,

Set AppCollection = CategoryIltems
lvListView.Visible = False
RaiseEvent ItemSelectable (False)
CurrentListViewMode = iMode
For i = 1 To AppCollection.Count
Set CategorylItem = AppCollection.Item(i)
With CategoryItem
Set olItem = lvListView.ListItems.Add(, , .Name,
IML32 ITEM, IML16 ITEM)
oltem.SubItems (1) = .Description
End With
Set oItem.Tag = Categoryltem

Next i

Case EIT SHIPPER
Set ShipperItems = AppClient.LoadCollection(CT_SHIPPER, O,

Set AppCollection = ShipperItems
lvListView.Visible = False
RaiseEvent ItemSelectable(False)
CurrentListViewMode = iMode
For i = 1 To AppCollection.Count
Set ShipperItem = AppCollection.Item(i)
With ShipperItem

Set oItem = lvListView.ListItems.Add(, , .CompanyName,
IML32 ITEM, IML16 ITEM)
oltem.SubItems(l) = .Phone
End With

Set oItem.Tag = ShipperItem

Next i

Case EIT EMPLOYEE

Set EmployeeProxyltems =
AppClient.LoadCollection (CT _EMPLOYEE PROXY, 0, O0)

Set AppCollection = EmployeeProxyIltems

lvListView.Visible = False

RaiseEvent ItemSelectable(False)

CurrentListViewMode = iMode

For i = 1 To AppCollection.Count
Set EmployeeProxyItem = AppCollection.Item (i)
With EmployeeProxyItem

Set oltem = lvListView.ListItems.Add(, , .LastName & ",

.FirstName,

IML32 ITEM, IML16 ITEM)
End With
Set oItem.Tag = EmployeeProxyltem

Next i

Case EIT CUSTOMER

Set CustomerProxyltems =
AppClient.LoadCollection (CT CUSTOMER PROXY, 0, 0)

Set AppCollection = CustomerProxyltems

lvListView.Visible = False

RaiseEvent ItemSelectable(False)

CurrentListViewMode = iMode

For i = 1 To AppCollection.Count
Set CustomerProxyItem = AppCollection.Item (i)
With CustomerProxyIltem

Set oItem = lvListView.ListItems.Add(, , .CompanyName,
IML32 ITEM, IML16 ITEM)
oltem.SubItems(l) = .CustomerCode
End With

Set oItem.Tag = CustomerProxyltem

Next i

Case EIT SUPPLIER
Set SupplierProxylItems =
AppClient.LoadCollection (CT _SUPPLIER PROXY, 0, O0)
Set AppCollection = SupplierProxyItems
lvListView.Visible = False
RaiseEvent ItemSelectable(False)
CurrentListViewMode = iMode
For i = 1 To AppCollection.Count
Set SupplierProxyItem = AppCollection.Item (1)
Set olItem = lvListView.ListItems.Add(, ,
SupplierProxyltem.CompanyName,
IML32 ITEM, IML16 ITEM)
Set oItem.Tag = SupplierProxyItem

Next i

Case EIT COUNTRY REGION CITY
Set AppObject
Set CityItems = AppClient.LoadCollection (CT CITY,

AppObject.Id, AppObject.SubId)

ExplorerItem.AppObject

Set AppCollection = CityItems

lvListView.Visible = False

RaiseEvent ItemSelectable(False)

CurrentListViewMode = iMode

For i = 1 To AppCollection.Count
Set CityItem = AppCollection.Item (1)
Set oItem = lvListView.ListItems.Add(, , CityItem.Name,

IML32 ITEM, IML16 ITEM)

Set oItem.Tag = CityItem

Next i

Case EIT PRODUCT CATEGORY
CurrentListViewMode = EIT PRODUCT
Set ExplorerItem = CurrentNode.Tag
Set Categoryltem = ExplorerItem.AppObject
Set AppObject = Categoryltem
vCriteria = Array (Array ("CategoryId", "=", AppObject.Id))
vOrder = Array ("Name")
Set ProductItems =
AppClient.LoadQueryCollection (CT_ PRODUCT,
vCriteria, vOrder)
Set AppCollection = ProductItems
lvListView.Visible = False
RaiseEvent ItemSelectable (False)
CurrentListViewMode = iMode
For 1 = 1 To AppCollection.Count
Set ProductItem = AppCollection.Item(i)
With ProductItem
Set oItem = lvListView.ListItems.Add(, , .Name,
IML32 ITEM, IML16 ITEM)

oItem.SubItems (1) = .QuantityPerUnit
oltem.SubItems (2) = .UnitPrice

oltem.SubItems (3) = .UnitsInStock

oltem.SubItems (4) = .UnitsOnOrder

oltem.SubItems (5) = IIf(.IsDiscontinued, "Yes", "No")

End With
Set oItem.Tag = ProductItem

Next i
Case EIT ORDER ALL
Set OrderProxyltems =

AppClient.LoadCollection (CT_ORDER PROXY,

Set AppCollection = OrderProxyltems

lvListView.Visible = False
RaiseEvent ItemSelectable(False)
CurrentListViewMode = iMode
For i = 1 To AppCollection.Count
Set OrderProxyItem = AppCollection.Item(1i)
With OrderProxyItem

Set olItem = lvListView.ListItems.Add(, , .CustomerName,

IML32 ITEM, IML16 ITEM)

oltem.SubItems(l) = IIf(.0OrderDate = vbEmpty,
""", .OrderDate)

oltem.SubItems (2) = IIf(.RequiredDate = vbEmpty, "",
.RequiredDate)

oltem.SubItems(3) = IIf(.ShippedDate = vbEmpty, "",
.ShippedDate)

oltem.SubItems(4) = .EmployeelLastName & "," &

.EmployeeFirstName
End With

Set oItem.Tag = OrderProxyItem

Next i

Case EIT ORDER OPEN
vCriteria = Array(Array("ShippedDate", "is", "null"))
vOrder = Array ("RequiredDate", "CustomerName")

Set OrderProxyltems =
AppClient.LoadQueryCollection (CT ORDER_ PROXY,
vCriteria, vOrder)
Set AppCollection = OrderProxyltems
lvListView.Visible = False
RaiseEvent ItemSelectable (False)
CurrentListViewMode = iMode
For i = 1 To AppCollection.Count
Set OrderProxyItem = AppCollection.Item (i)
With OrderProxyIltem

Set olItem = lvlListView.ListItems.Add(, , .CustomerName,

IML32_ITEM, IML16_ITEM)
ITf(.0OrderDate = vbEmpty, "",
.OrderDate)

oltem.SubItems (1)

oltem.SubItems (2) = IIf(.RequiredDate = vbEmpty, "",
.RequiredDate)
IIf(.ShippedDate = vbEmpty, "",
.ShippedDate)

oltem.SubItems (3)

oltem.SubItems (4) .EmployeelLastName & "," &

.EmployeeFirstName
End With
Set oItem.Tag = OrderProxyItem
Next i
End Select
End If

ExitSub:
lvListView.Visible = True
Call SetObjectCount (lvListView.ListItems.Count)
If lvlListView.ListItems.Count > 0 Then
Set lvListView.SelectedItem = lvListView.ListItems.Item(1)
RaiseEvent ItemSelectable (True)
End If

Exit Sub

ErrorTrap:
Call HandleError (Err.Number, Err.Source, Err.Description)
Resume Next

End Sub

We start this method by extracting the ExplorerItem associated with the currently
selected Node object in the Treeview. Based on the value of the Mode property of
this ExplorerItem, we run through a select Case statement to determine our
course of action. As you might notice, most of the actions are simple calls to the
LoadCollection method of the AppClient for a given class type. After we have
loaded the necessary collection, we proceed to iterate through it, moving the
information into the Listview. A convenient CurrentListViewMode property is
responsible for setting up our Listview header columns, based on the type of
collection we are loading. By placing all this ListView initialization code into a single
property, we make it easier to maintain in the future.

We deviate a bit from this simple LoadCollection approach for our EIT PRODUCT
CATEGORY and EIT ORDER OPEN cases in which we use a LoadQueryCollection to
load the collection of products for a given category. We rely on the AppObject
property of the ExplorerItem object to get the categoryid for the query. We also
use a LoadQueryCollection to help us load the detail for the open orders, where
we check for a null ship date.

One of the other items you might have noticed is that we have defined new
collection classes with the word proxy in their names. We define these objects as
scaled-down versions of their fully populated siblings. We must define this all the
way back to the Nnwserver component, creating new class type constants and
modifying the GetClassDef method to support these new classes. We also must
define the necessary classes in NwWClient. We take the extra development effort to

define these lighter-weight classes so that we can minimize network traffic and
latency during our browsing process. A user does not need to see every data
element of every object to find what interests him.

Now that we have all the pieces in place, we must begin responding to user input.
We start by attaching an event handler to our ToolBar control. To accomplish this,
we must first define a set of constants that corresponds to the button indexes within
the ToolBar control. For example:

Private Const TBR NEW As Integer = 2
Private Const TBR DELETE As Integer = 4
Private Const TBR PROPERTIES As Integer = 5
Private Const TBR UPONE As Integer = 7
Private Const TBR LVLARGE As Integer = 9

10
Private Const TBR LVLIST As Integer = 11

Private Const TBR LVSMALL As Integer

Private Const TBR LVDETAILS As Integer = 12
Private Const TBR HELP As Integer = 14

You should notice that these constants are not contiguous because of the separator
buttons that are in use in the Too1Bar control.

Next, we create a DoToolEvent function that is nothing more than a Select Case
statement switched on the index value of the button the user clicks. We map the
ButtonClick method of the ToolBar control to this DoToolEvent method (see

Listing 10.10).

Example 10.10. Implementation of the ButtonClick
Method of the Toolbar Control Used Within Our

NWEXxplorer User Control

Private Sub tbToolbar ButtonClick (ByVal Button As MSComctlLib.Button)
Call DoToolEvent (Button.Index)
End Sub

Private Sub DoToolEvent (iIndex As Integer)
On Error GoTo ErrorTrap
Select Case ilIndex

Case TBR_NEW

Call EventRaise (emInsert)

Case TBR DELETE
Call Deleteltem

Case TBR_PROPERTIES
Call EventRaise (emUpdate)

Case TBR UPONE
CurrentNode = CurrentNode.Parent
Set tvTreeView.SelectedItem = CurrentNode

Call tvTreeView NodeClick (CurrentNode)

Case TBR LVLARGE
tbToolBar.Buttons.Item (TBR LVLARGE) .Value = tbrPressed

lvListView.View = lvwIcon

Case TBR LVSMALL
tbToolBar.Buttons.Item (TBR LVSMALL) .Value = tbrPressed

lvListView.View = lvwSmallIcon

Case TBR LVLIST
tbToolBar.Buttons.Item (TBR LVLIST) .Value = tbrPressed

lvListView.View = lvwList

Case TBR _LVDETAILS
tbToolBar.Buttons.Item (TBR LVDETAILS) .Value = tbrPressed

lvListView.View = lvwReport

Case TBR_HELP
MsgBox "Add 'Help' button code.”
End Select

ExitSub:
If ErrorItems.Count > 0 Then
ErrorItems.Show
End If
Exit Sub

ErrorTrap:
Call HandleError (Err.Number, Err.Source, Err.Description)
Resume Next

End Sub

You should notice that for our add and edit functionality we are calling a private
method called EventRaise. We must use an event because we are within a user
control, and this is the only mechanism to communicate outward. We must send this
event out, along with critical information, to the host application whether it is a
Visual Basic form or an IE5 HTML page. The host application is then responsible for
taking the appropriate action. For all other button actions, we are relying on
functionality within this user control. Our EventRaise code appears in Listing 10.11.

Example 10.11. The EventRaise Method on Our
NWEXxplorer User Control Used to Relay

ActionRequest Events Out to Our Container Control

Private Sub EventRaise (eMode As EnumEditModes)
Dim ExplorerItem As IExplorerItem

Dim AppObject As IAppObject

Dim oListItem As ListItem

Dim ClassId As Integer, ActionClassId As Integer

Dim ClassName As String

If TypeOf CurrentNode.Tag Is IExplorerItem Then
Set ExplorerItem = CurrentNode.Tag
Set olListItem = lvListView.SelectedItem
If TypeOf oListItem.Tag Is IAppObject Then
Set AppObject = oListItem.Tag
Call AppClient.GetClassInfo (AppObject.ClassId, ClassName,
ActionClassId)
With AppObject
RaiseEvent ActionRequest (ExplorerItem.Mode, eMode, .Id, .SubId,
Server, SecurityKey)
End With
End If
End If
End Sub

Upon entering the method, we attempt to extract an AppObject object from the
ExplorerItem object that we receive via the Tag property of the currently selected
ListItem Object of the ListVview control. If we are in delete mode for this method,
we prompt the user with a confirmation message. We use a CMessageBox class in
our AppCommon library, which we have defined specifically for this process. For other
modes, we simply raise the ActionRequest event outward for handling. We cover
the host application's response to this event in the section titled "The Tabbed
Dialog," later in this chapter.

Within our host application, we have the following simple code within our
ActionRequest event handler to manage our object addition and update logic (see
Listing 10.12).

Example 10.12. The Implementation of the
ActionRequest Event on Our frmNorthWind Container

Form

Private Sub NWExplorer ActionRequest (EIT As Integer,
EditMode As EnumEditModes,
Id As Long,
SubId As Long,
Server As String,
SecurityKey As String)
Select Case EIT
Case EIT ORDER, EIT ORDER ALL, EIT ORDER OPEN
Load frmOrder
With frmOrder
If EditMode = emUpdate Then

.Id = Id
.SubId = SubId
Else
.Id =0
.SubId = 0
End If

.Mode = EditMode
.Server = Server
.SecurityKey = SecurityKey
.Show vbModal

End With

Set frmOrder = Nothing

End Select
End Sub

Note that the frmOrder form contains our NwOrder control that we will be
developing in the "The Tabbed Dialog" section.

The last remaining method of importance is setstates. This method is responsible
for enabling and disabling buttons on the ToolBar control, based on the settings of
the ExplorerItem associated with the currently selected Node object in the

TreeView control. We have also created a pop-up menu for which we must set state,

using this method as well. We call this method from the NodecClick event of the
TreeView control. The code for the setstates method appears in Listing 10.13.

Example 10.13. The SetStates Method on Our
NWEXxplorer User Control, Used to Set the States for

the Toolbar Buttons and Pop-Up Menus

Private Sub SetStates()
Dim ExplorerItem As IExplorerItem
If TypeOf CurrentNode.Tag Is IExplorerItem Then
Set ExplorerItem = CurrentNode.Tag
With ExplorerItem
If SelectMode = EIT ALL Then

tbToolBar.Buttons.Item (TBR NEW) .Enabled = .CanAdd
mnuObjectNew.Enabled = .CanAdd
tbToolBar.Buttons.Item(TBR DELETE) .Enabled = .CanDelete
mnuObjectDelete.Enabled = .CanDelete
tbToolBar.Buttons.Item (TBR PROPERTIES) .Enabled = .CanUpdate
mnuObjectEdit.Enabled = .CanUpdate

Else

tbToolBar.Buttons.Item (TBR NEW) .Enabled = False
mnuObjectNew.Enabled = False
tbToolBar.Buttons.Item(TBR DELETE) .Enabled = False
mnuObjectDelete.Enabled = False
tbToolBar.Buttons.Item (TBR PROPERTIES) .Enabled = False
End If
tbToolBar.Buttons.Item (TBR UPONE) .Enabled = .CanGoUp
End With

End If
End Sub

Now that we have the control basics down, we present NWExplorer running within
the context of IE5 in Figure 10.3. Note that IE4 is also acceptable for ActiveX control
hosting. It is also possible to host ActiveX controls within Netscape Navigator
running on Windows 95/98/NT if you use a plug-in.

Figure 10.3. The Northwind Explorer control within

IES.

Al Northwind Traders - Microsoft Internet Explorer
| Eile Edit View Favontes Tools Help “

. .0 0 & a 3 - &

Stop Refresh Home Search History Mail Frint

| Address Ii‘ﬂ F:\Book\MNorthwind\NWExplorer htm j @ Go | |Links
D Xe&F @ % xEm ? B
Tree'iew: |Cumnrr|:s of: Products. Beverages
1 Northwind Traders Mame | Supplier
=3 Orders [® Chai Exotic Liguids
2 All Orders [@ Chang Exotic Liquids
1 Open Orders [B Chartreuse verte Aux joyeux ecclésiastiques
) Categones [A Céte de Blaye Aux joyeur ecclésiastiques
=4 Products [Guarand Fantéstica Refrescos Amencanas LTDA
- Beverages [® Ipoh Coffes Leka Trading
1 Condiments [Lakkalikoon Karkki Oy
1 Confections [® Laughing Lumberjack Lager Bigfoot Breweries
21 Dairy Products [@ Outback Lager Pavova, Lid,
] Grains/Cereals [B] Rhanbrau Klosterbier Plusspar Lebensmittelgrolimarkie AC
1 Meat/Poultry %g?;j:atcgme g!gT[u ot glmnes
& Produce ye Stout igloot Brewenes
1 Seafood
_1 Employees
1 Customers
) Shippers
| Suppliers
4| Administration a| | i
12 Objects. 11/48/59 10:35 PM =]
&] Done = My Computer v

The HTML code required to embed the control and activate it appears in Listing
10.14. We will be spending much more time in later chapters demonstrating how to
implement controls as part of Web pages. Note that the value for c1sid might vary
from that shown in Listing 10.14.

Example 10.14. The HTML for a Page that Hosts Our

NWEXxplorer User Control

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Northwind Traders</TITLE>

<script LANGUAGE="VBScript">

<!—

Sub Page Initialize

On Error Resume Next
Call NWExplorer.RegisterControl ("server=PTINDALLZ&securitykey=")
NWExplorer.SelectMode = 999 ' EIT ALL
NWExplorer.InitControl
End Sub
—>
</script>
</HEAD>
<BODY ONLOAD="Page Initialize" rightmargin=0 topmargin=0
leftMargin=0 bottomMargin=0>
<OBJECT classid="clsid:41AC6690-8E70-11D3-813B-00805FF99B76"
id=NWExplorer style="LEFT: Opx; TOP: Opx"
width=100% height=100%>
</OBJECT>
</BODY>
</HTML>

The HTML shown in Listing 10.14 was generated using Microsoft Visual InterDev 6.0.
We demonstrate the use of this tool in Chapter 12, "Taking the Enterprise
Application to the Net."

The Tabbed Dialog

Although the concept of a tabbed dialog is intrinsically simple, we must place some
thought into the best layout of our elements on the various tabs. Remembering the
statement about the user layer being an outgrowth of the business layer offers us
some guidance here. Suppose we have an object hierarchy like the one shown in
Figure 10.4. Here we have a root object containing several subobjects that are
collections.

Figure 10.4. A sample object hierarchy.

CPortfolio

CBondltems

CStockltems

..

CBondltem

CFunditerns

R

CStockitem

N

CFunditem

We want to handle this "bundle" of information using the root object cCportfolio;
therefore, we might lay out our tabbed dialog as shown in Figure 10.5. This model
should follow any well-designed business layer.

Figure 10.5. Our sample object hierarchy mapped to a

tabbed dialog.

General | Bonds | Stocks | Funds
: \ Properties
® Opifon ! < > associated with the
(O Option 2 / CPortfolio object
v
General | Bonds | Stocks | Funds |
Each row
represents a
E CBondltem in the
CBondltems
collection

For a specific implementation example, we develop a tabbed dialog control for the
Corder object and its contained cOrderDetailItems collection. We will
demonstrate not only the basics of user interface design but also the integration of
user interface elements with our AppClient.

To start, we create a User Control project and name it NWwOorder. We place a ToolBar
control and a tabbed dialog with two tabs onto our layout space. We name the first
tab General, as shown in Figure 10.6, and the other Detail, as shown in Figure 10.7.

Figure 10.6. The miozcer control's General tab.

= e als |
(General) Deail

Customer [Bottom-Dollar Markets _]

Employee |Suymna, Michael

—_— Order Date Requested Date Shipped Date
|04/20/1995 |05/18/1995 |

Shipper pnited Package _,
Ship To |B|:|tt|:|m—D|:|IIar Markets

Address |23 Tsawassen Blvd.

Freight [70.58 Postal Code |T2F 8M4

Country{City/Region
ITSEI.'#ﬂS'EE!I'L BC Canada —I

| Ready...

Figure 10.7. The worder control's Detail tab.

[@Oder ______________________H
DES XE |

General Detail |

Product | Oty | Unit Price | Discount | Extended |
Geitost 15 $ 250 0 $37.50
Manjimup Dried Apples 24 $53.00 0 $1,272.00

Product [Geitost]|

Supplier Hurska Meierier

Unit Price |§2.5[I Cluantity |15 Discount |II|.I]|]

Standard Total [$1,309.50 Discounted Total [§1,309.50

Ready..

Our Form Activate eventin our host application for the Nworder control is identical
to the one we designed for our NiiExplorer. Similarly, we implement
RegisterControl and InitControl methods that connect to our AppClient
component and initialize the control, respectively. Our initialization flow appears in

Figure 10.8.

Figure 10.8. The srmorser form startup process.

frmOrder.Form_Activate

v

MNWOrder. RegisterContral

Y

MNWOrder. ParseCommandLine

:

AppClient.InitClient

Y

NWOrder. InitControl

MNew QObject?

M

¥

AppClient. LoadObject
(CT_ORDER)

!

AppClient LoadCollection
(CT_ORDER_DETAIL)

|

NWQrder.initContrals
(Clears Controls)

')

MWOrder. CurrentTab
(Froperty Let)

Y

WNWOrder GetControls

The implementation of our InitControl method is quite different in our NWoOrder
control than in the NWExplorer control. The code for the NWoOrder implementation

appears later in Listing 10.15.

Example 10.15. The InitControl

NWOrder User Control

Public Sub InitControl ()

Dim i As Integer

Dim s As String

Dim AppObject As IAppObject

Dim AppCollection As IAppCollection

On Error GoTo ErrorTrap

'l. initialize form properties...

FormDirty = False

For 1 = 0 To tabMain.Tabs - 1
TabDirty (i) = False: TabClick (i) =

Next

Call SetStatusText ("Initializing..")
picGeneral.Visible = False

Screen.MousePointer = vbHourglass

'2. load this order object..
If Mode = emUpdate Then

Set Order = AppClient.LoadObject (CT ORDER,

Set AppObject = Order
Set OrderDetailltems =

Method on Our

False

Id, SubId)

AppClient.LoadCollection (CT ORDER DETAIL, Id, SubId)

Set AppCollection = OrderDetailltems
Else

Set Order = New COrder

Set AppObject = Order

AppObject.Id = 0

AppObject.SubId = SubId

AppObject.IsDirty = True

AppObject.IsLoaded = True

Set OrderDetailltems = New COrderDetailltems

Set AppCollection = OrderDetailltems
End If

If Mode = emUpdate Then

RaiseEvent SetParentCaption (s)

'3. initialize all controls

Call ClearControls (TAB_ GENERAL)

'4, Set the current tab
CurrentTab = TAB GENERAL

picGeneral.Visible = True

Screen.MousePointer = vbDefault

ExitSub:

If ErrorItems.Count > 0 Then
ErrorItems.Show
RaiseEvent UnloadMe

End If

Call SetStatusText ("Ready.")

Exit Sub

ErrorTrap:
Call HandleError (Err.Number, Err.Source, Err.Description)
Resume Next

End Sub

To manage our tab states, we define two form-level property arrays known as
TabClick and TabDirty. We implement these two properties as arrays, with one
element for each tab. We also have a form-level property known as FormDirty. We
initialize all these properties at the start of our InitControls method. We then
proceed to check for whether we are initializing in Update or Insert mode via our
Mode property set by our host application. If the former, we load our global private
Order and OrderDetailItems USing our AppClient. If the latter, we simply
instantiate new objects of these types. We then call our clearControls method for
the first tab, which clears all controls on the tab. Finally, we set the currentTab
property to the first tab.

The code for the currentTab property appears in Listing 10.16.

Example 10.16. The CurrentTab Property for Our

NWOrder User Control

Public Property Let CurrentTab(ByVal iTab As Integer)

On Error GoTo ErrorTrap

iCurrentTab = iTab
bLoading = True
If TabClick(iTab) Then GoTo ExitProperty

Call SetStatusText ("Initializing..")
Screen.MousePointer = vbHourglass

Select Case iTab

Case TAB GENERAL
Call SetControlsFromObjects (TAB GENERAL)

Case TAB DETAIL
' need to load listview here
' or else we get into a nasty loop
picDetailsTab.Visible = False
Call LoadListView

picDetailsTab.Visible True

Call SetControlsFromObjects (TAB DETAIL)

End Select
TabClick (iTab) = True

ExitProperty:
Call SetStatusText ("Ready..")

Screen.MousePointer = vbDefault

iCurrentTab = iTab
bLoading = False
Call SetStates
Exit Property

ErrorTrap:
Call HandleError (Err.Number, Err.Source, Err.Description)

End Property

We first check to see whether the user has already clicked on this tab, by examining
the Tabclick property. If this returns True, we exit out of this property. If not, we
proceed to load the controls. If we are on the TAB GENERAL tab, we simply call the
SetControlsFromObjects method. If we are on the TAB DETAIL, tab we must first
load the Listview control with the orderDetailltems collection before we can call
the setControlsFromObjects method. The code for our SetControlsFromObjects
method appears in Listing 10.17.

Example 10.17. The SetControlsFromObject Method
on Our NWOrder User Control to Update the UI Based

on Our Order Object

Private Sub SetControlsFromObjects (iTab As Integer)
Dim b As Boolean

Dim sgDown As Single

b = bLoading
bLoading = True

Select Case iTab
Case TAB GENERAL

With Order
1blCustomer.Caption = .CustomerName
lblEmployee.Caption = .EmployeelastName & ", " & .EmployeeFirstName
txtOrderDate.Text = IIf(.OrderDate = "12:00:00 AM" Or
.OrderDate = vbEmpty, "",
Format (.OrderDate, "mm/dd/yyyy"))
txtRequestedDate.Text = IIf(.RequiredDate = "12:00:00 AM" Or _
.RequiredDate = vbEmpty, "",
Format (.RequiredDate, "mm/dd/yyyy"))
1blShipper.Caption = .ShipperName
txtShippedDate.Text = IIf(.ShippedDate = "12:00:00 AM" Or
.ShippedDate = vbEmpty, "",
Format (.ShippedDate, "mm/dd/yyyy"))
txtShipToName.Text = .ShipToName
txtShipToAddress.Text = .ShipToAddress
txtFreight.Text = .FreightCost
txtShipToPostal.Text = .ShipToPostalCode
1blCRC.Caption = .ShipToCity & ", " & .ShipToRegion & " " &
.ShipToCountry
End With

Case TAB DETAIL

With SelectedOrderItem
1blProduct.Caption = .Product
1blSupplier.Caption = .Supplier
1blUnitPrice.Caption = Format (.UnitPrice, "$ ###0.00")
txtDiscount.Text = Format (.Discount, "##0.00")

txtQuantity.Text = .Quantity
lblstandardTotal.Caption = _

Format (OrderDetailltems.OrderTotal (False), "S #,##0.00")
lblDiscountedTotal.Caption = _

Format (OrderDetailltems.OrderTotal (True), "S #,##0.00")
If SelectedOrderItem.Product = "[New Product]" Then

txtDiscount.Enabled False
txtQuantity.Enabled = False
Else

txtDiscount.Enabled

True
txtQuantity.Enabled = True
End If
End With
End Select
bLoading = b
End Sub

Notice that our Detail tab contains a L.istVview control with a series of controls below
it. The values in these secondary controls correspond to a row in the Listview, with
each column mapping to one of the controls. We have chosen this approach for
demonstration purposes only. In many cases, you might want to use an advanced
grid control, which has embedded comboBox and CommandButton capabilities.

After we have loaded our control with the necessary object information, we must
begin reacting to user inputs. We use the validate event on our TextBox controls
to ensure that our application performs appropriate property validation. For
example, our txtFreight TextBox control has the validation code shown in Listing
10.18.

Example 10.18. Implementation of the Validate Event
on the txtFreightTextBox Control to Implement

Field-Level Validation

Private Sub txtFreight Validate (Cancel As Boolean)
If IsNumeric (txtQuantity.Text) Then
If CDbl (txtDiscount.Text) <= 0 Then

Cancel = True

End If
Else
Cancel = False
End If
End Sub

We also use the KeyDown and KeyPress events to track whether a user changes a
value so that we can set our TabDirty and FormDirty properties. For an example,

see Listing 10.19.

Example 10.19. Implementation of the and KeyDown
Events on the txtFreight TextBox Control to Track

Dirty Status

Private Sub txtFreight KeyPress (KeyAscii As Integer)
TabDirty(TAB_GENERAL) = True
End Sub

Private Sub txtFreight KeyDown (KeyCode As Integer, Shift As Integer)
If (KeyCode = vbKeyDelete Or KeyCode = vbKeySpace Or KeyCode = vbKeyBack)
Then
TabDirty (TAB GENERAL) = True
End If
End Sub

Notice that we have implemented many of our input fields as Label and
CommandButton controls. For these fields, we are relying on the selectMode of our
NWExplorer control to help. Figure 10.9 shows the selection of the customer for the
order.

Figure 10.9. The Explorer control in selection mode

for the customer class.

Select Customer |

AE|E | % BRIl P
| TreeView: | Contents of. Customers
| Morthweind Traders Mame I Code -
3 Customars [5) Alfreds Futterkiste ALFKI
[3 Ana Trujillo Emparedados y h.. AMATR
[31 Antonio Moreno Tagueria ANTOMN
31 Around the Hom ARCIUT
(&) Berglunds snabbkop BERGS
[Blauer See Delikatessen BLALS
[3) Blonde| pére et fils BLONP
[B1 Balido Comidas preparadas BOLID
3 8on app' BOMAP
[3 Bottom-Dollar Markets BOTTM
[B's Beverages BSBEV
[Cactus Comidas para llevar CACTU
[8) Centro comercial Moctezuma CENTC
A Chop-suey Chinese CHOPS
3 Comércio Mineiro COMMI
B Congolidated Holdings CONSH
E’iDie Wandemde Kuh WANDIK | _Iﬂ
1 [

After the user has made the necessary changes to the order and/or modified
elements in the orderDetailltems collection, he or she can proceed to save the
changes to the database. For this, we reverse the process of loading the NWOrder
control. The save method implements this process (see Listing 10.20).

Example 10.20. The Save Method on Our NWOrder
User Control to Commit Changes to the Database

Through the Business Layer

Private Function Save () As Boolean
Dim v

Dim i As Integer

Dim 1Rc As Long

Dim sMsg As String, sBase As String
Dim Errors As Variant

Dim AppObject As IAppObject

Dim AppCollection As IappCollection

On Error GoTo ErrorTrap
Screen.MousePointer = vbHourglass

Call SetStatusText ("Saving changes...")

If TabDirty(TAB GENERAL) Then

If Not SetControlsToObjects (TAB GENERAL) Then GoTo ExitFunction

Set AppObject = Order

If Not AppObject.IsValid(Errors) Then
Call ErrorItems.MakeFromVariantArray (Errors, vbObjectError,

"NWOrder", "Save")

ErrorItems.Show
GoTo ExitFunction

End If

If Mode = emUpdate Then
Call AppClient.UpdateObject (AppObject.ClassId, AppObject)
Else
Call SetStatusText ("Inserting new object..")
AppObject.ClassId = CT ORDER
Call AppClient.InsertObject (AppObject.ClassId, AppObject)
If ErrorItems.Count > 0 Then
ErrorItems.Show
End If
Mode = emUpdate
Id = AppObject.Id
SubId = AppObject.SubId
Call InitControl
End If
TabDirty (TAB_GENERAL) = ErrorItems.Count > 0
End If

If TabDirty(TAB DETAIL) Then
Set AppCollection = OrderDetailltems

If Not AppCollection.IsValid(Errors) Then
Call ErrorItems.MakeFromVariantArray (Errors, vbObjectError,
"NWOrder", "Save")
ErrorItems.Show
GoTo ExitFunction
End If

For i = 1 To AppCollection.Count
Set AppObject = AppCollection.Item (i)
If AppObject.Id > 0 Then

If AppObject.IsDirty Then
Call AppClient.UpdateObject (AppObject.ClassId, AppObject)
Else
AppObject.Id = 0
Call AppClient.InsertObject (AppObject.ClassId, AppObject)
End If
Next i
Mode = emUpdate
TabDirty (TAB DETAIL) = ErrorItems.Count > 0
Call InitControl
End If

RaiseEvent ObjectSave

Call SetStates

ExitFunction:
Save = ErrorItems.Count = 0
Screen.MousePointer = vbDefault
Call SetStatusText ("Ready.")

Exit Function

ErrorTrap:
Call HandleError (Err.Number, Err.Source, Err.Description)

End Function

For a given tab, we call the setControlsToObject method to move the control
information into the appropriate properties. We then call the Isvalid method on
the AppObject or AppCollection objects to make sure that there are no issues
across property values. An example could be that the ship date occurs before the
order date. If validation succeeds, we call the necessary appClient update or insert
functionality for the AppObject or AppCollection objects, depending on which tab
we are saving. We then clear the dirty flags and refresh the controls.

Summary

We have reached a milestone with the conclusion of this chapter because we have
implemented the complete set of functionality necessary to build a three-tiered
application. Figure 10.10 shows graphically what we have accomplished.

Figure 10.10. Our three-tiered application.

I Clignit Thor I Applcation Tigr I Coata Tigr I

ApECommon A0 o Databaso
{DLL) - I

NWExplorer
(DG}

&
Harthivind

{EXE}

DataManagar
(DLL}

/ N\

WiWCindar HWSgrvar

[OHZX)

/ {DLL)
\ NWVClianil DLL ClassMariager

{DLLk

In the next chapter, we begin implementing our Internet/intranet functionality by
developing a reporting component that uses ASP for simple reports or gets a little
help from some MTS components for the more difficult reports.

Chapter 11. A Distributed Reporting Engine

Up to this point, focus for the framework has been on the input, or information
generating, side of the application. When you look at our goal of moving the sample
Northwind application into an n-tiered, distributed framework, you can see that the
work is not complete because several reports I defined are now no longer available
with this migration of functionality. This chapter shows how Active Server Pages
(ASPs), coupled with the framework components running on Microsoft Transaction
Server (MTS), can be used to replace most of the standard reporting functions in a
manner that provides access to a much broader audience. For complex reports that
cannot be handled within ASP directly, specialized reporting objects are built and
deployed on MTS.

Design Theory

Many commercially available, third-party tools are available, which provide
powerful report development capabilities. Tools like Microsoft Access are designed
to support pure client/server environments, whereas tools like Seagate Crystal
Reports and others have versions that can run as part of server process to serve up
Web-based reports. With all other parts of our application framework executed in a
distributed fashion, it is clearly desirable to continue with that design goal for
reporting purposes. At a minimum, the logic to run reports should be implemented
on a remote server machine so that report formats and logic can be changed in a
single locale rather than on every client. Some developers (pre-intranet explosion)
have cleverly achieved this type of functionality using a combination of Microsoft
Access and Microsoft Message Queue (or using a home-grown version of a simple
queue), setting up reporting servers that do nothing more than fulfill generation
requests. After a report is run, it is emailed to the requestor as an attached
document.

Although this type of report automation is impressive, in the intranet-enabled
corporation of today, such extensive efforts are no longer needed because ASP can
fulfill most of the same reporting requirements. Although some of the grouping and
preprocessing routines that are normally processed by a report writer need to be
handled programmatically in VBScript, they are not difficult to master. The use of
ASP has another advantage in that its VBScript language supports COM, which
allows reuse of our framework code.

Implementation

To build out our reporting functionality, we will be using Visual InterDev 6.0. If you
have not ventured far beyond the Visual Basic environment, you will need to install

the FrontPage 98 extensions on your Internet Information Server (IIS)
development machine. You can perform this installation using the NT 4.0 Option
Pack on the IIS machine. Be aware that running the NT 4.0 Option Pack on an NT
Workstation will install Peer Web Services (PWS) instead of IIS. This is fine for our
purposes because PWS and IIS are similar. When I refer to IIS from this point
forward, it includes PWS installations.

Visual InterDev 6.0 tries to be many things, perhaps to the point of causing
confusion. When we try to create a new project, in addition to a Visual InterDev
project, we are given the choices of creating database projects, distribution units,
utility projects, and Visual Studio Analyzer projects. A database project is simply a
database development environment similar to Microsoft Access, with the added
option to debug stored procedures within Microsoft SQL Server. A distribution unit
can be one of several types. One option is a cabinet (CAB) file that is used by the
Microsoft setup engine. A second option is a self-extracting setup that uses one or
more CAB files to build a self-contained installer. The last option is simply a Zip file.
It is difficult to discern the purpose of the last two options. Nonetheless, Visual
InterDev's forte is in its capability to manage and edit Web projects. These Web
projects will be the manifestation of our reporting engine in this chapter. We will
continue with this same project in the next chapter as we create the entire Web site
portal for our application.

Before proceeding with the details of building the reporting engine, it is important to
understand that ASP represents a programming model that runs on an IIS server.
ASP code never crosses over to the browser. Instead, it produces the HTML stream
that is sent to the browser. Because of this, an ASP page that generates
browser-neutral HTML can support both Netscape Navigator and Internet Explorer.
This is no different from server-side Perl or C code that generates HTML to send back
to the browser. No Perl or C code is ever passed back to the browser.

Creating the Web Project

After you have access to an IIS installation, you can create the Web project. The
easiest way to do this is from within Visual InterDev. Start Visual InterDev and
select File, New Project from the main menu. This brings up the New Project dialog
as shown in Figure 11.1.

Figure 11.1. Creating a new Web application in Visual

InterDev.
. Miiasoll Developsent Ervavnsent [desgn] i=E
Do Cdt e Project Qebug Jocks Wndow pelp
e = S NSRS . R S T, | S e R =
—f
How | Exsing | Recent |
3 Wisual InderDlew Paopchs
=_J'~fw5uh" Iﬂ \ﬂ-

Mew'wieb Serple dpp
Progct YWiad

|Mdm%mmhm.ﬂmhﬂﬂnmﬂnhmiﬂ.

e [Keertrwmrd Taadesr
— Lecalicn |rd b Adrrmristssto\Peisonal\ Vg Situde Pacsscls M orwred Tiade s Hrowre..
(o=] | ceed | Hee |
O, 1 E
1| F Deseiptien i
Servel Objects | 7| | 4
Do T Contreic | -
Akl Cortrok |
tGeneanl |
o I s | s

Enter NorthwindTraders for the project name, and then click the Open button. This
launches the Web Project Wizard. On Step 1 of the wizard, choose or enter the name
of the Web server that will host this application, and select Master mode to have the
Web application automatically updated with changes as they are made. This mode
should be switched to local after a Web application enters production. After you click
the Next button, the wizard attempts to contact the server and to verify that it is
configured appropriately.

On Step 2 of the wizard, select the Create a New Web Application option and accept
the default application name. Click the Next button to arrive at Step 3 of the wizard.
Ensure that <none> is selected so that no navigation bars are applied. Click the
Next button one last time to arrive at Step 4. Once again, ensure that <none> is
selected to make sure that no themes are applied either. Click the Finish button to
tell Visual InterDev to create the project.

Upon completing this process, the Project Explorer shows the newly created process
with several folders underneath it. The private and ScriptLibrary folders are
used directly by Visual InterDev. The images folder can be used to place the images
that are used by the Web site. A file titled global.asa also appears. This file is used
globally to declare objects and to define application- and session-level events used

by the Web application. It is discussed in further detail in Chapter 12, "Taking the
Enterprise Application to the Net."

Making NWServer 1I1IS Friendly

Because the nNwWserver component contains the functionality necessary to retrieve
lists of objects, it makes sense to use it as the vehicle to deliver information to ASP
for formatting into reports. In so doing, all information retrieval functionality, for
both the data generator and data consumer sides of the application, is confined to a
single code base. This bodes well for future maintenance of the application. Some
applications instantiate ADO Command, Connection, and Recordset objects within
an ASP page to retrieve data. This not only creates a second SQL code area within
the application, meaning another potential maintenance point, but it also performs
data access in one of the most inefficient manners possible. Remember that
everything in ASP is scripted, whereas objects developed in Visual Basic can be
compiled to native code for much higher performance. Also, remember that ASP
pages are recompiled with every access (that is, not cached), meaning the
re-instantiation of multiple objects. MTS-hosted objects are pooled and
context-switched for higher performance and scalability. Additionally, IIS does not
perform connection pooling unless a manual change to the registry is made,
whereas MTS performs ODBC and OLE DB connection pooling automatically. The
bottom line is that ASP should retrieve its data from the MTS objects that we have
already put in place rather than re-creating data access functionality.

To make the functionality of NwWwserver available to IIS you must create specific
wrapper functions because VBScript cannot deal with interface implementations as
can Visual Basic. For example, the following code fragment does not work in
VBScript:

Dim AppServer

Dim NWServer

Set NWServer = CreateObject ("NWServer.CNWServer")
Set AppServer = NWServer

Call AppServer.InitServer

This code fails on the last line because VBScript considers AppServer to be of type
CNWserver, but it does not have visibility to its 1aAppServer interface in which the
InitServer method is defined.

To circumvent this issue, wrapper functions are built for each method that must be

exposed to IIS. Listing 11.1 shows the code for each data access method on the
IAppServer interface.

Example 11.1. Wrapper Methods on NWServer for IIS

Public Sub IISQueryObjectListData (ByVal ClassId As Integer,
ByVal Criteria As Variant,
ByVal Sort As Variant,
ByVal Conjunction As Variant,
PropertyNames As Variant,
Data As Variant,
Errors As Variant)
Call IAppServer QueryObjectListData(ClassId,
Criteria,
Sort,
Conjunction,
PropertyNames,
Data,
Errors)
End Sub

Public Sub IISDeleteObject (ByVal ClassId As Integer,
ByVal ObjectId As Long,
ByVal ObjectSubId As Long,
Errors As Variant)
Call IAppServer DeleteObject (ClassId,

ObjectId,

ObjectSubld,

Errors)

End Sub

Public Sub IISDeleteObjectlList (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
Errors As Variant)
Call IAppServer DeleteObjectList (ClassId,
ParentId,
ParentSublId,
Errors)

End Sub

Public Sub IISGetObjectData (ByVal ClassId As Integer,

ByVal ObjectId As Long,
ByVal ObjectSubId As Long,
PropertyNames As Variant,
Data As Variant,
Errors As Variant)
Call IAppServer GetObjectData (ClassId,
ObjectId,
ObjectSubld,
PropertyNames,
Data,
Errors)

End Sub

Public Sub IISGetObjectListData (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
PropertyNames As Variant,
Data As Variant,
Errors As Variant)
Call IAppServer GetObjectListData (ClassId,
ParentId,
ParentSubId,
PropertyNames,
Data,
Errors)

End Sub

Public Function IISGetPropertyNames (ByVal ClassId As Integer) As Variant
IISGetPropertyNames = IAppServer GetPropertyNames (ClassId)

End Function

Public Sub IISInsertObjectData(ByVal ClassId As Integer,
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant,
ObjectId As Long,
ObjectSubId As Long)
Call IAppServer InsertObjectData (ClassId,
PropertyNames,
Data,
Errors,
ObjectId,
ObjectSubId)
End Sub

Public Sub IISInsertObjectListData (ByVal ClassId As Integer,
ByVal ParentId As Long,
ByVal ParentSubId As Long,
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant)
Call IAppServer InsertObjectListData (ClassId,
ParentId,
ParentSublId,
PropertyNames,
Data,
Errors)

End Sub

Public Sub IISUpdateObjectData (ByVal ClassId As Integer,
ByVal PropertyNames As Variant,
ByVal Data As Variant,
Errors As Variant,
ObjectId As Long, _
ObjectSubId As Long)
Call IAppServer UpdateObjectData (ClassId,
PropertyNames,
Data,
Errors,
ObjectId,
ObjectSubId)
End Sub

Public Function IISInitServer () As Boolean
IISInitServer = IAppServer InitServer

End Function

As you can see from Listing 11.1, the implementation of these wrapper functions are
trivial in nature.

An IIS Service-Layer Component

Before the report generators using ASP within IIS can be realized, a service-layer
component needs to be built. There are two primary reasons for this. The first

reason is to provide a mechanism to implement the functionality that is available in
Visual Basic but not in VBScript. Specifically, the Visual Basic Format function—used
to format dates, currency, and percentages—is not available in VBScript; therefore,

a VBAFormat wrapper function is created. A CFunctions class is created to provide
an anchor point for this and future wrapper functions. This class is defined within an
ActiveX DLL component called 2AppI1SCommon. The simple code for the CFunctions
class is shown in Listing 11.2.

Example 11.2. A Wrapper Function Added to the

CFunctions Class

Public Function VBAFormat (StringToFormat As String,
FormatPattern As String) As String
VBAFormat = Format (StringToFormat, FormatPattern)

End Function

The second reason is to simplify the retrieval of information from the variant arrays
that are returned from MTS. For this, a CbataArray class is also created within
AppIISCommon. The ChataArray class has an Initialize method that accepts
Data and PropertyNames arguments; both arguments are of the array data type.
This method sets an internal private reference to the pata argument and proceeds
to create a property index for the array using a Dictionary object. It does this by
calling a private MakeDictionary method. The Dictionary object is defined in the
Microsoft Scripting Runtime (scrrun.dl11), which should be referenced by the
AppIISCommon project. Several derived properties are also defined (MinRow and
MaxRow) to simplify iteration through the data array. Finally, an 1tem method is
implemented to extract from the array a particular property for a given row. The
code for the cbataArray class is shown in Listing 11.3.

Example 11.3. The CDataArray Class

Option Explicit
Private vData As Variant

Private dict As Dictionary

Public Sub Initialize(Data As Variant, PropertyNames As Variant)
vData = Data
MakeDictionary (PropertyNames)

End Sub

Private Sub MakeDictionary (PropertyNames As Variant)
Dim i As Long

Set dict = Nothing

Set dict = New Dictionary
If IsArray(PropertyNames) Then
For i1 = LBound(PropertyNames) To UBound (PropertyNames)
Call dict.Add(PropertyNames (i), 1)
Next i
End If
End Sub

Public Function Item(PropertyName As Variant, Row As Variant) As Variant
If dict.Exists (PropertyName) Then
Item = vData(dict.Item(PropertyName), CLng (Row))
Else
Item = vbEmpty
End If

End Function

Public Property Get MinRow () As Long
MinRow = LBound (vData, 2)
End Property

Public Property Get MaxRow () As Long
MaxRow = UBound (vData, 2)
End Property

A Simple Report with Grouping

With the Nwserver component modified to handle calls from IIS and the
development of the service-layer component AppIIsCommon complete, the first
report can be built. The first report to build is the Products by Category report from
the original Northwind database. This report provides a simple grouping of products
by category. The original Microsoft Access report shows only the current product list.
To demonstrate the flexibility of ASP as a reporting tool, the sample report will allow
for the display of both current and discontinued products.

The first step of adding a new report is to make sure that the appropriate
information set, in terms of a ClassDef instance, is defined within Nwserver. If not,
add the definition in the GetClassDef method, making sure that the appropriate
view in the database has been defined as well. For this report, a new ClassbDef is
needed. As shown in Listing 11.4 using the code fragment from the Select Case
statement in the GetClassDef method on Nuserver. After this simple change is
made, NWServer is recompiled and redeployed to MTS.

Example 11.4. Addition of the ProductByCategory

Class to the GetClassDef Method

Private Function IAppServer GetClassDef (ByVal ClassId As Integer) As
CClassDef
Dim ClassDef As CClassDef

If Not bInitialized Then IAppServer InitServer
If Not mIAppServer.ClassDefs.Exists (CStr(ClassId)) Then
Select Case ClassId

' other cases as before

Case CT PRODUCT BY CATEGORY
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"

.ReadLocation = "View Product By Category"
.WriteLocation = ""

.IdColumnName = ""

.OrderByColumnName = "Category Name, Product Name"
.AppendMapping "ProductId", "Product Id",

True, False, ctNumber, ""
.AppendMapping "CategoryName", "Category Name",
True, False, ctString, ""
.AppendMapping "ProductName", "Product Name",
True, False, ctString, ""
.AppendMapping "UnitsInStock", "Units In Stock",
True, False, ctNumber, ""
.AppendMapping "IsDiscontinued", "Is Discontinued",
True, False, ctNumber, ""
End With
Call mIAppServer.ClassDefs.Add (ClassDef,
CStr (CT PRODUCT BY CATEGORY))
End Select
End If

Set IAppServer GetClassDef =
mIAppServer.ClassDefs.Item(CStr(ClassId))

End Function

With this new classbDef in place, attention returns to Visual InterDev to write the
report in ASP and deploy it on a Web site. To create a new ASP page in the

NorthwindTraders project, simply right-click the servername/NorthwindTraders
node in the Project Explorer and select Add, Active Server Page from the pop-up
menu. This launches the Add Item dialog with the ASP page type selected. In the
Name field, enter ProductReports.asp, and then click the Open button to create
the file. Repeat this process to create a ProductReport.asp file as well.

The ProductReports.asp file is used to gather some direction from the user before
proceeding with the generation of the actual report in the ProductReport.asp file.
This technique is used across all types of reports that require initial user input. For
this set of reports, the only information needed from the user is which type of report
to run: All Products, Current Products, or Discontinued Products. The script needed
to implement a simple selector mechanism appears in Listing 11.5, whereas the
resulting HTML page appears in Figure 11.2.

Figure 11.2. The Product Reporting mode selector.

E Fitbp: £ alesnia TN catbvermnd | rades 0 ocductH eporte aap - Hicnoeoll Intemnel Bapleies

Fia Ed Yesw Favosde: Jode Helo Hi
B .50 O o4 QA &P 9 B
Bach Slop Refech Home Semch Faeouss Heioy b sl Bl Ect Dhipcums
Agdrass [:u ity o adeiz Morhwind T iades s ProductRepons s El G | Link: *
[
Product Reporting
Fun Report I
4
2] Deone 59 Locsl mirprst

Example 11.5. ASP Script to Implement the Report

Selector for Product Reporting

<%@ Language=VBScript%>
<%Response.Expires=5%>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>northwind traders</TITLE>
</HEAD>

<BODY>

<%

Dim vReports (3)

vReports (1)="Current Products"
vReports (2)="All Products"

vReports (3)="Discontinued Products"
&>

<H1>Product Reporting</H1>

<FORM action=ProductReport.asp>
<SELECT id=ReportType name=ReportType>
<%

For i = 1 To UBound (vReports)

If CInt(i) = 1 Then
&>
<option selected value='<%=1i%>'><%$=vReports (i) %></option>
<%
Else
&>
<option value='<%=1%>'><%=vReports (i) %></option>
<%
End If
Next
&>
</SELECT>
<P>

<INPUT type="submit" value="Run Report">
</FORM>
</BODY>
</HTML>

There is nothing too exciting about the code in Listing 11.5 because it produces a
simple HTML Form page. One item to note is that an array is being used for the
report names rather than a hard-coded mechanism. This makes it easier to add new
report types to a form by simply adding new elements to the array. The real
excitement comes in the productReport.asp code because it is what interacts with
MTS to produce the desired report. The code for this page appears Listing 11.6, with
the resulting HTML page shown in Figure 11.3.

Figure 11.3. The product report rendered in

Explorer.

AN nwtmmnrad Baiders - Micineadl Inlsirsd Fenboer

Internet

Ele E® Mew Fpworese Jook Hebp

.+ . @ B & @ E I B d - [u]
Back Stop Fsbemb Home — Sesch Favortss Hisoy vl Prink Edit DCizous
Bdeee @] Fotp /siens M odthwrdT raders Proc sl apat acp FleponT el :J e | Lk @
=1
-
Product By Category
All Products
Category: Beverages —
Froduci Mame mits In Sinck Disrantinued
Cha » Ho
Chang T o
Charkseus » verts) Ho
Cilite de Blaye 17 Ho
Cusrend Fantdstica 0 Yes
Ipeh Colfee 17 o
L akeahEd b 5T Hi
Loughing Lombeajeck Lager k] He
Cratiack Lagey 15 Ho
Fhiebria Klosterbier 125 Ho
Sasquatch Ale 11l Ho
."'Iu'lll}-l- Seul i} M
Category: Condimenis
Produci Mume Umilis In Siwck Discentinued
Amnizeed SyTup 13 Ho
_l"|- wf &t e 1™ aran e 52 ML :I
i] Deoree: % Locslrtisnet

Example 11.6. ASP Script

Product Report

<%@ Language=VBScript%>

<%Response.Expires=5%>

<HTML>

<HEAD>

<META NAME="GENERATOR"

<TITLE>northwind traders</TITLE>

</HEAD>

<BODY>

<%
Dim

Data, PropertyNames

Code to Implement

Content="Microsoft Visual Studio 6.0">

the

Dim
Dim
Dim
Dim

Dim

DataArray
Errors,
ReportType,

WhereClause,

NWServer

ReportTypeld

OrderClause

IsDiscontinued

Const CT PRODUCT BY CATEGORY = 201

ReportTypeld = Request.QueryString ("ReportType")
Select Case ReportTypeld

Case 1
ReportType = "Current Products"
WhereClause = Array (Array("IsDiscontinued","=","False"))
Case 2
ReportType = "All Products"
WhereClause = ""
Case 3
ReportType = "Discontinued Products"
WhereClause = Array (Array("IsDiscontinued","=","True"))
End Select
OrderClause = Array ("CategoryName", "ProductName™)

Set NWServer = Server.CreateObject ("NWServer.CNWServer")

If Not NWServer.IISInitServer Then

Response.Write ("Could not Initialize the MTS Server
")

End If

Call NWServer.IISQueryObjectListData (CT PRODUCT BY CATEGORY,
WhereClause,
OrderClause,
"OR",
PropertyNames,
Data,
Errors)

If IsArray(PropertyNames) and IsArray(Data) Then

Set DataArray = Server.CreateObject ("AppIISCommon.CDataArray")

DataArray.Initialize Data, PropertyNames

If IsArray(Data) Then
$><H1>Product By Category</H1>
<H2><%=ReportType?>
<TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>

A
o

For 1 = DataArray.MinRow To DataArray.MaxRow
vThisCategory = DataArray.Item("CategoryName", i)
If (vThisCategory <> vLastCategory) Then

o\
\

<TR><TD colspan=2> </TD></TR>
<TR>

<TD colspan=2>
Category:
<%$=vThisCategory%>
</TD>
</TR>
<TR>
<TH align=left>Product Name</TH>
<TH align=left>Units In Stock</TH>

A
o

If ReportTypelId = 2 Then %>
<TH align=left>Discontinued</TH>
End If %>

A
o

</TR>

A
o

vLastCategory = vThisCategory
End If

o
\

<TR>
<TD>
<%=DataArray.Item("ProductName", i) %>
</TD>
<TD>
<%=DataArray.Item("UnitsInStock",i) %>
</TD>
<% If ReportTypeld = 2 Then
If CBool (DataArray.Item("IsDiscontinued",i)) Then

IsDiscontinued = "Yes"
Else

IsDiscontinued = "No"
End If

Response.Write ("<TD>" & IsDiscontinued & "</TD>")
End If %>
</TR>

A
o°

Next
Else

o
\

<TR>
<TD>No data found</TD>
</TR>

A
o

End if

o\
\

</TABLE>

AN
o

End If
>

o

</BODY>
</HTML>

Looking at Listing 11.6, the first item to pay attention to is the select case
statement at the beginning of the script section. It is here that several variables are
set based on the specific report type requested. This report type is retrieved from
the Querystring collection on the Request object that ASP maintains automatically.
Based on which report type is selected, different whereClause arrays are created to
pass to the 11SQueryObjectListData method on the NWServer component. After
NWServer is created using the createObject method on the server object, the
retrieval method is called. This passes control to MTS to perform the request.
Remember that this is calling the exact same underlying code as that used by the
Visual Basic client-side components developed in Chapters 9, "A Two-Part,
Distributed Business Object," and 10, "Adding an ActiveX Control to the
Framework."

After the request has been fulfilled, a chbataArray object is created and initialized
with the resulting information. From this point, iterating through the array and

formatting the report using a simple HTML table construct is easy. The MinRow and
MaxRow properties help in this iteration process. Additionally, the script chooses

whether to add the Discontinued column based on the report type because it only
makes sense on the All Products version of the report. To handle grouping, a simple
breaking mechanism that compares the current category with the last category is
used. If the values are different, a category header is written to the HTML stream.

Amazingly, this is all that is needed to build a simple ASP-based report using the
MTS infrastructure already created. One of the common statements about Web
reporting is that it just looks ugly. Well, if you leave the formatting of these reports
as it is in this example, then yes they do. Fortunately, HTML can be used to create
appealing pages with only modest effort. As proof, look at the same two reports in
Figure 11.4 and Figure 11.5 with some polish work added to them. The specific
techniques that were used to make the reports look better are discussed in more

detail in Chapter 12.

Figure 11.4. The product report mode selector with a

makeover.

a i Ehawsrid Iradeie - Macranall Inkainel Euplos

| Els Ed Vs Faeorter [ocls Hep

.43 a4 @ @@ B 9 =, E
Back, d Siop FAehesh Home Seach Fovoiles Histoy Wal Pind Edt [Dliscuss
Addrons [B] Hip /vana:Mthend! rades P odactopert s asp =] &G0 || Links ™
northwind traders .
product reporting
| Surutay, November 20 1099
Fapaft Triw
[40 Products =1 Fun Regor
Hornhwind Hers Pags Exadback

i
|21 Dene

Figure 11.5. The product report with a makeover.

Y neribwind Liades - Hicrazolt Intonet Eplednr

| Bl Edt Vew Faoeler Took Hep "
| T I I I W~ I (P S R]|
Back . Zigg Fshesh Mome | Sewch Favotes Hisoy | Mal P Ede Ditowms

| e {21 i s s MorttinT rasfiere Frmct.cfienor am ¥ aport Tape2 =] e Lk ™
northwind traders =
product reporting

[Sunday, Mowmmaor 22 1090 |

RESULTS |

Al Products

Calegury. Beverages

Prochicd Hama linite In Stock Mt vl il

b | &1 | [+

CIreang 7 (1]

Tt g wprhe 2] Mo

Gl s v 7 o

AN FACIATSCN an R

e Coltee 17 M

I, ko o Mo

Liwighing Lusibarssck Lagar 2 —

ok L e 15 o

il G- FHRCo - = & 125 Mo

Tacrpiglch S 11 [}

e o o

Product Hama Unita In 5tock DN vl v

Aniseed Ty 13 M =
il J LI-I
0] Dore [%6 Local mbaret

Our last little makeover to the product report also demonstrates one of the greatest
advantages we have in using ASP as our reporting engine. We can change the look
and feel, the structure, or the processing logic at any time in a development
environment, and then push it to the production environment on the server. After it
has been moved, the report is updated. There is no redistribution of anything to the
client.

A Complex Report with Preprocessing

Some types of reports that are traditionally built in commercial report writers
include not only single-level grouping functionality, as demonstrated in the previous
section, but also multilevel grouping and preprocessing. ASP can easily
accommodate these features as well. To demonstrate, the Employee Sales report
from the original Northwind application will be transformed into ASP next. Again, to
enable this report, several new views are created on the database and a new
ClassDef is added to Nwserver. The code fragment for this appears in Listing 11.7.
Again, after this simple change is made, NwWserver is recompiled and redeployed to
MTS.

Example 11.7. Addition of the EmployeeSales Class to

the GetClassDef Method

Private Function IAppServer GetClassDef (ByVal ClassId As Integer) As
CClassDef
Dim ClassDef As CClassDef

If Not bInitialized Then IAppServer InitServer
If Not mIAppServer.ClassDefs.Exists (CStr(ClassId)) Then
Select Case ClassId

' other cases as before

Case CT EMPLOYEE SALES
Set ClassDef = New CclassDef
With ClassDef

.DatabaseName = "NWIND"

.ReadLocation = "View Employee Sales"

.WriteLocation = ""

.IdColumnName = ""

.OrderByColumnName = "Country, Shipped Date, Last Name,

First Name"

.AppendMapping "Country", "Country",
True, False, ctString, ""
.AppendMapping "LastName", "Last Name",
True, False, ctString, ""
.AppendMapping "FirstName", "First Name",
True, False, ctString, ""
.AppendMapping "ShippedDate", "Shipped Date",
True, False, ctDateTime, ""
.AppendMapping "OrderId", "Order Id",
True, False, ctNumber, ""
.AppendMapping "SalesAmount", "Sales Amount",
True, False, ctNumber, ""
End With
Call mIAppServer.ClassDefs.Add (ClassDef,
CStr (CT EMPLOYEE SALES))
End Select
End If

Set IAppServer GetClassDef =
mIAppServer.ClassDefs.Item(CStr(ClassId))

End Function

To continue the development of these reports, two new ASP files are added to the
project: EmployeeSalesReports and EmployeeSalesReport. For this set of reports,
the user criteria form is more complex than the previous example with the addition
of start date and stop date selection mechanisms. The generation of the SELECT
fields for these two dates is similar to the previous example. The code fragment in
Listing 11.8 shows the initialization information necessary to generate the various
form elements.

Example 11.8. The Initialization Information for the

EmployeeSalesReports Form Elements

<

o

Dim vStartMonth, vStartDay, vStartYear
Dim vEndMonth, vEndDay, vEndYear, vEndDate

Dim vMonths (12), vReports(2)

vMonths (1) = "January"
vMonths (2) = "February"
vMonths (3) = "March"
vMonths (4) = "April"
vMonths (5) = "May"
vMonths (6) = "June"
vMonths (7) = "July"
vMonths (8) = "August"
vMonths (9) = "September"
vMonths (10) = "October"
vMonths (11) = "November"
vMonths (12) = "December"

vReports (1)="By Order ID"
vReports (2)="By Sales Amount"

vEndDate = Now + 120

vStartMonth = Functions.VBAFormat (Now, "mm")

vStartDay = Functions.VBAFormat (Now, "dd")

vStartYear = Functions.VBAFormat (Now, "yyyy")
vEndMonth = Functions.VBAFormat (CStr (vEndDate), "mm")
vEndDay = Functions.VBAFormat (CStr (vEndDate),"dd")
vEndYear = Functions.VBAFormat (CStr (vEndDate),"yyyy")

o\
Vv

<SELECT id=StartMonth name=StartMonth>
<%
For i = 1 To 12
If CInt(i) = CInt(vStartMonth) Then
Response.Write ("<option selected value='" & 1 & "'>" &
vMonths (1) & "</option>")
Else
Response.Write ("<optionvalue="'"& i & "'>" & vMonths (i) & "</option>")
End If
Next

o)
5>

</SELECT>

<SELECT id=StartDay name=StartDay>
<%
For i = 1 To 31
If CInt(i) = CInt(vStartday) Then
Response.Write ("<option selected>" & i & "</option>")
Else
Response.Write ("<option>" & i & "</option>")
End If
Next
&>

</SELECT>

<SELECT id=StartYear name=StartYear>
<%
For i = 1993 To 2010
If CInt(i) = CInt(vStartYear) Then
Response.Write ("<option selected>" & i & "</option>")
Else
Response.Write ("<option>" & i & "</option>")
End If
Next
&>

</SELECT>

Note the use of the vBAFormat method of the Functions object to extract the month,
day, and year components of the start and stop dates. This Functions object is
declared in the global.asa file for the project, which has the effect of making the

object reference available to all ASP pages within the application. By defining it in
this manner, this often-used object does not need to be constantly re-created as
users access the site. The following code fragment from the global.asa file makes
this reference:

<OBJECT RUNAT=Server
SCOPE=Application
ID=Functions
PROGID="AppIISCommon.CFunctions">
</OBJECT>

Additionally, the code to generate the seLECT form elements for the start date is
shown. Notice the use of the If CcInt (i) = CInt (vStartDay) construct. Because
VBScript is based exclusively on the variant data type, these extra cint functions
are required to ensure that the comparison is made properly. In some cases,
VBScript does not perform the appropriate comparison unless it is told to do so
explicitly. It is a good idea to develop the habit of making comparisons this way so
that you can avoid wasting hours by assuming the comparison would be made
correctly when VBScript assumed something else.

The resulting code (this time with the makeover at the outset) appears in Figure
11.6.

Figure 11.6. The employee sales report criteria

selection screen.

ghllp §adeat /Wi thssnd | raded /T mplopaeS aleti spodt, atp - Mecianall Inbaimel Eeploser

Fle Edit WVew Fyewter Jocs Hep

.2 . QD B 4 @ & I G I 8.
Bk Foreard Sipp Felbesh Home Sesch Fovoes Hislwy Mal Fiimd Edd Discuing
l‘#ﬂ-'llﬂ_]Ir:;l-'.l.jnu'.-Hulln-nu,:'l'uJ_-l'..-'I:llpllrrl;G:I'_'.l'“r_:!:u'.u :J |'|}EI:I Links ™|

northwind traders
employes sales reporting
Sunday, Noverrber 20 1999

Tt Wi tya Bt faa Doy wE e
Ery Oucir 1D =] JJanuary =] [t = =63 =]
Eog: Wik 2op Limg bip Taar

Ii.l:--:mhliir bl Iil = |“.i'i:='
Fun Roport I

| s

S Locslinhanet

The code in the EmployeeSalesReport that is called interacts with MTS in a manner
similar to the productReport page. Again, a Select Case statement is used to set
various report-specific variables that are used by the call to the Nnwserver object to
retrieve the information in the appropriate sort order. The code fragment that

performs this work is shown in Listing 11.9.

Example 11.9. The Initialization and Retrieval Code

for the EmployeeSalesReport Page

AN
o

Dim Data, PropertyNames, Errors, NWServer

Dim DataArray

Const CT EMPLOYEE SALES = 200
Dim diSalesByPerson, diSalesByCountry

StartDate = Request.QueryString("StartMonth") & "/"

Request.QueryString ("Startbay") & "/" &

Request.QueryString ("StartYear")

StopDate = Request.QueryString("StopMonth") & "/" &
Request.QueryString ("Stopbay") & "/" & _
Request.QueryString ("StopYear")

SortMode = Request.QueryString("SortMode")

StartDateClause = Array ("ShippedDate",">=",StartDate)
StopDateClause = Array("ShippedDate","<=", StopDate)
WhereClause = Array(StartDateClause, StopDateClause)

Select Case SortMode
Case 1
OrderByClause = Array("Country","LastName",
"FirstName", "OrderId")
Case 2
OrderByClause = Array("Country", "LastName",
"FirstName", "SalesAmount DESC")
End Select

Set NWServer = Server.CreateObject ("NWServer.CNWServer")
If Not NWServer.IISInitServer Then

Response.Write ("Could not Initialize the MTS Server
")
End If

Call NWServer.IISQueryObjectListData (CT EMPLOYEE SALES,
WhereClause,
OrderByClause,
"AND",

PropertyNames, Data, Errors)

if IsArray(PropertyNames) and IsArray(Data) then
Set DataArray = Server.CreateObject ("AppIISCommon.CDataArray")

DataArray.Initialize Data, PropertyNames

o
\

For this report, the difference between the two report modes is simply the sort order,
as indicated by the select Case statement. Looking at the second case and the
assignment of the orderByClause variable, notice the keyword DEsc that follows
the salesamount property definition. This keyword is used by the
QueryObjectListData method of IAppServer to sortin a descending order instead
of the default ascending order. The remainder of the code fragment in Listing 11.9
is identical to that of Listing 11.6.

Because this report must calculate two aggregate fields based on the two grouping
levels by Country and Employee, the bataArray object must be preprocessed

before the report is actually written. To store these aggregates, Dictionary objects
are used; the use of the Dictionary object is mandated because, unlike Visual
Basic, VBScript does not have a Collection class. This Dictionary object is
actually a more powerful version of a collection because it has a built-in method to
check for key existence coupled with the capability to generate an array of key
values. This preprocessing is shown in Listing 11.10. Once again, we monitor the
values for the country and employee fields to determine when our groups break.

Example 11.10. Preprocessing of the DataArray

Object

AN
oe

Set diSalesByPerson = Server.CreateObject ("Scripting.Dictionary")
Set diSalesByCountry =
Server.CreateObject ("Scripting.Dictionary")
For 1 = DataArray.MinRow To DataArray.MaxRow
vThisPerson = DataArray.Item("LastName",i) & "[" &
DataArray.Item("FirstName", 1)
If (vLastPerson <> vThisPerson) Then
Call diSalesByPerson.Add (CStr (vLastPerson) ,vPersonTotal)
vlastPerson = vThisPerson
vPersonTotal = 0
End If
vThisCountry = DataArray.Item("Country",i)
If (vLastCountry <> vThisCountry) Then
Call disalesByCountry.Add (CStr (vLastCountry),vCountryTotal)
vCountryTotal = 0

vLastCountry = vThisCountry

End If
vSales = DataArray.Item("SalesAmount",1i)
vPersonTotal = vPersonTotal + vSales

vCountryTotal = vCountryTotal + vSales
Next
Call diSalesByPerson.Add (CStr (vLastPerson),vPersonTotal)
Call diSalesByCountry.Add (CStr (vLastCountry),vCountryTotal)

o
\

After the preprocessing is complete, a second pass through the pataarray objectis
made to format the report. The resulting report is shown in Figure 11.7.

Figure 11.7. The employee sales reporting screen.

'j minilkamingd hindees - Hierosnlt infeened Eaploien

| Eie E® Mew Faoses Iock Hep

.2 .0 D A3 D @I E S B,

Back | Sip Feesh Home | Sesch Favodes bty Mal Pl ER Dooun

| Akt [) i/ sheris HarthwandTuoder s/ E mployeeS desFiepor 2ap 7S aode=25 Sasiblorithe] LSt oye T 5tart coss1 03 Stophicnt =] G | | Links ™

northwind traders
employes sales reporting
[Sainddary. Mevesnber 28 1599 L.

RESULTS [1010953 10 13311383
Salos Dy Cotry [Sened Oy Sabos Amount]
Counine UK Tolzl 37331417

Salosporsan: Buchanan, Steven [Total §33.073.21]

Owlor I Salos Armoind Porcont of Sussperscn Tolad Percont of Coundry Tolal

1TLHF) 151520 TELE Y 15.29%

1] 2, M58 188% £TTR

10T #, 77600 7706 2 6%

has Bl -k 4TS 1.46%

a7 L A FEE 119%

L 80370 J4r 1.00%

j1ire] RS TT ey 0.37%

M 54500 28 08E%

HI24E $568600 245% 0TE%

et $53 75 2.37% 07N

AT a0 0% 0.1 T%

11078 G A0 030 0%

Salesporson: Dodewarh, Anng [Total §12.378.66]

Oycler 10 Salas Armourtd Porcent of Seesperson Todd Percent of Country Tolal .

1] | LIJ

|21 Dere [[%ie Loead rivarer

This second report example demonstrates that multilevel reports with preprocessed
data can easily be built in ASP. This section and the previous section also
demonstrate the ease at which new Cclassbef objects can be added to NWServer to
enable these reports. Although this technique does involve a different development
methodology from a traditional report writer, it broadens the audience of end users
in @ manner that these report writers cannot match. This technique also remains
tightly integrated to the application framework we have put into place to this point,
promoting our goal of maximum reuse.

Complex Report Generation Through MTS

Although several techniques have been demonstrated that implement much of the
basic functionality of standard report writers, there are still times when the
formatting complexity of a report is more than ASP can efficiently handle. In these
cases, a custom report generator can be built and deployed in MTS that writes the
complex HTML stream back to ASP. As an example, several calendar-style reports
are developed.

To begin development, a new ActiveX DLL hamed AppReports is created. This DLL
is designed to be usable across various applications rather than just the one from
our sample application. As such, it defines several core classes. For a basic calendar,

a CCalbDay class and its ccalDays collection class are defined. The cCalbays
collection class has the intelligence necessary to build a basic calendar grid for a
given month and year. It also has the capability to generate an HTML-formatted
table for inclusion into an ASP page. The ccalbay class has a TextRows collection
that enables the report developer to place HTML-formatted information snippets for
a given day of the month. The details of the implementations of these two classes
are not discussed, although their full source code accompanies this book.

The AppReports library also defines two other classes. One is an interface class
called I1calendarReport, and the other is called CreportImplementation. These
two classes are used to enable the addition of new reports to an application as
administratively friendly a process as possible. The 1CalendarReport interface is
used simply to enable the implementation of multiple calendar-style reports that
have as their only inputs the month and year of the calendar to generate. The
CReportImplementation class is used to map report names to their implementation
class for use by a Visual Basic CreateObject statement. Listing 11.11 shows the
code for IcalendarReport, whereas Listing 11.12 shows

CreportImplementation.

Example 11.11. The Code for the ICalendarReport

Interface Class

Option Explicit
Private mCalendarMonth As Integer

Private mCalendarYear As Integer

Public Sub DoReport (DataStream As Variant,
ByVal CalendarMonth As Integer,
ByVal CalendarYear As Integer)

End Sub

Public Property Let CalendarYear (ByVal vData As Integer)
mCalendarYear = vData

End Property

Public Property Get CalendarYear () As Integer
CalendarYear = mCalendarYear

End Property

Public Property Let CalendarMonth (ByVal vData As Integer)
mCalendarMonth = vData

End Property

Public Property Get CalendarMonth() As Integer
CalendarMonth = mCalendarMonth
End Property

Example 11.12. The Code for the

CReportImplementation Class

Option Explicit

Private mReportName As String

Private mLibraryName As String

Public Property Let ReportName (Value As String)
mReportName = Value

End Property

Public Property Get ReportName () As String
ReportName = mReportName

End Property

Public Property Let LibraryName (Value As String)
mLibraryName = Value

End Property

Public Property Get LibraryName() As String
LibraryName = mLibraryName

End Property

With the core AppReports component complete, the component to build the reports
can be built. The NwWReports component is defined as an ActiveX DLL as well, and it
is designed to run under MTS. First, a special class called cNWCalendarReports is
created to do nothing more than to enumerate the calendar-style reports
implemented by the NWReports component. The code for this CNWCalendarReports
class is shown in Listing 11.13.

Example 11.13. The Code for the

CNWCalendarReports Class

Option Explicit
Private Index As Integer

Private mCol As Collection

Public Sub AppendType (ReportName As String, LibraryName As String)
Dim ReportImplementation As New CReportImplementation
With ReportImplementation
.ReportName = ReportName
.LibraryName = LibraryName
End With
mCol.Add ReportImplementation, ReportImplementation.ReportName

End Sub

Private Sub Class Initialize()

Set mCol = New Collection

Call AppendType ("Shipped Date", "NWReports.CShippedCalendar")
Call AppendType ("Requested Date", "NWReports.CRequestedCalendar")
End Sub

Public Property Get Item(Index As Variant) As CreportImplementation
Set Item = mCol.Item(Index)
End Property

Public Property Get Count () As Long
Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown
Set NewEnum = mCol.[NewEnum]

End Property

Private Sub Class Terminate ()
Set mCol = Nothing
End Sub

Inthe Class Initialize event of CNWCalendarReports, the internal collection of
CReportImplementation items is built. As new reports are defined, a new
CReportImplementation instance is added to this class to tell the outside world of
its existence. As you can see from the two library names in the Class Initialize
event (see Listing 11.13), there are two ICalendarReport interfaces implemented:
one in the cshippedCalendar class and the other in the CRequestedCalendar class.
Again, the implementation details of these two classes are not covered here, but the
full source is available in the accompanying software.

One other class, CNWReportServer, is built within the NiWReports component. This
class is called into action by IIS to accomplish the generation of the complex HTML
stream for the calendar reports through its DoCalendarReport method. Before this

call, the user must select the desired report, which is provided to the user criteria
page through a calendarReportNames property on the CNWReport server. The code
for the cCNWReportServer class appears Listing 11.14.

Example 11.14. The Code to Implement the

CNWReportServer Class

Option Explicit

Public Property Get CalendarReportNames () As Variant
Dim vRet As Variant
Dim ReportImplementation As CReportImplementation
Dim NWCalendarReports As New CNWCalendarReports

Dim i As Integer

vRet = Array(l)

ReDim Preserve vRet (1 To NWCalendarReports.Count)

For i = 1 To NWCalendarReports.Count

vRet (1) = NWCalendarReports.Item (i) .ReportName
Next i
CalendarReportNames = vRet

End Property

Public Function DoCalendarReport (ByVal CalendarMonth As Variant,
ByVal CalendarYear As Variant,
ByVal ReportName As Variant) As Variant
Dim vDataStream As Variant
Dim NWCalendarReports As New CNWCalendarReports
Dim CalendarReport As ICalendarReport
Dim LibraryName As String

On Error GoTo ErrorTrap

LibraryName = NWCalendarReports.Item(ReportName) .LibraryName
Set CalendarReport = CreateObject (LibraryName)
Call CalendarReport.DoReport (vDataStream,
CInt (CalendarMonth),
CInt (CalendarYear))
ExitFunction:
DoCalendarReport = vDataStream

Exit Function

ErrorTrap:

'l. Send detailed message to EventLog

Call WriteNTLogEvent ("CNWReportServer:DoCalendarReport",
Err.Number,
Err.Description,

Err.Source & " [" & Erl & "]")

vDataStream = "<p>" & "CNWReportServer:DoCalendarReport" &
Err.Number & " " & Err.Description & " " &
Err.Source & " [" & Erl & "1™ & "</p>"

'2. Railise a more generic event to the client

Err.Raise vbObjectError, "CNWReportServer:DoCalendarReport",
Err.Description & " [" & Erl & "]"

GoTo ExitFunction

End Function
Turning to Visual InterDev, two new ASP files are added to the Northwind Traders
project: CalendarReports and CalendarReport. To build the list of available

reports for CalendarReports, the NiiReportServer object on MTS is called as
shown in Listing 11.15, to produce the page shown in Figure 11.8.

Figure 11.8. The list of available reports in the

Calendar Reporting page.

al'.irn-:l.- Hapailng - Miciosndl |slenel b epdons

Eie E& Vew Favonbes ook Heb |

- .2 . A - e B I Fe TR R

Forwad Stop FAebesh Hore | Sesch Favoites History sl Prink Edit Ciaoas
Bdeeces @] Fetp Lpieaz sl itbweradT i acders A sicrebaPlepot s s1p =] e ||Lnks ™

northwind traders
calendar reporting
[Morsley, Hovermler 20 1003

Lieris Vaar

1 'I 14493 'I

Camectar Fageort

Feguestad Dale = Fun Report I
Shipped Date

Haodeiad Hees Pios Casdiack

Example 11.15. Enumerating the Calendar Reports in

ASP

AN
o

Dim HTMLStream, NWReportServer

Dim i, vMonth, vYear, vReportNames

Set NWReportServer = Server.CreateObject ("NWReports.CNWReportServer")

vReportNames = NWReportServer.CalendarReportNames

vMonth = Functions.VBAFormat (Now, "mm")

vYear = Functions.VBAFormat (Now, "yyyy")

o

>

In the Calendar Reporting page, the script is simple as well, as shown in Listing
11.16, producing the page shown in Figure 11.9.

Figure 11.9. The Calendar Reporting page.

3 Calendas Hepoiing - Micioeell |rndainsd Exploned

Ele Edt Vew Fgeoctes Jook Help ¥
L - IF 4 @ 9 G S 5. 4
Back Sigp Relith Home | Sewch Favoiles Hasion Ml Fimt Ede Dinguan
A |IE| Pl pbeves I colweared T radden 2/'calenclarept, aip Manth=11 10 ea =1 TR Asportl ame=Fegussied=0lals j f"ﬂﬂ Lirks ™
calendar reporting [regquested date - november, 1393] =
Moniday, N 26 1659
Sandlay Mond ey Tuwsclay Wachnars day Thurwday Friday Salurday
1] 1 4 L] [
L0333 Ebnigheh 10024 Savwanebot 1025 Bltido Comsdas 137 Folls ochi Fé
Easen Merkety preparsdes HE
T L] ¥ 0 " 1 1
10335 Fuoris Beralha NGy LILA- 1S Wartiar
Fnsioa da M Supermereadn Heidou
10043 Frankenver samd
H 15 16 r 1 1 n
J0E Wirtandier en 10335 Bungey Ol 10033 Princwon [rabsl 13T Frankcamvergand 1S Dbl Woald
ok AlLHight (roeese Vinkae Daleaisger
Fal 2 1 Fel F+ F n
L0335 Mbse Pularde | 10327 Sphii Rall Bver | 10331 Bonoapp’ 1035 Mére Paillarde 1034 White
& Ale 10243 Lahmunns Clovver Markels
1340 Bon wpp MuHetand
10041 Birwens bistro
L0557 Furin
Bacalbn ¢ Frotos
da Mar
F- F] m» —
103EE QUICE-Fap _|;|
1| | "
3] Done % Local infranet

Example 11.16. The ASP Code to Insert the HTML

Fragment from Our Calendar Builder

AN
o

Set NWReportServer = Server.CreateObject ("NWReports.CNWReportServer")

vReportName = Request.QueryString.Item ("ReportName")

HTMLStream = NWReportServer.DoCalendarReport (vMonth, vYear,
vReportName)

Response.Write (HTMLStream)

o

>

Summary

This chapter has provided examples of how to use ASP as a distributed reporting
engine in place of traditional report writers. Several techniques have been
demonstrated to generate both simple- and medium-complexity reports using just
ASP coupled with the existing MTS business objects. Additionally, a technique to
generate complex reports was demonstrated, which used ASP in conjunction with
MTS-hosted reporting objects that subsequently tapped into the business objects.

In the next chapter, I discuss the development of an intranet portal site for the
application. Some specific topics include how style sheets and server-side include
files have been used to produce the nicely formatted pages shown in some of the
examples seen in this chapter. Additionally, the portal concept is discussed as a
means not only to provide reports to end users, but also to provide access to the
underlying information sets managed by the system.

Chapter 12. Taking the Enterprise Application
to the Net

An application developer would be remiss to underestimate the capabilities that an
intranet or Internet extension would add to their application in this modern Internet
age. Simply noticing the current efforts of some traditional enterprise application
vendors to enable their application for the Internet, or seeing the emergence of new
companies with enterprise application products designed for the Internet from the
outset, are indicators of others who have already gone through this thought process.
Specific examples include the Enterprise Resource Planning (ERP) market, with such
vendors as SAP and its mySAP.COM infrastructure; the Supply Chain Management
(SCM) market, with such vendors as i2 Technologies and its TradeMatrix business
portal; and the Customer Relationship Management (CRM) market, with such
vendors as Pivotal and its eRelationship product or Vantive and its e-Customer
suite.

With this trend in mind, this application framework has also been designed from the
outset to easily support an Internet component. Part of this foresight is seen in the
choice of tools and technologies that have driven the implementation to this point.
The DNA underpinnings of this framework have played a dramatic role in this effort,
as was evident during our first foray into Internet Information Server (IIS) in the
previous chapter. In this chapter, much more attention is given to the development
of the Internet portion of the framework, focusing specifically on both intranets and
Internets.

Layout Standardization Techniques

Before getting into the details of intranets and Internets, some generic techniques
are applicable to both domains. As should be clear by this point, two fundamental
principles have driven design and implementation decisions to this point: flexibility
and standardization. Development efforts in the IIS realm are no different. For
maintenance efficiency, it is highly desirable to have the flexibility to make global
application changes at singular locations. It is also desirable to have the
implementation of similar functionality performed in standardized manners. The
topics covered in this section are driven by these two requirements.

Style Sheets

A style sheet is a special HTML tag that enables a developer to control how textual
content is rendered by the browser. Specifically, the developer can specify style
classes that can be assigned to specific HTML tag types—for example, <TD>, <H1>,

or <p> tags—or used globally by any tag type. The most often-used style properties
include those for font, text color, background color, and text alignment. Style sheets
enable one other type of formatting for the control of hyperlink rendering based on
its various states.

As an aside, style sheets are gaining importance in their use beyond the simple
HMTL format standardization discussed in this section. In the eXtensible Markup
Language (XML) standard, style sheets are also used to automatically apply
formatting to the data embodied in an XML block within an HTML page. The new
eXtensible HTML (XHTML) standard also makes similar use of the style sheet
mechanism for formatting. We discuss and use the XML standard in much more
detail in the next chapter, although our primary purpose will be as a data transfer
mechanism that does not need style. Nonetheless, it is important to understand the
role that style sheets play today and where their use is headed in the near future.

NOTE

There are many more style properties than will be covered in this section, because
complete coverage of them is beyond the scope of this book. Any good book on
HTML should provide more than adequate information on this topic. The intent of
this section is to introduce the concept of using style sheets to provide a flexible
mechanism for driving Web site consistency.

Style sheets are placed into an HTML document using a <sTYLE> block within the
<HEAD> block of the HTML page, as shown in Listing 12.1.

Example 12.1. A Style Sheet Within an HTML

Document

<HTML>
<HEAD>
<TITLE>Some Title</TITLE>
<STYLE TYPE="text/css">
<!--
A:active { color: mediumblue; }
A:1ink {color: mediumblue;}
A:visited {color: mediumblue;}
A:hover {color: red;}
TD.HeaderOne
{
BACKGROUND-COLOR: #009966;

}

COLOR: #ffff99;

FONT-FAMILY: Arial, Verdana,
FONT-SIZE: 10pt;
FONT-WEIGHT: normal

TD.HeaderOne-B

{

}

BACKGROUND-COLOR: #009966;
COLOR: #ffff99;

FONT-FAMILY: Arial, Verdana,
FONT-SIZE: 10pt;
FONT-WEIGHT: bold

TD.ResultDetailHeader-1

{

}

COLOR: black;

FONT-FAMILY: Arial, Verdana,
FONT-SIZE: 8pt;

FONT-WEIGHT: bold;
TEXT-ALIGN: left

TD.ResultData {

}

-—>

FONT-FAMILY: Arial, Verdana,
FONT-SIZE: 8pt;

FONT-WEIGHT: normal;
TEXT-ALIGN: left

</STYLE>
</HEAD>

<BODY>
</BODY>
</HTML>

In Listing 12.1, the information within the <sCrRIPT> block is surrounded by the <! --
and --> comment tags to prevent older-vintage browsers that do not support style
sheets from being unable to render the HTML page. In the <STYLE
TYPE="text/css"> line, the css refers to the term Cascading Style Sheet, which is
the name of the standard adopted by the World Wide Web Consortium (W3C) in
1996 to define style sheets for HTML. Internet Explorer (IE) 3.0 and Netscape
Navigator 4.0 were the first browsers to adopt subsets of these standards, with later
versions of each adopting more of the standard. The term cascading refers to the
way style classes are merged if they are defined multiple times within an HTML

document.

'MS Sans Serif';

'MS Sans Serif';

'MS Sans Serif';

'MS Sans Serif';

The formats associated with hyperlinks are formally known as pseudo-classes in the
W3C standard because they are based on tag states instead of tag content. For the
<A> tag given in the example, the four pseudo-classes include active, 1link,
visited, and hover. The first three are formally defined by the W3C standard,
whereas the last is a Microsoft extension for Internet Explorer. For each of these
pseudo-classes, a color style property is defined using named color values. These
color names are based on extensions to HTML 3.2, which initially defined only 16
colors. Netscape extended these names to several hundred to coincide with the
colors available in the X-Windows system, with subsequent support by Microsoft
Internet Explorer. Colors can also be provided as Red-Green-Blue (RGB) color
triples using either the format #RRGGBB or the statement rgb (RRR, GGG, BBB) . In the
former case, the values are given in hexadecimal format, whereas in the latter case,
the values are provided in decimal format. For example, the following are equivalent
color property statements in HTML.:

color: silver
color: #C0COCO
color: rgb(192,192,192)

Looking at the example once again, the color properties for the active, 1ink, and
visited properties are set to mediumblue, whereas the color for the hover
property is set to red. Having the common color scheme of the first three properties
has the effect of preventing the browser from changing the color of the hyperlink
after a user has clicked on the link. The effect of the last property is to have the link
highlighted in red when the mouse pointer is directly over the hyperlink text. By
placing this set of pseudo-class definitions in the style sheet, all the hyperlinks in the
current HTML document follow these effects.

Looking next at the style properties for the various TD-based classes in Listing 12.1,
we can see that font-, text-, and color-level definitions are given. Specifically,
FONT-FAMILY, FONT-SIZE, and FONT-WEIGHT properties are defined for fonts. For
text definitions, a TEXT-ALIGN property is defined. For color definitions, coLor and
BACKGROUND-COLOR properties are defined.

A comma-separated list of font names is provided for the FONT-FAMILY property.
This tells the browser to search for installed fonts in the order given, using the first
installed font found. If no installed fonts are found, a default font is used. Because
the installed fonts can vary from user to user, it is a good idea to use common fonts,
with the last one or two being fonts that are likely to be installed, such as Arial or
Sans Serif. It is also a good idea to use Sans Serif fonts for online applications
because studies have shown that they are the preference of most users.

There are several FONT-SIZE property definition options as in the color case
discussed previously. For this property, size can be specified in absolute, relative, or
named terms. For absolute definitions, either pt or % can be used. The pt definition,
used in Listing 12.1, is the most common method that sets the size to an exact value.
The % definition sets the size as a percentage of the size of the parent element. For
relative sizes, a + or - precedes the value, as in +2pt, which would increase the font
size by two points from the most recently used font size. In the named value case,
keywords are mapped to absolute sizes that are defined by the browser. Valid
keywords include xx-small, x-small, small, medium, large, x-large, and
xx-large. For the purpose of style sheets, it is best to stick with using absolute,
pt-based sizes, because this method offers the most control with the most
predictability of how the final HTML page will be rendered by the browser.

In the example, the FONT-WEIGHT property is defined next. For this property, named
values, such as bold and normal, can be used to indicate whether to use boldface.
Alternatively, boldness values can be given in the form of numbers that are
multiples of 100, between 100 (lightest) and 900 (boldest). The keyword bold
corresponds to a value of 700, whereas the value 400 corresponds to the keyword

normal.

The only text-based property defined in the example isTEXT-ALIGN. Values that can
be assigned to this property include 1eft, right, center, or justify. If this
property is not defined, 1eft is assumed. Other text properties that are available
but not shown include TEXT-DECORATION for special effects, such as strikethrough
and blinking; TEXT-INDENT to implement hanging and normal indents on the first
line of a paragraph; and TEXT-TRANSFORM to modify letter capitalization.

Now that a style sheet is defined within the <HEAD> section of an HTML document, it
is a simple matter to make references to the style classes from within the tags used
throughout the remainder of the HTML document. As mentioned before, the style
associated with hyperlinks is automatically enforced throughout the entire
document after the definition is made. For the other classes, they must be explicitly
used. As an example of style use, a fragment of HTML generated by the
EmployeeSalesReport.asp page in the previous chapter appears in Listing 12.2.

Example 12.2. Using the Styles Defined in the Style

Sheet

<TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>
<TR>
<TD class="HeaderOne-B" width=150>Sales By Country</TD>
<TD class="HeaderOne" colspan=3>
[12/5/1993 to 4/3/1994]

[Sorted By Order ID]
</TD>
</TR>
<TR>
<TD class="HeaderOne-B" width="150">Country:</TD>
<TD class="HeaderOne" colspan=3>UK [Total $52,840.06]</TD>
</TR>
<TR>
<TD class="HeaderOne-B" width="150">Salesperson:</TD>
<TD class="HeaderOne" colspan=3>
Buchanan, Steven [Total $15,694.50]
</TD>
</TR>
<TR>
<TD class='ResultDetailHeader-1' width='10%'>0Order ID</TD>
<TD class='ResultDetailHeader-1' width='5%'>Sales Amount</TD>
<TD class='ResultDetailHeader-1' width='10%"'>
Percent of Salesperson Total
</TD>
<TD class='ResultDetailHeader-1' width='5%"'>Percent of Country
Total</TD>
</TR>
<TR>
<TD class='ResultData' width='10%"'>
10372
</TD>
<TD class='ResultData' width='10%'>$11,515.20</TD>
<TD class='ResultData' width='10%"'>73.37%</TD>
<TD class='ResultData' width='10%'>21.79%</TD>
</TR>
<TR>
<TD class='ResultData' width='10%"'>
10378
</TD>
<TD class='ResultData' width='10%'>$129.00</TD>
<TD class='ResultData' width='10%"'>0.82%</TD>
<TD class='ResultData' width='10%"'>0.24%</TD>
</TR>
</TABLE>

As you can see in the various <TD> tags, a class= statement within the tag indicates
the style to associate with the tag. You should also note that nothing special is done
in the <aA> tags to make them use the special pseudo-class effects defined in the
style sheet.

You might be thinking to yourself that although this style sheet mechanism does
offer flexibility, it still requires that each of the HTML documents making up a Web
site has a style sheet in its <HEAD> section. For a Web site with hundreds or
thousands of pages, it would be difficult to make style changes because each
document, or more appropriately, each Active Server Page (ASP) generating these
documents, would have to be modified to support the change. This would indicate
that there is no real flexibility offered by the style sheet approach. This is a valid
assessment, so the HTML specification allows for the linkage of style sheets into an
HTML document. The mechanism for this is as follows:

<head>

<title>northwind traders</title>

<LINK REL=stylesheet TYPE="text/css" HREF="stylesheets/nwOl.css">
</head>

With this approach, these same hundreds or thousands of documents can make this
reference to a style sheet so that changes made to it are immediately reflected
throughout the Web site.

Creating a style sheet is easy. Although it can be done directly in a text editor
following the W3C specifications, Visual InterDev provides a simple editor for doing
so. To add a style sheet to an existing project, simply right-click on the project node
within Visual InterDev and select the Add option and then the Style Sheet option.
The Add Item dialog appears with the Style Sheet option selected by default.
Change the name of the style sheet to nw01.css, and click the Open button. This
brings up the style sheet editor with a default BoDY class created, as shown in Figure
12.1.

Figure 12.1. A new style sheet added to the

Northwind Traders project.

-5 HTML Tags
@ Advanced | Source | Preview
) Classes Fort | Background | Borders | Layout | Lists
(=) Unique IDs Fork preference buider
Installed fants: Selected Fonts:
[- =
fgency FB ;l =
Alg
An:&TMnnn = _l ‘ _I
Color: Small caps: Ttalics:
I =] [| =
| Size Effects
" Relative: | __|. ™ None
. S E— [_|Undering
Absolube: - = ough
s [[2| I ome
- Weight Capitalization:
+ Relstive:] j | ﬂ
" Absolute: 'I

To create a new class within a style sheet, right-click on the classes folder within
the style sheet editor, and then select Insert Class to bring up the Insert New Class
dialog. To make a tag-specific class, select the Apply To Only the Following Tag
checkbox and select the appropriate tag name from the list. Type the name of the
new class in the Class Name field, and click OK. The new class is added under the
Classes folder, and the properties page for your new class, in which you can set the
various style properties, is brought up on the right side. Figure 12.2 shows the
results of adding the TD.ResultData class after the font properties have been set on
the Font tab.

Figure 12.2. A new style class added to the Northwind

Traders project after the font properties were set.

0 w1, ces™

[f] Style sheet

=] {4 HTML Tags
@ BODY

=i Classes
? TD.ResukData Font preference buider
(=53 Unique I Instaled fonks: Selected Forits:

l —I Erial

I :I Werdana
5 2Er - M5 Sans Serif

MS Serif | : |

Mizgara Engraved ﬂ

-

Colar: Senall caps: Ttalics:
| =] | Elj |
Size: Effects
" Relstive: [_;| [None
™ Absolute: -l o
[~ Strikethrough
" Specific: 5 pt =] || — overne
Wzight Capitakzation:
™ Relative: | =l =|

Text properties are set on the Layout tab, whereas the background color is set on
the Background tab. Clicking on the Source tab shows the HTML code for the style
sheet with the currently selected style class in bold. Notice that this text is similar to
the format of the original style sheet that was embedded in the <HEAD> section.

Server Side Includes

Although style sheets can control the look and feel of individual tags in an HTML
document, they cannot provide an overall template for the document. For example,
if you look at many commercial Web sites, you might notice that they have similar
headers or footers across all their pages, or at least throughout various subsections
of the site. One mechanism to accomplish this standardization, while following the
flexibility mantra, is to use server side includes. These files are separate HMTL or
ASP code snippets that are pulled into an ASP as a pre-processing step before the
final generation of the HTML stream that is sent back to the client. An example of
such a reference can be seen in the ASP script code from the ProductReports2.asp
file given in the previous chapter. A fragment of this code is provided in Listing 12.3.

Example 12.3. Using Server Side Include Files

<BODY TOPMARGIN=0 marginwidth=10 marginheight=0 LEFTMARGIN=10>
<!--#include file="ServerScripts\GetpageHeader.inc"-->
<%
Dim vReports (3)
vReports (1)="Current Products"
vReports (2)="All Products"
vReports (3)="Discontinued Products"
FormwWidth = 470
&>
<!--#include file="ServerScripts\GetFormHeader.inc"-->
<FORM action=ProductReport2.asp>
<TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>
<TR>
<TD class="FormCaption" WIDTH=30%>Report Type:

<SELECT id=ReportType name=ReportType>

<%
For 1 = 1 To ubound(vReports) if cint(i) = 1 then
Response.Write ("<option selected value="" & i & "'>" &
vReports (i) & "</option>") else
Response.Write ("<option value="'" & i & "'>" &
vReports (i) & "</option>") end 1if
next
%>
</SELECT>
</TD>
<TD width=30% align="center">

<INPUT type="submit" wvalue="Run Report">
</TD>
</TR>
</TABLE>
</FORM>
<!--#include file="ServerScripts\GetFormFooter.inc"-->

<!--#include file="ServerScripts\GetpageFooter.inc"-->

</BODY>

Four files are included in this simple script. The GetPageHeader. inc file is
responsible for generating the standard header of the page, whereas its
GetPageFooter.inc counterpart generates the standard footer. Similarly,
GetFormHeader.inc and GetFormFooter.inc generate the table structures to give
a consistent look and feel to all forms used throughout the Web site. Figure 12.3
indicates the specific areas that are generated by these include files.

Figure 12.3. The areas of the user criteria screen

contributed to by various server side include files.

ﬁ i L] aders - Micicaoll Inieinel Ezploie

Fim Ed Yiew Fgroles Tooh Help n

0 0 & &2 &8 3 B & B

Sase Falech Homa | Sewch Faeordwe ity Wl Prind Edi 'Duec:un

ar.um|g| hitge /' mein S otwwand T races o ProductF epoeti 2 ssp ;1 *Ge | Links ™
northwind traders< =
product reportings [————
[Sunday, December 05 1595 -
Rt T e oimeHaddal bl
[curent Poducs ;I Fun Rapeort
Catfermfzaliting
Eorghbasnd Homa Face Faadhags
+ &

GatPagaFaatis ing

J |

2] Cione £xf Local ntranst

Notice the . inc extension given to the server side include files to indicate that these
are not fully functional ASP scripts but rather ASP fragments. Although this is good
to identify them as included script files, it makes them more difficult to edit in Visual
InterDev. Because Visual InterDev does not recognize these extensions, it opens
them up in a standard text edit mode without the nice, yellow highlights at the
beginning and end of script blocks, which have the <% and $> markers. Nor is it able
to identify tags in black, keywords in red, values in blue, comments in gray, and so
forth. Thus, if you give these files ASP extensions, Visual InterDev is able to
interpret them and give you these visual clues. The choice is yours.

Global Application Variables

One other area that can add a level of standardization and flexibility is the use of

application variables. Under the IIS model, a Web application is defined based on all
the files within a given directory, or any of its subdirectories, on or mapped by the
IIS Web server. As briefly discussed in the last chapter, the global.asa file is used
as a controlling mechanism for the entire Web application, and it must reside in the
root directory of the Web application. After the Web site is first started (or restarted)
using the Internet Service Manager, the first request for any page within the context

of the Web application causes the Application OnsStart event to fire. If this
happens, application variables can be defined using the following syntax:

Application (VariableName) = VariableValue

Any ASP page within the application can then retrieve these variables by using the
reverse syntax as follows:

VariableValue = Application (VariableName)

This simple mechanism enables the application to store global variables for the
entire application, much as constants are stored in traditional programming
environments. Examples of usable information might be the name of specific page
URLs, such as a NoAccessGranted.ASP file or a MailTo:-style URL to redirect mail
to the site administrator. Examples appear in the following code fragment from the
global.asa file:

Sub Application OnStart

Application ("NoAccessURL") = "no access.asp"
Application("SiteAdministratorMailTo") = "mailto:ptindall@texas.net"
End Sub

Building the Internal Intranet Site

With some basic standardization techniques, we can now turn our attention to the
development of an intranet site for our application. From surfing the Web and
accessing commercial Web sites, you might have noticed that they typically have a
home page that enables entry into the various navigation points of the system. In
addition, there are typically links to frequently used, functional areas of the system
(such as stock quotes or local weather forecasts) from this main page. Home pages
designed in this format are often referred to as portals or consoles. We follow a
similar design philosophy in designing the intranet site for our framework.

Our goal, for now, is to provide internal access to the various objects and reports of
the application. In Chapter 13, "Interoperability,” we will add a few new features to
help us move information out of our application and into other applications using the
portal as a launching point. Portal design can be accomplished in many ways. You
can prove this to yourself by looking at commercial portal sites. For our purposes,

we are going to stay somewhat basic, as shown in Figure 12.4. This page
corresponds to a file Home.asp that we have created for our Northwind application.

Figure 12.4. The intranet portal for the Northwind

Traders application.

Al Meathwind Tisdess - Micioscll Inteimet Explodes

Ele Edt Yew Fyeodes Tock Hep i

« =2 D [4|9 Gid L S E . E
Sip e S et

Fomwsd ome Ewwvories Hittogy Had it Dmevss
et i8] i SV st/ M opusar | racies Hicres azn *| PG || Lnk: ™
northwind traders =
home

Sunday, Decembar 17 1999
ORDERS FAOS HELP CALEMDARS FAOQS HELP

mﬂéﬁﬂﬁrw: LR R 1 MM:.FHWWHI

Dnemn Orders Order Catendar - Hext Biondty

Aj spaf srders vt the Syslens et pmbnils ides sebedule i b rdse calerder lor nal

OBJECTS FADS HELP TOOLS FAOS HELP
BrodusisCatoporios
Lol B ST e

Imploymns

Cranlimere

Counirios Roghens CEios

Suppdasra

Fhipgaors

Harthwind Homa Faos Fasdbmuck
A |]
5 T M iiees

Looking at Figure 12.4, you should see four distinct areas. The first two have
headers titled ORDERS and CALENDARS, whereas the other two have headers titled
OBJECTS and TOOLS.

By clicking on the OrRDERS hyperlink, we jump to an OrderReports.asp screen that
enables us to run several queries against the orders stored in the database. These
are similar to the 211 Orders and Open Orders nodes in the NWExplorer control that
we developed in Chapter 10, "Adding an ActiveX Control to the Framework,"
although now they accept the entry of a date range. We develop the
OrderReports.asp file using the EmployeeReports.asp file that we created in the
last chapter as a template. To do this, we simply create the new ASP file in our
project, copy everything in the EmployeeReports.asp file to the clipboard, and
paste it into our new file. We then make a few minor modifications to the vReports
section of the code, as shown in Listing 12.4. We also change a caption here and
there, and change the target for the form to orderReport.asp.

Example 12.4. Minor Modifications to the
EmployeeReports.ASP Page to Create

OrderReports.ASP

AN
o

Dim vMonths (12), vReports(2)

vReports (1)="All Orders"
vReports (2)="Open Orders"

o
\

<FORM action=0OrderReport.asp id=forml name=forml>
<TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>
<TR>
<TD BGCOLOR="#ffffee" WIDTH=30%>

<FONT FACE="Arial,Helvetica,sans-serif" SIZE="-3"
COLOR="#333333">

Report Mode:

<SELECT id=ReportMode name=ReportMode>

AN
o

For 1 = 1 To UBound (vReports)
If CInt(i) = 1 Then
Response.Write ("<option selected value='" & 1 & "'>" &
vReports (i) & "</option>")
Else
Response.Write ("<option value='" & i & "'>" & vReports (i) &
"</option>")
End If
Next
&>
</SELECT>

</TD>

Listing 12.4 demonstrates how we've made the code for this user selection form as
flexible as possible for future modification. By placing our report name information
in an array at the top of the script and using the UBound function as we iterate

through the array, we make it easy to modify this template if we need to create new

criteria selectors. The screen generated by our OrderReports.asp file appears in
Figure 12.5. Note that the default dates seen in the screen are set based on a base
date of April 15, 1995. This is done to coincide with the dates in the Northwind
database. In a real application, we would want our base date to be the current date.
Leaving the defaults as is and clicking on the Run Report button produces the report
shown in Figure 12.6.

Figure 12.5. The orderreports SCreen in Internet

Explorer.

Bl nouthwind baders - Micioaasdt Intemet Euplcses

Fie o View Faveiter Tes: Heb -

.2 .2 & 4O @ & @G a9 s,
| Back Fotvrand Stop Rsiesh Home Seanch Faverbea History Mad Prir# Edi D
Agcrens [] hoap: it akec= M othwredT ackee s CedaiPimgent s a2 =] g*Go ||Lnks ¥
northwind traders 5
order reporting

|5m1|ia5-1 Decembar 12 1999

Raprt Meda Stad Mersd e Dy Stad Yem
[anchedors =] Japel = [15=] |[rese =]

Bl 8o g [v S0P T b

augusr =] [Hj 1935 =]

Fun Feport

| | sf

2] i Local inranat

Figure 12.6. The orderreports SCcreen in Internet Explorer

run using the default values.

LY maithaind aders - Micioralt Inbsmet Esplesss

| Ela Edt Vww Fawortes Jooh Heb
[& .=+ .9 O A @ & 3| S S 8.5
| Bak F Sko FRefiesh Home | Sewch Favesles Hitoy | Mal P Ed Discuts
| Addhass [8]) b odew! &5 Lot orif 1o D e St Sanf oo w1 33585 toph et oD] B S e S35 sudri | wFun Sl lFcpart 7] o || ks ¥
northwind traders
orders reporting

[Sunday, Docomber 12 1599

le

[4/1995 1o BH13/555]

Ondered

10008 Cuacherbiut Deloessen A T TALEE ANSGSE Cullshan, Leurs

11054 O Viiorid Deshcabessen ANTES S LLCE: Callahan, Laurs ||

11055 Suerirs b0 N7 LR 42105 Filler, Ardnes

10T Gadot Cotina Tps AN AR FAGE A5G King, Roksrt

11005 LNO-Dalcalmsay AR e SRR (Davolo, Mancy

11038 Supréres OSi(es ANa5ss L L ATTES Do, Mancy

11041 Chopeisy Chinses AR SATHRG Tt [

11043 Comércio Mneiro ANt $055 A0 Fudor, Ardnees

11040 Great Lekes Food Marke! EuET] N TES Peacock, Mg

19043 Spdcasibéa S monds AR SATRS ADESE Bucianan, Shesen

11045 BoltorsDollar Mol AT FWE Suyata, Uicchesl

190465 v Vrchemade Kuh A 0 A2 Callshan, Laurs

10044 Wil Tagmrd AR S AAGE Peacock, Mg

11045 Botiorn Dollar Mariel: AT AW ATT05 King, Rokert

19047 Enzbern Conreclion Eiral ELbL 4000 King, Foksrt

109 e | anehored s A anare s I mmriariare et =
1| I [
] Dons "y Local mbarest

Note from Figure 12.6 that the columns in the ASP-generated screen are the same
as those in the NWExplorer control. Looking at the code in Listing 12.5 should
convince you that the techniques to retrieve the information in Visual Basic (VB) and
ASP forms are strikingly similar. This is by design.

Example 12.5. Comparison of VB to ASP Code

' From VB

Case EIT ORDER OPEN
vCriteria = Array(Array("ShippedDate", "is", "null"),
Array ("ShippedDate", "=", "12:00:00 AM"))
vOrder = Array ("RequiredDate", "CustomerName")
Set OrderProxyltems =
AppClient.LoadQueryCollection (CT_ORDER_ PROXY,
vCriteria,
vOrder,
"OR")
Set AppCollection = OrderProxyltems

' From ASP
<

o

Const CT ORDER_PROXY = 104

ReportMode = Request.QueryString ("ReportMode")
StartDateClause = Array ("OrderDate",">=", StartDate)
StopDateClause = Array("OrderDate","<=",StopDate)

OrderByClause = Array("OrderDate", "CustomerName™)

Select Case ReportMode
Case 1 ' All Orders

WhereClause = Array(StartDateClause, StopDateClause)

ReportName = "All Orders"
Conj = "AND"
Case 2 ' Open Orders

' Note: Dbecause this has a compound AND and OR in the WHERE statement,
! we have to grab all open orders here and then filter below
WhereClause = Array(Array ("ShippedbDate", "is", "null"),

Array ("ShippedDate", "=", "12:00:00 AM"))
ReportName = "Open Orders"
Conj = "OR"

End Select

Call NWServer.IISQueryObjectListData (CT ORDER_ PROXY,
WhereClause,
OrderByClause,
Conij,

PropertyNames, Data, Errors)

o\
\

You might have noticed that the Order ID column, both in these reports and the
ones from the previous chapter, have been hyperlinked to an 0rderDetail.asp file.
This file represents the first detail screen that we will create. All other object detail
screens can be created in a similar manner. Because a COrder object has a
collection of cOrderDetailItem objects, we design our OrderDetail.asp screen to
have a header section that contains the details for the order, followed by a section
that lists the order line items. This screen appears in Figure 12.7.

Figure 12.7. The orderpetail Screen in Internet Explorer.

B Mortheind Traders - Microsolt Interned E aplones

Fie Ede View Faoosss Jook Heb
.+ .0 O 48 @

Bt Fi Sip Refeh Home | Seach Favoite:

Adgdingg [ﬂ i 4 s Hoorthesand T raders/Orderl et 230 Torderide 1034

northwind traders
order details

|5unilr. December 12 1399

Cuwbemars {id W Dolcmiogsen FEAT]
Owdered: 40 TS Required: SC0565 Shipped: 42485
Shipper: Soosdy Earegs
Shi Tos Ol Vierkd Dslcalasten
Ackdress 2740 Beang £
Fresighi: 340 32 Fip Code 55500
Bagian: Ak CHy? Arcnod wpe Coainbry 5.4
L
Tt CHpanaity Unitiricn Digtgint Emandad
[Rodeeey's Scores 1% 0 10.0%, ¥
Guls Mslsccs 12 85 00 0% ¥230.40
e] 28 50 [l 8 1M m
[Sealick Lerghennds 5 #1250 00.0% 350
Tl alw fa b
| Mg Akying Horme FRos Faials ek |
| | ;’J
{8 Dene [%S localinbarnt |

There is nothing of a rocket-science nature in the 0rderDetail.asp screen. We are
first retrieving our order object with a call to NWServer.IISGetObjectData,

followed by a call to NWServer.IISGetObjectListData for the OrderDetailltems
collection. The remainder of the script is used to build the table structure necessary
to display the screen as shown. Notice that our Customer, Employee, and Shipper
fields are hyperlinked to their respective detail pages as well. Such capability is the

beauty of the World Wide Web (WWW).

What is new with this screen is the [EDIT] hyperlink in the upper-right corner.
Clicking on this link takes us to the OrderDetailControl.asp page, which has our
NWOrderControl embedded in it. This page appears in Figure 12.8, and the script

code appears in Listing 12.6.

Figure 12.8. The OrderDetailControl.asp PAage with the

NWordercontrol €mbedded in it.

/2 Newthwwind Tradess - Miciozolt Inbemet Exploes

Eie Eclt Ywsd Famater ook Help =
A > P R - S [PG LR R
Elack Sip Refesh Hone Seach Favoles Hioloy Mai Frint Edi Disouss
dnghdemes [] bt deees MortimandTspdo /Do D el ool s Tideride] 1034 =] @*te || Links
IO TIIW LI LCLAaAEL S

order editor
[Sunday, Decomber 12 1999

b = X G

Geree | Diatad]

Cuushorres [0 World Deleccbesren
Emglopee [Callshar, Lowa

|

——1 Oides Diste Fequested Dl Shipped Dists
E! [OHER PR [TEEE

Shipper [Spescy Express D
Ghip T [t Wl ol Dl ehe aleazen

Addraas [723 Harng St
Freight [a0 17 Postal Code [TFIR
Causriap/City Fesgion
[nchogs, A 154 =

We have chosen to use our NWorderControl to implement the edit functionality
instead of a series of ASP pages for several reasons. First, we have already built the
functionality into this control, and it doesn't make sense to duplicate something that
works so well. The second reason is that the architecture of the system requires the
selection of items from lists. Although the selection process for the customer,
Employee, and shipper fields could easily be implemented as <seELECT> elements
within a form, the other fields are not. The hierarchical relationship of the
Country/City/Region selection, more specifically, a tree, is not easily
implemented in any form element available to us. This is similar to the product
selection process in that we first must look under a category before selecting our
product.

Example 12.6. Embedding the NWOrderControl in the

OrderDetailControl.asp Page

<html>
<head>

<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<title>Northwind Traders</title>
<LINK REL=stylesheet TYPE="text/css" HREF="stylesheets/nwOl.css">
</head>
<%
Id = CLng(Request.QueryString ("orderid"))
&>
<script LANGUAGE="VBScript">
<l--
Sub Page Initialize
On Error Resume Next
NWOrder.RegisterControl ("server=alexis&id=<%=Id%>&subid=0&mode=2")
NWOrder.InitControl
End Sub
-—>
</script>
<body bgcolor="#FFFFCC"
TOPMARGIN=0
marginwidth=10
marginheight=0
LEFTMARGIN=10
LANGUAGE="VBScript"
ONLOAD="Page Initialize">
<!--f#include file="ServerScripts\GetpageHeader.asp"-->
<TABLE WIDTH="800" border=0 CELLSPACING="0" CELLPADDING="0"
valign="TOP">
<TR>
<TD WIDTH="100%" align="CENTER" valign="TOP" BGCOLOR="#FFFFCC">
<OBJECT classid="clsid:692CDDDA-A494-11D3-BF79-204C4F4F5020"
id=NWOrder
align="center">
</OBJECT>
</TD>
</TR>
</TABLE>
<!--f#include file="ServerScripts\GetpageFooter.asp"-->
</body>
</html>

We will demonstrate how an order can be created from the customer's perspective
in the following section "Building the External Internet Site." It is here that we follow
a pure HTML-based approach because we cannot run DCOM over the Internet,
which is what is needed by the control.

NOTE

As an aside, Microsoft's recent proposal for the Simple Object Access Protocol (SOAP)
promises to offer the capability to provide a rich control-based interface without
having to run over a DCOM layer. This protocol uses standard HTTP (HyperText
Transport Protocol) as its base, which is the same base protocol used by the World
Wide Web for delivery of HTML pages. Using this communication protocol, XML data
formatted requests are used to invoke methods on remote objects. Because this is
a standard submitted to the Internet Engineering Task Force (IETF), it has the
promise of being adopted as a true Internet standard. If this were the case, it would
not matter what type of Web server we were running, such as IIS or Apache. Nor
would it matter what type of application server we were running, such as MTS or
WebLogic. Nor would it matter whether our rich controls were based on Win32 or
Java. It will be interesting to watch the development of this standard.

Before completing this section, we still must cover a few more areas. The
upper-right corner of our home page includes a hypertext link to the
CalendarReports.asp page developed in the last chapter. You should notice from
our home page that, under the orRDERS hyperlink, there are additional hyperlinks
named Current Orders Schedule and Open Orders. These links jump directly into
the orderReport.asp page using default information based on the current date,
bypassing orderReports.asp's user criteria selection page. The reasoning for this
is that these are the most frequently used reports; therefore, there is no need to go
through the criteria selection page. Similar links can be found under the CALENDARS
section of the page.

The final item to investigate in this section is the oBJECTS area of the portal. This
text is not hyperlinked as the other items looked at so far. Instead, it provides a
listing under it of all the objects available for viewing from the intranet. If we select
the Products/Categories hypertext link, we jump to the categories.asp page,
which appears in Figure 12.9. Selecting any of the hyperlinks on this page jumps us
to the ProductsByCategory.asp page, as shown in Figure 12.10.

Figure 12.9. The categories .asp PaAage.

Ei reorihamingd baders - Microsol! Infamet Esploes

| Bl Eot Wew Favoster lods Hep
G, : - B .

R O e R I e e L
| Agmss [2] e ocinNartendTiaden T cgons am =] PG | |urks ¥
northwind traders B
categories

|$ur|||ql.. December 17 1953 |

msyus |

Categoey

[EE - H

Condeerts

;!I“'lgl;

sk Frocucts

Crarg Aorealy

Mt Py

Brashics

Searong

| Hosthwing Homa Page Enadiack I
4] _ | H;I
[£] Dore || 2 tocalmimnt

Figure 12.10. The ProductsByCategories.asp Page.

N nortbwind trodeie - Mecrarol Intemet Esplone

| EM Ect Yew Faonler Jock Hep)
& 9D 08 863K S R,
Eack Foenern Swp Rsresh Home Samzh Favoibes Hishads Had Pt Edit Dicias
| Aidiees @7 w7 ssesezs b omtninelT ractate Procuc Byl steoeny an Tearagrayets SEesmgenssC ondrmans =] 6o ||Lnks ¥
northwind traders s
products - [condiments]
Suniday, December 12 1999 |
RESULTS
Prochect ary Price I Slock O Oy Bimcomtinueed
Arigead Syrup 12 « S50 el hobiss A0) 13 m M
hed Andon's Cahan Soesoning &8 - & oz pmn el 3] Mo
Chal Anbon's Gumis M 3 b 1213 v o Vez
Garmn Sheuy 24 . 50l bokiles $15.50 39 o ™
Geandma's Boysonborry Sproad 12 - oF s vt 120 o 1]
Gals Malscoa 20 . 2 gbags #1845] o Mo
Loussians Fisry Hot Pepper Sauce 32 - 8 ox betties 0 76 o [
Luainng Hel Spized Olaa 24 - oF s W7 4 100 Ma
HOrw0od] CrankeiTy Sace 12120z 0 0 & o Mo
Cwgrasd Franifurber grire Soils 12 bomoes Rl 1 o Mo
Siroo dérabie 24 - 500l bottles $20.50 13 o ™
V- SENE0 15 - £S5 W i e 0 M
1| |]
2] Dorm [Cocalwranat

The other objects listed under the 0BJECTS caption on the home page can be
implemented in a similar manner. We will postpone the discussion of the items
under the TooLs caption until the next chapter.

Building the External Internet Site

With our ability to generate an internal intranet site to accompany our application,
we might begin to wonder how we can leverage the external access that an Internet
can provide to enhance our system. Thinking from the perspective of a customer,
we might want to create an order ourselves, or at least check on the status of an
existing order. Enabling customers to create and access their own orders has the
advantage of reducing the sales and support staffing for Northwind Traders, as well
as the advantage of providing access in a 24 x7 fashion. Other types of functionality
can be placed on an Internet-based site as well, such as yearly or quarterly order
histories and customer profile management. We focus on the online ordering
process in this section.

To start, we must implement a customer logon process to ensure that only
privileged users are granted access. We also use this login process to retrieve the 1d
and CcompanyName properties for the customer and save them to session variables.
The logon process assumes that a customer will use his or her customer code for the
login name. We will add a column to the Table Customer table to store the
password, and we will modify the view Customer view to also include this field. We
will assign the password and provide a password change mechanism on the site. We
also must make the appropriate change to our GetClassDef method on our
NWServer class for CT CUSTOMER.

If we have a corporate Web site, we should update it by placing a hyperlink to our
customer login process. For our example here, we will simply create a Homel.asp
page to serve as a surrogate for our corporate home page, with a hyperlink called My
NORTHWIND to enter into the customer-specific site. Figure 12.11 shows this entry

page.

Figure 12.11. The mocked-up Internet corporate

home page for Northwind.

5} Hontheand Tisdess - Miciosalt Inbemet Esploses

Fis Ede ‘Yiew Favorbe: Took Helo

o, .0 N & e mn a3 B S .]

Back Skp Fefresh Home Sesch Favoites Histoy Hal
Agress | @] bitp ! e MotimarndT e s Homel, azp | ﬁﬁa_ Links ™
northwind traders =
home

[Sunday. Decombaor 19 1959 |

Y HORTHWIND FAQS HELP -

4 |]

2| itpe [it abdontheand Trsdars ACunhomar, ogin anp T Local niraret

Clicking on the My NORTHWIND hyperlink takes us to the customerlLogin.asp page,
as shown in Figure 12.12.

Figure 12.12. The CustomerLogin.asp Padge€.

] Aol badeiz - Mesiesall Inbermet Eplesed

Fie Edé View Faeosbes Jooh Hep

.- 0 0d @60 Ean. N
Back Sop Aefesh Home Semch Favoites Hatory [ZE] Prre Edi Dhcums
ﬁdli‘ﬂllﬂh'lp"rd-.-nﬂ'.-'l"l.ﬂ'mmr:l.kr:r’:l.rll.l'r.le--s.-.'} j o | Links *|

northwind traders -
customer login
Sunday, December 15 1599 |

Cardomar Deda

CHOFS

Fazrecrd

il |]

] Dor 5l Locslinhanst

The script code for CustomerLogin.asp uses standard FORM elements, although in
this case we are using the posT method to prevent the password from being visible
to a malicious user. We have designed this page to enable re-entry in case the login
should fail in the CustomerLogin2.asp page that is called by the form. To enable
re-entry, we simply check for two query string variables named MsG and
CustomerCode. The MSG variable indicates the type of failure, whether it is from an
invalid CustomerCode or an invalid Password. The CustomerCode variable is used in
the case of an invalid Password so that the user does not have to re-enter it. If
either variable is undefined or contains no data then nothing shows on the form.
Listing 12.7 shows the code for the CustomerlLogin.asp page.

Example 12.7. The CustomerLogin.asp Page

AN
o

Msg = Request.QueryString ("msg")
CustomerCode = Request.QueryString ("CustomerCode")
%>
<FORM action="CustomerLogin2.asp" id=forml name=forml method=post>
<TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0 height=100%>
<TR><TD class="ResultData"><%=Msg%></TD></TR>
<TR>

<TD class="FormCaption" width=100% height=100%>
Customer Code:

<INPUT type=text id="CustomerCode"
name="CustomerCode" value=<%=CustomerCode%>>
</TD> </TR> <TR>
<TD class="FormCaption" width=100% height=100%>
Password:

<INPUT type=password id="pwd" name="pwd">
</TD>
</TR>
<TR> <TD class="FormCaption" width=100% height=100%
align=center>
<INPUT type="submit" value="Login" id=submitl name=submitl>
</TD>
</TR>
</TABLE>
</FORM>

Our CustomerLogin2.asp page produces no HTML; instead, it checks the validity of
the customerCode and pPassword variables passed to it. Because we used the poST
method to arrive here, we must retrieve the variables from the Request.Form
collection rather than the Request.QueryString collection. After we have retrieved
these values, we create an NWiserver object, as in the other examples, and perform
an IISQueryObjectListData on it to retrieve the customer object associated with
the customerCode. If nothing is found, we redirect back to the CustomerLogin.asp
page with a message indicating that the customer code was not found. If we do find
the customer code but the password is incorrect, we also redirect back to the
CustomerLogin.asp page, but this time with an invalid password message and the
customer code. If the password is correct, we set several session variables and
redirect to the CustomerConsole.asp page. Figure 12.13 shows a flowchart for this
login process, and Listing 12.8 provides the code for the CustomerLogin2.asp

page.

Figure 12.13. The customer login process.

Corporate Web site

My Northwind

v

CustomerLogin.asp

Submit

Y

Failed Login

CustomerLogin2.asp

Successful Login

CustomerConsole.asp

Example 12.8. The Code for the CustomerLogin2.asp

Page

AN
o

Dim Data, PropertyNames, Errors
Dim DataArray

Const CT CUSTOMER = 4

CustomerCode = Request.Form("CustomerCode")

Pwd = Request.Form("pwd")

Set NWServer = Server.CreateObject ("NWServer.CNWServer")
If Not NWServer.IISInitServer Then

Response.Write ("Could not Initialize the MTS Server
")
End If
WhereClause = Array (Array ("CustomerCode","=",CustomerCode))
OrderClause Array ("Id")
Call NWServer.IISQueryObjectListData (CT CUSTOMER,

WhereClause,

OrderClause,
"AND",
PropertyNames,
Data,

Errors)

If IsArray(Data) Then
Set DataArray = Server.CreateObject ("AppIISCommon.CDataArray")

DataArray.Initialize Data, PropertyNames

If CStr(pwd) = CStr(DataArray.Item("Password",0)) Then
Session ("CustomerId") = DataArray.Item("Id",O0)
Session ("CustomerName") = DataArray.Item("CompanyName", 0)

Response.Redirect ("CustomerConsole.asp")

Else
Response.Redirect ("CustomerLogin.asp?CustomerCode=" &
CustomerCode & "&Msg=Password is Incorrect")
End If
Else

Response.Redirect ("CustomerLogin.asp?Msg=Customer Code Not Found")
End If
>

o

After the customer login is passed, we have defined two session variables:
CustomerId and CustomerName. Session variables are similar to application
variables in that they are shared across all the pages within the application. The
difference is that session variables are destroyed after the user disconnects from
the site, whereas application variables persist until the Web site is restarted from
the IIS Management Console. Upon entering our CustomerConsole.asp page, we
use the customerName session variable to add a little personalization to the site. The
CustomerConsole.asp page appears in Figure 12.14.

Figure 12.14. The customerconsole.asp page.

) Mewthsand | radeds - Macingalt Inbernel Faplaes
fle Ed ‘Jew Fawwter Took Helo
& . © L @ @ & @ G & H . [N
Back Sip Febesh Hons Seach Favoobsy Henory Wl P Ec Dincuny
Aeddess |-ﬂ it M ot T st C o ole asp ﬂ o Go | | Links ™|
northwind traders =
customer home [Chﬁp =suey chinese]
|5|.mdly. December 19 19949 J
ORDERS
D der Staties Change Profils
Choec b on e stinbhus of i specfic o der Chargs pos custowas probls
bt & hﬂllri‘::l';" TRA GHIE
shopaing
DFdt g el ool ta
£l | 2]
El £+l Loca riranst

Looking at the CustomerConsole.asp page, you should notice that its layout is
similar to our intranet site. This is simply a matter of convenience on our part so that
we do not have to create and maintain two sets of templates and styles. You might
need to modify your Internet site over time, based on usability studies and so forth;
so be prepared to make changes if necessary. For our example, we have chosen to
place several pieces of functionality on the customer-specific site. The Order Status
hyperlink is a straightforward implementation that is similar to the
OrderDetail.asp page from the intranet section. Likewise, the Order Listings
hyperlink is similar to the O0rderReports.asp and OrderReport.asp pages in the
intranet section, except that here they must be filtered for a specific customer. You
can create another set of ASP files to drive this process, or if you cleverly modify the
existing reports, you can use them. The implementation of this set of pages is not
provided here. You might also notice the change Profile hyperlink available under

the Administrative section. This link would lead to a series of ASP pages that
enable the user to modify properties on the customer object, such as address,
contact person, telephone numbers, passwords, and so forth. Again, this
implementation is not provided here. Many other types of functionality can be
placed on this CustomerConsole.asp page. Fortunately, our architecture is robust
enough to accept such future enhancements.

The remaining item to be discussed is the shopping link. As you might guess, this
link should enable the user to peruse the product catalog and create an order. To do
this, we will implement a simple shopping and checkout process that enables the
user to create an order object and its associated OrderbDetailItems collection.

NOTE

The solution presented for this process is simple in its design and implementation. It
is meant to demonstrate the flexibility of our architecture to support creates,
updates, and deletes from the intranet; it is not meant to represent a
ready-to-deploy electronic commerce solution. Our architecture is merely the
starting point for such applications.

If you have spent much time on commercial sites, you probably noticed that the
process of shopping involves searching for a product and then adding it to a
shopping cart. When you are finished shopping, you proceed to a checkout process.
We follow a modified approach here. Figure 12.15 provides a flowchart of our
order-creation process relative to the ASP pages that we will be creating.

Figure 12.15. The flowchart for the shopping process.

Shoppingl.asp f——New —3» EditOrder.asp

Select Existing Order Validation Failure
Hedirgction
— Shopping2.asp l— Fodirect—{ UpdateQrder.asp
Redirect | ProductbyCategory2.asp OrderCheckout.asp

UpdateOrderDetails.asp

Following the shopping link from the CustomerConsole.asp page takes us to the
Shoppingl.asp page, shown in Figure 12.16. This page retrieves the session
variable for the customerid and performs a query using the
IISQueryObjectListData method for the cT ORDER class type. To enable this
query, we must first add a field to the database to indicate whether an order is
complete so that it can be submitted to the order fulfilment system—a topic that is
discussed in detail in Chapter 13. This completion flag, along with the orderbDate, is
set automatically during the checkout process that is discussed later in this section.
Thus, we will add a simple Is complete field to the database table and view, along
with the appropriate modification to the GetClassbDef method on the NWserver
class for cT ORDER and CT ORDER PROXY. It is important to note how simple and
unobtrusive this type of change is. Over time, as you are developing your
application, you will find the need to make similar changes to support expanding
business requirements. One of the underlying goals of this framework has been to
enable such simple changes.

Figure 12.16. The Shoppingl.asp Page.

2 kit FE akeeme P b hndd Teaders /5 hoppeng 1 acp - Micioealt Inbsimet Fuplose

Els Edd Mww Fgveres Jooh Hep

G > I I S < T I NRNES CORCT R T R |
Bact, Swo Fisesh Home | Semch Favomes Histors Mad Paet Bt Diocns
Addes [@] it //skeie Mesthwrnd Traders/Shepoing 1. acp =] Poo |Lnks ™
northwind traders B
shopping [chop-suey chinese]
|H-un day, January 03 2008
The folovwing incomplste orders wers Joundl. ''ou masy sslscl ons bo contines woridng with
i i the Rlactss’ bulon, o you misy Credls & nenas oF e
= 11085 15500
B Orcler
[ek
i [.ﬂ;
] Dore [[% Local rirane:

We are specifically looking for orders where the 1scomplete flag is false. We build

our page using standard HTML rorM methods, adding a New Order option at the end
of the radio button list.

Clicking the New Order radio button and then clicking the Next button takes us to
the EditOrder.asp page, as shown in Figure 12.17.

Figure 12.17. The rditorder.asp page.

aH-.'-ilhwmd lTradess - Mcvosclt Inbemret Eeplosss

Fis Edl Vew Fyorlsr [eclr Hasp

.= Q [o QA &S D . [
Eack Stop Rshsh Home Samch Fawories Hithaty Had Pt Edit
ke [@] i £/ abesss Morrwanl racse il Ticn azp =] 6o ||Lnks Y
northwind traders -
shopping [chop-suey chinese]

Bonday, Jamsary 03 2000

Pliveuiis el (it e
shipper: Fadaral Shipping =

Ship To Pereen:
Ship To Address:

Cime |.'\rq[:"|tr¢ »Argentinra-: Buenos Ames :I
Poadal Code:
s >
1| | "
2] Dore S Local miranet

The EditOrder.asp page is built using similar techniques to the ones used to build
the other pages developed to this point. We use our 11SQueryObjectListData to
help us build our Shipper and City combo boxes. Our choice to handle the City entry
this way is for simplicity.

NOTE

In a real-world situation, a Web-based modal dialog would be required to enable the
selection first of a Country, followed by a Region, and then a City. The change in the
Country selection would trigger a reload of the page with the appropriate Region
selection loaded. Similarly, a change in the Region selection would trigger a reload
of the page with the appropriate City selection loaded. Implementing such a dialog
requires the use of Dynamic HTML (DHTML) and client-side JavaScript, two topics
that are outside the scope of this book.

After we have entered our information and made our selections, we click on the Next
button. This submits the form to the UpdateOrder.asp page, which performs the
validation. If the validation fails, the page is redirected back to the Editorder.asp
page with validation failure messages. The specific validation code appears in
Listing 12.9.

Example 12.9. The Validation Code in

UpdateOrder.asp Page

CustomerId = Session ("CustomerId")
OrderId = Session ("OrderId")

ShipperId = Request.Form("ShipperId")
CityId = Request.Form("CityId")

ShipTo = Request.Form("ShipTo")

Address = Request.Form("ShipToAddress")
PostalCode = Request.Form("PostalCode")
RegDate = Request.Form("RegDate")

Msg = ""
If RegDate = "" Then

Msg = "- <i>Required Date</i> cannot be empty.
"
ElseIf Not IsDate(CStr (RegDate)) Then

Msg = "- </i>" & RegDate & "</i> & is invalid.
"
End If
If ShipTo = "" Then

Msg = Msg & "- <i>Ship To</i> cannot be empty.
"
End If
If Address = "" Then

the

Msg = Msg & "- <i>Ship To Address</i> cannot be empty.
"

End 1if
If PostalCode = "" Then

Msg = Msg & "- <i>Postal Code</i> cannot be empty.
"
End If

If Msg <> "" Then
Session ("Msg") = Msg
Response.Redirect ("EditOrder.asp")
Else
Session ("Msg") = ""

End If

From Listing 12.9, you can see where we are pulling our form information from the
Form collection of the Request object. We have chosen to use the pOST method of
form processing for several reasons. First, if we begin to place the information

necessary to drive the pages on the URL as a query string, then unscrupulous users
might be able to modify the orders of others simply by editing the URL. Using the
POST methods keeps the information from users and eliminates a potential security

hole. Although this method is still not foolproof, it is much more robust than using a
query string approach.

If we fail validation, we place a message into a session variable and redirect back to
EditOrder.asp. This page is designed to check this session variable and present
the information at the top of the form. We have chosen to use a session variable to
prevent the entry of free-form text as part of a query string. Figure 12.18 shows
EditOrder.asp with a validation error message generated by UpdateOrder.asp.

Figure 12.18. The rditorder.asp page with validation

errors.

1§ Mortbamind Tradens - Micragnlt Dntemer Fuploss

e Edt View Fayvoikes Locl Melp ai

oL D B 4la & @ J';ﬁ W, =

Bk Siap Fsfreth Home | Sesch Favoslss Hettory Ml
Mll'ﬂ-tl:Eﬂ it/ b i ort bl T ke B e ﬂ oo || Liks ®

northwind traders
shopping []

[Monday, January U3 2000

= [PN 1 Wyl

= ip T canncl be emgly

- Ship Th A e ss connol be cogly
= Posial Cods canniol be smply

Requived: [mmddyny) I

Shap To Person: I
Ehip To Adkiresas I

Cityr I.ﬂ-uy:- lina-rAdger tina-*Busmos Aires j
Pt all Codar I
MNax>> |
1 | =
(2] Dens o Lozal el

If our update is successful, we insert a new order in the database and redirect to the
Shopping2.asp page, as shown in Figure 12.19.

Figure 12.19. The snhopping2.asp page after successful

order creation.

) Howthesind Tradess - Miciosalt Inbernal Esplates

Fie Edt Yww Fgeoder Jook Heo I

Addess |.l£| Tt s M el T i it £ /S gl s ;I & Go

northwind traders -

shopping [chop-suey chinese]
[Memday, January 03 2000

Requir ed: WZH00
Shapper: Lindbed) Paciigne
Freight: F000
Ship Tex Curious George
125 W, Wain
Ann Arhor, W UGA
243N
Prioaiusct Catppory Oy UndAPice Exierided

Sedact the highghlad Category beltey [0 ordar products wilhin Thal Cabegony. Wihen &l
ERQCRACT: Fulryl By OF Qe 0l W) SopbeCy Lol e sZee CLELN

Fircsr mt

Coasgimenr s

=EniEChon:

Dy Prgeicts

i pn ey anly

(O Lantond

fadix T

el

Mo |
— -

| | o

To perform the insert, we use the 1ISInsertObjectData method. To build the
variant array needed by the method, we modify our cbataArray class in several
ways. First, we change our 1tem method to a property Let and Get. Second, we add
a Data-property Get statement to return the internal variant array. Third, we modify
the 1nitialize method to create an empty array if the Data variant passed in is not
already dimensioned. These modifications appear in Listing 12.10.

Example 12.10. Modifications to the CDataArray

Class

Public Property Get Item(PropertyName As Variant, Row As Variant) As
Variant
If dict.Exists (PropertyName) Then
Item = vData(dict.Item(PropertyName), CLng(Row))
Else
Item = vbEmpty
End If
End Property

Public Property Let Item(PropertyName As Variant,
Row As Variant,
RHS As Variant)
If dict.Exists (PropertyName) Then
vData (dict.Item(PropertyName), CLng(Row)) = RHS
End If
End Property

Public Sub Initialize(Data As Variant, PropertyNames As Variant)

Dim i As Integer
Call MakeDictionary (PropertyNames)

If Not IsArray(Data) Then

Data = Array (1)

ReDim Data (LBound (PropertyNames) To UBound (PropertyNames), O0)
End If

vData = Data
End Sub

Public Property Get Data() As Variant
Data = vData

End Property

Our insertion logic within the UpdateOrder.asp page is straightforward and appears
in Listing 12.11.

Example 12.11. Insertion of a New Order Object

Within UpdateOrder.asp

Data = vbEmpty
PropertyNames = NWServer.IISGetPropertyNames (CT ORDER)
Set DataO = Server.CreateObject ("AppIISCommon.CDataArray")

DataO.Initialize Data, PropertyNames

DataO.Item ("ShipperId",0) = ShipperId
DataO.Item("ShipToCityId",0) = CityId
DataO.Item("CustomerId",0) = CustomerId

10
DataO.Item ("RequiredDate", 0)= RegDate
DataO.Item("ShipToName",0) = ShipTo

(
(
(
DataO.Item ("EmployeeId", 0)
(
(
DataO.Item ("ShipToAddress",0) = Address

DataO.Item("ShipToPostalCode",0) = PostalCode
DataO.Item("IsComplete™,0) = False
Data = DataO.Data
Call NWServer.IISInsertObjectData (CInt (CT ORDER),
PropertyNames,
Data,
Errors,
ObjectId,
ObjectSubId)
Session ("OrderId") = ObjectId

On the shopping2.asp page, we first present the user with a list of product
categories. Selecting a category produces a list of products in that category. This list
is presented in the ProductsByCategory2.asp page, as shown in Figure 12.20.

Figure 12.20. The ProductsByCategory2.asp Pdge.

N newthwand teadais - Micoosolt Internet Eaplones

| B Edt Yww Fyemm Iocs Hep =

| e |E] it sl Mot T eacdsns Froducisiipl stegond mp Icategonad=ilcstagone=Confechions ﬂ FEao

northwind traders 3
products - [confections]
[Manday, Januany 03 2000]

Produet L L] Firicis Descontimissd Ohy
Crocnisss ke 1275 has [I.'.—
Cunibsy Gurmmibarcier 100 - 250 g bags bl Beal] ll:—
(. - S0 g phge 12000 bio .
RUNLICE Mufi-Moget-Creme 0 - 450 g planses 11400 by II‘—
Frstaen R e— s [O
Schogpl Schciolsde 100 - 100 g plsces §4360] l':i
SEARD | rgEea: 10 B % B panees 1250 b ll:i
i Focknery's Wanmabads 30 girt bowes 01 00 b m_
Sir Reckun't Seciwe 24 phge. x 4 peces 1000 b [t—
Borle sa sucre A8 e &350 L] r
Toalice Chocolale Dizculs 10boaes x 13 plecas 30 by IE_
alloresn Duldas 12- 100 g b 1535] l[:i o
TRATLE hSLEn 100 4 OF Bacias 0 by ll:i

i Heknbe | _|'|_1r

We present this list within the context of a rorM, with input fields to indicate the
quantity of items desired for purchase. To support the creation of new
OrderDetailItem objects, the user must change the quantity of a catalog item from
zero to something other than zero. Changing a quantity from a non-zero value to
zero causes a deletion to occur, whereas a change from one non-zero number to
another non-zero number performs an update. After changes are made to the
quantities, the productByCategory2.asp page is submitted to the

UpdateOrderDetails.asp page that performs the various inserts, updates, and
deletes. Upon completion, it redirects back to the shopping2.asp page, showing the
changes to the order detail items, as shown in Figure 12.21. The code to perform the
inserts, updates, and deletes appears in Listing 12.12.

Figure 12.21. The products that have been added to

the current order.

N Medthwind Tiadess - Mictasedt Inbeirest Feplones

Ele Ect Ve Fyeorter Iock Hep 5

iddewre |ﬂ:-.llpl-'d¢wﬂ."f-lerludT etz b] i :J]
northwind traders
shopping [chop-suey chinese]

Monday, January 03 2000

|s

Hrpired: 1500

Shipper: Uried Puckagn

Treight: 10m

Ship To: Curicus (ieorgs
125 W, Main

Are Arbowr, WU LUSA
ST

Prisdint atrepy oy Lenit i = Frtenateil
Malakoa sonloctoms] 0000 100,00

Sir Fodney's Marmaiade Confachions ke] oo 3203500
Tobsla 202500

Sainct the highlighied calagonys balos o mener products within et cabegory. Viken sl
PSS Fid Dear (rdiiad, [hh S8Ec] (e Nt bulion

[P

ol

Oy =
Dty Pt s
Cransereaks
ket i iy
Frisgiase R

Example 12.12. The Code Driving the Inserts,

Updates, and Deletes in UpdateOrderDetails.asp

Dim Data, PropertyNames, Errors
Dim DataOD, ObjectId, ObjectSubId
Const CT ORDER DETAIL = 8

CustomerId = Session ("CustomerId")

OrderId = Session ("OrderId")

MinRow = Request.Form("MinRow")

MaxRow = Request.Form("MaxRow")

Set NWServer = Server.CreateObject ("NWServer.CNWServer")
If Not NWServer.IISInitServer Then
Response.Write ("Could not Initialize the MTS Server
")

End If

PropertyNames = NWServer.IISGetPropertyNames (CT ORDER DETATL)

For i = MinRow To MaxRow
vQty = Request.Form(" Qty " & 1)
vOriginalQty = Request.Form(" OriginalQty " & 1)
vProductId = Request.Form(" ProductId " & i)
vOrderDetailId = Request.Form(" OrderDetaillId " & 1)

If CInt(vQty) > 0 and CInt(vOriginalQty) = 0 Then
' Insert
Data = vbEmpty
Set DataOD = Server.CreateObject ("AppIISCommon.CDataArray")

DataOD.Initialize Data, PropertyNames

DataOD.Item("OrderId",0) = OrderId
DataOD.Item("ProductId",0) = vProductId
DataOD.Item("Quantity",0)= vQty
DataOD.Item("Discount",0) = 0

Data = DataOD.Data

Call NWServer.IISInsertObjectData (CInt (CT _ORDER DETAIL),
PropertyNames,
Data,
Errors,
ObjectId,
ObjectSubId)

ElseIf CInt(vQty) = 0 and CInt(vOriginalQty) <> 0 Then
' Delete
Call NWServer.IISDeleteObject (CInt (CT ORDER DETAIL),
CLng (vOrderDetailId), O,

Errors)

ElseIf CInt(vQty) <> 0 And CInt(vOriginalQty) <> 0 and _
CInt (vQty) <> CInt(vOriginalQty) then
' Update
Data = vbEmpty

Set DataOD = Server.CreateObject ("AppIISCommon.CDataArray")

DataOD.Initialize Data, PropertyNames

DataOD.Item("Id",0) = vOrderDetaillId

DataOD.Item ("OrderId",0) = OrderId

DataOD.Item ("ProductId",0) = vProductId
(

DataOD.Item("Quantity",0)= vQty
DataOD.Item("Discount",0) = 0
Data = DataOD.Data

Call NWServer.IISUpdateObjectData (CInt (CT ORDER DETAIL),

PropertyNames,
Data, _
Errors,
CLng (vOrderDetaillId),
0)
End If
Next

Response.Redirect ("Shopping2.asp")

It is important to note that we have modified our OrderDetailItem object by
adding a category property. We have made this modification to support the
usability of our shopping2.asp page so that if we want to modify an existing
OrderDetailItem, we know the category to which the product belongs. To make
this update, we simply modify our view Order Detail view to add the column and
make the changes to the cT ORDER DETAIL class in our GetClassDef method on
NWServer. Again, it is important to note how simple and unobtrusive this type of
change is.

After we have selected all our products, we click the Next button, which submits the
page to the OrderCheckout.asp page. This page simply performs an update,
setting the IsComplete flag and the orderbate to the current date. Upon
completion of this update, it redirects back to the shoppingl.asp page.

Summary

In this chapter, we explored mechanisms with which to extend our application to
both the intranet and the Internet using functionality already built into our
framework. We have also explored basic Web site standardization techniques using
style sheets and server side include files. Finally, we looked at mechanisms to
perform inserts, updates, and deletes from a Web site within the context of our
framework.

In the next chapter, we will look at how our system interacts with others to integrate
itself within the landscape of the enterprise. We will also look at techniques that

involve both the movement of data between systems and the direct, real-time
access of data in foreign systems.

Chapter 13. Interoperability

The topic of interoperability is one that can fill an entire book by itself. Indeed,
Enterprise Application Integration (EAI) books that are available in a variety of
series deal with this topic in detail. Nonetheless, it is important in a book on
enterprise application development to provide a basic level of coverage of this topic
for completeness, because application interoperability is fundamental to the
enterprise. Therefore, the ideas presented in this chapter are meant to discuss
some of the theory as well as the implementation for the interoperability techniques
related to our application framework.

Interoperability Defined

The term interoperability itself can mean several things. At one level, it can simply
mean the movement of data from one application to another via simple file
structures, with a person acting as an intermediary. On the other hand, it can mean
the movement of data via a direct link between the two systems, without user
involvement. This same sharing of data can also be accomplished without the
physical movement of data from one system to another; it can be accomplished
instead through the direct, real-time access of the data in the other system. At
another level, interoperability can also require collaboration, which can include both
sharing data and signaling other systems. In this mode, one application can pass a
set of information to another system, asking it to perform some function. This
second system might perform some additional work and send a signal to yet another
system. At some point, the originator might receive notice of success or failure,
possibly with some data that represents the end product of all the work.

For the sake of exposition in this chapter, let us suppose that Northwind Traders has
an order-fulfillment system that is separate from its order-taking system—a
somewhat plausible example of how such an operation might work. The
order-taking system is the sample application that we have been working on up to
this point. The order- fulfillment system is an in-house legacy system. It is
necessary for our application to send the order information to the fulfillment system
after an order has been created.

We assume that the initial sample mechanism to accomplish our goal of
interoperability requires user intervention. We provide an example of this
less-than-ideal solution because there are many instances in which this is the only
option available. We follow this example with a more automated approach in which
orders are "dropped" from our order-taking application into the fulfillment system at

regular intervals (such as every two, four, or eight hours). We can assume, in this
more automated approach, that orders can be changed up until the time they are
dropped to the fulfillment system. In this automated approach, we have several
options available for implementation; we will provide examples of each.

Interoperability Through Data Movement

The basis for any form of data movement is a stream. SQL Server uses what is
known as a Table Data Stream (TDS) format when communicating with clients,
Internet Information Server (IIS) uses an HTML stream when sending results back
to a client, and so forth. In our example of moving the orders into the fulfillment
system, our stream carrier becomes a simple file, although its format can take one
of several forms.

Using Proprietary Formats in Data Transfer

Proprietary formats are typically brought about by the capabilities (or restrictions)
of one of the two systems in question. For example, if the legacy-based fulfillment
system has a defined file format for importing the orders, this is said to be a
proprietary format that the order-taking system must support. Alternatively, we
might choose to define a proprietary format within the order-taking system that the
fulfillment system must import. Typically, the former solution is easier to implement
because it is often more dangerous to make modifications to stable applications
than to newer ones just going into production.

To implement an exporter that will support this movement of data, we need to
create a new method on our I2ppServer class called CreateExportStream. We will
make our application-specific implementation in the NwWserver class. This method is
designed to be the only one called, regardless of the class type or the format needed,
by passing in an ExportClass and an ExportFormat identifier. Our choice to create
a single method to support all formats of all objects for all export activities is done
for future flexibility, as the next section points out. Note that this implementation is
yet another divergence from pure object orientation in that the Nwserver surrogate
object is hosting a method that would otherwise be implemented directly by the
object in question.

To implement a specific export process, we must first define export class types.
These differ from the normal class type definitions implemented so far. The reason
for this is that we might have to combine or modify some of our existing class types
to arrive at the export information needed by the foreign application, or we might
need to export our existing class types in manners not specified in our original
ClassDef definitions. If we must recombine existing class types to meet our export
requirements, we first must create a new class type, for which there is no

corresponding implementation in our NwClient component. Within the
implementation of the CreateExportStream method, use a Case statement to
select from among the various export class types, which then call an appropriate
private method on NWserver, passing it the given export format identifier.

We start our implementation process by defining two new class type constants:
CT ORDER EXPORT and CT ORDER DETAIL EXPORT. We also define a new export
format, EF ORDER PROPRIETARY. Listing 13.1 shows the implementation of the
CreateExportStream method on NwWServer.

Example 13.1. The CreateExportStream Method on
NWServer

Private Function IAppServer CreateExportStream(ClassId As Integer,

ExportType As Integer,
Stream As String,
Errors As Variant) As Variant

Select Case ClassId

Case CT_ORDER EXPORT, CT ORDER DETAIL EXPORT
Call CreateOrderExportStream (ExportType, Stream, Errors)
End Select
ObjCtx.SetComplete

End Function

Before implementing our CreateOrderExportStream method, which we called in
Listing 13.1, we must perform several development tasks. First, we must define a
proprietary format to use for the example. Next, we must implement the
appropriate ClassDef objects in our GetClassbDef method.

Let us suppose that the proprietary format for our order information is such that
both the order and the order detail information are included in the same data stream.
Let us also assume that there is an order line followed by multiple detail lines, which
might be followed by other order and detail lines. To accommodate this, the first
character of a line is a line type indicator of either an 0 or a D, for order and detail,
respectively. The remaining information on a given line depends on this type
indicator, with each field being separated by the pipe (|) character. We also assume
that the fields in both line types are defined implicitly by the proprietary standard
and cannot be changed without programmatic changes by both applications.

To implement the CT _ORDER EXPORT class type, a new single-row, two-column table
called Table Last Order Export is created to track the last time an order drop

was exported. It has an 1d column to serve as the primary key to help us update the
row, and a LastDate column that contains the date field in which we are interested.

We create a new view called view Order Export that includes this table but does
not explicitly join it to the other tables. This has the effect of returning the LastbDate
column for every row returned by the other join and where conditions for the query.
We can then compare this date with our 0Order Date column to only return the rows
that have not been exported since the last export date. We also create a

CT LAST ORDER EXPORT class type to help us easily manage the value of this row in
the database. We could have chosen to implement this last date tracking
mechanism via a registry setting on the computer running the integration. Although
this is plausible, it does not enable the data transfer to be run on more than one
machine because it is difficult to keep these dates synchronized between the various
machines. By placing this information in the database, we can run our data transfer
on multiple machines, although not at the same time. The implementation of

CT ORDER DETAIL EXPORT follows the standard process that we use to add new
class types. We make these additions to our GetClassDef function, as shown in

Listing 13.2.

Example 13.2. Adding the New Class Types to

NWServer

Private Function IAppServer GetClassDef (ByVal ClassId As Integer) As
CClassDef
Dim ClassDef As CClassDef

If Not bInitialized Then IAppServer InitServer
If Not mIAppServer.ClassDefs.Exists (CStr(ClassId)) Then

Select Case ClassId
Case CT ORDER EXPORT

Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"

.ReadLocation = "View Order Export"

.WriteLocation = ""

.IdColumnName = "Id"

.OrderByColumnName = "Order Date, Id"

.AppendMapping "OrderId", "Id", True, False, ctNumber,
"ORDER ID"

.AppendMapping "CustomerCode", "Customer Code", True, False,

ctString, "CUSTOMER CODE"

.AppendMapping "CompanyName", "Company Name", True, False,

ctString, "COMPANY NAME"

.AppendMapping "OrderDate", "Order Date", True, False,
ctDateTime, "ORDER DATE"

.AppendMapping "RequiredDate", "Required Date", True, False, _
ctDateTime, "REQUIRED DATE"

.AppendMapping "ShipperName", "Shipper Name", True, False,
ctString, "SHIPPER NAME"

.AppendMapping "FreightCost", "Freight Cost", True, False,
ctNumber, "FREIGHT COST"

.AppendMapping "ShipToName", "Ship To Name", True, False,
ctString, "SHIP TO NAME"

.AppendMapping "ShipToAddress", "Ship To Address", True, False,

ctString, "SHIP TO ADDRESS"
.AppendMapping "ShipToPostalCode", "Ship To Postal Code",
True, False, ctString, "SHIP TO POSTAL CODE"
.AppendMapping "ShipToCountry", "Ship To Country", True, False,

ctString, "SHIP TO COUNTRY"

.AppendMapping "ShipToCity", "Ship To City", True, False,
ctString, "SHIP TO CITY"

.AppendMapping "ShipToRegion", "Ship To Region", True, False,

ctString, "SHIP TO REGION"
.AppendMapping "LastExportDate", "Last Export Date", True,
False,
ctDateTime, ""
End With
Call mIAppServer.ClassDefs.Add (ClassDef, CStr (CT _ORDER EXPORT))

Case CT ORDER DETAIL EXPORT
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"

.ReadLocation = "View Order Detail Export"
.WriteLocation = ""

.IdColumnName = "Id"

.ParentIdColumnName = "Order Id"
.OrderByColumnName = "Id"

.AppendMapping "Id", "Id", True, False, ctNumber, "ID"

.AppendMapping "OrderId", "Order Id", True, True,
ctNumber, "ORDER ID"

.AppendMapping "Product", "Product", True, False,

ctString, "PRODUCT"
.AppendMapping "Quantity", "Quantity", True, True,
ctNumber, "QTY"
.AppendMapping "QuantityPerUnit", "Quantity Per Unit", True,
False,
ctString, "QUANTITY PER UNIT"
End With
Call mIAppServer.ClassDefs.Add (ClassDef,
CStr (CT_ORDER DETAIL EXPORT))

Case CT_LAST ORDER EXPORT
Set ClassDef = New CClassDef
With ClassDef

.DatabaseName = "NWIND"

.ReadLocation = "Table Last Order Export"
.WriteLocation = "Table Last Order Export"
.IdColumnName = "Id"

.OrderByColumnName = "Id"

.AppendMapping "Id", "Id", True, False, ctNumber, ""
.AppendMapping "LastDate", "LastDate", True, True, ctDateTime,
End With
Call mIAppServer.ClassDefs.Add (ClassDef,
CStr (CT_LAST ORDER EXPORT))
End Select
End If

Set IAppServer GetClassDef =
mIAppServer.ClassDefs.Item (CStr (ClassId))

End Function

With our new ClassDef objects defined in GetClassDef and our new tables and
views created, we can turn our attention to the implementation of the
CreateOrderExportStream method, as shown in Listing 13.3. Although we
currently have only one format type defined, we implement a Select Case
statement to switch among the possible types. In this code, we simply obtain the list
of current exportable orders using our GetObjectListData method for the

CT ORDER EXPORT class type. Remember that this list is automatically controlled by
the view Order Export view that relies on the Lastbate column in the

Table Last Order Export table. We iterate through the returned orders,
requesting the order detail information with a similar call to GetObjectListData,
this time using the cT ORDER DETAIL EXPORT class type and the ID of the current

order. We then write out to our output string the "O" header record, followed by the
"D" detail records. We continue this for all orders.

Example 13.3. The Implementation of

CreateOrderExportStream

Private Function CreateOrderExportStream (ExportType As Integer,

Stream
As
= String,

Errors
As
mVariant)

Dim DataO As Variant, DataOD As Variant

Dim PropertyNames As Variant

Dim Criteria As Variant

Dim cPIO As Collection, cPIOD As Collection
Dim i As Integer, j As Integer

Dim OrderId As Long

Dim sOut As String

On Error GoTo ErrorTrap

Select Case ExportType
Case EF ORDER PROPRIETARY

' get the collection of non-exported orders

Call IAppServer GetClassDef (CT ORDER EXPORT)
Call IAppServer GetClassDef (CT ORDER DETAIL EXPORT)

Call mIAppServer.GetObjectListData (CT ORDER EXPORT, O, 0,
PropertyNames,
mDataO, Errors)
If IsArray(DataO) Then
Set cPIO = MakePropertyIndex (PropertyNames)
For 1 = LBound(DataO, 2) To UBound(DataO, 2)
!

get the order detail records

OrderId = DataO(cPIO.Item("OrderId"), 1)

DataOD = vbEmpty
Call mIAppServer.GetObjectListData (CT ORDER DETAIL EXPORT,

OrderId, O,

=PropertyNames,

DataOD,

mErrors)

If IsArray(DataOD) Then

Append sOut, DataOD (cPIOD("Quantity"), Jj) & "|
Append sOut, DataOD (cPIOD ("QuantityPerUnit"), 7J)
Next 7J
End If
Next
End If

Set cPI

A}

Append
Append
Append
Append
Append
Append
Append
Append
Append
Append
Append
Append
Append
Append

oD =

write
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,
sOut,

MakePropertyIndex (PropertyNames)

out the order header

no

DataO (cPIO("OrderId"), i) & "|
DataO (cPIO ("CustomerCode"), 1)
DataO (cPIO ("CompanyName"), 1) &
DataO (cPIO ("OrderDate"), i) & " "
DataO (cPIO ("RequiredDate"), 1)
DataO (cPIO ("ShipperName"), 1) &
DataO (cPIO ("FreightCost™), 1) &
DataO (cPIO("ShipToName"), i) &
DataO (cPIO ("ShipToAddress"), 1)
DataO (cPIO ("ShipToPostalCode"),
DataO (cPIO ("ShipToCountry"), i)
DataO (cPIO ("ShipToCity"™), 1) &
DataO (cPIO ("ShipToRegion"), 1)

' write out the order details

For j =

LBou

nd (DataOD, 2) To UBound(DataOD,

Append sOut, "D|"
Append sOut, DataOD (cPIOD("Product"), j) &

Stream = sOut

End Select

Exit Funct

ErrorTrap:

ion

'l. Details to EventLog
Call WriteNTLogEvent ("CNWServer:CreateOrderExportStream",

Err.Number,

& vbCrLf

2)

"

w

& vbCrLf

Err.Description & " [" & Erl & "]", Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "CNWServer:CreateOrderExportStream",
Err.Description & " [" & Erl & "]"

End Function

With this initial implementation of the CreateOrderExportStream, we are able to
generate the proprietary format needed to move data from our application into the
order-fulfillment application. Implementing a dialog within Visual Basic that runs
this export process and saves the resulting stream to a file is a simple process. The
simple code snippet to instantiate the process appears in Listing 13.4.

Example 13.4. Calling the Proprietary Export Process

Dim NWServer As CNWServer
Dim AppServer As IAppServer
Dim Stream As String

Dim Errors As Variant

Set NWServer = CreateObject ("NWServer.CNWServer", MTSMachineName)
Set AppServer = NWServer

AppServer.InitServer

Call AppServer.CreateExportStream(CT ORDER EXPORT,
EF ORDER PROPRIETARY,

Stream, Errors)

After this output stream has been written to a file, it can be read into the fulfillment
system using whatever process is in place that accepts this proprietary input. In
some cases, it might be possible to implement a new custom loader in a language
like Visual Basic or C++, assuming there is an application programming interface
(API) to do so. Figure 13.1 shows a flowchart of how we have implemented this data
movement process so far.

Figure 13.1. Manual data movement using a

file-based process.

Adminstrator MTS RCEMS
Workstation
== NWSarver
Uszer Interface |_
: o Application L Y —
(Exporter) —————————
P b lAppServer |€H -
MNorthwind

Transfer

File

MTS ROBMS

User Interface ~
| Application — »| APl Surrogate
{Importer)
Y —
Administrator L | — e
egacy Impaort AP i
< ! Ordar Fulfillment

Standards-Based Formats

Although implementing a proprietary export format as shown in the previous
example is somewhat trivial in nature, creating new formats becomes burdensome
because the secondary systems are replaced over time. As these newer, secondary
systems are created, our legacy data transfer processes are no longer needed. We
might be remiss to take such functionality back out because of the time invested
into developing it, even though we might never use it again. This is akin to all the
clutter up in the attic or down in the basement that we find difficult to throw away.
One solution is that our application writes out a generic, standards-based format
that new systems coming online should support. We can either maintain our
capability to write out proprietary formats alongside our generic format or just write
out a single generic format and create secondary processes to convert the
information into the appropriate target format. These secondary processes can be
console applications written in your favorite language, such as Visual Basic or C++,
or they can be simple Perl scripts.

For our application, we have chosen to use the eXtensible Markup Language (XML)
as the foundation for our standards-based format. Not only does this make it easier

to implement the importation side of the data movement interface, it uses a
technology that has gained widespread acceptance. XML parsers are available for
most major platforms and operating systems, and most enterprise applications
should offer some form of XML support in the near future. To implement this type of
output stream, we must define a format identifier and implement the appropriate
code under our CreateOrderExportStream method. We call this new constant

EF ORDER XML. This code, as shown in Listing 13.5, leverages the XML-generation
functionality that we have placed in IappServer.

Example 13.5. The CreateOrderExportStream Method

with Support for XML Format

Private Function CreateOrderExportStream (ExportType As Integer,

Stream As String,
Errors As Variant)

Dim DataO As Variant, DataOD As Variant

Dim PropertyNames As Variant

Dim Criteria As Variant

Dim cPIO As Collection, cPIOD As Collection

Dim i As Integer, J As Integer

Dim OrderId As Long

Dim sOut As String

On Error GoTo ErrorTrap

Select Case ExportType
Case EF ORDER PROPRIETARY
' same code as before
Case EF ORDER XML
Call IAppServer GetClassDef (CT ORDER EXPORT)

Call IAppServer GetClassDef (CT ORDER DETAIL EXPORT)

' write out the DTD
Append sOut, "<?xml version='1l.0' encoding='iso-8859-1"' ?2>" &
vbCrLf
Append sOut, "<!DOCTYPE ExportedOrderItems [" & vbCrLf
Append sOut, "<!ELEMENT ExportedOrderItems
(ExportedOrderItem*)>"
& vbCrLf
Append sOut,
"<!ELEMENT ExportedOrderItem (ORDER,
ORDER DETAIL ITEMS*)>"
& vbCrLf

sTemp = mIAppServer.CreateXMLCollectionClass (CT ORDER EXPORT)

Append sOut, sTemp & vbCrLf

vOrderProperties = Array ("OrderId", "CustomerCode",
"CompanyName", "OrderDate",
"RequiredDate", "ShipperName",
"FreightCost", "ShipToName",
"ShipToAddress", "ShipToPostalCode",
"ShipToCountry", "ShipToCity",
"ShipToRegion™)

vOrderDetailProperties = Array ("Product", "Quantity",

"QuantityPerUnit")

sTemp = mIAppServer.CreateXMLClass (CT_ORDER EXPORT,
vOrderProperties)

Append sOut, sTemp

sTemp =
mIAppServer.CreateXMLCollectionClass (CT _ORDER DETAIL EXPORT)
Append sOut, sTemp
sTemp = mIAppServer.CreateXMLClass (CT _ORDER DETAIL EXPORT,
vOrderDetailProperties)
Append sOut, sTemp
Append sOut, "]>" & vbCrLf

' write out the document data
Append sOut, "<ExportedOrderItems>" & vbCrLf
' get the collection of non-exported orders
Call mIAppServer.GetObjectListData (CT ORDER EXPORT, 0, O,
PropertyNames, DataO, Errors)
If IsArray(DataO) Then
Set cPIO = MakePropertyIndex (PropertyNames)
For i = LBound(DataO, 2) To UBound(DataO, 2)
Append sOut, "<ExportedOrderItem>" & vbCrLf
' get the order detail records
OrderId = DataO(cPIO.Item("OrderId"), i)
sTemp = mIAppServer.CreateXMLObject (CT_ ORDER EXPORT,
vOrderProperties, DataO, 1)
Append sOut, sTemp
DataOD = vbEmpty
Call mIAppServer.GetObjectListData (CT ORDER DETAIL EXPORT,
OrderId, 0, _
PropertyNames, DataOD,
Errors)

If IsArray(DataOD) Then

sTemp =

mIAppServer.CreateXMLCollection (CT ORDER DETAIL EXPORT,

vOrderDetailProperties,
DataOD)
Append sOut, sTemp
End If
Append sOut, "</ExportedOrderItem>" & vbCrLf
Next i
End If
Append sOut, "</ExportedOrderItems>" & vbCrLf
Stream = sOut
End Select
Exit Function
ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("CNWServer:CreateOrderExportStream",
Err.Number,
Err.Description & " [" & Erl & "]", Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "CNWServer:CreateOrderExportStream",
Err.Description & " [" & Erl & "]"

End Function

To build an XML document, we first must define a document type definition (DTD)
section that describes the data contained in the remainder of the section. We must
explicitly create the DTD ourselves because it is so tightly bound to our object model.
If we had built an application to support an existing industry standard
DTD—something that might become more common as XML use increases—then we
would have adapted our object model to conform to the standard DTD at the outset
or we would have to write some additional code to make sure that we can reproduce
the standard DTD from our object model. Listing 13.6 shows the DTD for our export
process.

Example 13.6. The DTD for Our XML-Formatted Order

Export Process

<?xml version='1l.0' encoding='iso-8859-1"' ?>

<!DOCTYPE ExportedOrderItems [

<!ELEMENT ExportedOrderItems (ExportedOrderItem*)>
<!ELEMENT ExportedOrderItem (ORDER, ORDER DETAIL ITEMS%*)>
<!ELEMENT ORDERS EMPTY>

<!ELEMENT ORDER EMPTY>

<!ATTLIST ORDER
ORDER ID CDATA #REQUIRED
CUSTOMER CODE CDATA #REQUIRED
COMPANY NAME CDATA #REQUIRED
ORDER DATE CDATA #REQUIRED
REQUIRED DATE CDATA #REQUIRED
SHIPPER NAME CDATA #REQUIRED
FREIGHT COST CDATA #REQUIRED
SHIP TO NAME CDATA #REQUIRED
SHIP TO_ADDRESS CDATA #REQUIRED
SHIP TO_ POSTAL CODE CDATA #REQUIRED
SHIP TO_COUNTRY CDATA #REQUIRED
SHIP TO CITY CDATA #REQUIRED
SHIP TO REGION CDATA #REQUIRED

<!ELEMENT ORDER DETAIL ITEMS (ORDER DETAIL ITEM*)>
<!ELEMENT ORDER DETAIL ITEM EMPTY>
<!ATTLIST ORDER DETAIL ITEM

PRODUCT CDATA #REQUIRED

QUANTITY CDATA #REQUIRED

QUANTITY PER UNIT CDATA #REQUIRED
>

1>

You might notice that the keyword #REQUIRED is used for all the attribute default
type settings. Other values could include #IMPLIED or #FIXED. If your DTD requires
these settings, it is a simple matter to add this meta information to the Attributes
collection for the required property in a ClassbDef, while also modifying the
appropriate DTD generation functions. The same applies to the cpaTA keyword,
which can be replaced with other attribute types, such as ENTITY, ENTITIES, ID,
IDREF, IDREFS, NMTOKEN, NMTOKENS, NOTATION, and Enumerated. We have
chosen the simplest cpaTA and #REQUIRED methods as defaults because we are
using XML as a simple data transfer medium, not as a mechanism to enforce
business rules.

Looking back at the code in Listing 13.5, you should notice that in our XML version,
we follow the same data retrieval logic that we used in our proprietary format case.
The main difference is in how we write out the data. Notice the use of four methods
on the 1appServer class that assist us in formatting the information into XML. They
are CreateXMLCollectionClass, CreateXMLClass,CreateXMLCollection, and

CreateXMLObject. The first two methods correspond to the creation of the DTD,

whereas the second two methods correspond to the actual information being written
out. To create our XML-formatted stream, we ust first build the DTD. To accomplish
this, we first write out some preamble information—including the first four lines of

the DTD—to an XML output string to identify the contents as an XML document. We
then call the CreatexMLCollectionClass method for CT ORDER EXPORT to write
out the DTD information for the orDERS collection, followed by a call to
CreateXMLClass to write out the DTD information for the ORDER class. Notice that in
our call to createxMLClass, we are passing a variant array call, vOrderProperties.
This tells the createxMLClass method which properties of the class to write out as
attributes in the ATTLIST section.

Notice that we have also followed the same approach in terms of object hierarchy in
our XML as we have throughout the rest of our application base. Instead of defining
the ORDER DETAIL ITEMS collection as a child object of the ORDER object, we have

placed them side-by-side and wrapped them in an EXPORTED ORDER ITEM construct.
The reason for this is that our metadata does not understand an object hierarchy,

and thus it cannot generate a DTD to support one.

The CreateXMLCollectionClass method appears in Listing 13.7, and the
CreateXMLClass method appears in Listing 13.8. Both are straightforward in their
implementation. It is important to note that we are simply using the Attributes
collections on both the ClassDef and PropertyDef objects.

Example 13.7. The CreateXMLCollection Method on

IAppServer

Public Function CreateXMLCollectionClass (ClassId As Integer) As String
Dim sXMLOut As String
Dim ClassDef As CClassDef

Dim PropertyDef As CPropertyDef

Dim AttributelItem As CAttributeltem
Dim XMLCollectionClassName As String
Dim XMLThingy As String

Dim i As Integer
On Error GoTo ErrorTrap
Set ClassDef = mClassDefs.Item(ClassId)
' 1. Output the ELEMENT section
If ClassDef.Attributes.Exists ("XMLCollectionClassName") Then
XMLCollectionClassName =

ClassDef.Attributes.Item ("XMLCollectionClassName") .Value
Else

XMLCollectionClassName = ClassDef.ReadLocation ' assumes table name
End If

Call Append (sXMLOut, "<!ELEMENT" & vbTab &

XMLCollectionClassName & " ")
If ClassDef.Attributes.Exists ("XMLCollectionClassChildren") Then
XMLThingy =
ClassDef.Attributes.Item("XMLCollectionClassChildren") .Value
Else
XMLThingy = "EMPTY"
End If
Call Append (sXMLOut, XMLThingy & ">" & vbCrLf)

ExitFunction:
CreateXMLCollectionClass = sXMLOut

Exit Function

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:CreateXMLCollectionClass",
Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:CreateXMLCollectionClass",
Err.Description & " [" & Erl & "]"

End Function

Example 13.8. The CreateXMLClass Method on

IAppServer

Public Function CreateXMLClass (ClassId As Integer,

Properties As Variant) As String

Dim sXMLOut As String
Dim ClassDef As CClassDef

Dim PropertyDef As CPropertyDef

Dim AttributelItem As CAttributeltem
Dim XMLClassName As String

Dim XMLThingy As String

Dim i As Integer

On Error GoTo ErrorTrap
Set ClassDef = mClassDefs.Item(ClassId)
' 1. Output the ELEMENT section

If ClassDef.Attributes.Exists ("XMLClassName") Then
XMLClassName = ClassDef.Attributes.Item("XMLClassName") .Value
Else
XMLClassName = ClassDef.ReadLocation ' assumes table name

End If

Call Append (sXMLOut, "<!ELEMENT" & vbTab & XMLClassName & " ")

If ClassDef.Attributes.Exists ("XMLClassChildren") Then
XMLThingy = ClassDef.Attributes.Item("XMLClassChildren") .Value

Else
XMLThingy
End If

"EMPTY"

Call Append (sXMLOut, XMLThingy & ">" & vbCrLf)

' 2. Output the ATTLIST section

XMLThingy = "<!ATTLIST " & vbTab & XMLClassName
Call Append (sXMLOut, XMLThingy & vbCrLf)

If Not IsArray(Properties) Then
Properties = GetPropertyNames (ClassId)
End If

For i = LBound(Properties) To UBound (Properties)
Set PropertyDef = ClassDef.PropertyDefs.Item(Properties(i))
If PropertyDef.Attributes.Exists ("XMLAttributeName") Then

XMLThingy =
PropertyDef.Attributes.Item("XMLAttributeName") .Value
If XMLThingy <> "" Then

Call Append (sXMLOut, vbTab & vbTab & XMLThingy)
Call Append (sXMLOut, " CDATA #REQUIRED" & vbCrLf)
End If
End If
Next I

Call Append (sXMLOut, ">" & vbCrLf)

ExitFunction:
CreateXMLClass = sXMLOut

Exit Function

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:CreateXMLClass", Err.Number,
Err.Description, Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:CreateXMLClass",
Err.Description & " [" & Erl & "]"

End Function

The CreatexMLCollection and CreateXMLObject methods take our familiar data
variant array that is retrieved from our various data retrieval methods. The code for
CreateXMLObject appears in Listing 13.9, and Listing 13.10 shows the code for
CreateXMLCollection.

Example 13.9. The CreateXMLObject Method on

IAppServer

Public Function CreateXMLObject (ClassId As Integer, Properties As Variant,

Data As Variant, Row As Integer) As String
Dim sXMLOut As String
Dim ClassDef As CClassDef

Dim PropertyDef As CPropertyDef
Dim PropertyNames As Variant

Dim PropertyIndex As Collection
Dim XMLClassName As String
Dim XMLThingy As String
Dim i As Integer
On Error GoTo ErrorTrap
Set ClassDef = mClassDefs.Item(ClassId)
PropertyNames = GetPropertyNames (ClassId)

Set PropertyIndex = MakePropertyIndex (PropertyNames)

If Not IsArray(Properties) Then

Properties = PropertyNames
End If

If ClassDef.Attributes.Exists ("XMLClassName") Then
XMLClassName = ClassDef.Attributes.Item("XMLClassName") .Value
Else
XMLClassName = ClassDef.ReadLocation ' assumes table name
End If

Append sXMLOut, "<" & XMLClassName & " "

For i = LBound(Properties) To UBound (Properties)

Set PropertyDef = ClassDef.PropertyDefs.Item(Properties(i))
If PropertyDef.Attributes.Exists ("XMLAttributeName") Then

XMLThingy =
PropertyDef.Attributes.Item ("XMLAttributeName") .Value
If XMLThingy <> "" Then
Append sXMLOut, XMLThingy & "=" & Chr(34) & _
Data (PropertyIndex (PropertyDef.Name), Row) &
Chr(34) &« " "
End If
End If
Next i

Append sXMLOut, "/>" & vbCrLf

ExitFunction:
CreateXMLObject = sXMLOut

Exit Function

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:CreateXMLObject", Err.Number,
Err.Description & " [" & Erl &
"1y
=mErr.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:CreateXMLObject", &
Err.Description & " [" & Erl & "]"

End Function

Example 13.10. The CreateXMLCollection Method

Public Function CreateXMLCollection(ClassId As Integer,

Properties As Variant,
Data As Variant) As String
Dim sXMLOut As String
Dim ClassDef As CClassDef

Dim PropertyDef As CPropertyDef
Dim PropertyNames As Variant

Dim PropertyIndex As Collection

Dim XMLCollectionClassName As String
Dim XMLThingy As String

Dim i As Integer

On Error GoTo ErrorTrap

Set ClassDef = mClassDefs.Item(ClassId)
PropertyNames = GetPropertyNames (ClassId)
Set PropertyIndex = MakePropertyIndex (PropertyNames)

If Not IsArray(Properties) Then
Properties = PropertyNames
End If

If ClassDef.Attributes.Exists ("XMLCollectionClassName") Then
XMLCollectionClassName =
ClassDef.Attributes.Item ("XMLCollectionClassName") .Value
Else

XMLCollectionClassName = ClassDef.ReadLocation ' assumes table name

End If

Append sXMLOut, "<" & XMLCollectionClassName & ">" & vbCrLf

For i = LBound(Data, 2) To UBound (Data, 2)
XMLThingy = CreateXMLObject (ClassId, Properties, Data, 1)
Append sXMLOut, XMLThingy

Next T

Append sXMLOut, "</"™ & XMLCollectionClassName & ">" & vbCrLf
ExitFunction:

CreateXMLCollection = sXMLOut

Exit Function

ErrorTrap:
'l. Details to EventLog
Call WriteNTLogEvent ("IAppServer:CreateXMLCollection", Err.Number,

Err.Description & " [" & Erl & "]", Err.Source)
'2. Generic to client - passed back on error stack
Err.Raise Err.Number, "IAppServer:CreateXMLCollection",
Err.Description & " [" & Erl & "]"

End Function

With our XML process now in place, we can modify the code snippet from Listing
13.4 to now generate an XML format of the same information, which appears in

Listing 13.11.

Example 13.11. Calling the XML Export Process

Dim NWServer As CNWServer
Dim AppServer As IAppServer
Dim Stream As String

Dim Errors As Variant

Set NWServer = CreateObject ("NWServer.CNWServer", MTSMachineName)
Set AppServer = NWServer

AppServer.InitServer

Call AppServer.CreateExportStream(CT ORDER EXPORT, EF ORDER XML,

Stream, Errors)

The rest of the standards-based process is the same process shown in Figure 13.1.
The only difference is that now the format of the transfer file is XML versus a
proprietary format. Figure 13.2 shows the XML Notepad (available from Microsoft)
with a sample of our export file loaded.

Figure 13.2. The XML Notepad showing a sample

ﬁ' Tech xml - XML Nobepad
Fle Ect Yiew [neem ook Hep

DiS|E| ||| u 2o «|s| o]~ &

order export file.

Structure

Lol

= 1% EspaetedOiideniem:
] Exporadlegen:em
I EvporedDndertem
= (1 EwpurtedDoderliem
=11 DRDER

CUSTOMER_CODE
COMPAY_HAME
ORDER_DATE
REDUREL'_DWTE
SHIFPER_NAME
FREIGHT_COS1
SHIP_T0_Mabig
SHIP_TO_ADDRESS
SHIP_TO_POSTAL_OCDE
SHIE_TO_COUNTAY
SHEE_fO_oiry
SHIP_T0_REGICH

| DADER_DETAIL_ITEMS
=1l ORDER_DETAIL_ITEM
=111 ORDER_DETAIL_ITEW
=1l ORDER_DE TAIL_ITEM
% PRODUCT

© OUANTITY

% OUANTITY_PER_UMIT

LR R - ol o K E

Y
=

11046

“WAM DK

Dhi W i K
4205

Eral]

Ll Pk e

J.k4

Do ' praigerad Ky

Aderigusnt nles TN
LX)

Gisriang

Shatgait

[

5 bl S Roult

18
24 - 12 cz boitles

¥ 1] Expoeedlodariem
+ 1] Exporadlnderiem
+ 1] Exporadlndardiem
¥] Exporadledardiem
] Exportedledediem
¥] Expetedogderlem
Fra Help, press F1 LT]

File-Based Interoperability

With our capability to generate proprietary, or standardized, data streams, we now
have the capability to transfer information from one system to another. In the
simplest form, a simple file generation process that calls the CreateExportStream
method can be implemented. We spoke of this same process in the previous section
and diagrammed it in Figure 13.1. This process can be placed directly off the TooLs
section of the intranet Web site, or it can be placed in the Visual Basic client
application. In either implementation, a user chooses to generate this information
to a file. The user must then take this file to the order-fulfillment system and import
it. This activity is typically performed at predetermined intervals, such as daily,
every fourv hours, or whatever is needed. In many cases, this type of
interoperability can be put into production quickly, while more automated solutions
are developed.

In a more automated system, a task scheduler can trigger a process in the
order-taking system that writes out the file to a shared directory and then calls the
order-fulfillment system in which to read it. Task schedulers can come in various
forms. The NT system has a built-in task-scheduling component through its AT

command. The SQL Executive can be used as a triggering device, but this requires
processing to occur on the same physical machine as the database server, which
might not be desirable. Commercially available task schedulers can also be used, or
a custom scheduler, which uses the Windows timer API and which is implemented as
an NT service, can also be used. For our purposes, we use the native NT scheduler
to call console applications written in Visual Basic.

If our order-fulfillment system has an API that enables us to automate our import

process, we can automate this entire data transfer process. Figure 13.3 shows an
overview of the architecture required to automate this process.

Figure 13.3. Automated data movement using a task

scheduler and an integration server.

Integration Server MTS ROBMS
»| MNWServer
Console
—»| Application *
_
(Exporter) _—
— | lAppServer |
Morthwind
NT Scheduler Transfer
File
Y MTS RDBEMS
Console
—»| Application »| AP Surrogate
(Importer)
* ~
—_—
AR Order Fulfillment
Systam

First, we create a shared file directory on our integration server machine to serve as
a common data point. If we want an order drop to occur every four hours starting at
8:00 a.m. and a command file called DROPORDERS . CMD drives it, then we would enter
the following AT commands on our integration server machine:

AT 8:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 12:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD
AT 16:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD
AT 20:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 0:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD
AT 4:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

First, the DROPORDERS . CMD file is designed to retrieve the file from the order-taking
system via a console application. Assuming our Northwind MTS machine is named
MOJO and our integration server is called cARTMAN, then our console application can
be called as follows:

EXPORTORDERS.EXE MTS:MOJO PATH:\\CARTMAN\EXPORTS\ORDERS . XML

This console application would connect to the MTS machine named M0JO, calling the
CreateExportStream method and saving the resulting information to a file called
ORDERS. XML on the path \\CARTMAN\EXPORTS.

The next line in the DROPORDERS . CMD file would import the file into the fulfillment
system. Assuming an MTS machine of ALEXIS, it might look something like the
following statement:

IMPORTORDERS.EXE MTS:ALEXIS PATH:\\MOJO\EXPORTS\ORDERS.XML

This simple command file and the supporting console applications would be all that
is necessary to automate the data transfer process. In a real-world case, the
console applications would be designed to return errorlevel values back to the
command processor. For example, if the EXPORTORDERS . EXE were to fail, we would
not want to run the IMPORTORDERS.EXE command. In fact, we would likely be
interested in branching off to an alerting mechanism to inform support staff of the
failed export.

There are still some issues with this process in that there is a "hole" in which a set
of orders could be exported, but the import would fail and thus never have the
chance of making it into the fulfillment system on the next export. The reason is that
the LastExportDate field would have been adjusted in the CreateExportStream
method, which assumes that the downstream import processes will succeed. To
make this process as robust as possible, the CreateExportStream method should
not update the LastExportDate field. Instead, a separate public method on
NWServer named SetLastExportDate should be created. This method could be
called by yet another console application upon successful completion of the

IMPORTORDERS .EXE process. There is still an issue in that if the import fails midway
into the process, no orders from the point of failure forward will be processed.

The most robust approach using the LastExportDate field would be to have the
IMPORTORDERS .EXE process call the setLastExportDate method after each
successful import. Upon the first failure, the process aborts, writing an application
event to the event log and sending an errorlevel back to the command processor.
Again, this would signal support staff of the issue to be resolved. This process
assumes that the orders are listed in date order.

Building a pseudo-console application in Visual Basic is not overly difficult. We use
the term pseudo-console because Visual Basic cannot redirect stdin and stdout
like most console applications can. Other than that, it can process command-line
arguments and, with the help of a Windows API, can generate an errorlevel back
to the command processor. It is advantageous for us to use Visual Basic to build the
console applications for our application-integration efforts because we can use the
COM and DCOM infrastructure functionality already built. It is also much simpler
than using other alternatives, such as C++, Delphi, or even Perl. The only thing to
consider is that using Visual Basic requires the installation of the Visual Basic
runtime and our application framework components on the integration machine.

To create a console application in Visual Basic, we simply create a Standard EXE
application. We remove the Forml. frm file, add a basic module called modconsole,
and create a Main subroutine. This routine is called when the application starts up.
We can gain access to the command-line parameters through the command function
and return an errorlevel via the ExitProcess function. This function simply
provides us with the command-line argument as a string value. We must process it
to determine the actual parameters based on whatever format we have defined. The
code for EXPORTORDERS . EXE can be found in Listing 13.12. A similar application can
be built for IMPORTORDERS . EXE .

Example 13.12. The Code for EXPORTORDERS.EXE

Option Explicit

Const CT_ORDER EXPORT = 301

Const CT_ORDER DETAIL EXPORT = 302
Const EF_ORDER PROPRIETARY = 1
Const EF_ORDER XML = 2

Public Declare Sub ExitProcess Lib "kernel32"

(ByVal uExitCode As Long)

Public Function ExportOrders (MTSServerName As String,

FilePath As String)

Boolean

Dim NWServer As CNWServer
Dim AppServer As IAppServer
Dim Stream As String

Dim Errors As Variant

Dim iFileNum As String

On Error GoTo ErrorTrap

Set NWServer = CreateObject ("NWServer.CNWServer",
MTSServerName)
Set AppServer = NWServer

AppServer.InitServer

Call AppServer.CreateExportStream(CT ORDER EXPORT,
EF ORDER_ XML,
Stream,
Errors)
iFileNum = FreeFile
Open FilePath & "\OrderExport.XML" For Output As #iFileNum
Print #iFileNum, Stream

Close #iFileNum

ExportOrders = True

Exit Function

ErrorTrap:
ExportOrders = False

End Function

Sub Main ()
Dim sCommand As String

Dim sParms () As String

Dim MTSServerName As String
Dim FilePath As String

Dim i As Integer
sCommand = Command
sParms = Split (sCommand, " ")

For i = LBound(sParms) To UBound(sParms)

As

Select Case UCase (sParms (i))

Case "-38"
MTSServerName = sParms (i + 1)
Case "-P"

FilePath = sParms (i + 1)
End Select
Next I

If ExportOrders (MTSServerName, FilePath) Then
ExitProcess (0)
Else
ExitProcess (1)
End If
End Sub

Messaging-Based Interoperability

In our automated version in the previous example, we have had to go to great
lengths to ensure that orders do not get lost during the process of moving the data
between the taking and fulfillment systems. We did this by having the
IMPORTORDERS . EXE console application perform the update to the LastExportDate
field. Although this is a working solution, it is undesirable to have the
IMPORTORDERS . EXE application, which is a part of our fulfillment system, performing
updates to our order-taking system. Additionally, if the number of orders is large
then this adds extra processing overhead onto the data transfer process. This
section introduces the concept of a message queue to make this type of application
integration cleaner. We then talk about using a much larger messaging
system—electronic mail—to provide integration among systems that span corporate
boundaries.

Using a Message Queue

A message queue is an enterprise component that has been around since the early
mainframe days. The two larger message queue products include Microsoft Message
Queue (MSMQ) and IBM's MQSeries. The former runs only on NT-based platforms,
whereas the latter runs on NT and most others. There are commercial bridging
products available that can move messages from one product to another, or you can
build your own. For the purposes of our application, we use only MSMQ, although
similar techniques should apply to other message queue products.

One of the benefits of using a message queue is the concept of guaranteed delivery.
If one application places a message on the queue, it remains there until specifically
removed by another application. In our order-information transfer example, the
EXPORTORDERS .EXE console application could place the information into a message
queue rather than to a shared file directory. In this case, the EXPORTORDERS . EXE
would have the responsibility of setting the LastExportDate upon completion,
because it is now guaranteed that the message it has created will remain in the
queue until it is successfully processed. Figure 13.4 shows an architectural overview
of this process.

Figure 13.4. Automated data movement using a task

scheduler, an integration server, and a message

queue.
Export Workstation MTS RDBMS
Consale
NT Scheduler || Application »| MNWServer
(Exparter)
v v
MSMO w» lAppServer |
MWorthwind
Import Wnrhstaliun! MTS RDBMS
MSMO | APl Surrcgate
L ¥
=
Console —_—
NT Scheduler || Application AP _
(Importer) Order Fulfillment
systerm

Modifying our EXPORTORDERS . EXE process to accommodate a message queue is
straightforward. First, your development machine must have the
MSMQ-independent client components installed. To do this, you must have access
to an MSMQ site- controller installation. If your development machine is NT Server,
you can simply install MSMQ on it. If you are running NT Workstation then you will
need to use the NT Option Pak to install the MSMQ client. The reason for using an
independent client is so that we can send messages over a potentially unreliable, or
sometimes disconnected, network. In this mode, MSMQ writes to a local message
store if the network is disconnected, and the message store sends the messages to

the target queue after the connection is reestablished. The other option, the
dependent client, does not have this local storage capability.

With these items in place, we can create a public queue using the MSMQ Explorer.
To accomplish this, we right-click on the server name in the MSMQ Explorer and
select New, and then Queue, as shown in Figure 13.5. This launches the Queue
Name dialog seen in Figure 13.6. We then name this queue OrderTransfer and
deselect the Transactional check box. Clicking on the OK button creates the queue.

Figure 13.5. Creating a new queue in the MSMQ

Explorer.

&+ Emterpeine - Micansolt Mestage Quawms Eaploser
Fie Yew Tock Help
&l - |e) x|
i HisthwrdTacks
-
_'J Hormlifns
- . .
Y e
Ei [t
T L] ca Sk Piivate Qurues

1 Cormecter willPmg
¥] Enterpine

[Label [Jowrsad | Creped [Modied

1 |
Creabe a raw Duses 3 objectin|

Figure 13.6. Naming the new queue in the MSMQ

Explorer.

Queue Name K E3

Mame

| UrderT ranster

[~ Transactional

]S Cancel

After the MSMQ-independent client is installed on our machine, we can reference it
via the MSMQ object library. This ActiveX library is found in mgoa.d11. It appears as
Microsoft Message Queue Library in the References dialog within Visual Basic. A
C-level API provides access to all MSMQ functionality, whereas the ActiveX wrapper
is suitable for many applications.

We modify our EXPORTORDERS . EXE code by first creating a public gsend function, as
shown in Listing 13.13. The technique shown for opening a message queue and
sending a message is taken directly from Microsoft documentation. It is important
to note the statement that sets the pelivery property of the MsMOMessage object to
MQOMSG DELIVERY RECOVERABLE. The default mode of MSMQ is to store all local
messages in memory. In the case of a double fault, whereby the network is
disconnected, if messages are sent and then the system is restarted before
re-establishment of the connection, the messages stored in memory will be lost. By
setting this property as described, the messages are written to local disk storage.
Although this mode makes these messages permanent, it does slow down overall
message passing. Because we are moving data between applications using MSMQ,
we must be guaranteed of delivery, so we set this property.

Example 13.13. The QSend Function

Public Function QSend(QueueName As String,
MsgTitle As String,
MsgBody As String)
Dim gry As MSMQQuery
Dim gis As MSMQQueueInfos
Dim gi As MSMQQueueInfo
Dim gl As MSMQQueue

Dim msg As MSMQMessage

Set gi = New MSMQQueueInfo

gil.FormatName = QueueName

Set gl = gi.Open(MQ SEND ACCESS, MQ DENY NONE)
Set msg = New MSMQMessage

msg.Label = MsgTitle

msg.Body = MsgBody

msg.Delivery = MQMSG DELIVERY RECOVERABLE
msg.Send gl

gl.Close

End Function

We are not explicitly trapping for errors in this code because we are assuming our
calling process will want to handle it specifically.

We also modify our ExportOrders function to now send the XML-formatted stream
to the queue instead of the file used in the previous example, as shown in Listing
13.14.

Example 13.14. The Modified ExportOrders Function

to Support MSMQ

Public Function ExportOrders (MTSServerName As String,
FilePath As String) As Boolean
Dim NWServer As CNWServer
Dim AppServer As IAppServer
Dim Stream As String
Dim Errors As Variant

Dim iFileNum As String

Dim QName As String

On Error GoTo ErrorTrap

Set NWServer = CreateObject ("NWServer.CNWServer",
MTSServerName)

Set AppServer = NWServer

AppServer.InitServer

Call AppServer.CreateExportStream(CT ORDER EXPORT,
EF ORDER XML,
Stream,

Errors)

QOName = "Direct=TCP:128.128.128.126\0OrderTransfer"
Call QSend(QName, "ORDER EXPORT", Stream)

ExportOrders = True

Exit Function

ErrorTrap:
ExportOrders = False

End Function

Although we have hard-coded the queue name here for exposition, we would modify
our calling convention into ExportOrders to implement a —g switch to provide the
queue name. Notice the "Direct=.." format used for the queue name. This format
tells MSMQ to delivery the message in a potentially disconnected status. If we do
not use this format and the computer is disconnected when we send the message,
an error is raised. After this method has completed successfully, the message is
visible in the MSMQ Explorer under the O0rderTransfer queue name, as shown in

Figure 13.7.

Figure 13.7. The newly delivered message in the

queue.

£ Enterprise - Micioroft Mertage Queus Exploser

Fie Yew Tooks Help

o] J) I S e
= o Hothwarad T isdei
— | e [
= 5 Homeltics NN [ACSSATT20B9E 11 DBFAC-00ANCCTT00 PE1S
] !_1 e
:J ealman
o Dewd Letie:
ol Joural
o oeclersanale
of ach Diead Lelier
] Connected Hebwodcs
#-|_]) Enferpise Seawer

Al

Sendy 1 sbpeet] delectes LM

On the import side, we implement a process that retrieves the messages for the

queue. Although we won't provide the full implementation, we do show this retrieval
process. The important item to understand is the difference between peeking and
retrieving messages. Peeking enables you to pull a message from the queue without
removing it from the queue. Retrieving a message removes it. Typically, we want to
peek the message first, attempt to process it, and remove it from the queue if we
are successful. Listing 13.15 shows the code for a queue processing procedure. We
have implemented our reader function in a mode in which it loops through the entire
queue, processes messages of interest, and then exits. An external task scheduler
can fire off our console application periodically to scan the queue in this manner.

In an alternative processing technique, an MSMQEvent object is attached to an
MSMQQueue oObject through its EnableNotification method. This MSMQOEvent
provides an event sink for an Arrived event, which fires every time a message
arrives in the queue. This technique can be used to process messages as they arrive.
There are many other ways in which to implement a queue reader process besides
those provided. The specific implementation can vary between the tasks for which
the message queue is being used.

Example 13.15. A Queue-Reading Function

Public Sub Read Queue ()
Dim gry As MSMQQuery
Dim gis As MSMQQueuelInfos
Dim gi As MSMQQueueInfo
Dim gl As MSMQQueue
Dim msg As MSMQMessage

Dim bReceived As Boolean

Set gi = New MSMQQueuelInfo

gi.PathName = "cartman\OrderTransfer"
Set gl = gi.Open(MQ RECEIVE ACCESS, MQ DENY NONE)

Set msg = gl.PeekCurrent (ReceiveTimeout:=0)
Do Until msg Is Nothing
bReceived = False
Select Case msg.Label
Case "ORDER EXPORT"
If SomeProcess (msg.Body) Then

' remove the message

Set msg = gl.ReceiveCurrent
bReceived = True
End If
End Select

If bReceived Then
Set msg = gl.PeekCurrent (ReceiveTimeout:=0)
Else
Set msg = gl.PeekNext (ReceiveTimeout:=0)
End If
Loop
gl.Close
End Sub

Again, the queue-reading functionality is taken from Microsoft documentation. You
should note that our queue name specifier is different for reading. Here we use the
syntax "cartman\OrderTransfer" rather than the "DirECT=TCP:.." from before. In
addition, to open the queue for both receive and peek access, we must open it using
the MO RECEIVE ACCESS mode. As we loop through the queue, we first peek the
method using the peekCurrent message, and then we attempt to process it. If we
are successful, we then remove it using the ReceiveCurrent method. This

PeekCurrent, followed by a ReceiveCurrent, implicitly advances the underlying

cursor used to iterate the queue but places it in an indeterminate state. If this has
occurred, we must repeek the queue using the peekCurrent method to restore it.
This obscure fact can be found buried somewhere in the Microsoft Knowledge Base.

Using the Mail Subsystem

With the basic messaging system in place, there are still times when MSMQ cannot
be used. For example, if the order-taking system is perhaps hosted at an Internet
service provider (ISP) or an application service provider but the order fulfillment is
running at the home office, it might be difficult to set up MSMQ if there is not a
dedicated network in place connecting the two. Looking beyond our sample
application, there might be times when data needs to move between applications in
different companies. For example, a material requirements forecast for a
manufacturing company might need to be sent to the material supplier. In these
cases, we need something more than MSMQ alone.

One solution is to use the file-based approach, as we did before, with file transfer
protocol (FTP) paths instead of local network paths. Another is to leverage the email
system already in place and send the information over the Internet. It is easy to
think of MSMQ in terms of an email metaphor. The pathName property of the
MSMQQueue object becomes the To field, the Label property of the MSMOMessage
object becomes the subject, and the Body property becomes the text of the email.

We can use Messaging Application Programming Interface (MAPI), Collaborative
Data Objects (CDO), or Collaborative Data Objects for NT Server (CDONTS) to
assist us in our email generation and delivery on the export side. MAPI is a C-level
API that is cumbersome to work with. CDO is an ActiveX DLL, but it requires
Microsoft Exchange. CDONTS uses Simple Mail Transfer Protocol (SMTP), which
bypasses Exchange. CDONTS is not available from Microsoft as a standalone install.
Instead, it is installed on NT Server machines with IIS 4.0 and higher. The code for
the mailing routing using CDONTS appears in Listing 13.16. Note that NT Server is
required to implement and debug CDONTS.

Example 13.16. An Email Message Sender Using
CDONTS

Public Function MSend(ToAddress As String,
FromAddress As String,
Subject As String, _
Body As String)

Dim oMail As NewMail
Set oMail = CreateObject ("CDONTS.NewMail")

oMail.To = ToAddress
oMail.From = FromAddress
oMail.Subject = Subject
oMail.Body = Body

oMail.Send
Set oMail = Nothing

End Function

By replacing our QSend function call in the ExportOrders function with MSend, we
have bypassed MSMQ and gone directly to the Internet. On the receiving end, there
must be a listener routine that checks an email inbox for the target address with the
given subject line. The CDONTS library can be used to pull the message from the
inbox. This is followed by an attempt to process the message, as was done in the
PeekCurrent case in MSMQ. If successful, an acknowledge message can be sent
back using the FromAddress in the original field; otherwise, an error message
stream can be sent to the same address for diagnostic purposes. Because there isn't
a mechanism to guarantee delivery, the export process must be able to store
messages locally until a successful acknowledgement is received. Because only
SMTP-based mail services are required for this process, it is not dependent on any
one particular vendor of mail systems.

Cryptography

If we start sending data over the Internet as email message bodies, it might be
important to encrypt the body to prevent unwanted eyes from deciphering its
contents. Numerous cryptography solutions are available, including the CryptoAPI
that comes with NT. Unfortunately, this is a C-level API that is both difficult to
understand and proprietary to NT. To solve this problem, we can use a commercial
product, or we can choose to build our own simple encryption/decryption
mechanism, depending on the level of security required.

Without going into significant detail, the code in Listing 13.17 shows a basic
encrypter and decrypter function using a single numeric key. For this process to
work, both the sender and receiver must have an agreed-upon key value. These
algorithms also ensure that the characters that make up the encrypted text remain
within the ANSI character set (that is, character codes less than 128). It does this by
converting three 8-bit bytes into four 6-bit bytes and vice versa.

Example 13.17. Basic Encryption and Decryption
Algorithms

Private Const Cl As Long = 52845
Private Const C2 As Long

22719

Public Function Encrypt(ByVal S As String, Key As Long) As String
Dim i1 As Integer, j As Integer

Dim sRet As String, sRet2 As String,
Dim al As Byte, bl As Byte, b2 As Byte
Dim n As Integer

tKey As Long

For 1 = 1 To Len(S)
Key = Key And 32767
tKey = Key
For 3 = 1 To 8

tKey = tKey / 2

Next j

sRet = sRet & Chr (Asc(Mid(S, i, 1)) Xor (tKey))

Key = (Asc(Mid(sRet, i, 1)) + Key) * Cl + C2
Next T

'convert (3) 8 bit bytes into (4)
n = Len(sRet)

6 bit bytes

For i =1 Ton
al = Asc(Mid(sRet, i, 1))
bl = ((al And &HFO) / (2 ~ 4)) Or &H40
b2 = (al And &HF) Or &H40

sRet?2 = sRet2 & Chr(bl) & Chr (b2)
Next i

Encrypt = sRet?2

End Function

Public Function Decrypt (ByVal S As String, Key As Long) As String

Dim i1 As Integer, j As Integer

Dim sRet As String, tKey As Long

Dim sTemp As String

Dim bl As Byte, b2 As Byte, al As Byte

sTemp = S
g = nwm
For i = 1 To Len(sTemp) Step 2
bl = (Asc(Mid(sTemp, i, 1)) And Not (&H40))

*

b2 = Asc (Mid(sTemp, i + 1, 1)) And Not (&H40)

al = bl Or b2
S =S & Chr(al)
Next T

For i = 1 To Len(S)
Key = Key And 32767
tKey = Key
For j = 1 To 8

tKey = tKey / 2
Next j

sRet = sRet & Chr(Asc(Mid(S, i, 1)) Xor (tKey))

Key = (Asc(Mid(S, i, 1)) + Key) * Cl + C2
Next i
Decrypt = sRet

End Function

Interoperability Through Data Sharing

To this point, we have looked at data transfer as a mechanism for application
integration. Another form of integration can occur by simply accessing foreign data

in real time. This can happen in several ways.

Direct Database Access

Direct data access is probably the easiest form of application integration. Using ADO
or ODBC, we can connect our DataManager component to these other systems for
data retrieval purposes. In many cases, we can create a ClassDef object to map
these foreign tables and views into new classes within our system, although they
might not follow our precise design guidelines, as covered in Chapter 8, "The
DataManager Library." In some cases in which stored procedures are used for data
retrieval, a read-only ClassDef can be implemented based on the columns returned.
Data insert and updates, on the other hand, are much more difficult and might
require direct access to the underlying system. The Attributes collection on a
ClassDef object can be used to hold metadata associated with processing these

types of situations.

(2~ 4)

With a classManager and DataManager created, we can bring the foreign data into
our application, as well as provide information back to these same applications. In
worse-case scenarios, we can bypass our ClassManager and DataManager
altogether and place custom methods off our Nwserver component. Figure 13.8
shows this form of integration and the various pathways between our application
server components and the databases.

Figure 13.8. Application integration using direct

database access.

MTS RDBEMS

Client Application NWServer |

v

e —
h-—-—__——.-.'

el
N\
»| I|AppServer [« ~ Northwind
MTS RDBMS
Connector <
Component
Business
Object ERP Database
AP

Application Connectors

Many modern enterprise applications are beginning to offer integration objects to
assist in hooking systems together. These integration objects are sometimes called
connector components or object brokers. Depending on how they are designed,
they can run as DCOM objects within MTS or as CORBA objects within an object
request broker. Many application vendors are offering both forms.

With an application connector, we can make calls into it to retrieve the information
we need or we can provide data inserts and updates. In many ways, our own
framework is a form of an application connector into our system if used by other

applications. In the case of a DCOM-based application connector, we can interact
with it using variant arrays or XML-formatted data streams as in our own examples.
Figure 13.9 shows this form of application in the context of an Enterprise Resource
Planning (ERP) system.

Figure 13.9. Application integration using connector

components.

Applicalion Serer

MTS

e

Y
=
k

Chieni Applcation NWSarer Cirder Fulfillmeant
- T~ CLLLLLrrr -1 & System
DalaManager aee ADG
I R el P Bt N !
-
-
| PpoSanve i Mela Dala Classhanags

From Figure 13.9, you should note that we are performing our integration to the
connector component through our NWServer class rather than TappServer. The
reason for this is that such integration is specific to the particular application being
built using our framework, so it belongs with NwServer.

Summary

We have just gone through a whirlwind tour of application integration using our
framework. We have covered data transfer techniques using proprietary and
XML-based data formats as transfer mediums. We have covered the use of files,
message queues, and emails as transfer conduits. We have also talked briefly of
integration using direct connect techniques, either directly at the database level or
through application connector components. Although this chapter has had a
significant amount of content, it is by no means a definitive source. Other books go
into much detail on the subject.

In the next chapter, we look at Windows 2000 and how it affects our framework
components. We specifically look at compatibility issues with MTS, MSMQ, and IIS.
We also address some of Windows 2000's new features that can enhance our
application.

Chapter 14. Windows 2000 and COM+

Considerations

If various schedules go according to plan, you should be reading this book in the
months following the release of Windows 2000, the replacement for Windows NT.
Within a few months, your company can begin making the long-anticipated
migration to this latest Microsoft server platform and its COM+ model. At this point,
you might be concerned that everything that has been demonstrated in this book is
for naught with this new technology release, or you might be concerned that
implementing an application based on the framework we have presented will have
to be reworked after you do make the migration. Fear not; much of the functionality
we have relied on to this point was released with the NT 4.0 Option Pack.

Component Services

To quote from the MSDN library at Microsoft's Web site at the time of this writing
(with the appropriate disclaimer that it is preliminary and can change):

COM+ can be viewed as a merging of the Microsoft Transaction Server (MTS) and
COM, along with the introduction of a host of new features. If you are currently
using MTS, Windows 2000 makes the change to COM+ completely automatic.

For the most part, your MTS packages are transformed to COM+ applications during
the Windows 2000 setup procedure. Without doing anything beyond the typical
setup, you can now take advantage of all the new COM+ features.

Migrating Existing MTS Components

The simplest way to move our existing MTS components from NT/MTS to COM+ is to
export our components to a package file in MTS, and then import it into COM+. By
following this approach, we preserve our GUID for our DCOM objects so that
client-side applications do not have to be recompiled and redeployed. This
technique will most likely be used in migration strategies, in which companies are
moving existing MTS-based applications over to Windows 2000 Advanced Server.

The Transaction Server Explorer has been replaced with the Component Services
snap-in for the Microsoft Management Console (MMC). Figure 14.1 shows how to
navigate to the Component Services snap-in.

Figure 14.1. Navigating to the Component Services

snap-in in Windows 2000 Advanced Server.

A Mersecft ieual Studa 6.0+ (2] Buent Ve
v A Mocsoitoffe Took ¢ o] Inbenet Services Manager

Inside the Components Services snap-in, we see that it has a similar layout to the
Transaction Server Explorer. The only differences in the look and feel of the new
snap-in is that several of the old nodes in the tree view are gone and that the
spinning balls have gone from green to gold. In addition, most of the wizards used
to install new packages and components have been polished a bit, but they are
fundamentally the same. To import our MTS-based package, we right-click on the
COM+ Applications node and select New, followed by Application from the pop-up
menu, as shown in Figure 14.2.

Figure 14.2. Launching the COM+ Application Install

Wizard.

i Coampoment, Services

) Geescke Window Heb =181

gen yew || = = [E@E = AR E | O]y 5w
Ilu| COM+ Spphcations & obectis)
| sl Rk 4 ¥ - . i .=
= (s Component Sarvices &’ x% % % ‘ﬁ t

= Computers CoM+ QC OOl Ukilibies 115 In-Process s 115 Uit Syshem

= ﬂ;wtmu Dead Lt .. ppkcations Out-0f-Pro... Sppication
=R~ |

coins oo o I
COME LR ey ¥
LS In-Proswt piaws Windowr From Hers
= 28 15 Oub-08.p
3 % N5 kit | Redresh
=] 85 Sviberm Apph
£ | Dugtribagt el Trans
3 Evvart Wevaer {Loca)
3 Saraced (Laeal)

The first step of the wizard is simply informational. We click Next on the wizard to
advance to the second step. From there we click on the Install Pre-Built
Application(s) button, as shown in Figure 14.3.

Figure 14.3. Installing a prebuilt application.

iWelcomc to the COM Application Install Wizard

Please choose whether you warit to install & pre-bult apphcation o create an

Install or Create a New Application \(-
emply apphcation -"

ﬁ Install pre-built application(s).
' @ Create an emply application

Computer: My Computer

This brings up a file selector dialog. We change the Files of Type combo box to MTS
Package Files (*.PAK) and browse to our package file. We click on the Next button
to take us to the Set Application Identity step. We leave the account set to
Interactive User for now, but this should be changed later when the application is
put into production. We click Next once again to take us to the Application
Installation Options step. We click on the Specific Directory radio button and enter
the name of the directory where our new components are to be installed. We select
our directory and click on the Next button one final time to arrive at the last step. We
click on the Finish button and find that our Northwind Traders application has been
created, as shown in Figure 14.4. We also must remember to move our
ClassManager and DataManager components over as well, although they can
simply be registered using the REGSVR32 utility.

Figure 14.4. The Northwind Traders application
added to COM+.

=2
ju Component Servioes

T Coroe ndee Help A x]
pcen yen || & = @@ X 02| O] F %= =W
Trze | Comgnerts 2 object(s)
] Coracls Rock
@- Lol Sof v % @
] g Apaterver. MPWServer.
B, My Computer LAppSenve CNWSere

) ot Apedestions
3 COM G0 Dl Leter Quusiss Liskans
S0 Uty
T by Py o 59 Apnde sbsrd
IS Cwt-OF Procsas Pooled Applcstisng
II= Lkl
Morthwared Teaders
= |
i AppSerer JAppServer
M Server. CAWSersir
W) Rokes
5 '3: Syshemn Application
#] | Dustrbisted Transaction Cocedinatoe

- Ewvert Viswer (Local
. Servaes {Local)

Installing MTS Components into Component Services

If we are developing a new application that has not yet been deployed, we might
want to directly install our components into Component Services. To do this, we
once again right-click on our COM+ Applications node, followed by the New and
Application submenus in the pop-up menu. We click the Next button on the first step
of the resulting wizard, followed by the Create an empty application button on step
two. We enter Northwind Traders as the application name, and select the Server
Application radio button. We click on the Next button, again leaving the account set
to the Interactive User option. Then we click the Next button, followed by the Finish
button to complete the process.

At this point, an empty package has been created. To add components, we
right-click on the Components folder under the Northwind Traders folder, selecting
New followed by Component from the resulting pop-up menus, as shown in Figure
14.5.

Figure 14.5. Adding components to an empty

package in COM+.

‘'8 Component Bervices
o Gorack Window Heb =18 =]
fatin Yo || = = [E(m | H = RE O] E] T =W

'r-u| Components 0 obedt(s)

1 ‘Cosresolis Rood
--E.p'wwﬂ\ﬂ-rﬂ
=[] Computers

- ﬂ.w:mru

=] TR Sppikestion
SOM QT Dasaed Lnkber Quasus Lishens:

A COM Ltiites

25 [5 1n-Process Appheations

=1 258 115 Duk-0f-Proaes Podled Apolc abiors
] 8 [15 Leities

25 Mok lhwsing Tradens

T T
C
3 o Syem i Veew L

v | Distribnded T News 'iradows [rom Hers
Exviail, Wieswst {Lacal)
51 8y Services iLotdl) Fifrash
Help

The preceding steps launch the COM+ Component Install Wizard. Clicking the Next
button on the informational screen takes us to the Import or Install a Component
step. We click on the Install New Component(s) button to launch a file selection
dialog. We browse to our DCOM components, select them, and click on the Open
button. We click on the Next button, followed by the Finish button to complete the
process. Our components are now added, as shown earlier in Figure 14.4.

By installing components in this manner, they have been assigned new GUID values
and are not accessible to our client until we create new remote application installers.
In Windows 2000 and COM+, these become known as application proxies. To create
an application proxy, we right-click on the Northwind Traders folder, selecting the
Export menu item from the pop-up, as shown in Figure 14.6.

Figure 14.6. Exporting a package from COM+.

T - (1] |
o Comsole Window Help o [A |
geon Yew || == Bm@ElHEEE 2T E == 0
Tree | Porthmend Traders 2 cbkech(s)

) oo oo
- -Z:l"'rm'nlrr SETVITEE —I —I

- T Cmporsrt s Roles
Bl Ny Coreputes

] TP Appdeabiors
2 OO O D] Listhar Gumss Lickaner
e OOt Ukt
115 I ocwis Apolostors
115 OO Peorwcs Pooked Applcations
O 115 Litities
o ot e Tyachoac
2 coner M
- Bopt Tt
ts Shuk dosn
&] Fokes

Wl 3

v s System Acpl
4]| Desktribost e Traane — o

3 vz Wiewser [Local) Deicte
+) Sy Sorwioes (Local)
Propertes

s

The COM+ Application Export Wizard begins with the familiar informational first step.
We click on the Next button to take us to the Application Export Information step.
We select our output path for the export file, naming it Northwind.msi. We select
the Application Proxy radio button in the Export As frame and click the Next button.
A click on the Finish button completes the process. The result is the creation of an
installer Cabinet file, otherwise known as a CAB file, and a Windows Installer
Package file. These two files can be used on the client machine to create the remote
registration entries required to access these components.

NOTE

If your client machine is not Windows 2000, you must download the Windows
Installer from the Microsoft Web site. At the time of this writing, Windows 2000 was
at RC3 level, and the Windows Installer for NT 4.0 would not recognize the
installation files generated by the COM+ export process. Until this issue is resolved,
the easiest way to migrate existing applications to COM+ while keeping the clients
at non-Windows 2000 levels is to perform the package import process from
MTS-based components.

Message Queuing

Another major component of our model tied into the NT Option Pack is Microsoft
Message Queue (MSMQ), which also has undergone some refinement. Although the
client-side programming model is compatible with MSMQ 1.0, MSMQ has undergone
several significant changes. One minor change is the name. Message Queue for
COM+ is now called simply Message Queuing, although some references are made
to it in the context of MSMQ 2.0. From a technical standpoint, MSMQ no longer
needs to coexist with SQL Server because it now uses the Active Directory to store
its topology information.

NOTE

When setting up MSMQ 2.0 on Windows 2000 that will be accessed by a NT
4.0-based client, it is important to set it up for Domain mode. To do this, you must
choose the Message Queuing Will Access a Directory Service option when setting up
the service.

Microsoft claims that there are no compatibility issues using an application written
for an MSMQ 1.0 object model. Our framework components from Chapter 13,

"Interoperability," showed no issues, although we were using only a small subset of
MSMQ functionality. Again, to quote from Microsoft's Web site:

MSMQ 2.0 has new versions of its COM components that are compatible with the
MSMQ 1.0 components. The programmatic names of these components have
remained the same, enabling you to use the same names you are familiar with (for
example, MSMQQueue and MSMQMessage). However, the identifiers (GUIDs) of the
objects have changed.

Microsoft further provides the information in Table 14.1 to help determine which

version of the library to use if you are programming in a mixed NT 4.0 and Windows
2000 environment.

Table 14.1. Microsoft's Matrix for Mixed NT 4.0 and Windows 2000

MSMQ Programming

For... Select...

Applications that will run on both Windows NT 4.0 Microsoft Message Queue 1.0
and Windows 2000 Object Library

Applications that will run only on Windows 2000 |Microsoft Message Queue 2.0

Object Library

The MSMQ 1.0 Explorer has been replaced with a series of MMC snap-ins. To gain
access to the queues themselves, we must go under the Computer Management

snap-in, as shown in Figure 14.7.

Figure 14.7. Accessing the Message Queues on a

Message Queuing server.

8 Computer Management ME B

o wew || o= | ME FROE &

Tres I Pisres |
E Crevgitiar Managamant [Lacal) oy Chasis
i System Took Pt Queues
i oy Srarape I Priwabe Queiss
- Sy b AP A 1Sty Cususs
s oHCP
W [Telephoy
@ WNI Cobed

Services
Ireineg Servioe

5 2 oS
- q-;lrh‘ﬂt Irshoammabion Seraoes
BEF ¥ conge Dueng

| Ot poing Cuees

=] Puble CQusues

-] Frivate Queues

-] System Quesues

New Features in COM+

Although our application framework ports over to COM+ and Windows 2000
relatively easily, several new features within COM+ can be used to enhance our
framework. They are discussed in the following sections.

Component Load Balancing

One of the most anticipated features of COM+ has been Component Load Balancing.
With this feature, you no longer have to marry your client or IIS server to a specific
component server. In this environment, you can have a series of clients and COM+
servers operating in a parallel fashion, with a directory service dynamically

determining the routing between the two. For example, if a request is made to
instantiate a COM+ object on the Windows 2000 server, rather than "hard-coding"
the server name into the application or the DCOM parameters on the client machine,
the call is routed to one of several servers. With this architecture, the system can
support both failover and scalability issues.

Unfortunately, based on customer feedback from the Windows 2000 beta releases,
this feature was pulled out of Windows 2000. According to Microsoft at the time of
the writing of this book, Component Load Balancing will be redeployed to the
Microsoft AppCenter Server. However, the timing of this release was not given.

Queued Components

COM+ also releases a new feature known as queued components that runs atop
MSMQ 2.0. With this new feature, components can be instantiated in an
asynchronous fashion. For example, the client machine normally instantiates a
COM+ object using an application proxy. In a queued component model, the queued
component recorder acts as the application proxy, recording all method calls made
on an object. These recorded calls are packaged into an MSMQ 2.0 message body
and sent to the server where they are unpackaged and replayed.

Although the use of component queuing is unobtrusive (meaning that special
programming at the component level does not need to occur to enable it), not all
component uses and method calls lend themselves to queuing. Only parameters
that are passed by value in a method call can be used. To gain access to return
values, a response message must be issued.

Queued components are well suited to solve issues with availability, scalability, and
concurrency, but these features come at the price of performance. Specifically,
recording the method, packaging it into a message body, sending the message,
unpacking the message, and replaying the method all add extra time to the process.
If you are not concerned about the performance implications, this process is
acceptable. If performance is an issue, you should investigate other mechanisms,
such as writing your own messaging layer that bypasses the recording and playback
steps.

In-Memory Databases

With COM+, Microsoft was to have released a feature known as the In-Memory
Database (IMDB) to enable application servers to store critical information in a fast
and easily accessible format. Unfortunately, based on Windows 2000 beta feedback,
this feature was removed after Release Candidate 2 with no indication of when it
might be added back. Microsoft recommends using the Shared Property Manager for

local data caching. This feature, which we have not used in our framework, was
originally released with the NT 4 Option Pack and has been carried forward with the
COM+ release.

Summary

In this chapter, we covered the topics of moving our existing framework
components into the COM+ environment offered by Windows 2000. We showed that
our existing uses of MTS and MSMQ translate rather effortlessly (from a
programmatic standpoint) into the new environment. We also talked about some of
the new features available in COM+ that you might want to incorporate into the
framework as you make the move into this environment.

In the next chapter, we wrap up the book by talking about a few items that did not
fit elsewhere in the book. Specifically, we talk about making applications that are
written using this framework scalable, as well as how programmatic security can be
implemented across the application.

Chapter 15. Concluding Remarks

We have made it to the last chapter of the book with several important stones
unturned. It is our goal in this chapter to spend some time with these final topics so
that we can say we are finished with the application framework. Specifically, we
start by finishing the topic of error handling, followed by a discussion of
programmatic security, and concluding with a discussion of scalability.

Error Handling

Up to this point, we have casually addressed the issue of error handling through our
event-logging and error-raising mechanisms. In many of our method calls across
the DCOM boundary, we included a parameter called Errors, meant to contain a
variant array with which we have never specifically done much. We have even
included some functions to add errors to this array and convert this array into a
native ErrorItems collection in our AppCommon component. Although the only
implementation example of these pieces has been to handle validation
requirements, they can also be used to pass back general errors resulting from
various business rules. Be sure to keep this in mind as you are building out your
application using these framework components.

Security Mechanisms

When you are developing in a Windows NT environment using Microsoft
infrastructure items, such as MTS, MSMQ, and SQL Server, you can resort to what
is known as an integrated security mode. Although this enables you to control
high-level access at the network level, it is often insufficient for the types of
role-based security needed by enterprise applications. In addition, the management
of this type of information must be relegated to a person with NT administration
rights, which might be outside your realm of control or expertise. To understand this
issue, we can implement a programmatic security model to give our application
administrators the control necessary to ensure the appropriate individuals are able
to do their needed tasks.

To implement this model, we follow a design pattern that enables us to classify

users into one or more user groups. For each user group, we can assign a specific
type of access to each implemented class within the system. Our approach is simple
in concept but the implementation can be difficult to understand. For performance
reasons, we implement our security as a hard-coded DLL for our specific application.
We first define the various roles for our application, followed by our access modes,
followed by the class types we want to secure. For example, Listing 15.1 shows

these constants defined within a basic code module that is shared by both the
security DLL and the client side.

Example 15.1. Shared Constants Necessary to Drive

Our Security Model

Option Explicit

' secured group type constants

Public
Public
Public
Public

Const
Const
Const

Const

SGT CSR = 1 127 (1-1) =1

SGT ACCOUNT MGR = 2 128 (2-1) =2
SGT_MERCHANDISER = 3 ' 27(3-1) = 4
SGT TRAFFIC MGR = 4 ' 27 (4-1) =8

' access mode constants

Public Const AM ADD = 1

Public Const AM UPDATE

Il
N

Public Const AM DELETE = 4

' secured class types

Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

Const

CT CATEGORY As Integer =1
CT CITY As Integer = 2

CT COUNTRY As Integer = 3
CT CUSTOMER As Integer = 4
CT EMPLOYEE As Integer 5
CT LIST ITEM As Integer = 6
CT ORDER As Integer = 7

CT ORDER DETAIL As Integer = 8
CT PRODUCT As Integer = 9
CT REGION As Integer = 10
CT SHIPPER As Integer = 11
CT SUPPLIER As Integer = 12

With these constants in place, we can implement an ActiveX DLL component named
NWSecurity to implement the security. We define a class called csecurityServer

to host our security mechanism.

NOTE

Do not name your security component simply Security.DLL. This conflicts with a
system DLL used by NT.

To implement our pattern, we use a simple matrix, aptly named mSecurityMatrix,
defined as a two-dimensional array, with our first dimension representing the
secured group type and the second representing the secured class type. The value
of the array at a particular position is the access mode, which is the sum of the
various constants. Because we have defined our constants as powers of the base 2,
we can use bitwise comparisons to extract a particular access mode for a given
combination of security group and class type. From the constants defined in Listing
15.1, assuming the value mSecurityMatrix (SGT CSR, CT CUSTOMER) is 3, we can
establish whether a customer service representative can delete a customer object
using the following statement:

If mSecurityMatrix (SGT_CSR, CT CUSTOMER) And AM DELETE = AM DELETE Then ..

To initialize this matrix, we create a private method on our CSecurityServer class,
called simply TnitSecurityMatrix. We call this method from our
Class Initialize event. The code for our example appears in Listing 15.2.

Example 15.2. The InitSecurityMatrix Method and Its

Supporting SetSecurity Method

Private Sub InitSecurityMatrix()
' Customer Service Reps
Call SetSecurity(SGT_CSR, CT_ CUSTOMER,
AM ADD + AM UPDATE + AM DELETE)
Call SetSecurity(SGT CSR, CT CITY, AM ADD + AM UPDATE)
Call SetSecurity(SGT CSR, CT REGION, AM ADD + AM UPDATE)
Call SetSecurity(SGT CSR, CT COUNTRY, AM ADD + AM UPDATE)
' Account Managers
Call SetSecurity (SGT ACCOUNT MGR, CT CUSTOMER,
AM ADD + AM UPDATE + AM DELETE)
Call SetSecurity (SGT ACCOUNT MGR, CT_ORDER,
AM ADD + AM UPDATE + AM DELETE)
Call SetSecurity (SGT ACCOUNT MGR, CT ORDER DETAIL,
AM ADD + AM UPDATE + AM DELETE)
' Merchandisers
Call SetSecurity (SGT MERCHANDISER, CT CATEGORY,
AM ADD + AM UPDATE + AM DELETE)

Call SetSecurity (SGT MERCHANDISER, CT PRODUCT,
AM ADD + AM UPDATE + AM DELETE)
Call SetSecurity (SGT MERCHANDISER, CT SUPPLIER,
AM ADD + AM UPDATE + AM DELETE)
' Traffic Managers
Call SetSecurity (SGT TRAFFIC MGR, CT SHIPPER,
AM ADD + AM UPDATE + AM DELETE)
End Sub
Private Sub SetSecurity(SecurityGroupType As Integer,
SecuredClass As Integer,
AccessMode As Integer)
mSecurityMatrix (SecurityGroupType, SecuredClass) = AccessMode
End Sub

Now that we have our matrix, we must be able to assign a user to one or more
security groups. To do this, we follow a bitwise pattern, as we previously used, and
create a security key for each employee, storing this in the database and adding it
to the cT EMPLOYEE class type. Unfortunately, because the number of security
groups we implement might exceed the acceptable range of a long integer, we must
use a string to store this key value. To keep this string from becoming too large, we
convert our bits to a hexadecimal string. Because Visual Basic does not have full
binary and hexadecimal string-processing libraries, we must implement some of
these features ourselves. Listing 15.3 shows a simple binary-to-hexadecimal
converter.

Example 15.3. The BinToHex Function

Public Function BinToHex (ByVal BinString As String) As String
Dim i As Integer, 7 As Integer
Dim nNibbles As Integer, szBinString As Integer
Dim HexString As String, Nibble As String
Dim byValue As Byte

szBinString = Len(BinString)

nNibbles = Int(IIf((szBinString / 4) = Int(szBinString),
szBinString / 4, szBinString / 4 + 1))

BinString = Right ("0000" & BinString, nNibbles * 4)

For i = 1 To nNibbles
byValue = 0
Nibble = Mid(BinString, (i - 1) * 4 + 1, 4)

For j = 1 To Len (Nibble)
byValue = byValue + 2 ~ (4 - j) * Val (Mid (Nibble, j, 1))
Next j
HexString = HexString & Hex(byValue)
Next i

BinToHex = HexString
End Function

Without going into significant detail, the BinToHex function takes a string in binary
format, breaks it into 4-byte nibbles, and then coverts each nibble into a
hexadecimal value.

With this BinToHex converter, we also create a function to convert a hexadecimal
string into a byte array, with every two hexadecimal digits being converted to a byte
within the array. Listing 15.4 shows this function.

Example 15.4. Converting a Hexadecimal String to an

Array of Bytes

Public Sub HexStringToByteArray (HexString As String, Bytes () As Byte)
Dim nBytes As Integer
Dim i As Integer, j As Integer

If Len(HexString) / 2 <> Len (HexString) \ 2 Then
HexString = "0" & HexString
End If

nBytes = Len (HexString) / 2
ReDim Bytes (1l To nBytes)

=1
For i = nBytes To 1 Step -1
Bytes(j) = Val("&H" & Mid(HexString, (i - 1) * 2 + 1, 2))
j=3+1
Next i
End Sub

With these basic functions in place, we can implement two methods on our
CSecurityServer class to enable us to convert our security key to an array of
Boolean values, indicating group inclusion or exclusion. Listing 15.5 shows this
process.

Example 15.5. Creating a Boolean Array from Our

Security Key

Private Sub MakeGroupMemembershipFromKey (SecurityKey As String,
GroupMembershipFlags () As Boolean)
Dim Bytes () As Byte
Dim i As Integer, j As Integer, iGroup As Integer

ReDim GroupMembershipFlags (1 To MAX SGT_ GROUPS)

Call HexStringToByteArray (SecurityKey, Bytes)
For i = LBound (Bytes) To UBound(Bytes)
For 7 = 0 To 7
iGroup = (8 * (i - 1) + 3 + 1)
If iGroup > MAX SGT GROUPS Then Exit Sub
If ((Bytes(i) And (2 ~ J)) = 2 »~ j) Then
GroupMembershipFlags (iGroup) = True
Else
GroupMembershipFlags (iGroup) = False
End If
Next j

Next i
End Sub
Assuming this MakeGroupMembershipFromKey method returned a Boolean array call

Groups, we can now check whether a user's security key places them into a security
group using a simple call like the following:

If Groups (SGT_ ACCOUNT MGRS) Then ..

We can now implement our final method on the CSecurityServer class, called
simply AccessGranted, as shown in Listing 15.6.

Example 15.6. Our AccessGranted Method

Public Function AccessGranted(SecurityKey As String,
SecuredClass As Integer,

AccessMode As Integer) As Boolean

Dim IsGranted As Boolean

Dim i As Integer

Dim GroupMembershipFlags () As Boolean

If SecurityKey = "" Then GoTo ExitFunction

Call MakeGroupMemembershipFromKey (SecurityKey, GroupMembershipFlags)

IsGranted = False
For 1 = LBound (GroupMembershipFlags) To UBound (GroupMembershipFlags)
' check if user is a member of this group
If GroupMembershipFlags (i) Then
' if so, see if this group has the appropriate access mode

If ((mSecurityMatrix (i, SecuredClass) And AccessMode) = AccessMode)

Then
IsGranted = True
GoTo ExitFunction
End If
End If
Next i
ExitFunction:

AccessGranted = IsGranted
End Function

Our AccessGranted method takes, as parameters, the SecurityKey from the user
profile, the secured class type, and the access mode to be tested. Using this
information, the method converts the security key to a Boolean array using the
MakeGroupMembershipFromKey method. It then iterates through this array,
checking each group to see whether it grants the access mode desired. If so, the
function exits with a True value. If no group is found with the desired access mode,
the method exits with a False value. The implementation has been done in this
fashion to accommodate overlapping security groups.

Because this security mechanism is implemented as an InProc ActiveX DLL, it is

usable on all components of the system—IIS, MTS, or client. By simply making calls
on the presentation layer, the application can enable the user interface to allow or
disallow certain functionality, or to prevent entry into a particular area altogether.

Scalability Concerns

Although our framework design inherently maximizes scalability by minimizing
object-state management on the MTS server, the DCOM/MTS model does not
natively handle load balancing. To be sure, MTS has sophisticated pooling
mechanisms so that a few physical object instances support many logical object
instances. In addition, the multiprocessor, multithreaded capability of NT Server
can further expand the workload afforded by a single server to increase
performance. Nonetheless, MTS reaches a saturation point as the number of users
rise. In these cases, mechanisms must be in place to balance MTS server loads
relative to database server loads. If IIS is part of the picture, it must be load
balanced as well.

The Single Server per Site/Organization Model

In this model, each site or organization maintains its own instance of the MTS server,
database, and IIS servers. This is the easiest manner in which to address scalability
concerns because the application needs no additional components to support it. The
client applications direct their DCOM calls to the appropriate MTS server, based on
client-side registry settings. An installer program or configuration utility running on
the client can create these settings. Here, we assume that the single server instance
is sufficient to handle the user load for the site.

If each site maintains its own database server as well, a replication mechanism
must be in place to keep global information synchronized across all database server
instances. SQL Server has integrated replication support to accomplish just this
activity. Figure 15.1 shows the single server set per site model.

Figure 15.1. The single server set per site model.

Browser Client Browser Client
1S ns
MTS MTS

v !

RDBMS |<— Replication —»| RDBMS

Site A Site B

One drawback to this approach is that it has no failover mechanism. If the server
instance goes offline, it is not easy to redirect the client applications to a different
server because the mappings are stored in the client registries.

The Multiple Servers per Site/Organization Model

In some cases, a single server set instance cannot handle the load generated by a
site or organization. We can further segregate the client applications to access
different server instances, as in the previous case. This model appears in Figure
15.2. Although this is a simplistic solution, it does not guarantee that each server
instance is loaded appropriately. Some servers might be over-used, whereas others
are under-used. Load balancing must occur by modifying client registries. Worse
still, if you achieve a good balance, there is no guarantee that it can be maintained,
because new users are added and others are removed. There is also the same
failover problem that plagues the first model.

Figure 15.2. The multiple server sets per site model.

Browser Client Browser Client Browser Client Browser Client
ns s ns 153
MTS MTS MTS MTS

| | | |
LA LA

ROBMS | s Replication = RDEMS

Site A Site B

To circumvent this, we need a server broker. In this model, the client application
might first connect to a DCOM object on a single brokerage server thats only
function is to reply with a target server for the application to use. The method that
this broker object uses to determine load can be simplistic or complicated. One
method is that the brokerage server randomly determines a target server name
from a list of available servers in the pool. Other techniques include a round robin
approach where the brokerage server iterates through the list of servers, giving out
the next server name in the list with each request. Although these are probably the
two simplest mechanisms, there is still no guarantee for proper server balancing.

Another method is to employ load-balancing software such as the Microsoft
Windows NT Load Balancing Service (WLBS). In this method, the brokerage server
periodically pings each available server to determine its relative load. The server
with the lowest load is the next one handed out. Unfortunately, determining relative
server load is a complex issue because of the same multiprocessor, multithreaded
concerns previously mentioned. MTS pooling further confounds the problem.
Because such load-balancing software typically requires the development of NT
services, it is not something easily accomplished using VB. In this case, prebuilt,
load-balancing software might be the only solution. Otherwise, a programming
language, such as Visual C++, and a developer with NT service skills are required.

As mentioned in the previous chapter, the Windows 2000 Advanced Data Center will
be releasing a form of COM object load balancing. This will be a software-oriented
solution that models the CORBA and Enterprise Java models.

Server Clustering

Another solution to the load balancing and failover issue is to use a server cluster. In
this mode, you would employ special software (and sometimes hardware) to make
multiple servers act like one large virtual server. The application software itself does
not have to be cognizant that it is operating on a cluster, because the clustering
mechanisms are bound tightly in the NT Server operating system. Microsoft supplies
a cluster software solution through its Microsoft Cluster Server (MSCS) software,
which allows a clustering of two nodes. The Windows 2000 Data Center version of
MSCS will allow four nodes. Several other clustering solutions are available from
other vendors as well; one is HolonTech's HyperECS product, which is a hardware-
and software-based solution. IBM has added extensions to MSCS for its line of
Netfinity servers to allow for clustering for up to 14 servers.

Typically, the database portion of the system operates in a cluster fashion, while
other parts of the system operate in an IP load balanced fashion. The reason for this
is that the database is the place where concurrency of information is maintained,
which requires more than simple load balancing. Microsoft SQL Server can be
clustered in a two-node fashion on top of MSCS in a fairly straightforward fashion.
Other database vendors, such as Oracle and IBM, provide clustering capabilities
using their own technology.

Hardware-based load balancers are available as well from vendors such as Cisco, F5
Networks, and QuickArrow. These solutions provide load balancing at the IP address
level. This means that anything that can operate purely on an IP address can be load
balanced. The advantage of a hardware solution is their outright speed at
performing the load-balancing act, versus the software-oriented solutions
mentioned in the previous chapter. The downside is that hardware solutions can
become rather expensive. You will have to balance price and performance in your
application.

Figure 15.3 shows the final, fully scaled and failover-protected solution. Note that
this model works well because we are not maintaining state on our MTS servers.

Figure 15.3. The fully scaleable and failed over

model.
Client Browser| |Browser| | Client Client Browser| |Browser| | Client
AN NS
IP Redirector IP Redirector
ns | s ns | s
AN N L
——| |P Redirector |-f——m ———| |IP Redirecior |«——-m
£ ™\ PN
MTS MTS MTS MTS
N N
Clustering Clustering
Software Software
RDBMS RDBMS ROBMS RDBMS

_—
Disk Array

Site A Site B

_
«—— Replication ———| nisk Array

Summary

This chapter covered two topics: programmatic security and the issues associated
with scalability and failover. With the conclusion of this chapter comes the
conclusion of this book. Although it has been a long journey, it is my hope that, for
some, the topics covered in this book were helpful in a total sense. For the rest, I
hope that it provided insight and useful information, at least in a piecemeal fashion,
that can be incorporated into your enterprise-level projects going on within the
corporate development landscape.

