

Developing Enterprise Applications-An Impurist's View

Preface

 Acknowledgments

 The Technical Validation Group for Developing Enterprise Applications—An

Impurist's View

 Tell Us What You Think!

 Foreword

I: An Overview of Tools and Technologies

1. An Introduction to the Enterprise

 Enterprise Development

 Patterns and Frameworks

 Aim of the Book—A Framework Cookbook

 Target Audience

 Tools and Technologies

 Organization of the Book

 Chapter Layout

2. Layers and Tiers

 Layers

 The Application Spread Across Tiers

 N-Tiered Architecture

 Mapping Layers to Tiers

 Mapping Layers and Tiers to Your Development Team

 Summary

3. Objects, Components, and COM

 Object Orientation

 Class and Object Naming Conventions

 Component-Based Development

 Component Coupling

 Summary

4. The Relational Database Management System

 Data-Centric Database Design

 User-Centric Database Design

 Business-Centric Database Design

 Table Orientation

 Mapping Tables and Objects

 Object Identifiers (OIDs)

 OID Generation

 Referential Integrity

 Data Localization

 Locking

 Performance Tuning

 Summary

5. Distribution Considerations

 Data Marshalling

 Remote Activation

 Structured Data-Passing Techniques

 Microsoft Transaction Server

 Summary

6. Development Fundamentals and Design Goals of an Enterprise Application

 Visual Basic

 SQL Server

 Internet Information Server (IIS) and Visual InterDev

 Microsoft Transaction Server (MTS)

 Design Goals

 Summary

II: Implementation of an Enterprise Framework

7. The ClassManager Library

 Design Theory

 Implementation

 Summary

8. The DataManager Library

 Design Theory

 Implementation

 Summary

9. A Two-Part, Distributed Business Object

 Design Theory

 Implementation

 Installing Components into MTS

 Summary

10. Adding an ActiveX Control to the Framework

 Design Theory

 Implementation

 The Tabbed Dialog

 Summary

11. A Distributed Reporting Engine

 Design Theory

 Implementation

 Summary

12. Taking the Enterprise Application to the Net

 Layout Standardization Techniques

 Building the Internal Intranet Site

 Building the External Internet Site

 Summary

13. Interoperability

 Interoperability Defined

 Interoperability Through Data Movement

 Interoperability Through Data Sharing

 Summary

14. Windows 2000 and COM+ Considerations

 Component Services

 Message Queuing

 New Features in COM+

 Summary

15. Concluding Remarks

 Error Handling

 Security Mechanisms

 Scalability Concerns

 Summary

Acknowledgments

I wish to thank the staff at Macmillan USA for their support and assistance in putting

this book together. Special thanks to Michelle Newcomb for helping me work around

my other schedules, to Bryan Morgan, Jay Aguilar, Christy Parrish, and Tonya

Simpson for applying their superb editing skills to my manuscripts, and to Tracy

Dunkelberger for giving me the opportunity to write this book. I would also like to

thank Fawcette Technical Publications for giving me my original avenues of writing,

with special thanks to Lee Thé for bringing this sort of content into the forefront of

technical media.

I also wish to thank the current and former management at Compaq Computer

Corporation for allowing me to work on the applications that led to the formation of

the techniques and architecture presented in this book. Thanks go to Marshall Bard

for allowing me to build the applications that we could not buy and supporting these

efforts every step of the way. Special thanks to George Bumgardner for constantly

being a champion (to both management and our customer base) for the applications

we were building. Finally, I would like to thank all the end users who validated the

value of our efforts. Without their constant feedback and push for ongoing added

value, these topics would not have come about.

I want to pay particular thanks to Bill Erzal of MSHOW in Austin, Texas. Bill has been

my partner in development of applications at Compaq for the last several years and

has been the original implementer of many of these techniques on a large scale. I

thank him for being candid with me when I have presented a bad architectural

decision, for biting his lip and pushing on when he was unsure of a design, and for

saying "this looks good" when he knew one was right. In addition, many of the user

interface design techniques covered in the book have been lifted directly from his

work, which has been the result of an aggregation of experiences from his broad

career in application development. I thank him for allowing me to include them with

this book.

The Technical Validation Group for Developing

Enterprise Applications—An Impurist's View

John E. Jackson (Eddie) is a senior software engineer with Computer Science

Corporation (CSC) in Shalimar, Florida. At CSC Eddie spends his time designing,

implementing, testing, debugging, and shipping applications designed for the

Microsoft Windows family of operating systems.

Jay Aguilar (jaguilar@OpenTable.com, aguilarjay@usa.net) is a senior

software developer/architect/B2B (Business to Business) consultant currently

employed at OpenTable.com (http://www.OpenTable.com). He specializes in

developing enterprise n-tier solutions for corporate intranets and Internet

applications. Jay now focuses on developing and implementing the infrastructure for

Internet B2B commerce. In the future, he hopes to write more technical publications

and technical journals. His biggest passion is always trying to be on the cutting edge

of technology and not losing his edge. He enjoys relaxing in the great outdoors and

spending it still connected to the Internet.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We

value your opinion and want to know what we're doing right, what we could do

better, what areas you'd like to see us publish in, and any other words of wisdom

you're willing to pass our way.

As an associate publisher for Que, I welcome your comments. You can fax, email, or

write me directly to let me know what you did or didn't like about this book—as well

as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this

book, and that due to the high volume of mail I receive, I might not be able to reply

to every message.

When you write, please be sure to include this book's title and author as well as your

name and phone or fax number. I will carefully review your comments and share

them with the author and editors who worked on the book.

Fax: 317-581-4666

Email: queprof@mcp.com

Mail: Associate Publisher Que 201 West 103rd Street Indianapolis, IN 46290 USA

Foreword

This book is the culmination of many years of experience in using
Visual Basic and SQL Server to build first client/server, and then, with
the advent of MTS, distributed applications. Although many would say
that this combination of tools is incapable of developing sophisticated
enterprise applications, I offer up the techniques outlined in this book
as a counter-argument. I offer up all the positive user feedback about
how intuitive, user-friendly, and capable these applications are. These
same users do not provide similar positive comments for the other
commercial enterprise applications running on their desktops. A good
enterprise application designer must always remember that the user
is what drives the smarts under the hood. If you make your
application difficult to use, users will perceive it to be a poorly
designed application, no matter what value it is providing to the
underlying business. Similarly, a great user interface design means
nothing if the business value is not there. Thus, these applications
require a sophisticated balance between both the user and business
perspectives. This book provides the solutions to this problem.

With the advent of the Internet and the new user interface paradigm
and application delivery model it provides, we must rethink the
traditional development model. Many Internet models are patched
onto existing applications, sometimes effectively, but many times not.
The architecture in this book makes the Internet an integral part of
the application. Counter to this, it does not force an unwarranted
Internet basis when it is unnecessary.

The code samples in this book have been developed using Microsoft
Visual Basic 6, Enterprise Edition, Service Pack 3. SQL Server schema
were developed in version 6.5 but should also work on version 6.x ad
7.0.

The source code listings that appear in the book are also available at
http://www.mcp.com.

Part I: An Overview of Tools and Technologies

1 An Introduction to the Enterprise

2 Layers and Tiers

3 Objects, Components, and COM

4 The Relational Database Management System

5 Distribution Considerations

6 Development Fundamentals and Design Goals of an Enterprise
Application

Chapter 1. An Introduction to the Enterprise

You might be wondering about the reason for the word Impurist in the
title of this book. Before delving into an introductory definition, I
would like to state that the application development industry is
undergoing a significant transformation in how it develops
applications. New tools and technologies are emerging at a rapid pace.
With this emergence come experts that profess the techniques on
how to employ these tools and technologies to their best use to solve
the problems at hand. The tool vendors themselves provide guidance
in how to use their products to solve a broad range of problems. It
follows, then, that these techniques begin to coalesce within the
industry and form the conventional wisdom on how we must use these
tools and technologies. On the other end of the spectrum, we have the
theoretical view on how to perform application development, and we
chastise the tool vendors for not following a pure approach.
Somewhere in between are the upper-level managers screaming the
"on time, under budget" mantra, hoping to keep the development
team focused on the tasks at hand. The effect of this mantra is that
conventional wisdom typically takes on a "quick and dirty" component
that runs counter to what we would otherwise do as we develop
applications.

Thus, the approach of this book is not to necessarily utilize a
technique because it is part of the accepted conventional wisdom or
because it meets certain theoretical criteria. This is the root of the
statement on impurity in the title. Although we all strive for the
perfect solution to a given problem, we must remember that we
cannot always do so in the corporate application landscape. We must
perform a constant balancing act between the functionality we deliver,
the resources required to do so, and the time we take to arrive at
completion. These constraints invariably lead to conflicts in the
decision-making process that we have to deal with as managers,
architects, and developers. Thus, the intent of this book is to discuss
how to look at the possible solutions within the realm of the
constraints and make an appropriate decision. Although in many
cases we will provide a specific solution, we will provide supporting
reasons for why we have done something in a particular manner.

The underlying goal of corporate application development is not
necessarily to remain pure to the industry or theoretical trends simply
for the sake of doing so. We must realize that companies entrust us
with their resources of money and time with the expectation that we
will add value to their business processes. Good design decisions are

an investment that we make as developers to meet these
expectations. No value is added to a company when we constantly
rework already delivered functionality due to poor design decisions we
needlessly make because we follow a purist viewpoint. We add value
not only when we deliver functionality in the first round, but also when
we continue to deliver added functionality in following rounds. Our
stretch goal is that we can do so at a diminishing cost structure with
each round we successfully complete. Sound decision-making with
these latter goals in mind is how we should proceed through our
development efforts, even if it means being a little impure at times.

Enterprise Development

Although the term enterprise development is a common buzzword in
the software industry these days, it is an ambiguous term. Enterprise
application development is by no means a new concept to business
because mainframes have existed for some 20 years or so,
performing the daily chores to take care of corporate informational
needs. It is, however, a new concept to some software developers,
many of whom might have only had to implement simple
departmental productivity applications up to this point. Corporate IS
departments are becoming increasingly decentralized, with
functionality leaving the glass house and its mainframes and moving
toward organizations and their servers. At the same time, the
development tools used to build applications are simultaneously
becoming more powerful and easier to use. The same tools used to
build productivity applications of yesterday can now deploy
applications of today on a much grander scale. Indeed, it might be
some of the smaller applications of today that will become the de facto
enterprise applications of tomorrow. Because of this shift, the
organizational-level IS leaders, designers, and implementers must
pick up the reins and begin building the next generation of corporate
solutions. This is logical because each organization understands its
own business processes and informational needs best.

Coupled with this change in IS philosophy and the shift in application
development responsibilities is the globalization of corporations in
geography, business activities, and the underlying information driving
the corporate business processes. It should be clear by now that
planet Earth has become a much smaller space in which to do
business because of the Internet revolution. As such, corporate
competitive advantages are becoming more defined not only by their
capability to tap into their vast knowledge bases, but also by their
capability to transfer that knowledge into systems and information to

enforce best practices. After it is tapped, the company can raise the
level of capabilities across all geographical locations and business
practices.

Still one other factor helps to define the enterprise application—that
of flexibility in architecture. When a company fuels its growth through
mergers and acquisitions, it must meld disparate business processes
into a unified model. This invariably affects the applications running
the enterprise, because part of the impetus for the combination of
companies is to leverage greater economies of scale by eliminating
overlapping functions.

Some would argue that high availability is an absolute requirement of
the enterprise application as well. Although this is true in the ideal
sense, it is not necessarily a rigid requirement in all cases. In many
interpretations, "high availability" is synonymous with gargantuan
servers. Many enterprise applications, though critical to the business,
might need to support only several hundred users at any given time
and might not need to follow a 99.999999% uptime model. The cost
benefit justification of overly capable hardware might be difficult to
make. In these cases, only robust application design techniques and
appropriately matched hardware are needed to constitute high
availability. It is important to understand that we can be less than
perfect in an attempt to be economically prudent.

With these concepts in mind, we can start defining what the term
enterprise development embodies. At its most succinct level,
enterprise development means the capability to support multiple sites,
geographies, organizations, and users with their informational needs.
This support comes by way of focused applications embedded within
the business processes needed to run core activities of an
organization. The number of users supported by such an application
can range into the hundreds or even thousands. If one then considers
the capabilities afforded by the Internet and Dial-Up Networking, then
it also means the capability to support the mobility of the user base.
This would not only indicate a high level of application availability and
accessibility to the users, but also ease of administration and
maintenance for the developers and support teams over such diverse
connection modes.

Taken to the next level, corporations realize that information from
disparate systems becomes more valuable when taken in aggregate.
Thus, the term enterprise development takes on an additional form of
interfacibility—the capability to gather information from other
applications, coupled with the capability to provide information to

other applications. Some would also call this feature interoperability.
Examples of such systems would be the corporate Enterprise
Resource Planning (ERP) system, in-house applications supporting
other organizations, or third-party applications implemented by the
company.

Another feature of enterprise applications is that of extensibility.
Although it can be easy to throw an application together that meets
the needs of today, it is more difficult to anticipate the needs of
tomorrow and design accordingly. If we follow an incremental
develop-and-deploy approach, we must make sure that for every step
forward we make, we will not have to take a few backward with the
next release. Expanding our mode of thinking a bit more, we realize
that after we implement a successful application within an individual
organization, most likely other organizations will want to follow suit
after we demonstrate the benefits. If we design accordingly, it should
be trivial to replicate the majority of an application to meet new
business needs. Expanding our thinking yet again, we realize that as
a company goes through mergers and acquisitions, we might need to
enhance the business processes within our application. Again, if we
design accordingly, this should not be an issue. This leads us to define
"application extensibility" within the realm of enterprise development.

At yet another level, the corporation begins hooking its enterprise
applications together in modes beyond just simple information
sharing. Whether they are internal or external to the company, few
applications can drive a corporation's business processes in isolation.
As such, they must begin working together within the context of some
business workflow. Thus, the term enterprise development takes on a
collaborative definition. As an example, one system, in the course of
providing its functionality, can signal other systems into action; this in
turn can signal still other systems. Although human interaction might
be required somewhere in the process, it is not mandatory.

Because users with differing roles exist across the user base, no single
user typically exercises the entire breadth of functionality provided by
an enterprise application. The application is multifaceted, although
that can mean different things to different people. There can be many
human interfaces, both of the input and output variety. There are
information generators as well as consumers. In most cases, the
number of consumers far outweighs the number of generators
because it is this dispersal of information and knowledge that drives
such applications.

Thus, we have a series of attributes that help define what an
enterprise application really entails. To summarize, an enterprise
application has the following features:

• Support for many sites, geographies, organizations, and users
• Extensibility by design because it will need enhancement over

its lifetime
• Two-way interoperability with other systems
• Collaboration capabilities with other systems, both internal and

external to the company
• Multi-faceted from a user perspective—a single user rarely

exercises the full breadth of functionality

Although these attributes are applicable to any application, they
become mandatory when we face the rigors of the enterprise.

Patterns and Frameworks

Other ambiguous terms abound when speaking of enterprise development, most

notably patterns and frameworks. Both are critical to successful enterprise

development, but they have different meanings. A pattern represents the design of

a core functional element in an abstract form, although it extends beyond pure

theory because it typically evolves from ideas and techniques proven out in

repeated, real-world situations. There are many industry-accepted patterns for

implementing a variety of tasks across a diverse range of development tools and

technologies. Because we typically implement patterns in an object-oriented

language, patterns and object orientation share a common modeling methodology.

A framework is the tangible, reusable implementation of multiple patterns on a

given platform using a specific set of development tools and technologies. A

framework can also define the necessary communication and distribution

mechanisms to make the pieces work together. Frameworks have existed for quite

some time in commercial form. In the not-too-distant past, they came to us as

Fourth Generation Languages (4GLs), used to develop client/server applications.

Alternatively, they existed in the form of source-level GUI and I/O libraries meant to

deliver applications in a consistent, cross-platform manner. Before that, they came

in the form of mainframe development and control software, such as IBM's CICS

and JCL tools. Now, they manifest themselves in several incarnations.

Commercial Frameworks

One incarnation of a modern framework is that of modeling tools with accompanying

source-code generators. Here, an application or application component is first

defined using a standard or proprietary modeling language. With a few mouse clicks

after the model is complete, the tool generates source code. Some tools produce

database schemas as well. The framework might fully realize itself simply as a set of

runtime components referenced by the source code, as framework source code

interspersed with the application code, or as a combination somewhere in between

the two. Some of the more sophisticated tools can even generate code for multiple

deployment languages (Visual Basic, C++, Java, and so on), database servers (SQL

Server, Oracle, and so on), and distribution architectures (for example, COM/DCOM,

CORBA, Java RMI, and so on).

Some commercial frameworks extend beyond the infrastructure side and actually

begin to layer on some of the business process functionality. Examples include

IBM's San Francisco Project, which attempts to define a core set of frameworks

across several business domains. For some time, Oracle has provided business

frameworks for accounting, manufacturing, and other popular problem domains.

Application Servers

Another incarnation of a framework is that of an application server. The term

application server is itself a multi-aspect term because it attempts to implement

some or all of the components that make up an enterprise application. In this form,

the application server not only embodies the hardware and operating system, but

also inherently defines a framework through its programming model. This model

typically rests upon selected design patterns implemented by the application server

vendor. This form of framework has similarities to the modeling approach in that

support exists for multiple development languages, database servers, and

distribution architectures. Some in the industry feel that a full-function application

server is simply a reincarnation of the mainframe on updated hardware.

Custom Frameworks

With the emergence of enterprise development tools and components, it is not too

difficult to develop a framework suited to a specific business process or organization.

Microsoft has provided a suite of server products, development tools, and

distribution technologies to enable the development of a custom framework for

enterprise applications. The official moniker for this is the Microsoft Distributed

interNet Applications (Microsoft DNA) architecture. Although DNA is Microsoft's

attempt to fully define the tools, technologies, and implementation details needed

to build such applications, it is not itself a framework.

Microsoft DNA

Whether you are a devout promoter, a casual user, or merely an observer, Microsoft

is a major player in the enterprise development market. No other set of tools and

technologies enable you to have a dynamic, database-driven Web site up and

running in a short amount of time. No other set of tools and technologies enables

you to build a robust, multi-tier application in a short amount of time. No other

company provides the set of online support and technical information that Microsoft

does. Although Microsoft has provided the tools, guidelines, and sample

applications, this does not mean it is the definitive source on how to build our

applications. It is merely a component of the conventional wisdom mix that we

mentioned earlier.

Microsoft presents sample architecture implementation in the form of DNA. This is a

bit of a misnomer in that it really does not use the Internet as much as one might

surmise. True, we can set up a dynamic Web site that enables users to connect to it

through the Internet, but we cannot create a DCOM link across the Internet unless

we have a virtual private network in place. DCOM, a technology that we will discuss

in further detail in Chapter 2, "Layers and Tiers," is what puts the "D" in DNA, but it

does not work with the "N" portion of the acronym (it should really be intraNet).

Although we use the same tools and technologies as DNA, the architectural concepts

presented by this book vary from the Microsoft model in ways that should bode well

for your enterprise application.

Although Microsoft can give us the tools and a basic model to follow through DNA,

they have to do so in such a way that is applicable to their entire customer base,

which means a lowest common denominator approach. In many cases, their efforts

at simplification work adversely to your application's requirements, potentially

reducing performance to a much lower level than the underlying technology is

capable of delivering. Microsoft's prime directive is to provide the horizontal

infrastructure for application development, whereas your job as an enterprise

application developer is to use these tools to provide the vertical applications that

your business needs. That they help you a bit by defining DNA is a bonus. We should

not hold Microsoft to blame for this approach because they do provide a viable

solution to cover a wide range of applications. It is only as we peel back the layers

that we can see room for improvement.

The Decision Process

The framework decision process can be complex based on individual project

situations. Unfortunately, it is probably the most important decision to make at the

outset of an application development project. The project team spends considerable

time and money for software licensing, developer training, and so on before the

actual start of the software project. A bad decision at this early stage can wreak

havoc after the team is further into the effort. The decision-making tree is not easy.

The capabilities of the development staff are only one of the factors. For a given

framework option, there are learning curves, costs of development, costs of

deployment, and feature lists to consider. A common issue with commercial

framework solutions is that the vendors spend a lot of effort trying to implement the

lowest common denominator of functionality required across their potential

customer base. In so doing, they can spend a significant amount of time perfecting

some feature you find unnecessary at the expense of a feature that is of higher

value to you.

The view of this book toward commercial frameworks is agnostic—it neither

supports nor condones them. The industry rule of thumb is that a commercial

framework provides between 40% and 60% of an application's functionality.

Although this sounds appealing, it is hard to determine the level of difficulty

encountered or success rate at implementing the remaining functionality required

by the application. In addition, the 80/20 rule applied to application development

says that 20% of the time is spent implementing 80% of the functionality, and 80%

of the time is spent implementing 20% of the functionality. In most cases, the

former 80% represents the template functionality of the application—for example,

database interaction, network access, system services, client/user-interface design,

and so on. The latter 20% represents the functionality that is more difficult to

implement and also what gives the application its character and competitive

advantage, along with the look and feel that matches the business process flow. Put

another way, this 20% represents the value-added business logic embedded within

the application. Looking back at the commercial framework and where the effort

savings resides—in the 80% realm or the 20% realm—is what should drive the

decision for using a particular commercial framework.

For example, if the effort savings reside completely in the 80% template

functionality area, it probably does not offer significant value. If, on the other hand,

it covers the 20% value-added functionality, it is probably worth a look. The former

category is indicative of horizontal frameworks, whereas the latter is where

vertical-based frameworks reside. We should note that good vertical frameworks

typically implement up to 60% of an application's code, as part of the framework.

Our Framework Approach

We will take the approach of building our own framework for the purpose of this

book. The framework topics presented in the rest of this book use several

fundamental patterns that have emerged over the course of successful enterprise

application development. These patterns are, in turn, implemented using a specific

set of development tools and deployment technologies loosely based on Microsoft

DNA. It is important to note that the framework topics presented in this book are not

simply a rehash of DNA. There are many critical areas where we diverge from the

Microsoft model for various reasons. Although the remainder of this book is devoted

to presenting various framework design and implementation topics, it does not

necessarily represent all the implementation options. Please be sure to use the

topical information as a guideline to foster the appropriate design for your situation.

Aim of the Book—A Framework Cookbook

This book targets those readers interested in learning about the concepts of building

a distributed enterprise framework using industry-standard tools and technologies.

Specifically, this book covers the use of Visual Basic 6.0 Enterprise Edition,

Transaction Server 2.0, Internet Information Server 4.0, and SQL Server 6.5 as the

core components of an enterprise framework. It will also present pragmatic

examples in the form of sample applications and accompanying source code, to

further strengthen the topics of discussion.

Target Audience

This book targets the software architect, developer, and manager who wants to

understand both the capabilities and limitations of the Microsoft tools and

technologies available to them within the realm of enterprise applications. Readers

of this book should also want to understand how such tools and technologies could

be used to provide business-critical functionality in the form of world-class

applications to their organizational customer base. Readers of this book need to

have an intermediate to advanced understanding of the tools and technologies

outlined in the following sections. These readers will learn how to take their existing

skills in these areas and apply them to building enterprise applications.

Tools and Technologies

You can use a myriad of available development tools and implementation

technologies to create enterprise applications. For the purposes of this book, a

specific subset of these available tools and technologies will apply.

Windows NT Networking

Although it might seem strange to make an apparently obvious statement about

Windows NT Networking as a core component of an enterprise framework, it is still

worth mentioning because of several key features. Most importantly, Windows NT

Networking represents an integrated security model. If properly configured, a user

need only log in to the network once to gain access to areas beyond the network.

Because the other server products that make up this framework run on top of

Windows NT Server, they have access to this same security mechanism. This makes

it easier on both the end user, who does not have to remember another set of

passwords, and the developer, who does not have to implement a login and

password management process. Windows NT Networking also has the capability to

support various network configurations including Wide Area and Dial-Up

Networking.

SQL Server

In any large-scale application, it is important to have a database server that can

meet performance and load handling requirements. It is also important to have a

database server that has sufficient online backup facilities, recovery features,

transaction logging, two-phase commits, triggering, stored procedures, and so on.

Small-scale database systems simply will not hold up to the extreme needs of

managing enterprise-level data. Additionally, advanced features, such as integrated

replication and an administrative API, are highly desirable.

Although there are several server options here, SQL Server 6.x or 7.0 will meet

these requirements handily. In addition, SQL Server offers a graphical user

interface in the form of the SQL Enterprise Manager, eliminating the need to use a

query console window to perform administrative and developmental tasks. SQL

Server also exposes the underpinnings of the Enterprise Manager in the form of an

SQL-DMO (SQL-Data Management Objects). This programming module can be

invaluable when it comes to automating complex administrative tasks on the server.

This might include activities such as setting up a new server or simply running a

weekly re-index and recompile of the views and stored procedures that need to

follow a certain processing order.

Additionally, SQL Server has an SQL Executive component. This component is

responsible for managing the replication tasks, backups, restores, and so on. The

SQL Executive can also manage tasks that are external to SQL Server with its

capability to call the NT command processor.

COM/DCOM

We will cover COM (Component Object Model) and DCOM (Distributed COM) in

sufficient detail in Chapter 3. Still, we need some overview here before we can

proceed with the remaining tools and technologies that build upon COM.

The COM architecture is the foundation for Microsoft's OLE (Object Linking and

Embedding) and ActiveX technologies. COM is both a for mal specification and a

binary implementation. Technically, any platform can implement COM, not just

Win32. The reason that it is so ubiquitous on the Win32 platform is that Microsoft

has provided the reference (and hence the standard) implementation of the

specification. On the Win32 platform specifically, COM relies on Microsoft's Dynamic

Link Library (DLL) mechanism. The DLL architecture allows for a high level of

runtime modularity (as opposed to source-code level), allowing binary modules to

load in and out of a process address space at runtime. COM, and hence our

framework, relies heavily on this dynamic nature of COM to support long-term

flexibility over the life of the application.

Any programming language that can access the Win32 COM API and implement a

virtual function table can generate a COM class. Visual Basic, which we will discuss

shortly, is such a language, allowing a developer to build these types of classes

while simultaneously hiding the gory implementation details.

DCOM takes COM across process boundaries. Although applications frequently

implement DCOM boundaries on a single physical machine, it is really a technology

meant for communicating between machines. DCOM adds the necessary

functionality to make a client application think that it is simply invoking a local COM

object, when it is really invoking a COM-style proxy locally that invokes the object

remotely. There are some optimizations in the DCOM engine to minimize the effects

of remote invocation because COM's original design did not account for network

latency. DCOM also adds a modicum of a security infrastructure to ensure that only

privileged clients can invoke a given object.

Visual Basic 6.0, Enterprise Edition

The development of the user interface is one of the critical areas of overall

application development. It does not matter how elegant or robust your architecture

is underneath if it is difficult for the user because of a poorly designed interface.

After the development team clearly understands the business process flow for a

particular area of the application, it must be able to easily transform that into the

user interface. As such, the developer needs a capable development tool at his or

her disposal.

Visual Basic 6.0 (VB6) is just such a tool, but its capabilities extend far beyond form

design. One particularly nice feature of VB6 is that it enables the developer to build

custom ActiveX controls that encapsulate core business process flows into a

component that can run in a variety of locations. VB6 also enables the developer to

create ActiveX Dynamic Link Libraries (DLLs) that are also usable in a variety of

locations. Turning things around, VB6 is not only able to create these ActiveX

components, but also able to host many of those created by other development

tools.

VB development extends beyond simply the user interface and client machine,

allowing us to develop modules that run on a server as part of a distributed

application. We will discuss distribution in much more detail in Chapter 5.

Concerning the ease of development, VB6 has all sorts of goodies within the

Integrated Development Environment (IDE). These features include IntelliSense,

which can help the developer finish a variable reference with just the first few letters

being typed, or show the calling convention for a native or user-defined function or

method. VB6 also has a feature known as the Class Builder Utility, a simple class

modeler and code generator that can save significant time in generating

well-formed class modules. The IDE also performs an auto-correction of the code,

color-coding key words and comment blocks, and block indenting. Although these

features might seem minor, developers will spend the majority of their time during

the coding phase within the IDE; therefore, every little improvement in productivity

adds up over the life of the project.

Internet Explorer 4/5

The preferred browser in this architecture is the Internet Explorer 4/5 (IE4/5) based

on its DHTML and ActiveX control hosting capabilities. In many corporate settings,

IE4/5 has been adopted as the standard browser for a multitude of reasons.

The architecture we will present in Part II uses browser interfaces to support the

basic reporting needs, or output side of the application. Using standard HTTP form

processing techniques, the browser will work in conjunction with the IIS server,

using ASP to support simple data management. VB-based client applications, or

browser-hosted ActiveX controls, implement complex data management that is too

difficult to implement using the HTTP form approach.

Microsoft Transaction Server

Microsoft Transaction Server (MTS) provides several functions that might not be

apparent from its name. First, it is a DCOM surrogate, improving the management

and administration of these components on a server. Second, it is a transaction

coordinator, assisting in performing disparate database transactions as a group and

rolling them back as a group if any part fails. Third, MTS is a resource-pooling

manager, allowing multiple logical objects to run in the context of a pool of physical

ones. It also provides database connection pooling for the DCOM libraries to

minimize the performance issues associated with login and connection.

Internet Information Server 4.0/5.0

We choose Internet Information Server (IIS) as our Web server for several reasons.

First, it is the foundation for Active Server Pages (ASP), a VBScript-based

environment for the dynamic generation of browser-agnostic HTML pages. In

addition, IIS and MTS integrate tightly when the two are running on the same

physical machine, bypassing some of the normal activation processes to improve

overall performance.

Visual InterDev 6.0

We use Visual InterDev as our primary ASP development tool. It has a powerful IDE

much like Visual Basic, allowing us to develop our ASP pages more rapidly than we

could in a conventional text editor (which up until release 6.0 was the primary path).

In addition, Visual InterDev provides debug facilities that we can use to step

through some server-side pages during generation or through the completed page

on the client side, which might also have some embedded scripting code.

OLEDB/ADO

Database access is foundational to any enterprise application. Although many

applications might still be using ODBC or other forms of legacy driver methods,

OLEDB and ADO are the most appropriate choices for new application development

or significant refreshes to existing applications. In addition to providing access to an

RDBMS, OLEDB/ADO is the foundation upon which Microsoft plans to allow access to

other structured data, such as network directory services. Additionally, ADO

provides a mechanism to represent structured data created by your application and

can serve as a temporary storage space or a transport mechanism, as we will see

throughout the remainder of Part I.

XML and the MSMXL Parsing Engine

The Extensible Markup Language (XML) is currently one of the hottest topics in the

enterprise application community. Similar to HTML, XML is a textual format for

representing structured information. The difference between HTML and XML is that

the former represents format and the latter represents data.

Although XML is a straightforward specification, its flexibility makes the

development of a parser a nontrivial task. IBM has made a publicly available,

Java-based parser for some time. It has only been with the release of IE5 that

Microsoft has provided a standalone COM-based parser in the form of MSXML.DLL.

Now that Microsoft has provided this invaluable tool, we can divert our attention

from trying to build a complex parser and begin creating the value-added solutions

from it. XML is a data-transfer mechanism with multiple roles, including providing a

data conduit between processes within a system (P2P), processes across systems

(S2S interfaces), and processes across businesses (B2B interfaces).

What is powerful about MSXML is its COM basis that gives it the capability to run

within Visual Basic, ASP, and IE. Even more powerful is that data formatted as XML

in a Windows-based COM environment is readable by a UNIX-based Java XML

reader in another environment.

CDONTS

The final technology that we will use is that of CDONTS, or Collaborative Data

Objects for NT Server. CDONTS provides many features, but the one of interest to

us is its SMTP (Simple Mail Transport Protocol) capability that bypasses MAPI (Mail

API). The reason that this is important is that MAPI requires the use of a mail service,

such as Exchange, that adds additional overhead in administration and performance.

Although there is a similar CDO (non-NT server) version, it lacks this SMTP-based

messaging engine that we need. Fortunately, we can run CDONTS on our NT

Workstation development machine. In production mode, we can use CDONTS with

both IIS and MTS to provide server-side mail processing for collaboration and

notification activities.

Organization of the Book

The remainder of Part I of this book first presents a quick overview of elements that

will be used throughout the rest of the book. This overview is purposefully just

that—an overview. The goal is to provide a quick familiarization of what we are

using and why we are using it. Many books are available that go into in-depth

coverage of these topics. This overview will then be followed by some fundamental

design topics concerning object orientation, components, databases, distribution,

and interface-based development.

Although the reader does not technically need to be a master of each of these areas

to understand the framework topics in this book, he or she will need to be

comfortable with each of the technologies. Along the way, hints and warnings

provide helpful implementation techniques that have come about after many long

hours and late nights of scouring through Microsoft documentation to find the

solution to some particular quirk.

Part II discusses actual enterprise components built upon the concepts outlined in

Part I. This book presents each framework component by first discussing the

architectural reasoning behind the component and the types of trade-off decisions

that were made during its development. The book then presents the component

design in detail accompanied by the full source code required for its proper

implementation.

Chapter Layout

Chapter 2, "Layers and Tiers," presents an overview of the layered approach to

application development. It then discusses 2-, 3-, and N-tier architectures. It

concludes with a summary on how application layers map to tiers.

Chapter 3, "Objects, Components, and COM," provides an overview of object

orientation. It then follows with a discussion on component-based development. It

concludes with a discussion on how object-orientation and component-based

development relate to Microsoft's Component Object Model.

Chapter 4, "The Relational Database Management System," discusses some basic

features of an RDBMS. It follows with a discussion on the persistence of the state of

an object. It concludes with the mapping of objects to databases.

Chapter 5, "Distribution Considerations," discusses the distribution of objects across

multiple tiers. It provides several approaches to set up the necessary

communication channels between objects across process boundaries. It concludes

with a discussion of MTS best practices for distributed development.

Chapter 6, "Development Fundamentals and Design Goals of an Enterprise

Application," discusses some best practices to follow for the programming

languages involved with the framework. This includes Visual Basic, used for the

application and its components, and Visual Basic Script, used by Active Server

Pages. It also suggests entity design standards for the RDBMS part of the system.

Finally, we will present the high-level design goals that we will use to drive the

development of the framework in subsequent chapters.

Chapter 7, "The ClassManager Library," introduces the ClassManager component

that is used to drive class definitions and the mapping of objects to databases.

Chapter 8, "The DataManager Library," introduces the DataManager component

that is used to provide a non-invasive data layer for the business layer objects of the

system.

Chapter 9, "A Two-Part, Distributed Business Object," discusses the splitting of the

traditional business object into several parts that run on multiple tiers.

Chapter 10, "Adding an ActiveX Control to the Framework," discusses the

development of the user interface using ActiveX control technology, allowing

front-end deployment in a variety of hosts.

Chapter 11, "A Distributed Reporting Engine," discusses how to leverage ASP as

your primary reporting engine. It is followed by a discussion on how to implement

more complex reporting through an MTS-based reporting component.

Chapter 12, "Taking the Enterprise Application to the Net," discusses how to make

your application functionality available to a larger client base through the corporate

intranet.

Chapter 13, "Interoperability," discusses how to set up links to other systems, both

internal and external to the corporation. It presents several models to deal with the

most common needs that arise in the corporate setting.

Chapter 14, "A Task Management Component," presents the issues surrounding

task automation, message queuing, and cross-system collaboration.

Chapter 15, "Concluding Remarks," presents several topics that have been left

uncovered. These include security and scalability.

Chapter 2. Layers and Tiers

In an effort to move from a monolithic application model to a modular one, industry

experience over the years has determined that there is a logical partitioning of

functionality into distinct groups known as layers. Furthermore, experience has

determined that there are certain physical locations where these layers

reside—whether they are different machines—that are referred to as tiers. Although

there is little debate in the industry on what these layers and tiers are, there are

various viewpoints on how to best accomplish the implementation of these elements

to arrive at a robust application.

Layers

Modern applications partition the system into at least three distinct logical layers of

code known as user, business, and data. The Microsoft DNA architecture names

these layers as presentation, application, and data, respectively. A fourth layer,

named system, provides access to the services provided by the network and

platform operating systems. This system layer should not be confused with

Microsoft's workflow layer because the two are different in nature. For the purposes

of the framework presented in this book, Microsoft's view of workflow logic is

embedded in the user and business layers as part of the distribution mechanism.

This partitioning of functionality across layers not only allows the distribution of

processing across multiple machines, but also creates a high level of modularity and

maintainability in the code base. Figure 2.1 shows an overview of these layers and

the interactions between them.

Figure 2.1. The layered development model.

The User/Presentation Layer

User services provide the presentational and navigational aspects of the application.

The user services layer is the part of the system the user sees and interacts with

regularly. In most cases, the user considers the user interface to be the application

because they are unaware that any other parts of the system exist. We can define

a user interface within the context of an application screen that contains complex

interactive controls. These might include tables, drop-down lists, tree views, list

views, button bars, tab strips, and so on. Similarly, we can define a page with simple

form elements rendered in a Web browser as a simple user interface. In addition, we

can also define a user interface in terms of a Web page that hosts an ActiveX control

or Java applet.

To build a complex user interface, a language, such as Visual Basic, is required to

host the interactive controls and provide the navigational logic for the user to move

about the system. In a Web browser-based application, we can use a static HTML

page to present the interface, or we can rely on Active Server Pages to build the

interface for us based on dynamic requirements.

The Business/Application Layer

Although the user interface is what the end user sees, the business layer is what

defines the application in terms of what it does from an information management

perspective. It is logical to assume that all data input and output comes from the

user layer; however, this is not the case. It is convenient to first define the business

layer in these terms, but it will become clear in the development of the framework

that inputs and outputs can be comprised of interfaces to other applications as well

as to end users. The modularity of the layered approach drives the ability to support

both types of interfaces with a common business layer.

We often refer to the business layer as the heart of the system, and for good reason.

Besides being the location where we implement all business logic, it is also the

center point of a multilayer system. On one side of this layer stack, it interfaces with

the user layer, providing the information needed to populate the interface and the

validation logic needed to ensure proper data entry by the user. On the other side of

the layer stack, it interfaces with the data layer that in turn interacts with the data

storage and retrieval subsystems. The business layer can also communicate with

other business layers either within or external to the application.

With respect to the user interface, the business layer provides both inputs and

outputs. On the input side, the business layer handles the validation logic needed to

ensure appropriate information entry by the user. If we take an example from an

accounting application, a simple field-level validation might be necessary to ensure

that the posting date on a ledger transaction constitutes a valid date. Complex logic,

on the other hand, validates across an information set, but we still handle this on the

business layer. An example taken from the same accounting application might be to

make sure a check's posting date occurs before its clearing date. The business layer

also defines the output aspects of the system. This might be in the form of the

content that makes up human-readable reports or in data feeds to other systems.

This could go beyond just a simple dump from a database system, where a standard

query against a server provides the data, to a system that performs transformation

of the data from one or more data storage systems.

When we start the definition process for a new application, we must focus on how to

meet both the high-level business needs and the needs of the end user. Although

common sense might seem to indicate a user-layer focus, we should really look to

the business layer to drive our design efforts because the users understand the real

world the best. As we will see in the next chapter, we can model the real world using

object-oriented techniques, creating business-layer objects that drive the

application. By using this approach, we can avoid an initial focus on the user and

data layers that can sidetrack our efforts. Instead, we will implement a robust

framework that will allow these outer layers to become a natural extension of our

inner business layer.

The Data Services Layer

The data services layer performs all interactions with the data storage device, most

often a Relational Database Management System (RDBMS) server. This layer is

responsible for providing the rudimentary CRUD (Create, Retrieve, Update, and

Delete) functionality on behalf of the system. It can also enforce business-entity

relationship rules as part of its administrative duty. Typically, it not only involves the

database server itself, but also the underlying data access methodology, such as

Active Data Objects (ADO), and the formal database language, such as Structured

Query Language (SQL).

From an interaction standpoint, only the data layer should deal directly with the

business layer. If we look around, we will see many systems deployed wherein the

developer has directly coupled the user and data layers, effectively eliminating the

business layer. Data-bound controls follow just this approach. Although this is a

viable solution, it is inflexible in terms of extensions to the business processes

because it does not implement them to begin with. If we do not implement a solid

business process within our application, we have effectively created a dumb, fragile,

and data-centric solution to a business problem.

TIP

Do not use controls while in data-bound mode in enterprise applications. They offer

no flexibility for extensibility, minimal capability for business process

implementation, and represent a poor design.

The System Layer

The system layer is somewhat of a catch-all category for functionality that is

required but does not necessarily fit into one of the other layers. Each of the user,

business, and data layers can have its own unique system layer to assist in

providing its own requisite functionality. The system layer can include functionality

to interact with the file system, network, or registry. It can include the login

functionality, general-purpose functions, error handling, user messaging, and so on.

It can also include security verification, mailing functionality, event-logging

functions, and the like.

The Application Spread Across Tiers

Although often considered synonymous, tiers differ from layers in that they

represent the physical hardware employed by the system. It is the number of such

pieces of hardware that give a particular deployment strategy its tiering

nomenclature. Common sense says that increasing the number of pieces of

hardware has the effect of distributing the processing load, thereby increasing

application performance. Although this is the design intent of a tiered architecture,

simply adding hardware into the application does not necessarily improve the

overall application. We must be careful to add hardware in an appropriate manner

so that we achieve the desired effect.

Single-Tiered Architecture

In a single-tiered architecture, all the software layers that make up an application

reside on the same physical computer. This is typically the case of an application

running against a local database and a local database engine, such as Microsoft

Access. Single-tiered architectures usually represent a user base of one, because

multiple users cannot simultaneously share the database. This architecture is also

the worst-performing because the application and the database engine are running

on the same machine, eliminating any chance for cooperative processing. Figure 2.2

shows the single-tiered architecture.

Figure 2.2. The generic single-tiered architecture.

2-Tiered Architecture

The 2-tiered architecture is synonymous with client/server technology. As the name

suggests, we are using two pieces of hardware in this scenario: a client side that

provides the user and business layers and a server side that provides the data layer.

The server side is typically the database server itself. This architecture is much

better at distributing the processing load between two machines—to be sure,

client/server applications represent the largest installation base within the

corporate world. One of the drawbacks to this approach is that it still places a

significant burden on the client machine to provide both the user and business

layers of the application. It also means that as we enhance (or fix) the business

layer, we will have to re-deploy the necessary files across the user base as well. This

can be a significant feat if the user base is large and extends across a vast

geographic space. Figure 2.3 shows the 2-tiered architecture.

Figure 2.3. The generic 2-tiered architecture.

3-Tiered Architecture

A 3-tiered architecture fixes some of the problems of a 2-tiered model by

introducing a third computer. In this mode, we insert a special business-layer tier

between the client and server. This not only further improves performance

(assuming it is done correctly), but it also puts the business layer at a single point,

reducing the need to re-deploy the application as we make many of the

enhancements and fixes to the application.

Many developers feel that a 3-tiered architecture is the same as the

user/business/data layering approach. Although this is a technically valid

assumption, it represents a pure layer to tier mapping that is difficult to implement

in real-world situations for a variety of reasons that will be discussed later. Figure

2.4 shows a generic 3-tiered architecture.

Figure 2.4. The generic 3-tiered architecture.

N-Tiered Architecture

An N-tiered architecture starts with a 3-tiered approach but allows the addition of

new business or data layers running on additional hardware. This might be typical of

applications that interface with other applications, but can simply be an application

with multiple business, data, or user tiers. Figure 2.5 shows a realistic, albeit

contrived, complex N-tiered architecture. Figure 2.6 shows a similar, complex

N-tiered architecture specifically using our selected tools and technologies.

Figure 2.5. A complex, generic N-tiered architecture.

Figure 2.6. The N-tiered architecture using our

chosen tools and technologies.

From Figure 2.5, we can see that for each tier, there can be a system layer to

support the primary layer implemented by the tier. It is important to note that a

middle tier might only be home to a system layer. This arises when we implement

the function- ality needed to drive administration tasks, workflow routing, and

collaboration activities that take place as part of the application's daily chores.

N-tier distribution is critical to successful implementation of enterprise applications

relative to the interfacibility and collaborative attributes discussed in Chapter 1, "An

Introduction to the Enterprise." It is on these middle tiers that we can build the

infrastructure for business layers from disparate systems to interface and work

together. This other system can constitute either internally developed or third-party

applications. We can see a good example of this in the form of a commercial ERP

system that provides access to its business layer through a Business Application

Programming Interface (BAPI). SAP is one such system that provides access to a

limited portion of its functionality through a BAPI interface, also known as the SAP

DCOM Connector, running on an MTS box. In implementing our business layers on

a middle tier, we effectively create our own BAPI into our application as a secondary

process.

NOTE

The cost and complexity of building either 3- or N-tier applications can be much

higher than that for a standard 2-tier model. This is especially true when going

through the first development project using such a model because the learning

curve is steep and the number of decision-making points is high. With these issues

in mind, you should plan to use such architectures only in applications with large

user bases, such as those found in medium to large corporate environments. If you

do decide to tackle a 3- or N-tier model in a smaller-scale application, start with

some of the framework components presented in Part II of this book. This will help

make the transition easier, whether the goal is a proof of concept or simply a plan

for the future.

Mapping Layers to Tiers

As we have shown, layers and tiers are different; yet they relate to each other in

that we have to decide where to physically put our functionality. Depending on how

we perform this mapping, we can define the level of client-side functionality

required by the application. This is important when it comes to the hardware cost

goals of the application, which the development team often has little or no control

over.

Thick Client

A thick client approach is indicative of the single- or 2-tiered models where a

significant amount of functionality resides on the client-side computer. In the

single-tier model, all three layers reside on the client. In the 2-tier model, only the

user and business layers reside on the client. In either case, this usually requires

client machines with higher performance than would otherwise be required.

Thin Client

When a thin client approach is used, only the user layer resides on the client

machine. The business and data layers reside elsewhere, leading us to a 3- or

N-tiered model. In this case, we need a machine with only minimal capabilities. In

this approach, we are limited to a user interface with little complexity because a

simple Web browser constitutes the application. Because of the lowered capabilities,

we use thin clients primarily for data consumption or only light-duty data

generation.

Typically in a thin client approach, we are providing a pure layer to tier mapping.

The user layer maps completely to the client, the business layer maps to a middle

tier (such as MTS), and the data layer maps to a back-end database server. Because

of this mapping approach, all user input must cross from the client to the middle tier

for simple activities, such as data validation, a process known as server

round-tripping. In input-intensive applications, this can be frustrating for the end

user because there is a performance penalty.

Plump Client

A plump client is somewhere in between the thin and thick varieties. Here we use a

3- or N-tiered model as well. In this mode, the user layer and a portion of the

business layer reside on the client side. The remainder of the business layer resides

on a middle tier. This solution represents a best-of-both-worlds scenario in which

we can isolate the business process logic on a middle tier server, yet still enable a

complex user interface. In this mode, we need a client machine that is somewhere

in between the requirements of the thin and thick client modes as well. Although we

can use a Web browser in this mode as well, it usually hosts a complex user layer

object, such as an ActiveX control or a Java applet. Because of the balance afforded

by a plump client, we use it primarily for heavy-duty data generation activities.

In a plump client mode, we modify the pure mapping described in the thin client

approach by making the lines between the tiers a bit fuzzier. In this mode, the client

tier has the user layer and a user-centric portion of the business layer. The middle

tier has the business layer and a data-centric portion of the data layer. The data tier

has the data layer and a business-centric portion of the business layer. While our

tongue is untwisting after reading that series of sentences, we should look at Figure

2.7.

Figure 2.7. The split-layer distribution model.

Mapping Layers and Tiers to Your Development Team

Beyond mapping layers to tiers, we also need to consider how the two relate to the

development team. Although it is important to have experts in each of the user,

business, and data layer categories, it is also important to maintain a breadth of

knowledge across the team. Any developer should be able to go into any layer of the

application and perform work on the code base. The reason for this is that the

layered approach means a certain level of cooperation is required between these

functional areas. As such, it is important for one layer to provide the functionality

needed by its attached layer, meaning, for example, that the user layer expert must

understand the requirements of the business layer expert, and vice-versa. Such a

full understanding of all layers by all developers will make the overall development

and maintenance process more robust.

We will also see as we get into the component-based development discussions in

Chapter 4, "The Relational Database Management System," that a one-to-one

mapping between expert and layer bodes well for the development process in

general. Because we have a clearly defined separation of functional areas, each

developer can work on a layer in isolation. In this mode, we can simulate the

functionality of the attached layer through code stubs. During development, we can

perform a high level of unit testing before hooking the application together for the

integrated testing phase. This form of development, with clearly defined interfaces

and stubs, also enables us to generate automated testing routines for regression

testing after the application enters a release candidate or production mode.

Summary

In this chapter, we learned that enterprise application development consists of

more than just code running on a single machine. With today's technologies, we can

put the various pieces of functionality on multiple machines in ways that increase

performance, decrease costs, and improve administration and maintenance. Such

splitting of the functionality also simplifies the implementation of the

interoperability and accessibility aspects of the application. In the next chapter, we

will discuss object orientation as it relates to Visual Basic, MTS, and Microsoft's

Component Object Model.

Chapter 3. Objects, Components, and COM

Whether you are a seasoned object-oriented developer or someone who is just

coming up to speed, it is important to understand some of the basic features that

object-oriented programming imparts. Because we will be leveraging these features

heavily in our framework in Part II of this book, we are providing a suitable overview

in this chapter. To add depth, we will intersperse notes and tips relative to using

object-orientation to your advantage in building enterprise applications throughout

this chapter.

Object Orientation

Object orientation is not an entirely new concept, but it is becoming more prevalent

in the underpinnings of modern applications. It has just been within the last ten

years or so that object-orientation migrated from academia and experimentation to

a true, commercial-grade development methodology. Since then,

non–object-oriented development has moved into the minority position.

NOTE

One important thing to remember is that simply using an object-capable language

does not constitute object-oriented development. In addition, simply defining

classes within an object-capable language, without taking advantage of the power

of object-orientation, does not necessarily make an enterprise application more

robust.

To start a definition of object-orientation is to understand that it is rooted in the

management of complexity. Modern applications, with their intrinsic business logic

and interactions among data elements, can become burdensome to develop and

maintain in a traditional procedural environment. Sometimes just the analysis of the

business problem domain can become increasingly overwhelming as the system's

scope grows from one of simple data management to one that embodies business

process knowledge. Object-orientation helps throughout application development

by allowing us to use a similar thought process across the analysis, design, and

implementation phases. The basic pillars of object-orientation are abstraction,

encapsulation, polymorphism, and inheritance. We will discuss these features of

object-orientation and how they enable us to build modular, maintainable, and

extensible applications.

Abstraction and Class Modeling

What is most striking about object-orientation is that it follows the true sense of the

business world. In this world, anything that a business deals with, whether it is a

widget that a company produces or a financial account that a bank maintains on

behalf of a client, is definable in software terms through a class model. This class

model defines the information pertinent to the business entity, along with the logic

that operates on that information. Additionally, a class definition can contain

references to one or more external classes through association or ownership

relationships. In the case of a financial account, informational elements might

include the account number, the names of the account owners, the current balance,

the type of account, and so on. We call these items properties (also known as

attributes) of the class. Similarly, the class can define a function to add a new

transaction to the account or modify/delete an existing transaction. We call these

items methods (also known as operations) of the class. What differentiates a class

from an object is that a class is a definition, whereas an object is an instance of that

definition.

We can also graphically represent our objects using a class diagram. There are

many different views on how to represent these diagrams, but the most pervading

forms are the Yourdon/Coad and the Rumbaugh methods, named after the

individuals who developed them. Many drawing programs have templates

predefined for these models, whereas many modeling tools can support some or all

of the more popular styles. You can also create your own object modeling technique

using simple lines and boxes. We have chosen to use the Rumbaugh model in this

book because of the popularity of the Unified Modeling Language (UML), of which it

is a component. It also happens to be the model used by the Microsoft Visual

Modeler that is bundled with Visual Studio 6.0 Enterprise Edition. Figure 3.1 shows

an example of a graphical depiction for a financial account class.

Figure 3.1. The CAccount class using the UML graphical

model.

TIP

It is important to decide on a graphical object representation model early in the

project. Make sure that everyone understands how to read it and feels comfortable

with it. This model will be your roadmap as you work your way through all phases of

the application development process and will be critical as the complexity starts to

build.

As you can see, we modeled our real-world Account business entity in terms of

properties and methods. We call this modeling process abstraction, which forms the

basis for object orientation. With this in mind, we can further our discussion of other

features of object-orientation.

Encapsulation

What should be apparent from Figure 3.1 is that we have bundled everything about

the class into a nice, neat package. We formally define everything that the outside

world needs to know about this class in terms of these properties and methods. We

call the public properties and methods of a class its interface, which represents the

concept of encapsulation. In the real-world account example, a customer does not

necessarily need to know how the current balance is calculated based on

transactions that are added, modified, or deleted. They just need to know their

current balance. Similarly, users of the account class do not need to know how the

class calculates the current balance either—just that the class properly handles it

when the transaction processing methods are called. Thus, we can say that

encapsulation has the effect of information hiding and the definition of narrow

interfaces into the class. This concept is critical to the development of robust,

maintainable applications.

A class might implement internal methods and properties but choose not to expose

them to the outside world through its interface. Because of this, we are free to

change the internal workings of these private items without affecting how the

outside world uses our class through its public interface. Figure 3.2 shows how a

public method calls a private method to perform a calculation that updates the value

of a public property.

Figure 3.2. The interactions between public and

private methods and properties.

Suppose, for the sake of argument, we were to expose the internal function (also

known as a private method) that calculates current balances. We would do this by

defining it to be public versus private. An application using this class, for whatever

reason, might deem it acceptable to call this internal method directly and does so in

a multitude of places. Now suppose that we must change the calling convention of

this method by adding a new parameter to the parameter list, such that we have to

modify every piece of software that references this internal method. Assume also

that the public transaction methods would not have had to change, only the

formerly private method. We have effectively forced ourselves into a potentially

large code rewrite, debug, test, and deployment cycle that we could have otherwise

handled simply within the object's private methods while leaving the public interface

intact. We will see, in the COM model discussion to follow, that we can easily modify

only the class and redeploy it across the user base with a minimum of effort. In the

corporate world, this translates into time and money.

Because the term interface might be a difficult concept to grasp at first, it might be

easier to think of as an electrical socket. In the 220-volt parts of the world, there are

three-pronged sockets with one of the prongs oriented 90 degrees out from the

other two. In the 110-volt parts of the world, there are two- and three-pronged

plugs with a different geometry such that you cannot plug a 110-volt oriented plug

into a 220-volt socket and vice-versa. Imagine if the 110-volt world suddenly began

using 220-volt–style plugs and sockets (assuming voltage will not change). We

would have to replace the plug on every electrical device along with all the wall

sockets. It would be a huge mess. The same goes for properties and methods. After

we define the interfaces of a class and write applications against them, making

changes becomes difficult and costly.

TIP

When defining a class, assume every method is to be defined as private in scope

(that is, hidden) unless there is good reason to make it public. When making a

method public, take steps to ensure the stability of the calling convention (that is,

the parameter list) over the life of the application. Use optional parameters as

necessary to cover anticipated future needs.

Encapsulation also has the effect of protecting the integrity of objects, which are

instantiated using the class definition. We have already touched on this when we

stated that a class is responsible for its own inner workings. Outsiders cannot

meddle in its internal affairs. Similarly, property definitions can be implemented

such that the class rejects invalid property states during the setting process. For

example, a date-based property could reject a date literal, such as "June 31, 1997,"

because it does not constitute a date on any calendar. Again, because the validation

logic is contained within the class definition itself, modifying it to meet changing

business needs occurs in a single place rather than throughout the application base.

This aspect of encapsulation is important, especially for enterprise applications,

when we discuss the implementation of validation logic in Chapter 9, "A Two-Part,

Distributed Business Object." It further adds to our ability to develop robust,

maintainable, and extensible applications.

NOTE

One of the common comments that newcomers to object-oriented development

make is that it seems like unnecessary effort to package data and functionality

together into a unit called a class. It also seems like extra work to define properties

and methods, deciding what is to be public and what is to be private. It is much

easier to just take a seat behind the keyboard and begin banging out some code.

Although it is true that object-oriented development requires a different mindset

and a somewhat formal approach to analysis and design, it is this formalization

process that leads to less complex development over the long term. The old saying

"penny-wise and dollar-foolish" applies here because some time saved up front will

lead to potentially huge problems further into the development, and worse yet, the

application launch process.

Let us switch gears by defining a class with some complexity—with a financial

bond—so we can illustrate some other points and begin setting the stage for other

features of object-orientation. Let us call it CBond (for Class Bond). We define

several properties in tabular form in Table 3.1, methods in Table 3.2, and we

provide a graphical depiction in Figure 3.3.

Figure 3.3. UML representation of a CBond class.

Table 3.1. Properties of a Cbond Class

Property Data Type Description

Name String The descriptive name of the bond.
FaceValue Single (Currency) The final redemption value of the

bond.
PurchasePrice Single (Currency) The price to purchase the bond.
CouponRate Single (Percent) The yearly bond coupon payment

as a percentage of its face value.
BondTerm Integer The length of time to maturity for

the bond, expressed in years, in

the primary market.
BondType Integer: (Enumeration

[CouponBond, DiscountBond,

ConsolBond])

The bond type used to drive

calculation algorithms.

Table 3.2. Methods of a CBond Class

Method Description

YieldToMaturity Calculates the interest rate that equates the present value of the

coupon payments over the life of the bond to its value today.

Used in the secondary bond market.
BondPrice Calculates the bond price as the sum of the present values of all

the payments for the bond.
CurrentYield Calculates the current yield as an approximation of the yield to

maturity using a simplified formula. Note: Available only on

CouponBond types.
DiscountYield Calculates the discount yield based on the percentage gain on

the face value of a bond and the remaining days to maturity.

Each method uses one or more of the public property values to perform the

calculation. Some methods require additional information in the form of its

parameter list, as can be seen in Figure 3.3. As you might guess, the BondType

property helps each method determine how to perform the calculation. A sample

Visual Basic implementation of the BondPrice method might be as follows in Listing

3.1.

Example 3.1. The Bondprice Method

Public Function BondPrice(IntRate as Single) as Single

 Dim CouponPayment as Single

 Dim j as integer

 Dim p as single

 CouponPayment = CouponRate * FaceValue

 Select Case BondType

 Case btCouponBond

 For j = 1 to BondTerm

 p = p + CouponPayment/(1 + IntRate)^j

 Next j

 p = p + FinalValue/(1 + IntRate)^BondTerm

 BondPrice = p

 Case btDiscountBond

 BondPrice = FaceValue/(1 + IntRate)

 Case btConsolBond

 BondPrice = CouponPayment/IntRate

 End Select

End Sub

As you can see, each value of the BondType property requires a different use of the

properties to perform the correct calculation. The application using the class is not

concerned with how the method performs the calculation, but only with the result.

Now suppose that you need to modify the calculation algorithm for the BondPrice

method. Because of encapsulation, you only need to modify the contents of the

BondPrice method and nothing more. Better yet, because you have not changed

the calling convention, the applications using the CBond class are none the wiser

that a change occurred.

Polymorphism

Polymorphism is another standard feature of object-oriented programming.

Fundamentally, polymorphism means the capability to define similar properties and

methods on dissimilar classes. In essence, we define a common interface on a set of

classes such that a calling application can use these classes with a standard set of

conventions. Because this sounds complex, let us provide an example.

Suppose you are developing classes that must interact with a relational database.

For each of these classes, there can be a standard set of methods to retrieve

property values for an object instance from a database. We call this process of

storing and retrieving property values object persistence, a topic we will discuss in

detail in Chapter 5, "Distribution Considerations." We can illustrate an abstract

definition of a couple of methods as follows:

Public Function RetrieveProperties(ObjectId As Long) As Variant

 ' code to retrieve the property values

End Function

Public Sub SetStateFromVariant(ObjectData As Variant)

 ' code to set the property values from ObjectData

End Sub

For each class that is to follow this behavior, it must not only define, but also provide

the implementation for these two methods. Suppose you have three such

classes—CClassOne, CClassTwo, and CClassThree. An application that creates

and loads an object might implement polymorphic code in the following manner

(see Listing 3.2).

Example 3.2. The RetrieveObject Method

Public Function RetrieveObject(ClassType As Integer,

 ObjectId As Long) As Object

 Dim OClassAny As Object

 Dim ObjectData as Variant

 Select Case ClassType

 Case CLASS_TYPE_ONE

 Set OClassAny = New CClassOne

 Case CLASS_TYPE_TWO

 Set OClassAny = New CclassTwo

 Case CLASS_TYPE_THREE

 Set OClassAny = New CClassThree

 End Select

 ObjectData = OClassAny.RetrieveProperties(ObjectId)

 Call OClassAny.SetStateFromVariant(ObjectData)

 SetRetrieveObject = OClassAny

End Function

In the preceding code example, we use a technique known as late binding, wherein

Visual Basic performs type checking at runtime rather than at compile time. In this

mode, we can declare a generic object (a variable type intrinsic to Visual Basic) to

represent the instantiated object based on any of the three class definitions. We

must assume that each of these classes defines and implements the

RetrieveProperties and SetStateFromVariant methods as mandated by our

polymorphic requirements. If the classes deviate from these conventions, a runtime

error will occur. If the classes meet these requirements, we can simplify the coding

of the object retrieval process into a single function call on the application. This not

only leads to code that is easier to maintain over the life of the application, but also

makes extending the application to support new class types much simpler.

The late binding technique of Visual Basic presents us with some concerns. Because

late binding performs type checking at runtime, some errors might escape early

testing or even propagate into the production application. Furthermore, late binding

has a performance penalty because Visual Basic must go through a process known

as runtime discovery with each object reference to determine the actual methods

and properties available on the object. This said, we should scrutinize the use of

late-binding approaches in the application wherever possible and choose alternative

approaches. We will discuss several approaches to circumvent these issues when we

discuss the framework components in Part II of the book.

Inheritance

The final pillar of object orientation is that of inheritance. Fundamental to this

concept is the capability to define the common methods and properties of a related

group of classes in a base class. Descendants of this base class can choose to retain

the implementation provided by the base class or can override the implementation

on its own. In some cases, the base class provides no implementation whatsoever,

and it is focused solely on the definition of an interface. We consider these types of

base classes abstract because each subclass must provide the complete

implementation. Regardless of the mode, the descendent class must maintain the

definition of all properties and methods of its base class. Said in another way, the

descendent class must define the same interface as its base. This is similar in

concept to polymorphism, except that inheritance forces the implementation in a

formal manner, such that Visual Basic can perform type checking at compile time.

Looking again at our CBond class, we notice that there is a BondType property to

force certain alternative behaviors by the calculation methods. We can modify our

CBond class into a single IBond base class and three subclasses called CCouponBond,

CDiscountBond, and CConsolBond. We use IBond here (for Interface Bond)

instead of CBond to coincide with Microsoft's terminology for interface

implementation. Graphically, we represent this as shown in Figure 3.4.

Figure 3.4. An inheritance diagram for the IBond base

class.

If we revisit our bond calculation functions in the context of inheritance, they might

look something like Listing 3.3. Disregard the IBond_ syntax for now because it is a

concept that we gain a thorough understanding of in our work in Part II of this book.

Example 3.3. The Calculate BondPrice Method

' From the application

Public Function CalculateBondPrice(BondType as Integer, _

 IntRate as Single) As Single

 Dim OBond As IBond

 Select Case BondType

 Case BOND_TYPE_COUPON

 Set OBond = New CCouponBond

 Case BOND_TYPE_DISCOUNT

 Set OBond = New CDiscountBond

 Case BOND_TYPE_CONSOL

 Set OBond = New CConsolBond

 End Select

 CalculateBondPrice = OBond.BondPrice(IntRate)

End Function

' From CCouponBond

Implements IBond

Public Function IBond_BondPrice(IntRate As Single) As Single

 Dim CouponPayment as Single

 Dim j as integer

 Dim p as single

 CouponPayment = IBond_CouponRate * IBond_FaceValue

 For j = 1 to IBond_BondTerm

 p = p + CouponPayment/(1 + IntRate)^j

 Next j

 p = p + IBond_FinalValue/(1 + IntRate)^IBond_BondTerm

 IBond_BondPrice = p

End Function

' From CDiscountBond

Implements IBond

Public Function IBond_BondPrice(IntRate As Single) As Single

 IBond_BondPrice = FaceValue/(1 + IntRate)

End Function

' From CConsolBond

Implements IBond

Public Function IBond_BondPrice(IntRate As Single) As Single

Dim CouponPayment as Single

 CouponPayment = IBond_CouponRate * IBond_FaceValue

 IBond_BondPrice = CouponPayment/IntRate

End Function

Although the application portion of this example might look somewhat similar to the

polymorphic mechanism from before, there is an important distinction. Because we

have defined these subclasses in the context of a base class IBond, we have forced

the interface implementation of the base class. This, in turn, allows Visual Basic to

perform early binding and therefore type checking at compile time. In contrast to

late binding, this leads to better application performance, stability, and

extensibility.

TIP

Any class definition that contains a Type property is a candidate for

inheritance-based implementation.

Critics have chastised Microsoft for not implementing inheritance properly in Visual

Basic in that it does not support a subclass descending from more than one base

class, a concept known as multiple-inheritance. Although this lack of

implementation technically is a true statement, in reality, multiple inheritance

scenarios arise so infrequently that it is not worth the extra complexity that

Microsoft would have had to add to Visual Basic to implement it.

Many critics would further argue that Visual Basic and COM, through their interface

implementation technique, do not even support single inheritance properly and that

the notion of the capability to subclass in this environment is ludicrous. Without

taking a side in this debate, we can sufficiently state that interface implementation

gives you some of the features afforded by single-inheritance, whether or not you

want to formally define them in this manner. The particular side of the debate you

might fall into is immaterial for the purposes of our framework development in Part

II of this book.

Interface inheritance lends itself to maintainability and extensibility—essential

attributes of enterprise applications as discussed in Chapter 1, "An Introduction to

the Enterprise." If the implementation of a base method or property must change,

we have to make the modifications only to the base class. Each descendent then

inherits this new implementation as part of its interface implementation. If the base

class physically resides in a different component than its descendants, something

we will discuss later in this chapter, we only have to redeploy the component

defining the base class.

Association Relationships

After we have defined the basics of classes with simple property types, we can

expand our view to show that classes can have associative relationships with other

classes. For example, a class might reference another class in a one-to-one manner,

or a class might reference a group of other classes in a one-to-many fashion.

One-to-One Relationships

We might consider one-to-one relationships as strong or weak in nature. Weak

relationships are just simple references to other classes that are shareable across

multiple object instances. For example, a CPerson class can be referenced by many

other classes, with a particular OPerson instance being referenced by multiple

object instances of disparate classes. Strong relationships, on the other hand, are

usually the result of containment relationships, where one object is the sole user of

a subordinate object. In an automotive manufacturing application that tracks the

serial numbers of finished units, an example might include the CSerializedEngine

and CSerializedAutomobile classes, where each OSerializedEngine object can

belong to only one OSerializedAutomobile object. Figure 3.5 shows a weak

reference, whereas Figure 3.6 shows its strong counterpart.

Figure 3.5. A Weak association relationship.

Figure 3.6. A strong association relationship.

In Figure 3.5, we show a graphical representation of a weak reference. In this

example, the CPerson class (and thus, object instances based on the class) is

referenced by both the CAccount and CLoan classes. In the real world that forms the

basis for this mini-model, the relationship diagram indicates that it is possible for

the same person to have both a checking account and a house or car loan at the

bank. The same person could have multiple accounts or loans at the same bank.

In Figure 3.6, we show the graphical representation of a strong, or containment,

reference. In this example, we show how a finished, serialized automobile has an

engine and transmission, both of which the manufacturer serializes as well for

tracking purposes. Each OSerializedEngine and OSerializedTransmission

instance will reference only one instance of the CSerializedAutomobile class.

One-To-Many Relationships

One-to-many references occur so often that we have developed a special class,

known as a collection, to implement this type of relationship, as shown graphically

in Figure 3.7. In this example, the CIBonds class indicates a collection of IBond

interfaces, each of which can be subclassed as before. This CIBonds class has

several methods associated with group management, such as Add, Remove, Item,

and Count. If we defined a CPortfolio class, it might have a reference to a

CIBonds class, as well as CIStocks and CIAssets classes, each of which are

collections of IBond, IStock, and IAsset classes, respectively. Again, each of

these final interface classes can be subclassed to provide specific implementations,

yet the collection can manage them in their base interface class.

Figure 3.7. A one-to-many relationship and the

collection class.

One-to-many relationships and the collection classes that implement them are

synonymous with the master-detail relationships found across many applications.

We will be using these collection classes frequently throughout our framework

architecture. We will cover collections in detail in Chapter 7, "The ClassManager

Library."

Class and Object Naming Conventions

Throughout our discussions in this chapter, we have been alluding to a naming

convention for classes and objects without having given any formal definitions.

Although the naming convention is arbitrary, it is important to decide on one and

adhere to it throughout all phases of the project. This will not only provide a degree

of standardization across multiple developers, but also make it easier for developers

and maintainers to understand the code without the need for an abundant supply of

comments. Standardization is important in classes and objects because the two are

often confused. In our examples and throughout the remainder of this book, we will

be using an uppercase C prefix to denote a class. Similarly, we will be using an

uppercase O prefix for an object. Furthermore, we will be using the same suffix for

both the class and its object instances, as in the case of the CPerson class and its

OPerson instances. For example:

Set OPerson = New CPerson

Component-Based Development

With some object-orientation fundamentals behind us, we turn our discussion to

component-based development (CBD). Many people feel that objects and

components are synonymous, when in fact, they are more like siblings. Objects can

exist without components, and vice-versa. A component is a reusable,

self-contained body of functionality that we can use across a broad application base.

Imagine an application suite that has a core piece of functionality contained in an

includable source code module. Making a change to this functionality requires that

we modify and recompile the source code, testing all applications that are using it.

We must then distribute every application that references it. In large applications,

this compile time can be extensive. In a component-based model, we can simply

modify the component and do the same recompile, test, and distribute just on that

component without affecting the applications.

As we alluded in our discussion on layers and tiers in Chapter 2, "Layers and Tiers,"

a CBD approach has some distinct advantages during the development process.

Chief among these is the ability to develop and test components in isolation before

integrated testing.

Component-Based Development and COM

Object-based CBD allows the packaging of class definitions into a deployable entity.

Under the Microsoft Component Object Model (COM) architecture, these packages

are special Dynamic Link Libraries (DLLs), a dynamic runtime technology that has

been available since the earliest days of Microsoft Windows. Microsoft renamed

these COM-style DLLs to ActiveX to indicate that there is a difference. An application

gains access to classes in an ActiveX DLL by loading the library containing the class

definitions into memory, followed by registration of the classes by the COM engine.

Applications can then instantiate objects based on these classes using the COM

engine.

The traditional DLL (non-ActiveX) meets the definition for CBD, but it is procedurally

based (that is, non–object-based). ActiveX DLLs also meet this definition, being

object-based in nature. Because an object-based approach is already rooted in the

reusability of functionality, the ActiveX DLL implementation of CBD is widely

considered the most powerful and flexible technology when working solely on the

Win32 platform.

Although COM is both a component and object engine, it differs from other CBD

technologies in that it represents binary reusability of components versus

source-code level reusability. Because of its binary basis, we can write COM libraries

in any language on the Win32 platform that adheres to the COM specification and its

related API. The basic requirement to support the COM API is the capacity of a

language to implement an array of function pointers that follow a C-style calling

syntax.

The COM engine uses this array as a jumping point into the public methods and

properties defined on the object. Visual Basic is one of many languages with this

capability.

COM actually has two modes of operation: local and remote invocation. The

distinction between these two will become important as we discuss distribution in

Chapter 6, "Understanding Development Fundamentals and Design Goals of an

Enterprise Application."

In local invocation, a component is loaded into the memory space of a single

computer. This component can load directly into an application's process space, or

it can be loaded in a separate process space with an interprocess communication

mechanism. In this latter approach, we must establish a communication channel

between the process spaces. In the case of distributed computing, these processes

reside on physically different machines, and the communication channel must occur

over a network connection. We call the local invocation method an in-process

invocation, and we call the remote invocation method out-of-process. We can

actually make a local, out-of-process reference as well, which effectively removes

the network portion of the communication channel. Microsoft developed a local,

out-of-process mode of invocation for application automation, for example, when a

Microsoft Word document activates an embedded Microsoft Excel worksheet.

With in-process servers, an application can reference an object, its methods, and its

properties using memory pointers as it shares a memory space with the component.

Figure 3.8 depicts the local, in-process invocation.

Figure 3.8. The local, in-process invocation mode of

COM.

In the out-of-process server mode, all data must be serialized (that is, made

suitable for transport), sent over the interprocess boundary, and then deserialized.

We call this serialization process marshalling, a topic that we will cover in detail in

Chapter 6. Additionally, the out-of-process mode must set up a "proxy" structure on

the application (or client) side, and a "stub" structure on the component (or server)

side. Figure 3.9 depicts the local, out-of-process mode.

Figure 3.9. The local, out-of-process invocation mode

of COM.

The reason for this proxy/stub setup is to allow the client and server sides of the

boundary to maintain their generic COM programming view, without having to be

concerned about the details of crossing a process boundary. In this mode, neither

side is aware that a process boundary is in place. The client thinks that it is invoking

a local, in-process server. The server thinks that we have called it in an in-process

manner. The in-process mode of COM is fast and efficient, whereas the

out-of-process mode adds extra steps and overhead to accomplish the same tasks.

TIP

We should not use an out-of-process approach in speed-critical areas of an

application. Examples of where not to use an out-of-process approach would include

graphic rendering or genetic algorithm processing.

If the processes reside on different machines, we must add a pair of network

interface cards (NICs) to the diagram. Additionally, we must use the remote

procedure call (RPC) mechanism to allow the proxy/stub pair to communicate. We

refer to the remote, out-of-process mode of COM as Distributed COM (DCOM).

Figure 3.10 depicts DCOM. As we might imagine, DCOM is expensive from an overall

performance standpoint relative to standard COM.

Figure 3.10. The remote, out-of-process invocation

mode of COM.

COM-Definable Entities

A COM library not only enables us to define classes in terms of properties and

methods, but also to define enumerations, events, and interfaces used in

inheritance relationships. We already have talked about properties, methods, and

interfaces, so let us complete the definition by talking about enumerations and

events.

Enumerations are nothing more than a list of named integral values, no different

from global constants. What differentiates them is that they become a part of the

COM component. In essence, the COM component predefines the constants needed

by the application in the form of these enumerations. By bundling them with the

classes that rely on them and giving them human-readable names, we can ensure a

certain level of robustness and ease of code development throughout the overall

application.

TIP

Use public enumerations in place of constants when they tie intrinsically to the

operation of a class. This will keep you from having to redefine the constants for

each application that uses the class, because they become part of the COM

component itself. Where goes the class, so go its enumerations.

Events defined for a class are formal messages sent from an object instance to its

application. The application can implement an event handler to respond to these

messages in whatever manner deemed necessary.

NOTE

Visual Basic and COM define events as part of a class, alongside properties and

methods. One might assume then that we can define events on an interface,

thereby making them available to classes implementing the interface. Although this

is a reasonable assumption and a desirable feature, Visual Basic and COM do not

support this. As such, do not plan to use events in conjunction with interface

implementation.

Component Coupling

With the flexibility to place COM classes into components and then have these

components reference each other, it can become easy to create an environment of

high coupling. Coupling occurs when we create a reference from a COM class in one

component to the interface of a COM class in another component. Because

components are different physical entities, this has the effect of hooking the two

components together relative to distribution. Wherever we distribute a component

that references other components, we also must distribute all the referenced

components, all their referenced components, and so on. One reason for coupling is

that we might not properly group functionality into common components.

Functionality that represents a single subpart of the overall business application

might be a good candidate for a single component. Alternatively, functionality that

represents similar design patterns might belong in a single component.

TIP

It is important during the analysis and design phases to group components based on

similar functionality. Although we invariably need to create system-level classes for

use by other classes, we should try to minimize the creation of a chain of component

references. These chains lead to administration and maintenance issues after the

application is in production.

Another issue that leads to coupling is that we try to over-modularize the application

by placing small snippets of subparts into components. Beyond the coupling aspects,

each ActiveX DLL has a certain amount of overhead to load and retain in memory.

Placing functionality in ten components when two would suffice adds unnecessary

performance overhead and complexity to your application.

From a performance perspective, we can look at the time necessary to initialize the

two scenarios. There are two initialization times to look at: the first is the time

required to initialize the component, and the second is the time required to initialize

the object. Remembering that a component in the COM world is a specialized DLL,

we can infer that some initialization time is associated with the DLL. When Visual

Basic must load an ActiveX DLL, it must go through a process of "learning" what

objects are defined in the component in terms of properties, methods, and events.

In the two scenarios, the 10-DLL case will have five times the load time of the 2-DLL

case, assuming negligible differences in the aggregate learning time of the objects

within the components.

From a complexity perspective, the more components created means more work on

the development team. One of the problematic issues with any object-oriented or

interface implementation project is that of recompilation and distribution when

something changes, especially in the early development phases of the application.

For example, if the definition of a core class referenced throughout the project

changes, it is much easier to recompile the two components versus the ten. As you

might already know from multitiered development in the DCOM environment,

propagating such seemingly simple changes across tiers can be very difficult. Thus,

appropriate minimization of the number of components up front is desirable.

We are not trying to say that you should place all your functionality into one

component—this leads to its own set of problems. The moral of the story is that one

should not force modularity purely for the sake of doing so. You should find an

appropriate balance that can come only from experience in developing these sorts

of systems. The framework presented in Part II is a good starting point for

understanding where these lines of balance should be drawn.

When we need to provide a superset of functionality based on classes in separate

components, there is a tendency to have one class directly reference the other to do

this. In this case, we can put the new functionality on an existing class or we can

implement a new class within one of the components to handle this. Remember that

the tenant of CBD is ultimately a high level of modularity. If we design our

components well, there might be other applications that need the base functionality

afforded by one component, but not that of the secondary component or the

bridging functionality binding them together. If we design our components in the

manner just discussed, we must distribute both components just to get to the little

bit of functionality that we need in one.

TIP

To minimize coupling between loosely related components, it is always better to

build a third component to provide the bridge between the two components. In this

manner, each can be distributed independent of the other.

Figure 3.11 shows tight coupling, whereas Figure 3.12 shows its bridged

counterpart.

Figure 3.11. A graphical representation of tight

coupling.

Figure 3.12. A graphical representation of bridged

coupling.

In Figure 3.11, it should be clear that components A and B must travel together

wherever they go. An application that only needs component A must bring along

component B as well. An application that uses component A might go through test,

debug, and redistribution whenever component B changes, although it is not using

it.

In Figure 3.12, we show components A and B bridged together by component C. In

this implementation, both A and B can be used singularly in applications, whereas

applications that need the bridged functionality can use component C to provide

this.

Summary

We have learned some of the important concepts of object orientation and

component-based development in this chapter. We have also learned how

Microsoft's Visual Basic and the Component Object Model implement these concepts

and how we can begin to use them to build modular, flexible applications. In the

next chapter, we turn our attention to understanding the Relational Database

Management system because it is the foundation for the information storage and

retrieval component of our application. We will also begin laying the groundwork for

good database design techniques, specifically as they pertain to our framework.

Chapter 4. The Relational Database

Management System

Although the COM model is good for defining and implementing classes in the form

of binary reusable components, it offers nothing in the form of persistence or the

long-term storage of object state. By state, we mean the values of the properties at

any given moment in time. Perhaps this is something that Microsoft will address in

a future release of the COM standard, but until then, a common solution to this

problem is to store and retrieve data using a relational database management

system (RDBMS).

Object-oriented databases are beginning to make their way into mainstream

application development. Although they provide a solution to the issue of object

persistence, object-oriented databases are still a relatively minor player. This is

partly because they have proprietary programming interfaces, limited scalability,

and in some cases, worse performance. Relational database management systems

(RDBMS), on the other hand, have been around for many years and represent one

of the most robust server-side pieces of software available. Many existing internal

and external applications, whether they are mainframe- or PC-based, most likely

use some form of an RDBMS as their data storage device. As such, we will be using

an RDBMS in our framework architecture as well.

One of the greatest challenges faced when developing any application that interacts

with an RDBMS is how to provide a mapping between the database, the business

objects, and the user interface. There are several different theories on how to

accomplish this, but the prevalent models involve taking a data-centric, a

user-centric, or a business-centric view.

Data-Centric Database Design

The data-centric view defines the database structure independently of any other

considerations. Following this model, we can sacrifice functionality in our business

and data layers, severely impeding our ability to cleanly implement the application.

The data-centric view sometimes presents itself simply because of the organization

of the development team. On many teams, there is a database expert focused on

data integrity, normalization, and performance. This person might care about

nothing else. Many database design decisions come about strictly because of what

the database expert perceives to be best for the application. In some cases, this

works adversely to the rest of the development team from an implementation and

flexibility standpoint. For example, the database designer might want to have all

database access take the form of stored procedures, disallowing any direct

manipulation by dynamic SQL calls generated by the application. The reasoning

behind this, in the database expert's mind, is to protect the integrity of the database

from developers who do not necessarily understand the database structure. It might

also come about simply because of territorial infringement issues. Using this model,

we must code specific data access procedures on each business object because the

calling convention will be different depending on the properties defined. It is

extremely difficult to define a generic database layer using this approach or using a

polymorphic method on the class.

From our examples in the last chapter, let us define how we can implement a

RetrieveProperties method on CBond using a stored procedure approach (see

Listing 4.1).

Example 4.1. The RetrieveProperties Method on

CBond Using Stored Procedure Approach

'From CBond

Public Sub RetrieveProperties(ByVal ObjectId As Long, _

ByRef FaceValue As Currency, _

ByRef CouponRate As Single, _

ByRef BondTerm As Intger, _

ByRef BondType As EnumBondType, _

ByRef Name As String)

Dim rs As ADODB.Recordset

cmd.CommandText = "sp_RetrieveBond"

cmd.CommandType = adCmdStoredProc

Call cmd.Parameters.Append(cmd.CreateParameter("ObjectId", _

 adInteger, _

 adParamInput, _

 ObjectId))

Call cmd.Parameters.Append(cmd.CreateParameter("FaceValue", _

 adCurrency, _

 adParamOutput, _

 FaceValue))

Call cmd.Parameters.Append(cmd.CreateParameter("CouponRate", _

 adSingle, _

 adParamOutput, _

 CouponRate))

Call cmd.Parameters.Append(cmd.CreateParameter("BondTerm", _

 adInteger, _

 adParamOutput, _

 BondType))

Call cmd.Parameters.Append(cmd.CreateParameter("BondType", _

 adInteger, _

 adParamOutput, _

 BondType))

Call cmd.Parameters.Append(cmd.CreateParameter("Name", _

 adVarChar, _

 adParamOutput, _

 Name))

Set cmd.ActiveConnection = cnn ' global connection for COM lib

Call cmd.Execute

Set cmd = Nothing

End sub

Now imagine having to write a RetrieveProperties method on a CPerson class.

Because the properties on such a class are different from our CBond class, we cannot

implement a polymorphic procedure for the RetrieveProperties method across

various classes. This means a significant amount of coding overhead during the

initial development phase, followed by more issues during maintenance. Similarly,

our overall code base will be bloated because we have not effectively followed good

object- oriented design principles, simply because the database expert wanted to

use stored procedures versus a dynamic SQL approach.

In terms of extensibility, suppose that we need to add a new field to the database to

support a new property on a business object. The stored procedures driving this

business object will need updating along with the business object code. Because we

will be changing the RetrieveProperties method, we will be changing an interface

on the class, which means that we will need to modify, recompile, and redeploy the

applications using this class to make this change.

User-Centric Database Design

The user-centric view defines the database by how we present the information to

the user. This is probably the worst approach to use in defining a database and is

akin to the issues with data-bound controls. Most likely, these sorts of interfaces are

simple master/detail type screens, with little to no data normalization on the

information making up the detail portion.

Business-Centric Database Design

Because object-orientation enables us to model the real world, and the business

layer is the realization of that model, we should be able to follow a business-centric

view during database design. This is precisely what we have done because it is

simple when we have a good object model. In so doing, we guarantee that the

database structure closely follows the business object structure.

Table Orientation

In an RDBMS, information is stored in tables. Each table defines a series of columns

that make up an individual data record. We call these records rows. A single

database can have an unlimited number of tables (or at least a maximum number

defined by the database vendor). All data insertions, updates, and deletions occur at

a single table at the row level. We can relate tables using the primary/foreign key

pairs on the tables. These keys are special columns that we use solely to enforce

relationships between rows in one table and rows in other tables. We define a

primary key on a table as the unique identifier for a given row. External tables that

reference the primary key on a given table use foreign keys on the external table.

We can retrieve data from a single table or join multiple tables to give us a broader

data set. We can predefine these joins using a database view that looks and acts like

a table with retrieval-only properties.

An important concept in RDBMS theory is that of data normalization. The

fundamental principal of normalization is to eliminate redundant information. This

not only improves capacity utilization, but it also ensures that we do not have

multiple copies of the same information floating around within the database. For

example, if we were to define an AccountPerson table and a LoanPerson table to

coincide with Figure 3.5 from Chapter 3, we might have a duplicate record for a

given person. If we have to make an address change, we might remember to do it

in one of the tables and not the other. With this example, we begin to see a similarity

between RDBMS normalization and object-orientation in that any given entity

should exist only once, just as in the real world.

Mapping Tables and Objects

With our wonderful object-orientation and RDBMS worlds at our disposal, a problem

arises when it comes to marrying the two together. We call this the impedance

mismatch problem, where we have to programmatically map objects into our

database structure. Tables are row- and column-based; classes are object- and

property-based.

Our mapping process is actually simple. We create a table for every class and define

columns of the appropriate data type for each property. Thus, a class maps to a

table and properties map to columns, with a table row representing an object

instance. In the case of an inheritance relationship, we map all subclasses of a base

class to a single table, with a ClassType field to indicate the particular subclass. In

this mode, we must ensure that there are columns defined to represent all

properties across the subclasses. Although this might create "empty" column

conditions on some rows, it is a much more efficient approach. Our data layer will

know which columns are safe to ignore during our insert and update processing.

We handle object relationships with primary/foreign key pairs. In our CAccount and

CPerson association example, we would have tables Table_Account and

Table_Person defined. Following this object relationship, Table_Account would

have a column (foreign key) known as Person_Id to reference the Id column

(primary key) of Table_Person. In this mode, we reference the associated object

from the object that makes the association. We sometimes refer to this as

downward referencing.

In a collection-oriented relationship, such as our CPortfolio and CIBonds example,

we make our relationships in an upward fashion. Because these are one-to-many

ownership relationships, we must place foreign keys on the owned object to point

back to its owner's primary key. In this example, we would define tables

Table_Portfolio and Table_Bond for the class tables. On Table_Bond, we place a

Portfolio_Id column to reference the portfolio that "owns" this bond. Again, we

will design our data layer with these conventions in mind so it will know how to react

accordingly.

Object Identifiers (OIDs)

In our framework, there is an integer-based Id field on every table. We define it to

be the primary key on the table. Good database design practice says that a primary

key should have no business meaning. The reason for this is to minimize the impact

of a change in business processes on the database. If we define a column solely to

serve as the OID and primary key, we insulate it from any change brought about by

business process changes, meaning that our table relationships are forever

preserved.

For example, suppose you had developed a system that used a 10-digit part number

string as its primary key on a table. Now suppose that through mergers and

acquisitions this part number changes to a 15-digit part number loosely based on

the formats from the combined companies. To accommodate this change, you not

only have to update your primary table with the new numbers, but also update

every table that references the primary table with this key. This level of work also

includes the expansion of the effected fields and the synchronization of the values in

all tables, a task that can grow to be quite complex.

Another benefit of the approach of using a single Id field as the primary key is that

of overall database size. On SQL Server, an integer field requires four bytes of

storage space. In the preceding example, the 10-digit part number required 10

bytes of space, and the expanded version required 15 bytes. Let us assume from the

preceding example that the primary table has 10,000 records. Let us also assume

that an additional 50,000 records among 10 other tables reference this primary

table. In the 10-digit scenario, the key values alone would consume 585KB of space

in the database, whereas the 15-digit version would jump to 879KB. In the

Id-based approach, the keys require only 234KB of space. These numbers might

seem small given the relatively low cost of storage space, but it should be easy to

extrapolate this 73% reduction in key storage space across a much larger data set.

OID Generation

With the need of OIDs in mind, we must be able to generate unique OID values in an

efficient fashion. Some developers prefer to create a single table with a single row

that does nothing other than track the last OID value used. In this mode, our OID

values are unique across a database when they only need to be unique within a table.

This has the effect of under-utilizing the key storage capacity of the long integer

field by disbursing its values across all tables. To solve this problem, some

developers have modified the previous approach by creating a last used row for

each table. Although this does solve the under-utilization problem, it forces a

database read followed by an update (to increment the key value) for each row

inserted elsewhere in the database. This is in conjunction with the overhead

associated with the data row access in the target table.

To further circumvent this issue, some developers have resorted to a multi-key

approach in OID generation. Here, we generate a session-based identifier from a

database table as in the previous example. The application is then responsible for

iterating through a low value used in conjunction with the high value. Although this

approach satisfies the read/update issue of OID generation, it leaves holes in the

key sequence, again under-utilizing the capacity of the underlying integer data

type.

A third approach to OID generation is to have an insert trigger on the table calculate

the next Id value and perform an update with the appropriate value. For

performance and uniqueness reasons, this technique relies on there being a unique

clustered index on the Id column. Such an index has the property that the Id value

is unique across all rows and that the RDBMS physically orders the rows according

to their logical sort order based on the index. Database administrators normally

apply these types of indexes to the primary key, with the intent of improving search

times on the most commonly used index. Just prior to our row insert, we perform an

SQL query to get the maximum current Id value, increment it by one, and use the

result as our new OID. There are some issues with this approach. The most

problematic is that, to ensure concurrency, a lock must be placed on the table from

the time the SQL statement to generate the Id is executed until the update has

completed. For high transaction situations, this can create significant deadlock

issues that can force one or more client operations to fail at the expense of others.

In our model, we are relying on the underlying capabilities of the Identity column

type, also known as an AutoNumber field in Access. The Identity type is a special

column that is based on the integer type, but one in which SQL Server automatically

increments with each row insertion. Until version 2.1 of ADO, there was no reliable

way to retrieve this value from the server so it could be used to programmatically

formulate the necessary relationships to other tables in the database. With the 2.1

release, we are able to retrieve these values as long as triggers do not insert

additional rows into other tables with Identity columns. A complete discussion of

this issue can be found on Microsoft's KnowledgeBase in an article titled "Identity

and Auto-Increment Fields in ADO 2.1 and Beyond."

NOTE

It is important to note that for the sample code accompanying the text to work on

the provided Access database, the Microsoft Jet OLE DB Provider 4.0 must be used

in conjunction with the Microsoft Jet 4.0 version database. Both are installed by

Microsoft Access 2000.

The primary issue with this approach is that currently it is guaranteed to work only

with SQL Server and Jet 4.0 databases. The insert trigger issue might also present

a problem if the development team cannot move the functionality implemented by

these triggers to the Application tier.

Referential Integrity

Most, if not all, RDBMS systems have some mechanism for defining referential

integrity (RI). When we speak of RI, we mean that the database server makes sure

that we do not cause invalid primary/foreign key pair references in the database.

For example, in the Table_Portfolio example, when we delete a row in table, we

should also delete every referenced row in Table_Bonds. There are several ways to

accomplish this. Most RDBMS servers have declarative RI, where we formally define

the primary/foreign key pairs and the server takes care of RI natively. Although this

is efficient, on many servers, the names of the columns must be unique across the

entire database, meaning we cannot implement a standard naming convention

across all the tables as discussed in the previous section.

An issue arises with this approach when we might want to nullify a foreign key

column when its parent row is deleted, versus simply deleting the row with the

foreign key. In the CSerializedAutomobile and CSerializedEngine example

from Chapter 3, "Objects, Components, and COM," we might not want to delete the

engine when we delete the automobile. By nullifying the foreign key, we simply

indicate that no automobile owns the engine.

Another issue arises in that we might want to perform more than just RI during a

delete process, such as inactivating an account if we delete all its transactions or

providing complex validation logic. In these cases, we will be using database

triggers to perform this work. A database trigger is a programming hook provided

by the vendor that allows us to write code for the insert, update, and delete events

of a given database row. Part of this logic could be to abort the transaction if

something is not valid.

TIP

For maximum flexibility and maintainability and the issues with declarative RI, we

should consolidate our RDBMS side logic into triggers.

Data Localization

When we begin discussing an enterprise scale application, geographies invariably

enter the picture. During our analysis phases, we will find that we need to manage

some data at a global corporate level while we need to manage other data at the

local site level. Because of this, we need a mechanism to ensure that every site has

suitable access to the global data. In SQL Server 6.5, joins can occur only across

tables located on the server. Joins that cross servers cannot be accomplished.

Therefore, we need a local copy of the global data if we need to join our local data

to it.

To accomplish this, we have to set up a replication environment where we maintain

global data in a master server and then copy it at periodic intervals to the local

servers. We determine the frequency of replication and required server connection

mode by the need for real-time data at the remote sites. If we need real-time access,

replication cycles in one- or five-minute intervals over a WAN are required. If we

need near– real-time response, we can get by with an hourly cycle over a WAN or

dial-up connection. If we need only periodic synchronization, a daily cycle over a

WAN or dial-up is sufficient.

What is important about global data is that we should try to maintain it at the master

server level. Although it is possible to enable bidirectional replication, it is extremely

painful to keep global data synchronized if we are generating global data at the local

level. It is also difficult to ensure that there are not any OID collisions. Because we

are generating OID values based on the Id field of a table in a site-based server we

might have to go to a multi-key approach where we include a Site_Id column on

every table.

Locking

With an RDBMS system, we are concerned with data locking. At one level, we want

to ensure that two users are not trying to update the same row simultaneously.

Fortunately, the RDBMS takes care of this for us in conjunction with our lock settings

controlled through the data access library (ADO). In SQL Server 6.5 and later,

locking occurs at the page level, which means not only the row being altered is

locked, but also every row on the same data page as the locked row. This can cause

some issues in high-volume situations. We will provide workarounds to this problem

in Chapter 10, "Adding an ActiveX Control to the Framework."

When we instantiate an object, we retrieve the state information from the RDBMS.

Only during this retrieval process is the row locked because we return our database

connection to the pool when we are finished. After this happens, there are no

safeguards to prevent another user from instantiating another editable copy of the

object. Because of this, we must provide an object-locking mechanism. We will

discuss such details in Chapter 10.

Performance Tuning

One of the significant issues faced in enterprise applications is the performance of

the system as the number of records managed by the underlying RDBMS grows.

One of the most difficult problems to tackle is the fact that as the composition of the

data changes, what was once an optimal query path suddenly becomes suboptimal.

A specific manifestation of this issue is related to the fact that the SQL Server query

optimizer, just like the optimizers of many RDBMS products, relies on indexes and

the statistics on those indexes to determine an optimal query plan. SQL Server does

not specifically update these statistics automatically, so over time the optimizer can

begin making inefficient query plans as the database becomes more populated. A

few weeks or months after the launch date of the application, the performance of

the RDBMS can noticeably degrade because of incorrect assumptions made by the

query optimizer when the development team originally defined these views. It is a

common misconception that the degradation is due to an increasing user load when

it might simply be a sign that the RDBMS is ready for tuning.

For example, SQL Server's goal in query optimization is to generate an initial

working table based on one or more of the WHERE clause conditions. From there, it

joins this working result set to the table that should produce the next-smallest result

of the remaining tables, creating yet a new result set in the process. This process of

joining repeats for all remaining tables, with a scan through the final result to return

the rows that satisfy the conditions of the WHERE clause. The optimizer relies on table

indexes and their associated statistics to make these decisions. If these statistics do

not properly reflect the underlying data or indexes on the data, the query optimizer

can produce a very large initial result set or choose an inefficient index.

For example, assume that one of the conditions in the WHERE clause produces a

working result set of 10,000 rows. If the optimizer incorrectly picks an inefficient

index because of stale statistics, it might spend a significant amount of time

retrieving these rows, although it thinks it is being efficient. Worse, the optimizer

might have forgone an initial working result set that would have produced only five

rows because of bad statistics.

Although this is a simple concept to grasp, what is difficult about it is how SQL

Server can determine that one condition will produce the five-row result set while

the other will produce the 10,000-row result set. SQL Server will not know how

many rows a given condition will generate until it actually performs the query; by

that time, it is too late. Instead, SQL Server tries to use index statistics as an

approximation of result set size and row-selection efficiency. To do this, it first

makes a list of which indexes it can use based on the columns in the indexes and the

columns in the WHERE clause and join portions of the query. For each possible index,

it looks at a statistic known as average row hits to estimate how many rows will

need examining to find a specific row using this index. A unique clustered index on

the primary key of the table will have this value set to 2, whereas other indexes on

the table might be in the thousands. SQL Server will also express this value as a

percentage of the total rows in the table that it must examine to select a row. It will

also provide a subjective, textual rating.

For example, in the unique clustered index case, the percentage is 0.00% for very

good selectivity, while another index might have a percentage of 5% and a rating of

very poor selectivity. You can access this information for an index by clicking the

Distribution button in the Manage Indexes dialog box in the SQL Enterprise

Manager.

NOTE

Indexes with selectivity indexes greater than 5% should be considered for removal

from the RDBMS because they add little value but have some maintenance

overhead.

Using the efficiencies of all available indexes combined with the relative table sizes,

SQL Server proceeds to pick the order in which it will filter and join to arrive at the

result set. There is little you can do other than to provide SQL Server with good

indexes, fresh statistics, and occasional optimizer hints when it comes to

performance tuning. Because of this, database tuning can seem like an art more

than a science. Following several essential steps can provide a method to the

madness:

1. Verify that you have indexes on all columns that are participating as part of

a table join operation. Normally, these should be the primary and foreign

keys of each table, with one index for the primary key columns and another

for the foreign key columns.

2. Verify that you have indexes on one or more columns that are participating

in the WHERE clause. These are sometimes known as covering indexes.

3. Rebuild the indexes used by the queries in question to have them placed on

sequential pages in the database. This will also update the statistics on the

index.

4. Verify the results using an SQL query window within Enterprise Manager with

the Show Query Plan option turned on. You might still need to override the

SQL Server query plan optimizer using optimizer hints.

After you have gotten through the initial tuning phase of your RDBMS, you still must

periodically repeat the last few steps to maintain optimal efficiencies. In the long run,

you might need to re-tweak certain queries by adding or modifying indexes and

repeating the steps. Many production SQL Server implementations use the Task

Manager to schedule weekly or monthly re-indexing operations during off-peak load

times. You can accomplish this by selecting the Execute as Task button when

rebuilding an index from the Manage Indexes dialog box within the Executive

Manager.

Summary

This chapter covered the basics of an RDBMS system. Specifically, we talked about

simple database design techniques and methods for mapping objects to tables for

the purpose of persistence. We have also talked about some of the issues related to

generating an OID value and returning that value to the client application so we can

maintain the proper table references in the database. We also touched on secondary

issues such as data replication, locking, and performance tuning to address the

scalability and accessibility issues associated with enterprise applications.

In the next chapter, we will begin discussing the issues involved with creating a

distributed application. We will focus our efforts on how we can place objects on

different machines and make them communicate through Distributed COM (DCOM)

technologies. We will also explore some of the tradeoff decisions that must be made

relative to moving data efficiently between machines.

Chapter 5. Distribution Considerations

Regardless of the technology chosen for communication between distributed

objects—in our case DCOM—there are some basic considerations relative to how

objects are instantiated and how information travels between the tiers of the system.

Although the distribution mechanism itself handles most of the headaches, there

are still some areas for trade-off decision-making. It is prudent for the system

architect and development team to be aware of the options available to them and

their associated issues before making what will be a long-term decision.

Data Marshalling

An important concept to understand is that object orientation is a development and

programming convenience, as we said earlier, to manage complexity. Although

there might be standard ways to diagram classes in terms of properties and

methods, each object-oriented environment can internally implement

object-orientation differently. Thus, there is not a standard way to pass an object

over a network boundary. The foundation on which DCOM resides, the Remote

Procedure Call (RPC) mechanism, itself is not object-oriented, but procedural. From

our DCOM overview, we know that for objects to "move" around the network, the

distribution engine must first convert them into a data stream that fits nicely into

the packet structure of the network transport protocol.

A process known as data marshalling executes this conversion process. The

counter-activity, known as de-marshaling, converts the marshaled data back into

an object on the receiving end. The COM engine has an auto marshaller that is good

at providing this functionality in the background, so in most cases, you do not have

to worry about the details of handling this yourself. For complex objects, you can

override the auto marshaller by implementing a specific IMarshal interface on your

COM class. Alternatively, you can programmatically move the state data of your

object into an intermediate format that is much easier for the auto marshaller to

deal with, a concept known as pre-marshalling. We will discuss several

pre-marshalling techniques later, because we will exploit this method for our

architecture.

Remote Activation

One of the most important design considerations relative to a distributed

architecture is how objects are instantiated and how data is transferred between the

two sides of a DCOM boundary that spans a network connection.

In the DCOM world, remote objects are instantiated on the server side of the

boundary with an object reference pointer sent back to the client. In this mode,

DCOM creates a proxy process on the client that looks and feels just like a COM

object to the client process. DCOM then creates a stub process on the server that

communicates with the client-side proxy and the server-side COM object requested

by the client. Because the remote object physically resides on the server, DCOM

sends all method calls and property accesses through this proxy/stub pair over the

network, using RPC as discussed earlier.

The calling convention for this mode might look something like in Listing 5.1.

Example 5.1. Instantiating a Remote DCOM Object to

Pull Properties

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 txtLastName.Text = Person.LastName

 115 txtFirstName.Text = Person.FirstName

 …

 195 txtDomainName.Text = Person.DomainName

End Sub

On line 100, the object is created on the remote server "MTS-HOU05" and the

resulting object reference is sent back to the client and set to the Person object

reference. At this point, DCOM has created the proxy and stub. On line 105, we call

the Load method of the Person object to populate the state from the data store.

DCOM must marshal the Id parameter during this call. By line 110, our Person

object is instantiated and its state has been set from the data store. We begin

moving the data from the object into our UI elements for presentation to the user.

Each of the property accesses result in a trip through the proxy/stub layer to the

server, because that is where the object is physically living. DCOM must also call the

marshaller into action for each of these property accesses.

An equivalent subroutine to save the object back to the data store might be as

shown in Listing 5.2.

Example 5.2. Instantiating a Remote DCOM Object to

Push Properties

Sub SavePerson(Id as Long)

 Dim Person As CPerson

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Person.Id = Id

 110 Person.LastName = txtLastName.Text

 115 Person.FirstName = txtFirstName.Text

 …

 195 Person.DomainName = txtDomainName.Text

 200 Person.Save

End Sub

Again, each property access requires the same proxy/stub layer traversal and

passes through the marshaller.

Although this simple example might seem trivial, we only need to imagine an

application with five to ten objects per UI form and a user base of several hundred

to see the implications of this approach. There will be many server round trips

through the proxy/stub layer to perform relatively simple tasks. One common way

to solve some of the round-tripping overhead is to bundle all the individual property

accesses into batch methods.

The same LoadPerson subroutine when re-written with a batch call might look

something like Listing 5.3.

Example 5.3. An Optimized DCOM Call That Pulls

Properties as a UDT

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 Dim PersonData As PersonDataType

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToUDT(PersonData)

 115 txtLastName.Text = PersonData.LastName

 120 txtFirstName.Text = PersonData.FirstName

 …

 195 txtDomainName.Text = PersonData.DomainName

End Sub

In this incarnation, the subroutine puts the state data of the entire Person object

into a User Defined Type (UDT) and sets the object state in a single call, a method

we will discuss later in this chapter. Because of the single method call, only one pass

through the proxy/stub layer is required, as well as a single pass through the

marshaller. This results in a more efficient use of network bandwidth and better

response time over slower networks.

A similarly developed SavePerson subroutine might look like Listing 5.4.

Example 5.4. An Optimized DCOM Call That Pushes

Properties as a UDT

Sub SavePerson(Id as Long)

 Dim Person As CPerson

 Dim PersonData As PersonDataType

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 PersonData.Id = Id

 110 PersonData.LastName = txtLastName.Text

 115 PersonData.FirstName = txtFirstName.Text

 …

 195 PersonData.DomainName = txtDomainName.Text

 200 Call Person.SetStateFromUDT(PersonData)

 210 Person.Save(Id)

End Sub

Again, by using a UDT in a single call, we are making judicious use of network and

system resources.

Structured Data-Passing Techniques

As might have become apparent by now, one of the primary issues to solve when

implementing distributed objects is how to optimally communicate object state

information between the tiers. We have already discussed using a UDT as a

mechanism to pass a structured data packet that represents the state of all

properties. By doing this, we can accommodate the setting or getting of all

properties with a single call across the DCOM boundary. The next sections expand

on this technique with several alternatives that are commonly used to solve this

problem.

Disconnected Recordsets

The disconnected recordset approach to pass structured data is the one

recommended by Microsoft and many books on the subject matter. The reason for

this recommendation is that it offers a flexible and programmer-friendly mechanism

to transfer information. In this mode, the server creates a recordset on the server

and sends it to the client. The client can then move the information from the

recordset into an object, or can work with the recordset directly. This recordset, if

sourced by the server, might be the direct result of a database query, or it might be

the result of programmatic activity on the server to explicitly build it.

The LoadPerson subroutine written with a recordset passing convention would look

like Listing 5.5.

Example 5.5. An Optimized DCOM Call That Pulls

Properties as an ADO Recordset

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 Dim rsPersonData As ADOR.RecordSet

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToRS(rsPersonData)

 115 txtLastName.Text = rsPersonData.Fields.Item("LastName").Value

 120 txtFirstName.Text = rsPersonData.Fields.Item("FirstName").Value

 …

 195 txtDomainName.Text = rsPersonData.Fields.Item("DomainName").Value

End Sub

The implementation of the SetStateToRS method on CPerson might look something

like Listing 5.6.

Example 5.6. An Optimized DCOM Call That Pushes

Properties as an ADO Recordset

Public Sub SetStateToRS(ByRef rsRet as ADOR.RecordSet)

 100 If Not rsState Is Nothing Then

 ' NOTE: rsState is a private member of this class

 110 rsState.MoveFirst

 115 Set rsRet = rsState

 140 Else

 145 Set rsRet = Nothing

 150 End If

End Sub

In the case of collections of objects, we can return the information for the multiple

objects with the single call. The need for this might arise quite frequently when we

talk about the detail side of a master/detail relationship. In this case, the return

parameter would still be the recordset, but it would have a row for each object

instance. The client-side object is responsible for iterating through each row.

Although the recordset approach is programmatically simple on both sides of the

DCOM boundary, there are several issues with its use. The first issue is with the

overhead in the form of metadata that must accompany the actual data during the

transfer. For example, in addition to the actual result set, each recordset has a

Fields collection to describe the column layout of the information. Each Field object

in this collection has information about the column name, its data type, and two

collections of attributes and properties. Additionally, if a database query creates the

recordset, there is extra information associated with the SQL grammar and

database connection used to generate the result set. Marshalling must occur on all

this extra overhead data in conjunction with the actual data before sending it across

the DCOM boundary. Because of this overhead, the use of a recordset to send

information across processes is expensive. Additionally, it appears that the

recordset custom marshaller is pre-marshalling the information before marshalling.

With these overhead issues, it appears that ADO recordsets recover this extra cost

somewhere above 10,000 records.

NOTE

For result sets above 10,000 records, ADO recordsets are the most efficient method

for sending information across a DCOM boundary. In such cases, you should

consider redesigning an application that needs to send so many records across a

DCOM boundary.

Another potential issue is that the client side not only must have the ADO library

installed (or its lighter-weight ADOR sibling), but its version must be compatible

with the version running on the server. Because this is a technology just entering

widespread use, expect Microsoft to make revisions over time and include such

revisions in their full range of products. Confounding this issue is that the names

Microsoft uses for the primary DLLs to support ADO and ADOR are the same,

regardless of the version. For example, the ADO library is found in a DLL called

MSADO15.DLL whether it is version 1.5, 2.0, or 2.1; the same is true for

MSADOR15.DLL. Although the libraries are backward compatible with each other,

you might have ADO or ADOR upgraded on your client machine as part of some

other installation process without it becoming evident to you. If you start using

some of the newer properties, you might experience difficulty when deploying to an

MTS machine with older libraries installed. Worse, it can take you several days to

determine the source of the problem because the filenames for the libraries are the

same across versions.

As of the writing of this book, Microsoft has gone through three revisions (1.5, 2.0,

and 2.1) of ADO, whereas 2.5 is currently in beta. In addition, because ADO might

actually interface with ODBC to get to the database server, it too will need installing

and administering on the client side.

TIP

Do not use ADO on the client unless you are prepared to maintain it and potentially

distribute and maintain ODBC across the user base.

Property Bags

Microsoft developed the PropertyBag object to support the saving of design time

settings for ActiveX controls created in Visual Basic. Although we can extrapolate

their use to support structured information communication, they are still just a

collection of name/value pairs. In one sense, however, we can think of a

PropertyBag as a portable collection with one important caveat. The PropertyBag

has a Contents property that converts the name/value pairs into an intermediate

byte array that then converts directly to a string representation. On the receiving

end of the DCOM boundary, another PropertyBag object can use this string to

re-create the byte array and subsequently set its Contents property, effectively

re-creating the information.

The LoadPerson subroutine written with a PropertyBag passing convention would

look like Listing 5.7.

Example 5.7. An Optimized DCOM Call That Pulls

Properties as a PropertyBag

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 Dim pbPersonData As New PropertyBag

 Dim sData As String

 Dim baData() As Byte

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToPBString(sData)

 115 baData = sData

 120 pbPersonData.Contents = baData

 125 txtLastName.Text = pbPersonData.ReadProperty("LastName")

 130 txtFirstName.Text = pbPersonData.ReadProperty("FirstName")

 …

 195 txtDomainName.Text = pbPersonData.ReadProperty("DomainName")

End Sub

Although the marshalling aspect of the string generated by the Contents property is

of minimal concern, creating a PropertyBag is more expensive than other options in

terms of speed and information bloat. If we assume that an ADO recordset is the

original source of most information, we will have to traverse the entire recordset

programmatically in VB to move the data into the PropertyBag.

The implementation of the SetStateToPBString method on CPerson might look

something like Listing 5.8.

Example 5.8. An Optimized DCOM Call That Pushes

Properties as a PropertyBag

Public Sub SetStateToPBString(ByRef sRet as String)

 Dim pb As New PropertyBag

 Dim rsField As ADOR.Field

 Dim ba() As Byte

 100 If Not rsState Is Nothing Then

 ' NOTE: rsState is a private global member of this class

 110 rsState.MoveFirst

 115 For Each rsField In rsState.Fields

 120 pb.WriteProperty rsField.Name, rsField.Value

 125 Next

 130 ba = pb.Contents

 135 sRet = ba

 140 Else

 145 sRet = ""

 150 End If

End Sub

In the preceding example, a significant amount of programmatic overhead is

associated with building the return string. First, we must create the PropertyBag

object. Second, we must traverse the recordset's Fields collection (line 115). For

each iteration, we add the current field/value pair to the bag (line 120). After we

complete the traversal, we create the byte array (line 130) and create the final

return string (line 135).

This process is complicated further if there are multiple records requiring a

collection or array of Contents strings. In this case, the return parameter would be

an array of strings representing individual property bags, each re-creating the field

name metadata that corresponds to a particular value.

User-Defined Types

User-Defined Types (UDTs) are simple in concept in that they follow the structural

definition common to many procedural languages. In Visual Basic, we define a UDT

using a Type…End Type block in the declaration section of a code module.

A sample UDT definition corresponding to the CPerson class might look something

like Listing 5.9.

Example 5.9. The PersonDataType UDT

Public Type PersonDataType

 Id As Long

 LastName As String

 FirstName As String

 MiddleIntital As String

 EmployeeNumber As String

 OfficePhone As String

 OfficeFax As String

 Pager As String

 RoomNumber As String

 DepartmentId As Long

 UserName As String

 DomainName As String

End Type

To reiterate here, the LoadPerson subroutine with a UDT passing convention would

look like Listing 5.10.

Example 5.10. An Optimized DCOM Call That Pulls

Properties as a UDT

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 Dim PersonData As PersonDataType

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToUDT(PersonData)

 115 txtLastName.Text = PersonData.LastName

 120 txtFirstName.Text = PersonData.FirstName

 …

 195 txtDomainName.Text = PersonData.DomainName

End Sub

The implementation of the SetStateToUDT method on CPerson might look

something like Listing 5.11.

Example 5.11. Moving Data from an ADO Recordset to

a UDT

Public Sub SetStateToUDT(ByRef udtRet as PersonDataType)

 100 If Not rsState Is Nothing Then

 ' NOTE: rsState is a private global member of this class

 105 rsState.MoveFirst

 110 If Not rsState Is Nothing

 115 With udtRet

 120 .Id = rsState.Fields.Item("Id").Value

 125 .LastName = rsState.Fields.Item("LastName").Value

 130 .FirstName = rsState.Fields.Item("FirstName").Value

 135 .MiddleInitial = rsState.Fields.Item("MiddleInitial").Value

 140 ' code to copy the remainder of the field values into the UDT

 195 .DomainName = rsState.Fields.Item("DomainName").Value

 200 End With

 210 Else

 ' code to set every member of the UDT to an

 ' appropriate zeroed state

 215 End If

End Sub

The UDT approach is simple and easily managed because the type definition is

visible to both the client and server sides of the boundary when it is declared Public

within a public class module on the server. As in the case of the other options

discussed so far, we might need to handle multiple records as an array of the UDT

type. This is still an efficient approach because only data travels across the

boundary. No metadata describing the data is necessary because it is inherent in the

type definition.

With all the benefits of UDTs, it might be difficult to understand why any other

approach might be necessary. At issue is the only major drawback to a UDT—it

cannot be supported by VBScript. At first glance, this might seem insignificant until

we remember that the basis for Active Server Pages is VBScript. With more

application functionality moving to the IIS server, this becomes a crippling

limitation.

Variant Arrays

Variant arrays are the most flexible and the simplest form of data transfer across a

DCOM boundary. Although it does require the development of some indexing

structures to handle them effectively, such development is relatively minor when

viewed against the long-term benefits.

The LoadPerson subroutine written with a variant passing convention would look

like Listing 5.12.

Example 5.12. An Optimized DCOM Call That Pulls

Properties as a Variant Array

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 Dim vData As Variant

 Dim vFields As Variant

 Dim diFields as Scripting.Dictionary

 Dim i as Integer

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToVariant(vFields,vData)

 115 If IsArray(vData) Then

 120 Set diFields = CreateObject("Scripting.Dictionary")

 125 For i = LBound(vFields) To UBound(vFields)

 130 diFields.Add vFields(i), CStr(i)

 135 Next I

 140 txtLastName.Text = vData(diFields.Item("LastName"),0)

 145 txtFirstName.Text = vData(diFields.Item("FirstName"),0)

 …

 195 txtDomainName.Text = vData(diFields.Item("DomainName"),0)

 200 End Ff

End Sub

In the preceding example, we are receiving two return parameters from the

SetStateToVariant method: vFields and vData. The former is a variant array of

string values representing the field names. The ordinal position of the values in this

array corresponds to the same ordinal positions in the vData array, which is the

actual data being returned. So that we can more easily manage the data array, we

create a Dictionary object keyed on the field name so that we can index into it. ASP

again drives an implementation decision to use the Dictionary object instead of a

standard VBA Collection object, which VBScript does not support. Regardless of

whether we are returning data for single or multiple rows, vData will always be a

two-dimensional array, hence the second index dimension on lines 140–195. This

directly relates to the use of the GetRows functionality on the ADO recordset to

generate the variant array.

The implementation of the SetStateToVariant method on CPerson might look

something like Listing 5.13.

Example 5.13. An Optimized DCOM Call That Pushes

Properties as a Variant Array

Public Sub SetStateToVariant(ByRef vFields As Variant, ByRef vData As

Variant)

 Dim rsField As ADOR.Field

 Dim i as Integer

 100 If Not rsState Is Nothing Then

 ' NOTE: rsState is a private global member of this class

 105 rsState.MoveFirst

 110 If Not rsState Is Nothing

 115 vData = rsState.GetRows

 115 ReDim vFields(0 to rsState.Fields.Count - 1)

 120 i = 0

 115 For Each rsField In rsState.Fields

 120 vFields(i) = rsField.Name

 125 i = i + 1

 125 Next

 210 Else

 215 vData = vbEmpty

 220 vFields = vbEmpty

 215 End If

End Sub

The variant array approach is simple and fast. It also represents the utmost in

flexibility because neither the server nor the client requires UDT definitions. As in

the case of the other options discussed so far, we might need to handle multiple

records. The variant array approach handles this naturally because it is a

two-dimensional array with the first dimension representing the field and the

second indicating the row. The metadata needed to describe the data is simply an

ordered list of string values that apply to the entire data set.

If we consider that most data originates as a database query, Microsoft must realize

something here because they provide a highly optimized method in the form of the

GetRows method. Although the method must be performing a memory copy, the

internal structure of the recordset must be similar to that of the variant array that it

generates. We can make this inference from the fact that even for large recordsets,

the GetRows method returns quickly. The auto marshaller then processes this

resulting array quickly for passage across the DCOM boundary. This approach is not

only of minimal cost in performance and of overhead, but it also represents the best

solution in flexi-bility in supporting both the typed VB language and the

variant-based VBScript within ASP.

XML

Although we will cover XML (eXtensible Markup Language) in detail in Chapter 13,

"Interoperability," it is important to note that although it is usable as a

cross-process communication mechanism, it is the one with the highest cost.

Because of this, we relegate it to boundaries that cross platforms or applications

rather than simple cross-process communication within a platform. In these cases,

the boundary might cross over the Internet, something that DCOM does not handle

cleanly.

XML is simply a textual stream of data, similar in style to the HTML pages that your

browser pulls down from the Internet and renders on-the-fly to present to you.

What differentiates XML from HTML is that XML represents data, whereas HTML

represents content and format. Because XML is capable of representing complex

object hierarchies within the confines of a textual stream, it is easy to see how we

can employ it as a communication vehicle.

A simple XML stream corresponding to the CPerson class might look something like

Listing 5.14.

Example 5.14. A Simple XML Stream

<?xml version="1.0"?>

<!DOCTYPE Person [

<!ELEMENT Person EMPTY>

<!ATTLIST Person

 Id PCDATA #REQUIRED

 LastName PCDATA #REQUIRED

 FirstName PCDATA #REQUIRED

 MiddleInitial PCDATA #REQUIRED

 EmployeeNumber PCDATA #REQUIRED

 OfficePhone PCDATA #REQUIRED

 OfficeFax PCDATA #REQUIRED

 Pager PCDATA #REQUIRED

 RoomNumber PCDATA #REQUIRED

 DepartmentId PCDATA #REQUIRED

 UserName PCDATA #REQUIRED

 DomainName PCDATA #REQUIRED

>

]>

<Person Id="1234"

 LastName="Smith"

 FirstName="Joe"

 MiddleInitial="M"

 EmployeeNumber="5678"

 OfficePhone="(212) 555-5555"

 OfficeFax="(212) 555-5556"

 Pager="(212) 555-5557"

 RoomNumber="13256"

 DepartmentId="52"

 UserName="JMSmith"

 DomainName="XYZCORP"

/>

The LoadPerson subroutine rewritten using an XML strategy and the Microsoft XML

parser would look like Listing 5.15.

Example 5.15. An Optimized DCOM Call That Pulls

Properties as XML

Sub LoadPerson(Id as Long)

 Dim Person As Cperson

 Dim sXMLData As String

 Dim i as Integer, j as Integer

 Dim XMLDoc As New MSXML.DOMDocument

 Dim XMLNode As MSXML.IXMLDOMNode

 Dim XMLAttribute As MSXML.IXMLDOMAttribute

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToXML(sXMLData)

 115 Call XMLDoc.loadXML(sXMLData)

 120 If XMLDoc.parseError.errorCode = 0 Then

 125 For i = 0 to XMLNode.childNodes.length-1

 130 Set XMLNode = XMLNode.childNodes.item(i)

 135 If XMLNode.nodeType = MSXML.NODE_ELEMENT Then

 140 For j = 0 to XMLNode.attributes.length-1

 145 With XMLNode.attributes.item(j)

 150 Select Case .baseName

 Case "Id"

 155 lPersonId = .value

 Case "LastName"

 160 txtLastName.Text = .value

 Case "FirstName"

 165 txtFirstName.Text = .value

…

 Case "DomainName"

 195 txtDomainName.Text = .value

 200 End Select

 205 Next j

 210 End If

 215 Next i

 220 End If

End Sub

Although it is easy to generate an XML text stream to represent structured

information, there is a relatively high cost in doing so. As can be seen by the

preceding code example, there is also a high cost on the receiving end to parse the

XML stream and to use the resulting data to set the state of an object. Additionally,

as can be seen from the sample XML definition, there is a high ratio of metadata to

data in this format, especially when we are only communicating the state for a

single object.

The implementation of the SetStateToXML method on CPerson might look

something like Listing 5.16.

Example 5.16. An Optimized DCOM Call That Pushes

Properties as XML

Public Sub SetStateToXML(ByRef sXML As String)

 Dim rsField As ADOR.Field

 Dim XMLStream As New Stream ' MDAC 2.5 only

 100 If Not rsState Is Nothing Then

 ' NOTE: rsState is a private global member of this class

 105 rsState.MoveFirst

 110 If Not rsState Is Nothing

 rsState.Save XMLStream, adPersistXML

 sXML = XMLStream.ReadText

 210 Else

 215 sXML = ""

 215 End If

End Sub

The LoadPerson subroutine written using an XML strategy and the ADO recordset's

capability to load an XML stream would look like Listing 5.17.

Example 5.17. Tight Integration Between ADO

Recordset and ADO

Sub LoadPerson(Id as Long)

 Dim Person As CPerson

 Dim sXML As String

 Dim rsPersonData As New ADOR.RecordSet

 Dim XMLStream As New Stream ' MDAC 2.5 only

 100 Set Person = CreateObject("OfficeLibServer.CPerson","MTS-HOU05")

 105 Call Person.Load(Id)

 110 Call Person.SetStateToXML(sXMLData)

 115 Stream.WriteText sXML

 120 rsPersonData.Open Stream, "Provider=MSPersist;", , , adCmdFile

 125 If Not (rsPersonData.BOF or rsPersonData.EOF) Then

 130 RsPersonData.MoveFirst

 135 txtLastName.Text = rsPersonData.Fields.Item("LastName").Value

 140 txtFirstName.Text = rsPersonData.Fields.Item("FirstName").Value

 …

 195 txtDomainName.Text = rsPersonData.Fields.Item("DomainName").Value

 200 End If

End Sub

From this example, it is clear that the ADO recordset approach to XML streaming is

more programmatically friendly, and we can assume that it is less costly from a

performance perspective than the MSXML approach. Although the ADO recordset

can support XML, the memory stream-based version is available only with ADO 2.5,

which is in beta at the time of this writing. With the ADO 2.1 release, the only

manner in which XML streaming can be accomplished is by saving the recordset to

a file in XML format and then re-reading the file back into a string variable.

If the file-based approach is used, then both the client and server sides of the DCOM

boundary must deal with temporary file management issues in addition to the extra

overhead of file access. If the Stream object is used instead, then everything

happens in memory, which is both more efficient and faster. Nonetheless, the same

issues associated with using an ADO recordset on the client concern us here as well.

As programming-unfriendly as it can be, it is much easier to install and administer

the MSXML parser on the client than is ADO.

Comparative Costs—A Technical Overview

Because it is difficult to find objective data covering the various forms of

cross-process communication, we will try to provide a comparative testing

methodology and summary here that you can replicate in your environment. To test

the various methods, we have devised a method that considers various factors of

the distributed communication process. In this test, we assume that all data

originates from an ADO query and therefore is held constant across all

communication modes.

Thus, we are concerned with the remainder of the micro-level timing parameters

that make up the total time. These micro-level elements include the following:

• The time to package the data, if any, into a form suitable for transfer

(premarshalling).

• The time to marshal/transfer/de-marshal the data.

• The time to move the data into client-side elements.

Methodology

The best test environment is that of your own corporate infrastructure, including

clients, servers, and the underlying network connecting them. One critical factor is

to perform the testing first under light network loads. It is common sense that a

corporate network is most heavily loaded in the morning, after lunch, and just

before closing time because people sift through their emails at these times of day.

After you have developed your test bed during the evening hours and weekends,

you can validate your findings during the peak times to make sure the relative

timings are still valid.

It is also important to understand what your performance requirements really are.

To a user on a 56Kbps dial-up modem connection, minor timing differences might

be negligible. On the other end of the spectrum, a 100Mbps network will expose

underlying performance issues in your architecture. It is also important to

understand your user base. If you can guarantee the proper installation and

administration of ADO on the client, then ADO recordset–based approaches might

be sufficient. If, on the other hand, a thin-client, IIS/ASP approach is used, a

lightning-fast, variant-array approach is probably more suitable.

To test in your environment, create a collection of n simple objects of the same class

within the context of an MTS component. Each object should consist of various

randomly generated data types, such as strings, integers, floating points, and dates.

Create a disconnected recordset from the collection, followed by a variant array

created from the recordset (using the GetRows function). From a client-side

component, repeatedly request the data set to be sent to the client under several

scenarios. The exact same data set should be sent with each test run. Average the

total time for each scenario and divide by the number of requests to determine the

average time.

The scenarios are as follows:

1. As a collection of native objects.

2. As the native ADO recordset.

3. As the variant array created from the ADO recordset (one GetRows call per

test run).

4. As a variant array created from the ADO recordset with each request (n

GetRows calls per test run).

Under many environments up to about 10,000 records, you might find that

scenarios 1 and 3 are the fastest and on par with each other. Scenario 4 is the next

fastest, but about 100 times slower than 1 and 3. Scenario 3 is the worst performer,

about 500 times slower than 1 and 3.

Microsoft Transaction Server

We have spent a significant amount of time in the last several chapters talking about

DCOM, remote activation, and distribution considerations. Underlying all this is the

use of MTS in the server side of these discussions. Although MTS is not a

requirement for implementing DCOM, it makes things significantly easier. Several of

the reasons that we use MTS are for its DCOM hosting capability coupled with its

sophisticated object and database connection pooling. It also makes the DCOM

administrative process much easier.

Using MTS

One of the most important things to remember is that the development team must

be using Windows NT Workstation or Server as its development platform. The

reason for this is that MTS runs only on these platforms, so for many debugging

purposes, this will simplify things. We will call this the local MTS when we refer to

debugging activities. If we are using an MTS instance on another machine—whether

we are talking about debug or production modes—we refer to it as the remote MTS.

TIP

When in development, it is important to have the remote MTS as physically nearby

as possible. You will need to go to it often, so don't put it on the 12th floor if you are

in the basement, unless you want to ensure that you are getting sufficient exercise

during coding sessions.

NOTE

Walking to the snack machine does not constitute an acceptable form of exercise.

How you structure the directories and component packages within MTS is important.

If you do not already have a standard structure within your organization, consider

employing the ones presented here.

MTS Packages

In MTS, DCOM components run within the context of a package. A package is a unit

of management for MTS relative to security, lifetime, and so on. Each package can

contain one or more components, whether they belong to one or multiple

applications. Although it is possible to place all your DCOM components into a single

package on MTS, it is easier to manage the development and maintenance aspects

of the application base if you group components under some logical mechanism.

This package is the unit of distribution for the components of your distributed

application. Fixing a class in one of the components in the package means a

redistribution of the entire package.

You may create a package that groups the components driving one of the subparts

of the application. You might alternatively decide to group based on a similar set of

functionality that the components provide. The reason that such grouping is

important is that after a developer begins working on a single component within a

package, other components within the package are not available to other

developers.

TIP

It is prudent to align your development team and MTS package layout, or vice-versa,

as much as possible. After the application begins coming together, you might have

one developer waiting on another to complete his or her work if their components

are co-mingled in the same package.

Summary

This chapter has addressed the issues associated with communication between

distributed objects. Several widely used techniques can be used to pass object state

information between tiers: user-defined types, ADO disconnected recordsets,

PropertyBags, variant arrays, and XML. Each technique has its own advantages and

disadvantages, although our framework will follow the variant array approach in

future chapters.

The next chapter covers the development fundamentals and design goals for

enterprise applications. It lays the final groundwork for our work in Part II,

"Implementation of an Enterprise Framework."

Chapter 6. Development Fundamentals and

Design Goals of an Enterprise Application

Although a rich set of development tools and technologies are at our disposal, they

sit before us with minimal structure. We are free to do with them what we please.

Although this level of flexibility is important, we must decide on a standard approach

to implementation when we begin using these tools. The importance of

standardization spans both small and large development teams. Standardization

creates consistent implementation techniques, nomenclatures, and methodologies

that become the underlying fabric and texture of your application. Standardization

also forces a best-practice implementation that, in turn, promotes the fundamental

stability of the application. If one development team member reviews a piece of

work by another team member, it should make some reasonable level of sense or it

should provide the information for another developer to understand it relatively

quickly. Similarly, when you look at the code six to twelve months from now in a

maintenance mode, you should be able to re-acclimate yourself to it quickly.

In this chapter, I will outline some of the fundamental design and implementation

decisions that we must make, regardless of which part of the application is under

construction. In the process of outlining this, I will provide some sample techniques

or argue for one approach over another. This chapter covers Visual Basic 6.0,

Microsoft Transaction Server (MTS) 2.0, Internet Information Server (IIS) 4.0, and

Structured Query Language (SQL) Server.

Visual Basic

We will begin by taking a look at some of the capabilities of the Visual Basic

programming language. A thorough understanding of these concepts will allow you

to utilize the language to its full extent.

Option Explicit

Visual Basic has the capability to force or ignore compile-time type checking. We

can only assume that Microsoft chose to allow this for flexibility purposes, although

it has such significant consequences that perhaps Microsoft should consider

eliminating this option in future releases, or at least making it the default option. It

is important to note before proceeding that this topic differs slightly from the

discussions on runtime versus compile-time type checking in Chapter 3, "Objects,

Components, and COM." In the current chapter, the reference to type checking is

relative to variable declarations versus the object binding methods discussed before.

Unless it is told otherwise, Visual Basic will implicitly dimension variables upon first

use. If Visual Basic does this, it has no other option but to dimension the variables

as variant data types. As previously discussed, the use of these data types reduces

application performance because Visual Basic must perform extra steps when

assigning values to, and accessing the values from, variables of the variant type.

It just so happens that this implicit declaration of variables is the default mode for

Visual Basic. To switch this behavior, an Option Explicit statement is required at

the beginning of the declaration section of every module. In this mode, Visual Basic

will generate a compile-time error if it encounters a variable in the source code that

has not been declared in the current scope.

There are other important reasons to use the Option Explicit mode and not allow

Visual Basic to implicitly declare each variable as variant. When assigning a value to

a variant type variable, Visual Basic must make some assumptions as to the intrinsic

underlying type of the variable. If the value being assigned is the result of a function

of a known type, Visual Basic's job is relatively easy. For example, the statement

ThisDate = Now() tells Visual Basic that the underlying type of ThisDate, which is

implicitly a variant if it has not been declared in the current scope, is a date because

that is the type returned by the Now function. It is important to understand that a

variant data type has both data and a data-type descriptor. Within the first few

bytes of the storage allocated for the variant variable is information defining this

type information. The VbVarType enumeration defined under Visual Basic for

Applications (VBA) provides the list of these types. If the VarType function were

performed on ThisDate, it would return vbDate.

If Visual Basic cannot determine the underlying data type, it must make some

assumptions that might not correlate with the assumptions you would make. For

example, consider the following function:

Public Function Add(PartOne, PartTwo) As Variant

 Add = PartOne + PartTwo

End Function

The preceding example compiles without issue because it is syntactically correct.

Visual Basic considers the command-line parameters as variant types because they

have not been explicitly declared as any explicit type. When Visual Basic performs

the addition in the first line, it has to determine at runtime whether the underlying

storage values are of some type of numeric or string format. Depending on whether

two numbers, two strings, or a string and a number are passed in, the return value

will be either a number or a string.

If, when we call the Add function elsewhere in the code, and a specific result type is

expected, problems will arise at runtime if Visual Basic expects something else. For

example, consider the following:

Public Sub DoSomething(A, B)

 C = Add(A, B)

 D = C * 5

End Sub

Again, the preceding example will compile without issue. If the data types of

parameters of A and B are always numeric, we have no issue. The assignment of D

will fail, however, if either parameter, A or B, is of a string type. This problem arises

when the user of the DoSomething routine is unaware of what is happening within in

it. Although this is a trivial example given for exposition, the manifestations of these

issues can become complex in real-world situations.

In essence, by following an implicit data type approach, you are allowing both Visual

Basic and your development team to make possibly incompatible assumptions

throughout your code base. Although you will catch many of these issues during the

development and debug stages, your team will spend non–value-added time

tracking them down and fixing them. Worse still, your team might not catch all

these issues and they can escape into production, where the cost to fix them can

affect you in terms of additional time (which is measurable) and lowered customer

satisfaction (which is immeasurable). Remember that being penny-wise might

result in being dollar-foolish here. Although many would argue that not setting

Option Explicit is acceptable development practice for small-scale applications, it

is inappropriate when building robust enterprise applications. The following is an

example of its implementation:

Option Explicit

Private mName As String

Private mAddress As String

Enumerations

Component Object Model (COM) defines enumerations as their own first-class entity,

making them shareable across all the classes defined within the COM component

and visible to users of the component. Visual Basic does not have a mechanism to

natively support the definition of enumerations. To do so would mean that a new

type of code module would have to be developed to support them. If enumerations

are placed in a standard code module (bas module), they become visible to the

classes defined in the component but invisible to anything externally. To solve this,

the developer must place the enumeration definitions within any public class

module defined in the component. This technique has the effect of making the

enumeration visible both internally and externally to the component. Although the

choice of which class module within the component is used to define the

enumeration does not matter, a good practice is to place it in one of the classes that

will be using it. In essence, one of the class modules is acting as a gracious host for

the enumeration definition, so it makes sense that the class that needs it should be

the one that defines it. Although this makes no sense, Microsoft has taken this

approach to enable COM development within Visual Basic. If you look at the bigger

picture, this quirky enumeration implementation is a relatively minor issue.

Enumerations can be used in place of global constants that are used by more than

one component. In the CBond example in Chapter 4, "The Relational Database

Management System," we defined a BondType field with possible values of

CouponBond, DiscountBond, and ConsolBond. A code sample for these definitions

using constants would be as follows:

' in global.bas of Bonds.DLL

' Public Const COUPON_BOND As Integer = 1

' Public Const DISCOUNT_BOND As Integer = 2

' Public Const CONSOL_BOND As Integer = 3

' in global.bas of PortfolioManager.EXE

' Public Const COUPON_BOND As Integer = 1

' Public Const DISCOUNT_BOND As Integer = 2

' Public Const CONSOL_BOND As Integer = 3

What should be apparent is that these types of constants must be defined in both

the component itself and the application that uses the component. Furthermore, the

definitions in both places must be synchronized as changes are made to the CBond

class.

If instead we use an enumeration, changes made during code development or

maintenance activities will have minimal impact. Changes in the enumeration

defined in the component become immediately and automatically visible to the

applications using the component. For completeness, you should realize that simple

recompilations of the component and its host applications must be performed when

changing enumeration values. For highly modular applications, this can lead to a

significant number of recompilation steps.

The same set of values, defined as an enumeration, would be as follows:

' in CBond.cls

Public Enum EnumBondTypes

 btCouponBond = 1

 btDiscountBond = 2

 btConsolBond = 3

End Enum

One of the greatest benefits from a productivity standpoint is that using

enumerations enables the Visual Basic IntelliSense feature, in many situations, to

prompt you with the list of possible values as you are editing your code.

Furthermore, you can usually select from this list with just a few keystrokes. Figure

6.1 shows how this prompting mechanism works.

Figure 6.1. The code completion function of the Visual

Basic IntelliSense editor for enumerations.

This not only saves the time to remember or look up the particular constant name,

but also the time required typing it into the editor. This might seem like trivial

savings, but over the course of many hours of code development, it can actually

produce some significant savings.

With so many positive aspects to using enumerations, you should be acutely

cognizant of one of its major drawbacks in the component-based world. As you

begin debugging your MTS components, Visual Basic will require that you compile

them using the Binary Compatibility option. This has the effect of freezing the

Globally Unique Identifier (GUID) values for each component that has this option set.

Without this option set, Visual Basic can generate new GUID values as necessary

during the code modification and recompilation process, keeping everything

synchronized between the components transparently to the developer. The COM

engine uses these GUID values to identify the various components in the system.

After a component is compiled with this option, any changes to class interfaces or

enumerations force the developer to break compatibility, which means generation

of a new GUID and a forced recompilation of each component that references the

changed component. Each of these components referencing the original component

must also break compatibility in the process, generating more new GUID values.

This occurs whether the change in the original component would have had any

impact on the current component's functionality. This process repeats until all

components in the referencing chain are recompiled. In a highly layered

environment, this can be very frustrating. After an application is placed into a

production mode, changing an enumeration in a component running on an MTS

server can force a recompilation of all components such that the application must be

redistributed all the way back to the client. This runs counter to one of the main

goals of a distributed architecture: being able to make simple changes on the

application tier without affecting the client.

NOTE

You should seriously consider whether to use enumerations on the application and

data tiers or whether a set of constants would be more appropriate. Only when you

are 99.99% sure that an enumeration on these tiers would not change over the

lifetime of the application should you consider using one.

Naming Conventions

As is evident in the biblical story of the Tower of Babel, things are much more

efficient when we are using a common language. We will extrapolate this here and

apply it to the importance of developing standardized naming conventions for

various parts of your code.

Variables

It is easy to clearly understand the data type associated with a variable if you are

within the declaration section of a code module, Function, Sub, or Property block.

However, you quickly lose focus of that if that section is no longer physically visible

on the screen within the editor. One method the industry has adopted, sometimes

referred to as Hungarian notation, is to prefix the variable name with something to

indicate its data type. Examples include an i to designate integer types, an l for long,

an s for string, a b for boolean, an o for object, a c for class, an sng for single, a dt

for date, and so on. Similarly, we also want to use suffixes that have some sort of

embedded meaning reflecting their use. Examples include LastName, FirstName,

HomePhoneNumber, Balance, and so on. By combining these prefixes and suffixes,

we can derive useful variable names. For example, sLastName tells us that that the

variable is a string used to store a value representing a last name.

Functions and Subroutines

Function naming might not seem like something with which we should concern

ourselves. Again, we would argue that standardization is vital to making it easier for

developers to be able to grasp what an area of code is trying to accomplish with

minimal effort. It is important to understand that most functions and subroutines do

something. More precisely, some type of action is performed. That said, each

function and subroutine should contain a verb fragment in its name, such as Delete,

Create, Make, Run, Do, Get, and so on. Likewise, there should be a receiver of

the action, such as Report, Query, and so on. If there is a series of functions or

subroutines that provide similar functionality, their names should provide some

indication of the difference. For example, rather than having two names like

SetStateOne and SetStateTwo, we would prefer to name them

SetStateFromVariant and SetStateFromXML.

Many developers over the years have chosen to abbreviate or shorten functional

names to the point where they are cryptic. A quick glance at the functions defined

within the Windows Application Programming Interface (API) will provide you with

some great examples. The reasoning behind this is that as names become more

descriptive, their length increases, making it more time-consuming to fully type

them out in the editor. This is especially true in a procedural-based language. This

same problem does not exist in the Visual Basic editor for long method and property

names because the IntelliSense feature will help complete the code with minimal

keystrokes.

Files

As you add files to your project, Visual Basic attempts to name each one for you,

depending upon its intended use. Classes would be named Class1.cls,

Class2.cls, Class3.cls, and so on if you allowed Visual Basic to handle it. Forms

and basic modules will follow an identical pattern. The framework presented in Part

II will be following the approach shown in Table 6.1.

Table 6.1. File/Source Naming Conventions

Item Type Item Name Filename

Forms FrmXYZ frmXYZ.frm

Class Modules Csomething CSomething.cls

Basic Modules BasSomething basSomething.bas

User Control CtlSomething ctlSomething.ctl

Project Names - EXE MyApplication MyApplication.exe

Project Names - DLL LibSomething LibSomething.dll

Commenting Conventions

Any general-purpose programming course will stress the need for comments.

Although comments are vital to good programming, these courses tend go

overboard. Most courses insist that you place a nice block of comments at the

beginning of each function or subroutine to explain the inputs and outputs. However,

if proper naming conventions were followed, the need for many of the comments is

diminished. In one sense, the code should document itself as much as possible

through these conventions. It is painful to follow code that has more comments than

code.

Although it would be wonderful if such a minimalist approach were sufficient for all

code, there still exists a need to ensure that code written today can still be

understood six months from now when maintenance or enhancement phases are

started. Some of the areas that need particular attention are the areas in which

business logic is being implemented. In many cases, this is a step-based process, so

it makes sense to make a comment like the following:

' Step 1 - Check that start date is less than end date

… code

' Step 2 - Get a list of transactions between start and end dates

… code

' Step 3 - etc.

Whatever the approach, make sure that it is followed consistently by all developers.

Do not make it so burdensome that your team begins skipping proper commenting

during late-hour coding sessions.

Property Lets and Gets

In the COM API, properties are implemented as special types of functions known in

the object-orientation world as mutator and accessor functions. The former name

implies a change in the state of the object—in this case, the property to which a new

value is assigned. In the latter case, the state of the object is returned, or accessed.

In Visual Basic, these special functions take the form of Property Let and Property

Get statements. For properties that are object references, the Let statement is

replaced with a Set statement. The Get statement returns the value of the property,

whereas the Let/Set statement assigns a value to the property. For example, an

OpenDate property might be implemented as in the following:

Private mOpenDate As Date ' in class declarations section

Public Property Get OpenDate As Date

 OpenDate = mOpenDate

End Property

Public Property Let OpenDate(RHS As Date)

 If IsDate(RHS) Then

 mOpenDate = RHS

 Else

 Err.Raise vbObjectError + ERR_BAD_DATE

 End If

End Property

Visual Basic does not require explicit programming of the Get and Let/Set functions

because declaring public variables in the declaration section of the class module will

have the same effect. The reason that you should formally program property Get

and Let/Set statements is so there is a place for validation logic. Whether this logic

is implemented today is irrelevant because you are protecting against the need for

future change by putting the framework in place today. The use of Get and Let/Set

statements also imparts standardization throughout the code base, an important

feature in multi-developer environments. The maintenance teams will thank you as

well because they will not have to break compatibility to add functionality under a

Get or Let/Set statement in the future. As discussed in the enumeration section,

breaking compatibility necessitates the recompilation of all the code that uses that

component, which might lead to redistribution.

The use of a private variable to store the state of a non-derived property—one that

is not calculated by its accessor function but is retrieved from a static variable—is

common among object-oriented languages. In many cases, normal Hungarian

notation requirements are relaxed by prefixing the variable with the letter m to

designate member. This approach loses visibility to the underlying data type. This is

a common naming convention used throughout Visual Basic code development, and

it is the default mechanism used in the code generated by the Visual Modeler, which

is discussed later in this chapter in the section titled "Modeling Tools." Some

developers do not like the loss of data type visibility by the convention, so an

indication of the underlying variable type can be added back in. For example, the

private variable mOpenData for the OpenDate property can be named mdtOpenDate.

This is a matter of preference. Again, just be sure to standardize across your

development team.

As mentioned earlier, the accessor function can be implemented in a mode that does

not simply reference a private variable, but instead derives itself from other

information and functionality available to the statement. Examples include using a

case statement to select among several values or using a logic set traversed with

If…Then…Else blocks. Another example of a derived property is one that calculates

its final result, such as a property named TotalCost that is the sum of several other

properties defined on the class.

Registry-Based Configuration

As we develop our solutions, there inevitably are times when our applications need

some form of configuration information. A configured approach is preferred over a

"hard-coded" one as a means to ensure flexibility. This configuration information

might be the name of the MTS server used by the application, publication path

names to Web servers whose content is generated by the application, application

login names, or simply general-purpose information needed by the application.

The Win32 system has a Registry that is just the place to store this information. In

most cases, the standard Visual Basic functions of GetSetting and SetSetting can

be used to perform this Registry access. These functions place Registry keys in a

specific, Visual Basic area of the Registry. In some cases, an application might be

integrating with other applications and will need access to the full Registry.

Collection Classes

Collections are some of the most fundamental classes in the framework presented in

Part II. Everywhere there is a one-to-many relationship in the model there will be a

collection class in the code. Visual Basic already provides a Collection class, but

the framework creates its own collection, employing the Visual Basic version to do

most of the dirty work. The reason for this is that, as a developer, I might want to

add more business-specific functionality onto a collection class than is available on

the Visual Basic version. For example, I might have a CAccount class that contains

a CTransactionItems collection of CTransactionItem objects. Aside from the

standard Add, Item, Remove, and Count methods and properties available on the

Visual Basic collection, we might want to add a method called CalculateBalance.

This method will loop through the collection, adding debits and credits to the

account along the way to produce a result.

It is important to get into the habit of defining all collection classes in this manner,

even if you do not plan to extend the standard collection with business functionality.

Although it might not seem necessary today, a week or a month from now you might

realize that you do and it will be much more difficult to put in. It is relatively trivial

to set up a collection class in this manner, especially when the code generation tools

discussed later in the "Modeling Tools" section are used.

Inheritance and Polymorphism Using Interfaces

As discussed in Chapter 3, interfaces are the fundamental mechanism of inheritance

and polymorphism in the COM world. Again, it is important to understand the

difference between polymorphism and inheritance at the source code versus

runtime level. Inheritance and polymorphism at the source code level means a

recompile of the code to add a new variation of a base class. Although there are

several issues with this approach, the constant recompile, debug, and redistribution

is what causes headaches for both the developers and end users.

In discussing polymorphism through COM interfaces, examples routinely use simple,

real-world examples such as dogs or modes of transportation. Microsoft even uses

dinosaurs in its own literature to make the same points. Although these are good

primers on interfaces, there is much more that can and should be done with them to

build flexible applications.

When using interfaces to implement polymorphism at the runtime level, a single

component can constitute one or more variations of a base class, simply by

implementing the COM interface defining the class one or more times. Similarly, a

single COM interface can be implemented in multiple components, with each

implementation providing its own behavior variation. Thus, if a new variation of a

base class is needed, it is simply a matter of adding an interface implementation to

a new or existing component. This is useful if a segregation of functionality is

required.

An example might be when an application has a basic file import process that

supports a multitude of file formats. Some customers might need one set of

importers, while others might need a completely different set. Rather than place all

importers in the same component, they can be separated out into logical groups and

implemented in several components. Adding support for new importers can require

creation of a new component or modification of an existing component. If you bind

these components to the client application in a configurable manner, then the

application does not have to be recompiled and redistributed with each release of a

new importer. Instead, a new or existing component is distributed and changes are

made to the configuration information. In essence, the application can be

configured in an a la carte fashion using this technique.

Modeling Tools

If you begin to explore all the extras that come with Visual Basic Enterprise Edition,

you will find two modeling tools: One is the Class Builder Utility and the other is the

Visual Modeler. Both enable you to formally define classes and class hierarchies with

subsequent code generation. The idea is that using either of these tools reduces

much of the basic coding of class properties and methods and enforces a certain

standard coding style implicitly with what it generates.

Class Builder Utility

The Class Builder Utility is the simpler tool, but there are several issues and

limitations with it. The Class Builder Utility enables you to define new classes in

terms of properties, methods, and events using a simple dialog. After the definitions

are made, the utility creates the necessary class modules and generates the

skeleton code to support the properties and methods just defined. To access this

utility, you must first add it using the Add-In Manager in Visual Basic. Figure 6.2

shows the Class Builder Utility being used to edit properties on a class, while Figure

6.3 shows it being used to edit methods.

Figure 6.2. The Class Builder Utility—Property Editor.

Figure 6.3. The Class Builder Utility—Methods Editor.

The first issue is that as you are going through and adding property names, this

utility does not enable you to add a property named Name. This just happens to be

one of the most frequently used property names in object-oriented design. To

circumvent this issue, you must name your property something else and then edit

the generated code.

The second issue is that the Class Builder Utility does not enable you to override the

Add method on the collection classes that it generates, using the long calling

convention that we spoke of earlier. This can lead to broken compatibility issues

when making changes to the underlying class that we are collecting.

The third issue is that the Class Builder Utility does not enable you to make a

collection containing another collection, a design requirement that can occasionally

surface within the application.

The fourth issue is that the Class Builder Utility does not generate any code with the

Option Explicit statement, so you will have to go back and add this information

yourself.

The fifth issue is that the Class Builder Utility does not support the definition or

implementation of interfaces within your design. As discussed earlier, we should be

taking advantage of the features of object-orientation to make our application more

robust and skewed toward the expectations of enterprise-level users.

Overall, the Class Builder Utility is inferior to the Visual Modeler that Microsoft has

also bundled with Visual Basic. It is perfectly legitimate to ask why Microsoft has

chosen to bundle two similar utilities. The answer is that the Visual Modeler only

comes with the Enterprise Edition of Visual Basic, because it is really the product of

another company (Rational Software) to which Microsoft must pay royalties. The

Class Builder Utility, on the other hand, ships with lesser editions of Visual Basic as

a simple productivity utility in those editions.

Visual Modeler

The Visual Modeler is a much more sophisticated and powerful tool that we should

use for any large-scale application development. The functionality of this tool

extends far beyond the simple class-building mechanism as in the Class Builder

Utility. It represents a complete modeling tool that enables you to plan your

application across a three-tiered deployment model using the standardized UML

notation. It is highly flexible in how it generates its code, allowing the user to set

many of the generation options. It also allows for reverse engineering, whereby you

can make changes in the source code and have the model easily updated. It also

exhibits none of the issues outlined in the Class Builder Utility case. To access the

Visual Modeler, you must first add the Visual Modeler Menus add-in using the Add-In

Manager in Visual Basic. Figure 6.4 shows the Visual Modeler in action, while Figure

6.5 shows it being used to edit properties on a class and Figure 6.6 shows it being

used to edit methods.

Figure 6.4. The Visual Modeler.

Figure 6.5. The Visual Modeler Properties Editor.

Figure 6.6. The Visual Modeler Methods Editor.

The Visual Modeler not only has the capability to generate source code from the

model information, it also has the capability to reverse-engineer the model from the

code. This latter feature is important when changes are made in the code in terms

of properties and methods that must be annotated back into the model. This is

crucial when multiple developers are working on the same component but only one

copy of the model exists. During standard code check-in processes, a single

individual can be responsible for updating the model to reflect the most recent

changes.

Another important feature is that the Visual Modeler is fully aware of COM interface

implementation, and can even generate code to support this concept, if modeled

appropriately.

Because of the rich feature set and the fact that the framework presented in Part II,

"Implementation of an Enterprise Framework," will be using interface

implementation, the Visual Modeler will be used exclusively in the course of

development activities throughout the remainder of the book.

SQL Server

Setting up an RDBMS such as SQL Server presents the development team and

database administrator (DBA) with several decision points. Although many of the

administrative tasks are not necessarily crucial to the operation of a given

framework, some database design decisions must be made to coincide with the

application architecture being implemented.

Logins

The configuration of SQL Server offers many options related to setting up user

logins and mapping security rights to users. SQL Server provides both standard and

integrated security models. In the former model, user logins are created on the

server as in most other RDBMSs. In the latter model, users are implicitly logged in

using their standard Windows NT login. These NT logins must then be mapped to

SQL Server user groups, which then define the various levels of access to the

underlying entities on the server. Although this might be acceptable for a small user

base, this process of mapping NT to SQL Server users can become administratively

burdensome for a large user base. In the framework in Part II, a decision has been

made to provide a common application login to the server and to administer user

rights programmatically. Although this adds a bit more development complexity

throughout the application, it offers more flexibility and moves security off the data

tier and into a service tier. It is important to note that the database is still protected

from malicious individuals through this common login, as long as login names and

passwords are safely hidden.

Views

In the framework presented in Part II, views will be defined that join the underlying

tables in the manners needed by the application data objects. Although this join

logic can be provided as part of the ad hoc SQL that is being issued to the database

by the application, a performance hit is associated with this technique. When views

are created in SQL Server, the SQL is parsed into an efficient format known as a

normalized query tree. This information is stored in the database in a system table

know as sysprocedures. Upon the first access of the view after the SQL Server has

started, this query tree is placed into an in-memory procedure cache for quicker

performance. Using this tree, SQL Server must only generate a query plan based on

the current index statistics to access the information. In the ad hoc approach, SQL

Server must first compile the SQL into the normalized query tree before generating

the query plan. After SQL Server has satisfied the ad hoc request, it discards the

query tree because it has no basis for knowing which queries might be used again in

the near future. Management of such a cache can degrade performance more than

improve it in highly loaded situations. Because these ad hoc query trees cannot be

cached, there is a high likelihood of degraded performance over the view approach.

Keys and Indexes

As will be further discussed in Chapter 9, "A Two-Part, Distributed Business Object,"

each table will be created with a specific Id field to designate its primary key.

Furthermore, foreign keys will be defined on child tables that will reference this

primary key for table joins. Because of this architecture, a unique clustered index

will be defined on each Id field. This will not only ensure that keys are unique, but

also that the rows in the database are consistent between their physical and logical

order. Because new Id values will be generated sequentially as rows are added,

there will not be a performance hit associated with maintaining this index. Likewise,

an index will be placed on each foreign key in the table because it is often used as

part of the WHERE clause of the SQL statements generated by this framework.

Indexes will also be added to the fields that are designated to be part of the name

uniqueness pattern. An example of such a pattern may be when an application

needs to guarantee that there are not two rows with the same values in the

FirstName, LastName, MiddleInitial, and SocialSecurityNumber fields.

Although a unique index can be implemented to force the RDBMS to generate name

uniqueness violations, the resulting error messages returned from the server will

not be sufficient to inform the user of the problem. In this case, the application will

receive a "Unique index xyz had been violated" message from the server, which is

non-informative to the user and will most likely generate a hotline call. Instead, a

better choice is not to make this a unique index but instead handle the name

uniqueness pattern in the INSERT and UPDATE triggers where an explicit and much

more descriptive error message can be generated. Here, an error can be raised that

reads "The First Name, Last Name, Middle Initial, and Social Security Number must

be unique," which tells the user exactly what the issue is without the need for a

hotline call. This is one of the deviations from an academically pure n-tier model, in

that this represents a portion of the business logic that resides on the RDMBS. It is

important to note that not all tables will need this name uniqueness pattern;

therefore, this type of index will not need implementation on all tables.

Stored Procedures

The use of stored procedures in the framework presented in Part II is limited to

performance-sensitive areas of the application. Although many system architects

are proponents of using stored procedures for handling the CRUD (Create, Retrieve,

Update, and Delete) processing, it has already been discussed how this limits

flexibility and requires more redistribution of the code when object definitions

change. A slight performance hit will be taken in exchange for such flexibility in this

architecture. If, in your analysis you determine that this performance is more

important than flexibility, switch over to stored procedures.

Triggers

As mentioned earlier, we will be using triggers to enforce our name uniqueness

pattern requirements. We will also be using triggers to enforce referential integrity

explicitly, rather than allowing the RDBMS to do it implicitly. The reasoning for this

was discussed the "Referential Integrity" section of Chapter 4.

Binary Fields

It is important to note that the framework presented in this book does not support

the use of binary large object (BLOB) or text fields. SQL Server includes these data

types as a means to store large amounts of binary or textual data. Because most of

the aggregate and query functionality becomes limited on these data types, there is

little impetus for having them in an RDBMS to begin with. For these types of fields,

in most cases, it is much more efficient to place them on a file server and to simply

store in the database a path to their location. This is the recommended approach

followed by the framework presented in Part II.

Internet Information Server (IIS) and Visual InterDev

IIS has been chosen as the framework Web server for the reasons as outlined in

Chapter 1, "An Introduction to the Enterprise." Visual InterDev has been chosen as

our tool for editing Active Server Pages (ASP). With the ASP application model, we

have several options as to how we might structure our application, which we will

discuss here.

Global Configurations

For the same reasons as those outlined in the previous Registry-based configuration

discussion, application variables within the global.asa file will be used to control

such configuration settings on the IIS machine. Some sample settings might be MTS

server names, administrator mailto: addresses, and so on.

Stylesheets

Although not an IIS-specific feature, stylesheets are used extensively to control the

look and feel of the Web site portion of the framework discussed in Part II. This

allows for easy modifications to the formatting aspects of the application over time,

which can include font formats as well as colors. In cases where an MTS object is

generating a complex HTML stream directly, most of the formatting tasks can be

driven by the stylesheet. This enables minor format changes to be made without

having to recompile the object.

Include Files

If you dig through the IIS documentation, you might find it difficult to learn anything

about the notion of server-side include files. The framework in Part II will be using

include files to help modularize the Web site portion of the application. For example,

the script code to check the user's login status is in one include file. The script code

to generate the header and footer parts of each page is also implemented as include

files. If the header or footer needs changing, it can be made in just those places

versus the potential hundreds of pages that would otherwise be affected.

Creating an IIS Service Layer Component

The framework discussed in Part II will have its own IIS-specific service-layer

component that will be used across multiple ASP pages. One set of functionality will

be to provide the user login and verification services that must be handled. Several

utility functions will also be implemented that will enable extraction of information

from the object state information needed to generate the ASP page.

This service-layer component will be used also to gain access to functionality

provided in Visual Basic that is missing in VBScript. Examples include string and

date formatting functions.

Business Layer

ASP will be used as a simple scripting tool to glue MTS components together in the

form of a cohesive application. In the framework, IIS is used as a surrogate for the

user interface layer in the form of the HTML pages sent back to the client browser.

Business-layer activities will not be performed on the IIS server, but instead will be

relegated to the business-layer components in MTS. Stated another way, no direct

business-layer logic will be embedded with ASP script. Instead, ASP will call the

appropriate functionality found within a business-layer object running within MTS.

This notion is difficult to grasp and is one of our major divergences from a traditional

viewpoint. Although ASP can directly access data bases through ADO, it does so in

a scripting context that is inefficient. It is important to remember that everything is

a variant data type in this environment, that the ASP page must be compiled with

every access, and that it is run in an interpreted, rather than compiled, format. MTS

offers not only resource pooling, but also the capability to run components in a

compiled binary format. Even if the functionality to be delivered is only to the

intranet portion of the application, it is more prudent to place it in a business-layer

component under MTS. Resorting to MTS is a minor issue because the infrastructure

to do so is already in place since other parts of the application are already using it.

Indeed, Microsoft must have recognized these issues, making the integration

between IIS and MTS highly efficient when the two are running on the same physical

server.

Microsoft Transaction Server (MTS)

As we have mentioned many times over, MTS forms the core of the application

framework discussed in Part II. Although there are many ways in which to configure

MTS and install components, some practices enable efficient development, debug,

and deployment activities.

Directories

In MTS, you will need a place to put the ActiveX DLL files that will be loaded as

DCOM processes. You might also have a series of ActiveX DLL files to support these

DCOM libraries, but are themselves in-process COM servers. When moving

component packages, you will need a location to which you can export the

necessary files for both the clients and servers.

A possible directory structure for a server named MTS-HOU05 and an application

named MOJO might be as follows:

MTS-HOU05\D$\MTS\MOJO\INPROC

MTS-HOU05\D$\MTS\MOJO\DCOM

MTS-HOU05\D$\MTS\MOJO\EXPORTS

You might choose to share the MTS-HOU05\D$\MTS\MOJO directory as simply

MTS-HOU05\MOJO. Obviously, you want to limit access to this directory to

administrative use only.

The INPROC directory is where service layer components reside on the server. These

are the components required by the MTS components, but they are not MTS

components themselves. You will need a mechanism to register these components

on the server using a program, such as REGSVR32.EXE or some other remote

registration utility. At some point, when your application reaches a production

phase, you can build an installer to install and register these components more

efficiently.

The DCOM directory is where the MTS objects reside on the server. You should copy

your ActiveX DLL files to this location, and then import them into a package on the

MTS server. This process will be discussed in more detail in Chapter 9.

The EXPORTS directory is where you export the packages so that you can move them

to other MTS servers. This process will also generate the client-side installers

needed by the application. Again, this topic will be discussed this topic in more detail

in Chapter 9.

Debugging

It is important to perform development on a computer with an NT Workstation or

Server installed because you can run an instance of MTS on these configurations

and step through your code during component debug. Although this method does

not represent a pure debugging model in that issues on the MTS server in compiled

mode might not be visible in debug mode, it does help to identify many of the

possible issues that will arise.

As the component count increases in an application, it becomes harder to debug on

a development machine. The reason for this is that the entire MTS structure must be

re-created and/or synchronized on the local machine just to debug a single

component that might be of interest. This means that if 10 developers are running

local MTS instances for debug purposes, then all 10 developers must constantly pull

the components under development from the other nine development machines

over to their machines. This becomes more pronounced as the number of changes

being made increases or the application gets closer to production release. Because

of these issues, it is sometimes better to maintain one or two remote MTS instances

that are run for debug purposes. Unfortunately, this solution creates its own

problems in that it can become very difficult to debug an application on a remote

MTS machine.

For those issues that are difficult to find in debug mode on a development machine,

a developer can take advantage of the NT event log to write out debug or exception

information. The ERL variable becomes very important when debugging MTS

components in this mode. This little-known variable tracks the last line number

encountered before an exception occurred. By writing this information out to the

event log along with the error information, the location of errors can be more easily

pinpointed in the source. An important thing to note is that the Visual Basic

functionality used to write to the event log works only when the component is

running in compiled mode, so do not expect to see events being logged while you

are stepping through the code.

One important thing to remember about the event log is that when it fills up, MTS

stops for all components. With this in mind, the event log should not be used to write

out volumes of data such as the value of a variable within a loop that repeats 100

times. The event viewer application is available under the Administrative Tools

section of the Start menu. Be sure to switch the log view mode from System to

Application when looking for information logged from the application.

Figure 6.7 shows the Event Viewer and an event written to the event log from within

Visual Basic.

Figure 6.7. The Event Viewer and a VB logged event.

Design Goals

As we work our way through the framework beginning with the next chapter, we

must have some basic design goals to drive our efforts. Our overarching goal is to

follow an n-tier, distributed approach. Figure 6.8 shows an overview of where Part

II will head with this architecture.

Figure 6.8. Our guidepost of where we are headed.

User Interface

We want to offer our users a simple Web browser interface where it is appropriate.

Many of our users will need only simple data retrieval services, so this allows us to

project our application to the widest possible audience. Still, we must also preserve

our ability to provide a rich user interface for the more complex, entry-intensive

tasks. These users will be fewer in number, but they will be responsible for the vast

majority of the information going into the system. We do not want to penalize them

by unnecessarily forcing them to use a Web browser for input purposes. The issues

with a Web browser interface, as a data entry mechanism, is that we want to

provide user input validation as soon as possible, as well as a high level of

responsiveness from our application. These are two things we cannot easily achieve

using a browser and client-side scripting code. If we must use the browser as the

user-interface delivery vehicle, then we want the ability to use ActiveX controls as

needed. If we are smart in our design, we should be able to use the same ActiveX

controls in both the Visual Basic client and Web browser.

For the rich client, we want to preserve the user interface metaphors that users

have already become accustomed to from using Windows (95, 98, NT4), such as the

Explorer, Finder, tabbed dialogs, and so on.

Business Logic

We want to keep our business logic in one place so that it is easier to maintain over

time. We want the same business objects supporting our Visual Basic client as our

Web browser. We do not want client-side business logic muddled up in our Web

pages. We do not want business logic muddled up in our ASP pages.

Database Server

We want to preserve the ability to switch out RDBMS vendors at any point in time;

therefore, we must minimize the use of any one server-vendor's proprietary

functionality.

Summary

This chapter has provided an overview of the design goals and development

fundamentals that will be followed from this point forward. It has done so with a

very broad brush, first covering the development technologies (Visual Basic, SQL

Server, IIS, and MTS). For each of these technologies, you learned a series of best

practices and common pitfalls as a preparation going forward so it will be more clear

why a particular design or implementation decision is being made. This was followed

by a discussion of specific design goals for the application as a whole, and then

broken down into the User, Business, and Data layers of the system. A discussion on

modeling tools, specifically comparing the Class Builder Utility to the Visual Modeler,

was also provided.

Next, you learn the long-awaited implementation of the framework that we have

spent so much time building up to. Chapter 7, "The ClassManager Library,"

introduces the concept of metadata-driven class definitions and provides the initial

building block for the application framework.

Part II: Implementation of an Enterprise

Framework

7 The ClassManager Library

8 The DataManager Library

9 A Two-Part, Distributed Business Object

10 Adding an ActiveX Control to the Framework

11 A Distributed Reporting Engine

12 Taking the Enterprise Application to the Net

13 Interoperability

14 Windows 2000 and COM+ Considerations

15 Concluding Remarks

Chapter 7. The ClassManager Library

With the completion of Part I and its overview material, we can now turn our

attention to the presentation and development of the framework for which you

bought this book. This presentation starts with one of the core components of the

business layer—the ClassManager Library. This ActiveX DLL library is primarily

responsible for managing the metadata necessary to map class definitions to

database tables.

Remembering the section titled "Mapping Tables and Objects" in Chapter 4, "The

Relational Database Management System," there is a need in an object-based

application to persist state information to the database. A technique was discussed

that mapped classes to tables and properties to the columns in those tables. The

ClassManager Library presented in this chapter provides the necessary objects to

implement this mapping and class definition process.

In addition to defining the mapping between objects and tables, the ClassManager

library enables developers to define arbitrary attributes at the property level. These

attributes can be used to track any form of additional metadata needed by the

application, such as validation rule parameters, XML tag names and so on.

Examples of both types of additional metadata will be shown; the XML tag name

information is particularly important for topics discussed in Chapter 13,

"Interoperability."

Design Theory

The underlying design goal of the ClassManager library is to provide the definition

mechanism necessary to drive both the CRUD (Create, Retrieve, Update, and Delete)

capabilities and the simple property-level validation required by the business and

data layers. The overarching design goal is to provide a generic solution that can

easily be modified through metadata changes at the business layer and schema

changes on the RDMBS when support for new properties is needed. To do this with

a minimal level of effort, we will place this library on the application tier running on

MTS. This particular library is not itself an MTS object, but provides a service to the

business objects running on MTS.

Many object-oriented languages have a facility known as reflection, which means

that the runtime environment has access to the type information of the classes

currently running. In essence, the code can see pieces of itself and understand the

class definitions defined by the code. Unfortunately, Visual Basic is not one of those

languages. Lack of runtime-type information indicates that this information must be

provided explicitly in a programmatic fashion. Such is the goal behind this chapter.

Implementation

To provide this metadata-oriented definition process, we need to create several

Visual Basic classes.

The first requirement is to create one class to support the definition of a database

column, and another to support the definition of an object property. For the former,

we will create a class called CcolumnDef, while for the latter, we will create one

called CpropertyDef. To augment the CPropertyDef class, we will create a

CAttribute class to allow us to add other important metadata to our property

definitions. The second requirement is to provide a mechanism to link a column to a

property. After these base classes have been established, a class known as

CClassDef is defined to pull everything together and provide the core functionality

of the library. As discussed in Chapter 4, "The Relational Database Management

System," we perform a one-to-one mapping of a class to a database table. In the

case of class inheritance, all subclasses are mapped to the same table and use a

ClassType field within the definition to designate the specific implementation.

The CColumnDef Class

The CColumnDef class is simple, containing only properties. See Figure 7.1 for the

Unified Modeling Language (UML) representation.

Figure 7.1. The CColumnDef class in the UML graphical

model.

Properties

The Name property is used to provide the name of the column within the RDMBS

system. The CanRead property indicates whether the column can be read from the

database, whereas the CanWrite property determines whether the column can be

written to. The CanRead property is used in conjunction with the ReadLocation

property on the CClassDef to generate the SQL column list for data retrieval

purposes. Similarly, the CanWrite property is used in conjunction with the

WriteLocation property on CClassDef to generate the SQL column list for data

updates. The CClassDef class is discussed in more detail in the "CClassDef" section

later in this chapter.

We must explicitly provide both a CanRead and CanWrite indicator for a given

column versus using a singular approach because there are times when we might

want to read without writing, or vice-versa. If we are storing a foreign key reference

to another table, we must be able to read columns from the referenced tables within

the context of a view, but we will not want to write those same columns back out.

Only the column with the foreign key reference can be written to in this case.

We also define a ColumnType property to help us during the SQL generation process

in our data layer. Sometimes, the system cannot explicitly determine an underlying

data type in order for the appropriate SQL grammar to be generated to support a

given database request. For example, a property might be defined as a string type,

but the underlying column in the database, for whatever reason, is an integer. In

this case, when building an SQL WHERE clause using this property, a VarType

performed on the property would infer a string, causing the SQL generator logic to

place quotes around it in the SQL statement. The RDBMS would generate an error

because the column is an integer. Thus, for robustness, we provide a mechanism to

explicitly define a particular column type.

Building this CColumnDef class using the Visual Modeler is rather straightforward.

Start the Visual Modeler from the Start menu of Windows (95/98/NT) under the

Programs, Visual Studio 6.0 Enterprise Tools, Microsoft Visual Modeler submenus.

When Visual Modeler starts, expand the Logical View node, followed by the Business

Services node in the tree view. Right-click the Business Services node followed by

New, followed by Class, as shown in Figure 7.2.

Figure 7.2. Defining a new class in the Visual

Modeler.

When you tell Visual Modeler to create a new class, a new child node is added to the

Business Services node, a UML graphical symbol for a class is placed into the

right-hand view under the Business Services column, and the newly added node is

placed into edit mode so the class name can be entered. Figure 7.3 shows the Visual

Modeler after the new class has been named CcolumnDef.

Figure 7.3. The CColumnDef class created within Visual

Modeler.

To add property definitions to the CColumnDef class, simply right-click the

CColumnDef node and select New, Property. Again, a new child node is added with

the name of NewProperty, this time to the CColumnDef node, and a property name

NewProperty is added to the graphical representation. There is also a symbol that

looks like a lock with a blue rectangle at an angle. The blue rectangle signifies that

this is a property. A purple rectangle signifies a method. The lock indicates that the

property is private, whereas a key indicates protected mode (or Friend mode in

Visual Basic parlance); a hammer indicates implementation mode, and a rectangle

by itself indicates public mode.

Public mode indicates that the property will be visible both internal and external to

the component; protected mode means that it will be visible to all classes within the

component but not visible external to the component; private mode means it will be

visible within the class itself but not visible elsewhere; and implementation mode is

similar in meaning to private mode. The Visual Modeler can be used to generate

C++ code, and the Rational Rose product on which it is based can generate for Java

as well; both are true object-oriented languages with multilevel inheritance. In

these cases, the protected and private modes take on expanded meanings because

visibility is now concerned with the subclassing. This explains why the

implementation and private modes are similar for Visual Basic.

Turning back to the Visual Modeler, the NewProperty property is renamed Name.

Double-clicking the new Name property node launches the Property Specifications

dialog. The Type field is set to String, and the Export Control selection is set to

Public. There is also a Documentation field in which you can enter text that

describes the property. If this is done, the information will be placed above the

property implementation in the generated code as commented text. At this point,

this information does not make it into the COM property help field that is displayed

by the object browser. The end result of these edits appears in Figure 7.4.

Figure 7.4. The name property added to the CcolumnDef

class within Visual Modeler.

As you continue to add the properties to complete the CColumnDef class, you might

begin thinking that this is too tedious a process and that it just might be easier to

manually type the code. If this is the case, there is a faster way to enter these

properties than what was just described. Double-click the CColumnDef node to

launch the Class Specifications dialog box. Click the Properties tab to show a list of

all the currently defined properties. Right-click this list to bring up a menu with an

Insert option. Select this option to insert a new property into the list in an edit mode.

After you enter the name, if you slowly double-click the icon next to the property

name, a graphical list box of all the visibility modes appears, as shown in Figure 7.5.

If you do the same in the Type column, a list of available data types appears as well,

as shown in Figure 7.6.

Figure 7.5. Changing the visibility of a property in the

Class Specification dialog in the Visual Modeler.

Figure 7.6. Changing the data type of a property in

the Class Specification dialog in the Visual Modeler.

To add the ColumnType property, follow the same procedure as for the other

properties. Because the Visual Modeler has no way to define an enumeration for

generation (they can only be reverse engineered from an ActiveX DLL), you will

have to manually enter the name of the enumeration in the Type field. After the

code is generated, the enumeration must be manually entered into the source.

To generate code for this class, several other pieces of information must be defined.

The first is a component to contain this class. To do this, right-click the Component

View folder, select New, and then select Component. Enter ClassManager for the

component name. Double-click the ClassManager node to launch the Component

Specification dialog. From this dialog, select ActiveX for the Stereotype field. This

tells the Visual Modeler to generate an ActiveX DLL for the component. The

Language field should be set to Visual Basic. The last item before generation is to

assign the class to this newly created component. The easiest way to accomplish

this is to drag the CColumnDef node and drop it onto the ClassManager node. From

this point, code generation can occur.

Right-click the CColumnDef node and select GenerateCode to launch the Code

Generation Wizard. Step through this wizard until the Preview Classes step appears,

as indicated in the title bar of the dialog. Select the CColumnDef class in the list and

click the Preview button. The wizard switches into Class Options mode, as shown in

Figure 7.7. From this wizard, set the Instancing Mode to MultiUse. In the Collection

Class field, enter the name CcolumnDefs. Anything other than the word Collection

in this field will tell the Visual Modeler to generate a collection class for this class.

Figure 7.7. The Class Options step of the Code

Generation Wizard (Preview Classes subwizard) in

the Visual Modeler.

Click the Next button in the wizard to go to the Property Options step. Select the

CanRead property in the list, and then check the Generate Variable, Property Get,

and Property Let options. This tells the Visual Modeler to generate a private variable

named mCanRead, followed by the Property Let and Property Get statements.

This activity is summarized in the text box at the bottom of the screen. Repeat this

for every property in the list. For the ColumnType property that is defined as

EnumColumnType, the Visual Modeler only allows for the property Set and Get

options. After generation, this Set will have to be changed to a Let in the source

code. The results of this step are shown in Figure 7.8.

Figure 7.8. The Property Options step of the Code

Generation Wizard (Preview Classes subwizard) in

the Visual Modeler.

Click the Next button in the wizard to go to the Role Options. Skip over this for now.

Click the Next button again to go to the Methods Options step. Because no methods

are defined on this class, the list is empty. Click the Finish button to return to the

Preview Classes step of the wizard. If multiple classes were being generated, you

would preview each class in the manner just described. Click the Next button to get

to the General Options step. Deselect the Include Debug Code and Include Err.Raise

in All Generated Methods options. Click the Finish button, and the wizard first

prompts for a model name and then launches Visual Basic. The result of this

generation effort is shown in Figure 7.9.

Figure 7.9. The code generated in Visual Basic by the

Visual Modeler.

Notice that a Form1 is generated by the Visual Modeler. This is actually a by-product

of the automation steps in Visual Basic. When you return to the Visual Modeler, the

wizard is on the Delete Classes step with this Form1 selected in the Keep These

Classes list. Click it to move it to the Delete These Classes list. Click OK to delete it

from the project and display a summary report of the Visual Modeler's activities.

To add the enumeration for the ColumnType property, go to the Visual Basic class

module for the CColumnDef class and manually enter the enumeration as shown in

the following code fragment:

Public Enum EnumColumnType

 ctNumber = 0

 ctString = 1

 ctDateTime = 2

End Enum

Listing 7.1 provides the code to implement the CColumnDef class. The comments

generated by the Visual Modeler have been omitted for the sake of brevity.

Example 7.1. The CColumnDef Class

Option Base 0

Option Explicit

Public Enum EnumColumnType

 ctNumber = 0

 ctString = 1

 ctDateTime = 2

End Enum

Private mName As String

Private mCanRead As Boolean

Private mCanWrite As Boolean

Private mReadLocation As String

Private mWriteLocation As String

Private mColumnType As EnumColumnType

Public Property Get ColumnType() As EnumColumnType

 Set ColumnType = mColumnType

End Property

Public Property Let ColumnType(ByVal Value As EnumColumnType)

 Let mColumnType = Value

End Property

Public Property Get WriteLocation() As String

 Let WriteLocation = mWriteLocation

End Property

Public Property Let WriteLocation(ByVal Value As String)

 Let mWriteLocation = Value

End Property

Public Property Get ReadLocation() As String

 Let ReadLocation = mReadLocation

End Property

Public Property Let ReadLocation(ByVal Value As String)

 Let mReadLocation = Value

End Property

Public Property Get CanWrite() As Boolean

 Let CanWrite = mCanWrite

End Property

Public Property Let CanWrite(ByVal Value As Boolean)

 Let mCanWrite = Value

End Property

Public Property Get CanRead() As Boolean

 Let CanRead = mCanRead

End Property

Public Property Let CanRead(ByVal Value As Boolean)

 Let mCanRead = Value

End Property

Public Property Get Name() As String

 Let Name = mName

End Property

Public Property Let Name(ByVal Value As String)

 Let mName = Value

End Property

Listing 7.2 shows the code generated by the Visual Modeler for the CColumnDefs

class, again with comments omitted.

Example 7.2. The CColumnDefs Collection Class

' declarations section

Option Explicit

Private mCol As Collection

' code section

Public Property Get Item(vntIndexKey As Variant) As CColumnDef

 Set Item = mCol(vntIndexKey)

End Property

Public Sub Remove(vntIndexKey As Variant)

 mCol.Remove vntIndexKey

End Sub

Public Sub Add(Item As CColumnDef, _

 Optional Key As String, _

 Optional Before As Variant, _

 Optional After As Variant)

 If IsMissing(Key) Then

 mCol.Add Item

 Else

 mCol.Add Item, Key

 End If

End Sub

Public Property Get Count() As Long

 Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown

 Set NewEnum = mCol.[_NewEnum]

End Property

Private Sub Class_Initialize()

 Set mCol = New Collection

End Sub

Private Sub Class_Terminate()

 Set mCol = Nothing

End Sub

We should point out several things about how the Visual Modeler generates

collection classes. The first is that it generates a NewEnum property that has a bizarre

bit of code in the form of the following statement:

Set NewEnum = mCol.[_NewEnum]

This syntax enables users of this collection class to use a special COM iteration

construct to iterate through the elements in a collection. For example, consider the

following code fragment:

For Each ColumnDef In ColumnDefs

 ' …

Next

According to Microsoft, this is faster than using a standard iteration method as the

following code fragment demonstrates:

For i = 1 To ColumnDefs.Count

 Set ColumnDef = ColumnDefs.Item(i)

 ' …

Next i

The second item to notice is that the Visual Modeler has declared a private variable

mCol of type Collection to use as the underlying storage mechanism. In this case,

however, it does not instantiate the variable until the Class_Initialize event, and

it does not destroy it until the Class_Terminate event. This generation mode can

be overridden in the Visual Modeler based on the preference of the development

team. One school of thought says that the code size will be smaller using this

technique because Visual Basic will not allocate space for the mCol variable at

compile time, but rather at runtime. Conversely, the object will take longer to

instantiate because it must allocate memory for this variable at runtime during

startup. The preference of this book is to use the default mode of Visual Modeler.

The CAttributeItem Class

Before we can define our CPropertyDef class, we must first define a simple

CAttributeItem class and its associated CAttributeItems collection class.

CAttributeItem has a simple Name and Value property. These attributes will be

used to allow extra information needed by the application to be added to the

property definition information. This approach provides for a significant amount of

flexibility over time because a developer can just add another property to the

CAttributeItems collection without forcing any changes to the interface of a class.

The Visual Modeler can once again be used to generate the CAttributeItem class

and its associated CAttributeItems collection class. Listing 7.3 shows the code for

the CAttributeItem class.

Example 7.3. The Cattribute Class

' declarations section

Option Explicit

Private mName As String

Private mValue As Variant

' code section

Public Property Get Value() As Variant

 If IsObject(mValue) Then

 Set Value = mValue

 Else

 Let Value = mValue

 End If

End Property

Public Property Let Value(ByVal Value As Variant)

 Let mValue = Value

End Property

Public Property Get Name() As String

 Let Name = mName

End Property

Public Property Let Name(ByVal Value As String)

 Let mName = Value

End Property

Although there is nothing overly exciting Listing 7.3, one area in particular deserves

closer investigation. Looking at the code generated by the Visual Modeler for the

Property Get statement for the Value property shows that it is implemented

slightly differently than what has been seen in the past. Because we have declared

the property as a variant type, it can contain an object reference and therefore

needs the Set construct in these cases. The IsObject function enables Visual Basic

to check whether the variant contains an object reference so that the code can react

accordingly.

Again, we now need to use the Visual Modeler to generate a collection class for

CattributeItem. The complete code listing will not be shown because it differs only

slightly from the code generated in the CColumnDefs case. However, several

changes have been made to the Add method, as shown in the following code

fragment:

Public Sub Add(Name As String, Value As Variant)

 Dim ThisAttribute As New CAttribute

 ThisAttribute.Name = Name

 ThisAttribute.Value = Value

 ' for this collection, we want to replace values if their key

 ' already exists

 If KeyExists(mCol, ThisAttribute.Name) Then

 Call mCol.Remove(ThisAttribute.Name)

 End If

 mCol.Add ThisAttribute, ThisAttribute.Name

End Sub

Because we will be adding only name-value pairs to this collection, a lot of

programming time and overhead is needed to create an AttributeItem object, set

its properties, and pass it into the add method. Instead, we are just passing in the

name-value pairs, allowing the Add method to perform the instantiation. In addition,

the Add method checks for the existence of the key in the collection before

attempting to add a new item. If the key exists, it removes the previous element

and replaces it with the new one. This implementation decision to check first, rather

than letting mCol raise an error, is made because duplicates here will be from a

programming issue and not from a data entry issue by an end user. Therefore, there

is little concern with replacement, and this method makes the code more robust.

The KeyExists function referenced by the Add method is a public function inside a

basic code module in the component. This function is simple to implement and will

be used throughout all components in this framework, so the following code

fragment is presented:

Public Function KeyExists(c As Collection, sKey As String) As Boolean

 On Error GoTo KeyNotExists

 c.Item (sKey)

 KeyExists = True

 Exit Function

KeyNotExists:

 KeyExists = False

End Function

The CPropertyDef Class

The CPropertyDef class, like its CColumnDef cousin, is composed only of simple

properties. Figure 7.10 shows the UML representation for this class.

Figure 7.10. The CPropertyDef class in the UML graphical

model.

Properties

Here, the Name property is used to identify the name that will be used to refer to this

property throughout the business and user layers. Although the Name property here

can exactly match the Name property on its mapped CColumnDef object, it does not

have to do so. The only other property is AttributeItems, which as discussed

previously, is used as a freeform mechanism to store additional information related

to a property. We can use this information throughout the business layer, and we

can pass it to the user layer if necessary. The flexibility exists to add whatever

information at a property level is needed by the application. Some examples of

standard items that could be simple property validation might include

PropertyType, ListId, MinimumValue, MaximumValue, DefaultValue, and

Decimals. In this framework, a standard XMLAttributeName property for XML

generation is defined, a topic covered in Chapter 13. Once again, the Visual Modeler

is used to define both a CPropertyDef class and its associated CPropertyDefs

collection class. Listing 7.4 provides the code to implement the CPropertyDef class.

Example 7.4. The CpropertyDef Class

' declarations section

Option Explicit

Public Enum EnumPropertyTypes

 ptString = 0

 ptInteger = 1

 ptReal = 2

 ptDate = 3

 ptList = 4

End Enum

Private mName As String

Private mAttributes As CAttributeItems

Public Property Get Attributes() As CAttributeItems

 Set Attributes = mAttributes

End Property

Public Property Get Name() As String

 Let Name = mName

End Property

Public Property Let Name(ByVal Value As String)

 Let mName = Value

End Property

Private Sub Class_Initialize()

 Set mAttributes = New CAttributeItems

End Sub

Private Sub Class_Terminate()

 Set mAttributes = Nothing

End Sub

Looking at the code, you will see that we have done a few things differently than

before. First, only a Property Get statement has been created for the Attributes

property. The corresponding Property Set statement has been omitted because

this subordinate object is being managed directly by the CPropertyDef class, so

there is no reason for any external code to set its value to something other than the

internal, private mAttributes variable. Doing so would potentially wreak havoc on

the application; therefore, access to it is protected under the principle of

encapsulation and data hiding that was talked about in Chapter 3, "Objects,

Components, and COM." In addition, you will note that the contained objects are

instantiated in the Class_Initialize event as was done for collections earlier in

the chapter. The same reasoning applies here.

Because the CPropertyDefs collection class is not changed from the code

generated by the Visual Modeler, the listing is omitted here.

The CClassDef Class

Now that the CColumnDef and CPropertyDef classes and their supporting collection

classes have been created, it is time to generate the CClassDef class, which is

responsible for pulling everything together to drive the metadata model. Figure

7.11 shows the UML representation for this class.

Figure 7.11. The CClassDef class in the UML graphical

model.

Properties

To provide the class-to-RDBMS mapping, both the name of the table that we will be

using to save object state information and the name of the view that will be used to

retrieve object state information must be known to the application. The mapping

technique was discussed in detail in Chapter 4. To meet these needs, the properties

WriteLocation and ReadLocation are defined.

After the names of the table and views have been defined, the columns that act as

the primary keys on the table must be defined. Recall from Chapter 4 that these

keys also serve as the Object Identifier (OID) values for an object instance. This

framework can support two-column keys, or OIDs; so, the properties IdColumnName

and SubIdColumnName are defined. The framework assumes that an empty value for

SubIdColumnName indicates that only a single key is used. The response of the

framework when IdColumnName is empty is not defined.

If the particular class that is being defined by an instance of the CClassDef class is

the child in a parent-child–style relationship, the columns that represent the foreign

keys to the table containing the parent object instances must be defined as well. The

properties ParentIdColumnName and ParentSubIdColumnName are defined for just

this purpose. The data layer, discussed in Chapter 8, "The DataManager Library,"

will use this information during its SQL generation process for retrieval statements.

Similarly, for a parent-child–style relationship, there can be many child objects as in

the case of a one-to-many or master-detail relationship. In these cases, the

developer might need to order the items in a particular way, so an

OrderByColumnName property is defined. If more than one column is required, a

comma-separated list of column names on which to sort can be provided. These

columns do not necessarily have to appear in the ColumnDefs property that we will

discuss shortly.

If one-level inheritance structure is being created (through an interface

implementation), we must be able to discern which subclass of the base class a

given record in the database represents. Therefore, the properties TypeColumnName

and TypeId have been defined to drive this. If a value for TypeColumnName is

defined, then the framework assumes that an inheritance structure is in force and

handles data retrieval, inserts, and updates accordingly.

There are many instances where we want to reference an object by a

human-friendly name rather than by its OID, such as in an object browser, explorer,

or lookup mechanism. To support this, a property called KeyColumnName is defined

to indicate which column to use for this purpose. In this case, the KeyColumnName

must correspond to a ColumnDef in the ColumnDefs collection.

To support the XML functionality discussed in Chapter 13, we must define the

information necessary to generate an XML Document Type Definition (DTD) for the

class. The properties XMLElementName and XMLElementChildren are defined for

this purpose. These properties are used in conjunction with the MakeDTDSnippet

method defined on the class and discussed in the "Methods" section, later in this

chapter.

Finally, the CClassDef class contains a property of type PropertyDefs and another

of type ColumnDefs. Because these two sets of definitions are built

programmatically at runtime, these two properties store the column and property

definition information for use by the business and data layers. In addition to these

two properties, two other properties are implemented to help map between

ColumnDef objects and PropertyDef objects. They are called PropertyToColumn

and ColumnToProperty, both of which are implemented as simple Visual Basic

Collection classes. The keying mechanism of the collection will be used to help

provide this mapping.

Once again, the Visual Modeler can be used to implement both the CClassDef class

and CClassDefs collection class. Be sure to use the same model that has been used

throughout this chapter so that there is visibility to the PropertyDefs and

ColumnDefs collection classes.

Listing 7.5 provides the code to implement the properties of the CClassDef class.

Example 7.5. Properties of the CClassDef Class

' declarations section

Option Explicit

Private mReadLocation As String

Private mWriteLocation As String

Private mIdColumnName As String

Private mSubIdColumnName As String

Private mParentIdColumnName As String

Private mParentSubIdColumnName As String

Private mOrderByColumnName As String

Private mTypeColumnName As String

Private mTypeId As Long

Private mKeyColumnName As String

Private mXMLElementName As String

Private mXMLElementChildren As String

Private mPropertyToColumn As Collection

Private mColumnToProperty As Collection

Private mPropertyDefs As CPropertyDefs

Private mColumnDefs As CColumnDefs

' code section

Public Property Get ColumnDefs() As CColumnDefs

 Set ColumnDefs = mColumnDefs

End Property

Public Property Get PropertyDefs() As CPropertyDefs

 Set PropertyDefs = mPropertyDefs

End Property

Public Property Get XMLElementChildren() As String

 Let XMLElementChildren = mXMLElementChildren

End Property

Public Property Let XMLElementChildren(ByVal Value As String)

 Let mXMLElementChildren = Value

End Property

Public Property Get XMLElementName() As String

 Let XMLElementName = mXMLElementName

End Property

Public Property Let XMLElementName(ByVal Value As String)

 Let mXMLElementName = Value

End Property

Public Property Get TypeId() As Long

 Let TypeId = mTypeId

End Property

Public Property Let TypeId(ByVal Value As Long)

 Let mTypeId = Value

End Property

Public Property Get TypeColumnName() As String

 Let TypeColumnName = mTypeColumnName

End Property

Public Property Let TypeColumnName(ByVal Value As String)

 Let mTypeColumnName = Value

End Property

Public Property Get KeyColumnName() As String

 Let KeyColumnName = mKeyColumnName

End Property

Public Property Let KeyColumnName(ByVal Value As String)

 Let mKeyColumnName = Value

End Property

Public Property Get OrderByColumnName() As String

 Let OrderByColumnName = mOrderByColumnName

End Property

Public Property Let OrderByColumnName(ByVal Value As String)

 Let mOrderByColumnName = Value

End Property

Public Property Get ParentSubIdColumnName() As String

 Let ParentSubIdColumnName = mParentSubIdColumnName

End Property

Public Property Let ParentSubIdColumnName(ByVal Value As String)

 Let mParentSubIdColumnName = Value

End Property

Public Property Get ParentIdColumnName() As String

 Let ParentIdColumnName = mParentIdColumnName

End Property

Public Property Let ParentIdColumnName(ByVal Value As String)

 Let mParentIdColumnName = Value

End Property

Public Property Get SubIdColumnName() As String

 Let SubIdColumnName = mSubIdColumnName

End Property

Public Property Let SubIdColumnName(ByVal Value As String)

 Let mSubIdColumnName = Value

End Property

Public Property Get IdColumnName() As String

 Let IdColumnName = mIdColumnName

End Property

Public Property Let IdColumnName(ByVal Value As String)

 Let mIdColumnName = Value

End Property

Public Property Get WriteLocation() As String

 Let WriteLocation = mWriteLocation

End Property

Public Property Let WriteLocation(ByVal Value As String)

 Let mWriteLocation = Value

End Property

Public Property Get ReadLocation() As String

 Let ReadLocation = mReadLocation

End Property

Public Property Let ReadLocation(ByVal Value As String)

 Let mReadLocation = Value

End Property

Private Sub Class_Initialize()

 Set mPropertyToColumn = New Collection

 Set mColumnToProperty = New Collection

End Sub

Private Sub Class_Terminate()

 Set mPropertyToColumn = Nothing

 Set mColumnToProperty = Nothing

End Sub

Methods

Four methods are defined on the CClassDef class to implement creation of the

metadata model at runtime. The first of these is AppendMapping, a method that is

responsible for creating ColumnDef and PropertyDef instances, adding them to the

necessary collections, and providing the mapping between the two. Listing 7.6

provides the code listing for this method.

Example 7.6. The AppendMapping Method of the

CClassDef Class

Public Sub AppendMapping(PropertyName As String, _

 ColumnName As String, _

 ColumnCanRead As Boolean, _

 ColumnCanWrite As Boolean, _

 ColumnType As EnumColumnType, _

 XMLAttributeName As String)

 Dim ColumnDef As New CColumnDef

 Dim PropertyDef As New CPropertyDef

 Dim AttributeItem As CAttributeItem

 On Error GoTo ErrorTrap

100 ColumnDef.Name = ColumnName

105 ColumnDef.CanRead = ColumnCanRead

110 ColumnDef.CanWrite = ColumnCanWrite

120 ColumnDef.ColumnType = ColumnType

125 mColumnDefs.Add ColumnDef, ColumnDef.Name

130 PropertyDef.Name = PropertyName

135 Call PropertyDef.Attributes.Add("XMLAttributeName",

XMLAttributeName)

140 mPropertyDefs.Add PropertyDef, PropertyDef.Name

145 mColumnToProperty.Add PropertyDef, ColumnName

150 mPropertyToColumn.Add ColumnDef, PropertyName

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("CClassDef:AppendMapping", Err.Number,

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "CClassDef:AppendMapping",

 Err.Description & " [" & Erl & "]"

 End Sub

In an effort to minimize the mapping creation process in the business layer, only the

minimal information needed to create a column and property, and subsequently

generate a mapping, is passed into the method. This information is all that is needed

to drive the basic architecture. If additional information is needed by your

implementation of this framework, then the AppendMapping method can be

modified, although the recommended approach is to utilize the Attributes

property on the PropertyDef class. The reasoning behind this is so that flexibility

going forward is preserved by not having to modify the AppendMapping method.

The AppendMapping method is self-explanatory up until line 145, where the actual

mappings are created. It is here that the keying feature of a Collection is used to

provide the bidirectional mappings. For the private mColumnToProperty collection,

the PropertyDef object is added, keyed on the column name. For the private

mPropertyToColumn collection, the opposite is performed and the ColumnDef object

is added, keyed on the property name. Rather than provide direct access to these

underlying collections, two methods to expose this mapping facility in a cleaner

fashion are implemented. These methods are PropertyToColumnDef and

ColumnToPropertyDef. The code for these two methods is provided in Listing 7.7.

Example 7.7. The PropertyToColumnDef and

ColumnToPropertyDef Methods of the CClassDef

Class

Public Function PropertyToColumnDef(PropertyName As String) As

CColumnDef

On Error GoTo NotFound

 Set PropertyToColumnDef = mColumnDefs.Item(PropertyName)

 Exit Function

NotFound:

 Set PropertyToColumnDef = Nothing

End Function

Public Function ColumnToPropertyDef(ColumnName As String) As

CPropertyDef

On Error GoTo NotFound

 Set ColumnToPropertyDef = mPropertyDefs.Item(ColumnName) Exit Function

NotFound:

 Set ColumnToPropertyDef = Nothing

End Function

Finally, the MakeDTDSnippet method that will be used in the XML DTD generation

facility of the framework is implemented. Although a detailed discussion of this

functionality will be deferred until Chapter 13, I'll make a few comments. The code

is provided in Listing 7.8.

Example 7.8. The MakeDTDSnippet Method of the

CClassDef Class

Public Function MakeDTDSnippet() As String

 Dim sXML As String

 Dim PropertyDef As CPropertyDef

 Call Append(sXML, "<!ELEMENT" & vbTab)

 Call Append(sXML, XMLElementName & " ")

 Call Append(sXML, XMLElementChildren & ">" & vbCrLf)

 Call Append(sXML, "<!ATTLIST" & vbTab & XMLElementName & vbCrLf)

 Call Append(sXML, "<!ATTLIST" & vbTab & XMLElementName & vbCrLf)

 For Each PropertyDef In PropertyDefs

 If PropertyDef.XMLAttributeName <> "" Then

 Call Append(sXML, vbTab & XMLAttributeName)

 Call Append(sXML, " CDATA #REQUIRED" & vbCrLf)

 End If

 Next

 Call Append(sXML, ">" & vbCrLf)

 MakeDTDSnippet = sXML

End Function

Looking at the For Each PropertyDef In PropertyDefs statement in the preceding

code, we can see a use of the strange Item.[_NewEnum] syntax that the Visual

Modeler generates for collection classes. An Append method has also been defined

within the basic code module for this component to facilitate the appending of

information to a string.

Using the ClassManager Component

Now that we have completely defined our class manager component, it is time to

put it to work. Figure 7.12 shows the completed class hierarchy for the

ClassManager library.

Figure 7.12. The ClassManager library in the UML

graphical model.

Suppose that we want to define the persistence information for the example using

bonds discussed in Chapter 3. Table 7.1 provides the property and column

information from that example.

Table 7.1. Meta Information for the CBond Class Example

Property Name Column Name Readable Writeable

Id Id Yes No
Name Name Yes Yes
FaceValue Face_Value Yes Yes
CouponRate Coupon_Rate Yes Yes
BondTerm Bond_Term Yes Yes
BondType Bond_Type Yes Yes

Recalling this CBond example from Chapter 3, a class inheritance structure has been

defined as shown in Figure 7.13.

Figure 7.13. The bond inheritance structure.

To implement the CBond object structure, a new ActiveX DLL called BondLibrary is

created in Visual Basic. Class modules for Ibond, CdiscountBond, CconsolBond,

and CCouponBond are added, and a reference to the ClassManager DLL is set.

Because this example follows an interface implementation mechanism, and the

metadata for all subclasses is identical except for the TypeId property, it is more

efficient to implement the majority of the mapping functionality in the IBond class.

Each subclass implementing IBond will delegate most of this mapping functionality

to Ibond. The subclass implementing the specific functionality will simply set the

TypeId property. For example, using the information from Table 7.1, the

initialization code for IBond in shown in Listing 7.9. Listings 7.10, 7.11, and 7.12

provide the specific initialization code needed by the CdiscountBond, CcouponBond,

and CConsolBond classes, respectively.

Example 7.9. The CClassDef Instantiation code for

IBond

Option Explicit

' declarations section

Private mClassDef As CClassDef

' code section

Private Sub Class_Initialize()

 Set mClassDef = New CClassDef

 With mClassDef

 .ReadLocation = "dbo.fdb.Table_Bond"

 .WriteLocation = "dbo.fdb.Table_Bond"

 .IdColumnName = "Id"

 .KeyColumnName = "Name"

 .TypeColumnName = "Bond_Type"

 .AppendMapping "Id", "Id", True, False, ctNumber, "OID"

 .AppendMapping "Name", "Name", True, True, ctString, "Name"

 .AppendMapping "FaceValue", "Face_Value", True, False, ctNumber,

"FaceValue"

 .AppendMapping "CouponRate", "Coupon_Rate", True, False,

 ctNumber, "CouponRate"

 .AppendMapping "BondTerm", "Bond_Term", True, False, ctNumber,

"BondTerm"

 .AppendMapping "BondType", "Bond_Type", True, False, ctNumber,

"BondType"

 End With

End Sub

Example 7.10. The CDiscountBond Initialization Code

Relative to CClassDef

Option Explicit

' declarations section

Private mIBondObject As IBond

' code section

Private Sub Class_Initialize()

 Set mIBondObject = New IBond

 mIBondObject.ClassDef.TypeId = 1

End Sub

Example 7.11. The CCouponBond Initialization Code

Relative to CClassDef

Option Explicit

' declarations section

Private mIBondObject As IBond

' code section

Private Sub Class_Initialize()

 Set mIBondObject = New IBond

 mIBondObject.ClassDef.TypeId = 2

End Sub

Example 7.12. The CConsolBond Initialization Code

Relative to CClassDef

Option Explicit

' declarations section

Private mIBondObject As IBond

' code section

Private Sub Class_Initialize()

 Set mIBondObject = New IBond

 mIBondObject.ClassDef.TypeId = 3

End Sub

The previous set of code listings shows the initialization process that provides the

complete population of a ClassDef object for a given subclass. For example, looking

at Listing 7.12, you can see that when a CConsolBond object is instantiated, the first

statement in its Class_Initialize event instantiates an IBond object, which

transfers control to the IBond object initialization routine. This routine proceeds to

populate the vast majority of the ClassDef object. After returning to the

initialization routine of CconsolBond, the only property left to set is the TypeId

associated with the subclass.

Summary

This chapter has developed the first major component of the framework, the

ClassManager. This component is responsible for managing the metadata that

describes class definitions and the object-to-table mappings needed for object

persistence. In development of this component, the Visual Modeler was used

extensively to generate both the base classes and their collection class

counterparts.

In the next chapter, attention turns to defining the second core component, the

DataManager. This component will be used to interact with the database on behalf

of the application. It will use information found in the ColumnDefs collection, defined

in the CClassDef class, as one of its primary tools for generating the appropriate

SQL needed to accomplish the tasks required by the application.

Chapter 8. The DataManager Library

Now that we have defined and implemented the ClassManager components, the

capability exists to create class definitions programmatically through metadata.

This component also provides the infrastructure to define the mappings of classes to

tables and properties to columns within an RDBMS. Now, we need a mechanism to

interact with the database itself. This mechanism, aptly called DataManager, is also

an ActiveX DLL residing in the data services layer and is enlisted by the business

layer. Its design is such that it is the sole interface into the database by the

application. The business services layer is the only one, by design, that can enlist it

into action because the user services layer does not have visibility to it. Although

this library physically runs on the MTS machine, it does not run under an MTS

package. Instead, the business layer running under an MTS package calls this

library into action directly as an in-process COM component.

Design Theory

The goal in creating the DataManager component is to provide a library that can

handle all interactions with a Relational Database Management System (RDBMS) on

behalf of the application. The majority of these requests are in the form of basic

CRUD (Create, Retrieve, Update, and Delete) processing that makes up a significant

portion of any application. Create processing involves implementing the logic to

create a new row in the database, copy the object state information into it, and

generate a unique Object Identifier (OID) for the row and object. Retrieve

processing involves formulating the necessary SQL SELECT statement to retrieve

the desired information. Update processing involves implementing the logic to

retrieve a row from the database for a given OID, copying the object state

information into it and telling the RDMS to commit the changes back to the row.

Delete processing involves formulating the necessary SQL DELETE statement to

delete a specific row from the database based on a given OID.

In addition, stored procedure-calling capability might be needed as well to

implement business functionality on the RDBMS. Such capability might also be

needed to augment the standard CRUD routines if there are performance issues

with the generic approach. Nonetheless, this framework attempts to remain as

generic as possible and utilize just the core CRUD routines that will be implemented.

For the Retrieve and Delete portions of CRUD, an SQL composer is implemented. An

SQL composer is nothing more than a generator that can take minimal information

and create a valid SQL statement from it. The information used by the composer

logic is taken directly from the metadata in a ClassDef object. Pieces of the

composer logic that is used by the retrieve and delete methods are also used to

assist in the create and update portions of CRUD. Abstracting this composition logic

in the DataManager component in such a manner allows the application to

automatically adapt to database changes. For example, as new column names are

added to support new properties, existing functionality in the DataManager

component is not broken. Because all database access is driven through the

metadata in a ClassDef object, the DataManager component never must be

redeveloped to support changes in the object hierarchy or database schema.

Although this approach is very flexible, the dynamic SQL generation implemented

by the composer logic does have compilation overhead that repeats with every

database transaction. As discussed in Chapter 6, "Development Fundamentals and

Design Goals of an Enterprise Application," SQL Server views are precompiled and

cached in a manner similar to stored procedures; thus, much of the overhead

associated with the compilation process does not exist on retrievals from views.

Assuming that the highest percentage of database activity on many applications is

in retrievals and those retrievals are from views, the penalty from dynamic SQL

generation might be negligible. On high-volume objects though, this might not be

acceptable. On some database servers (although not on SQL Server 6.x), the

system caches dynamic SQL statements so that it does not have to recompile. A

significant amount of such dynamic SQL can overflow the cache and degrade overall

database performance. In either case—high-volume objects or caching of

dynamically generated SQL statements—a stored-procedure approach might be

necessary.

Implementation

As in the previous chapters, the implementation discussion starts by defining a few

core functions and helper classes, the latter of which allow for cleaner

communication between the business and data layers.

Component-Level Functions

First, several core functions are defined within the context of a basic code module

that is used by all classes within the component. The first function is a generic

RaiseError function (see Listing 8.1), whose purpose is to wrap outbound errors

with information to indicate that the source was within this component—an

approach that will be adopted with many of the server-side components to be

implemented in future chapters.

Example 8.1. A Core RaiseError Function Defined

Within the DataManager Component

Public Sub RaiseError(ErrorNumber As Long, _

 Source As String, _

 Description As String)

 Err.Raise ErrorNumber, _

 "[CDataManager]" & Source, _

 CStr(ErrorNumber) & " " & Description

End Sub

The second is a function (see Listing 8.2) to write error messages to the NT event

log, called aptly WriteNTLogEvent. This is important for libraries running on a

remote server, as discussed in the "Debugging" section in Chapter 6.

Example 8.2. The WriteNTEventLog Function

Public Sub WriteNTLogEvent(ProcName As String, _

 ErrNumber As Long, _

 ErrDescription As String,

 ErrSource As String)

 Dim sMsg As String

 sMsg = "Error " & ErrNumber & " (" & ErrDescription & "), sourced by "

& _

 ErrSource & " was reported in " & ProcName

 App.StartLogging "", vbLogToNT

 App.LogEvent sMsg, vbLogEventTypeWarning ' will only write in compiled

mode

 Debug.Print sMsg ' will only write in run-time mode

End Sub

As can be seen from the code in Listing 8.2, two messages are actually written. One

message is to the NT event log, which can occur only when the component is

running in non-debug mode. The other message is to the debug window, which can

only occur when the component is running in debug mode.

The CStringList Class

Because SQL statements are composed of lists of strings, a CStringList class is

implemented to help manage this information. This class is used to store the

individual string values that make up the select column list, the order by column list,

and the where clause list necessary to formulate an SQL select statement. Figure

8.1 shows a Unified Modeling Language (UML) representation of the CStringList

class.

Figure 8.1. The CStringList class in the UML graphical

model.

Methods

The CStringList class is straightforward in its design and implementation. The

CStringList is modeled on the collection class metaphor, with the exception that

the Add method has been modified to handle multiple strings at a time. Additionally,

the Item method returns a string versus an object, as has otherwise been the case

to this point. Several other methods have been added as well. A Clear method

removes all the strings from the internal collection. An ExtractClause method

formats the collection of strings into a single string separated by a delimiter

character provided to the method. Additionally, a private method Exists has been

created for use by the Add method to check to see whether a string already exists in

the collection. The reason for this is so that errors are not raised because of an

inadvertent programming error that attempts to add a duplicate key to the internal

collection. Standard Count and Item methods are provided as well for iteration

purposes, consistent with collection design. The code listing for CStringList is

shown in Listing 8.3.

Example 8.3. Method Implementations for

CStringList

Option Explicit

Private mCol As Collection

Public Sub Add(ParamArray StringItems() As Variant)

 Dim i As Integer

 For i = LBound(StringItems) To UBound(StringItems)

 If Not Exists(CStr(StringItems(i))) Then

 mCol.Add CStr(StringItems(i)), CStr(StringItems(i))

 End If

 Next i

End Sub

Private Sub Class_Initialize()

 Set mCol = New Collection

End Sub

Private Sub Class_Terminate()

 Set mCol = Nothing

End Sub

Public Sub Clear()

 Dim i As Integer

 For i = 1 To mCol.Count

 mCol.Remove 1

 Next i

End Sub

Public Function Count() As Integer

 Count = mCol.Count

End Function

Public Function Item(Index) As String

 Item = mCol.Item(Index)

End Function

Public Function ExtractClause(Delimiter As String) As String

 Dim i As Integer

 Dim s As String

 If mCol.Count > 0 Then

 For i = 1 To mCol.Count - 1

 s = s & mCol.Item(i) & " " & Delimiter & " "

 Next i

 s = s & mCol.Item(i)

 Else

 s = ""

 End If

 ExtractClause = s

End Function

Private Function Exists(SearchString As String) As Boolean

 On Error GoTo ErrorTrap

 Call mCol.Item(SearchString)

 Exists = True

 Exit Function

ErrorTrap:

 Exists = False

End Function

The Add method has been designed to accept multiple string values through a

ParamArray parameter named StringItems. The method iterates through the

individual strings in this StringItems array, adding them one at a time to the

internal collection. A calling convention to this method might look like the following:

StringList.Add("Id","Name","Address1","Address2")

This design technique allows for a dynamically sized parameter list, making it easier

to build the string list from the calling code.

The ExtractClause is implemented to help quickly turn the list of strings stored in

the internal collection into a delimited version of itself. This is needed by the

composer logic to create the select, from, and where predicates needed for the

SQL statements. Continuing with the preceding example, a call to the

ExtractClause method is simply

StringList.ExtractClause(",")

This call would produce the string "Id , Name , Address1 , Address 2" as its result.

The CQueryParms Class

With the capability to create lists of strings in tidy CStringList objects, attention

turns to defining the parameters necessary to form an SQL query to support CRUD

processing. To generate a retrieve or delete statement, the table name (or possible

view name) as well as the row specification criteria must be known. Furthermore,

for the select statement, the list of columns and optionally an order by list needs to

be known. A CQueryParms class is defined to accommodate these requirements.

Figure 8.2 shows a UML representation of the CQueryParms class.

Figure 8.2. The CQueryParms class in the UML graphical

model.

Properties

The CQueryParms class has a simple TableName property, along with three other

properties that are instances of the CStringList class. These properties are

ColumnList, WhereList, and OrderList. If a list of where conditions are used, a

mechanism to tell the composer logic how to concatenate them together must be

defined; therefore, a WhereOperator property is defined for this purpose.

NOTE

This framework does not support complex concatenation of where clauses in the

CRUD processing because it occurs relatively infrequently and because

implementation of such support would be extremely difficult. Anything that requires

this level of complexity is usually outside the capabilities of basic CRUD, and instead

within the realm of the business logic domain. For these types of queries, a

secondary pathway on CDataManager is provided that can accept ad hoc SQL.

The code required to support these properties appears in Listing 8.4.

Example 8.4. CQueryParms Properties

Public Enum EnumWhereOperator

 woAnd = 0

 woOr = 1

End Enum

Private mTableName As String

Private mColumnList As CStringList

Private mWhereList As CStringList

Private mOrderList As CStringList

Private mWhereOperator As EnumWhereOperator

Public Property Get TableName() As String

 TableName = mTableName

End Property

Public Property Let TableName(RHS As String)

 mTableName = RHS

End Property

Public Property Get ColumnList() As CStringList

 Set ColumnList = mColumnList

End Property

Public Property Get WhereList() As CStringList

 Set WhereList = mWhereList

End Property

Public Property Get OrderList() As CStringList

 Set OrderList = mOrderList

End Property

Public Property Get WhereOperator() As EnumWhereOperator

 WhereOperator = mWhereOperator

End Property

Public Property Let WhereOperator(RHS As EnumWhereOperator)

 mWhereOperator = RHS

End PropertyWith

Private Sub Class_Initialize()

 Set mColumnList = New CStringList

 Set mWhereList = New CStringList

 Set mOrderList = New CStringList

End Sub

Private Sub Class_Terminate()

 Set mColumnList = Nothing

 Set mWhereList = Nothing

 Set mOrderList = Nothing

End Sub

Methods

Because CQueryParms is primarily a data container, its only method is Clear, which

simply calls the Clear method of its ColumnList, WhereList, and OrderList

properties.

Public Sub Clear()

 mColumnList.Clear

 mWhereList.Clear

 mOrderList.Clear

End Sub

The CDataManager Class

With these two base helper classes (CStringList and CQueryParms) defined, we

can turn our attention to the implementation of the CDataManager class itself.

Figure 8.3 shows a UML representation of CDataManager.

Figure 8.3. The CDataManager class in the UML graphical

model.

Properties

The CDataManager class is relatively property-free, save for a simple Timeout

setting (see Listing 8.5). This property enables the developer to override the

standard timeout setting if we think it will be exceeded. This property first checks to

see if the instance has connected to the database, as would be the case if this

property were set before the DoConnect method, discussed in the next section, is

called. Although we can raise an error at this point, this framework has not

implemented it in this manner.

Example 8.5. CdataManager Properties

Private mTimeout As Long

Public Property Let Timeout(RHS As Long)

 mTimeout = RHS

 If Not cnn Is Nothing Then

 cnn.CommandTimeout = RHS

 End If

End Property

Public Property Get Timeout() As Long

 Timeout = mTimeout

End Property

Methods

Because the underlying data repository is an RDBMS, and because Active Data

Objects (ADO) is used to access it, we need to define methods that enable the class

to connect to, and disconnect from, the database. These methods are called

DoConnect and DoDisconnect, respectively, and they are shown in Listing 8.6. It is

assumed that the business layer provides some form of direction on how to connect

through a ConnectString parameter that follows ADO syntactical requirements.

Example 8.6. The DoConnect and DoDisconnect

Methods on CDataManager

Private cnn As ADODB.Connection

Public Function DoConnect(ConnectString As String) As Boolean

 On Error GoTo DoConnectErr

 Set cnn = New ADODB.Connection

 ' do not change the cursor to server side

 ' in the following statement.

 ' there is a bug during insert

 ' operations when ODBC is used in

 ' conjunction with server side cursors…

 cnn.CursorLocation = adUseClient

 Call cnn.Open(ConnectString)

 DoConnect = True

 Exit Function

DoConnectErr:

 Call RaiseError(Err.Number, _

 "CDataManager:DoConnect Method", _

 Err.Description)

 DoConnect = False

End Function

Public Function DoDisconnect() As Boolean

 On Error GoTo DoDisconnectErr

 Call cnn.Close

 DoDisconnect = True

 Exit Function

DoDisconnectErr:

 Call RaiseError(Err.Number, _

 "CDataManager:DoDisconnect Method", _

 Err.Description)

 DoDisconnect = False

End Function

The DoConnect method is straightforward, following the requirements of ADO to set

up a Connection object. One item to note is that the connection object's

CursorLocation property is set to adUseClient because there are bugs if an ODBC

provider is used, versus a native OLEDB provider. The DoDisconnect method is

equally straightforward, requiring no further comment.

After a connection has been established, the capability to interact in CRUD fashion

with the database exists using one of four methods. The first two methods, GetData

and DeleteData, implement the retrieve and delete functionality, respectively. The

second two methods, GetInsertableRS and GetUpdatableRS, are helpers to the

business layer to implement the create and update functionality, respectively. The

GetData, DeleteData, and GetUpdatableRS methods each take a CqueryParms

object as an argument to provide the necessary information for the composer logic

within the methods. The logic within the GetInsertableRS needs only a table name,

so it does not require the CqueryParms object. A fifth method, ExecuteSQL, is

implemented to accept ad hoc SQL statements for execution. This SQL statement

can be the name of a stored procedure that does not have any OUT arguments

defined. If the need to support such a stored procedure exists, a new method will

have to be added to the CdataManager class.

The GetData method returns a Recordset object that can contain zero or more

records. The GetData code is shown in Listing 8.7.

Example 8.7. The GetData Method of CDataManager

Public Function GetData(QueryParms As CQueryParms) As ADODB.Recordset

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim strColumns As String

 Dim strWhere As String

 Dim strOrder As String

 Dim SQL As String

 Dim i As Integer

 Dim strWhereOperator As String

 On Error GoTo GetDataErr

 If QueryParms.TableName = "" Then

 Err.Raise dmeErrorNoTableName + vbObjectError, "", _

 LoadResString(dmeErrorNoTableName)

 End If

 strWhereOperator = IIf(QueryParms.WhereOperator = woAnd, "AND", "OR")

 strColumns = QueryParms.ColumnList.ExtractClause(",")

 strWhere = QueryParms.WhereList.ExtractClause(strWhereOperator)

 strOrder = QueryParms.OrderList.ExtractClause(",")

 If strColumns = "" Then

 Err.Raise dmeErrorNoFromClause + vbObjectError, "", _

 LoadResString(dmeErrorNoFromClause)

 End If

 If strWhere = "" Then

 Err.Raise dmeErrorNoWhereClause + vbObjectError, "", _

 LoadResString(dmeErrorNoWhereClause)

 End If

 strWhere = " WHERE " & strWhere

 If strOrder <> "" Then strOrder = " ORDER BY " & strOrder

125 SQL = "SELECT DISTINCT " & strColumns & _

 " FROM " & QueryParms.TableName & " " & _

 strWhere & " " & strOrder

 Set rs = ExecuteSQL(SQL)

130 If Not (rs.EOF Or rs.BOF) Then

 Set GetData = rs

 Set rs = Nothing

 Else

 Set GetData = Nothing

 End If

 Exit Function

GetDataErr:

 If Erl >= 125 Then

 '1. Details to EventLog

 Call WriteNTLogEvent("CDataManager:GetData", _

 Err.Number, _

 Err.Description & " <<CMD: " & SQL & ">>", _

 Err.Source & " [" & Erl & "]")

 '2. Generic to client

 Err.Raise Err.Number, "CDataManager:GetData", _

 Err.Description & " <<CMD: " & SQL & ">>" & " [" & Erl &

"]"

 Else

 '1. Details to EventLog

 Call WriteNTLogEvent("CDataManager:GetData",_

 Err.Number, _

 Err.Description, _

 Err.Source & " [" & Erl & "]")

 '2. Generic to client

 Err.Raise Err.Number, "CDataManager:GetData", _

 Err.Description & " [" & Erl & "]"

 End If

End Function

The GetData method starts by checking to make sure that the TableName property

has been set, and then proceeds to expand the CStringList properties of the

CQueryParm object. After these expanded strings are built, checks are made to

ensure that there are FROM and WHERE clauses. If any violations of these conditions

are found, errors are raised and the method is exited. The order by list is optional,

so no checks for this property are made.

After all the necessary information has been expanded and validated, the method

proceeds to form an SQL statement from the pieces. A DISTINCT keyword is placed

in the statement to ensure that multiple identical rows are not returned, a condition

that can happen if malformed views are in use. Although this offers some protection,

it also limits the processing of Binary Large Object (BLOB) columns that cannot

support this keyword. If your application requires BLOB support, you must

implement specific functionality in addition to the framework presented.

After the SQL statement is ready, it is simply passed off to the ExecuteSQL method

that will be discussed at the end of this section. To check for the existence of records,

the If Not(rs.EOF Or rs.BOF) syntax is used. Although a RecordCount property

is available on the Recordset object, it is not always correctly populated after a call,

so the previous convention must be used for robustness.

Several other items to note relate to error handling. From the code, you can see that

an error enumeration is used with a resource file providing the error messages. The

purpose of this is to make it easier to modify the error messages without

recompiling the code, as well as reducing the overall compiled code size. This also

allows for multi-language support if so required by your application. The Visual

Basic Resource Editor add-in can be used for this purpose. Figure 8.4 shows the Edit

String Tables dialog that is used to build the resource file.

Figure 8.4. The Resource Editor.

The other item to note is that the error-handling routine has been designed to

operate differently based on the line number at which the error occurred. For line

items greater than 125, the SQL has been generated. Thus, it might be helpful to

see the potentially offending SQL statement in the error stream for debugging

purposes. Otherwise, the absence of an SQL statement in the error stream indicates

that the error occurred prior to SQL formation.

The DeleteData method works in a fashion similar to GetData, and is able to delete

one or more rows from the database. This method expects that the TableName and

WhereList properties on the CQueryParms argument object have been populated.

All other properties are ignored. This method proceeds to extract the WHERE clause

and ensure that it has information, similar to the checking performed in the GetData

method. In this case, the existence of WHERE clause information is vital, or else the

resulting SQL statement will delete all rows in the table—a lesson learned the hard

way. Again, the necessary SQL DELETE statement is generated and passed off to the

ExecuteSQL method. The DeleteData code is shown in Listing 8.8.

Example 8.8. The DeleteData Method of

CDataManager

Public Function DeleteData(QueryParms As CQueryParms) As Boolean

 Dim rs As ADODB.Recordset

 Dim strWhere As String

 Dim sSQL As String

 Dim strWhereOperator As String

 On Error GoTo ErrorTrap

 If QueryParms.TableName = "" Then

 Err.Raise dmeErrorNoTableName + vbObjectError, "", _

 LoadResString(dmeErrorNoTableName)

 End If

 StrWhereOperator = IIf(QueryParms.WhereOperator = woAnd, "AND", "OR")

 strWhere = QueryParms.WhereList.ExtractClause(strWhereOperator)

 If strWhere = "" Then

 Err.Raise dmeErrorNoWhereClause + vbObjectError, "", _

 LoadResString(dmeErrorNoWhereClause)

 End If

 strWhere = " WHERE " & strWhere

125 SQL = "DELETE FROM " & QueryParms.TableName & strWhere

 Set rs = ExecuteSQL(SQL)

ExitFunction:

 Exit Function

ErrorTrap:

 If Erl >= 125 Then

 '1. Details to EventLog

 Call WriteNTLogEvent("CDataManager:DeleteData", _

 Err.Number, _

 Err.Description & " <<CMD: " & SQL & ">>", _

 Err.Source & " [" & Erl & "]")

 '2. Generic to client

 Err.Raise Err.Number, "CDataManager:DeleteData", _

 Err.Description & " <<CMD: " & SQL & ">>" & " [" & Erl & "]"

 Else

 '1. Details to EventLog

 Call WriteNTLogEvent("CDataManager:DeleteData", _

 Err.Number, Err.Description, _

 Err.Source & " [" & Erl & "]")

 '2. Generic to client

 Err.Raise Err.Number, "CDataManager:DeleteData", _

 Err.Description & " [" & Erl & "]"

 End If

End Function

Now that the two simpler components of CRUD have been implemented, attention

turns to the more complex Create and Update portions of the acronym. Although the

dynamic SQL generation process can be followed as in the previous two methods,

there are issues with this approach. Specifically, there are concerns with how to

handle embedded quotes in the SQL data. Rather than dealing with this issue in

INSERT and UPDATE statements, it is easier to work with Recordset objects.

The GetInsertableRS is defined to support creates, requiring only a TableName

parameter. The code for GetInsertableRS is shown in Listing 8.9.

Example 8.9. The GetInsertableRS Method on

CDataManagers

Public Function GetInsertableRS(TableName As String) As ADODB.Recordset

 Dim rs As ADODB.Recordset

 Dim SQL As String

 On Error GoTo ErrorTrap

 SQL = "select * from " & TableName & " where Id = 0"

 'should populate with an empty row, but all column definitions

 Set rs = ExecuteSQL(SQL)

 Set GetInsertableRS = rs

 Set rs = Nothing

 Exit Function

ErrorTrap:

 Call RaiseError(Err.Number, "CDataManager:UpdateData Method",

Err.Description)

End Function

This method forms a simple SQL SELECT statement of the form "SELECT * FROM

TableName WHERE Id=0". This has the effect of creating an empty Recordset object

that has all the columns of the underlying table. This empty Recordset object is

passed back to the business layer to receive the object state information. The

business layer calls the Update method on the Recordset object, retrieves the

auto-generated OID field generated by SQL Server, and sets the value in the object.

Update processing is done in a similar fashion, except that a CQueryParms object is

required as an argument. This CQueryParms object exactly matches the criteria set

forth in the GetData case, except that the TableName property must be the

underlying table rather than a view. Because the composition logic to retrieve an

updateable Recordset object is the same as that already implemented in the

GetData method, the GetUpdatableRS method taps in to it simply by passing the

CQueryParm object through to it and passing the result back out. The simple code for

GetUpdatableRS is given in Listing 8.10.

Example 8.10. The GetUpdatableRS Method on

CDataManager

Public Function GetUpdatableRS(QueryParms As CQueryParms) As

ADODB.Recordset

 On Error GoTo ErrorTrap

 Set GetUpdatableRS = GetData(QueryParms)

 Exit Function

ErrorTrap:

 Call RaiseError(Err.Number, _

 "CDataManager:GetUpdatableRS Method", _

 Err.Description)

End Function

The final data access method of the CDataManager class is the ExecuteSQL method

that is used by each of the other four CRUD components. This method is also

exposed to the outside world for use directly by the business layer if something

beyond normal CRUD processing must be accomplished. As stated several times in

this chapter already, an example might include the one-shot execution of a stored

procedure. As discussed in Chapter 13, "Interoperability," these types of needs

arise when integrating to legacy systems that do not follow the framework outlined

here. The code for the ExecuteSQL method is shown in Listing 8.11.

Example 8.11. The ExecuteSQL Method on

CDataManager

Public Function ExecuteSQL(SQL As String, _

 Optional CursorMode As CursorTypeEnum, _

 Optional LockMode As LockTypeEnum) As

ADODB.Recordset

 Dim rs As New ADODB.Recordset

 If IsMissing(CursorMode) Then

 CursorMode = adOpenKeyset

 End If

 If IsMissing(LockMode) Then

 LockMode = adLockOptimistic

 End If

 rs.Open SQL, cnn, CursorMode, LockMode, adCmdText

 Set ExecuteSQL = rs

End Function

The ExecuteSQL method can accept simply an SQL statement as an argument, or it

can be more finely controlled through the use of two optional parameters to control

the cursor and lock types used by the query. Although the default values are

acceptable for most situations, there might be times when these values need to be

adjusted for performance or concurrency reasons.

With all the effort that has gone into creating the CDataManager class, you might

dread having to manually create the collection class associated with this

CDataManager class. Even though the Visual Modeler was not used to create the

CDataManager class, it can still be used to generate a collection class. To do this, the

DataManager component must be reverse engineered. Follow these steps to do so:

1. First, click the DataManager component in Visual Basic's Project Explorer

window.

2. Next, select the Add-Ins menu, Visual Modeler, Reverse Engineering Wizard.

3. In the Selection of a Model dialog box that appears, click the New button.

This will start the Visual Modeler and launch the Reverse Engineering Wizard

dialog.

4. Click the Next button to arrive at the Selection of Project Items step, as

shown in Figure 8.5.

Figure 8.5. The Reverse Engineering Wizard,

Selection of Project Items step in the Visual

Modeler.

5. Leaving the default items selected, click the Next button to arrive at the

Assignment of Project Items step. Drag each project item onto the Data

Services logical package to make the appropriate layer assignment.

6. Click once again on the Next button to bring up a summary of the activities

that the Visual Modeler is about to perform, along with an estimated time to

complete.

7. Click the Finish button to start the reverse engineering process. Upon

completion, a summary step appears. When you close the wizard, the newly

reverse-engineered classes appear under the Data Services folder of the tree

view on the left side of the Visual Modeler screen.

8. Right-click the CDataManager class, and then select the Generate Code

menu item to launch the Code Generation Wizard discussed in Chapter 7,

"The ClassManager Library."

9. On the Class Options step of the Preview step, give the collection class the

name CDataManagers. The only other changes in this preview process are to

deselect any of the Generate Variable options in the wizard to prevent

regeneration of existing properties.

10. When generation is complete, be sure to move all the members in the Delete

These Members list to the Keep These Members List during the Delete

Members in Class step of the wizard.

Although this might seem a bit cumbersome, it is much faster to generate collection

classes in this manner when you are familiar with the Visual Modeler.

Summary

In this chapter, we built the data-layer component DataManager that implements

the business layer's interface into the RDBMS. This component also provides the

SQL composition necessary to enable row creation, retrieval, update and deletion

using metadata from the ClassManager component.

The next chapter introduces and implements the multipart business object

paradigm. It uses both the DataManager and ClassManager components as its

foundation, and also incorporates the distribution topics covered in Chapter 5,

"Distribution Considerations." The next chapter also implements the first

component that is run under the control of Microsoft Transaction Server.

Chapter 9. A Two-Part, Distributed Business

Object

We have spent a significant amount of time getting ready for this chapter. The

multi-part business object defined here represents impurity at its finest, not only in

how we define our business layer, but also in how we make it work across the client

and application tiers of the system. Before we delve into the subject matter, be

prepared to become slightly upset when we split our "pure" business object into two

"impure" components. Also be prepared for further distress when we remove many

of the business-specific methods on our classes and move them onto an application-

specific surrogate class. Our reasoning for breaking with traditional object-oriented

design theory has to do with our goal of maximum reuse and performance in a

distributed object world. Hopefully, we will make our decision factors clear as we

work our way through this chapter.

Design Theory

If we analyze the drawbacks of a pure layer-to-tier mapping, the most obvious issue

is that of round trip calls that must be made between the user layer that receives the

user input and the business layer that validates the input. Well-designed

applications should be capable of providing validation to the user as soon as possible.

If the entire business layer resides on a middle tier, then even simple property

validation becomes programmatically tedious. To accomplish this, the client must

move one or more of the object properties into the chosen transport structure,

make a validation request with this information over the DCOM boundary, wait for a

response, and handle the results accordingly. This technique represents a

significant amount of effort and bandwidth to find out that the user entered an

invalid date of "June 31, 1999." This is even more frustrating if the client is sitting in

Singapore and the server is sitting in Texas over a WAN connection. Thus, it would

be advantageous to move some of this simple functionality to the client tier without

having to move the entire business layer with it.

Thus, we base our design goals for a multi-part business object upon our desire to

have as much business functionality in a centrally controlled location as possible.

These design goals include the following:

• Provide fast response time to user validation over a potentially slow network

connection.

• Make our business layer functionality available to the widest range of

consumers, whether they connect by a Visual Basic (VB) client or an Active

Server Pages (ASP)-driven Web interface.

• Give the capability to add support for new business objects in as

straightforward a manner as possible.

• Build our client as thin as possible without sacrificing an efficient interface in

the process.

How do we make such a split in the business object? The most obvious solution is to

move the property level validation over to the client tier while leaving the core

business logic and data layer interfaces on the application tier. In fact, this is exactly

what this framework does. Although this approach does not necessarily represent a

new concept, we take it a bit further with our architecture. If we simply make the

split and nothing more, we create two halves of a business object—one that lives on

the application tier and one that lives on the client tier. This approach can lead to

some duplication of similar functionality across the two halves of the business object.

To avoid such duplication, we define our business class on the client tier and

implement basic property-level validation. On the application tier, we implement a

single business application class that can serve the CRUD (Create, Retrieve, Update,

and Delete) requirements of all business classes implemented on the client, in

essence creating a pseudo object-request broker. To do this, we use metadata

defined using our ClassManager component developed in the previous chapter. We

use this same application tier component as a surrogate to implement

application-level business logic. Thus, we have created a user-centric component

(the object that resides on the client) and a business-centric component (the

application-tier component).

From this point forward, we use a modified version of the Northwind database that

ships with Visual Basic as the example for our architecture. Figure 9.1 shows the

object model for this database.

Figure 9.1. The Northwind object model.

The modifications we have made to the database include normalization and the

implementation of our database development standards to support our architecture.

We have created a ListItem object to provide a lookup mechanism for simple data

normalization purposes. We have also made objects out of the city, region, and

country entities. The reasons for doing this are for normalization and a desire to

preserve future flexibility. At some point in the future, we might want to extend our

application to track information specific to a city, region, or country. An example

might be a country's telephone dialing prefix. By having an object instead of a

simple text field that stores the country name, we can simply add the

DialingPrefix property to the definition for the country class.

We can define a business layer component called NWServer that runs on a

server-based tier. For congruence, let us call the client-side mate to this component

NWClient. Although we can implement NWServer directly with minimal issue, if we

were to implement a second and then third such application tier component for

other applications, we would see that there is a significant amount of similar

functionality between them. The major difference is just in the setup of the

ClassDefs collection used to store the metadata for our classes. This being the case,

we define an interface definition that we call IappServer, primarily to deliver the

CRUD functionality needed by our business objects. Through several specific

methods implemented on IappServer, we can generate the object state

information necessary to instantiate existing user-centric business objects defined

within NWClient (that is, from the application server to client). Going the other

direction (from the client to the application server), IAppServer can also create new

instances, receive state information necessary to update existing object instances,

and delete instances of business objects on behalf of NWClient. Figure 9.2 shows

the server side of this set of components.

Figure 9.2. The UML representation for IAppServer and

NWServer.

Implementation

Because we have already spent a lot of effort in building helper classes in previous

chapters, our server-side component of the business layer does not need any

additional direct helper classes of its own. We define the data-centric form of the

multi-part business object first in terms of an interface definition IAppServer. This

interface implements the majority of the functionality necessary to implement

CRUD processing using our ClassManager and DataManager libraries. By

subsequently implementing this interface on a class called CNWServer, we gain

access to that functionality.

COM purity would have us define an enumeration to identify our class types that we

are implementing on the server side. The real world tells us that binary compatibility

issues down the road will have us rolling the dice too many times with each series of

recompilations of the server, so we stick to using constants. Although we still force

a recompile whenever we add a new class type to our server, VB is not going to see

any changes in the enumeration that would otherwise break compatibility. Breaking

compatibility across the DCOM boundary forces us to redeploy server- and

client-side components. Another benefit of the constant approach is that it enables

us to build the IAppServer component for use by many applications, where an

enumeration would force us to have to reimplement the CRUD functionality in a

cut-and-paste fashion.

An MTS Primer

Before going into the details of our IAppServer and CNWServer classes, we must

spend a few paragraphs talking about Microsoft Transaction Server (MTS) and the

features we are interested in for our framework. Although we can easily drop any

ActiveX DLL into MTS, we cannot take advantage of its transactional features and

object pooling mechanisms unless we program specifically for them.

The ObjectControl Interface

Implementation of the ObjectControl interface allows our MTS-hosted object to

perform the necessary initialization and cleanup activities as it is activated and

deactivated. To do this, we simply implement the Activate and Deactivate

methods of this interface. The interface also defines a method called CanBePooled,

which should simply return False. Microsoft put this last method in without

implementing anything in MTS that actually uses it. For future compatibility safety,

leave it set to False. The following code shows the use of the simple

implementation of these methods:

Private Sub ObjectControl_Activate()

 Set ObjCtx = GetObjectContext

End Sub

Private Function ObjectControl_CanBePooled() As Boolean

 ObjectControl_CanBePooled = False

End Function

Private Sub ObjectControl_Deactivate()

 Set ObjCtx = Nothing

End Sub

The Activate and Deactivate methods can be viewed similarly to the

Class_Initialize and Class_Terminate events in non-MTS objects. These

methods are called as objects are activated and deactivated. Although we will not be

maintaining state in our MTS objects, the Activate event would be the mechanism

used to reestablish state. Similarly, the Deactivate event can be used to restore

the object back to the state in which you found it.

The ObjectContext Class

The ObjectContext class is defined in the Microsoft Transaction Server Type Library

(mtxas.dll). As the name implies, the ObjectContext is an object that accesses

the current object's context. Context, in this case, provides information about the

current object's execution environment within MTS. This includes information about

our parent and, if used, the transaction in which we are running. A transaction is a

grouping mechanism that allows a single object or disparate set of objects to

interact with a database in a manner such that all interactions must complete

successfully or every interaction is rolled back.

Examples of transactional processing include a series of database insertions that

must all complete successfully for the entire set to be valid. For example, suppose

we are inserting information for a customer and its associated billing address using

a CCustomer class and a CAddress class. Let us also assume that an address must

be present for the customer to be valid. Suppose the CCustomer object inserts its

state into the database without issue. Next, the CAddress object attempts to insert

itself into the database, but it fails. The CAddress object has no mechanism to know

what dependent inserts have happened before it to signal to them that there was a

problem. However, by grouping all such interactions within the context of a

transaction, any downstream failure will signal to MTS to roll back all interactions

within the same transaction that have happened up to the point of failure.

To create an instance of an ObjectContext class, an MTS object must call the

GetObjectContext function that is also defined in the MTS Type Library. By

performing the GetObjectContext function, we are requesting MTS to either create

a transaction on our behalf or enlist us into the existing transaction of our parent

object. In either case, MTS starts monitoring our interactions with the database.

Within Visual Basic, we can set our transaction mode for a class within the class

properties page. The specific property is MTSTransactionMode, which can take on

values of NotAnMTSObject, NoTransactions, RequiresTransactions,

UsesTransactions, and RequiresNewTransactions. Table 9.1 provides the uses

of these property settings.

Table 9.1. The Property Settings for MTSTransactionMode

Property Setting Description

NotAnMTSObject The class does not support Transaction Server. No

object context is created for this class.
NoTransactions The class does not support transactions and does not

run within the scope of a transaction. An object context

is created but no transaction is created.
RequiresTransactions The class requires transactions. When an object is

created, it inherits the transaction of its parent. If no

parent transaction exists then one is created.
UsesTransactions The class can use transactions. When an object is

created, it inherits the transaction of its parent. If no

parent transaction exists, one is not created.
RequiresNewTransactions The class must use its own transaction. When an object

is created, a new transaction is created.

If we want to create any further MTS objects from within our existing MTS object

that can access our transaction, we must use the CreateInstance method of the

ObjectContext class to do so.

For an object to force a rollback of the transaction, the SetAbort method of

ObjectContext must be called. This tells MTS to start the rollback process. This

method call also has the caveat that the object that calls the SetAbort method is

immediately deactivated. Likewise, ObjectContext contains a SetComplete

method that signals to MTS that the object has completed successfully. Again, a call

to this method immediately deactivates the object.

Database Connection Pooling

MTS is capable of sharing a database connection across multiple objects, even if

those connections are not created directly from MTS objects. The reason for this

latter statement is that MTS is not performing the work necessary to enable pooling.

Instead, the OLE DB provider or the ODBC resource dispenser takes ownership of

this task. In either case, this pooling is based simply on the connection string. If a

connection with a given connection string has been used before, and that database

connection is inactive, then the existing connection is used. If the database

connection is either in use or non-existent then a new connection is created.

For ODBC version 3.x, pooling is controlled at the database driver level through a

CPTimeout registry setting. Values greater than zero tell the ODBC driver to keep

the driver in the connection pool for the specified number of seconds.

IAppServer/CNWServer

We will build out our application side classes, IAppServer and CNWServer, in a

parallel fashion. In some cases, we will implement methods on IAppServer and

provide hooks into it by simply calling into an IAppServer object instantiated on

CNWServer. In other cases, the methods on IAppServer are simply abstract in

nature and will require full implementation by our CNWServer class with no calls into
IAppServer.

Getting Started

To start our development of our IAppServer and CNWServer classes, we must first

create two new ActiveX DLL projects within Visual Basic. The first project will be

called AppServer, and the second will be called NWServer. We define our

IAppServer class within our AppServer project. Likewise, we define in our

NWServer the CNWServer class that implements IAppServer. Both the IAppServer

and NWServer components will be hosted in MTS, so our normal programming

model for interface implementation will change somewhat as we go through our

development. To start with, for our CNWServer object to create a reference to an

IAppServer object, it must use a CreateObject statement, and it must do so within

the Activate event of the ObjectControl rather than the Class_Initialize event.

The following code shows this new initialization mechanism:

Private Sub ObjectControl_Activate()

 Set ObjCtx = GetObjectContext

 Set mIAppServer = ObjCtx.CreateInstance("AppServer.IAppServer")

End Sub

Private Function ObjectControl_CanBePooled() As Boolean

 ObjectControl_CanBePooled = False

End Function

Private Sub ObjectControl_Deactivate()

 Set mIAppServer = Nothing

 Set ObjCtx = Nothing

End Sub

Note that we are using the CreateInstance method of the ObjectContext object to

create our IAppServer object. This is because we want to enlist IAppServer in our

transaction.

Our next step is to define the set of classes supported by the CNWServer component.

We first do this by adding a basic code module with class-type constants to our

NWServer project. These constants will be used as indexes into our class definitions.

They also will form the common language with the CNWClient class. If we are using

SourceSafe, we can share this file between both the client and application tiers;

otherwise, we must create matching copies of the file. The following listing shows

the constant definitions for the Northwind application:

Public Const CT_CATEGORY As Integer = 1

Public Const CT_CITY As Integer = 2

Public Const CT_COUNTRY As Integer = 3

Public Const CT_CUSTOMER As Integer = 4

Public Const CT_EMPLOYEE As Integer = 5

Public Const CT_LIST_ITEM As Integer = 6

Public Const CT_ORDER As Integer = 7

Public Const CT_ORDER_DETAIL As Integer = 8

Public Const CT_PRODUCT As Integer = 9

Public Const CT_REGION As Integer = 10

Public Const CT_SHIPPER As Integer = 11

Public Const CT_SUPPLIER As Integer = 12

To create the class definitions, we must define an abstract method InitServer on

IAppServer and provide its implementation on CNWServer. This method is

responsible for defining and connecting to each CDataManager object required by

NWServer (one DataManager object is required for each database). This method will

be called before any external activity to ensure that the object context is valid and

the databases are defined and connected. Listing 9.1 shows the implementation of

the InitServer method for our NWServer class.

Example 9.1. The InitServer Method Implemented on

CNWServer

Private Function IAppServer_InitServer() As Boolean

 Dim DataManager As CDataManager

 Dim ClassDef As CClassDef

 Dim ConnectString As String

 On Error GoTo NoInit

 If ObjCtx Is Nothing Then

 Set ObjCtx = GetObjectContext

 Set mIAppServer = ObjCtx.CreateInstance("AppServer.IAppServer")

 End If

 If mIAppServer.DataManagers.Count = 0 Then

 Set DataManager = New CDataManager

 ConnectString = GetSetting("Northwind", "Databases", "NWIND", "")

 If ConnectString = "" Then GoTo NoInit

 If Not DataManager.DoConnect(ConnectString) Then GoTo NoInit

 Call mIAppServer.DataManagers.Add(DataManager, "NWIND")

 End If

Init:

 IAppServer_InitServer = True

 Exit Function

NoInit:

 IAppServer_InitServer = False

 '1. Details to EventLog

 Call WriteNTLogEvent("NWServer:InitServer", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "NWServer:InitServer", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Function

Although the code in Listing 9.1 looks relatively simple, there are several very

important elements to it. First, notice the If ObjCtx Is Nothing Then statement.

We must perform this check here because the ObjCtx might be invalid at this point.

As we will see later in this chapter, some of the methods on IAppServer and

CNWServer call other internal methods to perform database updates or inserts.

When those methods complete, the SetComplete method must be called to indicate

to MTS that the transaction can be committed. Calling SetComplete invalidates our

object context, so we must reestablish it here.

Also notice that if we enter into the error-handling region of the code at the bottom,

we call the SetAbort method of the object context. The reason for this call is so we

can signal to MTS that something went awry and we cannot participate in the

transaction. We call it last because it immediately passes control to the Deactivate

method on the object control, and our error-handling activities would not complete

otherwise.

Also notice that we are retrieving the connection strings for the database from the

registry. These connection strings correspond to the ADO ConnectString property

on the Connection object. At this point, we have created a DSN to the NWND2.MDB

database; therefore, the ConnectString parameter is set to "Provider=MSDASQL;

DSN=NORTHWIND". For a DSN-less version, we can have a connection string that

looks something like

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=F: \NWServer\Nwind2.mdb"

The second abstract method to implement is GetClassDef. The GetClassDef

method is responsible for defining the CClassDef object for each class type

implemented by the system. Rather than defining all class types at the initialization

of the object, we build them in a Just-In-Time (JIT) fashion, as we need them. We

implement this method as a simple case statement switched on the class type

constant. If we have not defined the requested class type yet, we build and save it.

Subsequent requests within the same object activation session are then much faster.

This technique enables us to balance between fast initialization and fast response

time. The code for the GetClassDef method for NWAppServer appears in Listing 9.2.

Example 9.2. The GetClassDef Method Implemented

on CNWServer

Private Function IAppServer_GetClassDef(ByVal ClassId As Integer) As

CClassDef

Dim ClassDef As CClassDef

 Call IAppServer_InitServer

 If Not mIAppServer.ClassDefs.Exists(CStr(ClassId)) Then

 Select Case ClassId

 Case CT_CATEGORY

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_Category"

 .WriteLocation = "Table_Category"

 .IdColumnName = "Id"

 .OrderByColumnName = "Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "Name", "Name", True, True, "NAME"

 .AppendMapping "Description", "Description", True, True, _

 "DESCRIPTION"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_CATEGORY))

 Case CT_CITY

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_City"

 .WriteLocation = "Table_City"

 .IdColumnName = "Id"

 .ParentIdColumnName = "Region_Id"

 .OrderByColumnName = "Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "RegionId", "Region_Id", True, True, "REGION_ID"

 .AppendMapping "Name", "Name", True, True, "NAME"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_CITY))

 Case CT_COUNTRY

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_Country"

 .WriteLocation = "Table_Country"

 .IdColumnName = "Id"

 .OrderByColumnName = "Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "Name", "Name", True, True, "NAME"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_COUNTRY))

 Case CT_CUSTOMER

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Customer"

 .WriteLocation = "Table_Customer"

 .IdColumnName = "Id"

 .OrderByColumnName = "Company_Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "CustomerCode", "Customer_Code", True, True, _

 "CUSTOMER_CODE"

 .AppendMapping "CompanyName", "Company_Name", True, True, _

 "COMPANY_NAME"

 .AppendMapping "ContactName", "Contact_Name", True, True, _

 "CONTACT_NAME"

 .AppendMapping "ContactTitleId", "Contact_Title_Id", True, True,

_

 "CONTACT_TITLE_ID"

 .AppendMapping "ContactTitle", "Contact_Title", True, False, _

 "CONTACT_TITLE"

 .AppendMapping "Address", "Address", True, True, "ADDRESS"

 .AppendMapping "PostalCode", "Postal_Code", True, True,

"POSTAL_CODE"

 .AppendMapping "CountryId", "Country_Id", True, False,

"COUNTRY_ID"

 .AppendMapping "Country", "Country", True, False, "COUNTRY"

 .AppendMapping "RegionId", "Region_Id", True, False,

"REGION_ID"

 .AppendMapping "Region", "Region", True, False, "REGION"

 .AppendMapping "CityId", "City_Id", True, True, "CITY_ID"

 .AppendMapping "City", "City", True, False, "CITY"

 .AppendMapping "Phone", "Phone", True, True, "PHONE"

 .AppendMapping "Fax", "Fax", True, True, "FAX"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_CUSTOMER))

 Case CT_EMPLOYEE

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Employee"

 .WriteLocation = "Table_Employee"

 .IdColumnName = "Id"

 .OrderByColumnName = "Last_Name, First_Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "LastName", "Last_Name", True, True, "LAST_NAME"

 .AppendMapping "FirstName", "First_Name", True, True,

"FIRST_NAME"

 .AppendMapping "TitleId", "Title_Id", True, True, "TITLE_ID"

 .AppendMapping "Title", "Title", True, False, "TITLE"

 .AppendMapping "TitleOfCourtesyId", "Title_Of_Courtesy_Id", _

 True, True, "TITLE_OF_COURTESY_ID"

 .AppendMapping "TitleOfCourtesy", "Title_Of_Courtesy", _

 True, False, "TITLE_OF_COURTESY"

 .AppendMapping "BirthDate", "Birth_Date", True, True,

"BIRTH_DATE"

 .AppendMapping "HireDate", "Hire_Date", True, True, "HIRE_DATE"

 .AppendMapping "Address", "Address", True, True, "ADDRESS"

 .AppendMapping "PostalCode", "Postal_Code", True, True,

"POSTAL_CODE"

 .AppendMapping "HomePhone", "Home_Phone", True, True,

"HOME_PHONE"

 .AppendMapping "Extension", "Extension", True, True,

"EXTENSION"

 .AppendMapping "Notes", "Notes", True, True, "NOTES"

 .AppendMapping "ReportsToId", "Reports_To_Id", _

 True, True, "REPORTS_TO_ID"

 .AppendMapping "ReportsToLastName", "Reports_To_Last_Name", _

 True, False, "REPORTS_TO_LAST_NAME"

 .AppendMapping "ReportsToFirstName", "Reports_To_First_Name",

_

 True, False, "REPORTS_TO_FIRST_NAME"

 .AppendMapping "CountryId", "Country_Id", True, False,

"COUNTRY_ID"

 .AppendMapping "Country", "Country", True, False, "COUNTRY"

 .AppendMapping "RegionId", "Region_Id", True, False,

"REGION_ID"

 .AppendMapping "Region", "Region", True, False, "REGION"

 .AppendMapping "CityId", "City_Id", True, True, "CITY_ID"

 .AppendMapping "City", "City", True, False, "CITY"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_EMPLOYEE))

 Case CT_LIST_ITEM

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_List"

 .WriteLocation = "Table_List"

 .IdColumnName = "Id"

 .ParentIdColumnName = "List_Id"

 .OrderByColumnName = "Sort"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "ListId", "List_Id", True, True, "LIST_ID"

 .AppendMapping "Item", "Item", True, True, "ITEM"

 .AppendMapping "Sort", "Sort", True, True, "SORT"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_LIST_ITEM))

 Case CT_ORDER

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Order"

 .WriteLocation = "Table_Order"

 .IdColumnName = "Id"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "CustomerId", "Customer_Id", True, True,

"CUSTOMER_ID"

 .AppendMapping "CustomerName", "Customer_Name", _

 True, False, "CUSTOMER"

 .AppendMapping "EmployeeId", "Employee_Id", True, True,

"EMPLOYEE_ID"

 .AppendMapping "EmployeeLastName", "Employee_Last_Name", _

 True, False, "EMPLOYEE_LAST_NAME"

 .AppendMapping "EmployeeFirstName", "Employee_First_Name", _

 True, False, "EMPLOYEE_FIRST_NAME"

 .AppendMapping "OrderDate", "Order_Date", True, True,

"ORDER_DATE"

 .AppendMapping "RequiredDate", "Required_Date", _

 True, True, "REQUIRED_DATE"

 .AppendMapping "ShippedDate", "Shipped_Date", _

 True, True, "SHIPPED_DATE"

 .AppendMapping "ShipperId", "Shipper_Id", True, True,

"SHIPPER_ID"

 .AppendMapping "ShipperName", "Shipper_Name", _

 True, False, "SHIPPER_NAME"

 .AppendMapping "FreightCost", "Freight_Cost", _

 True, True, "FREIGHT_COST"

 .AppendMapping "ShipToName", "Ship_To_Name", _

 True, True, "SHIP_TO_NAME"

 .AppendMapping "ShipToAddress", "Ship_To_Address", _

 True, True, "SHIP_TO_ADDRESS"

 .AppendMapping "ShipToPostalCode", "Ship_To_Postal_Code", _

 True, True, "SHIP_TO_POSTAL_CODE"

 .AppendMapping "ShipToCountryId", "Ship_To_Country_Id", _

 True, False, "SHIP_TO_COUNTRY_ID"

 .AppendMapping "ShipToCountry", "Ship_To_Country", _

 True, False, "SHIP_TO_COUNTRY"

 .AppendMapping "ShipToRegionId", "Ship_To_Region_Id", _

 True, False, "SHIP_TO_REGION_ID"

 .AppendMapping "ShipToRegion", "Ship_To_Region", _

 True, False, "SHIP_TO_REGION"

 .AppendMapping "ShipToCityId", "Ship_To_City_Id", _

 True, True, "SHIP_TO_CITY_ID"

 .AppendMapping "ShipToCity", "Ship_To_City", _

 True, False, "SHIP_TO_CITY"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_ORDER))

 Case CT_ORDER_DETAIL

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Order_Detail"

 .WriteLocation = "Table_Order_Detail"

 .IdColumnName = "Id"

 .ParentIdColumnName = "Order_Id"

 .OrderByColumnName = "Id"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "OrderId", "Order_Id", True, True, "ORDER_ID"

 .AppendMapping "ProductId", "Product_Id", True, True,

"PRODUCT_ID"

 .AppendMapping "Product", "Product", True, False, "PRODUCT"

 .AppendMapping "Supplier", "Supplier", True, False, "SUPPLIER"

 .AppendMapping "UnitPrice", "Unit_Price", True, True,

"UNIT_PRICE"

 .AppendMapping "Discount", "Discount", True, True, "DISCOUNT"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_ORDER_DETAIL))

 Case CT_PRODUCT

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Product"

 .WriteLocation = "Table_Product"

 .IdColumnName = "Id"

 .OrderByColumnName = "Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "Name", "Name", True, True, "NAME"

 .AppendMapping "SupplierId", "Supplier_Id", _

 True, True, "SUPPLIER_ID"

 .AppendMapping "Supplier", "Supplier", True, False, "SUPPLIER"

 .AppendMapping "CategoryId", "Category_Id", _

 True, True, "CATEGORY_ID"

 .AppendMapping "Category", "Category", True, False, "CATEGORY"

 .AppendMapping "QuantityPerUnit", "Quantity_Per_Unit", _

 True, True, "QUANTITY_PER_UNIT"

 .AppendMapping "UnitPrice", "Unit_Price", _

 True, True, "UNIT_PRICE"

 .AppendMapping "UnitsInStock", "Units_In_Stock", _

 True, True, "UNITS_IN_STOCK"

 .AppendMapping "UnitsOnOrder", "Units_On_Order", _

 True, True, "UNITS_ON_ORDER"

 .AppendMapping "ReorderLevel", "Reorder_Level", _

 True, True, "REORDER_LEVEL"

 .AppendMapping "IsDiscontinued", "Is_Discontinued", _

 True, True, "IS_DISCONTINUED"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_PRODUCT))

 Case CT_REGION

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_Region"

 .WriteLocation = "Table_Region"

 .IdColumnName = "Id"

 .ParentIdColumnName = "Country_Id"

 .OrderByColumnName = "Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "CountryId", "Country_Id", True, True,

"COUNTRY_ID"

 .AppendMapping "Name", "Name", True, True, "NAME"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_REGION))

 Case CT_SHIPPER

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_Shipper"

 .WriteLocation = "Table_Shipper"

 .IdColumnName = "Id"

 .OrderByColumnName = "Company_Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "CompanyName", "Company_Name", _

 True, True, "COMPANY_NAME"

 .AppendMapping "Phone", "Phone", True, True, "PHONE"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_SHIPPER))

 Case CT_SUPPLIER

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Supplier"

 .WriteLocation = "Table_Supplier"

 .IdColumnName = "Id"

 .OrderByColumnName = "Company_Name"

 .AppendMapping "Id", "Id", True, False, "ID"

 .AppendMapping "CompanyName", "Company_Name", _

 True, True, "COMPANY_NAME"

 .AppendMapping "ContactName", "Contact_Name", _

 True, True, "CONTACT_NAME"

 .AppendMapping "ContactTitleId", "Contact_Title_Id", _

 True, True, "CONTACT_TITLE_ID"

 .AppendMapping "ContactTitle", "Contact_Title", _

 True, False, "CONTACT_TITLE"

 .AppendMapping "Address", "Address", True, True, "ADDRESS"

 .AppendMapping "CountryId", "Country_Id", True, False,

"COUNTRY_ID"

 .AppendMapping "Country", "Country", True, False, "COUNTRY"

 .AppendMapping "RegionId", "Region_Id", True, False,

"REGION_ID"

 .AppendMapping "Region", "Region", True, False, "REGION"

 .AppendMapping "CityId", "City_Id", True, True, "CITY_ID"

 .AppendMapping "City", "City", True, False, "CITY"

 .AppendMapping "PostalCode", "Postal_Code", _

 True, True, "POSTAL_CODE"

 .AppendMapping "Phone", "Phone", True, True, "PHONE"

 .AppendMapping "Fax", "Fax", True, True, "FAX"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_SUPPLIER))

 End Select

 End If

 Set IAppServer_GetClassDef =

mIAppServer.ClassDefs.Item(CStr(ClassId))

End Function

Although this appears to be a significant amount of code for one method, it

represents the core of the application framework. Let us look at one of the class

types, say CT_SUPPLIER. We start by creating a new CClassDef object and setting

its DatabaseName, ReadLocation, and WriteLocation properties. We then

proceed to state that its IdColumnName is simply Id and that we want to have our

OrderByColumnName as the Company_Name column. We then define our property and

column definitions using the AppendMapping method. If we look more closely at the

ContactTitleId and ContactTitle property definitions, we see that the CanWrite

property of the latter is False. This is because the ContactTitle is a field in the

database view (ReadLocation) but not in the table (WriteLocation). We have also

put XML tags into the AppendMapping call, which we will use in Chapter 13,

"Interoperability."

We define all our other methods as part of IAppServer. Components implementing

the IAppServer interface need only call into these methods to gain access to the

functionality. The first method that we define is GetPropertyNames, which returns

an array of the property names for a given class type. This function is important for

both our NWClient and our ASP consumers because it is the basis for indexing into

variant data arrays. The code for GetPropertyNames appears in Listing 9.3.

Example 9.3. The GetPropertyNames Method on

IappServer

Public Function GetPropertyNames(ByVal ClassId As Integer) As Variant

 Dim pn As Variant

 Dim ClassDef As CClassDef

 Dim PropertyDef As CPropertyDef

 Dim i As Integer

 On Error GoTo ErrorTrap

 Set ClassDef = ClassDefs.Item(ClassId)

 ReDim pn(1 To ClassDef.PropertyDefs.Count)

 i = 1

 For Each PropertyDef In ClassDef.PropertyDefs

 pn(i) = PropertyDef.Name

 i = i + 1

 Next

 GetPropertyNames = pn

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:GetPropertyNames", _

 Err.Number, Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:GetPropertyNames", _

 Err.Description & " [" & Erl & "]"

End Function

This method simply iterates through the PropertyDefs collection of the class type

defined for the requested class type. Remember that we have already defined this

information using the GetClassDef method of CNWServer. Our implementation of

this method on CNWServer is as follows:

Private Function IAppServer_GetPropertyNames(ByVal ClassId As Integer)

_

 As Variant

 Call IAppServer_GetClassDef(ClassId)

 IAppServer_GetPropertyNames = mIAppServer.GetPropertyNames(ClassId)

End Function

We now turn our attention to hooking into our CRUD processing routines, which we

so cleverly built into our CDataManager library. We start with data retrieval by

defining two public methods, GetObjectData and GetObjectListData. The

GetObjectData method requires that we pass in a class type, an ObjectId, and an

ObjectSubId. It returns a list of property names and the actual object data. We

declare these two return parameters as variants because of the need to support ASP,

whose underlying VBScript engine supports only this data type. GetObjectData

proceeds to build a CQueryParms object, moving the associated ReadLocation

property of the CClassDef object into the TableName property of the CQueryParms

object. Similarly, we iterate through the ColumnDefs collection of the CClassDef

object to build the ColumnList property of the CQueryParm object.

Next, the WhereList is built using the ObjectId and ObjectSubId values passed in,

combined with the IdColumnName and SubIdColumnName fields of the CClassDef

object. After the CQueryParm object is complete, we call the GetData method of a

CDataManager object to retrieve the data from the database. If data is returned,

then the fields collection of the resultset is iterated with a call to the

ColumnToPropertyDef method of the class definition to generate the

PropertyNames array that are sent back. Finally, we make a call to the GetRows

method of the recordset to generate the Data return parameter. The code for the

GetData method is provided in Listing 9.4.

Example 9.4. The GetObjectData Method on

IAppServer

Public Sub GetObjectData(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim ColumnDef As CColumnDef

 Dim QueryParms As New CQueryParms

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim vData As Variant

 Dim i As Integer

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.ReadLocation

 For Each ColumnDef In ClassDef.ColumnDefs

 If ColumnDef.CanRead Then

 QueryParms.ColumnList.Add ColumnDef.Name

 End If

 Next

 If ObjectId > 0 Then

 QueryParms.WhereList.Add (ClassDef.IdColumnName & "=" & _

 CStr(ObjectId))

 End If

 If ObjectSubId > 0 Then

 QueryParms.WhereList.Add (ClassDef.SubIdColumnName & "=" & _

 CStr(ObjectSubId))

 End If

 Set rs = DataManager.GetData(QueryParms)

 If Not rs Is Nothing Then

 ReDim PropertyNames(0 To QueryParms.ColumnList.Count - 1)

 i = 0

 For Each rsField In rs.Fields

 PropertyNames(i) =

ClassDef.ColumnToPropertyDef(rsField.Name).Name

 i = i + 1

 Next

 vData = rs.GetRows

 Else

 vData = vbEmpty

 End If

 Data = vData

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:GetObjectData", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:GetObjectData", _

 Err.Description & " [" & Erl & "]"

End Sub

As you can see, the overall method is straightforward because we are relying

heavily on our DataManager component to perform the bulk of the data access for us.

From our CNWServer component, the implementation of this method looks like

Listing 9.5.

Example 9.5. The GetObjectData Method

Implemented on CNWServer

Private Sub IAppServer_GetObjectData(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.GetObjectData(ClassId, ObjectId, ObjectSubId, _

 PropertyNames, Data, Errors)

End Sub

In the previous method implementation, we first call the GetClassDef method to

make sure the class definitions for the requested class type have been generated.

Next, we simply call into our GetObjectData method on our IAppServer object

instance to complete the call.

If we need to retrieve a list of objects, as in a master-detail relationship, we define

a GetObjectListData method. Again, we pass in a class type and expect in return

PropertyNames and Data arrays. In this case, we also add ParentId and

ParentSubId parameters to the list. Again, we form a CQueryParms object, setting

its TableName and ColumnList properties as we did in the GetData case. However,

in the GetObjectListData case, we construct our Where clause using the

ParentIdColumnName in conjunction with the ParentId value, and the

ParentSubIdColumnName in conjunction with the ParentSubId value. We also copy

the OrderByColumnName property of our CClassDef object to our OrderList

property of our CQueryParms object. Finally, we call the GetData method on the

appropriate CDataManager object, generating the PropertyNames and Data arrays

as in the GetObjectData case. The code for the GetObjectListData method is

provided in Listing 9.6.

Example 9.6. The GetObjectListData Method on

IAppServer

Public Sub GetObjectListData(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim ColumnDef As CColumnDef

 Dim QueryParms As New CQueryParms

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim vData As Variant

 Dim vErrors As Variant

 Dim i As Integer

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.ReadLocation

 For Each ColumnDef In ClassDef.ColumnDefs

 If ColumnDef.CanRead Then

 QueryParms.ColumnList.Add ColumnDef.Name

 End If

 Next

 If ParentId > 0 Then

 QueryParms.WhereList.Add _

 (ClassDef.ParentIdColumnName & "=" & CStr(ParentId))

 End If

 If ParentSubId > 0 Then

 QueryParms.WhereList.Add _

 (ClassDef.ParentSubIdColumnName & "=" & CStr(ParentSubId))

 End If

 If ClassDef.OrderByColumnName <> "" Then

 QueryParms.OrderList.Add ClassDef.OrderByColumnName

 End If

 Set rs = DataManager.GetData(QueryParms)

 If Not rs Is Nothing Then

 ReDim PropertyNames(0 To QueryParms.ColumnList.Count - 1)

 i = 0

 For Each rsField In rs.Fields

 PropertyNames(i) =

ClassDef.ColumnToPropertyDef(rsField.Name).Name

 i = i + 1

 Next

 vData = rs.GetRows

 Else

 vData = vbEmpty

 End If

 Data = vData

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:GetObjectListData", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:GetObjectListData", _

 Err.Description & " [" & Erl & "]"

End Sub

Again, you should be able to see that this method is straightforward, with the

CDataManager object performing the bulk of the work. Again, our CNWServer

component hooks into this component in a straightforward fashion as shown in

Listing 9.7.

Example 9.7. The GetObjectListData Method

Implemented on CNWServer

Private Sub IAppServer_GetObjectListData(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 If Not bInitialized Then IAppServer_InitServer

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.GetObjectListData(ClassId, ParentId, ParentSubId, _

 PropertyNames, Data, Errors)

End Sub

Now that we can retrieve individual objects or lists of objects, we turn our attention

to the deletion of objects. To delete an object or list of objects from the system, we

define DeleteObject and DeleteObjectList methods on IAppServer. As you

might surmise, DeleteObject deletes a single object, whereas DeleteObjectList

deletes a list of objects based on a master-detail or parent-child relationship.

DeleteObject takes a ClassId parameter along with an ObjectId and

ObjectSubId. The class type is used to look up the CClassDef object so that we can

build the appropriate CQueryParms object. In this case, we use the WriteLocation

property of the CClassDef object to set the TableName property of the CQueryParms

object. We use the ObjectId and ObjectSubId in conjunction with the

IdColumnName and SubIdColumnName properties to form the WhereList object of

the CQueryParms object. We then pass this CQueryParms object off to the

DeleteData method of our CDataManager object, which performs the delete. The

code for DeleteObject follows in Listing 9.8.

Example 9.8. The DeleteObject Method on

IAppServer

Public Sub DeleteObject(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 Errors As Variant)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim QueryParms As New CQueryParms

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.WriteLocation

 If ObjectId > 0 Then

 QueryParms.WhereList.Add (ClassDef.IdColumnName & "=" & _

 CStr(ObjectId))

 End If

 If ObjectSubId > 0 Then

 QueryParms.WhereList.Add (ClassDef.SubIdColumnName & "=" & _

 CStr(ObjectSubId))

 End If

 QueryParms.WhereOperator = woAnd

 Call DataManager.DeleteData(QueryParms)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:DeleteObject", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:DeleteObject", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Sub

Note that we have introduced the use of the object context in this method with the

SetComplete and SetAbort calls. The reason for this is that we are altering the

state of the database with this call, so it should operate within a transaction. Our

previous methods have been simple retrievals that do not require transactional

processing.

Again, we implement this in CNWServer in a straightforward fashion as shown in

Listing 9.9.

Example 9.9. The DeleteObject Method Implemented

on CNWServer

Private Sub IAppServer_DeleteObject(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 Errors As Variant)

 On Error GoTo ErrorTrap

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.DeleteObject(ClassId, ObjectId, ObjectSubId, Errors)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 ObjCtx.SetAbort

End Sub

Notice that we have taken our wrapping approach a little further with this method,

with the implementation of the SetComplete and SetAbort methods as well. This is

because our transaction has been completed or aborted by our enlisted IAppServer

object, so we must follow suit as well. Although technically this is not required

because one abort is sufficient, it is good programming practice to follow as the

system becomes more complex.

If you handle your referential integrity on the RDBMS, then nothing else must be

done here. If, on the other hand, you want the business layer to manage this

functionality, you can modify this DeleteObject method to do just this using a Case

statement. Such a modification might look like the code shown in Listing 9.10.

Example 9.10. The Modified DeleteObject Method

Implemented on CNWServer

Private Sub IAppServer_DeleteObject(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 Errors As Variant)

 On Error GoTo ErrorTrap

 Call IAppServer_GetClassDef(ClassId)

 Select Case ClassId

 Case CT_CATEGORY

 Call IAppServer_GetClassDef(CT_PRODUCT)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_PRODUCT, "CategoryId", "") Then

 Call mIAppServer.DeleteObject(CT_CATEGORY, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case CT_CITY

 Call IAppServer_GetClassDef(CT_ORDER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_ORDER, "ShipToCityId", "") Then

 GoTo NoDelete

 End If

 Call IAppServer_GetClassDef(CT_CUSTOMER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_CUSTOMER, "CityId", "") Then

 GoTo NoDelete

 End If

 Call IAppServer_GetClassDef(CT_EMPLOYEE)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_EMPLOYEE, "CityId", "") Then

 GoTo NoDelete

 End If

 Call IAppServer_GetClassDef(CT_SUPPLIER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_SUPPLIER, "CityId", "") Then

 GoTo NoDelete

 End If

 Call IAppServer_GetClassDef(CT_REGION)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_REGION, "CityId", "") Then

 GoTo NoDelete

 End If

 Call mIAppServer.DeleteObject(CT_CITY, ObjectId, ObjectSubId,

Errors)

 Case CT_REGION

 Call IAppServer_GetClassDef(CT_CITY)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_CITY, "RegionId", "") Then

 Call mIAppServer.DeleteObjectListData(CT_REGION, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case CT_CUSTOMER

 Call IAppServer_GetClassDef(CT_ORDER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_ORDER, "CustomerId", "") Then

 Call mIAppServer.DeleteObject(CT_CUSTOMER, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case CT_EMPLOYEE

 Call IAppServer_GetClassDef(CT_ORDER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_ORDER, "EmployeeId", "") Then

 Call mIAppServer.DeleteObject(CT_EMPLOYEE, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case CT_ORDER

 Call IAppServer_GetClassDef(CT_ORDER_DETAIL)

 Call mIAppServer.DeleteObjectListData(CT_ORDER_DETAIL, ObjectId,

_

 ObjectSubId, Errors)

 Call mIAppServer.DeleteObject(ClassId, ObjectId, _

 ObjectSubId, Errors)

 Case CT_PRODUCT

 Call IAppServer_GetClassDef(CT_ORDER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_ORDER, "ProductId", "") Then

 Call mIAppServer.DeleteObject(CT_PRODUCT, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case CT_SHIPPER

 Call IAppServer_GetClassDef(CT_ORDER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_ORDER, "ShipperId", "") Then

 Call mIAppServer.DeleteObject(CT_ORDER, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case CT_SUPPLIER

 Call IAppServer_GetClassDef(CT_SUPPLIER)

 If Not mIAppServer.IsReferenced(ObjectId, ObjectSubId, _

 CT_PRODUCT, "SupplierId", "") Then

 Call mIAppServer.DeleteObject(CT_SUPPLIER, ObjectId, _

 ObjectSubId, Errors)

 End If

 Case Else

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.DeleteObject(ClassId, ObjectId, _

 ObjectSubId, Errors)

 End Select

 ObjCtx.SetComplete

 Exit Sub

NoDelete:

ErrorTrap:

 ObjCtx.SetAbort

End Sub

In this modified version of the DeleteObject method on CNWServer, we perform a

Select Case statement to determine what sort of action we should take given the

ClassId. In most cases, we simply want to ensure that the record we are about to

delete is not being referenced anywhere. For this purpose, we have defined an

IsReferenced method on our IAppServer. This approach moves all referential

integrity functionality to the business layer and away from the RDBMS. This has the

effect of enabling us to develop for multiple RDBMSes, but at the cost of lower

performance because the data must move from the RDBMS to the MTS component

for the verification to take place. If you do not need this added flexibility then

putting the referential integrity on the RDBMS might be easier to implement and

more performance beneficial. The code for the IsReferenced method appears in

Listing 9.11.

Example 9.11. The IsReferenced Method on

IAppServer

Public Function IsReferenced(ObjectId As Long, _

 ObjectSubId As Long, _

 TargetClassId As Integer, _

 TargetPropertyName As String, _

 TargetSubPropertyName As String) As Boolean

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim QueryParms As New CQueryParms

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(TargetClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.WriteLocation

 QueryParms.ColumnList.Add "Count(*)"

 If ObjectId > 0 And TargetPropertyName <> "" Then

 QueryParms.WhereList.Add _

 ClassDef.PropertyToColumnDef(TargetPropertyName).Name & "=" &

ObjectId

 End If

 If ObjectSubId > 0 And TargetSubPropertyName <> "" Then

 QueryParms.WhereList.Add _

 ClassDef.PropertyToColumnDef(TargetSubPropertyName).Name & _

 "=" & ObjectSubId

 End If

 Set rs = DataManager.GetData(QueryParms)

 If Not rs Is Nothing Then

 rs.MoveFirst

 IsReferenced = rs.Fields.Item(0).Value > 0

 Else

 IsReferenced = True ' better safe than sorry

 End If

 ObjCtx.SetComplete

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:IsReferenced", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:IsReferenced", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Function

We implement the IsReferenced method similar to our other CRUD methods in that

we build a CQueryParms object, populate our WhereList, and make a call to

GetData. However, the major difference here is that our ColumnList contains a

"count(*)" clause versus a standard column list. We retrieve this value to

determine whether any records exist that reference a given ObjectId and

ObjectSubId. Note that we have added the SetAbort and SetComplete calls on our

object context for the IsReferenced method. The reason for this is that if we have

an issue determining whether an object is referenced, we do not want a delete being

performed on the database.

Our DeleteObjectList method builds a CQueryParms object using the same

WriteLocation to TableName copy. For the WhereList, we use the

ParentIdColumnName and ParentSubIdColumnName properties of the CClassDef in

conjunction with the ParentId and ParentSubId values. Again, the DeleteData

method of CDataManager handles the dirty work. The code for DeleteObjectList

appears in Listing 9.12.

Example 9.12. The DeleteObjectList Method on

IAppServer

Public Sub DeleteObjectList(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 Errors As Variant)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim QueryParms As New CQueryParms

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.WriteLocation

 If ParentId > 0 Then

 QueryParms.WhereList.Add _

 (ClassDef.ParentIdColumnName & "=" & ParentId)

 End If

 If ParentSubId > 0 Then

 QueryParms.WhereList.Add _

 (ClassDef.ParentSubIdColumnName & "=" & ParentSubId)

 End If

 QueryParms.WhereOperator = woAnd

 Call DataManager.DeleteData(QueryParms)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:DeleteObjectList", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:DeleteObjectList", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Sub

On CNWServer, we call into DeleteObjectList in the following manner:

Private Sub IAppServer_DeleteObjectList(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 Errors As Variant)

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.DeleteObjectList(ClassId, ParentId, ParentSubId,

Errors)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 ObjCtx.SetAbort

End Sub

Again, we simply verify that we have defined the CClassDef object for the given

ClassId. We then call the DeleteObjectList method on our mIAppServer object.

NOTE

In our framework, to delete an object with contained objects or collections of

objects, we must call the DeleteObject and/or DeleteObjectList methods

explicitly for each of these contained items. We finish with a call to DeleteObject

for the parent object.

With retrievals and deletes out of the way, we turn our attention to inserts and

updates. As before, we have the capability to handle single objects or collections of

objects, the latter being for a master-detail or parent-child–style relationship. Our

InsertObjectData function looks similar in calling convention to our

GetObjectData method, except that now we are receiving a variant array of object

state information. The first step of the InsertObjectData function is to call the

GetInsertableRS method of the CDataManager object. We then use the

PropertyNames array to loop through the Data variant array, moving values into the

associated recordset fields. We use our PropertyDefToColumn mapping here to

assist us in this process. We also check to ensure that we do not overwrite fields

with the CanWrite property set to False. If we have validation functionality in place,

we would perform that checking here as well.

After all the data has been moved into the updateable recordset, we have a choice

on how we generate our primary key value. One option is to retrieve a value for the

primary key before the insert, while another is to allow the RDBMS to generate the

key. In the first case, we can create a method on our CDataManager object to do this,

or we can implement it on our IAppServer. This method can be called something

like GetNextKey with a parameter of ClassId or TableName. How it is implemented

will depend on how you choose to define your keys. In the case of the RDBMS

generating the key, an AutoNumber type column (in the case of Microsoft Access) or

an Identity type column (in the case of SQL Server) is used that will automatically

generate the next integer sequence. For our purposes, we will be allowing the

RDBMS to generate our keys, but you can change this to suit your needs.

The code for InsertObjectData appears in Listing 9.13.

Example 9.13. The InsertObjectData Method on

IAppServer

Public Sub InsertObjectData(ByVal ClassId As Integer, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant, _

 ObjectId As Long, _

 ObjectSubId As Long)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim l As Long

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim i As Integer

 Dim lRet As Long

 Dim pName as String

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 Set rs = DataManager.GetInsertableRS(ClassDef.WriteLocation)

 rs.AddNew

 For i = LBound(PropertyNames) To UBound(PropertyNames)

 pName = PropertyNames(i)

 With ClassDef

 If .ColumnDefs.Item(.PropertyToColumnDef(pName).Name).CanWrite

Then

 Set rsField = rs.Fields(.PropertyToColumnDef(pName).Name)

 If rsField.Type = adLongVarBinary Or rsField.Type = adLongVarChar

Then

 ' requires chunk operations

 Else

 If IsEmpty(Data(i, 0)) Then

 rsField.Value = vbEmpty

 Else

 rsField.Value = Data(i, 0)

 End If

 End If

 End If

 End If

 Next i

 rs.Update

 ' the following code only works for certain combinations of

 ' drivers and database engines (see MS KnowledgeBase)

 ' note that if there are triggers that fire and insert additional records

 ' with Identity/Autonumber columns, this number retrieved below

 ' will be wrong.

 If ClassDef.IdColumnName <> "" Then

 ObjectId = rs.Fields(ClassDef.IdColumnName)

 End If

 If ClassDef.SubIdColumnName <> "" Then

 ObjectSubId = rs.Fields(ClassDef.SubIdColumnName)

 End If

 ObjCtx.SetComplete

 Exit SubErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:InsertObjectData", _

 Err.Number, Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:InsertObjectData", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Sub

From our CNWServer class, the implementation of this method looks like Listing

9.14.

Example 9.14. The InsertObjectData Method

Implemented on CNWServer

Private Sub IAppServer_InsertObjectData(ByVal ClassId As Integer, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant, _

 ObjectId As Long, _

 ObjectSubId As Long)

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.InsertObjectData(ClassId, PropertyNames, Data,

Errors, _

 ObjectId, ObjectSubId)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 ObjCtx.SetAbort

End Sub

Likewise, we have our InsertObjectListData method to insert objects based on a

parent object (see Listing 9.15). Here, we pass in a PropertyNames array along with

the variant array of data elements. The Data array is two-dimensional because we

are inserting more than one object. The layout of this array mimics the layout

produced by the GetRows method of a recordset object. We also pass in our ClassId,

ParentId, and ParentSubId values. The first activity we perform is to delete the

previous list using the DeleteObjectList method. We then proceed to obtain a

recordset to work with using the GetInsertableRS method as before. We follow a

similar process to move the information from the variant array into the recordset,

performing validation if we have implemented such functionality. We call the

UpdateBatch method of the recordset object to commit the data to the database.

Because object lists are the child part of a parent-child relationship, we do not need

to know the ID values that the database is generating here.

Example 9.15. The InsertObjectListData Method on

IAppServer

Public Sub InsertObjectListData(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim i As Integer, j As Integer

 Dim pName As String

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 Call DeleteObjectList(ClassId, ParentId, ParentSubId, Errors)

 Set rs = DataManager.GetInsertableRS(ClassDef.WriteLocation)

 For i = LBound(Data, 2) To UBound(Data, 2)

 rs.AddNew

 For j = LBound(PropertyNames) To UBound(PropertyNames)

 pName = PropertyNames(j)

 With ClassDef

 If .ColumnDefs.Item(.PropertyToColumnDef(pName).Name).CanWrite

Then

 Set rsField = rs.Fields(.PropertyToColumnDef(pName).Name)

 If rsField.Type = adLongVarBinary Or _

 rsField.Type = adLongVarChar Then

 ' chunk operations required

 Else

 If IsEmpty(Data(j, i)) Then

 rsField.Value = vbEmpty

 Else

 rsField.Value = Data(j, i)

 End If

 End If

 End If

 End With

 Next j

 Next i

 Call rs.UpdateBatch

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:InsertObjectListData", Err.Number,

_

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:InsertObjectListData", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Sub

From our CNWServer class, the implementation of this method looks like Listing

9.16.

Example 9.16. The InsertObjectListData Method

Implemented on CNWServer

Private Sub IAppServer_InsertObjectListData(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant)

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.InsertObjectListData(ClassId, _

 ParentId, _

 ParentSubId, _

 PropertyNames, _

 Data, _

 Errors)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 ObjCtx.SetAbort

End Sub

Our last component of CRUD is that of update. Here, we only provide a mechanism

to update a single object. As in the insert case, this method calls the

GetUpdateableRS method of the appropriate CDataManager object. Again, we form

a CQueryParm object to help us make the appropriate call by first setting the

TableName property from the ReadLocation of the CClassDef object. We loop

through the ColumnDefs property of the CClassDef object, adding the columns,

whose CanWrite property is set to True, to the ColumnList property of the

CQueryParm object. We also add both the IdColumnName and SubIdColumnName to

the ColumnList to ensure that OLE DB has the necessary keys for the update that

is to follow. If we do not do this, OLE DB is not able to perform the update.

Remember that the Add method of our CStringList, which forms our ColumnList,

is designed to ignore duplicates, so we are safe in adding these two columns without

first checking to see if they have already been added.

After we have called our GetUpdateableRS method in our CDataManager object, we

can proceed to move data from the variant-array–based Data parameter into the

recordset, using our PropertyNames array and the PropertyToColumnDef method

of the CClassDef object. Again, if we are implementing server-side validation, we

perform the necessary validation in this process, raising any errors back in the

Errors array. The code for UpdateObjectData appears in Listing 9.17.

Example 9.17. The UpdateObjectData Method on

IAppServer

Public Sub UpdateObjectData(ByVal ClassId As Integer, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant, _

 ObjectId As Long, _

 ObjectSubId As Long)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim i As Integer

 Dim QueryParms As New CQueryParms

 Dim ColumnDef As CColumnDef

 Dim pName As String

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.WriteLocation

 For Each ColumnDef In ClassDef.ColumnDefs

 If ColumnDef.CanWrite Then

 QueryParms.ColumnList.Add ColumnDef.Name

 ElseIf ClassDef.IdColumnName = ColumnDef.Name Then

 QueryParms.ColumnList.Add ColumnDef.Name

 ElseIf ClassDef.SubIdColumnName = ColumnDef.Name Then

 QueryParms.ColumnList.Add ColumnDef.Name

 End If

 Next

 If ObjectId > 0 Then

 QueryParms.WhereList.Add (ClassDef.IdColumnName & "=" & _

 CStr(ObjectId))

 End If

 If ObjectSubId > 0 Then

 QueryParms.WhereList.Add (ClassDef.SubIdColumnName & "=" & _

 CStr(ObjectSubId))

 End If

 Set rs = DataManager.GetUpdatableRS(QueryParms)

 For i = LBound(PropertyNames) To UBound(PropertyNames)

 pName = PropertyNames(i)

 With ClassDef

 If .ColumnDefs.Item(.PropertyToColumnDef(pName).CanWrite Then

 Set rsField = rs.Fields(.PropertyToColumnDef(pName))

 If rsField.Type = adLongVarBinary Or rsField.Type = adLongVarChar

Then

 ' requires chunk operations

 Else

 If IsEmpty(Data(i, 0)) Then

 rsField.Value = vbEmpty

 Else

 rsField.Value = Data(i, 0)

 End If

 End If

 End If

 End With

 Next i

 rs.Update

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:UpdateObjectData", _

 Err.Number, Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:UpdateObjectData", _

 Err.Description & " [" & Erl & "]"

 ObjCtx.SetAbort

End Sub

From our CNWServer class, the implementation of this method looks like Listing

9.18.

Example 9.18. The UpdateObjectData Method

Implemented on CNWServer

Private Sub IAppServer_UpdateObjectData(ByVal ClassId As Integer, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant, _

 ObjectId As Long, _

 ObjectSubId As Long)

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.UpdateObjectData(ClassId, _

 PropertyNames, _

 Data, _

 Errors, _

 ObjectId, _

 ObjectSubId)

 ObjCtx.SetComplete

 Exit Sub

ErrorTrap:

 ObjCtx.SetAbort

End Sub

Finally, we want to give our system the added flexibility of querying for individual

objects or lists of objects. This becomes important as we build our ASP-based

reporting engine in Chapter 11, "A Distributed Reporting Engine." To implement this,

we define a method QueryObjectListData, which looks similar to a standard

GetObjectListData call, except we have replaced the ParentId and ParentSubId

parameters with a Criteria array and a Sort array.

We implement our QueryObjectListData method by once again building a

CQueryParm object. We copy the ReadLocation of our CClassDef object over to our

TableName property name of the CQueryParm object. We then create our

ColumnList, as in our other cases. Next, we form the WhereList from our

Criteria array, which is an array of arrays. Each inner array contains three

elements: PropertyName, Operator, and Value. We then build our OrderByList

from the Sort array and call our CDataManager with the GetData method. We

perform our normal PropertyName array creation, as well as the GetRows call. The

code for QueryObjectListData appears in Listing 9.19.

Example 9.19. The QueryObjectListData Method on

IAppServer

Public Sub QueryObjectListData(ByVal ClassId As Integer, _

 ByVal Criteria As Variant, _

 ByVal Sort As Variant, _

 ByRef PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Dim ClassDef As CClassDef

 Dim DataManager As CDataManager

 Dim ColumnDef As CColumnDef

 Dim QueryParms As New CQueryParms

 Dim rs As ADODB.Recordset

 Dim rsField As ADODB.Field

 Dim vData As Variant

 Dim i As Integer

 Dim p As String

 On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 Set DataManager = mDataManagers.Item(ClassDef.DatabaseName)

 QueryParms.TableName = ClassDef.ReadLocation

 For Each ColumnDef In ClassDef.ColumnDefs

 If ColumnDef.CanRead Then

 QueryParms.ColumnList.Add ColumnDef.Name

 End If

 Next

 If IsArray(Criteria) Then

 ' Criteria(i)(0) = PropertyName

 ' Criteria(i)(1) = Operator

 ' Criteria(i)(2) = Value

 For i = LBound(Criteria, 1) To UBound(Criteria, 1)

 p = Criteria(i)(0)

 If IsNumeric(Criteria(i)(2)) Then

 QueryParms.WhereList.Add ClassDef.PropertyToColumnDef(p).Name &

_

 Criteria(i)(1) & Criteria(i)(2)

 Else

 QueryParms.WhereList.Add ClassDef.PropertyToColumnDef(p).Name &

_

 Criteria(i)(1) & "'" & Criteria(i)(2) & "'"

 End If

 Next i

 QueryParms.WhereOperator = woAnd

 End If

 If IsArray(Sort) Then

 For i = LBound(Sort) To UBound(Sort)

 QueryParms.OrderList.Add _

 ClassDef.PropertyToColumnDef(CStr(Sort(i))).Name

 Next i

 End If

 Set rs = DataManager.GetData(QueryParms)

 If Not rs Is Nothing Then

 ReDim PropertyNames(0 To QueryParms.ColumnList.Count - 1)

 i = 0

 For Each rsField In rs.Fields

 PropertyNames(i) =

ClassDef.ColumnToPropertyDef(rsField.Name).Name

 i = i + 1

 Next

 vData = rs.GetRows

 Else

 vData = vbEmpty

 End If

 Data = vData

 Exit Sub

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:QueryObjectListData", Err.Number,

_

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:QueryObjectListData", _

 Err.Description & " [" & Erl & "]"

End Sub

From our CNWServer class, the implementation of this method is provided in Listing

9.20.

Example 9.20. The QueryObjectListData Method

Implemented on CNWServer

Private Sub IAppServer_QueryObjectListData(ByVal ClassId As Integer, _

 ByVal Criteria As Variant, _

 ByVal Sort As Variant, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Call IAppServer_GetClassDef(ClassId)

 Call mIAppServer.QueryObjectListData(ClassId, _

 Criteria, _

 Sort, _

 PropertyNames, _

 Data, _

 Errors)

End Sub

IAppClient/CNWClient

With our server-side IAppServer and CNWServer classes in place, we can move

from the application tier to the user tier and build the client-side mates. In a similar

fashion to the server side, we define an interface called IAppClient. Unlike

IAppServer though, our implementing class CNWClient is responsible for

implementing all methods defined by IAppClient. Our NWClient ActiveX DLL that

contains CNWClient is responsible for defining a class for each class type of the

library that is to be exposed to the client application. This definition takes the form

of Visual Basic class modules, which define the same properties spelled out in the

CClassDef on the server side. Our first order of business is to define an InitClient

method that connects to the DCOM object using the passed-in server name. We

always override our InitClient method with code similar to that shown for the

CNWClient implementation in Listing 9.21.

Example 9.21. The InitClient Method Implemented on

CNWClient

' From the declarations section

Option Explicit

Implements IAppClient

Private mIAppClient As IAppClient

Private NWServer As CNWServer

Private Sub IAppClient_InitClient(Server As String)

 Set NWServer = CreateObject("NWServer.CNWServer", Server)

 Set mIAppClient.AppServer = NWServer

 Call mIAppClient.AppServer.InitServer

End Sub

The InitClient method uses the CreateObject construct to create an instance of

the CNWServer object. We use this rather than a New operator because this is the

only mechanism that creates a DCOM object on a remote computer. The server

name that is passed in is the same as the computer name of the machine running

MTS which has a package installed that hosts the CNWServer class.

Now that we can connect to the DCOM client, we turn our attention to defining two

more interfaces in the same ActiveX library as IAppClient. These two interfaces

are IAppObject and IAppCollection, both of which we use to implement our final

objects and collection of objects, respectively. Our IAppCollection contains a

collection of IAppObjects. On our IAppObject, we define the methods of

SetStateToVariant and SetStateFromVariant that we must override in our

implementations. These methods are responsible for converting between native

objects and variant Data arrays. We also define an IsValid method to help us check

for validity across properties. Finally, we define properties Id and SubId used during

our CRUD processing that we will be implementing. The interface definition for

IAppObject appears in Listing 9.22.

Example 9.22. The IAppObject Interface Definition

Option Explicit

Private mId As Long

Private mSubId As Long

Private mClassId As Integer

Private mIsLoaded As Boolean

Private mIsDirty As Boolean

Public Sub SetStateToVariant(PropertyNames As Collection, Data As

Variant)

 ' override this method

End Sub

Public Sub SetStateFromVariant(PropertyNames As Collection, Data As

Variant, _

 Optional RowIndex As Integer)

 ' override this method

End Sub

Public Function IsValid() As Boolean

 ' override this method

End Function

Public Property Get Id() As Long

 Id = mId

End Property

Public Property Let Id(RHS As Long)

 mId = RHS

End Property

Public Property Get SubId() As Long

 SubId = mSubId

End Property

Public Property Let SubId(RHS As Long)

 mSubId = RHS

End Property

Public Property Get ClassId() As Long

 ClassId = mClassId

End Property

Public Property Let ClassId(RHS As Long)

 mClassId = RHS

End Property

Public Property Let IsLoaded(RHS As Boolean)

 mIsLoaded = RHS

End Property

Public Property Get IsLoaded() As Boolean

 IsLoaded = mIsLoaded

End Property

Public Property Let IsDirty(RHS As Boolean)

 mIsDirty = RHS

End Property

Public Property Get IsDirty() As Boolean

 IsDirty = mIsDirty

End Property

Our IAppCollection interface is a bit more complicated, but it implements many of

the methods itself. This method also contains a SetStateFromVariant method to

convert a two-dimensional variant Data array into a collection of objects. We also

define a SetStateToVariant method for the reverse process. The other methods

and properties are those required to implement a collection, including Item, Add,

Count, and NewEnum. The interface definition for IAppCollection appears in

Listing 9.23.

Example 9.23. The IAppCollection Interface

Definition

Option Explicit

Private mCol As Collection

Private mClassId As Integer

Private mIsLoaded As Boolean

Private mIsDirty As Boolean

Public Sub SetStateFromVariant(PropertyNames As Collection, Data As

Variant)

 ' override this method

End Sub

Public Sub SetStateToVariant(PropertyNames As Collection, Data As

Variant)

 ' override this method

End Sub

Public Property Get Item(vntIndexKey As Variant) As IAppObject

 Set Item = mCol(vntIndexKey)

End Property

Public Sub Add(AppObject As IAppObject, vntKey As Variant)

 mCol.Add AppObject, vntKey

End Sub

Public Property Get Count() As Long

 Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown

 Set NewEnum = mCol.[_NewEnum]

End Property

Private Sub Class_Initialize()

 Set mCol = New Collection

End Sub

Private Sub Class_Terminate()

 Set mCol = Nothing

End Sub

Public Property Get ClassId() As Long

 ClassId = mClassId

End Property

Public Property Let ClassId(RHS As Long)

 mClassId = RHS

End Property

Public Property Let IsLoaded(RHS As Boolean)

 mIsLoaded = RHS

End Property

Public Property Get IsLoaded() As Boolean

 IsLoaded = mIsLoaded

End Property

Public Property Let IsDirty(RHS As Boolean)

 mIsDirty = RHS

End Property

Public Property Get IsDirty() As Boolean

 IsDirty = mIsDirty

End Property

Again, we must override the SetStateFromVariant and SetStateToVariant

methods for each class implementing this interface.

Now that we can connect to the DCOM client and we have our IAppObject and

IAppCollection interfaces defined, we turn our attention to the data retrieval

methods of LoadObject and LoadCollection. As you might guess, we will be

calling the corresponding GetObjectData and GetObjectDataList methods on our

CNWServer object.

We call LoadObject with a ClassId and an Id/SubId pair. It returns an IAppObject

reference. Within the LoadObject method, we dimension a variable of each class

type, along with an IAppObject object. We perform a Select Case statement to

determine which object to create based on the ClassId. After we have identified

the correct class type, we call the GetObjectData method of our CNWServer class.

The code for LoadObject for our CNWClient class appears in Listing 9.24.

Example 9.24. The LoadObject Method Implemented

on CNWClient

Private Function IAppClient_LoadObject(ClassId As Integer, _

 Id As Long, _

 SubId As Long) As _

 AppClient.IAppObject

 Dim AppObject As IAppObject

 Dim Order As COrder

 Dim CityItem As CCityItem

 Dim CategoryItem As CCategoryItem

 Dim CountryItem As CCountryItem

 Dim RegionItem As CRegionItem

 Dim CustomerItem As CCustomerItem

 Dim EmployeeItem As CEmployeeItem

 Dim ProductItem As CProductItem

 Dim ShipperItem As CShipperItem

 Dim SupplierItem As CSupplierItem

 Dim Data As Variant

 Dim Errors As Variant

 Dim PropertyNames() As String

 On Error GoTo ErrorTrap

 Select Case ClassId

 Case CT_ORDER

 Set Order = New COrder

 Set AppObject = Order

 Case CT_CATEGORY

 Set CategoryItem = New CCategoryItem

 Set AppObject = CategoryItem

 Case CT_CITY

 Set CityItem = New CCityItem

 Set AppObject = CityItem

 Case CT_COUNTRY

 Set CountryItem = New CCountryItem

 Set AppObject = CountryItem

 Case CT_REGION

 Set RegionItem = New CRegionItem

 Set AppObject = RegionItem

 Case CT_CUSTOMER

 Set CustomerItem = New CCustomerItem

 Set AppObject = CustomerItem

 Case CT_EMPLOYEE

 Set EmployeeItem = New CEmployeeItem

 Set AppObject = EmployeeItem

 Case CT_PRODUCT

 Set ProductItem = New CProductItem

 Set AppObject = ProductItem

 Case CT_SHIPPER

 Set ShipperItem = New CShipperItem

 Set AppObject = ShipperItem

 Case CT_SUPPLIER

 Set SupplierItem = New CSupplierItem

 Set AppObject = SupplierItem

 Case Else

 GoTo SkipLoadObject

 End Select

 Call mIAppClient.AppServer.GetObjectData(ClassId, Id, SubId, _

 PropertyNames, Data, Errors)

 If IsArray(Data) Then

 AppObject.SetStateFromVariant(MakePropertyIndex(PropertyNames),

Data

 End If

 Set IAppClient_LoadObject = AppObject

SkipLoadObject:

 Exit Function

ErrorTrap:

 Err.Raise ERR_CANNOT_LOAD + vbObjectError, "CNWClient:LoadObject", _

 LoadResString(ERR_CANNOT_LOAD) & "[" & Err.Description & "]"

End Function

As can be seen from the previous code sample, we must dimension each class type.

We then perform a Select Case statement on the ClassId, creating the specific

object instance of the requested class. We then set the instance of the generic

AppObject variable to our specific instance of an object that has implemented the

IAppObject interface. From there, we fall through to the GetObjectData method of

our CAppServer variable. If the method returns a non-empty Data variable, we call

the generic SetStateFromVariant method of our AppObject to move the

information from the variant data array into the property values of the specific

object. We then return our AppObject to the calling routine. The reason for the use

of AppObject is to prevent the late binding that can slow performance. Using this

approach can make our code base more modular.

To illustrate a specific implementation of the SetStateFromVariant method of an

IAppObject, we offer the code for our COrder class in Listing 9.25.

Example 9.25. The COrder Class That Implements

IAppObject

Option Explicit

Implements IAppObject

Private mCustomerId As Long 'local copy

Private mCustomerName As String 'local copy

Private mEmployeeId As Long 'local copy

Private mEmployeeLastName As String 'local copy

Private mEmployeeFirstName As String 'local copy

Private mOrderDate As Date 'local copy

Private mRequiredDate As Date 'local copy

Private mShippedDate As Date 'local copy

Private mShipperId As Long 'local copy

Private mShipperName As String 'local copy

Private mFreightCost As Double 'local copy

Private mShipToName As String 'local copy

Private mShipToAddress As String 'local copy

Private mShipToPostalCode As String 'local copy

Private mShipToCountry As String 'local copy

Private mShipToRegion As String 'local copy

Private mShipToCityId As Long 'local copy

Private mShipToCity As String 'local copy

Private mIAppObject As IAppObject

Private Property Let IAppObject_Id(RHS As Long)

 mIAppObject.Id = RHS

End Property

Private Property Get IAppObject_Id() As Long

 IAppObject_Id = mIAppObject.Id

End Property

Private Property Let IAppObject_SubId(RHS As Long)

 mIAppObject.SubId = RHS

End Property

Private Property Get IAppObject_SubId() As Long

 IAppObject_SubId = mIAppObject.SubId

End Property

Public Property Let ShipToCity(ByVal RHS As String)

 mShipToCity = RHS

End Property

Public Property Get ShipToCity() As String

 ShipToCity = mShipToCity

End Property

Public Property Let ShipToCityId(ByVal RHS As Long)

 mShipToCityId = RHS

End Property

Public Property Get ShipToCityId() As Long

 ShipToCityId = mShipToCityId

End Property

Public Property Let ShipToRegion(ByVal RHS As String)

 mShipToRegion = RHS

End Property

Public Property Get ShipToRegion() As String

 ShipToRegion = mShipToRegion

End Property

Public Property Let ShipToCountry(ByVal RHS As String)

 mShipToCountry = RHS

End Property

Public Property Get ShipToCountry() As String

 ShipToCountry = mShipToCountry

End Property

Public Property Let ShipToPostalCode(ByVal RHS As String)

 mShipToPostalCode = RHS

End Property

Public Property Get ShipToPostalCode() As String

 ShipToPostalCode = mShipToPostalCode

End Property

Public Property Let ShipToAddress(ByVal RHS As String)

 mShipToAddress = RHS

End Property

Public Property Get ShipToAddress() As String

 ShipToAddress = mShipToAddress

End Property

Public Property Let ShipToName(ByVal RHS As String)

 mShipToName = RHS

End Property

Public Property Get ShipToName() As String

 ShipToName = mShipToName

End Property

Public Property Let FreightCost(ByVal RHS As Double)

 mFreightCost = RHS

End Property

Public Property Get FreightCost() As Double

 FreightCost = mFreightCost

End Property

Public Property Let ShipperName(ByVal RHS As String)

 mShipperName = RHS

End Property

Public Property Get ShipperName() As String

 ShipperName = mShipperName

End Property

Public Property Let ShipperId(ByVal RHS As Long)

 mShipperId = RHS

End Property

Public Property Get ShipperId() As Long

 ShipperId = mShipperId

End Property

Public Property Let ShippedDate(ByVal RHS As Date)

 mShippedDate = RHS

End Property

Public Property Get ShippedDate() As Date

 ShippedDate = mShippedDate

End Property

Public Property Let RequiredDate(ByVal RHS As Date)

 mRequiredDate = RHS

End Property

Public Property Get RequiredDate() As Date

 RequiredDate = mRequiredDate

End Property

Public Property Let OrderDate(ByVal RHS As Date)

 mOrderDate = RHS

End Property

Public Property Get OrderDate() As Date

 OrderDate = mOrderDate

End Property

Public Property Let EmployeeFirstName(ByVal RHS As String)

 mEmployeeFirstName = RHS

End Property

Public Property Get EmployeeFirstName() As String

 EmployeeFirstName = mEmployeeFirstName

End Property

Public Property Let EmployeeLastName(ByVal RHS As String)

 mEmployeeLastName = RHS

End Property

Public Property Get EmployeeLastName() As String

 EmployeeLastName = mEmployeeLastName

End Property

Public Property Let EmployeeId(ByVal RHS As Long)

 mEmployeeId = RHS

End Property

Public Property Get EmployeeId() As Long

 EmployeeId = mEmployeeId

End Property

Public Property Let CustomerName(ByVal RHS As String)

 mCustomerName = RHS

End Property

Public Property Get CustomerName() As String

 CustomerName = mCustomerName

End Property

Public Property Let CustomerId(ByVal RHS As Long)

 mCustomerId = RHS

End Property

Public Property Get CustomerId() As Long

 CustomerId = mCustomerId

End Property

Private Sub IAppObject_SetStateFromVariant(PropertyNames As Collection,

_

 Data As Variant, _

 Optional RowIndex As Integer)

 If IsMissing(RowIndex) Then RowIndex = 0

 mIAppObject.Id = Data(PropertyNames("Id"), RowIndex)

 CustomerId = _

 GetValue(Data(PropertyNames("CustomerId"), RowIndex), vbLong)

 CustomerName = _

 GetValue(Data(PropertyNames("CustomerName"), RowIndex), vbString)

 EmployeeId = _

 GetValue(Data(PropertyNames("EmployeeId"), RowIndex), vbLong)

 EmployeeLastName = _

 GetValue(Data(PropertyNames("EmployeeLastName"), RowIndex),

vbString)

 EmployeeFirstName = _

 GetValue(Data(PropertyNames("EmployeeFirstName"), RowIndex),

vbString)

 OrderDate = _

 GetValue(Data(PropertyNames("OrderDate"), RowIndex), vbDate)

 RequiredDate = _

 GetValue(Data(PropertyNames("RequiredDate"), RowIndex), vbDate)

 ShippedDate = _

 GetValue(Data(PropertyNames("ShippedDate"), RowIndex), vbDate)

 ShipperId = _

 GetValue(Data(PropertyNames("ShipperId"), RowIndex), vbLong)

 ShipperName = _

 GetValue(Data(PropertyNames("ShipperName"), RowIndex), vbString)

 FreightCost = _

 GetValue(Data(PropertyNames("FreightCost"), RowIndex), vbDouble)

 ShipToName = _

 GetValue(Data(PropertyNames("ShipToName"), RowIndex), vbString)

 ShipToAddress = _

 GetValue(Data(PropertyNames("ShipToAddress"), RowIndex), vbString)

 ShipToPostalCode = _

 GetValue(Data(PropertyNames("ShipToPostalCode"), RowIndex),

vbString)

 ShipToCountry = _

 GetValue(Data(PropertyNames("ShipToCountry"), RowIndex), vbString)

 ShipToRegion = _

 GetValue(Data(PropertyNames("ShipToRegion"), RowIndex), vbString)

 ShipToCityId = _

 GetValue(Data(PropertyNames("ShipToCityId"), RowIndex), vbLong)

 ShipToCity = _

 GetValue(Data(PropertyNames("ShipToCity"), RowIndex), vbString)

End Sub

As you can see from the code, we have defined all our properties using Let and Get

statements. If we choose, this technique allows us to provide to the client instant

feedback about data validation. We also define an IsValid method on IAppObject,

which performs validation across properties. If we look at the

SetStateFromVariant method, we see that we have received a PropertyNames

collection. This collection is a list of integers keyed on property names. The numeric

values correspond to column positions in the Data array for a given property. We

also receive an optional RowIndex parameter in case this Data array is the result of

a multirow resultset.

We have also defined a simple helper function called GetValue to help us trap null

values and convert them to a standard set of empty values. The simple code for this

appears in Listing 9.26.

Example 9.26. The GetValue () Function

Public Function GetValue(Data As Variant, _

 Optional vbType As VbVarType) _

 As Variant

 If Not IsMissing(vbType) Then

 Select Case vbType

 Case vbString

 GetValue = IIf(IsNull(Data), "", Data)

 Case vbDate

 GetValue = IIf(IsNull(Data), vbEmpty, Data)

 Case Else

 GetValue = IIf(IsNull(Data), 0, Data)

 End Select

 Else

 GetValue = IIf(IsNull(Data), vbEmpty, Data)

 End If

End Function

We call our LoadCollection method with a ClassId and a ParentId/ParentSubId

pair. Within the LoadCollection method, we dimension a variable of each

collection class type along with an IAppCollection object. We perform a Select

Case statement to determine which collection to create based on the ClassId. After

we have identified the correct class type, we call the GetObjectListData method of

our CNWServer. The code for LoadCollection for our CNWClient object appears in

Listing 9.27.

Example 9.27. The LoadCollection Method

Implemented on CNWClient

Private Function IAppClient_LoadCollection(ClassId As Integer, _

 ParentId As Long, _

 ParentSubId As Long) _

 As AppClient.IAppCollection

 Dim AppCollection As IAppCollection

 Dim ListItems As CListItems

 Dim OrderDetailItems As COrderDetailItems

 Dim CategoryItems As CCategoryItems

 Dim CityItems As CCityItems

 Dim CountryItems As CCountryItems

 Dim RegionItems As CRegionItems

 Dim CustomerItems As CCustomerItems

 Dim EmployeeItems As CEmployeeItems

 Dim ProductItems As CProductItems

 Dim ShipperItems As CShipperItems

 Dim SupplierItems As CSupplierItems

 Dim Data As Variant

 Dim Errors As Variant

 Dim PropertyNames() As String

 On Error GoTo ErrorTrap

 Select Case ClassId

 Case CT_LIST_ITEM

 Set ListItems = New CListItems

 Set AppCollection = ListItems

 Case CT_ORDER_DETAIL

 Set OrderDetailItems = New COrderDetailItems

 Set AppCollection = OrderDetailItems

 Case CT_CATEGORY

 Set CategoryItems = New CCategoryItems

 Set AppCollection = CategoryItems

 Case CT_CITY

 Set CityItems = New CCityItems

 Set AppCollection = CityItems

 Case CT_COUNTRY

 Set CountryItems = New CCountryItems

 Set AppCollection = CountryItems

 Case CT_REGION

 Set RegionItems = New CRegionItems

 Set AppCollection = RegionItems

 Case CT_CUSTOMER

 Set CustomerItems = New CCustomerItems

 Set AppCollection = CustomerItems

 Case CT_EMPLOYEE

 Set EmployeeItems = New CEmployeeItems

 Set AppCollection = EmployeeItems

 Case CT_PRODUCT

 Set ProductItems = New CProductItems

 Set AppCollection = ProductItems

 Case CT_SHIPPER

 Set ShipperItems = New CShipperItems

 Set AppCollection = ShipperItems

 Case CT_SUPPLIER

 Set SupplierItems = New CSupplierItems

 Set AppCollection = SupplierItems

 Case Else

 GoTo SkipLoadCollection

 End Select

 Call mIAppClient.AppServer.GetObjectListData(ClassId, _

 ParentId, _

 ParentSubId, _

 PropertyNames, _

 Data, _

 Errors)

 If IsArray(Data) Then

AppCollection.SetStateFromVariant(MakePropertyIndex(PropertyNames),

Data

 End If

 Set IAppClient_LoadCollection = AppCollection

SkipLoadCollection:

 Exit Function

ErrorTrap:

 Err.Raise ERR_CANNOT_LOAD + vbObjectError, "CNWClient:LoadCollection",

_

 LoadResString(ERR_CANNOT_LOAD) & "[" & Err.Description & "]"

End Function

We define LoadCollection in a manner similar to LoadObject, except that we

dimension collection classes and an AppCollection of type IAppCollection. We

also call GetObjectListData on our CAppServer object, and we define a

SetStateFromVariant on our IAppCollection interface. The code for our

COrderDetailItems collection appears in Listing 9.28.

Example 9.28. The COrderDetailItems Collection

Option Explicit

Implements IAppCollection

Dim mIAppCollection As IappCollection

Private Sub Class_Initialize()

 Set mIAppCollection = New IAppCollection

End Sub

Private Sub Class_Terminate()

 Set mIAppCollection = Nothing

End Sub

Private Sub IAppCollection_Add_

 (AppObject As AppClient.IAppObject, vntKey As Variant)

 Call mIAppCollection.Add(AppObject, vntKey)

End Sub

Private Property Get IAppCollection_Count() As Long

 IAppCollection_Count = mIAppCollection.Count

End Property

Private Property Get IAppCollection_Item_

 (vntIndexKey As Variant) As AppClient.IAppObject

 Set IAppCollection_Item = mIAppCollection.Item(vntIndexKey)

End Property

Private Property Get IAppCollection_NewEnum() As stdole.IUnknown

 Set IAppCollection_NewEnum = IAppCollection.NewEnum

End Property

Private Sub IAppCollection_SetStateFromVariant(PropertyNames As

Collection,_

 Data As Variant)

 Dim AppObject As IAppObject

 Dim OrderDetailItem As COrderDetailItem

 Dim i As Integer

 For i = LBound(Data, 2) To UBound(Data, 2)

 Set OrderDetailItem = New COrderDetailItem

 Set AppObject = OrderDetailItem

 Call AppObject.SetStateFromVariant(PropertyNames, Data, i)

 Call IAppCollection_Add(AppObject, CStr(OrderDetailItem.Id))

 Next i

End Sub

Private Property Get IAppCollection_ClassId() As Long

 IAppCollection_ClassId = mIAppCollection.ClassId

End Property

Private Property Let IAppCollection_ClassId(RHS As Long)

 mIAppCollection.ClassId = RHS

End Property

Private Property Get IAppCollection_IsDirty() As Boolean

 IAppCollection_IsDirty = mIAppCollection.IsDirty

End Property

Private Property Let IAppCollection_IsDirty(RHS As Boolean)

 mIAppCollection.IsDirty = RHS

End Property

Private Property Let IAppCollection_IsLoaded(RHS As Boolean)

 mIAppCollection.IsLoaded = RHS

End Property

Private Property Get IAppCollection_IsLoaded() As Boolean

 IAppCollection_IsLoaded = mIAppCollection.IsLoaded

End Property

Private Function IAppCollection_IsValid(Errors As Variant) As Boolean

 Dim i As Integer

 Dim AppObject As IAppObject

 IAppCollection_IsValid = True

 For i = 1 To mIAppCollection.Count

 Set AppObject = mIAppCollection.Item(i)

 IAppCollection_IsValid = IAppCollection_IsValid And _

 AppObject.IsValid(Errors)

 Next i

End Function

Private Sub IAppCollection_Remove(vntIndexKey As Variant)

 Call mIAppCollection.Remove(vntIndexKey)

End Sub

The Add, Count, Item, and NewEnum methods tap directly into the

mIAppCollection variable for functionality. Similarly, the IsLoaded, IsDirty, and

ClassId properties are inherited from our mIAppCollection variable. The only

methods that we override are the SetStateFromVariant and IsValid methods. In

the SetStateFromVariant method, we loop through the Data array a row at a time.

For each row, we instantiate our specific COrderDetailItem, set a generic

IAppObject reference to it, and call the SetStateFromVariant method on the

generic object reference. After the state has been set, we add the IAppObject

reference onto the collection. We proceed for all rows of the Data array.

The SetStateFromVariant method for COrderDetailItem appears in Listing 9.29.

Example 9.29. The SetStateFromVariant Method

Implemented on COrderDetailItem

Private Sub IAppObject_SetStateFromVariant(PropertyNames As Collection,

_

 Data As Variant, _

 Optional RowIndex As Integer)

 If IsMissing(RowIndex) Then RowIndex = 0

 mIAppObject.Id = Data(PropertyNames("Id"), RowIndex)

 OrderId = GetValue(Data(PropertyNames("OrderId"), RowIndex), vbLong)

 ProductId = GetValue(Data(PropertyNames("ProductId"), RowIndex),

vbLong)

 Product = GetValue(Data(PropertyNames("Product"), RowIndex),

vbString)

 Supplier = GetValue(Data(PropertyNames("Supplier"), RowIndex),

vbString)

 UnitPrice = GetValue(Data(PropertyNames("UnitPrice"), RowIndex),

vbDouble)

 Discount = GetValue(Data(PropertyNames("Discount"), RowIndex),

vbDouble)

 IAppObject_IsDirty = False

End Sub

We implement all left-side variables on the object as Property Let/Get statements.

We do not present the code for all objects here in the chapter, but the

implementations are included in the code for the chapter.

We now define the delete portion of CRUD on the client side. Here, we define

DeleteObject and DeleteCollection methods. Because of simplicity, we can

implement the DeleteObject functionality in our IAppClient class and call into it

from our CNWClient implementation. Within the IAppClient implementation of the

DeleteObject method, we pass in our desired ClassId, Id, and SubId values. We

then pass this information off to the DeleteObject method of our IAppServer

object. The code for the DeleteObject method appears in Listing 9.30.

Example 9.30. The DeleteObject Method

Implemented on CNWClient

Public Sub DeleteObject(ClassId As Integer, Id As Long, SubId As Long,

_

 Errors As Variant)

 On Error GoTo ErrorTrap

 If Id > 0 Then

 Call mIAppServer.DeleteObject(ClassId, Id, SubId, Errors)

 End If

 Exit Sub

ErrorTrap:

 Err.Raise ERR_CANNOT_DELETE + vbObjectError,

"IAppClient:DeleteObject", _

 LoadResString(ERR_CANNOT_DELETE) & "[" & Err.Description & "]"

End Sub

As you can see, this method implementation is straightforward. The call into this

method from CNWClient appears in Listing 9.31.

Example 9.31. The DeleteObject Method on

CNWClient

Private Sub IAppClient_DeleteObject(ClassId As Integer, Id As Long, _

 SubId As Long, Errors As Variant)

 Call mIAppClient.DeleteObject(ClassId, Id, SubId, Errors)

End Sub

Likewise, we implement a DeleteCollection method that substitutes a ParentId

and ParentSubId in its parameter list. The code for the DeleteCollection method

appears in Listing 9.32.

Example 9.32. The DeleteCollection Method on

CNWClient

Public Sub DeleteCollection(ClassId As Integer, ParentId As Long, _

 ParentSubId As Long, Errors As Variant)

 On Error GoTo ErrorTrap

 If ParentId > 0 Then

 Call mIAppServer.DeleteObjectList(ClassId, ParentId, ParentSubId,

Errors)

 End If

 Exit Sub

ErrorTrap:

 Err.Raise ERR_CANNOT_DELETE + vbObjectError,

"IAppClient:DeleteCollection", _

 LoadResString(ERR_CANNOT_DELETE) & "[" & Err.Description & "]"

End Sub

Again, the CNWClient implementation is simple, as follows:

Private Sub IAppClient_DeleteCollection(ClassId As Integer, _

 ParentId As Long, _

 ParentSubId As Long, _

 Errors As Variant)

 Call mIAppClient.DeleteCollection(ClassId, ParentId, ParentSubId,

Errors)

End Sub

Our attention now turns to the data insertion activity. We define an InsertObject

method that takes ClassId and AppObject parameters with the latter being a

return value. Again, we must dimension a variable of every supported class type.

Using a Select Case statement, we instantiate our specific object reference and set

it to the generic AppObject. We fall through to a block of code that creates the

necessary property index for a subsequent call to the SetStateToVariant method

of our generic AppObject. We then call the InsertObjectData method on our

AppServer object to perform the insert. We expect the method to return ObjectId

and ObjectSubId parameters, which we set to our Id and SubId properties of our

AppObject. The code for the InsertObject method on CNWClient appears in

Listing 9.33.

Example 9.33. The InsertObject Method

Implemented on CNWClient

Private Sub IAppClient_InsertObject(ClassId As Integer, _

 AppObject As AppClient.IAppObject)

 Dim ObjectId As Long, ObjectSubId As Long

 Dim Order As COrder

 Dim CityItem As CCityItem

 Dim CategoryItem As CCategoryItem

 Dim CountryItem As CCountryItem

 Dim RegionItem As CRegionItem

 Dim CustomerItem As CCustomerItem

 Dim EmployeeItem As CEmployeeItem

 Dim ProductItem As CProductItem

 Dim ShipperItem As CShipperItem

 Dim SupplierItem As CSupplierItem

 Dim Data As Variant

 Dim Errors As Variant

 Dim PropertyNames As Variant

 Dim PropertyIndex As Collection

 On Error GoTo ErrorTrap

 Select Case ClassId

 Case CT_ORDER

 Set Order = AppObject

 Case CT_CATEGORY

 Set CategoryItem = AppObject

 Case CT_CITY

 Set CityItem = AppObject

 Case CT_COUNTRY

 Set CountryItem = AppObject

 Case CT_REGION

 Set RegionItem = AppObject

 Case CT_CUSTOMER

 Set CustomerItem = AppObject

 Case CT_EMPLOYEE

 Set EmployeeItem = AppObject

 Case CT_PRODUCT

 Set ProductItem = AppObject

 Case CT_SHIPPER

 Set ShipperItem = AppObject

 Case CT_SUPPLIER

 Set SupplierItem = AppObject

 Case Else

 GoTo SkipInsertObject

 End Select

 PropertyNames = mIAppClient.AppServer.GetPropertyNames(ClassId)

 Set PropertyIndex = MakePropertyIndex(PropertyNames)

 ReDim Data(1 To PropertyIndex.Count, 0)

 Call AppObject.SetStateToVariant(PropertyIndex, Data)

 Call mIAppClient.AppServer.InsertObjectData(ClassId, PropertyNames, _

 Data, Errors, _

 ObjectId, ObjectSubId)

 AppObject.Id = ObjectId

 AppObject.SubId = ObjectSubId

SkipInsertObject:

 Exit Sub

ErrorTrap:

 Err.Raise ERR_CANNOT_INSERT + vbObjectError, _

 "CNWClient:InsertObject", _

 LoadResString(ERR_CANNOT_INSERT) & "[" & Err.Description & "]"

End Sub

The InsertCollection method follows a similar pattern whereby an

AppCollection is passed in on the parameter list along with ParentId and

ParentSubId values. Again, we dimension a variable of each type, setting the

appropriate value in a Select Case statement. We fall through to a block of code

that creates the necessary property index for a subsequent call to the

SetStateToVariant method of the collection. We follow this by a call to our

InsertObjectListData method of our AppServer object. The code for the

InsertCollection method of CNWClient appears in Listing 9.34.

Example 9.34. The InsertCollection Method

Implemented on CNWClient

Private Sub IAppClient_InsertCollection(ClassId As Integer, _

 ParentId As Long, _

 ParentSubId As Long, _

 AppCollection As AppClient.IAppCollection, _

 Errors As Variant)

 Dim ListItems As CListItems

 Dim OrderDetailItems As COrderDetailItems

 Dim CategoryItems As CCategoryItems

 Dim CityItems As CCityItems

 Dim CountryItems As CCountryItems

 Dim RegionItems As CRegionItems

 Dim CustomerItems As CCustomerItems

 Dim EmployeeItems As CEmployeeItems

 Dim ProductItems As CProductItems

 Dim ShipperItems As CShipperItems

 Dim SupplierItems As CSupplierItems

 Dim Data As Variant

 Dim PropertyNames As Variant

 Dim PropertyIndex As Collection

 On Error GoTo ErrorTrap

Select Case ClassId

 Case CT_LIST_ITEM

 Set ListItems = AppCollection

 Case CT_ORDER_DETAIL

 Set OrderDetailItems = AppCollection

 Case CT_CATEGORY

 Set CategoryItems = AppCollection

 Case CT_CITY

 Set CityItems = AppCollection

 Case CT_COUNTRY

 Set CountryItems = AppCollection

 Case CT_REGION

 Set RegionItems = AppCollection

 Case CT_CUSTOMER

 Set CustomerItems = AppCollection

 Case CT_EMPLOYEE

 Set EmployeeItems = AppCollection

 Case CT_PRODUCT

 Set ProductItems = AppCollection

 Case CT_SHIPPER

 Set ShipperItems = AppCollection

 Case CT_SUPPLIER

 Set SupplierItems = AppCollection

 Case Else

 GoTo SkipInsertCollection

 End Select

 PropertyNames = mIAppClient.AppServer.GetPropertyNames(ClassId)

 Set PropertyIndex = MakePropertyIndex(PropertyNames)

 ReDim Data(1 To PropertyIndex.Count, 1 To AppCollection.Count)

 Call AppCollection.SetStateToVariant(PropertyIndex, Data)

 Call mIAppClient.AppServer.InsertObjectListData(ClassId, _

 ParentId, _

 ParentSubId, _

 PropertyNames, _

 Data, _

 Errors)

SkipInsertCollection:

 Exit Sub

ErrorTrap:

 Err.Raise ERR_CANNOT_INSERT + vbObjectError,

"CNWClient:InsertCollection", _

 LoadResString(ERR_CANNOT_INSERT) & "[" & Err.Description & "]"

End Sub

For our OrderDetailItems collection, we simply hook into the SetStateToVariant

method of our IAppCollection interface. The simple code on CNWClient follows:

Private Sub IAppCollection_SetStateToVariant(PropertyNames As

Collection, _

 Data As Variant)

 Call mIAppCollection.SetStateToVariant(PropertyNames, Data)

End Sub

Our UpdateObject method is similar in calling convention to our InsertObject

method. Here, we pass in our generic AppObject reference in conjunction with a

ClassId. Again, we dimension a variable of each class type for which we plan to

provide update functionality. We use a Select Case statement to identify the class

type, creating our specific reference followed by a setting to our generic AppObject

reference. We fall through to a block of code that creates the necessary property

index for a subsequent call to the SetStateToVariant method of our generic

AppObject. We then call the UpdateObjectData method on our AppServer object

to perform the insert. The code for the UpdateObject method on CNWClient

appears in Listing 9.35.

Example 9.35. The UpdateObject Method

Implemented on CNWClient

Private Sub IAppClient_UpdateObject(ClassId As Integer, _

 AppObject As AppClient.IAppObject)

 Dim ObjectId As Long, ObjectSubId As Long

 Dim Order As COrder

 Dim CityItem As CCityItem

 Dim CategoryItem As CCategoryItem

 Dim CountryItem As CCountryItem

 Dim RegionItem As CRegionItem

 Dim CustomerItem As CCustomerItem

 Dim EmployeeItem As CEmployeeItem

 Dim ProductItem As CProductItem

 Dim ShipperItem As CShipperItem

 Dim SupplierItem As CSupplierItem

 Dim Data As Variant

 Dim Errors As Variant

 Dim PropertyNames As String

 Dim PropertyIndex As Collection

 On Error GoTo ErrorTrap

 ObjectSubId = 0

 Select Case ClassId

 Case CT_ORDER

 Set Order = AppObject

 Case CT_CATEGORY

 Set CategoryItem = AppObject

 Case CT_CITY

 Set CityItem = AppObject

 Case CT_COUNTRY

 Set CountryItem = AppObject

 Case CT_REGION

 Set RegionItem = AppObject

 Case CT_CUSTOMER

 Set CustomerItem = AppObject

 Case CT_EMPLOYEE

 Set EmployeeItem = AppObject

 Case CT_PRODUCT

 Set ProductItem = AppObject

 Case CT_SHIPPER

 Set ShipperItem = AppObject

 Case CT_SUPPLIER

 Set SupplierItem = AppObject

 Case Else

 GoTo SkipUpdateObject

 End Select

 ObjectId = AppObject.Id

 ObjectSubId = AppObject.SubId

 PropertyNames = mIAppClient.AppServer.GetPropertyNames(ClassId)

 Set PropertyIndex = MakePropertyIndex(PropertyNames)

 Call AppObject.SetStateToVariant(PropertyIndex, Data)

 Call mIAppClient.AppServer.UpdateObjectData(ClassId, PropertyNames, _

 Data, Errors, _

 ObjectId, ObjectSubId)

SkipUpdateObject:

 Exit Sub

ErrorTrap:

 Err.Raise ERR_CANNOT_UPDATE + vbObjectError, _

 "CNWClient:UpdateObject", _

 LoadResString(ERR_CANNOT_UPDATE) & "[" & Err.Description & "]"

End Sub

Our SetStateToVariant method does the reverse of our SetStateFromVariant

method by moving the state information of the object into a variant array. The code

for our COrder object appears in Listing 9.36.

Example 9.36. The SetStateToVariant Method

Implemented on COrder

Private Sub IAppObject_SetStateToVariant(PropertyNames As Collection, _

 Data As Variant, _

 Optional RowIndex As Integer)

 If IsMissing(RowIndex) Then RowIndex = 0

 Data(PropertyNames("Id"), RowIndex) = mIAppObject.Id

 Data(PropertyNames("CustomerId"), RowIndex) = CustomerId

 Data(PropertyNames("EmployeeId"), RowIndex) = EmployeeId

 Data(PropertyNames("OrderDate"), RowIndex) = OrderDate

 Data(PropertyNames("ShippedDate"), RowIndex) = ShippedDate

 Data(PropertyNames("RequiredDate"), RowIndex) = RequiredDate

 Data(PropertyNames("ShipperId"), RowIndex) = ShipperId

 Data(PropertyNames("FreightCost"), RowIndex) = FreightCost

 Data(PropertyNames("ShipToName"), RowIndex) = ShipToName

 Data(PropertyNames("ShipToAddress"), RowIndex) = ShipToAddress

 Data(PropertyNames("ShipToPostalCode"), RowIndex) = ShipToPostalCode

 Data(PropertyNames("ShipToCityId"), RowIndex) = ShipToCityId

End Sub

We assume that the calling function has already dimensioned our Data array to the

appropriate size. We start by creating a variant array of the same size as the

number of property names. We again use the PropertyNames collection to index

into the appropriate element of the Data array to set the state value.

Finally, we implement our LoadQueryCollection method. Again, because this is for

programmatic use, we do not need a high level of sophistication in its

implementation. Here, we take our ClassId, along with WhereClause and

OrderClause arrays, and return an IAppCollection. Again, we dimension

variables of our specific collections and use a Select Case statement to set our

specific reference. We pass the WhereClause and OrderClause parameters through

to the QueryObjectListData method of our AppServer. This call returns Data and

PropertyNames arrays. Again, we pass these values into our SetStateFromVariant

method to retrieve our final collection. The code for our LoadQueryCollection

method appears in Listing 9.37.

Example 9.37. The LoadQueryCollection Method on

CNWClient

Private Function IAppClient_LoadQueryCollection(ClassId As Integer, _

 WhereClause As Variant, _

 OrderClause As Variant) _

 As AppClient.IAppCollection

 Dim AppCollection As IAppCollection

 Dim ListItems As CListItems

 Dim OrderDetailItems As COrderDetailItems

 Dim CategoryItems As CCategoryItems

 Dim CityItems As CCityItems

 Dim CountryItems As CCountryItems

 Dim RegionItems As CRegionItems

 Dim CustomerItems As CCustomerItems

 Dim EmployeeItems As CEmployeeItems

 Dim ProductItems As CProductItems

 Dim ShipperItems As CShipperItems

 Dim SupplierItems As CSupplierItems

 Dim Orders As COrders

 Dim Data As Variant

 Dim Errors As Variant

 Dim PropertyNames() As String

 On Error GoTo ErrorTrap

 Select Case ClassId

 Case CT_LIST_ITEM

 Set ListItems = New CListItems

 Set AppCollection = ListItems

 Case CT_ORDER

 Set Orders = New COrders

 Set AppCollection = Orders

 Case CT_ORDER_DETAIL

 Set OrderDetailItems = New COrderDetailItems

 Set AppCollection = OrderDetailItems

 Case CT_CATEGORY

 Set CategoryItems = New CCategoryItems

 Set AppCollection = CategoryItems

 Case CT_CITY

 Set CityItems = New CCityItems

 Set AppCollection = CityItems

 Case CT_COUNTRY

 Set CountryItems = New CCountryItems

 Set AppCollection = CountryItems

 Case CT_REGION

 Set RegionItems = New CRegionItems

 Set AppCollection = RegionItems

 Case CT_CUSTOMER

 Set CustomerItems = New CCustomerItems

 Set AppCollection = CustomerItems

 Case CT_EMPLOYEE

 Set EmployeeItems = New CEmployeeItems

 Set AppCollection = EmployeeItems

 Case CT_PRODUCT

 Set ProductItems = New CProductItems

 Set AppCollection = ProductItems

 Case CT_SHIPPER

 Set ShipperItems = New CShipperItems

 Set AppCollection = ShipperItems

 Case CT_SUPPLIER

 Set SupplierItems = New CSupplierItems

 Set AppCollection = SupplierItems

 Case Else

 GoTo SkipQueryCollection

 End Select

 Call mIAppClient.AppServer.QueryObjectListData(ClassId, WhereClause,

_

 OrderClause, PropertyNames, _

 Data, Errors)

 If IsArray(Data) Then

AppCollection.SetStateFromVariant(MakePropertyIndex(PropertyNames),

Data

 End If

 Set IAppClient_LoadQueryCollection = AppCollection

SkipQueryCollection:

 Exit Function

ErrorTrap:

 Err.Raise ERR_CANNOT_LOAD + vbObjectError, _

 "CNWClient:LoadQueryCollection",

LoadResString(ERR_CANNOT_LOAD) & _

 "[" & Err.Description & "]"

End Function

What We Have Accomplished

We have covered a significant amount of material in this chapter to introduce and

define the multi-part business object. Because it might be all jumbled at this point,

the simple diagram in Figure 9.3 shows what we have done.

Figure 9.3. The relationship between the parts of the

business layer.

Installing Components into MTS

Now that we have completed our AppServer and NWServer components, we must

install them into MTS so that our AppClient and NWClient can access them.

Components within MTS are placed into groups called packages. One package can

host multiple components, but one component can reside within only one package.

A package is an administration convenience when installing and transferring these

components between MTS machines and creating client-side installation routines to

access these components.

Creating the Package

To start our installation process, we must start the MTS Explorer. From within the

MTS Explorer, open the Packages Installed folder under the My Computer folder, as

shown in Figure 9.4. This assumes that we are running the MTS Explorer on the

same computer that will host our MTS components.

Figure 9.4. Navigating to the Packages folder in MTS.

From the Packages folder, right-click, select New, and then Package. This brings up

the Package Wizard dialog as shown in Figure 9.5.

Figure 9.5. Launching the Package Wizard.

From the Package Wizard, select the Create an Empty Package button. In the Create

Empty Package dialog that appears, type the name of our package, in this case

Northwind Traders. Click on the Next button, which takes us to the Set Package

Identity page of the wizard. Next, select the Interactive User option and click the

Next button. Note that this option can be changed later after the package is installed.

Click the Finish button to complete the process. We now see that our new package

has been added in the MTS Explorer, as shown in Figure 9.6.

Figure 9.6. The newly added Northwind Traders

package.

To add our AppServer and NWServer components to the package, we first must

expand the Northwind Traders package to gain visibility to the Components folder.

This appears in Figure 9.7.

Figure 9.7. Navigating to the Components folder.

If we right-click on the Components folder, and then select New, Component, the

Component Wizard appears as shown in Figure 9.8.

Figure 9.8. Launching the Component Wizard.

From the first page of the Component Wizard, select the Install New Component(s)

option. From the Install Components dialog, click the Add Files button. From there

we browse to our directory with our AppServer component and click on the Open

button. Click on the Add Files button once again and select the NWServer

component. After both files have been selected, our dialog looks like Figure 9.9.

Figure 9.9. Adding components to the package.

We click on the Finish button to add our components to the package. If we take a

look at our MTS Explorer, we will see that the two new components appear under

the Components folder and in the right pane. This is shown in Figure 9.10.

Figure 9.10. Our newly added components.

Creating Client-Side Stubs

With our components now running inside MTS, we must make them accessible to

our client machines. The easiest way to do this is to use MTS to create an Export

Package. This package not only creates a client-side installer, it also creates a file

necessary to move a package from one MTS machine to another.

To create the export package, we right-click on the Northwind Traders package in

the MTS Explorer and select the Export menu item. The Export Package dialog

appears as shown in Figure 9.11.

Figure 9.11. Exporting our package.

We enter the name of the path to which we want to export, and click the Export

button. Upon completion of this process, MTS has created a NorthwindTraders.Pak

file in the directory that we specified. It has also placed a copy of AppServer.DLL

and NWServer.DLL into the same directory as the PAK file. Additionally, a

subdirectory named Clients has been created that contains a file named

NorthwindTraders.exe. This executable program is the setup program that sets

the appropriate registry settings on the client machine to enable remote access. If

we were to look at our references to our AppServer and NWServer components

within Visual Basic after running this installer, it would look something like Figure

9.12.

Figure 9.12. Our remote components installed on our

client.

From Figure 9.12, you can see how the file reference to our AppServer component

is now set to C:\Program Files\Remote Applications\{A65CA5FC-BADD-11D3…}.

The client-side installer set up this directory and remapped our AppServer reference

to it via the registry. It also modified the registry to inform the DCOM engine that

this component runs on a remote server.

Moving the Package

Each time we install a component into an MTS server, a new GUID is generated for

that component. If we want to move our package to another MTS machine without

generating a new GUID, we must import into the new MTS machine the PAK file we

generated in the previous section. By doing this, our client applications do not need

to be recompiled with the new GUID, but instead simply point to the new MTS

server.

To import a PAK file, we simply right-click on our Packages folder on the target MTS

server and select the New menu item. From the Package Wizard that appears, we

select the Install Pre-Built Package option. On the Select Packages page, we browse

to the PAK file we created and select it. We click the Next button to arrive at the Set

Package Identity page, where we once again choose the Interactive User option. We

click the Next button once again, and enter the target location of where the files

should be installed. We click the Finish button to complete the process.

Summary

In this chapter, we discussed the heart of our application framework—the multipart

distributed business object. In so doing we have abstracted as much functionality

into several interfaces on both the client and server sides so that build-out of our

specific application is as easy as possible. We have also provided that build-out for

our sample Northwind application.

We also talked about some of the fundamentals of MTS. At one level, we looked at

the programming model that must be used to take full advantage of its transactional

and object pooling features. We also looked at how to deploy our MTS objects from

both a server- and client-side perspective.

In the next chapter, we will complete the last layer of the system, the user layer. We

will look at building reusable ActiveX controls that interface tightly with our

multipart distributed business object that we built in this chapter.

Chapter 10. Adding an ActiveX Control to the

Framework

User interface design can take on many different forms based on the many different

views on the subject. Indeed, such topics can be the subject matter of a book in

itself. In Part I, "An Overview of Tools and Technologies," we discussed how the

central design issue for an enterprise system is focused first on the business layer

and how the data and user layers are a natural outgrowth of this within our

framework. We also demonstrated the manifestation of the business and data

layers in Chapter 8," The DataManager Library," and Chapter 9," A Two-Part,

Distributed Business Object;" so now let us turn our attention to the user layer.

Design Theory

Although we can define our user layer directly using Visual Basic forms, we have

chosen to implement our user interface with ActiveX controls that are subsequently

placed into these forms. The reason for this is that it gives us the added flexibility of

placing these elements into an (IE) Internet Explorer-based browser, enabling us to

provide a rich interface that cannot be provided with simple HTML form elements.

Our design also enables us to transparently place these same controls into any other

environment that enables the use of ActiveX control hosting. The ultimate benefit

derived from this architecture is that we can place our controls in any VBA-enabled

application, giving us powerful integration opportunities.

To start our design, we must define our basic user interface metaphors. The entry

point into an application can vary, but here we follow a simple Microsoft Explorer

approach. Other approaches can include the Microsoft Outlook version, a simple

Single Document Interface (SDI) or a Multiple Document Interface (MDI) interface.

We use the Explorer here because it maps easily to an object-oriented framework

and is simpler to build for the sake of exposition. For our individual dialogs, we are

following a simple tabbed dialog approach, again because of the natural mapping to

object orientation.

Implementation

This section discusses the details of building the Explorer- and Tabbed Dialog-style

interfaces necessary for our application framework.

Our Explorer interface is covered first. This interface mechanism is more generically

called an outliner because it is especially well suited for representing an object

hierarchy or set of hierarchies. This representation enables us to build a

navigational component for the user to quickly browse to an area of the system in

which he is particularly interested. It is easy to extend the infrastructure provided

by our outliner to implement an object selection mechanism, as well.

Our Tabbed Dialog interface is covered next. This interface has a more generic name,

often referred to as a property page. It is well suited to represent an object within

our system. Through the browsing mechanism provided by the outliner, we can

choose a particular object that interests us and open it up for viewing and potential

editing.

The Explorer Interface

The initial development of our Explorer interface is easy because Visual Basic

provides a wizard to do most of the dirty work. For our Explorer, we have chosen not

to implement any menus but instead to rely solely on a toolbar. After we have used

Visual Basic's wizard to create an Explorer application, we create a new User Control

project named NWExplorer and copy over the objects and code. Before copying, we

delete the common dialog control that Visual Basic creates because we will not be

using it. In the target User Control project, we must set a component reference to

the Microsoft Windows Common Controls 6.0 control. We then create a Standard

EXE project, called Northwind, and add a form with the name frmNorthWind. We

set a component reference to our newly created NWExplorer component and drop it

onto frmNorthWind. We show the end result of this effort in Figure 10.1, albeit after

we have implemented the NWExplorer control that is to follow.

Figure 10.1. The Northwind Explorer entry point.

We are using the Explorer control not only for navigational purposes through our

various objects but also for the implementation of simple add and delete

functionality. We also take advantage of the fact that the TreeView component of

the Explorer natively understands the object hierarchy that we can use to help us

maintain our parent/child relationships more efficiently. For example, in managing

our country, region, and city object hierarchies, it is much easier for the user to click

on a region node and have a pop-up menu with the option of adding a new city to it.

The counter-option to this would be to have a dialog with multiple ComboBox controls,

managing the loading between them based on inputs from the others. For example,

choosing a new country would reload a region ComboBox. Choosing a new region

would reload a city ComboBox.

Many third-party Explorer-style controls are on the market, many of which you

might prefer to use rather than one implemented in these examples. We do not

intend for the code samples that follow to constitute a complete coverage of the

design theory of an Explorer control. Instead, our goal is to discuss how to use our

client components covered in the last chapter to complete the application. As such,

we do not spend any time going over the code that Visual Basic generates to

implement the Explorer. Instead, we focus on the code that we are adding to hook

this Explorer code into our IAppClient, IAppCollection, and IAppObject

components created in Chapter 9, "A Two-Part, Distributed Business Object."

The first item to discuss is another interface, which, in this case, we define to

support our Explorer control. We use this interface, which we call IExplorerItem,

to help us manage the information necessary to manage the TreeView and

ListView controls that make up the Explorer. It is convenient that Microsoft defines

the Tag property of a TreeView Node object as a Variant so that we can use this to

hold a reference to an IExplorerItem object associated with the node. We use this

bound reference to help us determine the actions that the NWExplorer control must

take relative to user interaction. As with most of our interface definitions, the

majority of the properties are common and thus implemented by IExplorerItem.

However, there is one property that we must override for our specific

implementation.

Creating a Client-Side Common Support Library

To start with, we create a new ActiveX DLL in which to put our IExplorerItem

interface definition. Because we must create several other client-side classes to help

drive these ActiveX controls and the application in general, we call this project

AppCommon. This library constitutes our system layer on the client tier. We will be

adding other classes to this DLL throughout this chapter.

The properties on IExplorerItem are straightforward. They include several

Boolean-based properties to indicate how the state management for the toolbar

should be handled, as well as how the TreeView of the Explorer can be traversed.

Specifically, we call these properties CanAdd, CanDelete, CanUpdate, and CanGoUp.

We also have several other properties to handle how a given node of the TreeView

component appears. These properties include Caption, ImageIndex, and

ImageIndexExpanded. These latter two properties represent indexes into the image

lists associated with the TreeView and ListView controls. We have populated our

image lists with simple open and closed folder icons, but you can add images that

correspond directly to the type of object related to a given node. If both large and

small icons are to be used, it is assumed that two image lists are set up in a parallel

manner. Next, we have a property, Loaded, to tell us whether we have already

loaded our child nodes so that we potentially do not repeat a long-running load. We

also define two other properties to hold references to either IAppObject or

IAppCollection objects. The use of these latter properties becomes apparent later

in the chapter.

The only property that we override on IExplorerItem is Mode. It is here that we

add our application-specific information. To implement this property, we must first

create a CNWExplorerItem class within our NWExplorer user control project. We

must also define a set of constants to represent our Explorer-type items. For our

Northwind application, we place these constants into a code module within the

NWExplorer project. We define these constants as follows in Listing 10.1.

Example 10.1. Constants Defined Within Our

NWExplorer User Control Project

Public Const EIT_INIT = -1

Public Const EIT_ROOT = 0

Public Const EIT_CATEGORY = 1

Public Const EIT_CRC = 2

Public Const EIT_CUSTOMER = 3

Public Const EIT_EMPLOYEE = 4

Public Const EIT_LISTITEM = 5

Public Const EIT_ORDER_ROOT = 6

Public Const EIT_ORDER = 7

Public Const EIT_PRODUCT = 8

Public Const EIT_SHIPPER = 9

Public Const EIT_SUPPLIER = 10

Public Const EIT_ORDER_ALL = 11

Public Const EIT_ORDER_OPEN = 12

Public Const EIT_PRODUCT_ROOT As Integer = 13

Public Const EIT_PRODUCT_CATEGORY As Integer = 14

Public Const EIT_COUNTRY_ROOT As Integer = 15

Public Const EIT_COUNTRY_REGION_ROOT As Integer = 16

Public Const EIT_COUNTRY_REGION_CITY As Integer = 17

Public Const EIT_ADMIN = 100

Public Const EIT_ALL = 999

You might notice that many of the names look conspicuously close to our class type

constants, whereas others look a little different. These constants are purely

arbitrary because we tie them to our CT_xxx constants logically in our code. We use

the EIT_INIT, EIT_ROOT, EIT_CRC, EIT_ADMIN, and EIT_ALL constants for control

purposes. We demonstrate their use in code samples that follow. Note that our

Explorer not only provides navigation for the Northwind system but also selection

functions for the various dialogs we will be creating. This is the reason for the

EIT_ALL constant. We can place this control in Explorer mode by setting the

SelectMode property to EIT_ALL, while any other setting constitutes a selection

mode for a particular class.

Back to the implementation of our Mode property on CNWExplorerItem, it looks like

the code in Listing 10.2.

Example 10.2. The Implementation of the Mode

Property Within Our CNWExplorerItem Class

Public Property Let IExplorerItem_Mode(ByVal RHS As Integer)

 With mIExplorerItem

 Select Case RHS

 Case EIT_ROOT

 .Caption = "Northwind Traders"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = False

 .CanDelete = False

 .CanUpdate = False

 .CanGoUp = False

 Case EIT_ADMIN

 .Caption = "Administration"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = False

 .CanDelete = False

 .CanUpdate = False

 .CanGoUp = True

 Case EIT_COUNTRY_ROOT

 .Caption = "Countries"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_COUNTRY_REGION_ROOT

 .Caption = "Regions"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_COUNTRY_REGION_CITY

 .Caption = "Cities"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = False

 .CanDelete = False

 .CanUpdate = False

 .CanGoUp = True

 Case EIT_COUNTRY

 .Caption = "Country"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_REGION

 .Caption = "Country"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_CITY

 .Caption = "Country"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_LISTITEM

 .Caption = "Lists"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDER

 .CanAdd = False

 .CanDelete = False

 .CanUpdate = False

 .CanGoUp = True

 Case EIT_CATEGORY

 .Caption = "Categories"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = False

 Case EIT_PRODUCT

 .Caption = "Products"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = False

 Case EIT_PRODUCT_ROOT

 .Caption = "Products"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = False

 .CanDelete = False

 .CanUpdate = False

 .CanGoUp = True

 Case EIT_PRODUCT_CATEGORY

 .Caption = "Products Categories"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_EMPLOYEE

 .Caption = "Employees"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = False

 Case EIT_CUSTOMER

 .Caption = "Customers"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = False

 Case EIT_ORDER_ROOT

 .Caption = "Orders"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = False

 .CanDelete = False

 .CanUpdate = False

 .CanGoUp = True

 Case EIT_ORDER_OPEN

 .Caption = "Open Orders"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_ORDER_ALL

 .Caption = "All Orders"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = True

 Case EIT_SUPPLIER

 .Caption = "Suppliers"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = False

 Case EIT_SHIPPER

 .Caption = "Shippers"

 .ImageIndex = IML16_FOLDER

 .ImageIndexExpanded = IML16_FOLDEROPEN

 .CanAdd = True

 .CanDelete = True

 .CanUpdate = True

 .CanGoUp = False

 End Select

 .Mode = RHS

End Property

As you can see from the previous code sample, we are simply setting the various

properties based on the type of Explorer item we are creating.

Although the startup process for the Northwind application is not complicated, it

helps to have a flowchart to help us through our discussion. We show this in Figure

10.2.

Figure 10.2. The Northwind Explorer startup process.

The code for our Activate event for frmNorthWind appears in Listing 10.3.

Example 10.3. The Activate Event on Our

frmNorthWind Form

Private Sub Form_Activate()

Dim Server As String

Dim SecurityKey As String

Dim sCMD As String

 ' should make this a registry setting or command line parameter

 Server = "NORTHWIND"

 If bLoading Then

 With NWExplorer

 sCMD = "server=" & Server & "&" & "securitykey=" & CStr(SecurityKey)

 .RegisterControl sCMD

 .SelectMode = EIT_ALL

 Call .InitControl

 End With

 bLoading = False

 End If

End Sub

From the flowchart, we initially follow Path 1, which has us calling the

RegisterControl method of our NWExplorer user control. We format our

CommandLine parameter in a manner similar to an HTML-form post command line.

More specifically, the format is defined as "var1=value1&var2=value2." Using this

method, we can arbitrarily define and communicate parameters that are of interest.

For our example, we pass in Server and SecurityKey parameters. This latter

parameter is used by the security mechanism that is discussed in Chapter 15,

"Concluding Remarks." We use this strange calling approach to simplify the

integration of our ActiveX controls with our IE browser. The code for the

RegisterControl method appears in Listing 10.4.

Example 10.4. The RegisterControl Method of Our

NWExplorer User Control

Public Sub RegisterControl(CommandLine As String)

 Call ParseCommandLine(CommandLine)

 Call AppClient.InitClient(Server)

End Sub

As can be seen in the preceding listing, our RegisterControl method immediately

calls a ParseCommandLine method that splits out the string and sets control-level

properties based on the information passed. These properties include Server,

SecurityKey, and BrowserMode. The code for our ParseCommandLine method on

the NWExplorer control appears in Listing 10.5.

Example 10.5. The ParseCommandLine Method of Our

NWExplorer User Control

Public Sub ParseCommandLine(ByVal CommandLine As String)

 Dim Args() As String

 Dim ArgValue() As String

 Dim i As Integer, j As Integer

 If Left(CommandLine, 1) = Chr(34) Then

 CommandLine = Mid(CommandLine, 2)

 End If

 If Right(CommandLine, 1) = Chr(34) Then

 CommandLine = Left(CommandLine, Len(CommandLine) - 1)

 End If

For i = LBound(Args) To UBound(Args)

 ArgValue = Split(Args(i), "=")

 Select Case UCase(ArgValue(0))

 Case "SERVER"

 Server = ArgValue(1)

 Case "SECURITYKEY"

 SecurityKey = ArgValue(1)

 Case "BROWSERMODE"

 Select Case UCase(ArgValue(1))

 Case "TRUE", "Y", "YES"

 BrowserMode = True

 Case Else

 BrowserMode = False

 End Select

 End Select

 Next I

End Sub

After this method completes, the RegisterControl method proceeds to call the

InitClient method on our AppClient object of the control. This object is initially

instantiated as CNWClient and then mapped to AppClient, which is an instance of

IAppClient. We define both of these variables to be global in scope relative to the

user control and instantiate them on the UserControl_Initialize event, as seen

in Listing 10.6.

Example 10.6. The Implementation of the Initialize

Event on Our NWExplorer User Control

Private Sub UserControl_Initialize()

 Set NWClient = New CNWClient

 Set AppClient = NWClient

 lvListView.View = lvwReport

 tbToolBar.Buttons(LISTVIEW_MODE3).Value = tbrPressed

End Sub

The InitClient method attempts to establish the connection to the remote MTS

object running on the server that we identified with our "Server=" portion of the

command line.

After we have completed Path 1, we fall back to our Form_Activate method of

frmNorthWind and proceed down Path 2. Now, we call the InitControl method of

our NWExplorer control, which then calls our LoadRoot method. This final method is

responsible for setting up the TreeView, binding its nodes to the necessary

IExplorerItem objects. From that point on, we are ready to respond to user

interaction. Our LoadRoot method follows in Listing 10.7.

Example 10.7. The LoadRoot and Supporting Methods

in Our NWExplorer User Control

Private Sub LoadRoot()

Dim oNode As Node, oRootNode As Node

Dim oChildNode As Node, oDummyNode As Node

Dim ExplorerItem As IExplorerItem

Dim NWExplorerItem As CNWExplorerItem

Dim i As Integer

On Error GoTo ExitSub

 With tvTreeView.Nodes

 .Clear

 'root item.

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_ROOT

 With ExplorerItem

 Set oRootNode = .Add(, , , .Caption, .ImageIndex, .ImageIndex)

 End With

 oRootNode.ExpandedImage = ExplorerItem.ImageIndexExpanded

 Set oRootNode.Tag = ExplorerItem

 If SelectMode = EIT_ALL Or SelectMode = EIT_ORDER_ROOT Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_ORDER_ROOT

 Set oNode = AddNode(oRootNode, ExplorerItem)

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_ORDER_ALL

 Set oChildNode = AddNode(oNode, ExplorerItem)

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_ORDER_OPEN

 Set oChildNode = AddNode(oNode, ExplorerItem)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_CATEGORY Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_CATEGORY

 Set oNode = AddNode(oRootNode, ExplorerItem)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_PRODUCT_ROOT Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_PRODUCT_ROOT

 Set oNode = AddNode(oRootNode, ExplorerItem)

 Set oChildNode = .Add(oNode, tvwChild, , "DUMMY", 0, 0)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_EMPLOYEE Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_EMPLOYEE

 Set oNode = AddNode(oRootNode, ExplorerItem)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_CUSTOMER Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_CUSTOMER

 Set oNode = AddNode(oRootNode, ExplorerItem)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_SHIPPER Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_SHIPPER

 Set oNode = AddNode(oRootNode, ExplorerItem)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_SUPPLIER Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_SUPPLIER

 Set oNode = AddNode(oRootNode, ExplorerItem)

 End If

 If SelectMode = EIT_ALL Or SelectMode = EIT_COUNTRY_ROOT Then

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_COUNTRY_ROOT

 Set oNode = AddNode(oRootNode, ExplorerItem)

 Set oChildNode = .Add(oNode, tvwChild, , "DUMMY", 0, 0)

 End If

 End With

'initial settings….

 Set tvTreeView.SelectedItem = oRootNode

 CurrentNode = oRootNode

 Call SetListViewHeader(EIT_INIT)

 oRootNode.Expanded = True

 If SelectMode <> EIT_ALL Then

 ' preselect the first child node

 CurrentNode = CurrentNode.Child

 tvTreeView.SelectedItem = CurrentNode

 Call tvTreeView_NodeClick(CurrentNode)

 End If

ExitSub:

 Exit Sub

End Sub

Private Function AddNode(ANode As Node, ExplorerItem As IExplorerItem)

As Node

 Dim oNode As Node

 With ExplorerItem

 Set oNode = tvTreeView.Nodes.Add(ANode, tvwChild, , .Caption, _

 .ImageIndex, .ImageIndexExpanded)

 oNode.ExpandedImage = .ImageIndexExpanded

 End With

 Set oNode.Tag = ExplorerItem

 Set AddNode = oNode

End Function

The Expand and NodeClick events of the TreeView are responsible for driving the

navigational aspects of the Explorer control. In either of these events, we call a

LoadChildren method to process the event. The code for LoadChildren appears in

Listing 10.8.

Example 10.8. The LoadChildren Method on Our

NWExplorer User Control to Handle Events Generated

by the User

Private Const TRE_NODECLICK As Integer = 0

Private Const TRE_EXPAND As Integer = 1

Private Const LVW_DBLCLICK As Integer = 2

Private Function LoadChildren(oTreeNode As Node, iEventType As Integer)

 As Boolean

Dim i As Integer

Dim sCriteria As String

Dim oItem As ListItem

Dim oNode As Node, ChildNode As Node, oDummyNode As Node

Dim NWExplorerItem As CNWExplorerItem

Dim ExplorerItem As IExplorerItem

Dim iMode As Integer

Dim CategoryItems As CCategoryItems

Dim CategoryItem As CCategoryItem

Dim CountryItem As CCountryItem

Dim CountryItems As CCountryItems

Dim RegionItem As CRegionItem

Dim RegionItems As CRegionItems

Dim CityItem As CCityItem

Dim CityItems As CCityItems

Dim AppCollection As IAppCollection

Dim AppObject As IappObject

On Error GoTo ErrorTrap

Screen.MousePointer = vbHourglass

 If TypeOf oTreeNode.Tag Is IExplorerItem Then

 ' check for our dummy node…we put it there to get the +

 If Not oTreeNode.Child Is Nothing Then

 If oTreeNode.Child.Text = "DUMMY" Then

 tvTreeView.Nodes.Remove (oTreeNode.Child.Index)

 End If

 End If

 Set ExplorerItem = oTreeNode.Tag

 iMode = ExplorerItem.Mode

 Select Case iMode

 Case EIT_PRODUCT_ROOT

 If Not ExplorerItem.Loaded Then

 ExplorerItem.Loaded = True

 Set CategoryItems = AppClient.LoadCollection(CT_CATEGORY, 0, 0)

 Set AppCollection = CategoryItems

 For i = 1 To AppCollection.Count

 Set CategoryItem = AppCollection.Item(i)

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_PRODUCT_CATEGORY

 ExplorerItem.AppObject = CategoryItem

 Set oNode = tvTreeView.Nodes.Add(oTreeNode, tvwChild, , _

 CategoryItem.Name, _

 IML16_FOLDER, IML16_FOLDEROPEN)

 Set oNode.Tag = ExplorerItem

 Next

 End If

 Case EIT_COUNTRY_ROOT

 If Not ExplorerItem.Loaded Then

 ExplorerItem.Loaded = True

 Set CountryItems = AppClient.LoadCollection(CT_COUNTRY, 0, 0)

 Set AppCollection = CountryItems

 For i = 1 To AppCollection.Count

 Set CountryItem = AppCollection.Item(i)

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_COUNTRY_REGION_ROOT

 ExplorerItem.AppObject = CountryItem

 Set oNode = tvTreeView.Nodes.Add(oTreeNode, tvwChild, , _

 CountryItem.Name, _

 IML16_FOLDER, IML16_FOLDEROPEN)

 Set ChildNode = tvTreeView.Nodes.Add(oNode, tvwChild, ,

 "DUMMY", 0, 0)

 Set oNode.Tag = ExplorerItem

 Next

 End If

 Case EIT_COUNTRY_REGION_ROOT

 If Not ExplorerItem.Loaded Then

 ExplorerItem.Loaded = True

 Set AppObject = ExplorerItem.AppObject

 Set RegionItems = AppClient.LoadCollection(CT_REGION, _

 AppObject.Id, _

 AppObject.SubId)

 Set AppCollection = RegionItems

 For i = 1 To AppCollection.Count

 Set RegionItem = AppCollection.Item(i)

 Set NWExplorerItem = New CNWExplorerItem

 Set ExplorerItem = NWExplorerItem

 ExplorerItem.Mode = EIT_COUNTRY_REGION_CITY

 ExplorerItem.AppObject = RegionItem

 Set oNode = tvTreeView.Nodes.Add(oTreeNode, tvwChild, , _

 RegionItem.Name, _

 IML16_FOLDER, IML16_FOLDEROPEN)

 Set ChildNode = tvTreeView.Nodes.Add(oNode, tvwChild, , _

 "DUMMY", 0, 0)

 Set oNode.Tag = ExplorerItem

 Next

 End If

 End Select

 If iEventType = TRE_NODECLICK Or iEventType = LVW_DBLCLICK Then

 CurrentListViewMode = iMode

 If Not oTreeNode.Child Is Nothing Then

 ' transfer child nodes

 Set oNode = oTreeNode.Child

 i = oNode.FirstSibling.Index

 Set oItem = lvListView.ListItems.Add(, , oNode.FirstSibling.Text,

_

 IML32_FOLDER, IML16_FOLDER)

 Set oItem.Tag = oNode.FirstSibling

 While i <> oNode.LastSibling.Index

 Set ChildNode = tvTreeView.Nodes(i)

 Set oItem = lvListView.ListItems.Add(, , ChildNode.Next.Text,

_

 IML32_FOLDER, IML16_FOLDER)

 Set oItem.Tag = ChildNode.Next

 i = tvTreeView.Nodes(i).Next.Index

 Wend

 RaiseEvent ItemSelectable(False)

 Else

 Call LoadDetail

 End If

 End If

 End If

ExitFunction:

 Screen.MousePointer = vbDefault

 LoadChildren = ErrorItems.Count = 0

 Exit Function

ErrorTrap:

 Call HandleError(Err.Number, Err.Source, Err.Description)

 Resume Next

End Function

The parameters for this method include the Node object that received the event and

the event type indicated by iEventType. We define three constants that let us know

what type of event generated this method call so that we can handle it appropriately.

We define them as TRE_NODECLICK, TRE_EXPAND, and LVW_DBLCLICK. We first

ensure that the Tag property of the Node object contains a reference to an

IExplorerItem object. If so, we proceed to extract its mode property, which tells us

the type of Explorer item it is. Typically, we add special processing here only if we

have to build the child list dynamically as part of a database request. In this case,

we have two nodes of this type: "Products" and "Cities." We define all other

child nodes statically as part of the LoadRoot method, with the TreeView

automatically handling expansion. After we check for a child expansion, we proceed

to transfer any child nodes over to the ListView, mimicking the functionality of the

Microsoft Windows Explorer. If we are not performing a child expansion, we proceed

to call the LoadDetail method that populates our ListView.

Our LoadDetail method is similar to many of our business layer methods in that we

must dimension variable references for all our potential object collections that we

load into the ListView. The code for the LoadDetail method appears in Listing

10.9.

Example 10.9. The LoadDetail Method on Our

NWExplorer User Control that Manages the ListView

on the Right Side of the Control

Private Sub LoadDetail()

Dim i As Integer, iMode As Integer

Dim lId As Long

Dim oItem As ListItem

Dim NWExplorerItem As CNWExplorerItem

Dim ExplorerItem As IExplorerItem

Dim vCriteria As Variant

Dim vOrder As Variant

Dim AppCollection As IAppCollection

Dim AppObject As IAppObject

Dim CategoryItems As CCategoryItems

Dim CategoryItem As CCategoryItem

Dim ShipperItems As CShipperItems

Dim ShipperItem As CShipperItem

Dim ProductItem As CProductItem

Dim ProductItems As CProductItems

Dim EmployeeProxyItem As CEmployeeProxyItem

Dim EmployeeProxyItems As CEmployeeProxyItems

Dim CustomerProxyItem As CCustomerProxyItem

Dim CustomerProxyItems As CCustomerProxyItems

Dim SupplierProxyItem As CSupplierProxyItem

Dim SupplierProxyItems As CSupplierProxyItems

Dim OrderProxyItem As COrderProxyItem

Dim OrderProxyItems As COrderProxyItems

Dim CityItems As CCityItems

Dim CityItem As CCityItem

On Error GoTo ErrorTrap

 'load the detail items if any….

 If TypeOf CurrentNode.Tag Is IExplorerItem Then

 Set ExplorerItem = CurrentNode.Tag

 iMode = ExplorerItem.Mode

 CurrentListViewMode = iMode

 Select Case iMode

 Case EIT_CATEGORY

 Set CategoryItems = AppClient.LoadCollection(CT_CATEGORY, 0,

0)

 Set AppCollection = CategoryItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set CategoryItem = AppCollection.Item(i)

 With CategoryItem

 Set oItem = lvListView.ListItems.Add(, , .Name, _

 IML32_ITEM, IML16_ITEM)

 oItem.SubItems(1) = .Description

 End With

 Set oItem.Tag = CategoryItem

 Next i

 Case EIT_SHIPPER

 Set ShipperItems = AppClient.LoadCollection(CT_SHIPPER, 0,

0)

 Set AppCollection = ShipperItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set ShipperItem = AppCollection.Item(i)

 With ShipperItem

 Set oItem = lvListView.ListItems.Add(, , .CompanyName, _

 IML32_ITEM, IML16_ITEM)

 oItem.SubItems(1) = .Phone

 End With

 Set oItem.Tag = ShipperItem

 Next i

 Case EIT_EMPLOYEE

 Set EmployeeProxyItems = _

 AppClient.LoadCollection(CT_EMPLOYEE_PROXY, 0, 0)

 Set AppCollection = EmployeeProxyItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set EmployeeProxyItem = AppCollection.Item(i)

 With EmployeeProxyItem

 Set oItem = lvListView.ListItems.Add(, , .LastName & ",

" & _

 .FirstName, _

 IML32_ITEM, IML16_ITEM)

 End With

 Set oItem.Tag = EmployeeProxyItem

 Next i

 Case EIT_CUSTOMER

 Set CustomerProxyItems = _

 AppClient.LoadCollection(CT_CUSTOMER_PROXY, 0, 0)

 Set AppCollection = CustomerProxyItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set CustomerProxyItem = AppCollection.Item(i)

 With CustomerProxyItem

 Set oItem = lvListView.ListItems.Add(, , .CompanyName, _

 IML32_ITEM, IML16_ITEM)

 oItem.SubItems(1) = .CustomerCode

 End With

 Set oItem.Tag = CustomerProxyItem

 Next i

 Case EIT_SUPPLIER

 Set SupplierProxyItems = _

 AppClient.LoadCollection(CT_SUPPLIER_PROXY, 0, 0)

 Set AppCollection = SupplierProxyItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set SupplierProxyItem = AppCollection.Item(i)

 Set oItem = lvListView.ListItems.Add(, , _

 SupplierProxyItem.CompanyName, _

 IML32_ITEM, IML16_ITEM)

 Set oItem.Tag = SupplierProxyItem

 Next i

 Case EIT_COUNTRY_REGION_CITY

 Set AppObject = ExplorerItem.AppObject

 Set CityItems = AppClient.LoadCollection(CT_CITY, _

 AppObject.Id, AppObject.SubId)

 Set AppCollection = CityItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set CityItem = AppCollection.Item(i)

 Set oItem = lvListView.ListItems.Add(, , CityItem.Name, _

 IML32_ITEM, IML16_ITEM)

 Set oItem.Tag = CityItem

 Next i

 Case EIT_PRODUCT_CATEGORY

 CurrentListViewMode = EIT_PRODUCT

 Set ExplorerItem = CurrentNode.Tag

 Set CategoryItem = ExplorerItem.AppObject

 Set AppObject = CategoryItem

 vCriteria = Array(Array("CategoryId", "=", AppObject.Id))

 vOrder = Array("Name")

 Set ProductItems =

AppClient.LoadQueryCollection(CT_PRODUCT, _

 vCriteria, vOrder)

 Set AppCollection = ProductItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set ProductItem = AppCollection.Item(i)

 With ProductItem

 Set oItem = lvListView.ListItems.Add(, , .Name, _

 IML32_ITEM, IML16_ITEM)

 oItem.SubItems(1) = .QuantityPerUnit

 oItem.SubItems(2) = .UnitPrice

 oItem.SubItems(3) = .UnitsInStock

 oItem.SubItems(4) = .UnitsOnOrder

 oItem.SubItems(5) = IIf(.IsDiscontinued, "Yes", "No")

 End With

 Set oItem.Tag = ProductItem

 Next i

 Case EIT_ORDER_ALL

 Set OrderProxyItems =

AppClient.LoadCollection(CT_ORDER_PROXY, _

 0, 0)

 Set AppCollection = OrderProxyItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set OrderProxyItem = AppCollection.Item(i)

 With OrderProxyItem

 Set oItem = lvListView.ListItems.Add(, , .CustomerName,

_

 IML32_ITEM, IML16_ITEM)

 oItem.SubItems(1) = IIf(.OrderDate = vbEmpty,

"", .OrderDate)

 oItem.SubItems(2) = IIf(.RequiredDate = vbEmpty, "", _

 .RequiredDate)

 oItem.SubItems(3) = IIf(.ShippedDate = vbEmpty, "", _

 .ShippedDate)

 oItem.SubItems(4) = .EmployeeLastName & "," & _

 .EmployeeFirstName

 End With

 Set oItem.Tag = OrderProxyItem

 Next i

 Case EIT_ORDER_OPEN

 vCriteria = Array(Array("ShippedDate", "is", "null"))

 vOrder = Array("RequiredDate", "CustomerName")

 Set OrderProxyItems = _

 AppClient.LoadQueryCollection(CT_ORDER_PROXY, _

 vCriteria, vOrder)

 Set AppCollection = OrderProxyItems

 lvListView.Visible = False

 RaiseEvent ItemSelectable(False)

 CurrentListViewMode = iMode

 For i = 1 To AppCollection.Count

 Set OrderProxyItem = AppCollection.Item(i)

 With OrderProxyItem

 Set oItem = lvListView.ListItems.Add(, , .CustomerName,

_

 IML32_ITEM, IML16_ITEM)

 oItem.SubItems(1) = IIf(.OrderDate = vbEmpty, "", _

 .OrderDate)

 oItem.SubItems(2) = IIf(.RequiredDate = vbEmpty, "", _

 .RequiredDate)

 oItem.SubItems(3) = IIf(.ShippedDate = vbEmpty, "", _

 .ShippedDate)

 oItem.SubItems(4) = .EmployeeLastName & "," & _

 .EmployeeFirstName

 End With

 Set oItem.Tag = OrderProxyItem

 Next i

 End Select

 End If

ExitSub:

 lvListView.Visible = True

 Call SetObjectCount(lvListView.ListItems.Count)

 If lvListView.ListItems.Count > 0 Then

 Set lvListView.SelectedItem = lvListView.ListItems.Item(1)

 RaiseEvent ItemSelectable(True)

 End If

 Exit Sub

ErrorTrap:

 Call HandleError(Err.Number, Err.Source, Err.Description)

 Resume Next

End Sub

We start this method by extracting the ExplorerItem associated with the currently

selected Node object in the TreeView. Based on the value of the Mode property of

this ExplorerItem, we run through a Select Case statement to determine our

course of action. As you might notice, most of the actions are simple calls to the

LoadCollection method of the AppClient for a given class type. After we have

loaded the necessary collection, we proceed to iterate through it, moving the

information into the ListView. A convenient CurrentListViewMode property is

responsible for setting up our ListView header columns, based on the type of

collection we are loading. By placing all this ListView initialization code into a single

property, we make it easier to maintain in the future.

We deviate a bit from this simple LoadCollection approach for our EIT_PRODUCT_

CATEGORY and EIT_ORDER_OPEN cases in which we use a LoadQueryCollection to

load the collection of products for a given category. We rely on the AppObject

property of the ExplorerItem object to get the CategoryId for the query. We also

use a LoadQueryCollection to help us load the detail for the open orders, where

we check for a null ship date.

One of the other items you might have noticed is that we have defined new

collection classes with the word Proxy in their names. We define these objects as

scaled-down versions of their fully populated siblings. We must define this all the

way back to the NWServer component, creating new class type constants and

modifying the GetClassDef method to support these new classes. We also must

define the necessary classes in NWClient. We take the extra development effort to

define these lighter-weight classes so that we can minimize network traffic and

latency during our browsing process. A user does not need to see every data

element of every object to find what interests him.

Now that we have all the pieces in place, we must begin responding to user input.

We start by attaching an event handler to our ToolBar control. To accomplish this,

we must first define a set of constants that corresponds to the button indexes within

the ToolBar control. For example:

Private Const TBR_NEW As Integer = 2

Private Const TBR_DELETE As Integer = 4

Private Const TBR_PROPERTIES As Integer = 5

Private Const TBR_UPONE As Integer = 7

Private Const TBR_LVLARGE As Integer = 9

Private Const TBR_LVSMALL As Integer = 10

Private Const TBR_LVLIST As Integer = 11

Private Const TBR_LVDETAILS As Integer = 12

Private Const TBR_HELP As Integer = 14

You should notice that these constants are not contiguous because of the separator

buttons that are in use in the ToolBar control.

Next, we create a DoToolEvent function that is nothing more than a Select Case

statement switched on the index value of the button the user clicks. We map the

ButtonClick method of the ToolBar control to this DoToolEvent method (see

Listing 10.10).

Example 10.10. Implementation of the ButtonClick

Method of the Toolbar Control Used Within Our

NWExplorer User Control

Private Sub tbToolbar_ButtonClick(ByVal Button As MSComctlLib.Button)

 Call DoToolEvent(Button.Index)

End Sub

Private Sub DoToolEvent(iIndex As Integer)

On Error GoTo ErrorTrap

 Select Case iIndex

 Case TBR_NEW

 Call EventRaise(emInsert)

 Case TBR_DELETE

 Call DeleteItem

 Case TBR_PROPERTIES

 Call EventRaise(emUpdate)

 Case TBR_UPONE

 CurrentNode = CurrentNode.Parent

 Set tvTreeView.SelectedItem = CurrentNode

 Call tvTreeView_NodeClick(CurrentNode)

 Case TBR_LVLARGE

 tbToolBar.Buttons.Item(TBR_LVLARGE).Value = tbrPressed

 lvListView.View = lvwIcon

 Case TBR_LVSMALL

 tbToolBar.Buttons.Item(TBR_LVSMALL).Value = tbrPressed

 lvListView.View = lvwSmallIcon

 Case TBR_LVLIST

 tbToolBar.Buttons.Item(TBR_LVLIST).Value = tbrPressed

 lvListView.View = lvwList

 Case TBR_LVDETAILS

 tbToolBar.Buttons.Item(TBR_LVDETAILS).Value = tbrPressed

 lvListView.View = lvwReport

 Case TBR_HELP

 MsgBox "Add 'Help' button code."

 End Select

ExitSub:

 If ErrorItems.Count > 0 Then

 ErrorItems.Show

 End If

 Exit Sub

ErrorTrap:

 Call HandleError(Err.Number, Err.Source, Err.Description)

 Resume Next

End Sub

You should notice that for our Add and Edit functionality we are calling a private

method called EventRaise. We must use an event because we are within a user

control, and this is the only mechanism to communicate outward. We must send this

event out, along with critical information, to the host application whether it is a

Visual Basic form or an IE5 HTML page. The host application is then responsible for

taking the appropriate action. For all other button actions, we are relying on

functionality within this user control. Our EventRaise code appears in Listing 10.11.

Example 10.11. The EventRaise Method on Our

NWExplorer User Control Used to Relay

ActionRequest Events Out to Our Container Control

Private Sub EventRaise(eMode As EnumEditModes)

Dim ExplorerItem As IExplorerItem

Dim AppObject As IAppObject

Dim oListItem As ListItem

Dim ClassId As Integer, ActionClassId As Integer

Dim ClassName As String

If TypeOf CurrentNode.Tag Is IExplorerItem Then

 Set ExplorerItem = CurrentNode.Tag

 Set oListItem = lvListView.SelectedItem

 If TypeOf oListItem.Tag Is IAppObject Then

 Set AppObject = oListItem.Tag

 Call AppClient.GetClassInfo(AppObject.ClassId, ClassName,

ActionClassId)

 With AppObject

 RaiseEvent ActionRequest(ExplorerItem.Mode, eMode, .Id, .SubId, _

 Server, SecurityKey)

 End With

 End If

End If

End Sub

Upon entering the method, we attempt to extract an AppObject object from the

ExplorerItem object that we receive via the Tag property of the currently selected

ListItem object of the ListView control. If we are in delete mode for this method,

we prompt the user with a confirmation message. We use a CMessageBox class in

our AppCommon library, which we have defined specifically for this process. For other

modes, we simply raise the ActionRequest event outward for handling. We cover

the host application's response to this event in the section titled "The Tabbed

Dialog," later in this chapter.

Within our host application, we have the following simple code within our

ActionRequest event handler to manage our object addition and update logic (see

Listing 10.12).

Example 10.12. The Implementation of the

ActionRequest Event on Our frmNorthWind Container

Form

Private Sub NWExplorer_ActionRequest(EIT As Integer, _

 EditMode As EnumEditModes, _

 Id As Long, _

 SubId As Long, _

 Server As String, _

 SecurityKey As String)

 Select Case EIT

 Case EIT_ORDER, EIT_ORDER_ALL, EIT_ORDER_OPEN

 Load frmOrder

 With frmOrder

 If EditMode = emUpdate Then

 .Id = Id

 .SubId = SubId

 Else

 .Id = 0

 .SubId = 0

 End If

 .Mode = EditMode

 .Server = Server

 .SecurityKey = SecurityKey

 .Show vbModal

 End With

 Set frmOrder = Nothing

 End Select

End Sub

Note that the frmOrder form contains our NWOrder control that we will be

developing in the "The Tabbed Dialog" section.

The last remaining method of importance is SetStates. This method is responsible

for enabling and disabling buttons on the ToolBar control, based on the settings of

the ExplorerItem associated with the currently selected Node object in the

TreeView control. We have also created a pop-up menu for which we must set state,

using this method as well. We call this method from the NodeClick event of the

TreeView control. The code for the SetStates method appears in Listing 10.13.

Example 10.13. The SetStates Method on Our

NWExplorer User Control, Used to Set the States for

the Toolbar Buttons and Pop-Up Menus

Private Sub SetStates()

 Dim ExplorerItem As IExplorerItem

 If TypeOf CurrentNode.Tag Is IExplorerItem Then

 Set ExplorerItem = CurrentNode.Tag

 With ExplorerItem

 If SelectMode = EIT_ALL Then

 tbToolBar.Buttons.Item(TBR_NEW).Enabled = .CanAdd

 mnuObjectNew.Enabled = .CanAdd

 tbToolBar.Buttons.Item(TBR_DELETE).Enabled = .CanDelete

 mnuObjectDelete.Enabled = .CanDelete

 tbToolBar.Buttons.Item(TBR_PROPERTIES).Enabled = .CanUpdate

 mnuObjectEdit.Enabled = .CanUpdate

 Else

 tbToolBar.Buttons.Item(TBR_NEW).Enabled = False

 mnuObjectNew.Enabled = False

 tbToolBar.Buttons.Item(TBR_DELETE).Enabled = False

 mnuObjectDelete.Enabled = False

 tbToolBar.Buttons.Item(TBR_PROPERTIES).Enabled = False

 End If

 tbToolBar.Buttons.Item(TBR_UPONE).Enabled = .CanGoUp

 End With

 End If

End Sub

Now that we have the control basics down, we present NWExplorer running within

the context of IE5 in Figure 10.3. Note that IE4 is also acceptable for ActiveX control

hosting. It is also possible to host ActiveX controls within Netscape Navigator

running on Windows 95/98/NT if you use a plug-in.

Figure 10.3. The Northwind Explorer control within

IE5.

The HTML code required to embed the control and activate it appears in Listing

10.14. We will be spending much more time in later chapters demonstrating how to

implement controls as part of Web pages. Note that the value for clsid might vary

from that shown in Listing 10.14.

Example 10.14. The HTML for a Page that Hosts Our

NWExplorer User Control

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<TITLE>Northwind Traders</TITLE>

<script LANGUAGE="VBScript">

<!—

Sub Page_Initialize

 On Error Resume Next

 Call NWExplorer.RegisterControl("server=PTINDALL2&securitykey=")

 NWExplorer.SelectMode = 999 ' EIT_ALL

 NWExplorer.InitControl

End Sub

—>

</script>

</HEAD>

<BODY ONLOAD="Page_Initialize" rightmargin=0 topmargin=0

 leftMargin=0 bottomMargin=0>

<OBJECT classid="clsid:41AC6690-8E70-11D3-813B-00805FF99B76"

 id=NWExplorer style="LEFT: 0px; TOP: 0px"

 width=100% height=100%>

</OBJECT>

</BODY>

</HTML>

The HTML shown in Listing 10.14 was generated using Microsoft Visual InterDev 6.0.

We demonstrate the use of this tool in Chapter 12, "Taking the Enterprise

Application to the Net."

The Tabbed Dialog

Although the concept of a tabbed dialog is intrinsically simple, we must place some

thought into the best layout of our elements on the various tabs. Remembering the

statement about the user layer being an outgrowth of the business layer offers us

some guidance here. Suppose we have an object hierarchy like the one shown in

Figure 10.4. Here we have a root object containing several subobjects that are

collections.

Figure 10.4. A sample object hierarchy.

We want to handle this "bundle" of information using the root object Cportfolio;

therefore, we might lay out our tabbed dialog as shown in Figure 10.5. This model

should follow any well-designed business layer.

Figure 10.5. Our sample object hierarchy mapped to a

tabbed dialog.

For a specific implementation example, we develop a tabbed dialog control for the

COrder object and its contained COrderDetailItems collection. We will

demonstrate not only the basics of user interface design but also the integration of

user interface elements with our AppClient.

To start, we create a User Control project and name it NWOrder. We place a ToolBar

control and a tabbed dialog with two tabs onto our layout space. We name the first

tab General, as shown in Figure 10.6, and the other Detail, as shown in Figure 10.7.

Figure 10.6. The NWOrder control's General tab.

Figure 10.7. The NWOrder control's Detail tab.

Our Form_Activate event in our host application for the NWOrder control is identical

to the one we designed for our NWExplorer. Similarly, we implement

RegisterControl and InitControl methods that connect to our AppClient

component and initialize the control, respectively. Our initialization flow appears in

Figure 10.8.

Figure 10.8. The frmOrder form startup process.

The implementation of our InitControl method is quite different in our NWOrder

control than in the NWExplorer control. The code for the NWOrder implementation

appears later in Listing 10.15.

Example 10.15. The InitControl Method on Our

NWOrder User Control

Public Sub InitControl()

Dim i As Integer

Dim s As String

Dim AppObject As IAppObject

Dim AppCollection As IAppCollection

On Error GoTo ErrorTrap

 '1. initialize form properties….

 FormDirty = False

 For i = 0 To tabMain.Tabs - 1

 TabDirty(i) = False: TabClick(i) = False

 Next

 Call SetStatusText("Initializing…")

 picGeneral.Visible = False

 Screen.MousePointer = vbHourglass

 '2. load this order object…

 If Mode = emUpdate Then

 Set Order = AppClient.LoadObject(CT_ORDER, Id, SubId)

 Set AppObject = Order

 Set OrderDetailItems = _

 AppClient.LoadCollection(CT_ORDER_DETAIL, Id, SubId)

 Set AppCollection = OrderDetailItems

 Else

 Set Order = New COrder

 Set AppObject = Order

 AppObject.Id = 0

 AppObject.SubId = SubId

 AppObject.IsDirty = True

 AppObject.IsLoaded = True

 Set OrderDetailItems = New COrderDetailItems

 Set AppCollection = OrderDetailItems

 End If

 If Mode = emUpdate Then

 s = ""

 Else

 s = "[New]"

 End If

 RaiseEvent SetParentCaption(s)

 '3. initialize all controls

 Call ClearControls(TAB_GENERAL)

 '4. Set the current tab

 CurrentTab = TAB_GENERAL

 picGeneral.Visible = True

 Screen.MousePointer = vbDefault

ExitSub:

 If ErrorItems.Count > 0 Then

 ErrorItems.Show

 RaiseEvent UnloadMe

 End If

 Call SetStatusText("Ready.")

 Exit Sub

ErrorTrap:

 Call HandleError(Err.Number, Err.Source, Err.Description)

 Resume Next

End Sub

To manage our tab states, we define two form-level property arrays known as

TabClick and TabDirty. We implement these two properties as arrays, with one

element for each tab. We also have a form-level property known as FormDirty. We

initialize all these properties at the start of our InitControls method. We then

proceed to check for whether we are initializing in Update or Insert mode via our

Mode property set by our host application. If the former, we load our global private

Order and OrderDetailItems using our AppClient. If the latter, we simply

instantiate new objects of these types. We then call our ClearControls method for

the first tab, which clears all controls on the tab. Finally, we set the CurrentTab

property to the first tab.

The code for the CurrentTab property appears in Listing 10.16.

Example 10.16. The CurrentTab Property for Our

NWOrder User Control

Public Property Let CurrentTab(ByVal iTab As Integer)

 On Error GoTo ErrorTrap

 iCurrentTab = iTab

 bLoading = True

 If TabClick(iTab) Then GoTo ExitProperty

 Call SetStatusText("Initializing…")

 Screen.MousePointer = vbHourglass

 Select Case iTab

 Case TAB_GENERAL

 Call SetControlsFromObjects(TAB_GENERAL)

 Case TAB_DETAIL

 ' need to load listview here

 ' or else we get into a nasty loop

 picDetailsTab.Visible = False

 Call LoadListView

 picDetailsTab.Visible = True

 Call SetControlsFromObjects(TAB_DETAIL)

 End Select

 TabClick(iTab) = True

ExitProperty:

 Call SetStatusText("Ready…")

 Screen.MousePointer = vbDefault

 iCurrentTab = iTab

 bLoading = False

 Call SetStates

 Exit Property

ErrorTrap:

 Call HandleError(Err.Number, Err.Source, Err.Description)

End Property

We first check to see whether the user has already clicked on this tab, by examining

the TabClick property. If this returns True, we exit out of this property. If not, we

proceed to load the controls. If we are on the TAB_GENERAL tab, we simply call the

SetControlsFromObjects method. If we are on the TAB_DETAIL, tab we must first

load the ListView control with the OrderDetailItems collection before we can call

the SetControlsFromObjects method. The code for our SetControlsFromObjects

method appears in Listing 10.17.

Example 10.17. The SetControlsFromObject Method

on Our NWOrder User Control to Update the UI Based

on Our Order Object

Private Sub SetControlsFromObjects(iTab As Integer)

Dim b As Boolean

Dim sgDown As Single

 b = bLoading

 bLoading = True

 Select Case iTab

 Case TAB_GENERAL

 With Order

 lblCustomer.Caption = .CustomerName

 lblEmployee.Caption = .EmployeeLastName & ", " & .EmployeeFirstName

 txtOrderDate.Text = IIf(.OrderDate = "12:00:00 AM" Or _

 .OrderDate = vbEmpty, "", _

 Format(.OrderDate, "mm/dd/yyyy"))

 txtRequestedDate.Text = IIf(.RequiredDate = "12:00:00 AM" Or _

 .RequiredDate = vbEmpty, "",_

 Format(.RequiredDate, "mm/dd/yyyy"))

 lblShipper.Caption = .ShipperName

 txtShippedDate.Text = IIf(.ShippedDate = "12:00:00 AM" Or _

 .ShippedDate = vbEmpty, "", _

 Format(.ShippedDate, "mm/dd/yyyy"))

 txtShipToName.Text = .ShipToName

 txtShipToAddress.Text = .ShipToAddress

 txtFreight.Text = .FreightCost

 txtShipToPostal.Text = .ShipToPostalCode

 lblCRC.Caption = .ShipToCity & ", " & .ShipToRegion & " " & _

 .ShipToCountry

 End With

 Case TAB_DETAIL

 With SelectedOrderItem

 lblProduct.Caption = .Product

 lblSupplier.Caption = .Supplier

 lblUnitPrice.Caption = Format(.UnitPrice, "$ ###0.00")

 txtDiscount.Text = Format(.Discount, "##0.00")

 txtQuantity.Text = .Quantity

 lblStandardTotal.Caption = _

 Format(OrderDetailItems.OrderTotal(False), "$ #,##0.00")

 lblDiscountedTotal.Caption = _

 Format(OrderDetailItems.OrderTotal(True), "$ #,##0.00")

 If SelectedOrderItem.Product = "[New Product]" Then

 txtDiscount.Enabled = False

 txtQuantity.Enabled = False

 Else

 txtDiscount.Enabled = True

 txtQuantity.Enabled = True

 End If

 End With

 End Select

bLoading = b

End Sub

Notice that our Detail tab contains a ListView control with a series of controls below

it. The values in these secondary controls correspond to a row in the ListView, with

each column mapping to one of the controls. We have chosen this approach for

demonstration purposes only. In many cases, you might want to use an advanced

grid control, which has embedded ComboBox and CommandButton capabilities.

After we have loaded our control with the necessary object information, we must

begin reacting to user inputs. We use the Validate event on our TextBox controls

to ensure that our application performs appropriate property validation. For

example, our txtFreight TextBox control has the validation code shown in Listing

10.18.

Example 10.18. Implementation of the Validate Event

on the txtFreightTextBox Control to Implement

Field-Level Validation

Private Sub txtFreight_Validate(Cancel As Boolean)

 If IsNumeric(txtQuantity.Text) Then

 If CDbl(txtDiscount.Text) <= 0 Then

 Cancel = True

 End If

 Else

 Cancel = False

 End If

End Sub

We also use the KeyDown and KeyPress events to track whether a user changes a

value so that we can set our TabDirty and FormDirty properties. For an example,

see Listing 10.19.

Example 10.19. Implementation of the and KeyDown

Events on the txtFreight TextBox Control to Track

Dirty Status

Private Sub txtFreight_KeyPress(KeyAscii As Integer)

 TabDirty(TAB_GENERAL) = True

End Sub

Private Sub txtFreight_KeyDown(KeyCode As Integer, Shift As Integer)

If (KeyCode = vbKeyDelete Or KeyCode = vbKeySpace Or KeyCode = vbKeyBack)

Then

 TabDirty(TAB_GENERAL) = True

 End If

End Sub

Notice that we have implemented many of our input fields as Label and

CommandButton controls. For these fields, we are relying on the SelectMode of our

NWExplorer control to help. Figure 10.9 shows the selection of the customer for the

order.

Figure 10.9. The Explorer control in selection mode

for the customer class.

After the user has made the necessary changes to the order and/or modified

elements in the OrderDetailItems collection, he or she can proceed to save the

changes to the database. For this, we reverse the process of loading the NWOrder

control. The Save method implements this process (see Listing 10.20).

Example 10.20. The Save Method on Our NWOrder

User Control to Commit Changes to the Database

Through the Business Layer

Private Function Save() As Boolean

Dim v

Dim i As Integer

Dim lRc As Long

Dim sMsg As String, sBase As String

Dim Errors As Variant

Dim AppObject As IAppObject

Dim AppCollection As IappCollection

On Error GoTo ErrorTrap

 Screen.MousePointer = vbHourglass

 Call SetStatusText("Saving changes….")

 If TabDirty(TAB_GENERAL) Then

 If Not SetControlsToObjects(TAB_GENERAL) Then GoTo ExitFunction

 Set AppObject = Order

 If Not AppObject.IsValid(Errors) Then

 Call ErrorItems.MakeFromVariantArray(Errors, vbObjectError, _

 "NWOrder", "Save")

 ErrorItems.Show

 GoTo ExitFunction

 End If

 If Mode = emUpdate Then

 Call AppClient.UpdateObject(AppObject.ClassId, AppObject)

 Else

 Call SetStatusText("Inserting new object…")

 AppObject.ClassId = CT_ORDER

 Call AppClient.InsertObject(AppObject.ClassId, AppObject)

 If ErrorItems.Count > 0 Then

 ErrorItems.Show

 End If

 Mode = emUpdate

 Id = AppObject.Id

 SubId = AppObject.SubId

 Call InitControl

 End If

 TabDirty(TAB_GENERAL) = ErrorItems.Count > 0

 End If

 If TabDirty(TAB_DETAIL) Then

 Set AppCollection = OrderDetailItems

 If Not AppCollection.IsValid(Errors) Then

 Call ErrorItems.MakeFromVariantArray(Errors, vbObjectError, _

 "NWOrder", "Save")

 ErrorItems.Show

 GoTo ExitFunction

 End If

 For i = 1 To AppCollection.Count

 Set AppObject = AppCollection.Item(i)

 If AppObject.Id > 0 Then

 If AppObject.IsDirty Then

 Call _AppClient.UpdateObject(AppObject.ClassId, AppObject)

 Else

 AppObject.Id = 0

 Call AppClient.InsertObject(AppObject.ClassId, AppObject)

 End If

 Next i

 Mode = emUpdate

 TabDirty(TAB_DETAIL) = ErrorItems.Count > 0

 Call InitControl

 End If

RaiseEvent ObjectSave

Call SetStates

ExitFunction:

 Save = ErrorItems.Count = 0

 Screen.MousePointer = vbDefault

 Call SetStatusText("Ready.")

 Exit Function

ErrorTrap:

 Call HandleError(Err.Number, Err.Source, Err.Description)

End Function

For a given tab, we call the SetControlsToObject method to move the control

information into the appropriate properties. We then call the IsValid method on

the AppObject or AppCollection objects to make sure that there are no issues

across property values. An example could be that the ship date occurs before the

order date. If validation succeeds, we call the necessary AppClient update or insert

functionality for the AppObject or AppCollection objects, depending on which tab

we are saving. We then clear the dirty flags and refresh the controls.

Summary

We have reached a milestone with the conclusion of this chapter because we have

implemented the complete set of functionality necessary to build a three-tiered

application. Figure 10.10 shows graphically what we have accomplished.

Figure 10.10. Our three-tiered application.

In the next chapter, we begin implementing our Internet/intranet functionality by

developing a reporting component that uses ASP for simple reports or gets a little

help from some MTS components for the more difficult reports.

Chapter 11. A Distributed Reporting Engine

Up to this point, focus for the framework has been on the input, or information

generating, side of the application. When you look at our goal of moving the sample

Northwind application into an n-tiered, distributed framework, you can see that the

work is not complete because several reports I defined are now no longer available

with this migration of functionality. This chapter shows how Active Server Pages

(ASPs), coupled with the framework components running on Microsoft Transaction

Server (MTS), can be used to replace most of the standard reporting functions in a

manner that provides access to a much broader audience. For complex reports that

cannot be handled within ASP directly, specialized reporting objects are built and

deployed on MTS.

Design Theory

Many commercially available, third-party tools are available, which provide

powerful report development capabilities. Tools like Microsoft Access are designed

to support pure client/server environments, whereas tools like Seagate Crystal

Reports and others have versions that can run as part of server process to serve up

Web-based reports. With all other parts of our application framework executed in a

distributed fashion, it is clearly desirable to continue with that design goal for

reporting purposes. At a minimum, the logic to run reports should be implemented

on a remote server machine so that report formats and logic can be changed in a

single locale rather than on every client. Some developers (pre-intranet explosion)

have cleverly achieved this type of functionality using a combination of Microsoft

Access and Microsoft Message Queue (or using a home-grown version of a simple

queue), setting up reporting servers that do nothing more than fulfill generation

requests. After a report is run, it is emailed to the requestor as an attached

document.

Although this type of report automation is impressive, in the intranet-enabled

corporation of today, such extensive efforts are no longer needed because ASP can

fulfill most of the same reporting requirements. Although some of the grouping and

preprocessing routines that are normally processed by a report writer need to be

handled programmatically in VBScript, they are not difficult to master. The use of

ASP has another advantage in that its VBScript language supports COM, which

allows reuse of our framework code.

Implementation

To build out our reporting functionality, we will be using Visual InterDev 6.0. If you

have not ventured far beyond the Visual Basic environment, you will need to install

the FrontPage 98 extensions on your Internet Information Server (IIS)

development machine. You can perform this installation using the NT 4.0 Option

Pack on the IIS machine. Be aware that running the NT 4.0 Option Pack on an NT

Workstation will install Peer Web Services (PWS) instead of IIS. This is fine for our

purposes because PWS and IIS are similar. When I refer to IIS from this point

forward, it includes PWS installations.

Visual InterDev 6.0 tries to be many things, perhaps to the point of causing

confusion. When we try to create a new project, in addition to a Visual InterDev

project, we are given the choices of creating database projects, distribution units,

utility projects, and Visual Studio Analyzer projects. A database project is simply a

database development environment similar to Microsoft Access, with the added

option to debug stored procedures within Microsoft SQL Server. A distribution unit

can be one of several types. One option is a cabinet (CAB) file that is used by the

Microsoft setup engine. A second option is a self-extracting setup that uses one or

more CAB files to build a self-contained installer. The last option is simply a Zip file.

It is difficult to discern the purpose of the last two options. Nonetheless, Visual

InterDev's forte is in its capability to manage and edit Web projects. These Web

projects will be the manifestation of our reporting engine in this chapter. We will

continue with this same project in the next chapter as we create the entire Web site

portal for our application.

Before proceeding with the details of building the reporting engine, it is important to

understand that ASP represents a programming model that runs on an IIS server.

ASP code never crosses over to the browser. Instead, it produces the HTML stream

that is sent to the browser. Because of this, an ASP page that generates

browser-neutral HTML can support both Netscape Navigator and Internet Explorer.

This is no different from server-side Perl or C code that generates HTML to send back

to the browser. No Perl or C code is ever passed back to the browser.

Creating the Web Project

After you have access to an IIS installation, you can create the Web project. The

easiest way to do this is from within Visual InterDev. Start Visual InterDev and

select File, New Project from the main menu. This brings up the New Project dialog

as shown in Figure 11.1.

Figure 11.1. Creating a new Web application in Visual

InterDev.

Enter NorthwindTraders for the project name, and then click the Open button. This

launches the Web Project Wizard. On Step 1 of the wizard, choose or enter the name

of the Web server that will host this application, and select Master mode to have the

Web application automatically updated with changes as they are made. This mode

should be switched to local after a Web application enters production. After you click

the Next button, the wizard attempts to contact the server and to verify that it is

configured appropriately.

On Step 2 of the wizard, select the Create a New Web Application option and accept

the default application name. Click the Next button to arrive at Step 3 of the wizard.

Ensure that <none> is selected so that no navigation bars are applied. Click the

Next button one last time to arrive at Step 4. Once again, ensure that <none> is

selected to make sure that no themes are applied either. Click the Finish button to

tell Visual InterDev to create the project.

Upon completing this process, the Project Explorer shows the newly created process

with several folders underneath it. The _private and _ScriptLibrary folders are

used directly by Visual InterDev. The images folder can be used to place the images

that are used by the Web site. A file titled global.asa also appears. This file is used

globally to declare objects and to define application- and session-level events used

by the Web application. It is discussed in further detail in Chapter 12, "Taking the

Enterprise Application to the Net."

Making NWServer IIS Friendly

Because the NWServer component contains the functionality necessary to retrieve

lists of objects, it makes sense to use it as the vehicle to deliver information to ASP

for formatting into reports. In so doing, all information retrieval functionality, for

both the data generator and data consumer sides of the application, is confined to a

single code base. This bodes well for future maintenance of the application. Some

applications instantiate ADO Command, Connection, and Recordset objects within

an ASP page to retrieve data. This not only creates a second SQL code area within

the application, meaning another potential maintenance point, but it also performs

data access in one of the most inefficient manners possible. Remember that

everything in ASP is scripted, whereas objects developed in Visual Basic can be

compiled to native code for much higher performance. Also, remember that ASP

pages are recompiled with every access (that is, not cached), meaning the

re-instantiation of multiple objects. MTS-hosted objects are pooled and

context-switched for higher performance and scalability. Additionally, IIS does not

perform connection pooling unless a manual change to the registry is made,

whereas MTS performs ODBC and OLE DB connection pooling automatically. The

bottom line is that ASP should retrieve its data from the MTS objects that we have

already put in place rather than re-creating data access functionality.

To make the functionality of NWServer available to IIS you must create specific

wrapper functions because VBScript cannot deal with interface implementations as

can Visual Basic. For example, the following code fragment does not work in

VBScript:

Dim AppServer

Dim NWServer

Set NWServer = CreateObject("NWServer.CNWServer")

Set AppServer = NWServer

Call AppServer.InitServer

This code fails on the last line because VBScript considers AppServer to be of type

CNWServer, but it does not have visibility to its IAppServer interface in which the

InitServer method is defined.

To circumvent this issue, wrapper functions are built for each method that must be

exposed to IIS. Listing 11.1 shows the code for each data access method on the

IAppServer interface.

Example 11.1. Wrapper Methods on NWServer for IIS

Public Sub IISQueryObjectListData(ByVal ClassId As Integer, _

 ByVal Criteria As Variant, _

 ByVal Sort As Variant, _

 ByVal Conjunction As Variant, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Call IAppServer_QueryObjectListData(ClassId, _

 Criteria, _

 Sort, _

 Conjunction, _

 PropertyNames, _

 Data, _

 Errors)

End Sub

Public Sub IISDeleteObject(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 Errors As Variant)

 Call IAppServer_DeleteObject(ClassId, _

 ObjectId, _

 ObjectSubId, _

 Errors)

End Sub

Public Sub IISDeleteObjectList(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 Errors As Variant)

 Call IAppServer_DeleteObjectList(ClassId, _

 ParentId, _

 ParentSubId, _

 Errors)

End Sub

Public Sub IISGetObjectData(ByVal ClassId As Integer, _

 ByVal ObjectId As Long, _

 ByVal ObjectSubId As Long, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Call IAppServer_GetObjectData(ClassId, _

 ObjectId, _

 ObjectSubId, _

 PropertyNames, _

 Data, _

 Errors)

End Sub

Public Sub IISGetObjectListData(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 PropertyNames As Variant, _

 Data As Variant, _

 Errors As Variant)

 Call IAppServer_GetObjectListData(ClassId, _

 ParentId, _

 ParentSubId, _

 PropertyNames, _

 Data, _

 Errors)

End Sub

Public Function IISGetPropertyNames(ByVal ClassId As Integer) As Variant

 IISGetPropertyNames = IAppServer_GetPropertyNames(ClassId)

End Function

Public Sub IISInsertObjectData(ByVal ClassId As Integer, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant, _

 ObjectId As Long, _

 ObjectSubId As Long)

 Call IAppServer_InsertObjectData(ClassId, _

 PropertyNames, _

 Data, _

 Errors, _

 ObjectId, _

 ObjectSubId)

End Sub

Public Sub IISInsertObjectListData(ByVal ClassId As Integer, _

 ByVal ParentId As Long, _

 ByVal ParentSubId As Long, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant)

 Call IAppServer_InsertObjectListData(ClassId, _

 ParentId, _

 ParentSubId, _

 PropertyNames, _

 Data, _

 Errors)

End Sub

Public Sub IISUpdateObjectData(ByVal ClassId As Integer, _

 ByVal PropertyNames As Variant, _

 ByVal Data As Variant, _

 Errors As Variant, _

 ObjectId As Long, _

 ObjectSubId As Long)

 Call IAppServer_UpdateObjectData(ClassId, _

 PropertyNames, _

 Data, _

 Errors, _

 ObjectId, _

 ObjectSubId)

End Sub

Public Function IISInitServer() As Boolean

 IISInitServer = IAppServer_InitServer

End Function

As you can see from Listing 11.1, the implementation of these wrapper functions are

trivial in nature.

An IIS Service-Layer Component

Before the report generators using ASP within IIS can be realized, a service-layer

component needs to be built. There are two primary reasons for this. The first

reason is to provide a mechanism to implement the functionality that is available in

Visual Basic but not in VBScript. Specifically, the Visual Basic Format function—used

to format dates, currency, and percentages—is not available in VBScript; therefore,

a VBAFormat wrapper function is created. A CFunctions class is created to provide

an anchor point for this and future wrapper functions. This class is defined within an

ActiveX DLL component called AppIISCommon. The simple code for the CFunctions

class is shown in Listing 11.2.

Example 11.2. A Wrapper Function Added to the

CFunctions Class

Public Function VBAFormat(StringToFormat As String, _

 FormatPattern As String) As String

 VBAFormat = Format(StringToFormat, FormatPattern)

End Function

The second reason is to simplify the retrieval of information from the variant arrays

that are returned from MTS. For this, a CDataArray class is also created within

AppIISCommon. The CDataArray class has an Initialize method that accepts

Data and PropertyNames arguments; both arguments are of the array data type.

This method sets an internal private reference to the Data argument and proceeds

to create a property index for the array using a Dictionary object. It does this by

calling a private MakeDictionary method. The Dictionary object is defined in the

Microsoft Scripting Runtime (scrrun.dll), which should be referenced by the

AppIISCommon project. Several derived properties are also defined (MinRow and

MaxRow) to simplify iteration through the data array. Finally, an Item method is

implemented to extract from the array a particular property for a given row. The

code for the CDataArray class is shown in Listing 11.3.

Example 11.3. The CDataArray Class

Option Explicit

Private vData As Variant

Private dict As Dictionary

Public Sub Initialize(Data As Variant, PropertyNames As Variant)

 vData = Data

 MakeDictionary (PropertyNames)

End Sub

Private Sub MakeDictionary(PropertyNames As Variant)

 Dim i As Long

 Set dict = Nothing

 Set dict = New Dictionary

 If IsArray(PropertyNames) Then

 For i = LBound(PropertyNames) To UBound(PropertyNames)

 Call dict.Add(PropertyNames(i), i)

 Next i

 End If

End Sub

Public Function Item(PropertyName As Variant, Row As Variant) As Variant

 If dict.Exists(PropertyName) Then

 Item = vData(dict.Item(PropertyName), CLng(Row))

 Else

 Item = vbEmpty

 End If

End Function

Public Property Get MinRow() As Long

 MinRow = LBound(vData, 2)

End Property

Public Property Get MaxRow() As Long

 MaxRow = UBound(vData, 2)

End Property

A Simple Report with Grouping

With the NWServer component modified to handle calls from IIS and the

development of the service-layer component AppIISCommon complete, the first

report can be built. The first report to build is the Products by Category report from

the original Northwind database. This report provides a simple grouping of products

by category. The original Microsoft Access report shows only the current product list.

To demonstrate the flexibility of ASP as a reporting tool, the sample report will allow

for the display of both current and discontinued products.

The first step of adding a new report is to make sure that the appropriate

information set, in terms of a ClassDef instance, is defined within NWServer. If not,

add the definition in the GetClassDef method, making sure that the appropriate

view in the database has been defined as well. For this report, a new ClassDef is

needed. As shown in Listing 11.4 using the code fragment from the Select Case

statement in the GetClassDef method on NWServer. After this simple change is

made, NWServer is recompiled and redeployed to MTS.

Example 11.4. Addition of the ProductByCategory

Class to the GetClassDef Method

Private Function IAppServer_GetClassDef(ByVal ClassId As Integer) As

CClassDef

 Dim ClassDef As CClassDef

 If Not bInitialized Then IAppServer_InitServer

 If Not mIAppServer.ClassDefs.Exists(CStr(ClassId)) Then

 Select Case ClassId

 ' other cases as before

 Case CT_PRODUCT_BY_CATEGORY

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Product_By_Category"

 .WriteLocation = ""

 .IdColumnName = ""

 .OrderByColumnName = "Category_Name, Product_Name"

 .AppendMapping "ProductId", "Product_Id", _

 True, False, ctNumber, ""

 .AppendMapping "CategoryName", "Category_Name", _

 True, False, ctString, ""

 .AppendMapping "ProductName", "Product_Name", _

 True, False, ctString, ""

 .AppendMapping "UnitsInStock", "Units_In_Stock", _

 True, False, ctNumber, ""

 .AppendMapping "IsDiscontinued", "Is_Discontinued", _

 True, False, ctNumber, ""

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef,

CStr(CT_PRODUCT_BY_CATEGORY))

 End Select

 End If

 Set IAppServer_GetClassDef =

mIAppServer.ClassDefs.Item(CStr(ClassId))

End Function

With this new ClassDef in place, attention returns to Visual InterDev to write the

report in ASP and deploy it on a Web site. To create a new ASP page in the

NorthwindTraders project, simply right-click the servername/NorthwindTraders

node in the Project Explorer and select Add, Active Server Page from the pop-up

menu. This launches the Add Item dialog with the ASP page type selected. In the

Name field, enter ProductReports.asp, and then click the Open button to create

the file. Repeat this process to create a ProductReport.asp file as well.

The ProductReports.asp file is used to gather some direction from the user before

proceeding with the generation of the actual report in the ProductReport.asp file.

This technique is used across all types of reports that require initial user input. For

this set of reports, the only information needed from the user is which type of report

to run: All Products, Current Products, or Discontinued Products. The script needed

to implement a simple selector mechanism appears in Listing 11.5, whereas the

resulting HTML page appears in Figure 11.2.

Figure 11.2. The Product Reporting mode selector.

Example 11.5. ASP Script to Implement the Report

Selector for Product Reporting

<%@ Language=VBScript%>

<%Response.Expires=5%>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<TITLE>northwind traders</TITLE>

</HEAD>

<BODY>

<%

 Dim vReports(3)

 vReports(1)="Current Products"

 vReports(2)="All Products"

 vReports(3)="Discontinued Products"

%>

<H1>Product Reporting</H1>

<FORM action=ProductReport.asp>

<SELECT id=ReportType name=ReportType>

<%

 For i = 1 To UBound(vReports)

 If CInt(i) = 1 Then

%>

 <option selected value='<%=i%>'><%=vReports(i)%></option>

<%

 Else

%>

 <option value='<%=i%>'><%=vReports(i)%></option>

<%

 End If

 Next

%>

</SELECT>

<P>

<INPUT type="submit" value="Run Report">

</FORM>

</BODY>

</HTML>

There is nothing too exciting about the code in Listing 11.5 because it produces a

simple HTML Form page. One item to note is that an array is being used for the

report names rather than a hard-coded mechanism. This makes it easier to add new

report types to a form by simply adding new elements to the array. The real

excitement comes in the ProductReport.asp code because it is what interacts with

MTS to produce the desired report. The code for this page appears Listing 11.6, with

the resulting HTML page shown in Figure 11.3.

Figure 11.3. The product report rendered in Internet

Explorer.

Example 11.6. ASP Script Code to Implement the

Product Report

<%@ Language=VBScript%>

<%Response.Expires=5%>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<TITLE>northwind traders</TITLE>

</HEAD>

<BODY>

<%

 Dim Data, PropertyNames

 Dim DataArray

 Dim Errors, NWServer

 Dim ReportType, ReportTypeId

 Dim WhereClause, OrderClause

 Dim IsDiscontinued

 Const CT_PRODUCT_BY_CATEGORY = 201

 ReportTypeId = Request.QueryString("ReportType")

 Select Case ReportTypeId

 Case 1

 ReportType = "Current Products"

 WhereClause = Array(Array("IsDiscontinued","=","False"))

 Case 2

 ReportType = "All Products"

 WhereClause = ""

 Case 3

 ReportType = "Discontinued Products"

 WhereClause = Array(Array("IsDiscontinued","=","True"))

 End Select

 OrderClause = Array("CategoryName","ProductName")

 Set NWServer = Server.CreateObject("NWServer.CNWServer")

 If Not NWServer.IISInitServer Then

 Response.Write("Could not Initialize the MTS Server
")

 End If

 Call NWServer.IISQueryObjectListData(CT_PRODUCT_BY_CATEGORY, _

 WhereClause, _

 OrderClause, _

 "OR", _

 PropertyNames, _

 Data, _

 Errors)

 If IsArray(PropertyNames) and IsArray(Data) Then

 Set DataArray = Server.CreateObject("AppIISCommon.CDataArray")

 DataArray.Initialize Data, PropertyNames

 If IsArray(Data) Then

%><H1>Product By Category</H1>

<H2><%=ReportType%>

 <TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>

<%

 For i = DataArray.MinRow To DataArray.MaxRow

 vThisCategory = DataArray.Item("CategoryName",i)

 If (vThisCategory <> vLastCategory) Then

%>

 <TR><TD colspan=2> </TD></TR>

 <TR>

 <TD colspan=2>

 Category:

 <%=vThisCategory%>

 </TD>

 </TR>

 <TR>

 <TH align=left>Product Name</TH>

 <TH align=left>Units In Stock</TH>

<% If ReportTypeId = 2 Then %>

 <TH align=left>Discontinued</TH>

<% End If %>

 </TR>

<%

 vLastCategory = vThisCategory

 End If

%>

 <TR>

 <TD>

 <%=DataArray.Item("ProductName",i)%>

 </TD>

 <TD>

 <%=DataArray.Item("UnitsInStock",i)%>

 </TD>

<% If ReportTypeId = 2 Then

 If CBool(DataArray.Item("IsDiscontinued",i)) Then

 IsDiscontinued = "Yes"

 Else

 IsDiscontinued = "No"

 End If

 Response.Write("<TD>" & IsDiscontinued & "</TD>")

 End If %>

 </TR>

<%

 Next

 Else

%>

 <TR>

 <TD>No data found</TD>

 </TR>

<%

 End if

%>

 </TABLE>

<%

 End If

%>

</BODY>

</HTML>

Looking at Listing 11.6, the first item to pay attention to is the Select Case

statement at the beginning of the script section. It is here that several variables are

set based on the specific report type requested. This report type is retrieved from

the QueryString collection on the Request object that ASP maintains automatically.

Based on which report type is selected, different WhereClause arrays are created to

pass to the IISQueryObjectListData method on the NWServer component. After

NWServer is created using the CreateObject method on the Server object, the

retrieval method is called. This passes control to MTS to perform the request.

Remember that this is calling the exact same underlying code as that used by the

Visual Basic client-side components developed in Chapters 9, "A Two-Part,

Distributed Business Object," and 10, "Adding an ActiveX Control to the

Framework."

After the request has been fulfilled, a CDataArray object is created and initialized

with the resulting information. From this point, iterating through the array and

formatting the report using a simple HTML table construct is easy. The MinRow and

MaxRow properties help in this iteration process. Additionally, the script chooses

whether to add the Discontinued column based on the report type because it only

makes sense on the All Products version of the report. To handle grouping, a simple

breaking mechanism that compares the current category with the last category is

used. If the values are different, a category header is written to the HTML stream.

Amazingly, this is all that is needed to build a simple ASP-based report using the

MTS infrastructure already created. One of the common statements about Web

reporting is that it just looks ugly. Well, if you leave the formatting of these reports

as it is in this example, then yes they do. Fortunately, HTML can be used to create

appealing pages with only modest effort. As proof, look at the same two reports in

Figure 11.4 and Figure 11.5 with some polish work added to them. The specific

techniques that were used to make the reports look better are discussed in more

detail in Chapter 12.

Figure 11.4. The product report mode selector with a

makeover.

Figure 11.5. The product report with a makeover.

Our last little makeover to the product report also demonstrates one of the greatest

advantages we have in using ASP as our reporting engine. We can change the look

and feel, the structure, or the processing logic at any time in a development

environment, and then push it to the production environment on the server. After it

has been moved, the report is updated. There is no redistribution of anything to the

client.

A Complex Report with Preprocessing

Some types of reports that are traditionally built in commercial report writers

include not only single-level grouping functionality, as demonstrated in the previous

section, but also multilevel grouping and preprocessing. ASP can easily

accommodate these features as well. To demonstrate, the Employee Sales report

from the original Northwind application will be transformed into ASP next. Again, to

enable this report, several new views are created on the database and a new

ClassDef is added to NWServer. The code fragment for this appears in Listing 11.7.

Again, after this simple change is made, NWServer is recompiled and redeployed to

MTS.

Example 11.7. Addition of the EmployeeSales Class to

the GetClassDef Method

Private Function IAppServer_GetClassDef(ByVal ClassId As Integer) As

CClassDef

 Dim ClassDef As CClassDef

 If Not bInitialized Then IAppServer_InitServer

 If Not mIAppServer.ClassDefs.Exists(CStr(ClassId)) Then

 Select Case ClassId

 ' other cases as before

 Case CT_EMPLOYEE_SALES

 Set ClassDef = New CclassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Employee_Sales"

 .WriteLocation = ""

 .IdColumnName = ""

 .OrderByColumnName = "Country, Shipped_Date, Last_Name,

First_Name"

 .AppendMapping "Country", "Country", _

 True, False, ctString, ""

 .AppendMapping "LastName", "Last_Name", _

 True, False, ctString, ""

 .AppendMapping "FirstName", "First_Name", _

 True, False, ctString, ""

 .AppendMapping "ShippedDate", "Shipped_Date", _

 True, False, ctDateTime, ""

 .AppendMapping "OrderId", "Order_Id", _

 True, False, ctNumber, ""

 .AppendMapping "SalesAmount", "Sales_Amount", _

 True, False, ctNumber, ""

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef,

CStr(CT_EMPLOYEE_SALES))

 End Select

 End If

 Set IAppServer_GetClassDef =

mIAppServer.ClassDefs.Item(CStr(ClassId))

End Function

To continue the development of these reports, two new ASP files are added to the

project: EmployeeSalesReports and EmployeeSalesReport. For this set of reports,

the user criteria form is more complex than the previous example with the addition

of start date and stop date selection mechanisms. The generation of the SELECT

fields for these two dates is similar to the previous example. The code fragment in

Listing 11.8 shows the initialization information necessary to generate the various

form elements.

Example 11.8. The Initialization Information for the

EmployeeSalesReports Form Elements

<%

 Dim vStartMonth, vStartDay, vStartYear

 Dim vEndMonth, vEndDay, vEndYear, vEndDate

 Dim vMonths(12), vReports(2)

 vMonths(1) = "January"

 vMonths(2) = "February"

 vMonths(3) = "March"

 vMonths(4) = "April"

 vMonths(5) = "May"

 vMonths(6) = "June"

 vMonths(7) = "July"

 vMonths(8) = "August"

 vMonths(9) = "September"

 vMonths(10) = "October"

 vMonths(11) = "November"

 vMonths(12) = "December"

 vReports(1)="By Order ID"

 vReports(2)="By Sales Amount"

 vEndDate = Now + 120

 vStartMonth = Functions.VBAFormat(Now,"mm")

 vStartDay = Functions.VBAFormat(Now,"dd")

 vStartYear = Functions.VBAFormat(Now,"yyyy")

 vEndMonth = Functions.VBAFormat(CStr(vEndDate),"mm")

 vEndDay = Functions.VBAFormat(CStr(vEndDate),"dd")

 vEndYear = Functions.VBAFormat(CStr(vEndDate),"yyyy")

 %>

<SELECT id=StartMonth name=StartMonth>

<%

For i = 1 To 12

 If CInt(i) = CInt(vStartMonth) Then

 Response.Write("<option selected value='" & i & "'>" & _

 vMonths(i) & "</option>")

 Else

 Response.Write("<option value='" & i & "'>" & vMonths(i) & "</option>")

 End If

Next

%>

</SELECT>

<SELECT id=StartDay name=StartDay>

<%

For i = 1 To 31

 If CInt(i) = CInt(vStartday) Then

 Response.Write("<option selected>" & i & "</option>")

 Else

 Response.Write("<option>" & i & "</option>")

 End If

Next

%>

</SELECT>

<SELECT id=StartYear name=StartYear>

<%

For i = 1993 To 2010

 If CInt(i) = CInt(vStartYear) Then

 Response.Write("<option selected>" & i & "</option>")

 Else

 Response.Write("<option>" & i & "</option>")

 End If

Next

%>

</SELECT>

Note the use of the VBAFormat method of the Functions object to extract the month,

day, and year components of the start and stop dates. This Functions object is

declared in the global.asa file for the project, which has the effect of making the

object reference available to all ASP pages within the application. By defining it in

this manner, this often-used object does not need to be constantly re-created as

users access the site. The following code fragment from the global.asa file makes

this reference:

<OBJECT RUNAT=Server

 SCOPE=Application

 ID=Functions

 PROGID="AppIISCommon.CFunctions">

</OBJECT>

Additionally, the code to generate the SELECT form elements for the start date is

shown. Notice the use of the If CInt(i) = CInt(vStartDay) construct. Because

VBScript is based exclusively on the variant data type, these extra CInt functions

are required to ensure that the comparison is made properly. In some cases,

VBScript does not perform the appropriate comparison unless it is told to do so

explicitly. It is a good idea to develop the habit of making comparisons this way so

that you can avoid wasting hours by assuming the comparison would be made

correctly when VBScript assumed something else.

The resulting code (this time with the makeover at the outset) appears in Figure

11.6.

Figure 11.6. The employee sales report criteria

selection screen.

The code in the EmployeeSalesReport that is called interacts with MTS in a manner

similar to the ProductReport page. Again, a Select Case statement is used to set

various report-specific variables that are used by the call to the NWServer object to

retrieve the information in the appropriate sort order. The code fragment that

performs this work is shown in Listing 11.9.

Example 11.9. The Initialization and Retrieval Code

for the EmployeeSalesReport Page

<%

 Dim Data, PropertyNames, Errors, NWServer

 Dim DataArray

 Const CT_EMPLOYEE_SALES = 200

 Dim diSalesByPerson, diSalesByCountry

 StartDate = Request.QueryString("StartMonth") & "/" & _

 Request.QueryString("StartDay") & "/" & _

 Request.QueryString("StartYear")

 StopDate = Request.QueryString("StopMonth") & "/" & _

 Request.QueryString("StopDay") & "/" & _

 Request.QueryString("StopYear")

 SortMode = Request.QueryString("SortMode")

 StartDateClause = Array("ShippedDate",">=",StartDate)

 StopDateClause = Array("ShippedDate","<=",StopDate)

 WhereClause = Array(StartDateClause,StopDateClause)

 Select Case SortMode

 Case 1

 OrderByClause = Array("Country","LastName", _

 "FirstName","OrderId")

 Case 2

 OrderByClause = Array("Country","LastName", _

 "FirstName","SalesAmount DESC")

 End Select

 Set NWServer = Server.CreateObject("NWServer.CNWServer")

 If Not NWServer.IISInitServer Then

 Response.Write("Could not Initialize the MTS Server
")

 End If

 Call NWServer.IISQueryObjectListData(CT_EMPLOYEE_SALES, _

 WhereClause, _

 OrderByClause, _

 "AND", _

 PropertyNames, Data, Errors)

 if IsArray(PropertyNames) and IsArray(Data) then

 Set DataArray = Server.CreateObject("AppIISCommon.CDataArray")

 DataArray.Initialize Data, PropertyNames

%>

For this report, the difference between the two report modes is simply the sort order,

as indicated by the Select Case statement. Looking at the second case and the

assignment of the OrderByClause variable, notice the keyword DESC that follows

the SalesAmount property definition. This keyword is used by the

QueryObjectListData method of IAppServer to sort in a descending order instead

of the default ascending order. The remainder of the code fragment in Listing 11.9

is identical to that of Listing 11.6.

Because this report must calculate two aggregate fields based on the two grouping

levels by Country and Employee, the DataArray object must be preprocessed

before the report is actually written. To store these aggregates, Dictionary objects

are used; the use of the Dictionary object is mandated because, unlike Visual

Basic, VBScript does not have a Collection class. This Dictionary object is

actually a more powerful version of a collection because it has a built-in method to

check for key existence coupled with the capability to generate an array of key

values. This preprocessing is shown in Listing 11.10. Once again, we monitor the

values for the country and employee fields to determine when our groups break.

Example 11.10. Preprocessing of the DataArray

Object

<%

 Set diSalesByPerson = Server.CreateObject("Scripting.Dictionary")

 Set diSalesByCountry =

Server.CreateObject("Scripting.Dictionary")

 For i = DataArray.MinRow To DataArray.MaxRow

 vThisPerson = DataArray.Item("LastName",i) & "|" & _

 DataArray.Item("FirstName",i)

 If (vLastPerson <> vThisPerson) Then

 Call diSalesByPerson.Add(CStr(vLastPerson),vPersonTotal)

 vLastPerson = vThisPerson

 vPersonTotal = 0

 End If

 vThisCountry = DataArray.Item("Country",i)

 If (vLastCountry <> vThisCountry) Then

 Call diSalesByCountry.Add(CStr(vLastCountry),vCountryTotal)

 vCountryTotal = 0

 vLastCountry = vThisCountry

 End If

 vSales = DataArray.Item("SalesAmount",i)

 vPersonTotal = vPersonTotal + vSales

 vCountryTotal = vCountryTotal + vSales

 Next

 Call diSalesByPerson.Add(CStr(vLastPerson),vPersonTotal)

 Call diSalesByCountry.Add(CStr(vLastCountry),vCountryTotal)

%>

After the preprocessing is complete, a second pass through the DataArray object is

made to format the report. The resulting report is shown in Figure 11.7.

Figure 11.7. The employee sales reporting screen.

This second report example demonstrates that multilevel reports with preprocessed

data can easily be built in ASP. This section and the previous section also

demonstrate the ease at which new ClassDef objects can be added to NWServer to

enable these reports. Although this technique does involve a different development

methodology from a traditional report writer, it broadens the audience of end users

in a manner that these report writers cannot match. This technique also remains

tightly integrated to the application framework we have put into place to this point,

promoting our goal of maximum reuse.

Complex Report Generation Through MTS

Although several techniques have been demonstrated that implement much of the

basic functionality of standard report writers, there are still times when the

formatting complexity of a report is more than ASP can efficiently handle. In these

cases, a custom report generator can be built and deployed in MTS that writes the

complex HTML stream back to ASP. As an example, several calendar-style reports

are developed.

To begin development, a new ActiveX DLL named AppReports is created. This DLL

is designed to be usable across various applications rather than just the one from

our sample application. As such, it defines several core classes. For a basic calendar,

a CCalDay class and its CCalDays collection class are defined. The CCalDays

collection class has the intelligence necessary to build a basic calendar grid for a

given month and year. It also has the capability to generate an HTML-formatted

table for inclusion into an ASP page. The CCalDay class has a TextRows collection

that enables the report developer to place HTML-formatted information snippets for

a given day of the month. The details of the implementations of these two classes

are not discussed, although their full source code accompanies this book.

The AppReports library also defines two other classes. One is an interface class

called IcalendarReport, and the other is called CreportImplementation. These

two classes are used to enable the addition of new reports to an application as

administratively friendly a process as possible. The ICalendarReport interface is

used simply to enable the implementation of multiple calendar-style reports that

have as their only inputs the month and year of the calendar to generate. The

CReportImplementation class is used to map report names to their implementation

class for use by a Visual Basic CreateObject statement. Listing 11.11 shows the

code for IcalendarReport, whereas Listing 11.12 shows
CreportImplementation.

Example 11.11. The Code for the ICalendarReport

Interface Class

Option Explicit

Private mCalendarMonth As Integer

Private mCalendarYear As Integer

Public Sub DoReport(DataStream As Variant, _

 ByVal CalendarMonth As Integer, _

 ByVal CalendarYear As Integer)

End Sub

Public Property Let CalendarYear(ByVal vData As Integer)

 mCalendarYear = vData

End Property

Public Property Get CalendarYear() As Integer

 CalendarYear = mCalendarYear

End Property

Public Property Let CalendarMonth(ByVal vData As Integer)

 mCalendarMonth = vData

End Property

Public Property Get CalendarMonth() As Integer

 CalendarMonth = mCalendarMonth

End Property

Example 11.12. The Code for the

CReportImplementation Class

Option Explicit

Private mReportName As String

Private mLibraryName As String

Public Property Let ReportName(Value As String)

 mReportName = Value

End Property

Public Property Get ReportName() As String

 ReportName = mReportName

End Property

Public Property Let LibraryName(Value As String)

 mLibraryName = Value

End Property

Public Property Get LibraryName() As String

 LibraryName = mLibraryName

End Property

With the core AppReports component complete, the component to build the reports

can be built. The NWReports component is defined as an ActiveX DLL as well, and it

is designed to run under MTS. First, a special class called CNWCalendarReports is

created to do nothing more than to enumerate the calendar-style reports

implemented by the NWReports component. The code for this CNWCalendarReports

class is shown in Listing 11.13.

Example 11.13. The Code for the

CNWCalendarReports Class

Option Explicit

Private Index As Integer

Private mCol As Collection

Public Sub AppendType(ReportName As String, LibraryName As String)

 Dim ReportImplementation As New CReportImplementation

 With ReportImplementation

 .ReportName = ReportName

 .LibraryName = LibraryName

 End With

 mCol.Add ReportImplementation, ReportImplementation.ReportName

End Sub

Private Sub Class_Initialize()

 Set mCol = New Collection

 Call AppendType("Shipped Date", "NWReports.CShippedCalendar")

 Call AppendType("Requested Date", "NWReports.CRequestedCalendar")

End Sub

Public Property Get Item(Index As Variant) As CreportImplementation

 Set Item = mCol.Item(Index)

End Property

Public Property Get Count() As Long

 Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown

 Set NewEnum = mCol.[_NewEnum]

End Property

Private Sub Class_Terminate()

 Set mCol = Nothing

End Sub

In the Class_Initialize event of CNWCalendarReports, the internal collection of

CReportImplementation items is built. As new reports are defined, a new

CReportImplementation instance is added to this class to tell the outside world of

its existence. As you can see from the two library names in the Class_Initialize

event (see Listing 11.13), there are two ICalendarReport interfaces implemented:

one in the CShippedCalendar class and the other in the CRequestedCalendar class.

Again, the implementation details of these two classes are not covered here, but the

full source is available in the accompanying software.

One other class, CNWReportServer, is built within the NWReports component. This

class is called into action by IIS to accomplish the generation of the complex HTML

stream for the calendar reports through its DoCalendarReport method. Before this

call, the user must select the desired report, which is provided to the user criteria

page through a CalendarReportNames property on the CNWReport server. The code

for the CNWReportServer class appears Listing 11.14.

Example 11.14. The Code to Implement the

CNWReportServer Class

Option Explicit

Public Property Get CalendarReportNames() As Variant

 Dim vRet As Variant

 Dim ReportImplementation As CReportImplementation

 Dim NWCalendarReports As New CNWCalendarReports

 Dim i As Integer

 vRet = Array(1)

 ReDim Preserve vRet(1 To NWCalendarReports.Count)

 For i = 1 To NWCalendarReports.Count

 vRet(i) = NWCalendarReports.Item(i).ReportName

 Next i

 CalendarReportNames = vRet

End Property

Public Function DoCalendarReport(ByVal CalendarMonth As Variant, _

 ByVal CalendarYear As Variant, _

 ByVal ReportName As Variant) As Variant

 Dim vDataStream As Variant

 Dim NWCalendarReports As New CNWCalendarReports

 Dim CalendarReport As ICalendarReport

 Dim LibraryName As String

 On Error GoTo ErrorTrap

 LibraryName = NWCalendarReports.Item(ReportName).LibraryName

 Set CalendarReport = CreateObject(LibraryName)

 Call CalendarReport.DoReport(vDataStream, _

 CInt(CalendarMonth), _

 CInt(CalendarYear))

ExitFunction:

 DoCalendarReport = vDataStream

 Exit Function

ErrorTrap:

 '1. Send detailed message to EventLog

 Call WriteNTLogEvent("CNWReportServer:DoCalendarReport", _

 Err.Number, _

 Err.Description, _

 Err.Source & " [" & Erl & "]")

 vDataStream = "<p>" & "CNWReportServer:DoCalendarReport" & _

 Err.Number & " " & Err.Description & " " & _

 Err.Source & " [" & Erl & "]" & "</p>"

 '2. Raise a more generic event to the client

 Err.Raise vbObjectError, "CNWReportServer:DoCalendarReport", _

 Err.Description & " [" & Erl & "]"

 GoTo ExitFunction

End Function

Turning to Visual InterDev, two new ASP files are added to the Northwind Traders

project: CalendarReports and CalendarReport. To build the list of available

reports for CalendarReports, the NWReportServer object on MTS is called as

shown in Listing 11.15, to produce the page shown in Figure 11.8.

Figure 11.8. The list of available reports in the

Calendar Reporting page.

Example 11.15. Enumerating the Calendar Reports in

ASP

<%

 Dim HTMLStream, NWReportServer

 Dim i, vMonth, vYear, vReportNames

 Set NWReportServer = Server.CreateObject("NWReports.CNWReportServer")

 vReportNames = NWReportServer.CalendarReportNames

 vMonth = Functions.VBAFormat(Now,"mm")

 vYear = Functions.VBAFormat(Now,"yyyy")

%>

In the Calendar Reporting page, the script is simple as well, as shown in Listing

11.16, producing the page shown in Figure 11.9.

Figure 11.9. The Calendar Reporting page.

Example 11.16. The ASP Code to Insert the HTML

Fragment from Our Calendar Builder

<%

 Set NWReportServer = Server.CreateObject("NWReports.CNWReportServer")

 vReportName = Request.QueryString.Item("ReportName")

 HTMLStream = NWReportServer.DoCalendarReport(vMonth, vYear,

vReportName)

 Response.Write(HTMLStream)

%>

Summary

This chapter has provided examples of how to use ASP as a distributed reporting

engine in place of traditional report writers. Several techniques have been

demonstrated to generate both simple- and medium-complexity reports using just

ASP coupled with the existing MTS business objects. Additionally, a technique to

generate complex reports was demonstrated, which used ASP in conjunction with

MTS-hosted reporting objects that subsequently tapped into the business objects.

In the next chapter, I discuss the development of an intranet portal site for the

application. Some specific topics include how style sheets and server-side include

files have been used to produce the nicely formatted pages shown in some of the

examples seen in this chapter. Additionally, the portal concept is discussed as a

means not only to provide reports to end users, but also to provide access to the

underlying information sets managed by the system.

Chapter 12. Taking the Enterprise Application

to the Net

An application developer would be remiss to underestimate the capabilities that an

intranet or Internet extension would add to their application in this modern Internet

age. Simply noticing the current efforts of some traditional enterprise application

vendors to enable their application for the Internet, or seeing the emergence of new

companies with enterprise application products designed for the Internet from the

outset, are indicators of others who have already gone through this thought process.

Specific examples include the Enterprise Resource Planning (ERP) market, with such

vendors as SAP and its mySAP.COM infrastructure; the Supply Chain Management

(SCM) market, with such vendors as i2 Technologies and its TradeMatrix business

portal; and the Customer Relationship Management (CRM) market, with such

vendors as Pivotal and its eRelationship product or Vantive and its e-Customer

suite.

With this trend in mind, this application framework has also been designed from the

outset to easily support an Internet component. Part of this foresight is seen in the

choice of tools and technologies that have driven the implementation to this point.

The DNA underpinnings of this framework have played a dramatic role in this effort,

as was evident during our first foray into Internet Information Server (IIS) in the

previous chapter. In this chapter, much more attention is given to the development

of the Internet portion of the framework, focusing specifically on both intranets and

Internets.

Layout Standardization Techniques

Before getting into the details of intranets and Internets, some generic techniques

are applicable to both domains. As should be clear by this point, two fundamental

principles have driven design and implementation decisions to this point: flexibility

and standardization. Development efforts in the IIS realm are no different. For

maintenance efficiency, it is highly desirable to have the flexibility to make global

application changes at singular locations. It is also desirable to have the

implementation of similar functionality performed in standardized manners. The

topics covered in this section are driven by these two requirements.

Style Sheets

A style sheet is a special HTML tag that enables a developer to control how textual

content is rendered by the browser. Specifically, the developer can specify style

classes that can be assigned to specific HTML tag types—for example, <TD>, <H1>,

or <P> tags—or used globally by any tag type. The most often-used style properties

include those for font, text color, background color, and text alignment. Style sheets

enable one other type of formatting for the control of hyperlink rendering based on

its various states.

As an aside, style sheets are gaining importance in their use beyond the simple

HMTL format standardization discussed in this section. In the eXtensible Markup

Language (XML) standard, style sheets are also used to automatically apply

formatting to the data embodied in an XML block within an HTML page. The new

eXtensible HTML (XHTML) standard also makes similar use of the style sheet

mechanism for formatting. We discuss and use the XML standard in much more

detail in the next chapter, although our primary purpose will be as a data transfer

mechanism that does not need style. Nonetheless, it is important to understand the

role that style sheets play today and where their use is headed in the near future.

NOTE

There are many more style properties than will be covered in this section, because

complete coverage of them is beyond the scope of this book. Any good book on

HTML should provide more than adequate information on this topic. The intent of

this section is to introduce the concept of using style sheets to provide a flexible

mechanism for driving Web site consistency.

Style sheets are placed into an HTML document using a <STYLE> block within the

<HEAD> block of the HTML page, as shown in Listing 12.1.

Example 12.1. A Style Sheet Within an HTML

Document

<HTML>

<HEAD>

<TITLE>Some Title</TITLE>

<STYLE TYPE="text/css">

<!--

 A:active { color: mediumblue; }

 A:link {color: mediumblue;}

 A:visited {color: mediumblue;}

 A:hover {color: red;}

 TD.HeaderOne

 {

 BACKGROUND-COLOR: #009966;

 COLOR: #ffff99;

 FONT-FAMILY: Arial, Verdana, 'MS Sans Serif';

 FONT-SIZE: 10pt;

 FONT-WEIGHT: normal

 }

 TD.HeaderOne-B

 {

 BACKGROUND-COLOR: #009966;

 COLOR: #ffff99;

 FONT-FAMILY: Arial, Verdana, 'MS Sans Serif';

 FONT-SIZE: 10pt;

 FONT-WEIGHT: bold

 }

 TD.ResultDetailHeader-l

 {

 COLOR: black;

 FONT-FAMILY: Arial, Verdana, 'MS Sans Serif';

 FONT-SIZE: 8pt;

 FONT-WEIGHT: bold;

 TEXT-ALIGN: left

 }

 TD.ResultData {

 FONT-FAMILY: Arial, Verdana, 'MS Sans Serif';

 FONT-SIZE: 8pt;

 FONT-WEIGHT: normal;

 TEXT-ALIGN: left

 }

-->

</STYLE>

</HEAD>

<BODY>

</BODY>

</HTML>

In Listing 12.1, the information within the <SCRIPT> block is surrounded by the <!--

and --> comment tags to prevent older-vintage browsers that do not support style

sheets from being unable to render the HTML page. In the <STYLE

TYPE="text/css"> line, the css refers to the term Cascading Style Sheet, which is

the name of the standard adopted by the World Wide Web Consortium (W3C) in

1996 to define style sheets for HTML. Internet Explorer (IE) 3.0 and Netscape

Navigator 4.0 were the first browsers to adopt subsets of these standards, with later

versions of each adopting more of the standard. The term cascading refers to the

way style classes are merged if they are defined multiple times within an HTML

document.

The formats associated with hyperlinks are formally known as pseudo-classes in the

W3C standard because they are based on tag states instead of tag content. For the

<A> tag given in the example, the four pseudo-classes include active, link,

visited, and hover. The first three are formally defined by the W3C standard,

whereas the last is a Microsoft extension for Internet Explorer. For each of these

pseudo-classes, a color style property is defined using named color values. These

color names are based on extensions to HTML 3.2, which initially defined only 16

colors. Netscape extended these names to several hundred to coincide with the

colors available in the X-Windows system, with subsequent support by Microsoft

Internet Explorer. Colors can also be provided as Red-Green-Blue (RGB) color

triples using either the format #RRGGBB or the statement rgb(RRR,GGG,BBB). In the

former case, the values are given in hexadecimal format, whereas in the latter case,

the values are provided in decimal format. For example, the following are equivalent

color property statements in HTML:

color: silver

color: #C0C0C0

color: rgb(192,192,192)

Looking at the example once again, the color properties for the active, link, and

visited properties are set to mediumblue, whereas the color for the hover

property is set to red. Having the common color scheme of the first three properties

has the effect of preventing the browser from changing the color of the hyperlink

after a user has clicked on the link. The effect of the last property is to have the link

highlighted in red when the mouse pointer is directly over the hyperlink text. By

placing this set of pseudo-class definitions in the style sheet, all the hyperlinks in the

current HTML document follow these effects.

Looking next at the style properties for the various TD-based classes in Listing 12.1,

we can see that font-, text-, and color-level definitions are given. Specifically,

FONT-FAMILY, FONT-SIZE, and FONT-WEIGHT properties are defined for fonts. For

text definitions, a TEXT-ALIGN property is defined. For color definitions, COLOR and

BACKGROUND-COLOR properties are defined.

A comma-separated list of font names is provided for the FONT-FAMILY property.

This tells the browser to search for installed fonts in the order given, using the first

installed font found. If no installed fonts are found, a default font is used. Because

the installed fonts can vary from user to user, it is a good idea to use common fonts,

with the last one or two being fonts that are likely to be installed, such as Arial or

Sans Serif. It is also a good idea to use Sans Serif fonts for online applications

because studies have shown that they are the preference of most users.

There are several FONT-SIZE property definition options as in the color case

discussed previously. For this property, size can be specified in absolute, relative, or

named terms. For absolute definitions, either pt or % can be used. The pt definition,

used in Listing 12.1, is the most common method that sets the size to an exact value.

The % definition sets the size as a percentage of the size of the parent element. For

relative sizes, a + or - precedes the value, as in +2pt, which would increase the font

size by two points from the most recently used font size. In the named value case,

keywords are mapped to absolute sizes that are defined by the browser. Valid

keywords include xx-small, x-small, small, medium, large, x-large, and

xx-large. For the purpose of style sheets, it is best to stick with using absolute,

pt-based sizes, because this method offers the most control with the most

predictability of how the final HTML page will be rendered by the browser.

In the example, the FONT-WEIGHT property is defined next. For this property, named

values, such as bold and normal, can be used to indicate whether to use boldface.

Alternatively, boldness values can be given in the form of numbers that are

multiples of 100, between 100 (lightest) and 900 (boldest). The keyword bold

corresponds to a value of 700, whereas the value 400 corresponds to the keyword
normal.

The only text-based property defined in the example isTEXT-ALIGN. Values that can

be assigned to this property include left, right, center, or justify. If this

property is not defined, left is assumed. Other text properties that are available

but not shown include TEXT-DECORATION for special effects, such as strikethrough

and blinking; TEXT-INDENT to implement hanging and normal indents on the first

line of a paragraph; and TEXT-TRANSFORM to modify letter capitalization.

Now that a style sheet is defined within the <HEAD> section of an HTML document, it

is a simple matter to make references to the style classes from within the tags used

throughout the remainder of the HTML document. As mentioned before, the style

associated with hyperlinks is automatically enforced throughout the entire

document after the definition is made. For the other classes, they must be explicitly

used. As an example of style use, a fragment of HTML generated by the

EmployeeSalesReport.asp page in the previous chapter appears in Listing 12.2.

Example 12.2. Using the Styles Defined in the Style

Sheet

<TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>

 <TR>

 <TD class="HeaderOne-B" width=150>Sales By Country</TD>

 <TD class="HeaderOne" colspan=3>

 [12/5/1993 to 4/3/1994]

 [Sorted By Order ID]

 </TD>

 </TR>

 <TR>

 <TD class="HeaderOne-B" width="150">Country:</TD>

 <TD class="HeaderOne" colspan=3>UK [Total $52,840.06]</TD>

 </TR>

 <TR>

 <TD class="HeaderOne-B" width="150">Salesperson:</TD>

 <TD class="HeaderOne" colspan=3>

 Buchanan, Steven [Total $15,694.50]

 </TD>

 </TR>

 <TR>

 <TD class='ResultDetailHeader-l' width='10%'>Order ID</TD>

 <TD class='ResultDetailHeader-l' width='5%'>Sales Amount</TD>

 <TD class='ResultDetailHeader-l' width='10%'>

 Percent of Salesperson Total

 </TD>

 <TD class='ResultDetailHeader-l' width='5%'>Percent of Country

Total</TD>

 </TR>

 <TR>

 <TD class='ResultData' width='10%'>

 10372

 </TD>

 <TD class='ResultData' width='10%'>$11,515.20</TD>

 <TD class='ResultData' width='10%'>73.37%</TD>

 <TD class='ResultData' width='10%'>21.79%</TD>

 </TR>

 <TR>

 <TD class='ResultData' width='10%'>

 10378

 </TD>

 <TD class='ResultData' width='10%'>$129.00</TD>

 <TD class='ResultData' width='10%'>0.82%</TD>

 <TD class='ResultData' width='10%'>0.24%</TD>

 </TR>

</TABLE>

As you can see in the various <TD> tags, a class= statement within the tag indicates

the style to associate with the tag. You should also note that nothing special is done

in the <A> tags to make them use the special pseudo-class effects defined in the

style sheet.

You might be thinking to yourself that although this style sheet mechanism does

offer flexibility, it still requires that each of the HTML documents making up a Web

site has a style sheet in its <HEAD> section. For a Web site with hundreds or

thousands of pages, it would be difficult to make style changes because each

document, or more appropriately, each Active Server Page (ASP) generating these

documents, would have to be modified to support the change. This would indicate

that there is no real flexibility offered by the style sheet approach. This is a valid

assessment, so the HTML specification allows for the linkage of style sheets into an

HTML document. The mechanism for this is as follows:

<head>

<title>northwind traders</title>

<LINK REL=stylesheet TYPE="text/css" HREF="stylesheets/nw01.css">

</head>

With this approach, these same hundreds or thousands of documents can make this

reference to a style sheet so that changes made to it are immediately reflected

throughout the Web site.

Creating a style sheet is easy. Although it can be done directly in a text editor

following the W3C specifications, Visual InterDev provides a simple editor for doing

so. To add a style sheet to an existing project, simply right-click on the project node

within Visual InterDev and select the Add option and then the Style Sheet option.

The Add Item dialog appears with the Style Sheet option selected by default.

Change the name of the style sheet to nw01.css, and click the Open button. This

brings up the style sheet editor with a default BODY class created, as shown in Figure

12.1.

Figure 12.1. A new style sheet added to the

Northwind Traders project.

To create a new class within a style sheet, right-click on the Classes folder within

the style sheet editor, and then select Insert Class to bring up the Insert New Class

dialog. To make a tag-specific class, select the Apply To Only the Following Tag

checkbox and select the appropriate tag name from the list. Type the name of the

new class in the Class Name field, and click OK. The new class is added under the

Classes folder, and the properties page for your new class, in which you can set the

various style properties, is brought up on the right side. Figure 12.2 shows the

results of adding the TD.ResultData class after the font properties have been set on

the Font tab.

Figure 12.2. A new style class added to the Northwind

Traders project after the font properties were set.

Text properties are set on the Layout tab, whereas the background color is set on

the Background tab. Clicking on the Source tab shows the HTML code for the style

sheet with the currently selected style class in bold. Notice that this text is similar to

the format of the original style sheet that was embedded in the <HEAD> section.

Server Side Includes

Although style sheets can control the look and feel of individual tags in an HTML

document, they cannot provide an overall template for the document. For example,

if you look at many commercial Web sites, you might notice that they have similar

headers or footers across all their pages, or at least throughout various subsections

of the site. One mechanism to accomplish this standardization, while following the

flexibility mantra, is to use server side includes. These files are separate HMTL or

ASP code snippets that are pulled into an ASP as a pre-processing step before the

final generation of the HTML stream that is sent back to the client. An example of

such a reference can be seen in the ASP script code from the ProductReports2.asp

file given in the previous chapter. A fragment of this code is provided in Listing 12.3.

Example 12.3. Using Server Side Include Files

<BODY TOPMARGIN=0 marginwidth=10 marginheight=0 LEFTMARGIN=10>

<!--#include file="ServerScripts\GetpageHeader.inc"-->

<%

 Dim vReports(3)

 vReports(1)="Current Products"

 vReports(2)="All Products"

 vReports(3)="Discontinued Products"

 FormWidth = 470

%>

<!--#include file="ServerScripts\GetFormHeader.inc"-->

 <FORM action=ProductReport2.asp>

 <TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>

 <TR>

 <TD class="FormCaption" WIDTH=30%>Report Type:

 <SELECT id=ReportType name=ReportType>

<%

For i = 1 To ubound(vReports) if cint(i) = 1 then

 Response.Write("<option selected value='" & i & "'>" & _

 vReports(i) & "</option>") else

 Response.Write("<option value='" & i & "'>" & _

 vReports(i) & "</option>") end if

next

%>

 </SELECT>

 </TD>

 <TD width=30% align="center">

<INPUT type="submit" value="Run Report">

 </TD>

 </TR>

 </TABLE>

 </FORM>

<!--#include file="ServerScripts\GetFormFooter.inc"-->

<!--#include file="ServerScripts\GetpageFooter.inc"-->

</BODY>

Four files are included in this simple script. The GetPageHeader.inc file is

responsible for generating the standard header of the page, whereas its

GetPageFooter.inc counterpart generates the standard footer. Similarly,

GetFormHeader.inc and GetFormFooter.inc generate the table structures to give

a consistent look and feel to all forms used throughout the Web site. Figure 12.3

indicates the specific areas that are generated by these include files.

Figure 12.3. The areas of the user criteria screen

contributed to by various server side include files.

Notice the .inc extension given to the server side include files to indicate that these

are not fully functional ASP scripts but rather ASP fragments. Although this is good

to identify them as included script files, it makes them more difficult to edit in Visual

InterDev. Because Visual InterDev does not recognize these extensions, it opens

them up in a standard text edit mode without the nice, yellow highlights at the

beginning and end of script blocks, which have the <% and %> markers. Nor is it able

to identify tags in black, keywords in red, values in blue, comments in gray, and so

forth. Thus, if you give these files ASP extensions, Visual InterDev is able to

interpret them and give you these visual clues. The choice is yours.

Global Application Variables

One other area that can add a level of standardization and flexibility is the use of

application variables. Under the IIS model, a Web application is defined based on all

the files within a given directory, or any of its subdirectories, on or mapped by the

IIS Web server. As briefly discussed in the last chapter, the global.asa file is used

as a controlling mechanism for the entire Web application, and it must reside in the

root directory of the Web application. After the Web site is first started (or restarted)

using the Internet Service Manager, the first request for any page within the context

of the Web application causes the Application_OnStart event to fire. If this

happens, application variables can be defined using the following syntax:

Application(VariableName) = VariableValue

Any ASP page within the application can then retrieve these variables by using the

reverse syntax as follows:

VariableValue = Application(VariableName)

This simple mechanism enables the application to store global variables for the

entire application, much as constants are stored in traditional programming

environments. Examples of usable information might be the name of specific page

URLs, such as a NoAccessGranted.ASP file or a MailTo:-style URL to redirect mail

to the site administrator. Examples appear in the following code fragment from the

global.asa file:

Sub Application_OnStart

 Application("NoAccessURL") = "no_access.asp"

 Application("SiteAdministratorMailTo") = "mailto:ptindall@texas.net"

End Sub

Building the Internal Intranet Site

With some basic standardization techniques, we can now turn our attention to the

development of an intranet site for our application. From surfing the Web and

accessing commercial Web sites, you might have noticed that they typically have a

home page that enables entry into the various navigation points of the system. In

addition, there are typically links to frequently used, functional areas of the system

(such as stock quotes or local weather forecasts) from this main page. Home pages

designed in this format are often referred to as portals or consoles. We follow a

similar design philosophy in designing the intranet site for our framework.

Our goal, for now, is to provide internal access to the various objects and reports of

the application. In Chapter 13, "Interoperability," we will add a few new features to

help us move information out of our application and into other applications using the

portal as a launching point. Portal design can be accomplished in many ways. You

can prove this to yourself by looking at commercial portal sites. For our purposes,

we are going to stay somewhat basic, as shown in Figure 12.4. This page

corresponds to a file Home.asp that we have created for our Northwind application.

Figure 12.4. The intranet portal for the Northwind

Traders application.

Looking at Figure 12.4, you should see four distinct areas. The first two have

headers titled ORDERS and CALENDARS, whereas the other two have headers titled

OBJECTS and TOOLS.

By clicking on the ORDERS hyperlink, we jump to an OrderReports.asp screen that

enables us to run several queries against the orders stored in the database. These

are similar to the All Orders and Open Orders nodes in the NWExplorer control that

we developed in Chapter 10, "Adding an ActiveX Control to the Framework,"

although now they accept the entry of a date range. We develop the

OrderReports.asp file using the EmployeeReports.asp file that we created in the

last chapter as a template. To do this, we simply create the new ASP file in our

project, copy everything in the EmployeeReports.asp file to the clipboard, and

paste it into our new file. We then make a few minor modifications to the vReports

section of the code, as shown in Listing 12.4. We also change a caption here and

there, and change the target for the form to OrderReport.asp.

Example 12.4. Minor Modifications to the

EmployeeReports.ASP Page to Create

OrderReports.ASP

<%

…

Dim vMonths(12), vReports(2)

…

 vReports(1)="All Orders"

 vReports(2)="Open Orders"

…

%>

…

<FORM action=OrderReport.asp id=form1 name=form1>

 <TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0>

 <TR>

 <TD BGCOLOR="#ffffee" WIDTH=30%>

 <FONT FACE="Arial,Helvetica,sans-serif" SIZE="-3"

COLOR="#333333">

 Report Mode:

 <SELECT id=ReportMode name=ReportMode>

<%

 For i = 1 To UBound(vReports)

 If CInt(i) = 1 Then

 Response.Write("<option selected value='" & i & "'>" & _

 vReports(i) & "</option>")

 Else

 Response.Write("<option value='" & i & "'>" & vReports(i) &

"</option>")

 End If

Next

%>

 </SELECT>

 </TD>

…

Listing 12.4 demonstrates how we've made the code for this user selection form as

flexible as possible for future modification. By placing our report name information

in an array at the top of the script and using the UBound function as we iterate

through the array, we make it easy to modify this template if we need to create new

criteria selectors. The screen generated by our OrderReports.asp file appears in

Figure 12.5. Note that the default dates seen in the screen are set based on a base

date of April 15, 1995. This is done to coincide with the dates in the Northwind

database. In a real application, we would want our base date to be the current date.

Leaving the defaults as is and clicking on the Run Report button produces the report

shown in Figure 12.6.

Figure 12.5. The OrderReports screen in Internet

Explorer.

Figure 12.6. The OrderReports screen in Internet Explorer

run using the default values.

Note from Figure 12.6 that the columns in the ASP-generated screen are the same

as those in the NWExplorer control. Looking at the code in Listing 12.5 should

convince you that the techniques to retrieve the information in Visual Basic (VB) and

ASP forms are strikingly similar. This is by design.

Example 12.5. Comparison of VB to ASP Code

' From VB

…

 Case EIT_ORDER_OPEN

 vCriteria = Array(Array("ShippedDate", "is", "null"), _

 Array("ShippedDate", "=", "12:00:00 AM"))

 vOrder = Array("RequiredDate", "CustomerName")

 Set OrderProxyItems = _

 AppClient.LoadQueryCollection(CT_ORDER_PROXY, _

 vCriteria, _

 vOrder, _

 "OR")

 Set AppCollection = OrderProxyItems

…

' From ASP

<%

…

 Const CT_ORDER_PROXY = 104

…

 ReportMode = Request.QueryString("ReportMode")

 StartDateClause = Array("OrderDate",">=",StartDate)

 StopDateClause = Array("OrderDate","<=",StopDate)

 OrderByClause = Array("OrderDate","CustomerName")

 Select Case ReportMode

 Case 1 ' All Orders

 WhereClause = Array(StartDateClause,StopDateClause)

 ReportName = "All Orders"

 Conj = "AND"

 Case 2 ' Open Orders

 ' Note: because this has a compound AND and OR in the WHERE statement,

 ' we have to grab all open orders here and then filter below

 WhereClause = Array(Array("ShippedDate", "is", "null"), _

 Array("ShippedDate", "=", "12:00:00 AM"))

 ReportName = "Open Orders"

 Conj = "OR"

 End Select

…

 Call NWServer.IISQueryObjectListData(CT_ORDER_PROXY, _

 WhereClause, _

 OrderByClause, _

 Conj, _

 PropertyNames, Data, Errors)

…

%>

You might have noticed that the Order ID column, both in these reports and the

ones from the previous chapter, have been hyperlinked to an OrderDetail.asp file.

This file represents the first detail screen that we will create. All other object detail

screens can be created in a similar manner. Because a COrder object has a

collection of COrderDetailItem objects, we design our OrderDetail.asp screen to

have a header section that contains the details for the order, followed by a section

that lists the order line items. This screen appears in Figure 12.7.

Figure 12.7. The OrderDetail screen in Internet Explorer.

There is nothing of a rocket-science nature in the OrderDetail.asp screen. We are

first retrieving our Order object with a call to NWServer.IISGetObjectData,

followed by a call to NWServer.IISGetObjectListData for the OrderDetailItems

collection. The remainder of the script is used to build the table structure necessary

to display the screen as shown. Notice that our Customer, Employee, and Shipper

fields are hyperlinked to their respective detail pages as well. Such capability is the

beauty of the World Wide Web (WWW).

What is new with this screen is the [EDIT] hyperlink in the upper-right corner.

Clicking on this link takes us to the OrderDetailControl.asp page, which has our

NWOrderControl embedded in it. This page appears in Figure 12.8, and the script

code appears in Listing 12.6.

Figure 12.8. The OrderDetailControl.asp page with the

NWOrderControl embedded in it.

We have chosen to use our NWOrderControl to implement the edit functionality

instead of a series of ASP pages for several reasons. First, we have already built the

functionality into this control, and it doesn't make sense to duplicate something that

works so well. The second reason is that the architecture of the system requires the

selection of items from lists. Although the selection process for the Customer,

Employee, and Shipper fields could easily be implemented as <SELECT> elements

within a form, the other fields are not. The hierarchical relationship of the

Country/City/Region selection, more specifically, a tree, is not easily

implemented in any form element available to us. This is similar to the product

selection process in that we first must look under a category before selecting our

product.

Example 12.6. Embedding the NWOrderControl in the

OrderDetailControl.asp Page

<html>

<head>

<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<title>Northwind Traders</title>

<LINK REL=stylesheet TYPE="text/css" HREF="stylesheets/nw01.css">

</head>

<%

 Id = CLng(Request.QueryString("orderid"))

%>

<script LANGUAGE="VBScript">

<!--

Sub Page_Initialize

 On Error Resume Next

 NWOrder.RegisterControl("server=alexis&id=<%=Id%>&subid=0&mode=2")

 NWOrder.InitControl

End Sub

-->

</script>

<body bgcolor="#FFFFCC"

 TOPMARGIN=0

 marginwidth=10

 marginheight=0

 LEFTMARGIN=10

 LANGUAGE="VBScript"

 ONLOAD="Page_Initialize">

<!--#include file="ServerScripts\GetpageHeader.asp"-->

<TABLE WIDTH="800" border=0 CELLSPACING="0" CELLPADDING="0"

valign="TOP">

 <TR>

 <TD WIDTH="100%" align="CENTER" valign="TOP" BGCOLOR="#FFFFCC">

 <OBJECT classid="clsid:692CDDDA-A494-11D3-BF79-204C4F4F5020"

 id=NWOrder

 align="center">

 </OBJECT>

 </TD>

 </TR>

</TABLE>

<!--#include file="ServerScripts\GetpageFooter.asp"-->

</body>

</html>

We will demonstrate how an order can be created from the customer's perspective

in the following section "Building the External Internet Site." It is here that we follow

a pure HTML-based approach because we cannot run DCOM over the Internet,

which is what is needed by the control.

NOTE

As an aside, Microsoft's recent proposal for the Simple Object Access Protocol (SOAP)

promises to offer the capability to provide a rich control-based interface without

having to run over a DCOM layer. This protocol uses standard HTTP (HyperText

Transport Protocol) as its base, which is the same base protocol used by the World

Wide Web for delivery of HTML pages. Using this communication protocol, XML data

formatted requests are used to invoke methods on remote objects. Because this is

a standard submitted to the Internet Engineering Task Force (IETF), it has the

promise of being adopted as a true Internet standard. If this were the case, it would

not matter what type of Web server we were running, such as IIS or Apache. Nor

would it matter what type of application server we were running, such as MTS or

WebLogic. Nor would it matter whether our rich controls were based on Win32 or

Java. It will be interesting to watch the development of this standard.

Before completing this section, we still must cover a few more areas. The

upper-right corner of our home page includes a hypertext link to the

CalendarReports.asp page developed in the last chapter. You should notice from

our home page that, under the ORDERS hyperlink, there are additional hyperlinks

named Current Orders Schedule and Open Orders. These links jump directly into

the OrderReport.asp page using default information based on the current date,

bypassing OrderReports.asp's user criteria selection page. The reasoning for this

is that these are the most frequently used reports; therefore, there is no need to go

through the criteria selection page. Similar links can be found under the CALENDARS

section of the page.

The final item to investigate in this section is the OBJECTS area of the portal. This

text is not hyperlinked as the other items looked at so far. Instead, it provides a

listing under it of all the objects available for viewing from the intranet. If we select

the Products/Categories hypertext link, we jump to the Categories.asp page,

which appears in Figure 12.9. Selecting any of the hyperlinks on this page jumps us

to the ProductsByCategory.asp page, as shown in Figure 12.10.

Figure 12.9. The categories .asp page.

Figure 12.10. The ProductsByCategories.asp page.

The other objects listed under the OBJECTS caption on the home page can be

implemented in a similar manner. We will postpone the discussion of the items

under the TOOLS caption until the next chapter.

Building the External Internet Site

With our ability to generate an internal intranet site to accompany our application,

we might begin to wonder how we can leverage the external access that an Internet

can provide to enhance our system. Thinking from the perspective of a customer,

we might want to create an order ourselves, or at least check on the status of an

existing order. Enabling customers to create and access their own orders has the

advantage of reducing the sales and support staffing for Northwind Traders, as well

as the advantage of providing access in a 24×7 fashion. Other types of functionality

can be placed on an Internet-based site as well, such as yearly or quarterly order

histories and customer profile management. We focus on the online ordering

process in this section.

To start, we must implement a customer logon process to ensure that only

privileged users are granted access. We also use this login process to retrieve the Id

and CompanyName properties for the customer and save them to session variables.

The logon process assumes that a customer will use his or her customer code for the

login name. We will add a column to the Table_Customer table to store the

password, and we will modify the View_Customer view to also include this field. We

will assign the password and provide a password change mechanism on the site. We

also must make the appropriate change to our GetClassDef method on our

NWServer class for CT_CUSTOMER.

If we have a corporate Web site, we should update it by placing a hyperlink to our

customer login process. For our example here, we will simply create a Home1.asp

page to serve as a surrogate for our corporate home page, with a hyperlink called MY

NORTHWIND to enter into the customer-specific site. Figure 12.11 shows this entry

page.

Figure 12.11. The mocked-up Internet corporate

home page for Northwind.

Clicking on the MY NORTHWIND hyperlink takes us to the CustomerLogin.asp page,

as shown in Figure 12.12.

Figure 12.12. The CustomerLogin.asp page.

The script code for CustomerLogin.asp uses standard FORM elements, although in

this case we are using the POST method to prevent the password from being visible

to a malicious user. We have designed this page to enable re-entry in case the login

should fail in the CustomerLogin2.asp page that is called by the form. To enable

re-entry, we simply check for two query string variables named MSG and

CustomerCode. The MSG variable indicates the type of failure, whether it is from an

invalid CustomerCode or an invalid Password. The CustomerCode variable is used in

the case of an invalid Password so that the user does not have to re-enter it. If

either variable is undefined or contains no data then nothing shows on the form.

Listing 12.7 shows the code for the CustomerLogin.asp page.

Example 12.7. The CustomerLogin.asp Page

<%

 Msg = Request.QueryString("msg")

 CustomerCode = Request.QueryString("CustomerCode")

%>

<FORM action="CustomerLogin2.asp" id=form1 name=form1 method=post>

 <TABLE WIDTH="100%" CELLPADDING=2 CELLSPACING=0 border=0 height=100%>

 <TR><TD class="ResultData"><%=Msg%></TD></TR>

 <TR>

 <TD class="FormCaption" width=100% height=100%>

 Customer Code:

 <INPUT type=text id="CustomerCode"

 name="CustomerCode" value=<%=CustomerCode%>>

 </TD> </TR> <TR>

 <TD class="FormCaption" width=100% height=100%>

 Password:

 <INPUT type=password id="pwd" name="pwd">

 </TD>

 </TR>

 <TR> <TD class="FormCaption" width=100% height=100%

align=center>

 <INPUT type="submit" value="Login" id=submit1 name=submit1>

 </TD>

 </TR>

 </TABLE>

</FORM>

Our CustomerLogin2.asp page produces no HTML; instead, it checks the validity of

the CustomerCode and Password variables passed to it. Because we used the POST

method to arrive here, we must retrieve the variables from the Request.Form

collection rather than the Request.QueryString collection. After we have retrieved

these values, we create an NWServer object, as in the other examples, and perform

an IISQueryObjectListData on it to retrieve the customer object associated with

the CustomerCode. If nothing is found, we redirect back to the CustomerLogin.asp

page with a message indicating that the customer code was not found. If we do find

the customer code but the password is incorrect, we also redirect back to the

CustomerLogin.asp page, but this time with an invalid password message and the

customer code. If the password is correct, we set several session variables and

redirect to the CustomerConsole.asp page. Figure 12.13 shows a flowchart for this

login process, and Listing 12.8 provides the code for the CustomerLogin2.asp

page.

Figure 12.13. The customer login process.

Example 12.8. The Code for the CustomerLogin2.asp

Page

<%

 Dim Data, PropertyNames, Errors

 Dim DataArray

 Const CT_CUSTOMER = 4

 CustomerCode = Request.Form("CustomerCode")

 Pwd = Request.Form("pwd")

 Set NWServer = Server.CreateObject("NWServer.CNWServer")

 If Not NWServer.IISInitServer Then

 Response.Write("Could not Initialize the MTS Server
")

 End If

 WhereClause = Array(Array("CustomerCode","=",CustomerCode))

 OrderClause = Array("Id")

 Call NWServer.IISQueryObjectListData(CT_CUSTOMER,_

 WhereClause,_

 OrderClause,_

 "AND",_

 PropertyNames,_

 Data,_

 Errors)

 If IsArray(Data) Then

 Set DataArray = Server.CreateObject("AppIISCommon.CDataArray")

 DataArray.Initialize Data, PropertyNames

 If CStr(pwd) = CStr(DataArray.Item("Password",0)) Then

 Session("CustomerId") = DataArray.Item("Id",0)

 Session("CustomerName") = DataArray.Item("CompanyName",0)

 Response.Redirect("CustomerConsole.asp")

 Else

 Response.Redirect("CustomerLogin.asp?CustomerCode=" & _

 CustomerCode & "&Msg=Password is Incorrect")

 End If

 Else

 Response.Redirect("CustomerLogin.asp?Msg=Customer Code Not Found")

 End If

%>

After the customer login is passed, we have defined two session variables:

CustomerId and CustomerName. Session variables are similar to application

variables in that they are shared across all the pages within the application. The

difference is that session variables are destroyed after the user disconnects from

the site, whereas application variables persist until the Web site is restarted from

the IIS Management Console. Upon entering our CustomerConsole.asp page, we

use the CustomerName session variable to add a little personalization to the site. The

CustomerConsole.asp page appears in Figure 12.14.

Figure 12.14. The CustomerConsole.asp page.

Looking at the CustomerConsole.asp page, you should notice that its layout is

similar to our intranet site. This is simply a matter of convenience on our part so that

we do not have to create and maintain two sets of templates and styles. You might

need to modify your Internet site over time, based on usability studies and so forth;

so be prepared to make changes if necessary. For our example, we have chosen to

place several pieces of functionality on the customer-specific site. The Order Status

hyperlink is a straightforward implementation that is similar to the

OrderDetail.asp page from the intranet section. Likewise, the Order Listings

hyperlink is similar to the OrderReports.asp and OrderReport.asp pages in the

intranet section, except that here they must be filtered for a specific customer. You

can create another set of ASP files to drive this process, or if you cleverly modify the

existing reports, you can use them. The implementation of this set of pages is not

provided here. You might also notice the Change Profile hyperlink available under

the Administrative section. This link would lead to a series of ASP pages that

enable the user to modify properties on the Customer object, such as address,

contact person, telephone numbers, passwords, and so forth. Again, this

implementation is not provided here. Many other types of functionality can be

placed on this CustomerConsole.asp page. Fortunately, our architecture is robust

enough to accept such future enhancements.

The remaining item to be discussed is the Shopping link. As you might guess, this

link should enable the user to peruse the product catalog and create an order. To do

this, we will implement a simple shopping and checkout process that enables the

user to create an Order object and its associated OrderDetailItems collection.

NOTE

The solution presented for this process is simple in its design and implementation. It

is meant to demonstrate the flexibility of our architecture to support creates,

updates, and deletes from the intranet; it is not meant to represent a

ready-to-deploy electronic commerce solution. Our architecture is merely the

starting point for such applications.

If you have spent much time on commercial sites, you probably noticed that the

process of shopping involves searching for a product and then adding it to a

shopping cart. When you are finished shopping, you proceed to a checkout process.

We follow a modified approach here. Figure 12.15 provides a flowchart of our

order-creation process relative to the ASP pages that we will be creating.

Figure 12.15. The flowchart for the shopping process.

Following the shopping link from the CustomerConsole.asp page takes us to the

Shopping1.asp page, shown in Figure 12.16. This page retrieves the session

variable for the CustomerId and performs a query using the

IISQueryObjectListData method for the CT_ORDER class type. To enable this

query, we must first add a field to the database to indicate whether an order is

complete so that it can be submitted to the order fulfillment system—a topic that is

discussed in detail in Chapter 13. This completion flag, along with the OrderDate, is

set automatically during the checkout process that is discussed later in this section.

Thus, we will add a simple Is_Complete field to the database table and view, along

with the appropriate modification to the GetClassDef method on the NWServer

class for CT_ORDER and CT_ORDER_PROXY. It is important to note how simple and

unobtrusive this type of change is. Over time, as you are developing your

application, you will find the need to make similar changes to support expanding

business requirements. One of the underlying goals of this framework has been to

enable such simple changes.

Figure 12.16. The Shopping1.asp page.

We are specifically looking for orders where the IsComplete flag is false. We build

our page using standard HTML FORM methods, adding a New Order option at the end

of the radio button list.

Clicking the New Order radio button and then clicking the Next button takes us to

the EditOrder.asp page, as shown in Figure 12.17.

Figure 12.17. The EditOrder.asp page.

The EditOrder.asp page is built using similar techniques to the ones used to build

the other pages developed to this point. We use our IISQueryObjectListData to

help us build our Shipper and City combo boxes. Our choice to handle the City entry

this way is for simplicity.

NOTE

In a real-world situation, a Web-based modal dialog would be required to enable the

selection first of a Country, followed by a Region, and then a City. The change in the

Country selection would trigger a reload of the page with the appropriate Region

selection loaded. Similarly, a change in the Region selection would trigger a reload

of the page with the appropriate City selection loaded. Implementing such a dialog

requires the use of Dynamic HTML (DHTML) and client-side JavaScript, two topics

that are outside the scope of this book.

After we have entered our information and made our selections, we click on the Next

button. This submits the form to the UpdateOrder.asp page, which performs the

validation. If the validation fails, the page is redirected back to the EditOrder.asp

page with validation failure messages. The specific validation code appears in

Listing 12.9.

Example 12.9. The Validation Code in the

UpdateOrder.asp Page

CustomerId = Session("CustomerId")

OrderId = Session("OrderId")

ShipperId = Request.Form("ShipperId")

CityId = Request.Form("CityId")

ShipTo = Request.Form("ShipTo")

Address = Request.Form("ShipToAddress")

PostalCode = Request.Form("PostalCode")

ReqDate = Request.Form("ReqDate")

Msg = ""

If ReqDate = "" Then

 Msg = "- <i>Required Date</i> cannot be empty.
"

ElseIf Not IsDate(CStr(ReqDate)) Then

 Msg = "- </i>" & ReqDate & "</i> & is invalid.
"

End If

If ShipTo = "" Then

 Msg = Msg & "- <i>Ship To</i> cannot be empty.
"

End If

If Address = "" Then

 Msg = Msg & "- <i>Ship To Address</i> cannot be empty.
"

End if

If PostalCode = "" Then

 Msg = Msg & "- <i>Postal Code</i> cannot be empty.
"

End If

If Msg <> "" Then

 Session("Msg") = Msg

 Response.Redirect("EditOrder.asp")

Else

 Session("Msg") = ""

End If

From Listing 12.9, you can see where we are pulling our form information from the

Form collection of the Request object. We have chosen to use the POST method of

form processing for several reasons. First, if we begin to place the information

necessary to drive the pages on the URL as a query string, then unscrupulous users

might be able to modify the orders of others simply by editing the URL. Using the

POST methods keeps the information from users and eliminates a potential security

hole. Although this method is still not foolproof, it is much more robust than using a

query string approach.

If we fail validation, we place a message into a session variable and redirect back to

EditOrder.asp. This page is designed to check this session variable and present

the information at the top of the form. We have chosen to use a session variable to

prevent the entry of free-form text as part of a query string. Figure 12.18 shows

EditOrder.asp with a validation error message generated by UpdateOrder.asp.

Figure 12.18. The EditOrder.asp page with validation

errors.

If our update is successful, we insert a new order in the database and redirect to the

Shopping2.asp page, as shown in Figure 12.19.

Figure 12.19. The Shopping2.asp page after successful

order creation.

To perform the insert, we use the IISInsertObjectData method. To build the

variant array needed by the method, we modify our CDataArray class in several

ways. First, we change our Item method to a property Let and Get. Second, we add

a Data-property Get statement to return the internal variant array. Third, we modify

the Initialize method to create an empty array if the Data variant passed in is not

already dimensioned. These modifications appear in Listing 12.10.

Example 12.10. Modifications to the CDataArray

Class

Public Property Get Item(PropertyName As Variant, Row As Variant) As

Variant

 If dict.Exists(PropertyName) Then

 Item = vData(dict.Item(PropertyName), CLng(Row))

 Else

 Item = vbEmpty

 End If

End Property

Public Property Let Item(PropertyName As Variant, _

 Row As Variant, _

 RHS As Variant)

 If dict.Exists(PropertyName) Then

 vData(dict.Item(PropertyName), CLng(Row)) = RHS

 End If

End Property

Public Sub Initialize(Data As Variant, PropertyNames As Variant)

 Dim i As Integer

 Call MakeDictionary(PropertyNames)

 If Not IsArray(Data) Then

 Data = Array(1)

 ReDim Data(LBound(PropertyNames) To UBound(PropertyNames), 0)

 End If

 vData = Data

End Sub

Public Property Get Data() As Variant

 Data = vData

End Property

Our insertion logic within the UpdateOrder.asp page is straightforward and appears

in Listing 12.11.

Example 12.11. Insertion of a New Order Object

Within UpdateOrder.asp

Data = vbEmpty

PropertyNames = NWServer.IISGetPropertyNames(CT_ORDER)

Set DataO = Server.CreateObject("AppIISCommon.CDataArray")

DataO.Initialize Data, PropertyNames

DataO.Item("ShipperId",0) = ShipperId

DataO.Item("ShipToCityId",0) = CityId

DataO.Item("CustomerId",0) = CustomerId

DataO.Item("EmployeeId",0) = 10

DataO.Item("RequiredDate",0)= ReqDate

DataO.Item("ShipToName",0) = ShipTo

DataO.Item("ShipToAddress",0) = Address

DataO.Item("ShipToPostalCode",0) = PostalCode

DataO.Item("IsComplete",0) = False

Data = DataO.Data

Call NWServer.IISInsertObjectData(CInt(CT_ORDER), _

 PropertyNames, _

 Data, _

 Errors, _

 ObjectId, _

 ObjectSubId)

Session("OrderId") = ObjectId

On the Shopping2.asp page, we first present the user with a list of product

categories. Selecting a category produces a list of products in that category. This list

is presented in the ProductsByCategory2.asp page, as shown in Figure 12.20.

Figure 12.20. The ProductsByCategory2.asp page.

We present this list within the context of a FORM, with input fields to indicate the

quantity of items desired for purchase. To support the creation of new

OrderDetailItem objects, the user must change the quantity of a catalog item from

zero to something other than zero. Changing a quantity from a non-zero value to

zero causes a deletion to occur, whereas a change from one non-zero number to

another non-zero number performs an update. After changes are made to the

quantities, the ProductByCategory2.asp page is submitted to the

UpdateOrderDetails.asp page that performs the various inserts, updates, and

deletes. Upon completion, it redirects back to the Shopping2.asp page, showing the

changes to the order detail items, as shown in Figure 12.21. The code to perform the

inserts, updates, and deletes appears in Listing 12.12.

Figure 12.21. The products that have been added to

the current order.

Example 12.12. The Code Driving the Inserts,

Updates, and Deletes in UpdateOrderDetails.asp

Dim Data, PropertyNames, Errors

Dim DataOD, ObjectId, ObjectSubId

Const CT_ORDER_DETAIL = 8

CustomerId = Session("CustomerId")

OrderId = Session("OrderId")

MinRow = Request.Form("MinRow")

MaxRow = Request.Form("MaxRow")

Set NWServer = Server.CreateObject("NWServer.CNWServer")

If Not NWServer.IISInitServer Then

 Response.Write("Could not Initialize the MTS Server
")

End If

PropertyNames = NWServer.IISGetPropertyNames(CT_ORDER_DETAIL)

For i = MinRow To MaxRow

 vQty = Request.Form("_Qty_" & i)

 vOriginalQty = Request.Form("_OriginalQty_" & i)

 vProductId = Request.Form("_ProductId_" & i)

 vOrderDetailId = Request.Form("_OrderDetailId_" & i)

 If CInt(vQty) > 0 and CInt(vOriginalQty) = 0 Then

 ' Insert

 Data = vbEmpty

 Set DataOD = Server.CreateObject("AppIISCommon.CDataArray")

 DataOD.Initialize Data, PropertyNames

 DataOD.Item("OrderId",0) = OrderId

 DataOD.Item("ProductId",0) = vProductId

 DataOD.Item("Quantity",0)= vQty

 DataOD.Item("Discount",0) = 0

 Data = DataOD.Data

 Call NWServer.IISInsertObjectData(CInt(CT_ORDER_DETAIL), _

 PropertyNames, _

 Data, _

 Errors, _

 ObjectId, _

 ObjectSubId)

 ElseIf CInt(vQty) = 0 and CInt(vOriginalQty) <> 0 Then

 ' Delete

 Call NWServer.IISDeleteObject(CInt(CT_ORDER_DETAIL), _

 CLng(vOrderDetailId), 0, _

 Errors)

 ElseIf CInt(vQty) <> 0 And CInt(vOriginalQty) <> 0 and _

 CInt(vQty) <> CInt(vOriginalQty) then

 ' Update

 Data = vbEmpty

 Set DataOD = Server.CreateObject("AppIISCommon.CDataArray")

 DataOD.Initialize Data, PropertyNames

 DataOD.Item("Id",0) = vOrderDetailId

 DataOD.Item("OrderId",0) = OrderId

 DataOD.Item("ProductId",0) = vProductId

 DataOD.Item("Quantity",0)= vQty

 DataOD.Item("Discount",0) = 0

 Data = DataOD.Data

 Call NWServer.IISUpdateObjectData(CInt(CT_ORDER_DETAIL), _

 PropertyNames, _

 Data, _

 Errors, _

 CLng(vOrderDetailId), _

 0)

 End If

Next

Response.Redirect("Shopping2.asp")

It is important to note that we have modified our OrderDetailItem object by

adding a Category property. We have made this modification to support the

usability of our Shopping2.asp page so that if we want to modify an existing

OrderDetailItem, we know the category to which the product belongs. To make

this update, we simply modify our View_Order_Detail view to add the column and

make the changes to the CT_ORDER_DETAIL class in our GetClassDef method on

NWServer. Again, it is important to note how simple and unobtrusive this type of

change is.

After we have selected all our products, we click the Next button, which submits the

page to the OrderCheckout.asp page. This page simply performs an update,

setting the IsComplete flag and the OrderDate to the current date. Upon

completion of this update, it redirects back to the Shopping1.asp page.

Summary

In this chapter, we explored mechanisms with which to extend our application to

both the intranet and the Internet using functionality already built into our

framework. We have also explored basic Web site standardization techniques using

style sheets and server side include files. Finally, we looked at mechanisms to

perform inserts, updates, and deletes from a Web site within the context of our

framework.

In the next chapter, we will look at how our system interacts with others to integrate

itself within the landscape of the enterprise. We will also look at techniques that

involve both the movement of data between systems and the direct, real-time

access of data in foreign systems.

Chapter 13. Interoperability

The topic of interoperability is one that can fill an entire book by itself. Indeed,

Enterprise Application Integration (EAI) books that are available in a variety of

series deal with this topic in detail. Nonetheless, it is important in a book on

enterprise application development to provide a basic level of coverage of this topic

for completeness, because application interoperability is fundamental to the

enterprise. Therefore, the ideas presented in this chapter are meant to discuss

some of the theory as well as the implementation for the interoperability techniques

related to our application framework.

Interoperability Defined

The term interoperability itself can mean several things. At one level, it can simply

mean the movement of data from one application to another via simple file

structures, with a person acting as an intermediary. On the other hand, it can mean

the movement of data via a direct link between the two systems, without user

involvement. This same sharing of data can also be accomplished without the

physical movement of data from one system to another; it can be accomplished

instead through the direct, real-time access of the data in the other system. At

another level, interoperability can also require collaboration, which can include both

sharing data and signaling other systems. In this mode, one application can pass a

set of information to another system, asking it to perform some function. This

second system might perform some additional work and send a signal to yet another

system. At some point, the originator might receive notice of success or failure,

possibly with some data that represents the end product of all the work.

For the sake of exposition in this chapter, let us suppose that Northwind Traders has

an order-fulfillment system that is separate from its order-taking system—a

somewhat plausible example of how such an operation might work. The

order-taking system is the sample application that we have been working on up to

this point. The order- fulfillment system is an in-house legacy system. It is

necessary for our application to send the order information to the fulfillment system

after an order has been created.

We assume that the initial sample mechanism to accomplish our goal of

interoperability requires user intervention. We provide an example of this

less-than-ideal solution because there are many instances in which this is the only

option available. We follow this example with a more automated approach in which

orders are "dropped" from our order-taking application into the fulfillment system at

regular intervals (such as every two, four, or eight hours). We can assume, in this

more automated approach, that orders can be changed up until the time they are

dropped to the fulfillment system. In this automated approach, we have several

options available for implementation; we will provide examples of each.

Interoperability Through Data Movement

The basis for any form of data movement is a stream. SQL Server uses what is

known as a Table Data Stream (TDS) format when communicating with clients,

Internet Information Server (IIS) uses an HTML stream when sending results back

to a client, and so forth. In our example of moving the orders into the fulfillment

system, our stream carrier becomes a simple file, although its format can take one

of several forms.

Using Proprietary Formats in Data Transfer

Proprietary formats are typically brought about by the capabilities (or restrictions)

of one of the two systems in question. For example, if the legacy-based fulfillment

system has a defined file format for importing the orders, this is said to be a

proprietary format that the order-taking system must support. Alternatively, we

might choose to define a proprietary format within the order-taking system that the

fulfillment system must import. Typically, the former solution is easier to implement

because it is often more dangerous to make modifications to stable applications

than to newer ones just going into production.

To implement an exporter that will support this movement of data, we need to

create a new method on our IAppServer class called CreateExportStream. We will

make our application-specific implementation in the NWServer class. This method is

designed to be the only one called, regardless of the class type or the format needed,

by passing in an ExportClass and an ExportFormat identifier. Our choice to create

a single method to support all formats of all objects for all export activities is done

for future flexibility, as the next section points out. Note that this implementation is

yet another divergence from pure object orientation in that the NWServer surrogate

object is hosting a method that would otherwise be implemented directly by the

object in question.

To implement a specific export process, we must first define export class types.

These differ from the normal class type definitions implemented so far. The reason

for this is that we might have to combine or modify some of our existing class types

to arrive at the export information needed by the foreign application, or we might

need to export our existing class types in manners not specified in our original

ClassDef definitions. If we must recombine existing class types to meet our export

requirements, we first must create a new class type, for which there is no

corresponding implementation in our NWClient component. Within the

implementation of the CreateExportStream method, use a Case statement to

select from among the various export class types, which then call an appropriate

private method on NWServer, passing it the given export format identifier.

We start our implementation process by defining two new class type constants:

CT_ORDER_EXPORT and CT_ORDER_DETAIL_EXPORT. We also define a new export

format, EF_ORDER_PROPRIETARY. Listing 13.1 shows the implementation of the

CreateExportStream method on NWServer.

Example 13.1. The CreateExportStream Method on

NWServer

Private Function IAppServer_CreateExportStream(ClassId As Integer, _

 ExportType As Integer, _

 Stream As String, _

 Errors As Variant) As Variant

 Select Case ClassId

 Case CT_ORDER_EXPORT, CT_ORDER_DETAIL_EXPORT

 Call CreateOrderExportStream(ExportType, Stream, Errors)

 End Select

 ObjCtx.SetComplete

End Function

Before implementing our CreateOrderExportStream method, which we called in

Listing 13.1, we must perform several development tasks. First, we must define a

proprietary format to use for the example. Next, we must implement the

appropriate ClassDef objects in our GetClassDef method.

Let us suppose that the proprietary format for our order information is such that

both the order and the order detail information are included in the same data stream.

Let us also assume that there is an order line followed by multiple detail lines, which

might be followed by other order and detail lines. To accommodate this, the first

character of a line is a line type indicator of either an O or a D, for order and detail,

respectively. The remaining information on a given line depends on this type

indicator, with each field being separated by the pipe (¦) character. We also assume

that the fields in both line types are defined implicitly by the proprietary standard

and cannot be changed without programmatic changes by both applications.

To implement the CT_ORDER_EXPORT class type, a new single-row, two-column table

called Table_Last_Order_Export is created to track the last time an order drop

was exported. It has an Id column to serve as the primary key to help us update the

row, and a LastDate column that contains the date field in which we are interested.

We create a new view called View_Order_Export that includes this table but does

not explicitly join it to the other tables. This has the effect of returning the LastDate

column for every row returned by the other join and where conditions for the query.

We can then compare this date with our Order_Date column to only return the rows

that have not been exported since the last export date. We also create a

CT_LAST_ORDER_EXPORT class type to help us easily manage the value of this row in

the database. We could have chosen to implement this last date tracking

mechanism via a registry setting on the computer running the integration. Although

this is plausible, it does not enable the data transfer to be run on more than one

machine because it is difficult to keep these dates synchronized between the various

machines. By placing this information in the database, we can run our data transfer

on multiple machines, although not at the same time. The implementation of

CT_ORDER_DETAIL_EXPORT follows the standard process that we use to add new

class types. We make these additions to our GetClassDef function, as shown in

Listing 13.2.

Example l3.2. Adding the New Class Types to

NWServer

Private Function IAppServer_GetClassDef(ByVal ClassId As Integer) As

CClassDef

 Dim ClassDef As CClassDef

 If Not bInitialized Then IAppServer_InitServer

 If Not mIAppServer.ClassDefs.Exists(CStr(ClassId)) Then

 Select Case ClassId

…

 Case CT_ORDER_EXPORT

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Order_Export"

 .WriteLocation = ""

 .IdColumnName = "Id"

 .OrderByColumnName = "Order_Date, Id"

 .AppendMapping "OrderId", "Id", True, False, ctNumber,

"ORDER_ID"

 .AppendMapping "CustomerCode", "Customer_Code", True, False, _

 ctString, "CUSTOMER_CODE"

 .AppendMapping "CompanyName", "Company_Name", True, False, _

 ctString, "COMPANY_NAME"

 .AppendMapping "OrderDate", "Order_Date", True, False, _

 ctDateTime, "ORDER_DATE"

 .AppendMapping "RequiredDate", "Required_Date", True, False, _

 ctDateTime, "REQUIRED_DATE"

 .AppendMapping "ShipperName", "Shipper_Name", True, False, _

 ctString, "SHIPPER_NAME"

 .AppendMapping "FreightCost", "Freight_Cost", True, False, _

 ctNumber, "FREIGHT_COST"

 .AppendMapping "ShipToName", "Ship_To_Name", True, False, _

 ctString, "SHIP_TO_NAME"

 .AppendMapping "ShipToAddress", "Ship_To_Address", True, False,

_

 ctString, "SHIP_TO_ADDRESS"

 .AppendMapping "ShipToPostalCode", "Ship_To_Postal_Code", _

 True, False, ctString, "SHIP_TO_POSTAL_CODE"

 .AppendMapping "ShipToCountry", "Ship_To_Country", True, False,

_

 ctString, "SHIP_TO_COUNTRY"

 .AppendMapping "ShipToCity", "Ship_To_City", True, False, _

 ctString, "SHIP_TO_CITY"

 .AppendMapping "ShipToRegion", "Ship_To_Region", True, False,

_

 ctString, "SHIP_TO_REGION"

 .AppendMapping "LastExportDate", "Last_Export_Date", True,

False, _

 ctDateTime, ""

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef, CStr(CT_ORDER_EXPORT))

 Case CT_ORDER_DETAIL_EXPORT

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "View_Order_Detail_Export"

 .WriteLocation = ""

 .IdColumnName = "Id"

 .ParentIdColumnName = "Order_Id"

 .OrderByColumnName = "Id"

 .AppendMapping "Id", "Id", True, False, ctNumber, "ID"

 .AppendMapping "OrderId", "Order_Id", True, True, _

 ctNumber, "ORDER_ID"

 .AppendMapping "Product", "Product", True, False, _

 ctString, "PRODUCT"

 .AppendMapping "Quantity", "Quantity", True, True, _

 ctNumber, "QTY"

 .AppendMapping "QuantityPerUnit", "Quantity_Per_Unit", True,

False, _

 ctString, "QUANTITY_PER_UNIT"

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef,

CStr(CT_ORDER_DETAIL_EXPORT))

 Case CT_LAST_ORDER_EXPORT

 Set ClassDef = New CClassDef

 With ClassDef

 .DatabaseName = "NWIND"

 .ReadLocation = "Table_Last_Order_Export"

 .WriteLocation = "Table_Last_Order_Export"

 .IdColumnName = "Id"

 .OrderByColumnName = "Id"

 .AppendMapping "Id", "Id", True, False, ctNumber, ""

 .AppendMapping "LastDate", "LastDate", True, True, ctDateTime,

""

 End With

 Call mIAppServer.ClassDefs.Add(ClassDef,

CStr(CT_LAST_ORDER_EXPORT))

 End Select

 End If

 Set IAppServer_GetClassDef =

mIAppServer.ClassDefs.Item(CStr(ClassId))

End Function

With our new ClassDef objects defined in GetClassDef and our new tables and

views created, we can turn our attention to the implementation of the

CreateOrderExportStream method, as shown in Listing 13.3. Although we

currently have only one format type defined, we implement a Select Case

statement to switch among the possible types. In this code, we simply obtain the list

of current exportable orders using our GetObjectListData method for the

CT_ORDER_EXPORT class type. Remember that this list is automatically controlled by

the View_Order_Export view that relies on the LastDate column in the

Table_Last_Order_Export table. We iterate through the returned orders,

requesting the order detail information with a similar call to GetObjectListData,

this time using the CT_ORDER_DETAIL_EXPORT class type and the ID of the current

order. We then write out to our output string the "O" header record, followed by the

"D" detail records. We continue this for all orders.

Example 13.3. The Implementation of

CreateOrderExportStream

Private Function CreateOrderExportStream(ExportType As Integer, _

 Stream

As

String, _

 Errors

As

Variant)

 Dim DataO As Variant, DataOD As Variant

 Dim PropertyNames As Variant

 Dim Criteria As Variant

 Dim cPIO As Collection, cPIOD As Collection

 Dim i As Integer, j As Integer

 Dim OrderId As Long

 Dim sOut As String

 On Error GoTo ErrorTrap

 Select Case ExportType

 Case EF_ORDER_PROPRIETARY

 ' get the collection of non-exported orders

 Call IAppServer_GetClassDef(CT_ORDER_EXPORT)

 Call IAppServer_GetClassDef(CT_ORDER_DETAIL_EXPORT)

 Call mIAppServer.GetObjectListData(CT_ORDER_EXPORT, 0, 0, _

PropertyNames,

DataO, Errors)

 If IsArray(DataO) Then

 Set cPIO = MakePropertyIndex(PropertyNames)

 For i = LBound(DataO, 2) To UBound(DataO, 2)

 ' get the order detail records

 OrderId = DataO(cPIO.Item("OrderId"), i)

 DataOD = vbEmpty

 Call mIAppServer.GetObjectListData(CT_ORDER_DETAIL_EXPORT, _

OrderId, 0,

PropertyNames, _

DataOD,

Errors)

 If IsArray(DataOD) Then

 Set cPIOD = MakePropertyIndex(PropertyNames)

 ' write out the order header

 Append sOut, "O¦"

 Append sOut, DataO(cPIO("OrderId"), i) & "¦

 Append sOut, DataO(cPIO("CustomerCode"), i) & "¦"

 Append sOut, DataO(cPIO("CompanyName"), i) & "¦"

 Append sOut, DataO(cPIO("OrderDate"), i) & "¦"

 Append sOut, DataO(cPIO("RequiredDate"), i) & "¦"

 Append sOut, DataO(cPIO("ShipperName"), i) & "¦

 Append sOut, DataO(cPIO("FreightCost"), i) & "¦"

 Append sOut, DataO(cPIO("ShipToName"), i) & "¦"

 Append sOut, DataO(cPIO("ShipToAddress"), i) & "¦"

 Append sOut, DataO(cPIO("ShipToPostalCode"), i) & "¦"

 Append sOut, DataO(cPIO("ShipToCountry"), i) & "¦"

 Append sOut, DataO(cPIO("ShipToCity"), i) & "¦"

 Append sOut, DataO(cPIO("ShipToRegion"), i) & vbCrLf

 ' write out the order details

 For j = LBound(DataOD, 2) To UBound(DataOD, 2)

 Append sOut, "D¦"

 Append sOut, DataOD(cPIOD("Product"), j) & "¦"

 Append sOut, DataOD(cPIOD("Quantity"), j) & "¦"

 Append sOut, DataOD(cPIOD("QuantityPerUnit"), j) & vbCrLf

 Next j

 End If

 Next

End If

 Stream = sOut

 End Select

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("CNWServer:CreateOrderExportStream",

Err.Number, _

 Err.Description & " [" & Erl & "]", Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "CNWServer:CreateOrderExportStream", _

 Err.Description & " [" & Erl & "]"

End Function

With this initial implementation of the CreateOrderExportStream, we are able to

generate the proprietary format needed to move data from our application into the

order-fulfillment application. Implementing a dialog within Visual Basic that runs

this export process and saves the resulting stream to a file is a simple process. The

simple code snippet to instantiate the process appears in Listing 13.4.

Example 13.4. Calling the Proprietary Export Process

Dim NWServer As CNWServer

Dim AppServer As IAppServer

Dim Stream As String

Dim Errors As Variant

Set NWServer = CreateObject("NWServer.CNWServer", MTSMachineName)

Set AppServer = NWServer

AppServer.InitServer

Call AppServer.CreateExportStream(CT_ORDER_EXPORT,

EF_ORDER_PROPRIETARY, _

 Stream, Errors)

After this output stream has been written to a file, it can be read into the fulfillment

system using whatever process is in place that accepts this proprietary input. In

some cases, it might be possible to implement a new custom loader in a language

like Visual Basic or C++, assuming there is an application programming interface

(API) to do so. Figure 13.1 shows a flowchart of how we have implemented this data

movement process so far.

Figure 13.1. Manual data movement using a

file-based process.

Standards-Based Formats

Although implementing a proprietary export format as shown in the previous

example is somewhat trivial in nature, creating new formats becomes burdensome

because the secondary systems are replaced over time. As these newer, secondary

systems are created, our legacy data transfer processes are no longer needed. We

might be remiss to take such functionality back out because of the time invested

into developing it, even though we might never use it again. This is akin to all the

clutter up in the attic or down in the basement that we find difficult to throw away.

One solution is that our application writes out a generic, standards-based format

that new systems coming online should support. We can either maintain our

capability to write out proprietary formats alongside our generic format or just write

out a single generic format and create secondary processes to convert the

information into the appropriate target format. These secondary processes can be

console applications written in your favorite language, such as Visual Basic or C++,

or they can be simple Perl scripts.

For our application, we have chosen to use the eXtensible Markup Language (XML)

as the foundation for our standards-based format. Not only does this make it easier

to implement the importation side of the data movement interface, it uses a

technology that has gained widespread acceptance. XML parsers are available for

most major platforms and operating systems, and most enterprise applications

should offer some form of XML support in the near future. To implement this type of

output stream, we must define a format identifier and implement the appropriate

code under our CreateOrderExportStream method. We call this new constant

EF_ORDER_XML. This code, as shown in Listing 13.5, leverages the XML-generation

functionality that we have placed in IappServer.

Example 13.5. The CreateOrderExportStream Method

with Support for XML Format

Private Function CreateOrderExportStream(ExportType As Integer, _

 Stream As String, _

 Errors As Variant)

 Dim DataO As Variant, DataOD As Variant

 Dim PropertyNames As Variant

 Dim Criteria As Variant

 Dim cPIO As Collection, cPIOD As Collection

 Dim i As Integer, j As Integer

 Dim OrderId As Long

 Dim sOut As String

 On Error GoTo ErrorTrap

 Select Case ExportType

 Case EF_ORDER_PROPRIETARY

 ' same code as before

 Case EF_ORDER_XML

 Call IAppServer_GetClassDef(CT_ORDER_EXPORT)

 Call IAppServer_GetClassDef(CT_ORDER_DETAIL_EXPORT)

 ' write out the DTD

 Append sOut, "<?xml version='1.0' encoding='iso-8859-1' ?>" &

vbCrLf

 Append sOut, "<!DOCTYPE ExportedOrderItems [" & vbCrLf

 Append sOut, "<!ELEMENT ExportedOrderItems

(ExportedOrderItem*)>"_

 & vbCrLf

 Append sOut, _

 "<!ELEMENT ExportedOrderItem (ORDER,

ORDER_DETAIL_ITEMS*)>" _

 & vbCrLf

 sTemp = mIAppServer.CreateXMLCollectionClass(CT_ORDER_EXPORT)

 Append sOut, sTemp & vbCrLf

 vOrderProperties = Array("OrderId", "CustomerCode", _

 "CompanyName", "OrderDate", _

 "RequiredDate", "ShipperName", _

 "FreightCost", "ShipToName", _

 "ShipToAddress", "ShipToPostalCode", _

 "ShipToCountry", "ShipToCity", _

 "ShipToRegion")

 vOrderDetailProperties = Array("Product", "Quantity", _

 "QuantityPerUnit")

 sTemp = mIAppServer.CreateXMLClass(CT_ORDER_EXPORT,

vOrderProperties)

 Append sOut, sTemp

 sTemp =

mIAppServer.CreateXMLCollectionClass(CT_ORDER_DETAIL_EXPORT)

 Append sOut, sTemp

 sTemp = mIAppServer.CreateXMLClass(CT_ORDER_DETAIL_EXPORT, _

 vOrderDetailProperties)

 Append sOut, sTemp

 Append sOut, "]>" & vbCrLf

 ' write out the document data

 Append sOut, "<ExportedOrderItems>" & vbCrLf

 ' get the collection of non-exported orders

 Call mIAppServer.GetObjectListData(CT_ORDER_EXPORT, 0, 0, _

 PropertyNames, DataO, Errors)

 If IsArray(DataO) Then

 Set cPIO = MakePropertyIndex(PropertyNames)

 For i = LBound(DataO, 2) To UBound(DataO, 2)

 Append sOut, "<ExportedOrderItem>" & vbCrLf

 ' get the order detail records

 OrderId = DataO(cPIO.Item("OrderId"), i)

 sTemp = mIAppServer.CreateXMLObject(CT_ORDER_EXPORT, _

 vOrderProperties, DataO, i)

 Append sOut, sTemp

 DataOD = vbEmpty

 Call mIAppServer.GetObjectListData(CT_ORDER_DETAIL_EXPORT,

 OrderId, 0, _

 PropertyNames, DataOD, _

 Errors)

 If IsArray(DataOD) Then

 sTemp = _

 mIAppServer.CreateXMLCollection(CT_ORDER_DETAIL_EXPORT,

_

 vOrderDetailProperties, _

 DataOD)

 Append sOut, sTemp

 End If

 Append sOut, "</ExportedOrderItem>" & vbCrLf

 Next i

 End If

 Append sOut, "</ExportedOrderItems>" & vbCrLf

 Stream = sOut

 End Select

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("CNWServer:CreateOrderExportStream",

Err.Number, _

 Err.Description & " [" & Erl & "]", Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "CNWServer:CreateOrderExportStream", _

 Err.Description & " [" & Erl & "]"

End Function

To build an XML document, we first must define a document type definition (DTD)

section that describes the data contained in the remainder of the section. We must

explicitly create the DTD ourselves because it is so tightly bound to our object model.

If we had built an application to support an existing industry standard

DTD—something that might become more common as XML use increases—then we

would have adapted our object model to conform to the standard DTD at the outset

or we would have to write some additional code to make sure that we can reproduce

the standard DTD from our object model. Listing 13.6 shows the DTD for our export

process.

Example 13.6. The DTD for Our XML-Formatted Order

Export Process

<?xml version='1.0' encoding='iso-8859-1' ?>

<!DOCTYPE ExportedOrderItems [

<!ELEMENT ExportedOrderItems (ExportedOrderItem*)>

<!ELEMENT ExportedOrderItem (ORDER, ORDER_DETAIL_ITEMS*)>

<!ELEMENT ORDERS EMPTY>

<!ELEMENT ORDER EMPTY>

<!ATTLIST ORDER

 ORDER_ID CDATA #REQUIRED

 CUSTOMER_CODE CDATA #REQUIRED

 COMPANY_NAME CDATA #REQUIRED

 ORDER_DATE CDATA #REQUIRED

 REQUIRED_DATE CDATA #REQUIRED

 SHIPPER_NAME CDATA #REQUIRED

 FREIGHT_COST CDATA #REQUIRED

 SHIP_TO_NAME CDATA #REQUIRED

 SHIP_TO_ADDRESS CDATA #REQUIRED

 SHIP_TO_POSTAL_CODE CDATA #REQUIRED

 SHIP_TO_COUNTRY CDATA #REQUIRED

 SHIP_TO_CITY CDATA #REQUIRED

 SHIP_TO_REGION CDATA #REQUIRED

<!ELEMENT ORDER_DETAIL_ITEMS (ORDER_DETAIL_ITEM*)>

<!ELEMENT ORDER_DETAIL_ITEM EMPTY>

<!ATTLIST ORDER_DETAIL_ITEM

 PRODUCT CDATA #REQUIRED

 QUANTITY CDATA #REQUIRED

 QUANTITY_PER_UNIT CDATA #REQUIRED

>

]>

You might notice that the keyword #REQUIRED is used for all the attribute default

type settings. Other values could include #IMPLIED or #FIXED. If your DTD requires

these settings, it is a simple matter to add this meta information to the Attributes

collection for the required property in a ClassDef, while also modifying the

appropriate DTD generation functions. The same applies to the CDATA keyword,

which can be replaced with other attribute types, such as ENTITY, ENTITIES, ID,

IDREF, IDREFS, NMTOKEN, NMTOKENS, NOTATION, and Enumerated. We have

chosen the simplest CDATA and #REQUIRED methods as defaults because we are

using XML as a simple data transfer medium, not as a mechanism to enforce

business rules.

Looking back at the code in Listing 13.5, you should notice that in our XML version,

we follow the same data retrieval logic that we used in our proprietary format case.

The main difference is in how we write out the data. Notice the use of four methods

on the IAppServer class that assist us in formatting the information into XML. They

are CreateXMLCollectionClass, CreateXMLClass,CreateXMLCollection, and

CreateXMLObject. The first two methods correspond to the creation of the DTD,

whereas the second two methods correspond to the actual information being written

out. To create our XML-formatted stream, we ust first build the DTD. To accomplish

this, we first write out some preamble information—including the first four lines of

the DTD—to an XML output string to identify the contents as an XML document. We

then call the CreateXMLCollectionClass method for CT_ORDER_EXPORT to write

out the DTD information for the ORDERS collection, followed by a call to

CreateXMLClass to write out the DTD information for the ORDER class. Notice that in

our call to CreateXMLClass, we are passing a variant array call, vOrderProperties.

This tells the CreateXMLClass method which properties of the class to write out as

attributes in the ATTLIST section.

Notice that we have also followed the same approach in terms of object hierarchy in

our XML as we have throughout the rest of our application base. Instead of defining

the ORDER_DETAIL_ITEMS collection as a child object of the ORDER object, we have

placed them side-by-side and wrapped them in an EXPORTED_ORDER_ITEM construct.

The reason for this is that our metadata does not understand an object hierarchy,

and thus it cannot generate a DTD to support one.

The CreateXMLCollectionClass method appears in Listing 13.7, and the

CreateXMLClass method appears in Listing 13.8. Both are straightforward in their

implementation. It is important to note that we are simply using the Attributes

collections on both the ClassDef and PropertyDef objects.

Example 13.7. The CreateXMLCollection Method on

IAppServer

Public Function CreateXMLCollectionClass(ClassId As Integer) As String

 Dim sXMLOut As String

 Dim ClassDef As CClassDef

 Dim PropertyDef As CPropertyDef

 Dim AttributeItem As CAttributeItem

 Dim XMLCollectionClassName As String

 Dim XMLThingy As String

 Dim i As Integer

On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 ' 1. Output the ELEMENT section

 If ClassDef.Attributes.Exists("XMLCollectionClassName") Then

 XMLCollectionClassName = _

 ClassDef.Attributes.Item("XMLCollectionClassName").Value

 Else

 XMLCollectionClassName = ClassDef.ReadLocation ' assumes table name

 End If

 Call Append(sXMLOut, "<!ELEMENT" & vbTab &

XMLCollectionClassName & " ")

 If ClassDef.Attributes.Exists("XMLCollectionClassChildren") Then

 XMLThingy =

ClassDef.Attributes.Item("XMLCollectionClassChildren").Value

 Else

 XMLThingy = "EMPTY"

 End If

 Call Append(sXMLOut, XMLThingy & ">" & vbCrLf)

ExitFunction:

 CreateXMLCollectionClass = sXMLOut

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:CreateXMLCollectionClass",

Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:CreateXMLCollectionClass", _

 Err.Description & " [" & Erl & "]"

End Function

Example 13.8. The CreateXMLClass Method on

IAppServer

Public Function CreateXMLClass(ClassId As Integer, _

 Properties As Variant) As String

 Dim sXMLOut As String

 Dim ClassDef As CClassDef

 Dim PropertyDef As CPropertyDef

 Dim AttributeItem As CAttributeItem

 Dim XMLClassName As String

 Dim XMLThingy As String

 Dim i As Integer

On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 ' 1. Output the ELEMENT section

 If ClassDef.Attributes.Exists("XMLClassName") Then

 XMLClassName = ClassDef.Attributes.Item("XMLClassName").Value

 Else

 XMLClassName = ClassDef.ReadLocation ' assumes table name

 End If

 Call Append(sXMLOut, "<!ELEMENT" & vbTab & XMLClassName & " ")

 If ClassDef.Attributes.Exists("XMLClassChildren") Then

 XMLThingy = ClassDef.Attributes.Item("XMLClassChildren").Value

 Else

 XMLThingy = "EMPTY"

 End If

 Call Append(sXMLOut, XMLThingy & ">" & vbCrLf)

 ' 2. Output the ATTLIST section

 XMLThingy = "<!ATTLIST " & vbTab & XMLClassName

 Call Append(sXMLOut, XMLThingy & vbCrLf)

 If Not IsArray(Properties) Then

 Properties = GetPropertyNames(ClassId)

 End If

 For i = LBound(Properties) To UBound(Properties)

 Set PropertyDef = ClassDef.PropertyDefs.Item(Properties(i))

 If PropertyDef.Attributes.Exists("XMLAttributeName") Then

 XMLThingy =

PropertyDef.Attributes.Item("XMLAttributeName").Value

 If XMLThingy <> "" Then

 Call Append(sXMLOut, vbTab & vbTab & XMLThingy)

 Call Append(sXMLOut, " CDATA #REQUIRED" & vbCrLf)

 End If

 End If

 Next I

 Call Append(sXMLOut, ">" & vbCrLf)

ExitFunction:

 CreateXMLClass = sXMLOut

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:CreateXMLClass", Err.Number, _

 Err.Description, Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:CreateXMLClass", _

 Err.Description & " [" & Erl & "]"

End Function

The CreateXMLCollection and CreateXMLObject methods take our familiar data

variant array that is retrieved from our various data retrieval methods. The code for

CreateXMLObject appears in Listing 13.9, and Listing 13.10 shows the code for
CreateXMLCollection.

Example 13.9. The CreateXMLObject Method on

IAppServer

Public Function CreateXMLObject(ClassId As Integer, Properties As Variant,

_

 Data As Variant, Row As Integer) As String

 Dim sXMLOut As String

 Dim ClassDef As CClassDef

 Dim PropertyDef As CPropertyDef

 Dim PropertyNames As Variant

 Dim PropertyIndex As Collection

 Dim XMLClassName As String

 Dim XMLThingy As String

 Dim i As Integer

On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 PropertyNames = GetPropertyNames(ClassId)

 Set PropertyIndex = MakePropertyIndex(PropertyNames)

 If Not IsArray(Properties) Then

 Properties = PropertyNames

 End If

 If ClassDef.Attributes.Exists("XMLClassName") Then

 XMLClassName = ClassDef.Attributes.Item("XMLClassName").Value

 Else

 XMLClassName = ClassDef.ReadLocation ' assumes table name

 End If

 Append sXMLOut, "<" & XMLClassName & " "

 For i = LBound(Properties) To UBound(Properties)

 Set PropertyDef = ClassDef.PropertyDefs.Item(Properties(i))

 If PropertyDef.Attributes.Exists("XMLAttributeName") Then

 XMLThingy =

PropertyDef.Attributes.Item("XMLAttributeName").Value

 If XMLThingy <> "" Then

 Append sXMLOut, XMLThingy & "=" & Chr(34) & _

 Data(PropertyIndex(PropertyDef.Name), Row) &

Chr(34) & " "

 End If

 End If

 Next i

 Append sXMLOut, "/>" & vbCrLf

ExitFunction:

 CreateXMLObject = sXMLOut

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:CreateXMLObject", Err.Number, _

 Err.Description & " [" & Erl &

"]",

Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:CreateXMLObject", &

 Err.Description & " [" & Erl & "]"

End Function

Example 13.10. The CreateXMLCollection Method

Public Function CreateXMLCollection(ClassId As Integer, _

 Properties As Variant, _

 Data As Variant) As String

 Dim sXMLOut As String

 Dim ClassDef As CClassDef

 Dim PropertyDef As CPropertyDef

 Dim PropertyNames As Variant

 Dim PropertyIndex As Collection

 Dim XMLCollectionClassName As String

 Dim XMLThingy As String

 Dim i As Integer

On Error GoTo ErrorTrap

 Set ClassDef = mClassDefs.Item(ClassId)

 PropertyNames = GetPropertyNames(ClassId)

 Set PropertyIndex = MakePropertyIndex(PropertyNames)

 If Not IsArray(Properties) Then

 Properties = PropertyNames

 End If

 If ClassDef.Attributes.Exists("XMLCollectionClassName") Then

 XMLCollectionClassName = _

 ClassDef.Attributes.Item("XMLCollectionClassName").Value

 Else

 XMLCollectionClassName = ClassDef.ReadLocation ' assumes table name

 End If

 Append sXMLOut, "<" & XMLCollectionClassName & ">" & vbCrLf

 For i = LBound(Data, 2) To UBound(Data, 2)

 XMLThingy = CreateXMLObject(ClassId, Properties, Data, i)

 Append sXMLOut, XMLThingy

 Next I

 Append sXMLOut, "</" & XMLCollectionClassName & ">" & vbCrLf

ExitFunction:

 CreateXMLCollection = sXMLOut

 Exit Function

ErrorTrap:

 '1. Details to EventLog

 Call WriteNTLogEvent("IAppServer:CreateXMLCollection", Err.Number,

_

 Err.Description & " [" & Erl & "]", Err.Source)

 '2. Generic to client - passed back on error stack

 Err.Raise Err.Number, "IAppServer:CreateXMLCollection", _

 Err.Description & " [" & Erl & "]"

End Function

With our XML process now in place, we can modify the code snippet from Listing

13.4 to now generate an XML format of the same information, which appears in

Listing 13.11.

Example 13.11. Calling the XML Export Process

Dim NWServer As CNWServer

Dim AppServer As IAppServer

Dim Stream As String

Dim Errors As Variant

Set NWServer = CreateObject("NWServer.CNWServer", MTSMachineName)

Set AppServer = NWServer

AppServer.InitServer

Call AppServer.CreateExportStream(CT_ORDER_EXPORT, EF_ORDER_XML, _

 Stream, Errors)

The rest of the standards-based process is the same process shown in Figure 13.1.

The only difference is that now the format of the transfer file is XML versus a

proprietary format. Figure 13.2 shows the XML Notepad (available from Microsoft)

with a sample of our export file loaded.

Figure 13.2. The XML Notepad showing a sample

order export file.

File-Based Interoperability

With our capability to generate proprietary, or standardized, data streams, we now

have the capability to transfer information from one system to another. In the

simplest form, a simple file generation process that calls the CreateExportStream

method can be implemented. We spoke of this same process in the previous section

and diagrammed it in Figure 13.1. This process can be placed directly off the TOOLS

section of the intranet Web site, or it can be placed in the Visual Basic client

application. In either implementation, a user chooses to generate this information

to a file. The user must then take this file to the order-fulfillment system and import

it. This activity is typically performed at predetermined intervals, such as daily,

every fourv hours, or whatever is needed. In many cases, this type of

interoperability can be put into production quickly, while more automated solutions

are developed.

In a more automated system, a task scheduler can trigger a process in the

order-taking system that writes out the file to a shared directory and then calls the

order-fulfillment system in which to read it. Task schedulers can come in various

forms. The NT system has a built-in task-scheduling component through its AT

command. The SQL Executive can be used as a triggering device, but this requires

processing to occur on the same physical machine as the database server, which

might not be desirable. Commercially available task schedulers can also be used, or

a custom scheduler, which uses the Windows timer API and which is implemented as

an NT service, can also be used. For our purposes, we use the native NT scheduler

to call console applications written in Visual Basic.

If our order-fulfillment system has an API that enables us to automate our import

process, we can automate this entire data transfer process. Figure 13.3 shows an

overview of the architecture required to automate this process.

Figure 13.3. Automated data movement using a task

scheduler and an integration server.

First, we create a shared file directory on our integration server machine to serve as

a common data point. If we want an order drop to occur every four hours starting at

8:00 a.m. and a command file called DROPORDERS.CMD drives it, then we would enter

the following AT commands on our integration server machine:

AT 8:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 12:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 16:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 20:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 0:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

AT 4:00 /every:M,T,W,Th,F,S,Su DROPORDERS.CMD

First, the DROPORDERS.CMD file is designed to retrieve the file from the order-taking

system via a console application. Assuming our Northwind MTS machine is named

MOJO and our integration server is called CARTMAN, then our console application can

be called as follows:

EXPORTORDERS.EXE MTS:MOJO PATH:\\CARTMAN\EXPORTS\ORDERS.XML

This console application would connect to the MTS machine named MOJO, calling the

CreateExportStream method and saving the resulting information to a file called

ORDERS.XML on the path \\CARTMAN\EXPORTS.

The next line in the DROPORDERS.CMD file would import the file into the fulfillment

system. Assuming an MTS machine of ALEXIS, it might look something like the

following statement:

IMPORTORDERS.EXE MTS:ALEXIS PATH:\\MOJO\EXPORTS\ORDERS.XML

This simple command file and the supporting console applications would be all that

is necessary to automate the data transfer process. In a real-world case, the

console applications would be designed to return errorlevel values back to the

command processor. For example, if the EXPORTORDERS.EXE were to fail, we would

not want to run the IMPORTORDERS.EXE command. In fact, we would likely be

interested in branching off to an alerting mechanism to inform support staff of the

failed export.

There are still some issues with this process in that there is a "hole" in which a set

of orders could be exported, but the import would fail and thus never have the

chance of making it into the fulfillment system on the next export. The reason is that

the LastExportDate field would have been adjusted in the CreateExportStream

method, which assumes that the downstream import processes will succeed. To

make this process as robust as possible, the CreateExportStream method should

not update the LastExportDate field. Instead, a separate public method on

NWServer named SetLastExportDate should be created. This method could be

called by yet another console application upon successful completion of the

IMPORTORDERS.EXE process. There is still an issue in that if the import fails midway

into the process, no orders from the point of failure forward will be processed.

The most robust approach using the LastExportDate field would be to have the

IMPORTORDERS.EXE process call the SetLastExportDate method after each

successful import. Upon the first failure, the process aborts, writing an application

event to the event log and sending an errorlevel back to the command processor.

Again, this would signal support staff of the issue to be resolved. This process

assumes that the orders are listed in date order.

Building a pseudo-console application in Visual Basic is not overly difficult. We use

the term pseudo-console because Visual Basic cannot redirect stdin and stdout

like most console applications can. Other than that, it can process command-line

arguments and, with the help of a Windows API, can generate an errorlevel back

to the command processor. It is advantageous for us to use Visual Basic to build the

console applications for our application-integration efforts because we can use the

COM and DCOM infrastructure functionality already built. It is also much simpler

than using other alternatives, such as C++, Delphi, or even Perl. The only thing to

consider is that using Visual Basic requires the installation of the Visual Basic

runtime and our application framework components on the integration machine.

To create a console application in Visual Basic, we simply create a Standard EXE

application. We remove the Form1.frm file, add a basic module called modConsole,

and create a Main subroutine. This routine is called when the application starts up.

We can gain access to the command-line parameters through the Command function

and return an errorlevel via the ExitProcess function. This function simply

provides us with the command-line argument as a string value. We must process it

to determine the actual parameters based on whatever format we have defined. The

code for EXPORTORDERS.EXE can be found in Listing 13.12. A similar application can

be built for IMPORTORDERS.EXE.

Example 13.12. The Code for EXPORTORDERS.EXE

Option Explicit

Const CT_ORDER_EXPORT = 301

Const CT_ORDER_DETAIL_EXPORT = 302

Const EF_ORDER_PROPRIETARY = 1

Const EF_ORDER_XML = 2

Public Declare Sub ExitProcess Lib "kernel32" _

 (ByVal uExitCode As Long)

Public Function ExportOrders(MTSServerName As String, _

 FilePath As String) As

Boolean

 Dim NWServer As CNWServer

 Dim AppServer As IAppServer

 Dim Stream As String

 Dim Errors As Variant

 Dim iFileNum As String

 On Error GoTo ErrorTrap

 Set NWServer = CreateObject("NWServer.CNWServer", _

 MTSServerName)

 Set AppServer = NWServer

 AppServer.InitServer

 Call AppServer.CreateExportStream(CT_ORDER_EXPORT, _

 EF_ORDER_XML, _

 Stream, _

 Errors)

 iFileNum = FreeFile

 Open FilePath & "\OrderExport.XML" For Output As #iFileNum

 Print #iFileNum, Stream

 Close #iFileNum

 ExportOrders = True

 Exit Function

ErrorTrap:

 ExportOrders = False

End Function

Sub Main()

 Dim sCommand As String

 Dim sParms() As String

 Dim MTSServerName As String

 Dim FilePath As String

 Dim i As Integer

 sCommand = Command

 sParms = Split(sCommand, " ")

 For i = LBound(sParms) To UBound(sParms)

 Select Case UCase(sParms(i))

 Case "-S"

 MTSServerName = sParms(i + 1)

 Case "-P"

 FilePath = sParms(i + 1)

 End Select

 Next I

 If ExportOrders(MTSServerName, FilePath) Then

 ExitProcess (0)

 Else

 ExitProcess (1)

 End If

End Sub

Messaging-Based Interoperability

In our automated version in the previous example, we have had to go to great

lengths to ensure that orders do not get lost during the process of moving the data

between the taking and fulfillment systems. We did this by having the

IMPORTORDERS.EXE console application perform the update to the LastExportDate

field. Although this is a working solution, it is undesirable to have the

IMPORTORDERS.EXE application, which is a part of our fulfillment system, performing

updates to our order-taking system. Additionally, if the number of orders is large

then this adds extra processing overhead onto the data transfer process. This

section introduces the concept of a message queue to make this type of application

integration cleaner. We then talk about using a much larger messaging

system—electronic mail—to provide integration among systems that span corporate

boundaries.

Using a Message Queue

A message queue is an enterprise component that has been around since the early

mainframe days. The two larger message queue products include Microsoft Message

Queue (MSMQ) and IBM's MQSeries. The former runs only on NT-based platforms,

whereas the latter runs on NT and most others. There are commercial bridging

products available that can move messages from one product to another, or you can

build your own. For the purposes of our application, we use only MSMQ, although

similar techniques should apply to other message queue products.

One of the benefits of using a message queue is the concept of guaranteed delivery.

If one application places a message on the queue, it remains there until specifically

removed by another application. In our order-information transfer example, the

EXPORTORDERS.EXE console application could place the information into a message

queue rather than to a shared file directory. In this case, the EXPORTORDERS.EXE

would have the responsibility of setting the LastExportDate upon completion,

because it is now guaranteed that the message it has created will remain in the

queue until it is successfully processed. Figure 13.4 shows an architectural overview

of this process.

Figure 13.4. Automated data movement using a task

scheduler, an integration server, and a message

queue.

Modifying our EXPORTORDERS.EXE process to accommodate a message queue is

straightforward. First, your development machine must have the

MSMQ-independent client components installed. To do this, you must have access

to an MSMQ site- controller installation. If your development machine is NT Server,

you can simply install MSMQ on it. If you are running NT Workstation then you will

need to use the NT Option Pak to install the MSMQ client. The reason for using an

independent client is so that we can send messages over a potentially unreliable, or

sometimes disconnected, network. In this mode, MSMQ writes to a local message

store if the network is disconnected, and the message store sends the messages to

the target queue after the connection is reestablished. The other option, the

dependent client, does not have this local storage capability.

With these items in place, we can create a public queue using the MSMQ Explorer.

To accomplish this, we right-click on the server name in the MSMQ Explorer and

select New, and then Queue, as shown in Figure 13.5. This launches the Queue

Name dialog seen in Figure 13.6. We then name this queue OrderTransfer and

deselect the Transactional check box. Clicking on the OK button creates the queue.

Figure 13.5. Creating a new queue in the MSMQ

Explorer.

Figure 13.6. Naming the new queue in the MSMQ

Explorer.

After the MSMQ-independent client is installed on our machine, we can reference it

via the MSMQ object library. This ActiveX library is found in mqoa.dll. It appears as

Microsoft Message Queue Library in the References dialog within Visual Basic. A

C-level API provides access to all MSMQ functionality, whereas the ActiveX wrapper

is suitable for many applications.

We modify our EXPORTORDERS.EXE code by first creating a public QSend function, as

shown in Listing 13.13. The technique shown for opening a message queue and

sending a message is taken directly from Microsoft documentation. It is important

to note the statement that sets the Delivery property of the MSMQMessage object to

MQMSG_DELIVERY_RECOVERABLE. The default mode of MSMQ is to store all local

messages in memory. In the case of a double fault, whereby the network is

disconnected, if messages are sent and then the system is restarted before

re-establishment of the connection, the messages stored in memory will be lost. By

setting this property as described, the messages are written to local disk storage.

Although this mode makes these messages permanent, it does slow down overall

message passing. Because we are moving data between applications using MSMQ,

we must be guaranteed of delivery, so we set this property.

Example 13.13. The QSend Function

Public Function QSend(QueueName As String, _

 MsgTitle As String, _

 MsgBody As String)

 Dim qry As MSMQQuery

 Dim qis As MSMQQueueInfos

 Dim qi As MSMQQueueInfo

 Dim q1 As MSMQQueue

 Dim msg As MSMQMessage

 Set qi = New MSMQQueueInfo

 qi.FormatName = QueueName

 Set q1 = qi.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

 Set msg = New MSMQMessage

 msg.Label = MsgTitle

 msg.Body = MsgBody

 msg.Delivery = MQMSG_DELIVERY_RECOVERABLE

 msg.Send q1

 q1.Close

End Function

We are not explicitly trapping for errors in this code because we are assuming our

calling process will want to handle it specifically.

We also modify our ExportOrders function to now send the XML-formatted stream

to the queue instead of the file used in the previous example, as shown in Listing

13.14.

Example 13.14. The Modified ExportOrders Function

to Support MSMQ

Public Function ExportOrders(MTSServerName As String, _

 FilePath As String) As Boolean

 Dim NWServer As CNWServer

 Dim AppServer As IAppServer

 Dim Stream As String

 Dim Errors As Variant

 Dim iFileNum As String

 Dim QName As String

 On Error GoTo ErrorTrap

 Set NWServer = CreateObject("NWServer.CNWServer", _

 MTSServerName)

 Set AppServer = NWServer

 AppServer.InitServer

 Call AppServer.CreateExportStream(CT_ORDER_EXPORT, _

 EF_ORDER_XML, _

 Stream, _

 Errors)

 QName = "Direct=TCP:128.128.128.126\OrderTransfer"

 Call QSend(QName, "ORDER_EXPORT", Stream)

 ExportOrders = True

 Exit Function

ErrorTrap:

 ExportOrders = False

End Function

Although we have hard-coded the queue name here for exposition, we would modify

our calling convention into ExportOrders to implement a -q switch to provide the

queue name. Notice the "Direct=…" format used for the queue name. This format

tells MSMQ to delivery the message in a potentially disconnected status. If we do

not use this format and the computer is disconnected when we send the message,

an error is raised. After this method has completed successfully, the message is

visible in the MSMQ Explorer under the OrderTransfer queue name, as shown in

Figure 13.7.

Figure 13.7. The newly delivered message in the

queue.

On the import side, we implement a process that retrieves the messages for the

queue. Although we won't provide the full implementation, we do show this retrieval

process. The important item to understand is the difference between peeking and

retrieving messages. Peeking enables you to pull a message from the queue without

removing it from the queue. Retrieving a message removes it. Typically, we want to

peek the message first, attempt to process it, and remove it from the queue if we

are successful. Listing 13.15 shows the code for a queue processing procedure. We

have implemented our reader function in a mode in which it loops through the entire

queue, processes messages of interest, and then exits. An external task scheduler

can fire off our console application periodically to scan the queue in this manner.

In an alternative processing technique, an MSMQEvent object is attached to an

MSMQQueue object through its EnableNotification method. This MSMQEvent

provides an event sink for an Arrived event, which fires every time a message

arrives in the queue. This technique can be used to process messages as they arrive.

There are many other ways in which to implement a queue reader process besides

those provided. The specific implementation can vary between the tasks for which

the message queue is being used.

Example 13.15. A Queue-Reading Function

Public Sub Read_Queue()

 Dim qry As MSMQQuery

 Dim qis As MSMQQueueInfos

 Dim qi As MSMQQueueInfo

 Dim q1 As MSMQQueue

 Dim msg As MSMQMessage

 Dim bReceived As Boolean

 Set qi = New MSMQQueueInfo

 qi.PathName = "cartman\OrderTransfer"

 Set q1 = qi.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

 Set msg = q1.PeekCurrent(ReceiveTimeout:=0)

 Do Until msg Is Nothing

 bReceived = False

 Select Case msg.Label

 Case "ORDER_EXPORT"

 If SomeProcess(msg.Body) Then

 ' remove the message

 Set msg = q1.ReceiveCurrent

 bReceived = True

 End If

 End Select

 If bReceived Then

 Set msg = q1.PeekCurrent(ReceiveTimeout:=0)

 Else

 Set msg = q1.PeekNext(ReceiveTimeout:=0)

 End If

 Loop

 q1.Close

End Sub

Again, the queue-reading functionality is taken from Microsoft documentation. You

should note that our queue name specifier is different for reading. Here we use the

syntax "cartman\OrderTransfer" rather than the "DIRECT=TCP:…" from before. In

addition, to open the queue for both receive and peek access, we must open it using

the MQ_RECEIVE_ACCESS mode. As we loop through the queue, we first peek the

method using the PeekCurrent message, and then we attempt to process it. If we

are successful, we then remove it using the ReceiveCurrent method. This

PeekCurrent, followed by a ReceiveCurrent, implicitly advances the underlying

cursor used to iterate the queue but places it in an indeterminate state. If this has

occurred, we must repeek the queue using the PeekCurrent method to restore it.

This obscure fact can be found buried somewhere in the Microsoft Knowledge Base.

Using the Mail Subsystem

With the basic messaging system in place, there are still times when MSMQ cannot

be used. For example, if the order-taking system is perhaps hosted at an Internet

service provider (ISP) or an application service provider but the order fulfillment is

running at the home office, it might be difficult to set up MSMQ if there is not a

dedicated network in place connecting the two. Looking beyond our sample

application, there might be times when data needs to move between applications in

different companies. For example, a material requirements forecast for a

manufacturing company might need to be sent to the material supplier. In these

cases, we need something more than MSMQ alone.

One solution is to use the file-based approach, as we did before, with file transfer

protocol (FTP) paths instead of local network paths. Another is to leverage the email

system already in place and send the information over the Internet. It is easy to

think of MSMQ in terms of an email metaphor. The PathName property of the

MSMQQueue object becomes the To field, the Label property of the MSMQMessage

object becomes the Subject, and the Body property becomes the text of the email.

We can use Messaging Application Programming Interface (MAPI), Collaborative

Data Objects (CDO), or Collaborative Data Objects for NT Server (CDONTS) to

assist us in our email generation and delivery on the export side. MAPI is a C-level

API that is cumbersome to work with. CDO is an ActiveX DLL, but it requires

Microsoft Exchange. CDONTS uses Simple Mail Transfer Protocol (SMTP), which

bypasses Exchange. CDONTS is not available from Microsoft as a standalone install.

Instead, it is installed on NT Server machines with IIS 4.0 and higher. The code for

the mailing routing using CDONTS appears in Listing 13.16. Note that NT Server is

required to implement and debug CDONTS.

Example 13.16. An Email Message Sender Using

CDONTS

Public Function MSend(ToAddress As String, _

 FromAddress As String, _

 Subject As String, _

 Body As String)

 Dim oMail As NewMail

 Set oMail = CreateObject("CDONTS.NewMail")

 oMail.To = ToAddress

 oMail.From = FromAddress

 oMail.Subject = Subject

 oMail.Body = Body

 oMail.Send

 Set oMail = Nothing

End Function

By replacing our QSend function call in the ExportOrders function with MSend, we

have bypassed MSMQ and gone directly to the Internet. On the receiving end, there

must be a listener routine that checks an email inbox for the target address with the

given subject line. The CDONTS library can be used to pull the message from the

inbox. This is followed by an attempt to process the message, as was done in the

PeekCurrent case in MSMQ. If successful, an acknowledge message can be sent

back using the FromAddress in the original field; otherwise, an error message

stream can be sent to the same address for diagnostic purposes. Because there isn't

a mechanism to guarantee delivery, the export process must be able to store

messages locally until a successful acknowledgement is received. Because only

SMTP-based mail services are required for this process, it is not dependent on any

one particular vendor of mail systems.

Cryptography

If we start sending data over the Internet as email message bodies, it might be

important to encrypt the body to prevent unwanted eyes from deciphering its

contents. Numerous cryptography solutions are available, including the CryptoAPI

that comes with NT. Unfortunately, this is a C-level API that is both difficult to

understand and proprietary to NT. To solve this problem, we can use a commercial

product, or we can choose to build our own simple encryption/decryption

mechanism, depending on the level of security required.

Without going into significant detail, the code in Listing 13.17 shows a basic

encrypter and decrypter function using a single numeric key. For this process to

work, both the sender and receiver must have an agreed-upon key value. These

algorithms also ensure that the characters that make up the encrypted text remain

within the ANSI character set (that is, character codes less than 128). It does this by

converting three 8-bit bytes into four 6-bit bytes and vice versa.

Example 13.17. Basic Encryption and Decryption

Algorithms

Private Const C1 As Long = 52845

Private Const C2 As Long = 22719

Public Function Encrypt(ByVal S As String, Key As Long) As String

 Dim i As Integer, j As Integer

 Dim sRet As String, sRet2 As String, tKey As Long

 Dim a1 As Byte, b1 As Byte, b2 As Byte

 Dim n As Integer

 For i = 1 To Len(S)

 Key = Key And 32767

 tKey = Key

 For j = 1 To 8

 tKey = tKey / 2

 Next j

 sRet = sRet & Chr(Asc(Mid(S, i, 1)) Xor (tKey))

 Key = (Asc(Mid(sRet, i, 1)) + Key) * C1 + C2

 Next I

 'convert (3) 8 bit bytes into (4) 6 bit bytes

 n = Len(sRet)

 For i = 1 To n

 a1 = Asc(Mid(sRet, i, 1))

 b1 = ((a1 And &HF0) / (2 ^ 4)) Or &H40

 b2 = (a1 And &HF) Or &H40

 sRet2 = sRet2 & Chr(b1) & Chr(b2)

 Next i

 Encrypt = sRet2

End Function

Public Function Decrypt(ByVal S As String, Key As Long) As String

 Dim i As Integer, j As Integer

 Dim sRet As String, tKey As Long

 Dim sTemp As String

 Dim b1 As Byte, b2 As Byte, a1 As Byte

 sTemp = S

 S = ""

 For i = 1 To Len(sTemp) Step 2

 b1 = (Asc(Mid(sTemp, i, 1)) And Not (&H40)) * (2 ^ 4)

 b2 = Asc(Mid(sTemp, i + 1, 1)) And Not (&H40)

 a1 = b1 Or b2

 S = S & Chr(a1)

 Next I

 For i = 1 To Len(S)

 Key = Key And 32767

 tKey = Key

 For j = 1 To 8

 tKey = tKey / 2

 Next j

 sRet = sRet & Chr(Asc(Mid(S, i, 1)) Xor (tKey))

 Key = (Asc(Mid(S, i, 1)) + Key) * C1 + C2

 Next i

 Decrypt = sRet

End Function

Interoperability Through Data Sharing

To this point, we have looked at data transfer as a mechanism for application

integration. Another form of integration can occur by simply accessing foreign data

in real time. This can happen in several ways.

Direct Database Access

Direct data access is probably the easiest form of application integration. Using ADO

or ODBC, we can connect our DataManager component to these other systems for

data retrieval purposes. In many cases, we can create a ClassDef object to map

these foreign tables and views into new classes within our system, although they

might not follow our precise design guidelines, as covered in Chapter 8, "The

DataManager Library." In some cases in which stored procedures are used for data

retrieval, a read-only ClassDef can be implemented based on the columns returned.

Data insert and updates, on the other hand, are much more difficult and might

require direct access to the underlying system. The Attributes collection on a

ClassDef object can be used to hold metadata associated with processing these

types of situations.

With a ClassManager and DataManager created, we can bring the foreign data into

our application, as well as provide information back to these same applications. In

worse-case scenarios, we can bypass our ClassManager and DataManager

altogether and place custom methods off our NWServer component. Figure 13.8

shows this form of integration and the various pathways between our application

server components and the databases.

Figure 13.8. Application integration using direct

database access.

Application Connectors

Many modern enterprise applications are beginning to offer integration objects to

assist in hooking systems together. These integration objects are sometimes called

connector components or object brokers. Depending on how they are designed,

they can run as DCOM objects within MTS or as CORBA objects within an object

request broker. Many application vendors are offering both forms.

With an application connector, we can make calls into it to retrieve the information

we need or we can provide data inserts and updates. In many ways, our own

framework is a form of an application connector into our system if used by other

applications. In the case of a DCOM-based application connector, we can interact

with it using variant arrays or XML-formatted data streams as in our own examples.

Figure 13.9 shows this form of application in the context of an Enterprise Resource

Planning (ERP) system.

Figure 13.9. Application integration using connector

components.

From Figure 13.9, you should note that we are performing our integration to the

connector component through our NWServer class rather than IappServer. The

reason for this is that such integration is specific to the particular application being

built using our framework, so it belongs with NWServer.

Summary

We have just gone through a whirlwind tour of application integration using our

framework. We have covered data transfer techniques using proprietary and

XML-based data formats as transfer mediums. We have covered the use of files,

message queues, and emails as transfer conduits. We have also talked briefly of

integration using direct connect techniques, either directly at the database level or

through application connector components. Although this chapter has had a

significant amount of content, it is by no means a definitive source. Other books go

into much detail on the subject.

In the next chapter, we look at Windows 2000 and how it affects our framework

components. We specifically look at compatibility issues with MTS, MSMQ, and IIS.

We also address some of Windows 2000's new features that can enhance our

application.

Chapter 14. Windows 2000 and COM+

Considerations

If various schedules go according to plan, you should be reading this book in the

months following the release of Windows 2000, the replacement for Windows NT.

Within a few months, your company can begin making the long-anticipated

migration to this latest Microsoft server platform and its COM+ model. At this point,

you might be concerned that everything that has been demonstrated in this book is

for naught with this new technology release, or you might be concerned that

implementing an application based on the framework we have presented will have

to be reworked after you do make the migration. Fear not; much of the functionality

we have relied on to this point was released with the NT 4.0 Option Pack.

Component Services

To quote from the MSDN library at Microsoft's Web site at the time of this writing

(with the appropriate disclaimer that it is preliminary and can change):

COM+ can be viewed as a merging of the Microsoft Transaction Server (MTS) and

COM, along with the introduction of a host of new features. If you are currently

using MTS, Windows 2000 makes the change to COM+ completely automatic.

For the most part, your MTS packages are transformed to COM+ applications during

the Windows 2000 setup procedure. Without doing anything beyond the typical

setup, you can now take advantage of all the new COM+ features.

Migrating Existing MTS Components

The simplest way to move our existing MTS components from NT/MTS to COM+ is to

export our components to a package file in MTS, and then import it into COM+. By

following this approach, we preserve our GUID for our DCOM objects so that

client-side applications do not have to be recompiled and redeployed. This

technique will most likely be used in migration strategies, in which companies are

moving existing MTS-based applications over to Windows 2000 Advanced Server.

The Transaction Server Explorer has been replaced with the Component Services

snap-in for the Microsoft Management Console (MMC). Figure 14.1 shows how to

navigate to the Component Services snap-in.

Figure 14.1. Navigating to the Component Services

snap-in in Windows 2000 Advanced Server.

Inside the Components Services snap-in, we see that it has a similar layout to the

Transaction Server Explorer. The only differences in the look and feel of the new

snap-in is that several of the old nodes in the tree view are gone and that the

spinning balls have gone from green to gold. In addition, most of the wizards used

to install new packages and components have been polished a bit, but they are

fundamentally the same. To import our MTS-based package, we right-click on the

COM+ Applications node and select New, followed by Application from the pop-up

menu, as shown in Figure 14.2.

Figure 14.2. Launching the COM+ Application Install

Wizard.

The first step of the wizard is simply informational. We click Next on the wizard to

advance to the second step. From there we click on the Install Pre-Built

Application(s) button, as shown in Figure 14.3.

Figure 14.3. Installing a prebuilt application.

This brings up a file selector dialog. We change the Files of Type combo box to MTS

Package Files (*.PAK) and browse to our package file. We click on the Next button

to take us to the Set Application Identity step. We leave the account set to

Interactive User for now, but this should be changed later when the application is

put into production. We click Next once again to take us to the Application

Installation Options step. We click on the Specific Directory radio button and enter

the name of the directory where our new components are to be installed. We select

our directory and click on the Next button one final time to arrive at the last step. We

click on the Finish button and find that our Northwind Traders application has been

created, as shown in Figure 14.4. We also must remember to move our

ClassManager and DataManager components over as well, although they can

simply be registered using the REGSVR32 utility.

Figure 14.4. The Northwind Traders application

added to COM+.

Installing MTS Components into Component Services

If we are developing a new application that has not yet been deployed, we might

want to directly install our components into Component Services. To do this, we

once again right-click on our COM+ Applications node, followed by the New and

Application submenus in the pop-up menu. We click the Next button on the first step

of the resulting wizard, followed by the Create an empty application button on step

two. We enter Northwind Traders as the application name, and select the Server

Application radio button. We click on the Next button, again leaving the account set

to the Interactive User option. Then we click the Next button, followed by the Finish

button to complete the process.

At this point, an empty package has been created. To add components, we

right-click on the Components folder under the Northwind Traders folder, selecting

New followed by Component from the resulting pop-up menus, as shown in Figure

14.5.

Figure 14.5. Adding components to an empty

package in COM+.

The preceding steps launch the COM+ Component Install Wizard. Clicking the Next

button on the informational screen takes us to the Import or Install a Component

step. We click on the Install New Component(s) button to launch a file selection

dialog. We browse to our DCOM components, select them, and click on the Open

button. We click on the Next button, followed by the Finish button to complete the

process. Our components are now added, as shown earlier in Figure 14.4.

By installing components in this manner, they have been assigned new GUID values

and are not accessible to our client until we create new remote application installers.

In Windows 2000 and COM+, these become known as application proxies. To create

an application proxy, we right-click on the Northwind Traders folder, selecting the

Export menu item from the pop-up, as shown in Figure 14.6.

Figure 14.6. Exporting a package from COM+.

The COM+ Application Export Wizard begins with the familiar informational first step.

We click on the Next button to take us to the Application Export Information step.

We select our output path for the export file, naming it Northwind.msi. We select

the Application Proxy radio button in the Export As frame and click the Next button.

A click on the Finish button completes the process. The result is the creation of an

installer Cabinet file, otherwise known as a CAB file, and a Windows Installer

Package file. These two files can be used on the client machine to create the remote

registration entries required to access these components.

NOTE

If your client machine is not Windows 2000, you must download the Windows

Installer from the Microsoft Web site. At the time of this writing, Windows 2000 was

at RC3 level, and the Windows Installer for NT 4.0 would not recognize the

installation files generated by the COM+ export process. Until this issue is resolved,

the easiest way to migrate existing applications to COM+ while keeping the clients

at non-Windows 2000 levels is to perform the package import process from

MTS-based components.

Message Queuing

Another major component of our model tied into the NT Option Pack is Microsoft

Message Queue (MSMQ), which also has undergone some refinement. Although the

client-side programming model is compatible with MSMQ 1.0, MSMQ has undergone

several significant changes. One minor change is the name. Message Queue for

COM+ is now called simply Message Queuing, although some references are made

to it in the context of MSMQ 2.0. From a technical standpoint, MSMQ no longer

needs to coexist with SQL Server because it now uses the Active Directory to store

its topology information.

NOTE

When setting up MSMQ 2.0 on Windows 2000 that will be accessed by a NT

4.0-based client, it is important to set it up for Domain mode. To do this, you must

choose the Message Queuing Will Access a Directory Service option when setting up

the service.

Microsoft claims that there are no compatibility issues using an application written

for an MSMQ 1.0 object model. Our framework components from Chapter 13,

"Interoperability," showed no issues, although we were using only a small subset of

MSMQ functionality. Again, to quote from Microsoft's Web site:

MSMQ 2.0 has new versions of its COM components that are compatible with the

MSMQ 1.0 components. The programmatic names of these components have

remained the same, enabling you to use the same names you are familiar with (for

example, MSMQQueue and MSMQMessage). However, the identifiers (GUIDs) of the

objects have changed.

Microsoft further provides the information in Table 14.1 to help determine which

version of the library to use if you are programming in a mixed NT 4.0 and Windows

2000 environment.

Table 14.1. Microsoft's Matrix for Mixed NT 4.0 and Windows 2000

MSMQ Programming

For… Select…

Applications that will run on both Windows NT 4.0

and Windows 2000
Microsoft Message Queue 1.0

Object Library

Applications that will run only on Windows 2000 Microsoft Message Queue 2.0

Object Library

The MSMQ 1.0 Explorer has been replaced with a series of MMC snap-ins. To gain

access to the queues themselves, we must go under the Computer Management

snap-in, as shown in Figure 14.7.

Figure 14.7. Accessing the Message Queues on a

Message Queuing server.

New Features in COM+

Although our application framework ports over to COM+ and Windows 2000

relatively easily, several new features within COM+ can be used to enhance our

framework. They are discussed in the following sections.

Component Load Balancing

One of the most anticipated features of COM+ has been Component Load Balancing.

With this feature, you no longer have to marry your client or IIS server to a specific

component server. In this environment, you can have a series of clients and COM+

servers operating in a parallel fashion, with a directory service dynamically

determining the routing between the two. For example, if a request is made to

instantiate a COM+ object on the Windows 2000 server, rather than "hard-coding"

the server name into the application or the DCOM parameters on the client machine,

the call is routed to one of several servers. With this architecture, the system can

support both failover and scalability issues.

Unfortunately, based on customer feedback from the Windows 2000 beta releases,

this feature was pulled out of Windows 2000. According to Microsoft at the time of

the writing of this book, Component Load Balancing will be redeployed to the

Microsoft AppCenter Server. However, the timing of this release was not given.

Queued Components

COM+ also releases a new feature known as queued components that runs atop

MSMQ 2.0. With this new feature, components can be instantiated in an

asynchronous fashion. For example, the client machine normally instantiates a

COM+ object using an application proxy. In a queued component model, the queued

component recorder acts as the application proxy, recording all method calls made

on an object. These recorded calls are packaged into an MSMQ 2.0 message body

and sent to the server where they are unpackaged and replayed.

Although the use of component queuing is unobtrusive (meaning that special

programming at the component level does not need to occur to enable it), not all

component uses and method calls lend themselves to queuing. Only parameters

that are passed by value in a method call can be used. To gain access to return

values, a response message must be issued.

Queued components are well suited to solve issues with availability, scalability, and

concurrency, but these features come at the price of performance. Specifically,

recording the method, packaging it into a message body, sending the message,

unpacking the message, and replaying the method all add extra time to the process.

If you are not concerned about the performance implications, this process is

acceptable. If performance is an issue, you should investigate other mechanisms,

such as writing your own messaging layer that bypasses the recording and playback

steps.

In-Memory Databases

With COM+, Microsoft was to have released a feature known as the In-Memory

Database (IMDB) to enable application servers to store critical information in a fast

and easily accessible format. Unfortunately, based on Windows 2000 beta feedback,

this feature was removed after Release Candidate 2 with no indication of when it

might be added back. Microsoft recommends using the Shared Property Manager for

local data caching. This feature, which we have not used in our framework, was

originally released with the NT 4 Option Pack and has been carried forward with the

COM+ release.

Summary

In this chapter, we covered the topics of moving our existing framework

components into the COM+ environment offered by Windows 2000. We showed that

our existing uses of MTS and MSMQ translate rather effortlessly (from a

programmatic standpoint) into the new environment. We also talked about some of

the new features available in COM+ that you might want to incorporate into the

framework as you make the move into this environment.

In the next chapter, we wrap up the book by talking about a few items that did not

fit elsewhere in the book. Specifically, we talk about making applications that are

written using this framework scalable, as well as how programmatic security can be

implemented across the application.

Chapter 15. Concluding Remarks

We have made it to the last chapter of the book with several important stones

unturned. It is our goal in this chapter to spend some time with these final topics so

that we can say we are finished with the application framework. Specifically, we

start by finishing the topic of error handling, followed by a discussion of

programmatic security, and concluding with a discussion of scalability.

Error Handling

Up to this point, we have casually addressed the issue of error handling through our

event-logging and error-raising mechanisms. In many of our method calls across

the DCOM boundary, we included a parameter called Errors, meant to contain a

variant array with which we have never specifically done much. We have even

included some functions to add errors to this array and convert this array into a

native ErrorItems collection in our AppCommon component. Although the only

implementation example of these pieces has been to handle validation

requirements, they can also be used to pass back general errors resulting from

various business rules. Be sure to keep this in mind as you are building out your

application using these framework components.

Security Mechanisms

When you are developing in a Windows NT environment using Microsoft

infrastructure items, such as MTS, MSMQ, and SQL Server, you can resort to what

is known as an integrated security mode. Although this enables you to control

high-level access at the network level, it is often insufficient for the types of

role-based security needed by enterprise applications. In addition, the management

of this type of information must be relegated to a person with NT administration

rights, which might be outside your realm of control or expertise. To understand this

issue, we can implement a programmatic security model to give our application

administrators the control necessary to ensure the appropriate individuals are able

to do their needed tasks.

To implement this model, we follow a design pattern that enables us to classify

users into one or more user groups. For each user group, we can assign a specific

type of access to each implemented class within the system. Our approach is simple

in concept but the implementation can be difficult to understand. For performance

reasons, we implement our security as a hard-coded DLL for our specific application.

We first define the various roles for our application, followed by our access modes,

followed by the class types we want to secure. For example, Listing 15.1 shows

these constants defined within a basic code module that is shared by both the

security DLL and the client side.

Example 15.1. Shared Constants Necessary to Drive

Our Security Model

Option Explicit

' secured group type constants

Public Const SGT_CSR = 1 ' 2^(1-1) = 1

Public Const SGT_ACCOUNT_MGR = 2 ' 2^(2-1) = 2

Public Const SGT_MERCHANDISER = 3 ' 2^(3-1) = 4

Public Const SGT_TRAFFIC_MGR = 4 ' 2^(4-1) = 8

' access mode constants

Public Const AM_ADD = 1

Public Const AM_UPDATE = 2

Public Const AM_DELETE = 4

' secured class types

Public Const CT_CATEGORY As Integer = 1

Public Const CT_CITY As Integer = 2

Public Const CT_COUNTRY As Integer = 3

Public Const CT_CUSTOMER As Integer = 4

Public Const CT_EMPLOYEE As Integer = 5

Public Const CT_LIST_ITEM As Integer = 6

Public Const CT_ORDER As Integer = 7

Public Const CT_ORDER_DETAIL As Integer = 8

Public Const CT_PRODUCT As Integer = 9

Public Const CT_REGION As Integer = 10

Public Const CT_SHIPPER As Integer = 11

Public Const CT_SUPPLIER As Integer = 12

With these constants in place, we can implement an ActiveX DLL component named

NWSecurity to implement the security. We define a class called CSecurityServer

to host our security mechanism.

NOTE

Do not name your security component simply Security.DLL. This conflicts with a

system DLL used by NT.

To implement our pattern, we use a simple matrix, aptly named mSecurityMatrix,

defined as a two-dimensional array, with our first dimension representing the

secured group type and the second representing the secured class type. The value

of the array at a particular position is the access mode, which is the sum of the

various constants. Because we have defined our constants as powers of the base 2,

we can use bitwise comparisons to extract a particular access mode for a given

combination of security group and class type. From the constants defined in Listing

15.1, assuming the value mSecurityMatrix(SGT_CSR, CT_CUSTOMER) is 3, we can

establish whether a customer service representative can delete a customer object

using the following statement:

If mSecurityMatrix(SGT_CSR, CT_CUSTOMER) And AM_DELETE = AM_DELETE Then …

To initialize this matrix, we create a private method on our CSecurityServer class,

called simply InitSecurityMatrix. We call this method from our

Class_Initialize event. The code for our example appears in Listing 15.2.

Example 15.2. The InitSecurityMatrix Method and Its

Supporting SetSecurity Method

Private Sub InitSecurityMatrix()

 ' Customer Service Reps

 Call SetSecurity(SGT_CSR, CT_CUSTOMER, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 Call SetSecurity(SGT_CSR, CT_CITY, AM_ADD + AM_UPDATE)

 Call SetSecurity(SGT_CSR, CT_REGION, AM_ADD + AM_UPDATE)

 Call SetSecurity(SGT_CSR, CT_COUNTRY, AM_ADD + AM_UPDATE)

 ' Account Managers

 Call SetSecurity(SGT_ACCOUNT_MGR, CT_CUSTOMER, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 Call SetSecurity(SGT_ACCOUNT_MGR, CT_ORDER, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 Call SetSecurity(SGT_ACCOUNT_MGR, CT_ORDER_DETAIL, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 ' Merchandisers

 Call SetSecurity(SGT_MERCHANDISER, CT_CATEGORY, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 Call SetSecurity(SGT_MERCHANDISER, CT_PRODUCT, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 Call SetSecurity(SGT_MERCHANDISER, CT_SUPPLIER, _

 AM_ADD + AM_UPDATE + AM_DELETE)

 ' Traffic Managers

 Call SetSecurity(SGT_TRAFFIC_MGR, CT_SHIPPER, _

 AM_ADD + AM_UPDATE + AM_DELETE)

End Sub

Private Sub SetSecurity(SecurityGroupType As Integer, _

 SecuredClass As Integer, _

 AccessMode As Integer)

 mSecurityMatrix(SecurityGroupType, SecuredClass) = AccessMode

End Sub

Now that we have our matrix, we must be able to assign a user to one or more

security groups. To do this, we follow a bitwise pattern, as we previously used, and

create a security key for each employee, storing this in the database and adding it

to the CT_EMPLOYEE class type. Unfortunately, because the number of security

groups we implement might exceed the acceptable range of a long integer, we must

use a string to store this key value. To keep this string from becoming too large, we

convert our bits to a hexadecimal string. Because Visual Basic does not have full

binary and hexadecimal string-processing libraries, we must implement some of

these features ourselves. Listing 15.3 shows a simple binary-to-hexadecimal

converter.

Example 15.3. The BinToHex Function

Public Function BinToHex(ByVal BinString As String) As String

 Dim i As Integer, j As Integer

 Dim nNibbles As Integer, szBinString As Integer

 Dim HexString As String, Nibble As String

 Dim byValue As Byte

 szBinString = Len(BinString)

 nNibbles = Int(IIf((szBinString / 4) = Int(szBinString), _

 szBinString / 4, szBinString / 4 + 1))

 BinString = Right("0000" & BinString, nNibbles * 4)

 For i = 1 To nNibbles

 byValue = 0

 Nibble = Mid(BinString, (i - 1) * 4 + 1, 4)

 For j = 1 To Len(Nibble)

 byValue = byValue + 2 ^ (4 - j) * Val(Mid(Nibble, j, 1))

 Next j

 HexString = HexString & Hex(byValue)

 Next i

 BinToHex = HexString

End Function

Without going into significant detail, the BinToHex function takes a string in binary

format, breaks it into 4-byte nibbles, and then coverts each nibble into a

hexadecimal value.

With this BinToHex converter, we also create a function to convert a hexadecimal

string into a byte array, with every two hexadecimal digits being converted to a byte

within the array. Listing 15.4 shows this function.

Example 15.4. Converting a Hexadecimal String to an

Array of Bytes

Public Sub HexStringToByteArray(HexString As String, Bytes() As Byte)

 Dim nBytes As Integer

 Dim i As Integer, j As Integer

 If Len(HexString) / 2 <> Len(HexString) \ 2 Then

 HexString = "0" & HexString

 End If

 nBytes = Len(HexString) / 2

 ReDim Bytes(1 To nBytes)

 j = 1

 For i = nBytes To 1 Step -1

 Bytes(j) = Val("&H" & Mid(HexString, (i - 1) * 2 + 1, 2))

 j = j + 1

 Next i

End Sub

With these basic functions in place, we can implement two methods on our

CSecurityServer class to enable us to convert our security key to an array of

Boolean values, indicating group inclusion or exclusion. Listing 15.5 shows this

process.

Example 15.5. Creating a Boolean Array from Our

Security Key

Private Sub MakeGroupMemembershipFromKey(SecurityKey As String, _

 GroupMembershipFlags() As Boolean)

 Dim Bytes() As Byte

 Dim i As Integer, j As Integer, iGroup As Integer

 ReDim GroupMembershipFlags(1 To MAX_SGT_GROUPS)

 Call HexStringToByteArray(SecurityKey, Bytes)

 For i = LBound(Bytes) To UBound(Bytes)

 For j = 0 To 7

 iGroup = (8 * (i - 1) + j + 1)

 If iGroup > MAX_SGT_GROUPS Then Exit Sub

 If ((Bytes(i) And (2 ^ j)) = 2 ^ j) Then

 GroupMembershipFlags(iGroup) = True

 Else

 GroupMembershipFlags(iGroup) = False

 End If

 Next j

 Next i

End Sub

Assuming this MakeGroupMembershipFromKey method returned a Boolean array call

Groups, we can now check whether a user's security key places them into a security

group using a simple call like the following:

If Groups(SGT_ACCOUNT_MGRS) Then …

We can now implement our final method on the CSecurityServer class, called

simply AccessGranted, as shown in Listing 15.6.

Example 15.6. Our AccessGranted Method

Public Function AccessGranted(SecurityKey As String, _

 SecuredClass As Integer, _

 AccessMode As Integer) As Boolean

 Dim IsGranted As Boolean

 Dim i As Integer

 Dim GroupMembershipFlags() As Boolean

 If SecurityKey = "" Then GoTo ExitFunction

 Call MakeGroupMemembershipFromKey(SecurityKey, GroupMembershipFlags)

 IsGranted = False

 For i = LBound(GroupMembershipFlags) To UBound(GroupMembershipFlags)

 ' check if user is a member of this group

 If GroupMembershipFlags(i) Then

 ' if so, see if this group has the appropriate access mode

 If ((mSecurityMatrix(i, SecuredClass) And AccessMode) = AccessMode)

Then

 IsGranted = True

 GoTo ExitFunction

 End If

 End If

 Next i

ExitFunction:

 AccessGranted = IsGranted

End Function

Our AccessGranted method takes, as parameters, the SecurityKey from the user

profile, the secured class type, and the access mode to be tested. Using this

information, the method converts the security key to a Boolean array using the

MakeGroupMembershipFromKey method. It then iterates through this array,

checking each group to see whether it grants the access mode desired. If so, the

function exits with a True value. If no group is found with the desired access mode,

the method exits with a False value. The implementation has been done in this

fashion to accommodate overlapping security groups.

Because this security mechanism is implemented as an InProc ActiveX DLL, it is

usable on all components of the system—IIS, MTS, or client. By simply making calls

on the presentation layer, the application can enable the user interface to allow or

disallow certain functionality, or to prevent entry into a particular area altogether.

Scalability Concerns

Although our framework design inherently maximizes scalability by minimizing

object-state management on the MTS server, the DCOM/MTS model does not

natively handle load balancing. To be sure, MTS has sophisticated pooling

mechanisms so that a few physical object instances support many logical object

instances. In addition, the multiprocessor, multithreaded capability of NT Server

can further expand the workload afforded by a single server to increase

performance. Nonetheless, MTS reaches a saturation point as the number of users

rise. In these cases, mechanisms must be in place to balance MTS server loads

relative to database server loads. If IIS is part of the picture, it must be load

balanced as well.

The Single Server per Site/Organization Model

In this model, each site or organization maintains its own instance of the MTS server,

database, and IIS servers. This is the easiest manner in which to address scalability

concerns because the application needs no additional components to support it. The

client applications direct their DCOM calls to the appropriate MTS server, based on

client-side registry settings. An installer program or configuration utility running on

the client can create these settings. Here, we assume that the single server instance

is sufficient to handle the user load for the site.

If each site maintains its own database server as well, a replication mechanism

must be in place to keep global information synchronized across all database server

instances. SQL Server has integrated replication support to accomplish just this

activity. Figure 15.1 shows the single server set per site model.

Figure 15.1. The single server set per site model.

One drawback to this approach is that it has no failover mechanism. If the server

instance goes offline, it is not easy to redirect the client applications to a different

server because the mappings are stored in the client registries.

The Multiple Servers per Site/Organization Model

In some cases, a single server set instance cannot handle the load generated by a

site or organization. We can further segregate the client applications to access

different server instances, as in the previous case. This model appears in Figure

15.2. Although this is a simplistic solution, it does not guarantee that each server

instance is loaded appropriately. Some servers might be over-used, whereas others

are under-used. Load balancing must occur by modifying client registries. Worse

still, if you achieve a good balance, there is no guarantee that it can be maintained,

because new users are added and others are removed. There is also the same

failover problem that plagues the first model.

Figure 15.2. The multiple server sets per site model.

To circumvent this, we need a server broker. In this model, the client application

might first connect to a DCOM object on a single brokerage server thats only

function is to reply with a target server for the application to use. The method that

this broker object uses to determine load can be simplistic or complicated. One

method is that the brokerage server randomly determines a target server name

from a list of available servers in the pool. Other techniques include a round robin

approach where the brokerage server iterates through the list of servers, giving out

the next server name in the list with each request. Although these are probably the

two simplest mechanisms, there is still no guarantee for proper server balancing.

Another method is to employ load-balancing software such as the Microsoft

Windows NT Load Balancing Service (WLBS). In this method, the brokerage server

periodically pings each available server to determine its relative load. The server

with the lowest load is the next one handed out. Unfortunately, determining relative

server load is a complex issue because of the same multiprocessor, multithreaded

concerns previously mentioned. MTS pooling further confounds the problem.

Because such load-balancing software typically requires the development of NT

services, it is not something easily accomplished using VB. In this case, prebuilt,

load-balancing software might be the only solution. Otherwise, a programming

language, such as Visual C++, and a developer with NT service skills are required.

As mentioned in the previous chapter, the Windows 2000 Advanced Data Center will

be releasing a form of COM object load balancing. This will be a software-oriented

solution that models the CORBA and Enterprise Java models.

Server Clustering

Another solution to the load balancing and failover issue is to use a server cluster. In

this mode, you would employ special software (and sometimes hardware) to make

multiple servers act like one large virtual server. The application software itself does

not have to be cognizant that it is operating on a cluster, because the clustering

mechanisms are bound tightly in the NT Server operating system. Microsoft supplies

a cluster software solution through its Microsoft Cluster Server (MSCS) software,

which allows a clustering of two nodes. The Windows 2000 Data Center version of

MSCS will allow four nodes. Several other clustering solutions are available from

other vendors as well; one is HolonTech's HyperECS product, which is a hardware-

and software-based solution. IBM has added extensions to MSCS for its line of

Netfinity servers to allow for clustering for up to 14 servers.

Typically, the database portion of the system operates in a cluster fashion, while

other parts of the system operate in an IP load balanced fashion. The reason for this

is that the database is the place where concurrency of information is maintained,

which requires more than simple load balancing. Microsoft SQL Server can be

clustered in a two-node fashion on top of MSCS in a fairly straightforward fashion.

Other database vendors, such as Oracle and IBM, provide clustering capabilities

using their own technology.

Hardware-based load balancers are available as well from vendors such as Cisco, F5

Networks, and QuickArrow. These solutions provide load balancing at the IP address

level. This means that anything that can operate purely on an IP address can be load

balanced. The advantage of a hardware solution is their outright speed at

performing the load-balancing act, versus the software-oriented solutions

mentioned in the previous chapter. The downside is that hardware solutions can

become rather expensive. You will have to balance price and performance in your

application.

Figure 15.3 shows the final, fully scaled and failover-protected solution. Note that

this model works well because we are not maintaining state on our MTS servers.

Figure 15.3. The fully scaleable and failed over

model.

Summary

This chapter covered two topics: programmatic security and the issues associated

with scalability and failover. With the conclusion of this chapter comes the

conclusion of this book. Although it has been a long journey, it is my hope that, for

some, the topics covered in this book were helpful in a total sense. For the rest, I

hope that it provided insight and useful information, at least in a piecemeal fashion,

that can be incorporated into your enterprise-level projects going on within the

corporate development landscape.

