
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Dynamic HTML

Communicator 4.0, August 1997
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to this document (the
"Document"). Use of the Document is governed by applicable copyright law. Netscape may revise this Document
from time to time without notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS,
OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, ARISING FROM ANY
ERROR IN THIS DOCUMENT.

The Document is copyright © 1997 Netscape Communications Corporation. All rights reserved.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the United
States and other countries. Netscape's logos and Netscape product and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are
trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

.

Version 4.0

©Netscape Communications Corporation 1997
All Rights Reserved

Printed in USA
99 98 97 10 9 8 7 6 5 4 3 2 1

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Dynamic HTML in Netscape
Communicator

Contents

This book describes how to use Dynamic HTML to incorporate style sheets, positioned
content, and downloadable fonts in your web pages.

Contents 1
About This Guide 5

Purpose of This Document 5

Structure of This Document 5

Typographic Conventions 6

Chapter 1.Introducing Dynamic HTML 9
Introducing Style Sheets 10

Introducing Content Positioning 10

Introducing Downloadable Fonts 11

Part 1. Style Sheets 13

Chapter 2.Introduction To Style Sheets 15
Style Sheets in Communicator 15

Using Cascading Style Sheets to Define Styles 16

Using JavaScript and the Document Object Model to Define Styles 17

Introductory Example 19

Inheritance of Styles 21

Chapter 3.Creating Style Sheets and Assigning Styles 23
 Javascript Accessible Style Sheets 1

Javascript-Accessible Style Sheets
Defining Style Sheets with the <STYLE> Tag 24

Defining Style Sheets in External Files 25

Defining Classes of Styles 26

Defining Named Individual Styles 29

Using Contextual Selection Criteria 30

Specifying Styles for Individual Elements 32

Combining Style Sheets 33

Chapter 4.Format Properties for Block-Level Elements 35
Block-level Formatting Overview and Example 35

Setting Margins or Width 39

Setting Border Widths, Color, and Style 40

Setting Paddings 41

Inheritance of Block-Level Formatting Properties 42

Chapter 5.Style Sheet Reference 43
Comments in Style Sheets 45

New HTML Tags 46

New Attributes for Existing HTML Tags 47

New JavaScript Object Properties 51

Style Sheet Properties 52

Units 80

Chapter 6.Advanced Style Sheet Example 83
Style Sheets Ink Home Page 84

Overview of the Style Sheet 84

Main Block 86

The Introductory Section 86

The Training Section 90

The Seminars Section 93

Web Sites and Consultation Sections 96

The Background Block 96

Trouble-shooting Hints 96

Part 2. Positioning HTML Content 99
2 Javascript-Accessible Style Sheets

Chapter 7.Introduction 102
Overview 102

Positioning HTML Content Using Styles 103

Positioning HTML Content Using the <LAYER> Tag 107

Chapter 8.Defining Positioned Blocks of HTML Content 109
Absolute versus Relative Positioning 110

Attributes and Properties 111

The <NOLAYER> Tag 125

Applets, Plug-ins, and Forms 125

Chapter 9.Using JavaScript With Positioned Content 127
Using JavaScript to Bring Your Web Pages to Life 128

The Layer Object 129

Creating Positioned Blocks of Content Dynamically 136

Writing Content in Positioned Blocks 137

Handling Events 138

Using Localized Scripts 139

Animating Positioned Content 140

Chapter 10.Fancy Flowers Farm Example 144
Introducing the Flower Farm 145

Creating the Form for Flower Selection 145

Positioning the Flower Layers 146

Chapter 11.Swimming Fish Example 149
Positioning and Moving the Fish and Poles 150

Changing the Stacking Order of Fish and Poles 154

Chapter 12.Nikki’s Diner Example 160
Content in the External Files 161

The File for the Main Page 162

Chapter 13.Expanding Colored Squares Example 165
 Javascript Accessible Style Sheets 3

Javascript-Accessible Style Sheets
Running the Example 166

Creating the Colored Squares 168

The Initialization Functions 170

The Last Layer 171

Moving the Mouse Over a Square 172

The expand() Function 173

The contract() Function 174

Styles in the Document 175

Chapter 14.Changing Wrapping Width Example 176
Running The Example 177

Defining the Block of Content 177

Capturing Events for the Layer 178

Defining the Dragging Functions 179

Part 3. Downloadable Fonts 183

Chapter 15.Using Downloadable Fonts 184
Creating and Using Font Definition Files 185

New Attributes for the FONT Tag 187

Further Information 188

 Index 191
4 Javascript-Accessible Style Sheets

About This Guide

This guide discusses the concept and use of Dynamic HTML, which includes
style sheets, content positioning, and downloadable fonts.

Purpose of This Document
This document is for content developers who wish to have more control over
the layout and appearance of their web page, and who wish to incorporate
animations using HTML and JavaScript.

This document discusses each of the three components of Dynamic HTML,
describes how to use them, and gives examples of the use of each one.

Structure of This Document
This document is divided into three parts, one for each major component of
Dynamic HTML.

Part 1. Style Sheets contains the following chapters:

Chapter 2, “Introduction To Style Sheets,” introduces style sheets, discusses
the two kinds of syntax you can use to define them, gives an introductory
example, and discusses the concept of style inheritance.

Chapter 3, “Creating Style Sheets and Assigning Styles,” discusses the different
ways to define styles and apply them to content elements.

Chapter 4, “Format Properties for Block-Level Elements,” discusses the border
and format characteristics you can set for block-level elements.

Chapter 5, “Style Sheet Reference,” lists the tags and attributes that pertain to
style sheets, and lists all the properties you can define for styles.

Chapter 6, “Advanced Style Sheet Example,” presents and discusses a web
page that makes extensive use of style sheets.

Part 2. Positioning HTML Content contains the following chapters:
, 5

Javascript-Accessible Style Sheets
Chapter 7, “Introduction,” introduces the concept of positioning HTML
content and discusses the two kinds of syntax you can use to create
positioned blocks of content.

Chapter 8, “Defining Positioned Blocks of HTML Content,” discusses
absolute versus relative positioning, lists the attributes and properties you
can use for creating positioned blocks of content, discusses the
<NOLAYER> tag, and summarizes the behavior of applets, plug-ins, and
forms in positioned blocks of content.

Chapter 9, “Using JavaScript With Positioned Content,” discusses how to use
JavaScript to create and modify positioned blocks of content.

Chapter 10, “Fancy Flowers Farm Example,” illustrates how to how to hide
and show blocks of HTML content. It uses a pop-up menu to pick which
block to display.

Chapter 11, “Swimming Fish Example,” presents an example in two parts.
The first part illustrates how to position and move blocks of content. The
second part illustrates how to change the stacking order of the blocks.

Chapter 11, “Nikki’s Diner Example,” illustrates a simple use of using
external files as the source for a positioned block of content.

Chapter 12, “Expanding Colored Squares Example,” illustrates how to
expand and contract the clipping region of a positioned block of content,
without changing the wrapping width of the block.

Chapter 13, “Changing Wrapping Width Example,” illustrates how to
capture mouse events for a block of content and how to change the
wrapping width of a block. It provides the basic groundwork for making
"draggable" blocks of content.

Part 3. Downloadable Fonts contains the following single chapter:

Chapter 14, “Using Downloadable Fonts,” discusses why you would use
downloadable fonts and how to use them.

Typographic Conventions
The following conventions are used throughout this guide:

• Code identifiers that express literal JavaScript and HTML syntax appear in a
monospaced font like this: computer voice .
6 Javascript-Accessible Style Sheets

Typographic Conventions
• Italic font is used for emphasis and to indicate a special term like this:
special term.

• Variable names are presented in italic like this: variable.
 Javascript Accessible Style Sheets 7

Javascript-Accessible Style Sheets
8 Javascript-Accessible Style Sheets

C h a p t e r

1
Introducing Dynamic HTML

Navigator 4 from Netscape, which is part of the Communicator product suite,
includes three new areas of functionality that taken together give you Dynamic
HTML. The three components of Dynamic HTML are style sheets, content
positioning, and downloadable fonts. Used together, these three components
give you greater control over the appearance, layout, and behavior of your
web pages.

This chapter contains the following sections:

• Introducing Style Sheets

• Introducing Content Positioning

• Introducing Downloadable Fonts

Style sheets let you specify the stylistic attributes of the typographic elements of
your web page. With content positioning, you can ensure that pieces of
content are displayed on the page exactly where you want them to appear, and
you can modify their appearance and location after the page has been
displayed. With downloadable fonts, you can use the fonts of your choice to
enhance the appearance of your text. Then you can package the fonts with the
page so that the text is always displayed with your chosen fonts.
, Introducing Dynamic HTML 9

Javascript-Accessible Style Sheets
Introducing Style Sheets
Prior to the introduction of style sheets for HTML documents, web page authors
had limited control over the presentation of their web pages. For example, you
could specify that certain text should be displayed as headings, but you could
not set margins for your pages or specify the line heights or border decoration
for text.

Style sheets give you greater control over the presentation of your web
documents. Using style sheets, you can specify many stylistic attributes of your
web page, such as text color, margins, alignment of elements, font styles, font
sizes, font weights and more. You can use borders to make certain elements
stand out from the body of the content. You can specify different fonts to use
for different elements, such as paragraphs, headings, and blockquotes. You can
guarantee that your chosen fonts will be available on all systems by packaging
them as downloadable fonts and attaching them to the web page.

In addition, you can use a style sheet as a template or "master page" so that
multiple pages can use the same style sheet.

Part 1. Style Sheets, discusses the two kinds of syntax you can use for defining
styles; describes how to define and use styles; discusses how to define border
characteristic for block-level elements; gives the list of style properties; and
presents an advanced example of the use of styles.

Introducing Content Positioning
No longer are you constrained to use sequential content laid out linearly in
your web pages. By specifying positions for blocks of HTML content, you can
decide what contents goes where on the page, instead of leaving it up to the
browser to lay it out for you. You could, for example, place one block of
content in the top-left corner of the page, and another block in the bottom-right
corner. Blocks of content can share space too, so images and text can overlap.
You decide precisely where each part of the content will appear, and Navigator
4 will lay your page out exactly as you want.
10 Javascript-Accessible Style Sheets

Introducing Downloadable Fonts
Using JavaScript, you can change the layout of your page dynamically, and you
can modify the page in a variety of ways after the user has opened it. You can
make content vanish or appear, and you can change the color of individual
parts of your page. You can incorporate animation into your web pages by
moving and modifying individual parts of your HTML page on the fly.

Used together, content positioning and style sheets allow you to create web
pages that use different styles in different parts of the page.

Part 2. Positioning HTML Content, discusses the two kinds of syntax you can use
for positioning HTML content; describes the attributes and properties you can
specify for positioned content; discusses how to use JavaScript to create and
modify positioned content; and gives five complete, working examples of the
use of positioned content.

Introducing Downloadable Fonts
Using downloadable fonts, you can attach specific fonts to your web page. As a
result, your page will always be displayed with the fonts you picked out for it.
No longer need you use generic fonts to make your pages look approximately
similar on each platform. No longer are you subject to the vagaries of platform-
specific fonts, because a downloadable font can be displayed on any platform.

To protect the rights of the font designers, the downloadable fonts are locked
so that users cannot copy them and use them again. You can include your own
fonts in your web documents without worrying that your readers may copy
them for their own purposes.

Whether you apply font attributes directly to a piece of text or use style sheets
to define the font family for different kinds of elements, you can use
downloadable fonts in your web page to guarantee that the user sees your page
as you want it to be seen.

Part 3. Downloadable Fonts, discusses how to create and use downloadable
fonts, and how to attach them to your web page.
 Javascript Accessible Style Sheets 11

Javascript-Accessible Style Sheets
12 Javascript-Accessible Style Sheets

ts
Part 1.Style Shee
Contents
Chapter 2. Introduction To Style Sheets 15

Style Sheets in Communicator 16
Using Cascading Style Sheets to Define Styles 17
Using JavaScript and the Document Object Model to Define Styles 18
Introductory Example 19
Inheritance of Styles 22

Chapter 3. Creating Style Sheets and Assigning Styles 24
Defining Style Sheets with the <STYLE> Tag 25
Defining Style Sheets in External Files 26
Defining Classes of Styles 28
Defining Named Individual Styles 31
Using Contextual Selection Criteria 33
Specifying Styles for Individual Elements 35
Combining Style Sheets 37

Chapter 4. Format Properties for Block-Level Elements 39
Block-level Formatting Overview and Example 40
Setting Margins or Width 43
Setting Border Widths, Color, and Style 45
Setting Paddings 46
Inheritance of Block-Level Formatting Properties 47

Chapter 5. Style Sheet Reference 47
Comments in Style Sheets 50
New HTML Tags 51

<STYLE> 51
<LINK> 51
 52

New Attributes for Existing HTML Tags 53
STYLE 53
CLASS 54
ID 55

New JavaScript Object Properties 57
tags 57
classes 58
ids 58

Style Sheet Properties 58
Font Properties 58
Font Size 58
, 13

Javascript-Accessible Style Sheets
Font Family 60
Font Weight 61
Font Style 62
Text Properties 63
Text Decoration 65
Text Transform 66
Text Alignment 67
Text Indent 69
Block-Level Formatting Properties 71
Margins 71
Padding 73
Border Widths 74
Border Style 76
Border Color 76
Width 77
Alignment 78
Clear 83
Color and Background Properties 84
Background Image 85
Background Color 87
Classification Properties 88
List Style Type 89
White Space 91

Units 92
Length Units 92
Color Units 93

Chapter 6. Advanced Style Sheet Example 94
Style Sheets Ink Home Page 95
Overview of the Style Sheet 96
Main Block 97
The Introductory Section 98

Intro Head 99
Text in the Intro Block 100
List of Services 101
End of the Intro Block 102
The Training Section 102
The Seminars Section 106
Web Sites and Consultation Sections 108
The Background Block 108
Trouble-shooting Hints 109
14 Javascript-Accessible Style Sheets

Style Sheets in Communicator
C h a p t e r

2
Introduction To Style Sheets

This chapter introduces the use of style sheets in Netscape Communicator. It
gives an overview of the two different types of syntax you can use to define
styles, presents an introductory example of the use of styles, and explains about
style inheritance,

• Style Sheets in Communicator

• Using Cascading Style Sheets to Define Styles

• Using JavaScript and the Document Object Model to Define Styles

• Introductory Example

• Inheritance of Styles

Style Sheets in Communicator
Prior to the introduction of style sheets for HTML documents, web page authors
had limited control over the presentation of their web pages. For example, you
could specify text to be displayed as headings, but you could not set margins
for your pages or specify the line heights or margins for text.
 Javascript Accessible Style Sheets 15

Javascript-Accessible Style Sheets
Style sheets give you greater control over the presentation of your web
documents. Using style sheets, you can specify many stylistic attributes of your
web page, such as text color, margins, element alignments, font styles, font
sizes, font weights and more.

Netscape Communicator supports two types of style sheet syntax. It supports
style sheets written in cascading style sheet (CSS) syntax. It also supports style
sheets written in JavaScript that use the document object model. In the
document object model, a document is an object that has properties. Each
property can in turn be an object that has further properties, and so on.

When you define a style sheet, you must declare its type as either "text/
CSS" or "text/JavaScript" . To try to keep things straight, this manual
uses the term CSS syntax to refer to the syntax for style sheets whose type is
"text/CSS". It uses the term JavaScript syntax to refer to the syntax for style
sheets whose type is "text/JavaScript".

Using Cascading Style Sheets to Define Styles
Netscape Communicator fully supports cascading style sheets. Web pages that
use cascading style sheets will be displayed appropriately in Netscape Commu-
nicator with a few minor exceptions.

This document describes the style sheet functionality that is implemented in
Netscape Navigator 4.0. However, if you’d like to see the original specification
for style sheets as authored by the World Wide Web Consortium, you can go to:

http://www.w3.org/pub/WWW/TR/REC-CSS1

A style sheet consists of a one or more style definitions. In CSS syntax, the
property names and values of a style are listed inside curly braces following the
selection criteria for that style.

The selection criteria determines which elements the style is applied to, or
which elements it can be applied to. If the selection criteria is an HTML
element, the style is applied to all instances of that element. The selection
criteria can also be a class, an ID, or it can be contextual. Each of these kinds of
selection criteria are discussed in this document.
16 Javascript-Accessible Style Sheets

Using JavaScript and the Document Object Model to De-
Each property in the style definition is followed by a colon then by the value
for that property. Each property name/value pair must be separated from the
next pair by a semicolon.

For example, the following cascading style sheet defines two styles definitions.
One style definition specifies that the font size for all <P> elements is 18 and
the left margin for all <P> elements is 20. The other style definition specifies
that the color for all <H1> elements is blue.

<STYLE TYPE="text/css">

<!--

P {font-size:18pt; margin-left:20pt;}

H1 {color:blue;}

-->

</STYLE>

You can include the contents of the style sheet inside a comment (<!-- ...
-->) so that browsers that do not recognize the <STYLE> element will ignore
it.

Important: When specifying values for cascading style sheet properties, do not
include double quotes.

Cascading style sheets require strict adherence to correct syntax. Be sure not to
omit any semicolons between name/value pairs. If you miss a single semi-
colon, the style definition will be ignored. Similarly if you accidentally include a
single extraneous character anywhere within a style definition, that definition
will be ignored.

Using JavaScript and the Document Object Model to
Define Styles

Using JavaScript, you can define style sheets that use the document object
model. In this model, you can think of a document such as a web page as an
object that has properties that can be set or accessed. Each property can in turn
 Javascript Accessible Style Sheets 17

Javascript-Accessible Style Sheets
be an object that has further properties. For example, the following code sets
the color property of the object in the H1 property of the object in the tags
property of the document :

document.tags.H1.color = "red";

The tags property always applies to the document object for the current
document, so you can omit document from the expression document.tags .

The following example uses JavaScript and the document object model to
define a style sheet that has two style definitions. One style definition specifies
that the font size for all <P> elements (tags) is 18 and the left margin for all <P>
elements is 20. The other style definition specifies that the color for all <H1>
elements is blue.

<STYLE TYPE = "text/javascript">

tags.P.fontSize = "18pt";

tags.P.marginLeft = "20pt";

tags.H1.color = "blue";

</STYLE>

Do not wrap the contents of the style sheet in a comment (!-- ... -->) for
style sheets that use JavaScript syntax.

You can also use the with (tags.element) syntax to shorten the style
specification for elements that have several style settings. The following
example specifies that all <P> elements are displayed in green, bold, italic,
Helvetica font.

with (tags.P) {

color="green";

font-weight="bold";

font-style="italic";

font-family="helvetica";

}

18 Javascript-Accessible Style Sheets

Introductory Example
Introductory Example
Using style sheets, you can specify many stylistic attributes of your web page.
The stylistic characteristics you can set for font and text include text alignment,
text color, font family (such as Garamond), font style (such as italic), font
weight (such as bold), line height, text decoration (such as underlining),
horizontal and vertical alignment of text, and text indentation (which allows
indented and outdented paragraphs). You can specify background colors and
images for elements. You can specify the color and style to use for the bullets
and numbers in lists.

You can set margins and also specify borders for block-level elements. You can
set the padding for elements that have borders, to indicate the distance
between the element’s content and its border.

The following code shows a simple style sheet in both CSS syntax and JavaS-
cript syntax. This style sheet specifies that all <P> elements have left and right
margins, and their text is centered between the margins. All <H4> elements are
green and underlined. All <H5> elements are uppercase. They have a red
border that is four points thick. The border is in outdented 3D style and the
padding between the text and the border is four points. The text color is red
and the background color is yellow. All <BLOCKQUOTE> elements are blue
italic, with a line height that is 150% larger than the font size. The first line is
indented by 10% of the width of the element.

CSS Syntax

<STYLE TYPE="text/css">

P {

textAlign:center; margin-left:20%; margin-right:20%;}

H4 {

text-decoration:underline; color: green;}

H5 {

text-transform:uppercase; color: red;

border-width:4pt; border-style:outset;

background-color:yellow; padding: 4pt;

border-color:red;}
 Javascript Accessible Style Sheets 19

Javascript-Accessible Style Sheets
BLOCKQUOTE {

color:blue; font-style:italic;

line-height:1.5; text-indent:10%;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (tags.P) {

textAlign = "center"; marginLeft="20%". margin-right="20%";}

with (tags.H4) {

textDecoration = "underline; color = "green";

textTransform = "uppercase;}

with (tags.H5) {

color = "red";

borderWidths="4pt"=; borderStyle="outset";

backgroundColor="yellow"; paddings("4pt");

borderColor="red";}

with (tags.BLOCKQUOTE) {

color="blue"; fontStyle="italic";

lineHeight = 1.5; textIndent = "20pt";}

</STYLE>

Style Sheet Use

<H4>Underlined Heading 4</H4>

<BLOCKQUOTE>

This is a blockquote. It is usual for blockquotes to be indented, but
the first line of this blockquote has an extra indent. Also the line
height in this blockquote is bigger than you usually see in blockquotes.

<h5>uppercase heading 5 with a border</H5>

</BLOCKQUOTE>

<P>This paragraph has a text alignment value of center. It also has
large margins, so each line is not only centered but is also inset on
both sides from the element that contains it, which in this case is the
document.</P>
20 Javascript-Accessible Style Sheets

Inheritance of Styles
Inheritance of Styles
An HTML element that contains another element is considered to be the parent element
of the element it contains, and the element it contains is considered to be its child
element.

For example, in the following HTML text, the <BODY> element is the parent of the
<H1> element which in turn is the parent of the element.

<BODY>

<H1>The headline is important!</H1>

</BODY>

In many cases, child elements acquire or inherit the styles of their parent elements. For
example, suppose a style has been assigned to the <H1> element as follows:

<STYLE type="text/css">

H1 {color:blue;}

</STYLE>

<BODY>

<H1>The headline is important!</H1>

In this case, the child element takes on the style of its parent, which is the <H1>
element, so the word is appears in blue. However, suppose you had previously set up a
style specifying that elements should be displayed in red. In that case, the word is
would be displayed in red, because properties set on the child override properties
inherited from the parent.

Inheritance starts at the top-level element. In HTML, this is the <HTML> element, which
is followed by the <BODY> element.

To set default style properties for all elements in a document, you can specify a style for
the <BODY> element. For example, the following code sets the default text color to
green.

CSS Syntax

<STYLE TYPE="text/css">

BODY {color: green;}

</STYLE>
 Javascript Accessible Style Sheets 21

Javascript-Accessible Style Sheets
JavaScript Syntax

<STYLE TYPE="text/javascript">

tags.BODY.color="green";

</STYLE>

A few style properties are not inherited by the child element from the parent
element, but in most of these cases, the net result is the same as if the property
was inherited. For example, consider the background color property, which is
not inherited. If a child element does not specify its own background color,
then the parent’s background color is visible through the child element. It will
look as if the child element has the same background color as its parent
element.
22 Javascript-Accessible Style Sheets

Inheritance of Styles
C h a p t e r

3
Creating Style Sheets and Assigning Styles

This chapter looks at each of the different ways you can defines styles, and
shows how to apply styles to HTML elements.

• Defining Style Sheets with the <STYLE> Tag

• Defining Style Sheets in External Files

• Defining Classes of Styles

• Defining Named Individual Styles

• Using Contextual Selection Criteria

• Combining Style Sheets

A style sheet is a series of one or more style definitions.You can define a style
sheet directly inside the document that uses it, or you can define a style sheet
in an external document. If the style sheet is in an external document, then it
can be used by other documents. For example, a series of pages for a particular
site could all use a single externally defined style sheet that sets up the house
style.

If the style sheet is unlikely to be applicable to other documents, it can be more
convenient to define it directly in the document that uses it, since then you
have the style sheet and the content in one place.
 Javascript Accessible Style Sheets 23

Javascript-Accessible Style Sheets
Defining Style Sheets with the <STYLE> Tag
To define a style sheet directly inside a document, use the <STYLE> tag in the
header part of your document. The <STYLE> tag opens the style sheet, and the
</STYLE> tag closes the style sheet. Be sure to use the <STYLE> tag before
the <BODY> tag.

When you use the <STYLE> tag, you can specify the TYPE attribute to indicate
if the type is "text/css" or "text/javascript" . The default value for
TYPE is "text/css" .

The following example defines a style sheet that specifies that all level-one
headings are uppercase blue, and all blockquotes are red italic.

CSS Syntax

<HEAD>

<STYLE TYPE="text/css">

H1 {color: blue; text-transform: uppercase;}

BLOCKQUOTE {color: red; font-style: italic;}

</STYLE>

</HEAD>

<BODY>

JavaScript Syntax

<HEAD>

<STYLE TYPE="text/javascript">

tags.H1.textTransform = "uppercase";

tags.H1.color = "blue";

tags.BLOCKQUOTE.color = "red";

tags.BLOCKQUOTE.font-style: italic;

</STYLE>

</HEAD>

<BODY>
24 Javascript-Accessible Style Sheets

Defining Style Sheets in External Files
Style Sheet Use

<H1>This Heading Is Blue</H1>

BLOCKQUOTE>This blockquote is displayed in red.

Defining Style Sheets in External Files
You can define style sheets in a file that is separate from the document and
then link the style sheet to the document. The benefit of this approach is that
the style sheet can be used by any HTML document. You could think of an
externally defined style sheet as a style template that can be applied to any
document. For example, you could apply a style template to all pages served
from a particular web site by including a link to the style sheet file in each
page.

The syntax for defining styles in external files is the same as for defining styles
inside a document file, except that you do not need the opening and closing
<STYLE> and </STYLE> tags. Here is an example:

CSS Syntax

/* external style sheet mystyles1.htm */

all.BOLDBLUE {color:blue; font-weight: bold;}

H1 {line-height: 18pt;}

P {color: yellow;}

/* end of file */

JavaScript Syntax

/* external style sheet mystyles1.htm */

classes.BOLDBLUE.all.color = "blue";

classes.BOLDBLUE.all.fontWeight = "bold";

tags.H1.lineHeight="18pt";

tags.P.color="yellow";

/* end of file */

To use an externally defined style sheet in a document, use the <LINK> tag
to link to the style sheet, as in this example:
 Javascript Accessible Style Sheets 25

Javascript-Accessible Style Sheets
CSS Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/css"

HREF="http://style.com/mystyles1.htm">

</HEAD>

JavaScript Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/javascript"

HREF="http://style.com/mystyles1.htm">

</HEAD>

Defining Classes of Styles
If a document includes or links to a style sheet, all the styles defined in the style
sheet can be used by the document. If the style sheet specifies the style of any
HTML elements, then all the HTML elements of that kind in the document will
use the specified style.

There may be times when you want to selectively apply a style to HTML
elements. For example, you may want some of the paragraphs (<P> elements)
in a document to be red, and others to be blue. In this situation, defining a style
that applies to all <P> elements is not the right thing to do. Instead, you can
define classes of style, and apply the appropriate class of style to each element
that needs to use a style.

To apply a style class to an HTML element, define the style class in the style
sheet, and then use the CLASS attribute in the HTML element.

The following examples show how to define a class called GREENBOLD, whose
color is a medium shade of green and whose font weight is bold. The example
then illustrates how to use the style in HTML text.
26 Javascript-Accessible Style Sheets

Defining Classes of Styles
CSS Syntax

<STYLE TYPE="text/css">

all.GREENBOLD {color:#44CC22; font-weight:bold;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.GREENBOLD.all.color = "#44CC22"

classes.GREENBOLD.all.fontWeight = "bold"

</STYLE>

Style Sheet Use

<H1 CLASS=GREENBOLD>This Heading Is Very Green</H1>

<P CLASS = GREENBOLD>This paragraph uses the style class GREENBOLD. You
can use the CLASS attribute to specify the style class to be used by an
HTML element.</P>

<BLOCKQUOTE CLASS = GREENBOLD>

This blockquote uses the style class GREENBOLD. As a consequence, it is
both green and bold. It can be useful to use styles to make blockquotes
stand out from the rest of the page.

</BLOCKQUOTE>

In JavaScript syntax, you cannot use hyphens inside class names. A hyphen is
actually a minus sign, which is a JavaScript operator. Class names In JavaScript
syntax cannot include any JavaScript operators, including but not limited to -, +,
*, /, and %.

When defining a style class, you can specify which HTML elements can use this
style, or you can use the keyword all to let all elements use it.

For example, the following code creates a style class DARKYELLOW, which can
be used by any HTML element. The code also creates a class called RED1,
which can be used only by <P> and <BLOCKQUOTE> elements.

CSS Syntax

<STYLE type="text/css">

all.DARKYELLOW {color:#EECC00;}

P.RED1 {color: red; font-weight:bold;}
 Javascript Accessible Style Sheets 27

Javascript-Accessible Style Sheets
BLOCKQUOTE.red1 {color:red; font-weight:bold;}

</STYLE>

JavaScript Syntax

<STYLE type="text/javascript">

classes.DARKYELLOW.all.color="#EECC00";

classes.RED1.P.color = "red";

classes.RED1.P.fontWeight = "bold";

classes.RED1.BLOCKQUOTE.color = "red";

classes.RED1.BLOCKQUOTE.fontWeight = "bold";

</STYLE>

Style Sheet Use

<BODY>

<P CLASS=red1>This paragraph is red.</H1>

<P>This paragraph is in the default color, since it does not use the
class RED1.</P>

<BLOCKQUOTE CLASS="red1">This blockquote uses the class RED1.

</BLOCKQUOTE>

<H5 CLASS=red1>This H5 element tried to use the style RED1, but was not
allowed to use it.</H5>

<P CLASS=darkyellowclass>This paragraph is dark yellow.

<H5 CLASS=darkyellowclass>This H5 element tried to use the style
DARKYELLOW and was succesful.</H5>

An HTML element can use only one class of style. If you specify two or more
classes of style for an HTML element, the first one specified is used. For
example, in the following code the paragraph will use the RED1 style and
ignore the DARKYELLOW style:

<P CLASS="RED1" CLASS="DARKYELLOW">Another paragraph.</P>
28 Javascript-Accessible Style Sheets

Defining Named Individual Styles
Defining Named Individual Styles
You can create individual named styles. An HTML element can use both a class
of style and a named individual style. Thus you can use individual named styles
to express stylistic exceptions to a class of style. For example, if a paragraph
uses the MAIN style class, it could also use the named style BLUE1 which could
express some differences to the MAIN style.

Individual names styles are also useful for defining layers of precisely
positioned HTML content. For more details of layers, see the Part 2. Positioning
HTML Content.

To define named styles in CSS syntax, precede the name of the style with the #
sign. In JavaScript syntax, use the ids property.

To apply the style to an element, specify the style name as the value of the
element’s ID attribute.

The following codes defines a style class called MAIN. This style class specifies
a a line height of 20 points, a font size of 18 points; a font weight of bold, and
a color of red. The code also defines a named style BLUE1 whose color is blue.

CSS Syntax

<STYLE TYPE="text/css">

all.STYLE1 {line-height: 20pt; font-size: 18pt;

font-weight: bold; color: red;}

#BLUE1 {color: blue;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (classes.STYLE1.all) {

lineHeight = "20pt";

fontSize = "18pt";

fontWeight = "bold";

all.color = "red";
 Javascript Accessible Style Sheets 29

Javascript-Accessible Style Sheets
}

ids.BLUE1.color = "blue";

</STYLE>

Style Sheet Use

<P CLASS="STYLE1">Here you see some tall red text. The text in this
paragraph is much taller, bolder, and bigger than paragraph text
normally is.</P>

<P CLASS="STYLE1" ID="BLUE1">This paragraph has tall, bold, blue text.
Although this paragraph is in class STYLE1 1, whose members are normally
red, it also has a unique ID that allows it to be blue.</P>

Using Contextual Selection Criteria
You can define the style to be used by all HTML elements of a particular kind.
If you need more control over when a style is used, you can define a style class
that you can selectively apply to any element. Sometimes however, even that
level of control is not enough. You might, for example, want to specify a green
color for all elements inside level-one headings.

You can achieve this level of control over the application of styles by using
contextual selection criteria in your style definition. Contextual selection criteria
allow you to specify criteria such as "this style applies to this kind of element
nested inside that kind of element nested inside the other kind of element."

To specify contextual selection criteria in CSS syntax, list the HTML elements in
order before the opening curly brace of the properties list. In JavaScript syntax,
use the predefined method contextual() .

The following example shows how to specify a green text color for all
elements inside <H1> elements.

CSS Syntax

<STYLE TYPE="text/css">

H1 EM {color:green;}

</STYLE>
30 Javascript-Accessible Style Sheets

Using Contextual Selection Criteria
JavaScript Syntax

<STYLE TYPE="text/javascript">

contextual(tags.H1, tags.EM).color = "green";

</STYLE>

Style Sheet Use

<H1>This is green, emphasized text, but this is plain heading-
one text</H1>

Consider another example, given first in CSS syntax then in JavaScript syntax:.

UL UL LI {color:blue;}

contextual(tags.UL, tags.UL, tags.LI).color = "blue";

In this case, the selection criteria match elements with at least two
parents. That is, only list items that are two levels deep in an unordered list will
match this contextual selection and thus be displayed in blue.

You can use contextual selection criteria to look for tags, classes, IDs, or combi-
nations of these. For example, the following example creates a class called
MAGENTACLASS. Everything in this class is magenta colored. All paragraphs in
MAGENTACLASS that are also inside <DIV> elements are italic. All text inside
 tags nested inside paragraphs in MAGENTACLASS that are inside <DIV>
elements is extra large.

CSS Syntax

<STYLE TYPE="text/css">

all.MAGENTACLASS {color: magenta;}

DIV P.MAGENTACLASS {font-style: italic;}

DIV P.MAGENTACLASS B {font-size:18pt;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.MAGENTACLASS.all.color = "magenta";

contextual(tags.DIV, classes.MAGENTACLASS.P).fontStyle = "italic";

contextual(tags.DIV, classes.MAGENTACLASS.P, tags.B).fontSize = "18pt";

</STYLE>
 Javascript Accessible Style Sheets 31

Javascript-Accessible Style Sheets
Style Sheet Use

<DIV CLASS=MAGENTACLASS>

<H3>Heading 3 in the MAGENTACLASS</H3>

<P>Is this paragraph magenta and italic? It should be. Here comes some
big bold text. We achieved this result with contextual
selection.</P>

<P>This paragraph should be magenta too.</P>

</DIV>

<P>This paragraph is still magenta colored, but since it is not inside a
DIV block, it should not be italic.</P>

Specifying Styles for Individual Elements
As well as defining styles in style sheets, you can also use the STYLE attribute
of an HTML tag to define a style for use by that individual tag, and that tag
only. This approach basically defines the style on the fly, and can be useful in
situations where you want an element to use a style in a unique situation,
where you do not need to reuse the style elsewhere in the document.

In general though, it is better to define all the style used by a document in a
single place (be it at the top of the document or in a separate style sheet file) so
that you know where to make changes to the style. If a style is defined in a
style sheet, any element in the document can use that style. If you want to
change the properties of the style, you need to make the change only once and
it is automatically applied to all elements that use that style.

Sometimes, however, youmay want to specify the style of an individual
element, and an easy way to do this is to use the STYLE attribute. The
following example specifies the style of an individual <P> element. It also
shows how to use the STYLE attribute with the tag to apply a style to
a piece of arbitrary content.

CSS Syntax

<P STYLE="color:green; font-weight:bold;

margin-right:20%; margin-left:20%;

border-width:2pt; border-color:blue;">

This paragraph, and only this paragraph is bold green with big margins
32 Javascript-Accessible Style Sheets

Combining Style Sheets
and a blue border.</P>

<P>This paragraph is in the usual color, whatever that may be, but this
word is different
from the other words in this paragraph.</P>

JavaScript Syntax

<P STYLE="color = 'green'; fontWeight='bold';

marginRight='20%' marginLeft='20%';

borderWidth='2pt'; borderColor='blue;">

This paragraph, and only this paragraph is bold green with big margins
and a blue border.</P>

<P>This paragraph is in the usual color, whatever that may be, but this
word is different
from the other words in this paragraph.</P>

Combining Style Sheets
You can use more than one style sheet to set the styles for a document. You
might want to do this when you have several partial styles sheets that you wish
to mix and match, or perhaps where your document falls into several different
categories, each with its own style sheet.

For example, suppose you are are writing a white paper about the benefits of a
network product from a company called Networks Unlimited. You might need
to use three style sheet: one defining the company’s usual style for white
papers, another defining their usual style for documents about networking
products, and yet another defining the corporate style for Networks Unlimited.

The following example illustrates the use of several style sheets in one
document:

<STYLE TYPE="text/css"

SRC="http://www.networksunlimited.org/styles/corporate"></STYLE>

<STYLE TYPE="text/css"

SRC="styles/whitepaper"></STYLE>

<STYLE TYPE="text/javascript"

SRC="styles/networkthings"></STYLE>

<STYLE TYPE="text/css">
 Javascript Accessible Style Sheets 33

Javascript-Accessible Style Sheets
H1 {color: red;} /* override external sheets */

</STYLE>

For externally linked style sheets, the last one listed takes precedence over
previously listed style sheets. So in this case, if networkthings and white-
paper specify conflicting styles, then the styles defined in networkthings
take precedence over styles defined in whitepaper .

Locally defined styles take precedence over styles defined in the <STYLE>
element and over styles defined in external style sheets. In general, local style
values override values inherited from parent elements, and more specific style
values override more general values, as illustrated in the following example.

CSS Syntax

<STYLE TYPE="text/css">

P {color:blue;}

B {color:green;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

tags.P.color="blue";

tags.B.color="green";

</STYLE>

Style Sheet Use

<P>This is a blue paragraph, as determined by the style sheet. But these
bold words are green, as you see.</P>

<P STYLE="color:red">This is a red paragraph, as determined by the local
style. However, these bold words are still green, since the style
defined directly for bold elements overrides the style of the parent
element.</P>
34 Javascript-Accessible Style Sheets

Block-level Formatting Overview and Example
Chapter

4
Format Properties for Block-Level Elements

This chapter discusses the formatting options for block-level elements. Block-
level elements start on a new line, for example, <H1> and <P> are block-level
elements, but is not.

This chapter starts off by presenting an example that illustrates the various ways
of formatting block-level elements. After that comes a section discussing each
kind of formatting option in detail. The chapter and ends with a brief overview
of the inheritance behavior of properties that are used for formatting block-
level elements.

• Block-level Formatting Overview and Example

• Setting Margins or Width

• Setting Border Widths, Color, and Style

• Setting Paddings

• Inheritance of Block-Level Formatting Properties

Block-level Formatting Overview and Example
Style sheets treat each block-level element as if it were surrounded by a box.
Each box can have style characteristics in the form of margins, borders, and
padding. Each box can have a background image or color.
 Javascript Accessible Style Sheets 35

Javascript-Accessible Style Sheets
The margins indicate the inset of the edge of the box from the edges of the
document (or parent element). Each box can have a border that has a flat or
three dimensional appearance. The padding indicates the distance between the
element’s border and the element’s content.

You can also set the width of a block-level element, either to a specific value or
to a percentage of the width of the document (or parent element). As you can
imagine, it is redundant to set the left and right margin and to also set the
width.

If values are specified for the width and for both margins, the left margin
setting has the highest precedence. In this case, the value for the right margin
indicates the absolute maximum distance from the right edge of the containing
element at which the content wraps. If the value given for the width would
cause the element to run past the right margin, the width value is ignored. If
the width value would cause the element to stop short of the right edge, the
width value is used.

You can set the horizontal alignment of an element to left, right, or center. You
do this by setting the float property in CSS syntax or setting the align
property in JavaScript syntax. It is also redundant to set the left and/or right
margin and then also set the element’s alignment.

The following example illustrates the use of margins, paddings, border widths,
background color, width, and alignment properties.

CSS Syntax

<STYLE TYPE="text/css">

P {

background-color:#CCCCFF;

/* margins */

margin-left:20%; margin-right:20%;

/* border widths

border-top-width: 10pt; border-bottom-width:10pt;

border-right-width:5pt; border-left-width:5pt;

/* border style and color

border-style:outset; border-color:blue;

/* paddings */

padding-top:10pt; padding-bottom:10pt;
36 Javascript-Accessible Style Sheets

Block-level Formatting Overview and Example
padding-right:20pt; padding-left:20pt;

}

H3 {

/* font size and weight */

font-size: 14pt;

font-weight:bold;

background-image:URL("images/grenlite.gif");

/* center the heading with a 90% width */

width:90%;

float:center;

border-color:green;

border-style:solid;

/* all sides of the border have the same thickness */

border-width:10pt;

/* all sides have the same padding */

padding:20pt;

}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (tags.P) {

backgroundColor="#CCCCFF";

/* P border style and color */

borderStyle="outset"; borderColor="blue";

/* P border widths */

borderTopWidth="10pt"; borderBottomWidth="10pt";

borderLeftWidth="5pt"; borderRightWidth="5pt";

/* P paddings */

paddingTop="10pt"; paddingBottom="10pt";

paddingLeft="20pt"; paddingRight="20pt";

/* P margins */
 Javascript Accessible Style Sheets 37

Javascript-Accessible Style Sheets
marginLeft= "20%"; marginRight="20%";

}

with (tags.H3) {

backgroundImage ="images/grenlite.gif";

/* font size and weight */

fontSize="14pt"; fontWeight="bold";

/* H3 border style and color */

borderStyle="solid"; borderColor="green";

/* center the heading with a 90% width */

width="90%"; align="center";

/* all sides of the border have the same thickness */

borderWidths("10pt");

/* all sides have the same padding */

paddings("20pt");

}

</STYLE>

Style Sheet Use

<H3>H3 with a Solid Border</H3>

<P>Borders have their uses in everyday life. For example, borders round
a paragraph make the paragraph stand out more than it otherwise would.

</P>

<P>This is another paragraph with a border. You have to be careful not
to make the borders too wide, or else they start to take over the page.

</P>
38 Javascript-Accessible Style Sheets

Setting Margins or Width
Setting Margins or Width
The margins indicate the inset of the element from the edges of the document
(or parent element.) You can set right, left, top, and bottom margins. The
"edge" of the parent is the theoretical rectangle that would be drawn round the
inside of the padding, border, or margins of the parent element, if it has any of
these properties.

You can set the values of the margins for a block-level element by specifying
the following properties (shown as CSS syntax/JavaScript syntax property
names):

• margin-top/marginTop

• margin-bottom/marginBottom

• margin-left/marginLeft

• margin-right/marginRight

• You can set all four properties at once to the same value, either by setting
the margin property in CSS syntax or by using the margins() function in
JavaScript syntax.

You can set the horizontal alignment of an element to left, right, or center. You
do this by setting the float property in CSS syntax or setting the align
property in JavaScript syntax. It is redundant to set the left and/or right margin
and then also set the element’s alignment.

Instead of setting specific margin values, you can also set the width property.
You can set this to either a specific value (for example, 200pt) or to a
percentage of the width of the containing element or document (for example,
60%). If desired, you can set the width and either the left or right margin, so
long as the total does not exceed 100% of the width of the parent. It is not
useful, however, to set the width and also to set both margins, since two of the
values imply the third. (For example, if the left margin is 25% and the width is
60%, then the right margin must be 15%.)

Two or more adjoining margins (that is, with no border, padding or content
between them) are collapsed to use the maximum of the margin values. In the
case of negative margins, the absolute maximum of the negative adjoining
margins is deducted from the maximum of the positive adjoining margins.
 Javascript Accessible Style Sheets 39

Javascript-Accessible Style Sheets
To set the default margins for everything in a document, you can specify the
margin properties for the <BODY> tag. For example, the following code sets the
left and right margins to 20 points.

CSS Syntax

<STYLE TYPE="text/css">

BODY {margin-left:20pt; margin-right:20pt;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (tags.BODY) {

marginLeft="20pt"; marginRight="20pt";

}

</STYLE>

See Block-level Formatting Overview and Example for an example of setting
margins and width.

Setting Border Widths, Color, and Style
You can set the width of the border surrounding a block-level element by
specifying the following properties (shown as CSS syntax/JavaScript syntax
values):

• border-top-width/borderTopWidth

• border-bottom-width/borderBottomWidth

• border-left-width/borderLeftWidth

• border-right-width/borderRightWidth

• You can set all four properties at once to the same value, either by setting
the border-width property in CSS syntax or by using the border-
Widths() function in JavaScript syntax.
40 Javascript-Accessible Style Sheets

Setting Paddings
You can set the style of the border by specifying the border-style (CSS
syntax) or borderStyle (JavaScript syntax) property. You can give the
border a flat appearance by setting the border-style to solid or double , or
you can give it a 3D appearance, by setting the border-style to groove ,
ridge , inset , or outset .

You can set the color of the border by specifying the border-color (CSS
syntax) or borderColor (JavaScript syntax) property.

For an example of each of the border styles, see:

borders.htm StyleSheetExample

For another example of setting border widths, border style, and border color,
see Block-level Formatting Overview and Example.

Setting Paddings
The padding indicates the distance between the border of the element and its
content. The padding is displayed even if the element’s border is not displayed.

You can set the size of the padding surrounding a block-level element by speci-
fying the following properties (shown as CSS syntax/JavaScript syntax values):

• padding-top/paddingTop

• padding-bottom/paddingBottom

• padding-left/paddingLeft

• padding-right/paddingRight

• You can set all four properties at once to the same value, either by setting
the padding property in CSS syntax or by using the paddings() function
in JavaScript syntax.

See Block-level Formatting Overview and Example for an example of setting
paddings.
 Javascript Accessible Style Sheets 41

Javascript-Accessible Style Sheets
Inheritance of Block-Level Formatting Properties
The width, margins, border characteristics, and padding values of a parent
element are not inherited by its child elements. However, at first glance it might
seem that these values are inherited, since the values of the parent elements
affect the child elements.

For example, suppose you set the left margin of a DIV element to 10 points.
You can think of this DIV element as a big box that gets inset by 10 points on
the left. Assume that the DIV element has no border width and no padding. If
all the elements inside the DIV have a margin of 0, they are smack up against
the edge of that box. Since the box is inset by 10 points, all the elements end
up being inset by 10 points.

Now consider what would happen if the child elements did inherit the margin
value from their parent element. If that were the case, then the DIV block
would have a left margin of 10 points, and child elements would also each
have a left margin of 10 points, so they would be indented on the left by 20
points.
42 Javascript-Accessible Style Sheets

Inheritance of Block-Level Formatting Properties
C h a p t e r

5
Style Sheet Reference

This section includes reference information for both CSS syntax and JavaScript
syntax. It covers style sheet functionality that is implemented in Netscape
Navigator 4.0.

This reference does not include style sheet properties that can be used to
specify positions for blocks of HTML content. These properties are discussed in
Part 2. Positioning HTML Content.

This chapter is organized in the following sections:

Comments in Style Sheets

New HTML Tags

• <STYLE>

• <LINK>

•

New Attributes for Existing HTML Tags

• STYLE

• CLASS
 Javascript Accessible Style Sheets 43

Javascript-Accessible Style Sheets
• ID

New JavaScript Object Properties

• tags

• classes

• ids

Style Sheet Properties

Font Properties

• Font Size

• Font Style

• Font Family

• Font Weight

Text Properties

• Line Height

• Text Decoration

• Text Transform

• Text Alignment

• Text Indent

Block-Level Formatting Properties

• Margins

• Padding

• Border Widths

• Border Style
44 Javascript-Accessible Style Sheets

Comments in Style Sheets
• Border Color

• Width

• Alignment

• Clear

Color and Background Properties

• Color

• Background Image

• Background Color

Classification Properties

• Display

• List Style Type

• White Space

Units

• Length Units

• Color Units

Comments in Style Sheets
Comments in style sheets are similar to those in the C programming language.
For example:

B {color:blue;} /* bold text will be blue */

tags.B.color = "blue"; /* bold text will be blue */

JavaScript style sheet syntax also supports comments in the C++ style, for
example:

tags.B.color = "blue"; // bold text will be blue
 Javascript Accessible Style Sheets 45

Javascript-Accessible Style Sheets
Comments cannot be nested.

New HTML Tags
This section lists the HTML tags that are useful for working with styles.

<STYLE>

The <STYLE> and </STYLE> tags indicate a style sheet. Inside <STYLE> and
</STYLE> you can specify styles for elements, define classes and IDs, and
generally establish styles for use within the document.

To specify that the style sheet uses JavaScript syntax, set the TYPE attribute to
"text/javascript". To specify that the style sheet uses CSS syntax, set the
TYPE attribute to "text/css". The default value for TYPE is "text/CSS" .

For example:

<STYLE TYPE="text/css">

BODY {margin-right: 20%; margin-left:20%;}

PRE {color:green;}

all.CLASS1 {float:right; font-weight: bold;}

</STYLE>

<LINK>

Use the <LINK> element to link to an external style sheet for use in a
document. For example:

CSS Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/css"

HREF="http://style.com/mystyles1.htm">

</HEAD>
46 Javascript-Accessible Style Sheets

New Attributes for Existing HTML Tags
JavaScript Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/javascript"

HREF="http://style.com/mystyles1.htm">

</HEAD>

Use the inline and elements to indicate the beginning and
end of a piece of text to which a style is to be applied.

The following example applies an individual style to a piece of text.

<P>Here is some normal paragraph text. It looks OK, but would be much
better if it was<SPAN style="color:blue; font-weight:bold; font-
style:italic"> in bright, bold, italic blue. The blue text stands
out much more.</P>

You can use the element to achieve effects such as a large initial letter,
for example:

<STYLE TYPE="text/css">

init-letter.all {font-size:400%; font-weight:bold;}

</STYLE>

<P>This is...</P>

New Attributes for Existing HTML Tags
This section lists the new attributes for existing HTML tags that are useful for
working with styles. These attributes can be used with any HTML tag to specify
the style for that tag.

STYLE

The STYLE attribute determines the style of a specific element. For example:
 Javascript Accessible Style Sheets 47

Javascript-Accessible Style Sheets
CSS Syntax

<H3 STYLE="line-height:24pt; font-weight:bold; color:cyan;">

Cyan Heading</H3>

JavaScript Syntax

<H3 STYLE="lineHeight=’24pt’; fontWeight=’bold’; color=’cyan’">

Cyan Heading</H3>

CLASS

The CLASSES JavaScript property allows you to define classes of styles in a
style sheet. The CLASS attribute specifies a style class to apply to an element.

Although CSS syntax and JavaScript syntax use slightly different syntax to define
classes of styles, the use of the CLASS attribute is the same in both syntaxes.
For example:

CSS SyntaxExample

<STYLE TYPE="text/css">

H3.class1 {font-style:italic; color:red;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

classes.class1.H3.fontStyle="italic";

classes.class1.H3.color="red";

</STYLE>

Style Sheet Use

<H3 CLASS="class1">This H3 is in red italic letters.</H3>

Class names are case-sensitive.

Each HTML element can use only one style class.
48 Javascript-Accessible Style Sheets

New Attributes for Existing HTML Tags

To specify that a class can apply to all elements, use the element selector all
when you set the properties for the class. For example, the code sample below
specifies that the class LEMON can be applied to any element, and all elements
that use the style class LEMON are yellow.

CSS Syntax

<STYLE TYPE="text/css">

all.LEMON {color:yellow;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.LEMON.all.color="yellow";

</STYLE>

Style Sheet Use

<H1 class="LEMON">A Nice Yellow Heading</P>

<P CLASS="LEMON">What a nice shade of yellow this paragraph is.</P>

For more information about creating classes of style and for more examples,
see the section Defining Classes of Styles in Chapter 3, “Creating Style Sheets and
Assigning Styles.”

ID

When defining style sheets, you can create individual named styles.

An element can use a style class and also use a named style. This allows you to
use named styles to express individual stylistic exceptions to a style class.

To define an individual names style in CSS syntax, you use the # sign to
indicate a name for an individual style, while In JavaScript syntax, you use the
ID selector.

In both CSS syntax and JavaScript syntax, you use the ID attribute in an HTML
element to specify the style for that element.

ID names are case-sensitive.
 Javascript Accessible Style Sheets 49

Javascript-Accessible Style Sheets
ID styles are particularly useful for working with layers of precisely positioned
HTML content, as discussed in Part 2. Positioning HTML Content.

The following code shows an example of the use of individual named styles. In
this example, the STYLE1 class defines a style with several characteristics. The
named style A1 specifies that the color is blue. This style can be used to specify
that a paragraph has all the style characteristics of STYLE1, except that its color
is blue instead of red.

CSS Syntax

<STYLE TYPE="text/css">

P.STYLE1 {

color:red; font-size:24pt; line-height:26pt;

font-style:italic; font-weight:bold;

}

#A1 {color: blue;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (classes.STYLE1.P) {

color="red";

fontSize="24pt";

lineHeight="26pt";

fontStyle="italic";

fontWeight="bold";

}

ids.A1.color= "blue";

</STYLE>

Style Sheet Use

<P CLASS="STYLE1">Big red text</P>

<P CLASS="STYLE1" ID="A1">Big blue text</P>
50 Javascript-Accessible Style Sheets

New JavaScript Object Properties
New JavaScript Object Properties
This section discusses the new JavaScript object properties that are useful for
defining style sheets using JavaScript syntax.

tags

When using JavaScript syntax within the <STYLE> element, you can set styles
by using the tags property of the JavaScript object document .

The following example uses JavaScript syntax to specify that all paragraphs
appear in red:

<STYLE TYPE="text/javascript">

tags.P.color = red;

</STYLE>

In CSS syntax, this would be:

<STYLE TYPE="text/css">

P {color:red;}

</STYLE>

The tags property always applies to the document object for the current
document, so you can omit document from the expression document.tags .
For example, the following two statements both say the same thing:

document.tags.P.color = "red";

tags.P.color = "red";

To set default styles for all elements in a document, you can set the desired
style on the <BODY> element, since all other elements inherit from <BODY>.
For example, to set a universal right margin for the document:

tags.body.marginRight="20pt"; /*JavaScript syntax */

BODY {margin-right:20pt;} /* CSS syntax */

classes

See the CLASS section for a discussion of the classes JavaScript property.
 Javascript Accessible Style Sheets 51

Javascript-Accessible Style Sheets
ids

See the ID section for a discussion of the ids JavaScript property.

Style Sheet Properties

Font Properties

Using styles, you can specify font size, font family, font style, and font weight
for any element.

Font Size

CSS syntax name: font-size

JavaScript syntax name: fontSize

absolute-size

An absolute-size is a keyword such as:

xx-small

x-small

small

medium

large

x-large

Possible values: absolute-size, relative-size, length, percentage

Initial value: medium

Applies to: all elements

Inherited: yes

Percentage values: relative to parent element's font size
52 Javascript-Accessible Style Sheets

Style Sheet Properties
xx-large

relative-size

A relative-size keyword is interpreted relative to the font size of the parent
element. Note that relative values only equate to actual values when the
element whose font size is a relative value has a parent element that has a
font size. (A relative size has to have something to be relative to.)

Possible values are:

larger

smaller

For example, if the parent element has a font size of medium, a value of
larger will make the font size of the current element be large .

length

A length is a number followed by a unit of measurement, such as 24pt .

percentage

A percentage keyword sets the font size to a percentage of the parent
element’s font size.

CSS Syntax

P {font-size:12pt;}

EM {font-size:120%};

BLOCKQUOTE {font-size:medium;}

B {font-size:larger;}

JavaScript Syntax

tags.P.fontSize = "12pt";

tags.EM.fontSize = 120%;

tags.BLOCKQUOTE.fontSize = "medium";

tags.B.fontSize="larger";

Font Family

CSS syntax name: font-family

JavaScript syntax name: fontFamily
 Javascript Accessible Style Sheets 53

Javascript-Accessible Style Sheets
fontFamily

The fontFamily indicates the font family to use, such as Helvetica or Arial. If
a list of font names is given, the browser tries each named font in turn until
it finds one that exists on the user’s system. If none of the specified font
families are available on the user’s system, the default font is used instead.

If you link a font definition file to your web page, the font definition file
will be downloaded with the page, thus guaranteeing that all the fonts in
the definition file are available on the user’s system while the user is
viewing that page. For more information about linking fonts to a document,
see Part 3. Downloadable Fonts.

There is a set of generic family names that are guaranteed to indicate a font
on every system, but that exact font is system-dependent. The five generic
font families are:

• serif

• sans-serif

• cursive

• monospace

• fantasy

CSS Syntax Example

<STYLE TYPE="text/css">

H1 {fontFamily:Helvetica, Arial, sans-serif;}

</STYLE>

Possible values: fontFamily

Initial value: the default font, which comes from user preferences.

Applies to: all elements

Inherited: yes

Percentage values: NA
54 Javascript-Accessible Style Sheets

Style Sheet Properties
JavaScript Syntax Example

<STYLE TYPE="text/javascript">

tags.H1.fontFamily="Helvetica, Arial, sans-serif";

</STYLE>

Font Weight

CSS syntax name: font-weight

JavaScript syntax name: fontWeight

The font weight indicates the weight of the font. For example:

CSS Syntax Example

<STYLE>

BLOCKQUOTE {font-weight: bold;}

</STYLE>

JavaScript Syntax Example

<STYLE>

tags.BLOCKQUOTE.fontWeight="bold";

</STYLE>

The possible values are normal , bold , bolder , and lighter . You can also
specify weight as a numerical value from 100 to 900, where 100 is the lightest
and 900 is the heaviest.

Possible values: normal, bold, bolder, lighter, 100 -
900

Initial value: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A
 Javascript Accessible Style Sheets 55

Javascript-Accessible Style Sheets
Font Style

CSS syntax name: font-style

JavaScript syntax name: fontStyle

This property determines the style of the font.

The following example specifies that emphasized text within <H1> elements
appears in italic.

CSS Syntax Example

<STYLE>

H1 EM {font-style: italic;}

</STYLE>

JavaScript Syntax Example

<STYLE>

contextual(tags.H1, tags.EM).fontStyle = "italic";

</STYLE>

Text Properties

The use of style sheets allows you to set text properties such as line height and
text decoration.

Possible values: normal, italic

Initial value: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A
56 Javascript-Accessible Style Sheets

Style Sheet Properties
Line Height

CSS syntax name: line-height

JavaScript syntax name: lineHeight

This property sets the distance between the baselines of two adjacent lines. It
applies only to block-level elements.

number:

If you specify a numerical value without a unit of measurement, the line
height is the font size of the current element multiplied by the numerical
value. This differs from a percentage value in the way it inherits: when a
numerical value is specified, child elements inherit the factor itself, not the
resultant value (as is the case with percentage and other units).

For example:

fontSize:10pt;

line-height:1.2; /* line height is now 120%, ie 12pt */

font-size:20pt; /* line height is now 24 pt, */

length:

An expression of line height as a measurement, for example:

line-height:0.4in;

line-height:18pt;

percentage

Percentage of the element’s font size, for example:

line-height:150%;

Negative values are not allowed.

Possible values number, length, percentage, normal

Initial value: normal for the font

Applies to: block-level elements

Inherited: yes

Percentage values: refers to the font size of the element itself
 Javascript Accessible Style Sheets 57

Javascript-Accessible Style Sheets
Text Decoration

CSS syntax name: text-decoration

JavaScript syntax name: textDecoration

This property describes decorations that are added to the text of an element. If
the element has no text (for example, the element in HTML) or is an
empty element (for example, ""), this property has no effect.

This property is not inherited, but children elements will match their parent. For
example, if an element is underlined, the line should span the child elements.
The color of the underlining will remain the same even if child elements have
different color values.

For example:

BLOCKQUOTE {text-decoration: underline;}

The text decoration options do not include color options, since the color of text
is derived from the color property value.

.

Text Transform

CSS syntax name: text-transform

JavaScript syntax name: textTransform

Possible values: none, underline, line-through, blink

Initial value: none

Applies to: all elements

Inherited: no, but see clarification below

Percentage values: N/A
58 Javascript-Accessible Style Sheets

Style Sheet Properties
This property indicates text case.

capitalize

Display the first character of each word in uppercase.

uppercase

Display all letters of the element in uppercase.

lowercase

Display all letters of the element in lowercase.

none

Neutralizes inherited value.

For example:

CSS Syntax Example

<STYLE TYPE="text/css">

H1 {text-transform:capitalize;}

H1.CAPH1 {text-transform: uppercase;}

</STYLE>

JavaScript Syntax Example

<STYLE>

tags.H1.textTransform = "capitalize";

classes.CAPH1.H1.textTransform = "uppercase";

</STYLE>

Possible values:, capitalize, uppercase, lowercase, none

Initial value: none

Applies to: all elements

Inherited: yes

Percentage values: N/A
 Javascript Accessible Style Sheets 59

Javascript-Accessible Style Sheets
Style Sheet Use

<H1>This is a regular level-one heading</H1>

<H1 CLASS=CAPH1>important heading</H1>

Text Alignment

CSS syntax name: text-align

JavaScript syntax name: textAlign

This property describes how text is aligned within the element.

Example:

tags.P.textAlign = "center"

CSS Syntax Example

<STYLE TYPE="text/css">

all.RIGHTHEAD {text-align:right; color:blue;}

P.LEFTP {text-align:left; color:red;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.RIGHTHEAD.all.textAlign="right";

classes.LEFTP.P.textAlign="left";

classes.RIGHTHEAD.all.color="blue";

classes.JUSTP.P.color="red";

Possible values: left, right, center, justify

Initial value: left

Applies to: block-level elements

Inherited: yes

Percentage values: N/A
60 Javascript-Accessible Style Sheets

Style Sheet Properties
</STYLE>

Style Sheet Use

<H3>A Normal Heading</H3>

<H3 CLASS=RIGHTHEAD>A Right-Aligned Heading</H3>

<P>This is a normal paragraph. This is what paragraphs usually look
like, when they are left to their own devices, and you do not use style
sheets to control their text alignment.</P>

<P CLASS = LEFTP>This paragraph is left-justified, which means it has a
ragged right edge. Whenever paragraphs contain excessively, perhaps
unnecessarily, long words, the raggedness of the justification becomes
more manifestly apparent than in the case where all the words in the
sentence are short.</P>

Text Indent

CSS syntax name: text-indent

JavaScript syntax name: textIndent

The property specifies indentation that appears before the first formatted line.
The text-indent value may be negative. An indent is not inserted in the
middle of an element that was broken by another element (such as
 in
HTML).

length

Length of the indent as a numerical value with units, for example:

P {text-indent:3em;}

percentage

Possible values: length, percentage

Initial value: 0

Applies to: block-level elements

Inherited: yes

Percentage values: refer to parent element's width
 Javascript Accessible Style Sheets 61

Javascript-Accessible Style Sheets
Length of the indent as a percentage of the parent element’s width, for
example:

P {text-indent:25%;}

CSS Syntax Example

<STYLE TYPE="text/css">

P.INDENTED {text-indent:25%;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/css">

classes.INDENTED.P.textIndent="25%";

</STYLE>

Style Sheet Use

<P CLASS=INDENTED>

The first line is indented 25 percent of the width of the parent
element, which in this case happens to be the BODY tag, since this
element is not embedded in anything else.</P>

<BLOCKQUOTE>

<P CLASS=INDENTED>

This time the first line is indented 25 percent from the blockquote that
surrounds this element. A blockquote automatically indents its contents.

</P>

</BLOCKQUOTE>

Block-Level Formatting Properties

Style sheets treat each block-level element as if it is surrounded by a box.
Block-level elements start on a new line, for example, <H1> and <P> are
block-level elements, but is not.

Each box can have padding, border, and margins.You can set values for top,
bottom, left and right paddings, border widths, and margins.
62 Javascript-Accessible Style Sheets

Style Sheet Properties
For a more detailed overview discussion of block-level formatting, see
Chapter 4, “Format Properties for Block-Level Elements.”

Margins

CSS syntax names: margin-left , margin-right , margin-top , margin-
bottom , margin

JavaScript syntax names: marginLeft , marginRight , marginTop ,
marginBottom and margins ()

These properties set the margin of an element. The margins express the
minimal distance between the borders of two adjacent elements.

You can set each margin individually by specifying values for margin-left /
marginLeft , margin-right /marginRight , margin-top /marginTop
and margin-bottom /marginBottom.

In CSS syntax you can set all margins to the same value at one time by setting
the margin property (note that the property name is singular). In JavaScript
syntax you can use the margins() method sets the margins for all four sides
at once. (Note that the function name is plural.)

The arguments to the margin property and margins() method are top, right,
bottom and left margins respectively. For example:

CSS Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

P {margin:10pt 20pt 30pt 40pt;}

/* set all P margins to 40 pt */

Possible values length, percentage, auto

Initial value: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent element's width
 Javascript Accessible Style Sheets 63

Javascript-Accessible Style Sheets
P {margin:40pt;}

JavaScript Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

tags.BODY.margins("10pt", "20pt", "30pt", "40pt");

/* set all P margins to 40 pt */

tags.P.margins("40pt");

Adjoining margins of adjacent elements are added together, unless one of the
elements has no content, in which case its margins are ignored. For example, if
an <H1> element with a bottom margin of 40 points, is followed by a <P>
element with a top margin of 30 points, then the separation between the two
elements is 70 points. However, if the <H1> element has content, but the <P>
element is empty, then the margin between them is 40 points.

When margin properties are applied to replaced elements (such as an
tag), they express the minimal distance from the replaced element to any of the
content of the parent element.

The use of negative margins is not recommended because it may have unpre-
dictable results.

For a working example of setting margins, see the section Block-level
Formatting Overview and Example.

Padding

CSS syntax names: padding-top , padding-right , padding-bottom ,
padding-left , paddings

JavaScript syntax names: paddingTop , paddingRight , paddingBottom ,
paddingLeft , and paddings ()

Possible values: length, percentage

Initial value: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent element's width
64 Javascript-Accessible Style Sheets

Style Sheet Properties
These properties describe how much space to insert between the border of an
element and the content (such as text or image). You can set the padding on
each side individually by specifying values for padding-top /paddingTop ,
padding-right /paddingRight , padding-left /paddingLeft and
padding-bottom /paddingBottom.

In CSS syntax you can use the padding property (note that it is padding
singular) to set the padding for all four sides at once. In JavaScript syntax you
can use the paddings() method to set the margins for all four sides at once.

The arguments to the padding property (CSS syntax) and the paddings()
method (JavaScript syntax) are the top, right, bottom and left padding values
respectively.

CSS Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

P {padding:10pt 20pt 30pt 40pt;}

/* set the padding on all sides of P to 40 pt */

P {padding:40pt;}

JavaScript Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

tags.P.paddings("10pt", "20pt", "30pt", "40pt")

/* set the padding on all sides of P to 40 pt */

tags.P.paddings("40pt");

Padding values cannot be negative.

To specify the color or image that appears in the padding area, you can set the
background color or background image of the element. For information about
setting background color, see the section Background Color. For information
about setting a background image, see the section Background Image.

For a working example of setting paddings, see the section Block-level
Formatting Overview and Example.

Border Widths

CSS syntax names: border-top-width , border-bottom-width ,
border-left-width , border-right-width , border-width
 Javascript Accessible Style Sheets 65

Javascript-Accessible Style Sheets
JavaScript syntax names: borderTopWidth , borderBottomWidth ,
borderLeftWidth , borderRightWidth , and borderWidths ()

These properties set the width of a border around an element.

You can set the width of the top border by specifying a value for border-
top-width /borderTopWidth. You can set the width of the right border by
specifying a value for border-right-width /borderRightWidth. You
can set the width of the bottom border by specifying a value for border-
bottom-width /borderBottomWidth . You can set the width of the bottom
border by specifying a value for border-left-width / borderLeft-
Width.

In CSS syntax, you can set all four borders at once by setting the border-
width property. In JavaScript syntax you can set all four borders at once by
using the borderWidths() function.

The arguments to the border-width property (CSS syntax) and the border-
Widths() function (JavaScript syntax) are the top, right, bottom and left
border widths respectively.

/* top=1pt, right=2pt, bottom=3pt, left=4pt */

P {border-width:1pt 2pt 3pt 4pt;} /* CSS */

tags.P.borderWidths("1pt", "2pt", "3pt", "4pt"); /* JavaScript syntax */

/* set the border width to 2 pt on all sides */

P {border-width:40pt;} /* CSS */

tags.P.borderWidths("40pt"); /* JavaScript syntax */

For a working example of setting border widths, see the section Block-level
Formatting Overview and Example.

Possible values: length

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A
66 Javascript-Accessible Style Sheets

Style Sheet Properties
Border Style

CSS syntax name: border-style

JavaScript syntax name: borderStyle

This property sets the style of a border around a block-level element.

For the border to be visible however, you must also specify the border width.
For details of setting the border width see the section Setting Border Widths,
Color, and Style or the section Border Widths.

For an example of each of the border values, see:

borders.htm StyleSheetExample

Border Color

CSS name: border-color

JavaScript syntax name:borderColor

Possible values:, none, solid , double , inset, outset,
groove, ridge

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A

Possible values: none, colorvalue

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A
 Javascript Accessible Style Sheets 67

Javascript-Accessible Style Sheets
This property sets the color of the border. The color can either be a named color or
a 6-digit hexadecimal value indicating a color or an rgb color value.

For a list of the named colors, see the section Color Units.

For example:

CSS Syntax

P {border-color:blue;}

BLOCKQUOTE {border-color:#0000FF;}

H1 {border-color:rgb(0%, 0%, 100%);}

JavaScript Syntax

tags.P.borderColor="blue";

tags.BLOCKQUOTE.borderColor="#0000FF";

tags.H1.borderColor="rgb(0%, 0%, 100%);

For a working example of setting border color, see the section Block-level
Formatting Overview and Example.

Width

CSS syntax name: width

JavaScript syntax name: width

This property determines the width of an element.

Possible values: length, percentage, auto

Initial value: auto

Applies to: block-level and replaced elements

Inherited: no

Percentage values: refer to parent element's width
68 Javascript-Accessible Style Sheets

Style Sheet Properties
Note that if you set the left and right margins, and also the width of a property,
the margin settings take precedence over the width setting. For example, if the
left margin setting is 25%, the right margin setting is 10%, and the width setting
is 100%, the width setting is ignored. (The width will end up being 65% total.)

CSS Syntax Example

all.NARROW {width:50%;}

all.INDENTEDNARROW {margin-left:20%; width:60%;}

JavaScript Syntax Example

classes.NARROW.all.width = "50%";

classes.INDENTEDNARROW.all.width = "60%";

classes.INDENTEDNARROW.all.marginLeft = "20%";

For a working example of setting the width of an element, see the section
Block-level Formatting Overview and Example.

Alignment

CSS syntax name: float

JavaScript syntax name: align

The float property (CSS syntax) and align property (JavaScript syntax)
determine the alignment of an element within its parent. (Note that the text-
align /textAlign property determines the alignment of the content of text
elements.)

Possible values: left, right, none

Initial values: none

Applies to: all elements

Inherited: no

Percentage values: N/A
 Javascript Accessible Style Sheets 69

Javascript-Accessible Style Sheets
The term float is a reserved word in JavaScript, which is why the JavaScript
syntax uses the name align instead of float for this property.

Using the float /align property, you can make an element float to the left or
the right and indicate how other content wraps around it.

If no value is specified, the default value is none . If the value is none , the
element is displayed where it appears in the text.

If the value is left or right , the element is displayed on the left or the right
(after taking margin properties into account). Other content appears on the
right or left side of the floating element. If the value is left or right , the
element is treated as a block-level element.

Using the float /align property, you can declare elements to be outside the
normal flow of elements. For example, if the float /align property of an
element is left , the normal flow wraps around on the right side.

If you set an element’s float /align property set, do not also specify margins
for it. If you do, the wrapping effect will not work properly. However, if you
want a floating element to have a left or right margin, you can put it inside
another element, such as a <DIV> block, that has the desired margins.

CSS Syntax Example

<STYLE TYPE="text/css">

H4 {

width:70%;

border-style:outset;

border-width:2pt;

border-color:green;

background-color:rgb(70%, 90%, 80%);

padding:5%;

font-weight:bold;

}

H4.TEXTRIGHT {text-align:right; margin-right:30%;}

H4.TEXTRIGHT_FLOATLEFT {text-align:right; float:left;}

H4.FLOATRIGHT {float:right;}

H4.FIXED_RIGHT_MARGIN {float:right; margin-right:30%;}
70 Javascript-Accessible Style Sheets

Style Sheet Properties
</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

with (tags.H4) {

width="70%";

borderStyle="outset";

borderWidth="2pt";

borderColor="green";

backgroundColor = "rgb(70%, 90%, 80%)";

paddings("5%");

fontWeight="bold";

}

classes.TEXTRIGHT.H4.textAlign="right";

classes.TEXTRIGHT.H4.marginRight="30%;"

classes.TEXTRIGHT_FLOATLEFT.H4.textAlign="right";

classes.TEXTRIGHT_FLOATLEFT.H4.align="left";}

classes.FLOATRIGHT.H4.align="right";

classes.FIXED_RIGHT_MARGIN.H4.align="right";

classes.FIXED_RIGHT_MARGIN.H4.marginRight="30%";

</STYLE>

Style Sheet Use

<BODY>

<H4>Level-Four Heading</H4>

<P>I am a plain paragraph, positioned below a non-floating level-four
heading.

</P>

<H4 CLASS=TEXTRIGHT>H4 - My Text On Right, No Float</H4>

<P>I am also a plain paragraph, positioned below a non-floating level-
four heading. It just happens that the heading above me has its text
alignment set to right.

</P>
 Javascript Accessible Style Sheets 71

Javascript-Accessible Style Sheets
<H4 CLASS = FLOATRIGHT>H4 - Float = Right</H4>

<P>I am a regular paragraph. There’s not much more you can say about me.
I am positioned after a level-four heading that is floating to the
right, so I come out positioned to the left of it.</P>

<BR CLEAR>

<H4 CLASS=TEXTRIGHT_FLOATLEFT>H4 - My Text on Right, Float = Left </H4>

<P>I'm also just a plain old paragraph going wherever the flow takes me.

</P>

<BR CLEAR>

<H4 CLASS=FIXED_RIGHT_MARGIN>H4 - Float = Right, Fixed Right Margin</H4>

<P>Hello? Hello!! I am wrapping round an H4 that is floating to the right and
has a fixed right margin. When I try to satisfy all these requirements, you see
what happens! For best results, do not set the left and/or right margin when
you set the float (CSS syntax) or align (JavaScript syntax) property. Use an
enclosing element with margins instead.

</P>

<BR CLEAR>

<DIV STYLE="margin-left:30%;">

<H4 CLASS = FLOATRIGHT>H4 - Float = Right</H4>

<P>Notice how the heading next to me seems to have a right margin.
That’s because we are both inside a DIV block that has a right margin.</
P>

<BR CLEAR>

</DIV>

</BODY>

Clear

CSS syntax name: clear

JavaScript syntax name: clear
72 Javascript-Accessible Style Sheets

Style Sheet Properties
This property specifies whether an element allows floating elements on its
sides. More specifically, the value of this property lists the sides where floating
elements are not accepted. With clear set to left , an element will be moved
below any floating element on the left side. With clear set to none , floating
elements are allowed on all sides.

Example:

P {clear:left;}

tags.H1.clear = "left";

Color and Background Properties

Just as you can set color and background properties for a document as a whole,
you can set them for block-level elements too. These properties are applied to
the "box" that contains the element.

Color

CSS syntax name: color

JavaScript syntax name: color

Possible values: none, left, right, both

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A
 Javascript Accessible Style Sheets 73

Javascript-Accessible Style Sheets
This property describes the text color of an element, that is, the "foreground"
color.

See the section Color Units for information about how to specify colors.

The following examples illustrate the ways to set the color to red.

CSS Syntax Example

<STYLE TYPE="text/css">

EM {color:red;}

B {color:rgb(255, 0, 0);}

I {color:rgb(100%, 0%, 0%);}

CODE {color:#FF0000;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

tags.EM.color="red";

tags.B.color="rgb(255, 0, 0)";

tags.I.color="rgb(100%, 0%, 0%)";

tags.CODE.color="#FF0000";

</STYLE>

Background Image

CSS syntax name: background-image

Possible values: color

Initial value: black

Applies to: all elements

Inherited: yes

Percentage values: N/A
74 Javascript-Accessible Style Sheets

Style Sheet Properties
JavaScript syntax name: backgroundImage

This property specifies the background image of an element.

Partial URLs are interpreted relative to the source of the style sheet, not relative
to the document.

CSS Syntax Example

<STYLE TYPE="text/css">

H1.SPECIAL {

background-image:url(images/glass2.gif);

padding:20pt;

color:yellow;

}

H2.SPECIAL {

padding:20pt;

background-color:#FFFF33;

border-style:solid;

border-width:1pt;

border-color:black;

}

P.SPECIAL B {background-image:url(images/tile1a.gif); }

P.SPECIAL I {background-color:cyan;}

</STYLE>

JavaScript Syntax Example

Possible values: url

Initial value: empty

Applies to: all elements

Inherited: no

Percentage values: N/A
 Javascript Accessible Style Sheets 75

Javascript-Accessible Style Sheets
<STYLE TYPE="text/javascript">

classes.SPECIAL.H1.backgroundImage = "images/glass2.gif";

classes.SPECIAL.H1.paddings("20pt");

classes.SPECIAL.H1.color="yellow";

classes.SPECIAL.H2.paddings("20pt");

classes.SPECIAL.H2.backgroundColor="FFFF33";

classes.SPECIAL.H2.borderStyle="solid";

classes.SPECIAL.H2.borderWidth="1pt";

classes.SPECIAL.H2.borderColor="black";

contextual(classes.SPECIAL.P, tags.B).backgroundImage=

"images/tile1a.gif";

contextual(classes.SPECIAL.P, tags.I).backgroundColor="cyan";

</STYLE>

Style Sheet Use

<H1 CLASS=SPECIAL>Heading One with Image Background</H1>

<P CLASS=SPECIAL>

Hello. Notice how the portion of this paragraph that has an image
background is promoted to being a block-level element on its own
line.</P>

<H2 CLASS=SPECIAL>Heading Two with Solid Color Background</H2>

<P CLASS=SPECIAL>Hello, here is some <I>very interesting</I>
information. Notice that each <I>colored portion</I> of this paragraph
just continues right along in its normal place.

</P>

Background Color

CSS syntax name: background-color

JavaScript syntax name: backgroundColor
76 Javascript-Accessible Style Sheets

Style Sheet Properties
This property specifies a solid background color for an element.

See the previous section, Background Image, for a working example.

Classification Properties

These properties classify elements into categories more than they set specific
visual parameters.

Display

CSS syntax name: display

JavaScript syntax name: display

Possible Values: color

Initial value: empty

Applies to: all elements

Inherited: no

Percentage values: N/A

Possible values:, block, inline, list-item
none

Initial value: according to HTML

Applies to: all elements

Inherited: no

Percentage values: N/A
 Javascript Accessible Style Sheets 77

Javascript-Accessible Style Sheets
This property indicates whether an element is inline (for example, in HTML),
block-level element (for example. <H1> in HTML), or a block-level list item (for
example, in HTML). For HTML documents, the initial value is taken from the
HTML specification.

A value of none turns off the display of the element, including children elements and
the surrounding box. (Thus if the value is set to none , the element is not be displayed.)

Note that block-level elements do not seem to respond to having their display property
set to inline .

CSS Syntax Example

EM.LISTEM {display:list-item;}

JavaScript Syntax Example

classes.LISTEM.EM.display="list-item";

List Style Type

CSS syntax name: list-style-type

JavaScript syntax name: listStyleType

This property describes how list items (that is, elements with a display value of
list-item) are formatted.

This property can be set on any element, and its children will inherit the value.
However, the list style is only displayed on elements that have a display value of
list-item . In HTML this is typically the case for the element.

Possible values: disc, circle, square, decimal, lower-
roman, upper-roman, lower-alpha, upper-
alpha, none

Initial value: disc

Applies to: elements with display property value of list-item

Inherited: yes

Percentage values: N/A
78 Javascript-Accessible Style Sheets

Style Sheet Properties
CSS Syntax Example

<STYLE TYPE="text/css">

UL.BLUELIST {color:blue;}

UL.BLUELIST LI {color:aqua;list-style-type:square;}

OL.REDLIST {color:red;}

OL.REDLIST LI {color:magenta; list-style-type:upper-roman;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

classes.BLUELIST.UL.color="blue";

contextual(classes.BLUELIST.UL, tags.LI).color="aqua";

contextual(classes.BLUELIST.UL, tags.LI).listStyleType="square";

classes.REDLIST.OL.color="red";

contextual(classes.REDLIST.OL, tags.LI).color="magenta";

contextual(classes.REDLIST.OL, tags.LI).listStyleType="upper-roman";

</STYLE>

Style Sheet Use

<UL CLASS=BLUELIST> <!-- LI elements inherit from UL -->

Consulting

Development

Technology integration

<OL CLASS=REDLIST> <!-- LI elements inherit from OL -->

Start the program.

Enter your user name and password.

From the File menu, choose the Magic command.

 Javascript Accessible Style Sheets 79

Javascript-Accessible Style Sheets
White Space

CSS syntax name: white-space

JavaScript syntax name: whiteSpace

This property declares how white space inside the element should be handled.
The choices are:

• normal (white space is collapsed),

• pre (behaves like the <PRE> element in HTML) .

For example:

P.KEEPSPACES {white-space:pre;} /* CSS syntax */

classes.KEEPSPACES.P.whiteSpace = "pre"; /* JavaScript syntax */

Units
This section discusses units of measurement.

Length Units

The format of a length value is an optional sign character ('+' or '-', with '+'
being the default) immediately followed by a number followed by a unit of
measurement. For example, 12pt , 2em, 3mm.

Possible values: normal, pre

Initial value: according to HTML

Applies to: block-level elements

Inherited: yes

Percentage values: N/A
80 Javascript-Accessible Style Sheets

Units
There are three types of length units: relative, pixel and absolute. Relative units
specify a length relative to another length property. Style sheets that use relative
units will scale more easily from one medium to another (for example, from a
computer display to a laser printer). Percentage units and keyword values (such
as x-large) offer similar advantages.

Child elements inherit the computed value, not the relative value, for example:

BODY {font-size:12pt; text-indent:3em;}

H1 {font-size:15pt;}

In the example above, the text indent value of H1 elements will be 36pt, not
45pt.

The following relative units are supported:

• em -- the height of the element's font, typically the width or height of the
capital letter M

• ex -- half the height of the element’s font, which is typically the height of
the letter 'x'

• px -- pixels, relative to rendering surface

The following absolute units are supported:

• pt -- points

• pc -- picas

• px -- pixels

• in -- inches

• mm -- millimeters

• cm -- centimeters
 Javascript Accessible Style Sheets 81

Javascript-Accessible Style Sheets
Color Units

A color value is a either a color name or a numerical RGB specification.

The suggested list of color names is: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow. These 16
colors are taken from the Windows VGA palette and will also be used in HTML
3.2.

tags.BODY.color = "black";

tags.backgroundColor = "white";

tags.H1.color = "maroon";

tags.H2.color = "olive";

You can specify an RGB color by a six digit hexadecimal number where the
first two digits indicate the red value, the second two digits indicate the green
value, and the last two digits indicate the blue value. For example:

BODY {color: #FF0000}; /* red */

BODY {background-color:#333333";} /* gray */

You can also specify an RGB color by using the rgb () function which takes
three arguments, for the red, green, and blue values. Each color value can
either be an integer from 0 to 255 inclusive, or a percentage, as in this example:

P {color: rgb(200, 20, 240);) /* bright purple */

BLOCKQUOTE {background-color: rgb(100%, 100%, 20%); /* bright yellow */
82 Javascript-Accessible Style Sheets

Units
C h a p t e r

6
Advanced Style Sheet Example

This chapter presents an advanced example that uses style sheets. The example
web page discussed in this chapter is the home page for a fictional company
called Style Sheets Ink.

You can view this page at:

styleink/index.htm StyleSheetExample

The page opens in a separate browser window. If you do not see the page after
selecting the link, check your desktop in case the second browser window is
hidden under this one.

This chapter discusses how the index.htm page uses style sheets.

However, Style Sheets Ink has also developed several alternative home pages,
that each display the same content but use slightly different style sheets. To
view the alternative home pages, select the following links:

styleink/version1.htm StyleSheetExample

styleink/version2.htm StyleSheetExample

styleink/version3.htm StyleSheetExample

Feel free to copy any of these examples and modify them to suit your needs.
 Javascript Accessible Style Sheets 83

Javascript-Accessible Style Sheets
Style Sheets Ink Home Page
To view the web page that is discussed in this chapter, select:

styleink/index.htm StyleSheetExample

The example page opens in a separate browser window, so if you do not see it
immediately, check if it is hidden under another window on your desktop. Be
sure to view the sample page in a web browser that supports style sheets, such
as Navigator 4.0, so you can see the full effects of the styles.

The rest of this chapter discusses how style sheets are used in Style Sheets Ink’s
home page. The discussions include extracts of source code. However, to see
the entire source code, view the page source in your web browser.

The style sheet for the page uses CSS syntax. The style sheet is included at the
top of the page.

The Style Sheets Ink home page has several sections, including an introductory
section, a training section, a web sites section, and a consultation section,
which are all contained within a main block. There is also a background
section which is in the back, outside the main block.

The introductory section is centered in the main block, but the sections after it
alternate between being on the left and the right.

The example page makes extensive use of <DIV> tags to contain elements that
share styles. It also illustrates how you can use a <DIV> block to draw a single
border around multiple elements.

Overview of the Style Sheet
At the very top of the style sheet file, there’s a link to a font definition file:

<LINK HXBURNED REL="fontdef" SRC="index.pfr">

This font definition file contains the definition for the Impact BT downloadable
font, which is used in the page. (For more information about downloadable
fonts, see Part 3. Downloadable Fonts.)
84 Javascript-Accessible Style Sheets

Overview of the Style Sheet
The style sheet defines several styles that are used in different parts of the page.
For instance, the INTROBLOCK style is used for the introductory material, the
TRAININGHEAD style is used for the heading in the training section, and the
TRAINING style is used for the text in the training section.

However, the style sheet also defines a couple of styles that are used
throughout the whole document. These include styles for the <BODY> element
and for the <H1> element.

The body of the Style Sheets Ink home page has a medium blue background.
This could be specified using the bgColor attribute in the <BODY> element,
but Style Sheets Ink has instead specified a style for the <BODY> element:

<STYLE type="text/css">

BODY {background-color:#CCDDFF;}

Nearly all <H1> elements in the document use the same customized style, so
the style sheet defines the style for first-level headings as follows:

H1 {

font-size:18pt;

font-weight:bold;

font-style:italic;

font-family:"Impress BT", "Helvetica", sans-serif;

}

The font-family property lists three fonts. The font Impress B" is defined in
the font definition file index.pfr , which is automatically downloaded to the
user’s system when a user views the page. However, just in case the font
definition file is not available for any reason, Helvetica is specified as a backup
font. Many computers include Helvetica as a system font, so it is likely to be
available for most users. But just in case the font definition file is not available
and the user does not have Helvetica font on their system, the style specifies
the generic sans-serif font family as a last resort.

Th style defines the default font size, the font weight, font style, and font family
for all <H1> element in the page. It does not define the font color. Throughout
the document, each <H1> element gets its color from other inherited styles. For
example, the training heading is inside a <DIV> block that uses the TRAINING
style. This style sets the color property to #111100 (a dark gold color). Thus
the training heading gets some of its characteristics from the H1 style, and other
characteristics from the TRAINING style.
 Javascript Accessible Style Sheets 85

Javascript-Accessible Style Sheets
Main Block
The very first thing in the body of the page is a <DIV> block that contains the
main content for the page.

This DIV block has a gray border and a white background. It uses the MAIN
style to define its border and background: The definition of the MAIN style is:

all.MAIN {

background-color: white;

margin-left:5%; margin-right:5%;

border-color:gray; border-style:outset; border-width:6pt;

padding:20 pt;

}

The Introductory Section
The MAIN <DIV> block contains another <DIV> block. This block is the intro
block, which contains the introductory information for the page. The intro
block uses the style INTROBLOCK.

This style defines a flat blue border and a blue background for the intro block.
The color of the border is the same as the color of the background. The style
also defines the text and font characteristics to be used by all elements inside
the intro block.

Here’s the definition of the style class INTROBLOCK:

all.INTROBLOCK {

font-family: "new century schoolbook", serif;

font-style:italic;

font-size:12pt;

color:#000055;

background-color: #CCDDFF;

margin-left:5%; margin-right:5%;
86 Javascript-Accessible Style Sheets

The Introductory Section
border-color:#CCDDFF; border-style:solid;

border-width:2pt;

padding:10pt;

}

Figure 6.1 Blocks used in the Style Sheets Ink Home Page

Intro Head

The main heading for the page is inside the intro block. It has a wide outset 3D
blue border. It uses the style INTROHEAD. Here’s the definition of the style
class INTROHEAD:

all.INTROHEAD{
 Javascript Accessible Style Sheets 87

Javascript-Accessible Style Sheets
font-size:24pt;

text-align:center;

color:#000055;

background-color:#CCDDFF;

margin-left:2%; margin-right:2%;

border-color:#0055FF; border-style:outset; border-width:20pt;

padding:5pt;

}

Text in the Intro Block

The following code shows the first few lines in the body of the document:

<BODY >

<DIV CLASS=MAIN>

<DIV CLASS=INTROBLOCK>

<H1 CLASS=INTROHEAD>Style Sheets Ink.</H1>

The first letter of the first paragraph in the intro block needs to be extra large,
so Style Sheets Ink uses a tag to apply the INITCAP style class to the
first letter, as shown here:

<P STYLE="text-indent:0%;">W</
SPAN>elcome to the home page for our company, Style Sheets
Ink,...

The following code shows the definition of the style INITCAP :

all.INITCAP {font-size:36pt;}

All the paragraphs in the intro block inherit their styles (font styles and so on,
not margins or paddings) from the enclosing element, which is the DIV block
that uses the INTROBLOCK style.

The text-indent property is not inherited. The first line of each paragraph
in the intro block (except for the first one) needs to be indented by ten percent.
This could be achieved by specifying a local style for each paragraph as
follows:

<P STYLE="text-indent:10%;>content...
88 Javascript-Accessible Style Sheets

The Introductory Section
However, several paragraphs need to be indented. Their best plan is to define a
class of style, and use that style in each paragraph as appropriate. Although the
amount of typing needed ends up being about the same, it is better to use a
style class. That way, you can make changes to the style definition in one place,
and those changes will be automatically reflected everywhere the style is used.

Thus you can define a simple style called INTROTEXT as follows:

all.INTROTEXT{text-indent:10%;}

Each paragraph that needs to be indented uses this style, for example:

<P CLASS=INTROTEXT>

At Style Sheets Ink we believe in the power of style sheets. We are
jazzed and excited at the myriad of ways that style sheets can liven up
a web site. We provide many services to help your company come up to
speed with using style sheets, including:

</P>

List of Services

The intro block includes a list of services offered by Style Sheets Ink. These
services are presented in an unordered list.

Figure 6.2 List of services

Style Sheets Ink specified the SQUAREDISCS class of style for the
element so it is inherited by the element inside the element. (An
alternative approach would be to specify the SQUAREDISCS style class for
each element.)

The following code shows the definition of the SQUAREDISCS style:
 Javascript Accessible Style Sheets 89

Javascript-Accessible Style Sheets
all.SQUAREDISCS {list-style-type:square; color:green;}

The following code shows the body text that lists the services:

<UL CLASS=SQUAREDISCS>

Training

Seminars

Web site development

Consultation

End of the Intro Block

At the end the intro block, there is a </DIV> tag that matches the <DIV
CLASS=INTROBLOCK> tag. Notice that the border characteristics specified by
the INTROBLOCK style apply to the DIV block as a whole, not to each
individual element within the DIV block. Thus the entire DIV block is enclosed
in a box with a blue background and a thin, flat, blue border.

The Training Section
Following the intro block is the training section, which displays the training
heading on the left. The information about training wraps around the heading
on the right.
90 Javascript-Accessible Style Sheets

The Training Section
Figure 6.3 The Training Section

The entire training section is contained within a DIV block that uses the
TRAINING style. This style sets the text color, the left margin, and the right
margin.

The definition of the TRAINING style is:

all.TRAINING{

 color:#111100;

 margin-right:30%;

 margin-left:5%;
 Javascript Accessible Style Sheets 91

Javascript-Accessible Style Sheets
}

The reason for setting the margins is to offset the contents of the training
section from the edge of the surrounding block. The training section uses a
floating element for the heading, and it’s not wise to specify the margin-left
property on an element if you also specify its float property. Therefore we
put the floating heading inside a DIV block that has a left margin.

The heading for the training section floats to the left. It uses the TRAIN-
INGHEAD style, which specifies the color, the background image, the border
and padding characteristics, and the float property. There’s no need to specify
the font size, font weight (bold) and font style (italic) since they are inherited
from the style assigned to all H1 tags. There’s also no need to specify the color,
because it is inherited from the TRAINING style. (However, if you wanted the
heading to have a different color from the body text, you would need to specify
the color here.)

The following code shows the definition of the TRAININGHEAD style:

H1.TRAININGHEAD {

 background-image:url(trainbg.gif);

border-color:#666600;

 border-width:5pt;

 border-style:outset;

 padding:10pt;

 float:left;

}

The vertical effect in the heading is achieved simply by putting a
 tag after
each letter, as shown here:

<DIV CLASS=TRAINING>

<H1 CLASS=TRAININGHEAD>

T

R

A

I

N

I

92 Javascript-Accessible Style Sheets

The Seminars Section
N

G

</H1>

All the paragraphs within the training section inherit their characteristics from
the enclosing DIV block which uses the TRAINING style. So there’s no need to
specify which style these paragraphs need to use.

The training text wraps around the training heading. It doesn’t reach all the way
to the right since the margin-right property on the TRAINING style is set to
30%.

Just before the final </P> in this section, include a <BR CLEAR> tag, to ensure
that the next element will not continue wrapping around the training heading.

The following code shows the paragraphs in the training section. Note the use
of the tag to apply the INITCAP style to the first letter in the first
paragraph.

<P >We can build customized training courses
for you, to show you how useful style sheets can be.

</P>

<P >We also run regularly scheduled training courses at our offices that
are just jam-packed with information about style sheets. The training
course is very hands-on. Each participant has their own computer, and we
accept no more than ten students per class. The training courses usually
run for one full day, or two half days.

<BR CLEAR>

</P>

<!-- this ends the training section -->

</DIV>

The Seminars Section
Next comes the seminars section, which is very similar in style and structure to
the training section. However, since the seminars section appears on the right,
the SEMINARHEAD style sets the float property to right . Also, the
 Javascript Accessible Style Sheets 93

Javascript-Accessible Style Sheets
SEMINAR style sets the margin-left property to 30% and the margin-
right property to 10%, so that the seminars section appears on the right of the
main block.

Figure 6.4 The Seminars Section
94 Javascript-Accessible Style Sheets

The Seminars Section
The seminar section includes a list of seminars:

Figure 6.5 Outdented Items in the List of Seminars

The first line of each item in this list is outdented. This effect is achieved by
using the SEMINARLIST style. This style sets the margin-left property and
sets a text-indent value equal to minus the left margin, as shown here:

all.SEMINARLIST{margin-left:40pt; text-indent:-40pt;}

In the body text, each paragraph in the list of seminars uses the SEMINARLIST
style, as shown below:

<P>Here is a list of available seminars:</P>

<P CLASS=SEMINARLIST> Using Colors in Style Sheets:

<I> discussion of this seminar... </I></P>

<P CLASS=SEMINARLIST> Using Boxes For Headings:

<I> discussion of this seminar... </I></P>

<P CLASS=SEMINARLIST> Using Text Properties of Style Sheets:

<I> discussion of this seminar... </I></P>
 Javascript Accessible Style Sheets 95

Javascript-Accessible Style Sheets
Note, however that you could achieve the same result by enclosing the
paragraphs in a DIV block that uses the SEMINARLIST style, and then there
would be no need to individually specify the SEMINARLIST class for each
paragraph.

Web Sites and Consultation Sections
These two sections use the same layout and style structure as the training and
seminars section.

The Background Block
At the bottom of the page, you see an explanatory paragraph that’s in the main
body of the page. This paragraph is at the top level (that is, it’s directly in the
BODY element.) It uses the INBACK style.

Although this paragraph is technically at the top level, it appears to live in the
background, since it follows a big block with an outset 3D border.

Trouble-shooting Hints
In general, when you’re working with style sheets, be sure to match opening
and closing tags correctly. While web browsers are often fairly forgiving of
HTML syntax mistakes, the browsers become very much stricter when style
sheets are involved.

In particular, extraneous closing tags may end up closing other tags that you
would not expect them to close. For example, in the code below, the extra-
neous </H3> tag may close the opening <DIV STYLE=INNERBLOCK> tag,
and the second paragraph will thus be outside the inner block.

<DIV STYLE=INNERBLOCK>

<P>Here is some text. </P>

</H3>

<P>Here is some more text which is supposed to be in the innerblock.</P>
96 Javascript-Accessible Style Sheets

Trouble-shooting Hints
</DIV>

Be careful when using<A> and tags in documents that use style sheets.
For example, when you use DIV blocks with style sheets, don’t start an <A
HREF> tag before the start of the DIV block and then close it inside the DIV
block, or you will get unpredictable results.

For example, the following code behaves as you would expect:

<DIV STYLE="margin-left:5%">

<H1 CLASS=TRAININGHEAD>

content...</H1>

However, the code below has unpredictable results, because the <A HREF>
and tags are not in the correct places. (For example, the tag may
be used to close the <DIV> tag.)

<DIV STYLE="margin-left:5%">

<H1 CLASS=TRAININGHEAD>

content...</H1>

 Javascript Accessible Style Sheets 97

Javascript-Accessible Style Sheets
98 Javascript-Accessible Style Sheets

Part 2. Positioning
HTML Content

Contents

Chapter 7.Introduction 115
Overview 116

Positioning HTML Content Using Styles 117

Positioning HTML Content Using the <LAYER> Tag 121

Chapter 8.Defining Positioned Blocks of HTML Content 123
Absolute versus Relative Positioning. 124

Absolute Positioning 124

Relative Positioning 125

Attributes and Properties 125

POSITION 127
ID 127
LEFT and TOP 128
PAGEX and PAGEY 131
SRC and source-include 131
WIDTH 133
HEIGHT 133
CLIP 134
Z-INDEX, ABOVE and BELOW 135
VISIBILITY 136
BGCOLOR and BACKGROUND-COLOR 137
BACKGROUND and BACKGROUND-IMAGE 138
OnMouseOver, OnMouseOut 138
OnFocus, OnBlur 139
OnLoad 139

The <NOLAYER> Tag 140

Applets, Plug-ins and Forms 140

Chapter 9.Using JavaScript With Positioned Content 141
, 99

Using JavaScript to Bring Your Web Pages to Life 143

The Layer Object 143

The Document Property of Layers and the Layers Property of Documents

144

The Layer Object Properties 145

The Layer Object Methods 149

Creating Positioned Blocks of Content Dynamically 151

Writing Content in Positioned Blocks 152

Handling Events 153

Using Localized Scripts 155

Animating Positioned Content 156

Animating Images 157

Chapter 10.Fancy Flowers Farm Example 160
Introducing the Flower Farm 161

Creating the Form for Flower Selection 161

Positioning the Flower Layers 163

Chapter 11.Swimming Fish Example 165
Positioning and Moving the Fish and Poles 166

Defining the onLoad Handler for the BODY Element 167

Positioning the Fish and Poles 168

Defining the Form 169

Moving the Fish 169

Changing the Stacking Order of Fish and Poles 171

Adding Another Layer to Contain the Reverse Fish Image 172

Initializing the Fish to Have a Direction Variable 173

Moving the Fish Backward and Forward 173

Changing the Direction of the Fish 174

Changing the Stacking Order of the Poles and the Fish 175

Updating the Button That Gets the Fish Going 176

Chapter 12.Nikki’s Diner Example 177
Content in the External Files 178

The File for the Main Page 179

Chapter 13.Expanding Colored Squares Example 182
100 Netscape Communicator 4.0 Changes for Content Developers

Running the Example 183

Creating the Colored Squares 185

Definitions for the Layers 186

The Initialization Functions 187

The Last Layer 189

Moving the Mouse Over a Square 190

The expand() Function 191

The contract() Function 192

Styles in the Document 194

Chapter 14. Changing Wrapping Width Example 194
Running The Example 195

Defining the Block of Content 196

Capturing Events for the Layer 196

Defining the Dragging Functions 197

The begindrag() Function 198

The drag() Function 198

The enddrag() Function 199
, 101

Overview
C h a p t e r

7
Introduction

This chapter introduces the concept of using positioned blocks or layers of
HTML content, and looks at the ways to define positioned blocks of HTML
content.

• Overview

• Positioning HTML Content Using Styles

• Positioning HTML Content Using the <LAYER> Tag

Throughout this document, the terms layer and positioned block of HTML
content are used interchangeably.

Overview
Netscape Navigator 4.0 introduces functionality that allows you to define
precisely positioned, overlapping blocks of transparent or opaque HTML
content in a web page.

You can write JavaScript code to modify these blocks of HTML content, or
layers. Using JavaScript, you can move them, hide them, expand them, contract
them, change the order in which they overlap, and modify many other charac-
teristics such as background color and background image. Not only that, you
102 Netscape Communicator 4.0 Changes for Content Developers

Positioning HTML Content Using Styles
can change their content, and you can create new layers on the fly. Basically,
you can use HTML and JavaScript to create dynamic animations on a web page
and to create self-modifying web pages.

Using JavaScript and positioned blocks of HTML content, you can achieve
dynamic animations directly in HTML. For example, layers can move, expand,
and contract. You could also have many overlapping layers that can be dynam-
ically peeled away to reveal the layer underneath.

Layers can be stacked on top of each other, and they can be transparent or
opaque. If a layer is transparent, the content of underlying layers shows
through it. You can specify background images and background colors for
layers just as you can for the body of an HTML document.

Layers can be nested inside layers, so you can have a layer containing a layer
containing a layer and so on.

Netscape Navigator 4.0 offers two ways to dynamically position HTML layers:

• Defining a style that has a position property

• Using the <LAYER> tag

A document can contain both layers that are defined as styles and layers that
are defined with the <LAYER> tag. Also, if a layer is defined with the <LAYER>
tag, it can use make use of styles.

The rest of this chapter discusses how to position a block of HTML content
using styles, and then discusses how to do it using the <LAYER> tag.

Positioning HTML Content Using Styles
You can use styles to position blocks of HTML content. Part 1. Style Sheets talks
about style sheets in general.

This section talks about using cascading style sheet (CSS) syntax to define styles
for positioned blocks of HTML content. To see the original W3C Specification
on using cascading style sheets for positioning blocks of HTML content, select:

http://www.w3.org/pub/WWW/TR/WD-positioning
, Introduction 103

Positioning HTML Content Using Styles
Cascading style sheets are implemented in browsers from multiple vendors,
while the <LAYER> tag may not be supported in non-Netscape browsers.

The style for a positioned block of HTML content always includes the
property position. The value can be either absolute , which indicates a
layer with an absolute position in its containing layer, or relative , which
indicates a layer with a position relative to the current position in the
document.

You can also specify the top and left properties to indicate the horizontal
indent from the containing layer (for an absolutely positioned layer), or the
current position in the document (for a relatively positioned layer).

A style that indicates a positioned block of HTML content must specify a value
for the position property. Other than that, you can define the style however
you like within the rules of defining style sheets. (See Part 1. Style Sheets for a
full discussion of defining style sheets.)

If your document contains one or more layers with absolute positions, these
layers are unlikely to share styles, since each one will need its own specific
value for top and left to indicate its position. The use of individual named
styles can be very useful for defining layers, since you can define a named style
for each layer. (A named style is the same as a style with a unique ID .)

For example, the following <STYLE> tag defines styles for two layers. The
layer named layer1 is positioned 20 pixels from the top of the page and 5
pixels in from the left. The layer named layer2 is positioned 60 pixels down
from the top, and 250 pixels in from the left.

<STYLE TYPE="text/css">

<!--

#layer1 {position:absolute;

 top:20px; left:5px;

 background-color:#CC00EE;

 border-width:1; border-color:#CC00EE;

 width:200px;

 }

#layer2 {position:absolute;

 top:60px; left:250px;

 background-color:teal;
104 Netscape Communicator 4.0 Changes for Content Developers

Positioning HTML Content Using Styles
 width:200px;

 border-width:2px; border-color:white; }

}

-->

</STYLE>

Any style that specifies a value of absolute or relative for its position
property defines a positioned layer. You use a layer style as you would use any
other style in the body of your document. However, bear in mind that the idea
of a layer is to act as a single entity of content. If you want your layer to contain
more than one element, you can apply the layer style to a containing element,
such as DIV or SPAN, that contains all the content.

For example:

<BODY BGCOLOR=white>

<DIV ID=layer1>

 <H1>Layer 1</H1>

 <P>Lots of content for this layer.</P>

 <P>Content for layer 1.</P>

<P>More Content for layer 1.</P>

</DIV>

<P ID=layer2>Layer 2</P>

The following example uses the STYLE attribute directly in an element to
specify that the element is a positioned layer:

<DIV STYLE="position:absolute; top:170px; left:250px;

 border-width:1px; border-color:white;

 background-color:#6666FF">

<H1>Layer 3 </H1>

<P>This is a blue block of HTML content.</P>

</DIV>

If you understand how to use style sheets to define styles, you can use the
power of style sheets to define your layers. For example, you could create a
colorful layer with a ridge-style 3D border as follows:
, Introduction 105

Positioning HTML Content Using Styles
#layer4 {position:absolute;

 top:300px; left:100px;

 color:magenta;

 background-color:yellow;

 border-width:20px; border-color:cyan;

 border-style:ridge;

 padding:5%;

}

<BODY>

<DIV ID=layer4>

 <H1>Layer 4 </H1>

 <P>I am a very colorful layer.</P>

</DIV>

</BODY>

If you define a style with an absolute position, don’t set margins for it, since it
will get its position from the top and left properties.

For a full discussion of style sheets, see Part 1. Style Sheets.

To see the results of using the styles discussed so far in this section, select:

layercs1.htm lewin

The example opens a new Web browser window, so if you press the link and
nothing seems to happen, have a hunt about on your desktop for the second
Web browser window.

You can view the source code for layerscs1.htm to see the entire code for
the examples.
106 Netscape Communicator 4.0 Changes for Content Developers

Positioning HTML Content Using the <LAYER> Tag
Positioning HTML Content Using the <LAYER> Tag
Navigator 4.0 supports an alternative syntax for positioning blocks of HTML
content. This syntax extends HTML to include the <LAYER> tag.

You can specify the position and content of a layer of HTML inside a <LAYER>
tag in the body of the page -- there is no need to pre-define the layer before
you specify the content for it. You can specify attributes for the layer such as
ID , TOP, LEFT, BGCOLOR, WIDTH, and HEIGHT. (This is not a complete list of
attributes -- all the attributes are discussed in Chapter 8, “Defining Positioned
Blocks of HTML Content.”)

At the time of writing, the <LAYER> tag is specific to the Netscape Navigator
4.0+ web browser. Other browser may not handle layers defined with the
<LAYER> tag property.

When using the <LAYER> tag, you can use inline JavaScript in the layer
definition, so for example, you can position layers relative to each other, such
as having the top of one layer start just below the bottom of another.

The following code gives an example of the use of the <LAYER> tag.

<!-- default units for TOP, LEFT, and WIDTH is pixels -->

<LAYER ID=layer1 TOP=20pt LEFT=5pt

 BGCOLOR="#CC00EE" WIDTH=200>

 <H1>Layer 1</H1>

 <P>Lots of content for this layer.</P>

 <P>Content for layer 1.</P>

 <P>More Content for layer 1.</P>

</LAYER>

<LAYER ID=layer2 TOP=60 LEFT=250 BGCOLOR=teal WIDTH=200>

 <P>Layer 2</P>

</LAYER>

<LAYER ID=layer3 TOP=170 LEFT=250 BGCOLOR="#6666FF">

 <H1>Layer 3</H1>
, Introduction 107

Positioning HTML Content Using the <LAYER> Tag
 <P>This is a blue block of HTML content.</P>

</LAYER>

You can use the <LAYER> tag in conjunction with styles to create stylized
layers. For example, the following code creates a colorful style class and
applies it to a layer created with the <LAYER> tag:

<STYLE TYPE="text/css">

<!--

 all.style4 {

 color:magenta;

 border-width:20px; border-color:cyan;

 border-style:ridge;

 padding:5%;

}

-->

</STYLE>

<BODY BGCOLOR=white>

<LAYER ID=layer4 TOP=300 LEFT=100 BGCOLOR=yellow

 CLASS=style4>

 <H1>Layer 4 </H1>

 <P>I am a very colorful layer.</P>

</LAYER>

</BODY>

To see the results of using the styles discussed so far in this section, select:

layertg1.htm lewin

You can view the source code for layerstg1.htm to see the entire code for
the examples.
108 Netscape Communicator 4.0 Changes for Content Developers

Positioning HTML Content Using the <LAYER> Tag
C h a p t e r

8
Defining Positioned Blocks of HTML Content

This chapter discusses how to specify either absolute or relative positions for
blocks of HTML content. It lists all the characteristics you can specify for a
positioned block of HTML content, describes the <NOLAYER> tag, and
discusses the behavior of applets, plug-ins, and forms in positioned blocks of
HTML content.

• Absolute versus Relative Positioning

• Attributes and Properties

• The <NOLAYER> Tag

• Applets, Plug-ins, and Forms
, Defining Positioned Blocks of HTML Content 109

Absolute versus Relative Positioning
Absolute versus Relative Positioning
A layer can have an absolute position or a relative position.

Absolute Positioning

If a layer has an absolute position, you can specify its position within its
containing layer, or within the document if it is not inside another layer. You
define the exact position of the top, left corner of the layer by setting the left
and top attributes or properties.

For a layer with absolute position, if you do not provide values for the left
and top attributes or properties, they default to the value of the current
position in the containing layer. For a layer at the top level, you can think of
the document as the containing layer.

A layer with an absolute position is considered out-of-line in that it can appear
anywhere in an HTML document, and does not take up space in the document
flow.

To create a layer with an absolute position, use the <LAYER> tag with a
matching </LAYER> tag to identify the end of the layer. For layers defined as
styles, create a layer with an absolute position simply by specifying the
position property as absolute . For example:

<LAYER ID=layer1 TOP=200 LEFT=260>

 <P>Layer 1 content goes here</P>

</LAYER>

<STYLE type="text/css">

<!--

#layer1 {position:absolute; top:200px; left:260px;}

-->

</STYLE>
110 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
Relative Positioning

A layer with a relative position is known as an inflow layer, and it appears
wherever it naturally falls in the flow of the document. Inflow layers are
considered to be both inflow, because they occupy space in the document
flow, and inline, because they share line space with other HTML elements. If
you want an inflow layer to appear on a separate line, you can insert a break
before the layer, or wrap the layer in the <DIV> tag.

For layers with relative positions, you can use the left and top attributes or
properties to specify the offset of the layer’s top-left corner from the current
position in the document.

To create an inflow layer, you can use the <ILAYER> tag with a closing
</ILAYER> tag. For layers defined as styles, create an inflow layer by
specifying the position property as relative .

For example:

<ILAYER ID=layer2>

 <P>Layer 2 content goes here</P>

</ILAYER>

<STYLE type="text/css">

<!--

#layer2 {position:relative; }

-->

</STYLE>

Attributes and Properties
This section lists all the attributes or properties that you can specify when
defining layers, whether you use the <LAYER> and <ILAYER> tags to create
layers, or you define layers as styles. (This list only includes only those
properties that are relevant to layers. A style definition for a layer can include
any style property. See Chapter 5, “Style Sheet Reference,” for a list of all the
other style sheet properties.)
, Defining Positioned Blocks of HTML Content 111

Attributes and Properties
For the sake of simplicity, in this section the term parameter means either an
HTML attribute or a style property. For example, the ID parameter means either
the ID attribute that can be used with the <LAYER> tag or the ID style
property. Whenever the term attribute is used, it means an attribute for an
HTML tag. Whenever the term property is used, it means a style property.

The <LAYER> tag always uses pixels as the unit of measurement for attributes
that specify a distance. You do not need to specify the measurement units. For
style properties however, you should always specified measurement units for
properties that have numerical values.

• POSITION

• ID

• LEFT and TOP

• PAGEX and PAGEY

• SRC and source-include

• Z-INDEX, ABOVE and BELOW

• WIDTH

• HEIGHT

• CLIP

• VISIBILITY

• BGCOLOR and BACKGROUND-COLOR

• BACKGROUND and BACKGROUND-IMAGE

• OnMouseOver, OnMouseOut

• OnFocus, OnBlur

• OnLoad
112 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
POSITION
#block1 {position:absolute;}

#block2 {position:relative;}

The position property applies only to layers defined as styles. It indicates
that the style represents a positioned block of HTML. Its value can be either
absolute or relative .

A style whose position property is absolute creates a layer similar to one
created by the <LAYER> tag. A style whose position property is relative
creates a layer similar to one created by using the <ILAYER> tag.

ID
<LAYER ID=block1>

#block1 {position:absolute;} /* CSS */

The ID parameter is an identification handle, or name, for the layer. The ID
must begin with an alphabetic character. (The ID attribute was previously
called NAME. The NAME attribute still works, but its use is discouraged, since it
is only applicable to the <LAYER> tag).

You can use the layer’s id as a name to refer to the layer from within HTML and
from external scripting languages such as JavaScript.

This attribute is optional; by default, layers are unnamed, that is, they have no
id.

LEFT and TOP

The LEFT and TOP parameters specify the horizontal and vertical positions of
the top-left corner of the layer within its containing layer, or within the
document if it is at the top level. Both parameters are optional. The default
values are the horizontal and vertical position of the layer’s contents as if it was
not enclosed in a layer. The value must be an integer.

For layers with absolute positions, the origin is the upper-left corner of the
document or containing layer, with coordinates increasing downward and to
the right.
, Defining Positioned Blocks of HTML Content 113

Attributes and Properties
The default units for LEFT and TOP when used in the <LAYER> tag is pixels.
When defining a layer as a style, however, you need to specify the units. For
example:

<LAYER> Tag Syntax

<LAYER BGCOLOR="yellow" TOP=300 LEFT =70

WIDTH=400 HEIGHT=200>

<P>Paragraph in layer with absolute position.</P>

<LAYER BGCOLOR=teal TOP=50 LEFT=20

WIDTH=200 HEIGHT=100>

<P>Paragraph in embedded layer with absolute position</P>

</LAYER>

</LAYER>

CSS Syntax

<DIV STYLE="position:absolute; background-color:yellow;

top:300px; left:70px; width:200px; height:200px;

border-width:1;">

 <P>Paragraph in layer with absolute position.</P>

 <DIV STYLE="position:absolute; background-color:teal;

top:30px; left:20px; width:150px; height:120px;

border-width:1px;">

<P>Paragraph in embedded layer with absolute position.</P>

</DIV>

</DIV>

For layers with relative positions, the origin is the layer's "natural" position in
the flow, rather than the upper-left corner of the containing layer or page. You
can also use the LEFT and TOP parameters to offset a relatively positioned
layer from its natural position in the flow, as shown in the following example.

<LAYER> Tag Syntax

<P>Paragraph above relatively positioned layer.</P>

<P><ILAYER LEFT=2>

This relatively positioned layer is displaced 2 pixels to the right of
114 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
its normal position.

</ILAYER></P>

<P>Paragraph below relatively positioned layer</P>

<P>This <ILAYER TOP=3>word</ILAYER> is nudged down 3 pixels.</P>

CSS Syntax

<P>Paragraph above relatively positioned layer.</P>

<P STYLE="position:relative; left:2px;">

This relatively positioned layer is displaced 2 pixels to the right of

its normal position.</P>

<P>Paragraph below relatively positioned layer.</P>

<P>This word is nudged
down 3 pixels.</P>

The following code illustrates another example of relatively positioned layers
defined as styles.

STYLE TYPE="text/css">

<!--

all.UP {position:relative; top:-10pt;}

all.DOWN {position:relative; top:10pt;}

-->

</STYLE>

<BODY>

<P>This text goes up

and down, up

and down.

</P>

</BODY>

To see the results of some of the examples given in this section, see:

updown.htm lewin
, Defining Positioned Blocks of HTML Content 115

Attributes and Properties
Using Inline JavaScript to Position Layers

When using the <LAYER> tag, you can use also inline JavaScript scripted
expressions to position the layer. For example, you can position one layer
relative to another.

The following example uses inline JavaScript code to define a layer whose ID is
suspect1 , and then defines another layer whose ID is suspect2 that is
positioned 10 pixels below the bottom of the first suspect.

<LAYER ID="suspect1">

 <P>Name: Al Capone

 <P>Residence: Chicago

</LAYER>

<LAYER ID="suspect2"

 LEFT=&{"&"};{window.document.suspect1.left};

 TOP=&{"&"};{window.document.suspect1.top +

 document.suspect1.document.height + 10};>

 <P>Name: Lucky Luciano

 <P>Residence: New York

</LAYER>

Notice these two points in the previous example:

• You need to use a semicolon outside the closing curly brace.

• You get the value of top from the layer, but you get the value of height
from the layer’s document.

Although you cannot use inline JavaScript within a style definition for a layer,
you CAN use JavaScript to reposition such a layer after it has been defined.

PAGEX and PAGEY
<LAYER PAGEX=100 PAGEY=100>

These attributes are used only with the <LAYER> tag; there is no equivalent
style property.
116 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
The PAGEX and PAGEY attributes specify the horizontal and vertical positions
in pixels of the top-left corner of the layer relative to the enclosing document
(rather than the enclosing layer.)

SRC and source-include
<LAYER SRC="htmlsource/meals/special.htm>

source-include:url("htmlsource/meals/special.htm"); /* CSS */

The SRC attribute for the <LAYER> tag and the source-include style
property specify an external file that contains HTML-formatted text to be
displayed in this layer. (Note that the source-include style property is not
approved by W3C.)

The file specified can contain an arbitrary HTML document.

The following code shows an example of the use of the SRC attribute and
include-source property.

CSS Syntax

<STYLE TYPE="text/css">

<!--

#layer1 {

 position:absolute;

 top:50pt; left:25pt; width:175pt;

 include-source:url("content1.htm");

 background-color:purple;

color:yellow; border-width:1; }

-->

</STYLE>

<BODY BGCOLOR=white>

<DIV ID=layer1>

</DIV>

<LAYER> Tag Syntax

<LAYER top=50 left=250 width=175

src="content1.htm"
, Defining Positioned Blocks of HTML Content 117

Attributes and Properties
BGCOLOR="#8888FF">

</LAYER>

</BODY>

To see the results of this example, select:

source1.htm lewin

The source file can include JavaScript code. Any layers in the source file are
treated as child layers of the layer for which the source file is providing content.

Using an external source as the content of your layer is particularly useful if you
want to dynamically change the content of the layer. For example, a restaurant
might have a web page that uses a layer to describe the special meal of the day.
Each morning, after the chef has decided what the special is going to be for the
day, he or she quickly edits the file "special.htm" to describe the meal.

The chef doesn’t have to rewrite the entire page just to update the information
about the special of the day.

It can also be a very good idea to use external source as the content of a layer
when you wish to provide alternative content for browsers that do not support
layers. In that case, you can use the <NOLAYER> tag to enclose the content to
be displayed on browsers that do not support layers, as illustrated in the section
"The <NOLAYER> Tag."

WIDTH
<LAYER WIDTH=200>

<LAYER WIDTH="80%">

width:200px; /* CSS */

width:80%; /* CSS */

The WIDTH parameter determines the width of the layer at which the layer’s
contents wrap. The width can be expressed as an integer value, or as a
percentage of the width of the containing layer.

Note, however, that if the layer contains elements that cannot be wrapped,
such as images, that extend beyond the specified width, the actual width of the
layer expands accordingly.

If this parameter is not specified, the layer contents wrap at the right boundary
of the enclosing layer.
118 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
See Chapter 13, “Changing Wrapping Width Example,” for an example of dynami-
cally changing the wrapping width of a layer.

HEIGHT
<LAYER HEIGHT=200>>

<LAYER HEIGHT = "50%">

height:200px; /* CSS */

height:50%; /* CSS

The HEIGHT parameter determines the initial height of the clipping region of
the layer. The height can be expressed as an integer value, or as a percentage
of the height of the containing layer (or the window for a top-level layer.)

Note, however, that if the contents of the layer do not fit inside the specified
height, the layer increases its height to include all its contents.

The main purpose of the HEIGHT parameter is to act as the reference height for
children layers that specify their heights as percentages.

By default, the height is the minimum height that contains all the layer
contents.

CLIP
<LAYER CLIP="20,20,50,100">

clip:rect(0,100,100,0); /* CSS */

The CLIP parameter determines the clipping rectangle of the layer, that is, it
defines the boundaries of the visible area of the layer.

The value is a set of four numbers, each separated by a comma, and optionally
enclosed in a string. If you omit the quotes, be sure not to have any white
space between the four numbers. The numbers indicate the left value, the top
value, the right value, and the bottom value in order. The left and right values
are specified as pixels in from the left edge of the layer itself, while the top and
bottom values are specified as pixels down from the top edge of the layer itself.

Each of the four values are numbers of pixels. You can also specify the value as
a set of two numbers, in which case the left and top values default to 0. For
example:

CLIP="10,20"
, Defining Positioned Blocks of HTML Content 119

Attributes and Properties
is equivalent to

CLIP="0,0,10,20"

 If the CLIP attribute is omitted, the clipping rectangle of a layer is determined
by the values of WIDTH, HEIGHT, and the content of the layer. If neither of
these values are given, by default, the clip left value of a layer is 0; clip top is 0;
clip right is the wrapping width, and clip height is the height required to
display all the contents.

For an example of changing the clipping region of a layer, see Chapter 12,
“Expanding Colored Squares Example.”.

Z-INDEX, ABOVE and BELOW
<LAYER Z-INDEX=3>

<LAYER ABOVE=layer1>

<LAYER BELOW=greenlayer>

z-index:3; /* css */

The ABOVE and BELOW attributes are used with the <LAYER> tag. There are no
corresponding style properties.

These parameters specify the z-order (stacking order) of layers. If you set one
of these parameters, it overrides the default stacking order which is determined
by placing new layers on top of all existing layers. Only one of the Z-INDEX ,
ABOVE, or BELOW parameters can be used for a given layer.

The Z-INDEX parameter allows a layer’s z-order to be specified in terms of an
integer. Layers with higher-numbered Z-INDEX values are stacked above
those with lower ones. Only positive Z-INDEX values are allowed.

The ABOVE attribute specifies the layer immediately on top of a newly created
layer; that is, the new layer is created just below the layer specified by the
ABOVE attribute. (The ABOVE and BELOW attributes are not available in as style
properties.)

Similarly, the BELOW attribute identifies the layer immediately beneath the
newly created layer. For either attribute, the named layer must already exist.
Forward references to other layers result in default layer creation behavior (as if
the ABOVE or BELOW attribute had not appeared).
120 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
Currently all nested layers exist above their parent layer in the stacking order.
The Z-INDEX , ABOVE and BELOW values are relative to sibling layers, that is,
other layers that have the same parent layer.

For an example of changing the stacking order or z order of layers, see
Chapter 11, “Swimming Fish Example.”

VISIBILITY
<LAYER VISIBILITY=SHOW>

<LAYER VISIBILITY=HIDE>

<LAYER VISIBILITY=INHERIT>

visibility:show; /* css */

visibility:hide; /* css */

visibility:inherit; /* css */

The VISIBILITY parameter determines whether the layer is visible or not. A
value of HIDE hides the layer; SHOW shows the layer; INHERIT causes the
layer to have the same visibility as its parent layer. For top level layers (that is,
layers that are not nested inside other layers), a value of INHERIT has the
same effect as SHOW since the body document is always visible.

By default, a layer has the same visibility as its parent layer, that is, the value of
the VISIBILITY attribute is INHERIT .

Remember that even if the visibility of a layer is set to SHOW, you will only be
able to see the layer if there are no other visible, opaque layers stacked on top
of it.

If the visibility of a relatively positioned layer is HIDE, the layer contents are
not shown, but the layer still takes up space in the document flow.

For an example of making layers visible and invisible, see Chapter 10, “Fancy
Flowers Farm Example.”

BGCOLOR and BACKGROUND-COLOR
<LAYER BGCOLOR="#00FF00">

<LAYER BGCOLOR="green">

background-color:green;

background-color:00FF00;
, Defining Positioned Blocks of HTML Content 121

Attributes and Properties
The BGCOLOR attribute and background-color style property determine
the solid background color of a block of HTML content, similar to the BGCOLOR
attribute of the <BODY> tag. The background color is either the name of a
standard color such as red or an RGB value, such as #334455 (which has a
red hexadecimal value of 33, a green hexadecimal value of 44 and a blue
hexadecimal value of 55.)

By default, a layer is transparent -- layers below it show through the transparent
areas of the layer’s text and other HTML elements.

If a layer is defined with the <LAYER> tag, its background color is applied to
the rectangular region occupied by the layer. If a layer is defined as a style, the
background color is applied only to the actual content of the layer, not to the
entire region of the layer. If the style has a border, the region enclosed by the
border uses the background color, but this region is still limited to the region
that contains content. If the style specifies width and height values that define a
region larger than is needed to display the content, the background color will
only be applied to the area inside the border, which will be drawn around the
actual content.

Netscape Navigator 4.0 also supports a layer-background-color CSS style
property, which sets the background color of the entire layer, but this property
is not approved by the W3C.

This is really hard to explain in words, but is immediately obvious when you
see the results. To see an illustration of this point, click on:

bgtest.htm lewin

BACKGROUND and BACKGROUND-IMAGE
<LAYER BACKGROUND="images/dogbg.gif">

background-image:url("images/dogbg.gif"); /* CSS */

The BACKGROUND attribute and background-image style property indicate a
tiled image to draw across the background of a block of HTML content. The
value is the URL of an image.

By default, a layer is transparent -- layers below it show through the transparent
areas of layer’s text and other HTML elements.
122 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
Note that Netscape Navigator 4.0 also supports a layer-background-image
CSS style property, which sets the background color of the entire block that
uses the style, but this property is not approved by the W3C.

If a layer is defined with the <LAYER> tag, the background image is applied to
the rectangular region occupied by the layer. If a layer is defined as a style, the
background image is applied to the region that contains the actual content of
the layer. If the style specifies width and height values that define a region
larger than is needed to display the content, the background image will only be
applied to the area that encloses the actual content.

Netscape Navigator 4.0 also supports a layer-background-image CSS style
property, which draws the image across the entire layer, but this property is not
approved by the W3C.

To see an illustration of this point, click on:

bgimage.htm lewin

OnMouseOver, OnMouseOut

These attributes only apply to the <LAYER> tag.

<LAYER OnMouseOver="highlight(); return false;">

<LAYER OnMouseOut="dehighlight(); return false;">

These are event handlers. Their values must be functions or inline JavaScript
code. The onMouseOver handler is invoked when the mouse enters the layer,
and the onMouseOut handler is invoked when the mouse leaves the layer.

For on example of using an onMouseOver handler, see Chapter 12,
“Expanding Colored Squares Example.”

OnFocus, OnBlur

These attributes only apply to the <LAYER> tag.

<LAYER OnFocus="function1(); return false;">

<LAYER OnBlur="function2(); return false;">

These are event handlers. Their values must be functions or inline JavaScript
code. The onFocus handler is invoked the layer gets keyboard focus, and the
onBlur handler is invoked when the layer loses keyboard focus.
, Defining Positioned Blocks of HTML Content 123

Attributes and Properties
OnLoad

This attribute only applies to the <LAYER> tag.

OnLoad="dosomething(); return false;"

This is an event handler. Its value must be a function or inline JavaScript code.
The onLoad handler is invoked when the layer is loaded, regardless of
whether the layer is visible or not.

For an example of setting the onLoad handler for a layer, see Chapter 11,
“Swimming Fish Example” and Chapter 12, “Expanding Colored Squares
Example.”.
124 Netscape Communicator 4.0 Changes for Content Developers

The <NOLAYER> Tag
The <NOLAYER> Tag
If an HTML file that contains positioned blocks of HTML content is displayed in
a browser that does not know how to position content, the content is displayed
as if it was not positioned. If the file contains any scripts that require layers
functionality, they will generate JavaScript errors if loaded into a browser that
does not support positioning.

You can use the <NOLAYER> and </NOLAYER> tags to surround content that
is ignored by Netscape Navigator 4. This enables you to provide alternative
content that will be displayed by browsers that cannot position content. For
example:

<LAYER SRC=layerContent.html></LAYER>

<NOLAYER>

This page would show some really cool things if you had

a browser that can position content.

</NOLAYER>

Applets, Plug-ins, and Forms
Layers can contain form elements, applets, and plug-ins, which are known as
windowed elements. These elements are special in that they float to the top of
all other layers, even if their containing layer is obscured.

When a windowed element is moved to the edge of its containing layer, it
disappears as soon as one of its borders hits a border of the layer, instead of
seeming to glide out of view as non-windowed elements would do. For form
elements, it is the individual element that disappears on contact with the border
of the layer, not the entire form.

Note however, that windowed elements do move and change visibility in
accordance with their containing layer.

Forms cannot span layers. That is, you cannot have part of the form in one
layer and another part in another layer.
, Defining Positioned Blocks of HTML Content 125

Applets, Plug-ins, and Forms
Communicator introduces windowless plug-ins, which are plug-ins that do not pop
to the top of the window and can be drawn below other items in the window.
Windowless plug-ins are discussed in the Plug-in guide.

Here’s the URL for the Plug-in Guide:

/library/documentation/communicator/plugin/index.htm lewin

To link to Chapter 1, "Plug-in Basics," which contains a section called "Windowed
and Windowless Plug-ins" see:

/library/documentation/communicator/plugin/pg1bas.htm lewin

To link to Chapter 4, "Drawing and Event Handling," which contains a section on
general issues in writing windowless plug-ins, see:

/library/documentation/communicator/plugin/pg4dr.htm lewin
126 Netscape Communicator 4.0 Changes for Content Developers

Applets, Plug-ins, and Forms
C h a p t e r

9
Using JavaScript With Positioned Content

This chapter discusses how to use JavaScript to modify and animate positioned
blocks of HTML content. First the chapter gives an overview of why you might
want to use JavaScript to modify blocks of content, then it discusses the Layer
object, which represents a block of content. It shows how to use JavaScript to
create new blocks of content, and how to write content dynamically. It
discusses how you can make distinct blocks of HTML respond to events. It
discusses how each block of content can contain its own localized script, and
finishes up by addressing some of the issues involved in animating HTML
content.

• Using JavaScript to Bring Your Web Pages to Life

• The Layer Object

• Creating Positioned Blocks of Content Dynamically

• Writing Content in Positioned Blocks

• Handling Events

• Using Localized Scripts

• Animating Positioned Content

This chapter does not teach the basics of using the JavaScript language,
although it does provide several examples that should help you get started. For
more information about JavaScript see:
, Using JavaScript With Positioned Content 127

Using JavaScript to Bring Your Web Pages to Life
• JavaScript 3.0 Guide:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.htmllewin

• What's New in JavaScript for Navigator 4.0:

/library/documentation/communicator/jsguide/js1_2.htm lewin

The remaining chapters in this part of the book each present a separate
complete example of using JavaScript to work with positioned content.

Using JavaScript to Bring Your Web Pages to Life
Regardless of how you define your positioned blocks of HTML content, you
can write scripts in JavaScript that move them, change their color and size,
change their content, make them visible or invisible, and generally modify them
in a variety of ways. Furthermore, you can use JavaScript to change the
contents of a positioned block or create new ones on-the-fly.

Using JavaScript to work with positioned blocks of HTML content allows you to
define animations directly in a web page. For example, you could create an
animation that dynamically peels away a series of layers of content to reveal the
one underneath. You can make blocks of content move across, over, and under
other blocks of content. You can make them appear and disappear. You can
make them dynamically expand and contract in response to mouse events. You
can generally bring your web page alive with animated content.

You can use JavaScript to modify positioned blocks of HTML content regarless
of how the blocks are defined. You can manipulate positioned blocks of HTML
content with JavaScript, even if they are defined as styles.
128 Netscape Communicator 4.0 Changes for Content Developers

The Layer Object
The Layer Object
Regardless of how you define a positioned block of HTML content, it can be
treated as a modifiable object in JavaScript.

For each layer in an HTML page (whether it is defined with the <LAYER> tag or
as a style whose position property is either absolute or relative) there
is a corresponding JavaScript layer object. You can write JavaScript scripts
that modify layers either by directly accessing and modifying property values
on the layer objects, or by calling methods on the layer objects.

The Document Property of Layers and the
Layers Property of Documents

Each document object has a layers property that contains an array of all the
top-level layers in the document. Each layer in turn has a document property.

This document property has a layers array that contains all the top-level
layers inside this layer. The document of a layer also has all the usual
properties of a document object, such as the images property, which is an
array of all the images in the layer, as well as properties that are arrays for all
the applets, embeds, links, and named anchors in that layer.

How Do You Refer to a Positioned Block of Content from
JavaScript?

There are several ways you can access a layer from JavaScript. If you know the
layer’s id (or name) you can access it in the following ways:

• document .layername

For example, the following expression returns the layer named "flower-
layer" .

document.flowerlayer

• document .layers [layername]
, Using JavaScript With Positioned Content 129

The Layer Object
For example, the following expression returns the layer named "flower-
layer" .

document.layers["flowerlayer"]

If you know the index for the layer you can access it as follows:

• document .layers [index]

Note that the first layer has an index of 0, the second layer has an index of
1, and so on. The following expression returns the fourth layer in the
document.

document.layers[3]

When accessed by integer index, array elements appear in z-order from back to
front, where zero is the bottom-most layer and higher layers are indexed by
consecutive integers. The index of a layer is not the same as its zIndex
property, as the latter does not necessarily enumerate layers with consecutive
integers. Also, adjacent layers can have the same zIndex property values, but
two layers can never occupy the same index in the array.

You can find the number of layers in a document or another layer array by
obtaining its length property. For example, the following expression returns
the number of top level layers in the document:

document.layers.length

The following expression returns the number of layers nested at the top level
inside the layer named "houses" .

document.layers["houses"].document.layers.length

The Layer Object Properties

As with any JavaScript object, you can access the properties of a layer object
using the following syntax:

layerObject.propertyName

where layerObject is an expression that evaluates to a layer object, and proper-
tyName is the name of the property to be accessed. For example, the following
expression returns the value of the visibility property of the layer named
"flowerlayer" :
130 Netscape Communicator 4.0 Changes for Content Developers

The Layer Object
document.flowerlayer.visibility;

The following expression sets the left property of the layer named
"flowerlayer" to 300 pixels.

document.flowerlayer.left=300;

The following table lists all the properties that you can use to access or modify
a layer in JavaScript. Notice that there is only one set of property names. No
matter whether a layer was created with the <LAYER> tag or was defined as a
style, you can use the property names listed in the following table to access it
or modify it after it has been created.

These property names are case-sensitive.

Table 9.1 Layer Object Properties

 Property Name Modifiable
by user?

 Description

document No Each layer object contains its own document
object. This object can be used to access the
images, applets, embeds, links, anchors and
layers that are contained within the layer.
Methods of the document object can only
also be invoked to change the contents of
the layer.

name No The name assigned to the layer through the
NAME or ID attribute.

left Yes The horizontal position of the layer’s left
edge, relative to the origin of its parent layer
(for layers with absolute positions) or relative
to the natural flow position (for layers with
relative positions).
The value can be an integer such as 12 , or a
percentage, such as " 25%" .
The default unit of measurement is pixels.

top Yes The vertical position of the layer’s top edge
relative to the origin of its parent layer.
The value can be an integer, an integer such
as 12 , or a percentage, such as " 25%" .
The default unit of measurement is pixels.

pageX Yes The horizontal position of the layer relative
to the page.
The default unit of measurement is pixels.
, Using JavaScript With Positioned Content 131

The Layer Object
pageY Yes The vertical position of the layer relative to
the page.
The default unit of measurement is pixels.

zIndex Yes The relative z-order of this layer with respect
to siblings. Sibling layers with lower
numbered z-index's are stacked underneath
this layer.
The value must be 0 or a positive integer.

visibility Yes Determines whether or not the layer is
visible. A value of "show" means show the
layer; "hide" means hide the layer;
"inherit" means inherit the visibility of
the parent layer.

clip.top
clip.left
clip.right
clip.bottom

clip.width
clip.height

 Yes These properties define the clipping
rectangle, which specifies the part of the
layer that is visible. Any part of a layer that is
outside the clipping rectangle is not
displayed.
The clipping region can extend beyond the
area of the layer that contains content.
Clipping values can be negative, 0, or
positive integers.
For example, to clip 10 pixels from the left
edge, you would increase clip.left by 10. To
reduce the clipping region by 20 pixels at the
right edge, you would reduce clip.right by
20.
The values for clip.top, clip.left, clip.bottom,
and clip.right, are in the layer’s coordinate
system.
Setting the clip.width value to w is the same
as:
clip.right = clip.left + w;
Setting the clip.height to h is the same as:
clip.height = clip.top + h;

Table 9.1 Layer Object Properties

 Property Name Modifiable
by user?

 Description
132 Netscape Communicator 4.0 Changes for Content Developers

The Layer Object
 background Yes The image to use as the background for the
layer.
The image is tiled across the background of
the layer. For example:

layer.background.src = "fishbg.gif";

The value is null if the layer has no
backdrop.

bgColor Yes The color to use as a solid background color
for the layer. The value can be an encoded
RGB value, a string that indicates a pre-
defined color, or null for a transparent
layer
For example:

//blue background

layer.bgColor = "#0000FF";

// red background

layer.bgColor = "red";

// transparent layer

layer.bgColor = null;

siblingAbove No The layer object above this one in the
stacking order, among all layers that share
the same parent layer or null if the layer has
no sibling above.

siblingBelow

 No The layer object below this one in z-order,
among all layers that share the same parent
layer or null if layer is bottommost.

Table 9.1 Layer Object Properties

 Property Name Modifiable
by user?

 Description
, Using JavaScript With Positioned Content 133

The Layer Object
The Layer Object Methods

There are several methods that you can use on a layer object to modify a
layer. As with any JavaScript object, you can invoke a method on a layer
object using the following syntax:

layerObject.methodName(args)

where layerObject is an expression that evaluates to a layer object, methodName is
the method to be invoked, and args are the arguments to the method.

For example, the following expression invokes the method moveBy() on the
layer named flowerlayer , to move the layer 10 pixels to the right and 10
pixels down from its current position.

document.flowerlayer.moveBy(10, 10);

The following table lists all the methods that you can use to access or modify a
layer in JavaScript. You will notice that there is only one set of method names.
It does not matter whether a layer was created with the <LAYER> tag or was
defined as a style, you can use the methods listed in the following table to
access it or modify it after it has been created.

These method names are case-sensitive

above No The layer object above this one in z-order,
among all layers in the document or the
enclosing window object if this layer is
topmost.

below No The layer object below this one in z-
order, among all layers in the document or
null if this layer is bottommost.

parentLayer No The layer object that contains this layer,
or the enclosing window object if this layer is
not nested in another layer.

src Yes Source of the content for the layer, specified
as a URL.

Table 9.1 Layer Object Properties

 Property Name Modifiable
by user?

 Description
134 Netscape Communicator 4.0 Changes for Content Developers

The Layer Object
Table 9.2 Layer Object Methods

 Method Name Description

 moveBy(dx, dy) Moves this layer by dx pixels to the left, and dy pixels down,
from its current position.

moveTo(x, y) For layers with absolute positions, this method changes the
layer’s position to the specified pixel coordinates within the
containing layer or document. For layers with relative
positions, this method moves the layer relative to the natural
position in the containing layer or document.
This method is equivalent to setting both the top and left
properties of the layer object.

moveToAbsolute(x, y) Changes the layer position to the specified pixel coordinates
within the page (instead of the containing layer.)
This method is equivalent to setting both the pageX and
pageY properties of the layer object.

resizeBy(dwidth,
dheight)

Resizes the layer by the specified height and width values (in
pixels). Note that this does not relayout any HTML contained
in the layer. Instead, the layer contents may be clipped by the
new boundaries of the layer.
This method has the same effect as adding dwidth and
dheight to the clip.width and clip.height .

resizeTo(width,
height)

Resizes the layer to have the specified height and width
values (in pixels). Note that this does not relayout any HTML
contained in the layer. Instead, the layer contents may be
clipped by the new boundaries of the layer.
This method has the same effect as setting the clip.width
and clip.height .

moveAbove(layer) Stacks this layer (in z-order) above the layer specified in the
argument, without changing either layer's horizontal or
vertical position. After re-stacking, both layers will share the
same parent layer.
The value must be a valid layer object.

moveBelow(layer) Stacks this layer (in z-order) below the specified layer,
without changing the layer's horizontal or vertical position.
After re-stacking, both layers will share the same parent layer.
The value must be a valid layer object.
, Using JavaScript With Positioned Content 135

Creating Positioned Blocks of Content Dynamically
Creating Positioned Blocks of Content Dynamically
You can use JavaScript to create new layer objects by calling the new
operator on a Layer object, for example:

bluelayer = document.bluelayer;

newbluelayer = new Layer(300, bluelayer);

The first argument is the width of the new layer, and the second argument,
which is optional, is its parent layer. The parent can also be a window, in
which case the new layer is created as a top-level layer within the corre-
sponding window. If you do not supply a parent layer, the new layer will be a
top-level layer in the current document.

After creating a new layer, you can set its source either by setting a value for its
src property, or by calling the load method. Alternatively, you can open the
layer’s document and write to it (as discussed in the next section.)

There are a few important things to know about creating layers and modifying
their contents dynamically. You can create a new layer object by using the
new operator only after the page has completely finished loading. You cannot
open a layer’s document and write to it until the page has finished loading. You
can have only one layer open for writing at a time.

load(sourcestring,
width)

Changes the source of a layer to the contents of the file
indicated by sourcestring, and simultaneously changes the
width at which the layer’s HTML contents will be wrapped.
This method takes two arguments. The first argument is a
string indicating the external file name, and the second is the
width of the layer in pixels.

Table 9.2 Layer Object Methods

 Method Name Description
136 Netscape Communicator 4.0 Changes for Content Developers

Writing Content in Positioned Blocks
Writing Content in Positioned Blocks
While initially defining a layer, you can write to the layer’s document using the
document’s write method.

<LAYER ID="layer1" BGcolor="green">

 <HR>

 <H1>First Heading</H1>

 <SCRIPT>

 document.write("<P>Here is some content<P>")

 </SCRIPT>

 <HR>

</LAYER>

After a layer has been initially created and the page has fully finished loading,
you can modify the contents of the layer by using the write () method of the
layer’s document. If you use the write() method to write content to a layer
after the layer has been created, the original content of the layer is wiped out,
and replaced by the new content.

After writing to a layer’s document, you need to close the document.

For example:

<LAYER ID="layer1" BGCOLOR="blue">

 <HR>

 <H1>First Heading</H1>

 <P>Here is the original content<P>

 <HR>

</LAYER>

</BODY>

</HTML>

<SCRIPT>

function changeLayerContent() {

document.layer1.document.write("<HR><P>New content.</P><HR>");
, Using JavaScript With Positioned Content 137

Handling Events
document.layer1.document.close();

}

</SCRIPT>

<FORM NAME="form">

<INPUT TYPE=button VALUE="CHANGE CONTENT"

ONCLICK=’changeLayerContent();return false;’>

</FORM>

For a further example of writing to a layer, see Chapter 12, “Expanding Colored
Squares Example.”

Handling Events
Each layer can be thought of as a separate document. It has the same event-
handling capabilities as a top-level window. You can capture events for a layer.

For an overview of event handling, see the section "Scripting Event Handlers" in
the JavaScript guide for in JavaScript. The following link takes you to the JavaS-
cript guide:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/
index.html lewin

When defining a layer with the <LAYER> tag, you can also supply the
following attributes that specify event handlers:

onMouseOver

onMouseOut

onLoad

onFocus

onBlur

The onMouseOver event handler is invoked when the mouse cursor moves
into a layer.

The onMouseOut event handler is invoked when the mouse cursor moves out
of the area of a layer.
138 Netscape Communicator 4.0 Changes for Content Developers

Using Localized Scripts
The onLoad event handler gets invoked when a layer is loaded, that is, the document
that ultimately contains the layer is displayed. This is true regardless of whether a
layer is visible or not.

The onFocus handler is invoked when the layer gets keyboard focus, and the
onBlur handler is invoked when the layer loses keyboard focus.

Just as in the case of a document, if you want to define the mouse click response for
a layer, you must capture onMouseDown and onMouseUp events at the level of the
layer and process them as you want.

If an event occurs in a place where multiple layers overlap, the top-most layer gets
the event, even if it is transparent. However, if a layer is hidden, it does not get
events.

For an example of capturing events for a layer, see Chapter 13, “Changing Wrapping
Width Example.”

Using Localized Scripts
You can use the <SCRIPT> and </SCRIPT> tags within blocks of positioned
content. The functions defined in the script will be scoped to the block that contains
them, and they cannot be used outside that block.

This functionality is handy, for example, for defining event handlers for a layer.

<LAYER> Tag Syntax

<LAYER ID="layer1" BGCOLOR="red"

onMouseOver='changeColor("blue");'

onMouseOut='changeColor("red");'>

<P>Layer content...</P>

<SCRIPT>

function changeColor(newcol) {

bgColor=newcol; // Modifies the layer object's bgColor property

return false;

}

</SCRIPT>
, Using JavaScript With Positioned Content 139

Animating Positioned Content
</LAYER>

CSS Syntax

<DIV STYLE="position:absolute; layer-background-color:red;

width:200px; height:100px">

<P>Layer content...</P>

<SCRIPT>

function onMouseOver() {changeColor("blue");}

function onMouseOut() {changeColor("red");}

function changeColor(newcol) {

 bgColor=newcol;

 return false;

}

</SCRIPT>

</DIV>

When the mouse moves into the layer, the layer turns blue. When the mouse
moves out of the layer, it turns red. To see the example in action, select:

chgcolor.htm lewin

Animating Positioned Content
You can use JavaScript to modify layers to produce the effects of animation.
Frequently, animation revolves around repeating actions over and over again,
particularly for looping animations. You can use the JavaScript function
setInterval() function to repeatedly call a function at a given interval.

For example, the following statement calls the keepExpanding() function
every 25 milliseconds, with arguments of 20, 30, 40 and 50.

setInterval(keepExpanding, 25, 20, 30, 40, 50);

JavaScript also provides the setTimeout() function, which calls another
function after a given amount of time.
140 Netscape Communicator 4.0 Changes for Content Developers

Animating Positioned Content
The setTimeOut() function has two different forms:

setTimeout("code to be executed", delay)

setTimeout(function, delay, args...)

For example, to invoke doItAgain("Sam", "piano") after 3 milliseconds,
you can use either of the following statements:

setTimeout("doItAgain('Sam', 'piano')", 3)

setTimeout(doItAgain, 3, "Sam", "piano");

The setTimeout() function is useful for conditionally re-invoking a function,
whereas the setInterval() function is useful for kicking off the repeated,
unconditional invocation of a function.

The following function uses setTimeout() to keep making the clipping area
of a layer 5 pixels wider and 5 pixels higher until the layer is 450 pixels wide.

function expand(layer)

{

 if (layer.clip.right < 450) {

 layer.resizeBy(5, 5);

 setTimeout(expand, 5, layer);

 }

 return false;

}

Animating Images

You can achieve many interesting animations by changing the source of an
image in conjunction with moving the image. To move an image, you can
change the position of the layer that contains the image. To change the source
of the image, you can assign a new value to the src property of the image
object.

If the source of the image is changed too quickly or too often, the actual image
may not download across the net quickly enough to keep up with the
animation. Therefore if you have a script that changes the source of an image in
a moving layer, it is best to make sure that the image has fully loaded before
you try to do anything with it.
, Using JavaScript With Positioned Content 141

Animating Positioned Content
Using OnLoad Handlers

When a document has completely finished loading, it invokes its onLoad handler if it
has one. You could define an onLoad handler for the BODY element of a document
that initiates any animations in the document. The onLoad handler for a BODY
element may be invoked before all frames in all animated GIF images have finished
loading, but it will not be invoked until at least one frame of every animated GIF
image has finished loading.

Layers can also have onLoad handlers. However, if a layer contains images, the
images may load asynchronously from the rest of the layer’s content, and the layer
may think it has finished loading and thus fire its onLoad handler (if it has one)
before all its images have finished loading.

Images can have onLoad handlers also. However, if the image is an animated GIF, its
onLoad handler is invoked every time a frame in the image finishes loading.
Therefore if your image is an animated GIF, it is better to define an onLoad handler
that initiates any animations that use that image in the BODY element rather than
directly on the image.However, it the image is a static GIF or JPEG, by all means
define the onLoad handler directly on the image.

Chapter 11, “Swimming Fish Example,” discusses an example, Positioning and Moving
the Fish and Poles, that has a layer containing a fish that swims back and forth. The
fish starts swimming when someone clicks on a button. To ensure that nobody can
click the button before the fish image has finished loading, the layer containing the
button is initially hidden. When the document has finished loading, its onLoad
handler makes the form layer visible.

Pre-fetching Images

One way to reduce the time required to start an animation is to ensure that the images
used in the animation are downloaded to the browser’s cache before the animation
starts. This approach is known as prefetching the images.

You can prefetch an image by embedding it in a layer. When a layer loads, it loads all
its content, including all images, regardless of whether the layer is visible or not. If a
page has a hidden layer that contains all the images needed in the animation then
when the page opens, the source for the images is downloaded into the browser’s
cache, even though they are not visible.
142 Netscape Communicator 4.0 Changes for Content Developers

Animating Positioned Content
Chapter 11, “Swimming Fish Example,” discusses an example, Changing the
Stacking Order of Fish and Poles, that illustrates the use of a hidden layer to
contain images that are not needed when the page opens but are used in the
course of animating the contents of the page.

Suppressing the Icon for Images that Have Not Yet Loaded

 By default, when a page opens, it shows a placeholder icon for every image in
the page that has not finished loading. Animation sequences may sometimes
require multiple images. While the images are loading, the user could see lots
of placeholder icons that you would prefer they did not see.

A new attribute has been introduced for the IMG tag to allow you to suppress
the display of placeholder icons.

The SUPPRESS attribute for the IMG tag can be set to either true or false. The
default value is false . If SUPPRESS is set to true , neither the place-holder
icon or frame that appear during image loading will be displayed and tool-tips
will be disabled for that image.

If SUPPRESS is set to false , the place-holder icon and frame will always be
displayed during loading even if the images are transparent images that would
not otherwise be displayed. Tool tips will be active.
, Using JavaScript With Positioned Content 143

Animating Positioned Content
C h a p t e r

10
Fancy Flowers Farm Example

This example illustrates how to how to hide and show positioned blocks of
content. It uses a pop-up menu to pick which block to display.

This example creates a web page that has five positioned blocks of content.
Four of the blocks each contain information about a specific flower, and the
fifth block contains a form with a pop-up menu.

The user can choose which flower block to display by using the pop-up menu.

To run the <LAYER> version of the example, select:

flower.htm

To run the style sheet version of the example, select:

flowercs.htm lewin

To view the complete code for either version of the example, use the Page
Source command of the View menu in the Navigator browser that is
displaying the example.

• Introducing the Flower Farm

• Creating the Form for Flower Selection

• Positioning the Flower Layers

• Introducing the Flower Farm
144 Netscape Communicator 4.0 Changes for Content Developers

Introducing the Flower Farm
Introducing the Flower Farm
To start with, the page introduces the flower farm:

<HR>

<H1>Welcome to Fancy Flowers Farm </H1>

<HR>

<P>We sell bulbs, seeds, seedlings, and potted plants,

in all shapes, sizes, colors, and varieties.

This page presents information about our most popular varieties.

</P>

Creating the Form for Flower Selection
The form is placed in an inflow layer. The form contains a popup menu (a
select menu) listing four kinds of flowers. The menu uses an onClick event
handler, so that when it is clicked, the changeFlower() function is invoked
to display the selected flower.

The only reason the form needs to be in a layer is so that you can specify the
LEFT value for it, since it is to be indented from the left edge. Because this is
an inflow layer, the natural cursor position in the page will be at the end of the
layer when the layer has finished being drawn.

<ILAYER ID="formlayer" LEFT=50>

<P>Please select a flower:</P>

<FORM NAME=form1>

<SELECT name=menu1

onChange="changeFlower(this.selectedIndex);

return false;">

<OPTION >Mona Lisa Tulip

<OPTION >Mixed Dutch Tulips

<OPTION >Bijou Violet
, Fancy Flowers Farm Example 145

Positioning the Flower Layers
<OPTION >Pink Chrysanthemum

</SELECT>

</FORM>

</ILAYER>

When the user selects an option in the menu, the changeFlower() function
is invoked. This function calls the hideAllFlowers() function to hide all the
flower layers, then shows the flower layer corresponding to the selected option.
The flower layers are named flower0 , flower1 , flower2 , and flower3 .
Thus, the name of the selected flower layer is simply the concatenation of
"flower" and the index of the selected option.

<SCRIPT>

// this function hides all the flower layers

function hideAllflowerLayers() {

document.flower0.visibility="hide";

document.flower1.visibility="hide";

document.flower2.visibility="hide";

document.flower3.visibility="hide";

}

// this function makes a single flower layer visible

function changeFlower(n) {

hideAllflowerLayers();

document.layers["flower" + n].visibility="show";

}

</SCRIPT>

Positioning the Flower Layers
The page has four layers that contain information about a flower. Each flower
layer contains a left-aligned image, a level 3 heading, and some number of
paragraphs. The first layer is initially visible, and the remaining flower layers
are initially hidden.
146 Netscape Communicator 4.0 Changes for Content Developers

Positioning the Flower Layers
All the flower layers are positioned in exactly the same place, and they have the
same width and height. The idea is that only one flower layer is visible at a
time.

So far, the page does not contain any layers with absolute positions. So you can
let the first flower layer fall at the natural cursor position in the page, which is
at the end of the inflow layer that contains the form.

If the first flower layer has an absolute position, the natural cursor position in
the page will still be at the end of the form layer. Thus you can let each flower
layer fall at the natural position in the page, so long as each one has an
absolute position.

The following code shows the code for the first flower layer:

<LAYER ID="flower0" LEFT=50 width=400

 BGCOLOR="#FFFFDD">

<HR>

<H3>Mona Lisa Tulip</H3>

<HR>

<P>These tulips have been specially...</P>

 <BR CLEAR="ALL">

<P>Priced at only $1 a bulb ... </P>

</LAYER>

The code for the second and third flower layers is very similar. They all use the
default value for TOP.

So far, each flower layer has used the default value for TOP. However, if the
page had several layers with absolute positions, and you wanted to place
another layer in a relative position to one of the existing layers, you could use
inline JavaScript to calculate the value for LEFT or TOP. Or if you wanted to
make the background of one layer be slightly darker than the background of
another, you could use inline JavaScript to calculate the value of the BGCOLOR
attribute. (Note however that you can use inline JavaScript only in layer defini-
tions that use the <LAYER> tag. You cannot use inline JavaScript inside layer
definitions that use cascading style sheet syntax, although you can use JavaS-
cript to modify such layers after they have been defined and created.)
, Fancy Flowers Farm Example 147

Positioning the Flower Layers
In this example, there is really no need to use inline JavaScript to position the
last flower layer, since you could just let the TOP value default to its natural
value, as in the other flower layers.

However, just to provide an illustration of using inline JavaScript, the TOP
attribute is given the same value as the TOP attribute for the layer named
flower0 , as follows: (note that the TOP attribute in the <LAYER> tag can be
any case, but the top property in JavaScript must be all lowercase)

<LAYER ID="flower3" LEFT=50

TOP=&{"&"}; {document.flower0.top;};

width=400 VISIBILITY="HIDE"

BGCOLOR="#DDFFDD">

<HR>

<H3>Pink Chrysanthemum</H3>

<HR>

<P>These modern chrysanthemums...</P>

</LAYER>
148 Netscape Communicator 4.0 Changes for Content Developers

Positioning the Flower Layers
C h a p t e r

11
Swimming Fish Example

This example is presented in two parts. The second part is an advanced version
of the first part.

• Positioning and Moving the Fish and Poles

This example illustrates how to position and move layers.

In this example, a fish (an animated GIF) and three poles appear in the
window (as shown in Figure 10.1) along with a button saying "Move the
Fish." When the user clicks the button, the fish moves repeatedly from the
left side of the window to the right, swimming in front of the two outer
poles and swimming behind the middle one.

• Changing the Stacking Order of Fish and Poles

This example illustrates how to change the stacking order of the layers.

This example extends the previous one, so that when the user clicks the
"Move the Fish" button, the fish swims to the right, then changes direction,
and swims back to the left, this time swimming behind the outer poles and
in front of the middle pole.
, Swimming Fish Example 149

Positioning and Moving the Fish and Poles
Figure 10.1 The fish and three poles in their initial positions

Positioning and Moving the Fish and Poles
In this example, a fish and 3 poles appear in the window along with a button
saying "Move the Fish." When you click the button, the fish moves from the left
side of the window to the right, swimming in front of the two outer poles and
swimming behind the middle one.When it reaches the far right, it jumps back
to the far left and starts swimming across the screen again.

The fish is an animated GIF, and the three poles are static GIFS.

To run the example that uses the <LAYER> tag, select:

fish1.htm lewin

To run the style sheet version of the example, select:

fish1css.htm lewin

To view the complete code for either version of the example, use the Page
Source command of the View menu in the Navigator browser that is
displaying the example.

In the <LAYER> version, the layer containing the form is initially hidden, and a
waiting layer is temporarily displayed while the fish images are downloading.
This version uses a showForm() function to hide the waiting layer and show
the form layer.

In the style sheet version, the form layer is visible immediately. This version
does not have a waiting layer or showForm() function.
150 Netscape Communicator 4.0 Changes for Content Developers

Positioning and Moving the Fish and Poles
The sections in the first part of this example are:

• Defining the onLoad Handler for the BODY Element

• Positioning the Fish and Poles

• Defining the Form

• Moving the Fish

• Moving the Fish

Defining the onLoad Handler for the BODY
Element

This page has a form containing a button whose action is to start the fishing
swimming. The form is contained in a layer that is initially hidden. The BODY
element has an onLoad handler that makes the form layer visible. This
approach ensures that the user cannot start the fish swimming until the form is
visible which will not happen until all the contents in the document, including
all the frames in the animated image of the fish, have finished loading.

The following statement defines the BODY element:

<BODY BGCOLOR="#FFFFFF" ONLOAD="showForm();">

Positioning the Fish and Poles

Here’s the code that creates the three pole layers:

<HTML>

<HEAD>

<TITLE>Swimming Fish</TITLE>

</HEAD>

<BODY>

<LAYER ID="bluepole"LEFT=160 TOP=150>
, Swimming Fish Example 151

Positioning and Moving the Fish and Poles

</LAYER>

<LAYER ID="greenpole" LEFT=360 TOP=150>

</LAYER>

Here’s the code that creates the fish layer.

<LAYER ID="fish" LEFT=40 TOP=170 above="redpole"

ONLOAD="showForm();">

</LAYER>

After the definition of the fish layer comes the definition for the red pole layer.

<LAYER ID="redpole" LEFT=260 TOP=150>

</LAYER>

By default, each subsequent layer is placed on top of the one before it in the
stacking order. So to start with, the blue pole is on the "bottom," the green pole
is above the blue pole, and the fish is directly below the red pole (that is
between the green pole and the red pole.) The red pole is on top of everything,
as far as the stacking order goes. (It might help to imagine that all the images
are slid into the center of the page so that they all overlap each other. This
scenario might help you visualize that the blue pole is on the bottom, and the
red pole is on the top.)

Defining the Form

The layer containing the form is initially this layer is hidden. The form has a
button that the user clicks to start the fish swimming. The only reason for
putting the form in a layer is to hide it initially. Since you don’t need to set TOP
or LEFT attributes, you can let this be an inflow layer so that it falls at the
natural place in the page.

Here’s the definition of the form layer:
152 Netscape Communicator 4.0 Changes for Content Developers

Positioning and Moving the Fish and Poles
<ILAYER ID=formlayer VISIBILITY=HIDE>

<H1>Fish Example 1</H1>

<FORM>

<INPUT type=button value="Move the fish"

OnClick="movefish(); return false;">

</FORM>

</ILAYER>

There’s also another "temporary" layer that displays a message while the fish is
loading. The definition for this layer is:

<LAYER ID=waiting TOP=100 LEFT=50>

<H3>Please wait while the fish loads...</H3>

</LAYER>

Moving the Fish

The file contains a script that has the definitions for the moveFish() and
showForm() functions.

The following code defines the function showForm() , which makes the
waiting layer become invisible and makes the form layer become visible.

<SCRIPT>

function showForm() {

 document.waiting.visibility="hide";

 document.formlayer.visibility="show";

 return false;

}

The following code defines the function moveFish() , which causes the fish to
move repeatedly across the window.

<!-- Simple move function -->

function movefish() {

var fish = document.fish;
, Swimming Fish Example 153

Changing the Stacking Order of Fish and Poles
if (fish.left < 400) {

fish.moveBy(5, 0);}

else {

fish.left = 10;}

// use the windows method setTimeOut

setTimeout(movefish, 10);

}

</SCRIPT>

This function binds the variable fish to the layer named "fish." The
function checks if the horizontal location of the fish layer is less than 400, in
which case it uses the moveBy() method to move the layer 10 pixels to the
right. If the horizontal location is greater than 400, the function sets the
horizontal location back to 10.

Then the function waits 10 milliseconds and calls movefish() (that is, itself)
again.

The net result is that when this function is invoked, the fish swims across the
screen to the 400th pixel, then reappears at the left of the screen and swims
across the screen again, ad infinitum.

Because of the stacking order of the poles, the fish seems to swim in front of
the blue pole, behind the red (middle) pole, and in front of the green pole.

Changing the Stacking Order of Fish and Poles
This example extends the previous example, Positioning and Moving the Fish
and Poles.

In this extended version, when the fish reaches the far right, it turns around and
swims back again. On the way back, it swims in front of the green pole, behind
the red (middle) pole, and in front of the blue pole. To enable the fish to swim
in front of a pole on the way out and swim behind it on the way back, you
need to change the stacking order of the layers each time the fish changes
direction.
154 Netscape Communicator 4.0 Changes for Content Developers

Changing the Stacking Order of Fish and Poles
Both fishes (one for each direction) are animated GIFs, and the three poles are
static GIFs.

To run the <LAYER> version of the example, select:

fish2.htm lewin

To run the style sheet version of the example, select:

fish2css.htm lewin

To view the complete code for either version of the example, use the Page
Source command of the View menu in the Navigator browser that is
displaying the example.

The sections in the first part of this example are:

• Adding Another Layer to Contain the Reverse Fish Image

• Initializing the Fish to Have a Direction Variable

• Moving the Fish Backward and Forward

• Changing the Direction of the Fish

• Changing the Stacking Order of the Poles and the Fish

• Updating the Button That Gets the Fish Going

Adding Another Layer to Contain the Reverse
Fish Image

When the fish reaches the right edge, the image of the fish needs to change to
a fish swimming in the reverse direction. The change needs to occur very
quickly, perhaps too quickly for there to be time for the new fish image to
download across the network. If the image of the reverse fish does not
download quickly enough, the image will continue coming in as the fish moves
back across the screen. To start with, you’ll see only bits of the fish.
, Swimming Fish Example 155

Changing the Stacking Order of Fish and Poles
To ensure that the fish is whole as soon as it starts swimming back, you can
preload the fish image.The easiest way to do this is to create a new, hidden
layer that contains the reverse fish image. Even if a layer is hidden, all its
images are downloaded when the layer is loaded.

The following code creates a hidden layer containing an image of the fish
swimming in the reverse direction.

<LAYER ID="fishB" VISIBILITY="hide">

</LAYER>

Initializing the Fish to Have a Direction Vari-
able

The following function initializes the fish layer so that it has a direction
variable which keeps track of which way the fish is swimming. To start with,
the fish swims forward. The fish also has forwardimg and backwardimg
properties that hold the appropriate fish images.

function initializeFish() {

 // create the backward fish image to force it to preload now

 var fish = document.fish;

 var fishB = document.fishB;

 fish.direction = "forward";

 fish.forwardimg = fish.document.images["fish"].src;

 fish.backwardimg = fishB.document.images["fishB"].src;

}

Moving the Fish Backward and Forward

The following code defines the function movefish2() , which moves the fish
to the right, changes the image of the fish (so that it faces left), moves the fish
back to the left, and repeats the process continuously.
156 Netscape Communicator 4.0 Changes for Content Developers

Changing the Stacking Order of Fish and Poles
In more detail, the function specifies that if the fish is moving forward and
hasn’t reached a horizontal position of 450, it keeps moving forward. If it has
reached 450, it changes direction.

If it’s moving backward and hasn’t reached 10, it keeps moving backward. If it
has reached 10, it changes direction.

Each time the fish changes direction, the function changes the stacking order of
the layers, by calling either the changePoles() function or the reset-
Poles() function, depending on which way the fish is turning.

function movefish2() {

 var fish = document.fish;

 if (fish.direction == "forward") {

 if (fish.left < 450) {fish.moveBy(5, 0);}

 else {changePoles();changeDirection();}

 }

 else {

 if (fish.left > 10) {fish.moveBy(-5, 0);}

 else {resetPoles();changeDirection();}

 }

 setTimeout("movefish2()", 10);

 return;

}

Changing the Direction of the Fish

The changeDirection() function changes the image of the fish, so that it
faces in the correct direction. The function also sets the value of the
direction variable to the new direction.

function changeDirection () {

 var fish = document.fish;

 if (fish.direction == "forward") {

 fish.direction = "backward";

 fish.document.images["fish"].src = fish.backwardimg;
, Swimming Fish Example 157

Changing the Stacking Order of Fish and Poles
 }

 else {fish.direction = "forward";

 fish.document.images["fish"].src = fish.forwardimg;

 }

 return;

}

Changing the Stacking Order of the Poles and
the Fish

The functions changePoles() and resetPoles() change the stacking
order (z-order) of the layers. You can change the stacking order of a layer in
the following ways:

• Use the moveBelow() layer to move a layer immediately below another
one.

• Use the moveAbove() layer to move a layer immediately above another
one.

• Directly set the value of the zIndex property of a layer.

To keep your stacking order straight, it is a good idea to consistently use one of
these ways. If you mix them, it could be hard to keep track of the exact
stacking order. For example, if you use moveAbove() to move the blue pole
layer above the green pole layer, then you set the zIndex value of the fish
layer to 3, you may not know where the fish is in the stacking order in relation
to the green and blue poles.

The following functions, changePoles() and resetPoles() , consistently
use the moveAbove() function to set the stacking order of the three layers
containing the poles and the layer containing the fish.

function changePoles () {

 var redpole = document.redpole;

 var bluepole = document.bluepole;

 var greenpole = document.greenpole;

 var fish = document.fish;
158 Netscape Communicator 4.0 Changes for Content Developers

Changing the Stacking Order of Fish and Poles
 fish.moveAbove(redpole);

 bluepole.moveAbove(fish);

 greenpole.moveAbove(bluepole);

}

// reset the stacking order of the poles and the fish

function resetPoles () {

 var redpole = document.redpole;

 var bluepole = document.bluepole;

 var greenpole = document.greenpole;

 var fish = document.fish;

 greenpole.moveAbove(bluepole);

 fish.moveAbove(greenpole);

 redpole.moveAbove(fish);

}

Updating the Button That Gets the Fish Going

Here is the definition of the layer that contains the form:

<H1>Fish Example 2</H1>

<LAYER ID="fishlink" LEFT=10 TOP=100 >

 <FORM>

 <INPUT type=button value="Move the Fish"

 OnClick="initializeFish(); movefish2(); return false;">

 </FORM>

</LAYER>

This time, the OnClick() method initializes the fish to initialize the direction
variable on the fish before it calls movefish2() .
, Swimming Fish Example 159

Changing the Stacking Order of Fish and Poles
C h a p t e r

11
Nikki’s Diner Example

This example illustrates the use of external files as the source for a layer. This
example creates a web page for Nikki’s Diner, which is a vegan restaurant that
offers tasty daily specials. The web page contains some general information
about the diner, and then offers a pop-up menu that lists the days of the week.
When a user selects a particular day, the specials for that day are displayed.

To run the <LAYER> version of the example see:

diner.htm lewin

To run the style sheet version of the example see:

dinercss.htm lewin

To view the complete code for either version of the example, use the Page
Source command of the View menu in the Navigator browser that is
displaying the example.

The functions used in both versions are identical.

To view the files containing the daily specials see:

specials/mon.htm

specials/tues.htm

specials/wed.htm
160 Netscape Communicator 4.0 Changes for Content Developers

Content in the External Files
specials/thurs.htm

specials/fri.htm

specials/sat.htm

specials/sun.htm

The specials for each day are written in separate files. There is a file for
Monday’s special, (mon.htm) another for Tuesday’s special (tues.htm) and
so on. These files contain HTML formatted text that describes the specials for
that day.

The benefit of this system is that changing the specials for a particular day of
the week is a trivial process. For example, to update the specials offered on
Monday, Nikki simply has to change the text in the mon.htm file. She doesn’t
have to make any changes to the main file for the web page document.

• Content in the External Files

• The File for the Main Page

Content in the External Files
The following code shows the entire contents of the file mon.htm :

<HR>

<H1 align=center > Monday</H1>

<HR>

<H2 align=center >Entrees</H2>

<P>Tofu, Artichoke, and Asparagus Surprise</P>

<P>Walnut and Carrot Risotto</P >

<P>Parsnip Casserole </P >

<P>Chef's Special Spicy Salad</P >

<H2 align=center >Desserts</H2>

<P>Gooseberry Tart</P >

<P>Strawberry Delight</P >

The content of the files tues.htm , wed.htm , and so on are similar.
, Nikki’s Diner Example 161

The File for the Main Page
The File for the Main Page
The file for Nikki’s Diner’s home page starts with some general information
about the diner. Paragraphs in the general introduction are not indented, and
the paragraphs in the layers are indented. This page uses style sheets to achieve
this indentation effect.

<HTML>

<HEAD>

<TITLE>Welcome to Nikki's Diner</TITLE>

<STYLE TYPE="text/css">

<!--

 P {margin-left:50;}

 P.plainPara {margin-left:0};

-->

</STYLE></HEAD>

<BODY BGCOLOR="white">

<HR>

<H1 align = "center">Welcome to Nikki's Diner!</H1>

<HR>

<P CLASS=plainPara>Nikki's Diner is the best place for vegan food in
NetscapeVille. </P>

<P CLASS=plainPara>You can find us at the corner of Communicator Street
and Navigator Way. We're open from 10 am to 6 pm every day. We don't
take reservations, so just come on down. We guarantee that after you
visit us once, you'll be back on a regular basis!</P>

<P CLASS=plainPara>We have an extensive regular menu of tasty meals in
addition to our daily specials.</P>

<P CLASS=plainPara >You can use the following menu (no pun intended) to
view the Specials for any day this week. Our specials change every
week.</P>

Next comes an inflow layer containing a form that lets users pick a day of the
week. This layer is indented 50 pixels to the left. Because it is an inflow layer,
the natural position in the page will be at the end of the layer, when the layer
has finished being drawn.
162 Netscape Communicator 4.0 Changes for Content Developers

The File for the Main Page
<LAYER ID="formlayer" LEFT=50>

<P Please select a day of the week:</P>

 <FORM NAME=form1>

 <SELECT name=menu1 onChange="showSpecials(this.selectedIndex); return
false;">

 <OPTION >Saturday

 <OPTION >Sunday

 <OPTION >Monday

 <OPTION >Tuesday

 <OPTION >Wednesday

 <OPTION >Thursday

 <OPTION >Friday

 </SELECT>

 </FORM>

</LAYER>

The next task is to create the layer where the daily specials will be shown.

The menu layer needs to have an absolute position, since changing the source
on the fly works only for layers with absolute positions.

Since this is the first layer with an absolute position in the document, its
position defaults to the current cursor position in the page, which happens to
be beneath the inflow form layer.

You want the top value to default to the natural top position, so do not supply
a value for TOP, but you want the left value to be 50 pixels in from the left
edge. By default, Saturday’s menu appears.

<LAYER ID="menu" LEFT=50 WIDTH=400 src="specials/sat.htm">

</LAYER>

The script is defined at the level of the document rather than inside a particular
layer, since it involves both the form and the menu layer. The
showSpecial() function assigns a source for the menu layer depending on
which menu option was picked.

<SCRIPT>

function showSpecials(n) {
, Nikki’s Diner Example 163

The File for the Main Page
 var specials = document.menu;

 switch (n) {

 case 0: specials.src = "specials/sat.htm"; break;

 case 1: specials.src = "specials/sun.htm"; break;

 case 2: specials.src = "specials/mon.htm"; break;

 case 3: specials.src = "specials/tues.htm"; break;

 case 4: specials.src = "specials/wed.htm"; break;

 case 5: specials.src = "specials/thurs.htm"; break;

 default: specials.src = "specials/fri.htm";

 }

}

</SCRIPT>

</BODY>

</HTML>
164 Netscape Communicator 4.0 Changes for Content Developers

The File for the Main Page
C h a p t e r

12
Expanding Colored Squares Example

This example illustrates how to expand and contract the clipping region of a
layer, without changing the wrapping width of the layer. (The next example,
Chapter 13, “Changing Wrapping Width Example,”, illustrates how to capture
mouse events so that the user can make a layer’s wrapping width wider or
narrower by dragging the mouse.)

This example illustrate these tasks:

• using of onLoad and onMouseOver event handlers for layers

• dynamically changing clipping regions of layers

• writing to layers

• changing the source of a layer

• using nested layers

The sections in this chapter are:

• Running the Example

• Creating the Colored Squares

• The Initialization Functions

• The Last Layer
, Expanding Colored Squares Example 165

Running the Example
• Moving the Mouse Over a Square

• The expand() Function

• The contract() Function

• Styles in the Document

Running the Example
In this example, when the page initially loads, the user sees four colored
squares as follows:

Figure 12.1 Initial appearance of the four colored squares

When the square is fully contracted, it displays a number. If the user moves the
mouse over one of the squares, its content changes to a block of text and the
square expands.The top-left square expands up and to the left, the top-right
square expands to the top and to the right, and so on.

The following figure shows the four squares after the top-left and top-right
squares are fully expanded.
166 Netscape Communicator 4.0 Changes for Content Developers

Running the Example
Figure 12.2 Two squares are fully expanded

While a square is expanding, further mouse-over events are blocked on that
square until it has finished expanding. When it is fully expanded, if the user
moves the mouse over it, then it contracts again. While it is contracting, all
mouse-over events for that square are blocked until it has finished contracting.
When it finishes contracting, it changes its content back to a number.

To run the example see:

squares.htm lewin

This example is provided only as a <LAYER> version.

To view the complete code for the example, use the Page Source command
of the View menu in the Navigator browser that is displaying the example.
, Expanding Colored Squares Example 167

Creating the Colored Squares
Creating the Colored Squares
Each colored square is in its own layer. The width of each layer is 200 and the
height is 200. When the page loads you only see a 50x50 region of each layer
because as soon as it is loaded, it calls a function that sets its clipping region so
that only a small part of the square is visible.

Each square layer contains another layer that displays a number. The number
needs to be in a layer so that can be placed it in the portion of the layer that is
visible when the square is fully contracted.

The following figure shows where the number 1 would appear in the top-left
square if it were not in a layer but were allowed to fall in its natural position in
the parent layer. As you can see, when the red square is fully contracted, the
number would not be visible.

Figure 12.3 Position where the number 1 would appear if it were not in a layer
168 Netscape Communicator 4.0 Changes for Content Developers

Creating the Colored Squares
Definitions for the Layers

The following code defines the top-left layer:

<LAYER ID="topleftblock" top=50 left=50

 width=200 height=200

 BGcolor="#FF5555"

 onLoad = initializeTopLeft(0);

 onMouseOver=changeNow(0); >

 <LAYER TOP=160 LEFT=168>

 <H1>1</H1>

 </LAYER>

</LAYER>

This layer would be 200 pixels wide by 200 high. However, when this layer
finishes loading, it calls its onLoad function, initializeTopLeft() .

Before considering the initializeTopLeft() function, quickly look at the
global variables defined in the script. There are four variables that describe the
minimum and maximum clipping values. The variable delta specifies the
distance by which the clipping values change each time the expand() or
contract() functions are called. (These functions will be discussed in detail
soon.)

<SCRIPT>

var maxclip = 200;

var minclip = 0;

var maxclipcontracted = 150;

var minclipcontracted = 50;

var delta = 10;
, Expanding Colored Squares Example 169

The Initialization Functions
The Initialization Functions
The initializeTopLeft() function does the following things:

• Sets the layer’s status variable to "waitingToExpand" . (Notice that you
can create the variable simply by using it.)

• Sets the clip.top , clip.bottom , clip.right , and clip.left
values so that the visible region of the layer is a square measuring 50 pixels
by 50 pixels in the bottom right corner, as illustrated in the following figure:

Figure 12.4 Clip values

• Sets the dleft , dtop , dbottom , and dright variables to indicate by how
much the clip.left , clip.top , clip.bottom and clip.right
variables need to change while the square is expanding.

• Sets the myposition variable to topLeft .

• Sets the mysource variable so that it specifies the source file to be used as
the contents of the layer when it starts expanding.

• Sets the mytext variable so it contains the text that will be written to the
layer when the layer is fully contracted.
170 Netscape Communicator 4.0 Changes for Content Developers

The Last Layer
The full definition for the initializeTopLeft() function is shown here:

function initializeTopLeft(n)

{

 var thislayer = document.layers[n];

 thislayer.status = "waitingToExpand";

 thislayer.clip.top = maxclipcontracted;

 thislayer.clip.left = maxclipcontracted;

 thislayer.clip.bottom = maxclip;

 thislayer.clip.right = maxclip;

 thislayer.dleft = -delta;

 thislayer.dtop = -delta;

 thislayer.dbottom = 0;

 thislayer.dright = 0;

 thislayer.myposition = "topLeft";

 thislayer.mysource="point1.htm"

 thislayer.mytext="<LAYER TOP=160 LEFT=168><H1>1</H1></LAYER>"

 return false;

}

Each of the other three layers has a similar definition, and a corresponding
initialization function.

The Last Layer
Since the bottom squares can be dynamically expanded beyond the height of
the page, add a last layer that is positioned below the bottom of the expanded
bottom squares. This last layer has nothing in it, but it forces the Web page to
increase its height to be big enough to include the expanded layers. Thus you
will be able to use the scrollbar to scroll down to the bottom of the expanded
layers if they do not initially fit on your screen.

If you we do not include this last layer, then the scrollbar will only allow you to
scroll to the bottom of the contracted squares.
, Expanding Colored Squares Example 171

Moving the Mouse Over a Square
Here is the definition for the last layer:

<LAYER TOP=500>

<P></P>

</LAYER>

Moving the Mouse Over a Square
When you move the mouse over any of the colored squares, its changeNow()
function is invoked. (This is because in the layer definition, the onMouseOver
handler is set to changeNow ().)

The basic aim of the changeNow() function is to start expanding the layer if it
is fully contracted, or start contracting the layer if it is fully expanded. If the
layer is already in the process of expanding or contracting, it ignores the new
mouse over event.

The status variable indicates whether the layer is waiting to expand, waiting
to contract, expanding or contracting. The status value for each layer is
initialized to "waitingToExpand ".

The changeNow() function simply checks the status of the layer and then
calls the expand() function, the contract() function, or does nothing,
depending on the layer’s status. If the layer needs to start expanding, it first sets
the layer’s source to change the content of the layer to show text instead of just
a number.

function changeNow (n)

{

 var thislayer = document.layers[n];

 if (thislayer.status == "waitingToExpand")

 {

 thislayer.src=thislayer.mysource;

 expand(n);

 }

 else if (thislayer.status == "waitingToContract")

 {contract(n);}

 return false;

}

172 Netscape Communicator 4.0 Changes for Content Developers

The expand() Function
The expand() Function
The expand() function sets the layer’s status to expanding . Then it changes
each of the clip.left , clip.right , clip.top , and clip.bottom
variables by the values appropriate to the particular layer to increase the layer’s
visible region in the appropriate direction. It then checks if the layer is fully
expanded and, if not, calls the setTimeout() function to reinvoke the
expand() function.

If the layer has finished expanding, the expand() function sets the layer’s
status to "waitingToContract" .

Here is the code for the expand() function:

function expand (n)

{

 var thislayer = document.layers[n];

 thislayer.status = "expanding";

 // increase or decrease each clip value as appropriate

 thislayer.clip.left=thislayer.clip.left+thislayer.dleft;

 thislayer.clip.right=thislayer.clip.right+thislayer.dright;

 thislayer.clip.bottom=thislayer.clip.bottom+thislayer.dbottom;

 thislayer.clip.top=thislayer.clip.top+thislayer.dtop;

 // is the layer fully expanded?

 if (

 (((thislayer.myposition == "topLeft") |

 (thislayer.myposition == "bottomLeft")) &&

 (thislayer.clip.left > minclip)) ||

 (((thislayer.myposition == "topRight") |

 (thislayer.myposition == "bottomRight")) &&

 (thislayer.clip.right < maxclip)))

 // if not, call expand again

 {setTimeout("expand(" + n + ")", 50);}

 // if so, change the layer’s status

 else {thislayer.status = "waitingToContract";}

 return false;

}

, Expanding Colored Squares Example 173

The contract() Function
The contract() Function
The contract() function is very similar to the expand() function. The
contract() function sets the layer’s status to contracting . Then it
changes each of the clip.left , clip.right , clip.top , and
clip.bottom by the values appropriate to the particular layer to decrease the
visible region in the appropriate direction. It then checks if the layer is fully
contracted, and if not, calls the setTimeout() function to reinvoke the
contract() function.

If the layer has finished contracting, the contract() function sets the layer’s
status to "waitingToExpand" . The other thing it does is to change the
contents of the layer so that you can see the number of the layer. It does this by
opening the layer’s document, writing the data stored in the layer’s mytext
variable, and then closing the layer’s document.

The value of the mytext variable was set during the initialization process. For
each layer, it contains the HTML text for an embedded layer that displays the
layer’s number at a place that will be visible when the layer is fully contracted.

Here is the code for the contract() function:

function contract (n)

{

 var thislayer = document.layers[n];

 thislayer.status = "contracting";

 // increase or decrease each clip value as appropriate

 thislayer.clip.left=thislayer.clip.left-thislayer.dleft;

 thislayer.clip.right=thislayer.clip.right-thislayer.dright;

 thislayer.clip.bottom=thislayer.clip.bottom-thislayer.dbottom;

 thislayer.clip.top=thislayer.clip.top-thislayer.dtop;

 // is the layer fully contracted? True if

 // the square is the top OR bottom left AND its clip left

 // is less than or equal to the minimum clip for contracted squares

 // OR if the square is the top OR bottom right AND its clip right

 // is greater than or equal the max clip for contracted squares
174 Netscape Communicator 4.0 Changes for Content Developers

Styles in the Document
 if (

 (((thislayer.myposition == "topLeft") |

 (thislayer.myposition == "bottomLeft")) &&

 (thislayer.clip.left <= minclipcontracted)) ||

 (((thislayer.myposition == "topRight") |

 (thislayer.myposition == "bottomRight")) &&

 (thislayer.clip.right >= maxclipcontracted)))

 // if not, call contract again

 {setTimeout("contract(" + n + ")", 50);}

 // if it is fully contracted

 else {

 // change the status

 thislayer.status = "waitingToExpand";

 //open the document, write mytext to it, close again

 thislayer.document.write(thislayer.mytext);

 thislayer.document.close();

 }

 return false;

}

</SCRIPT>

Styles in the Document
Just to make the text in the squares look prettier, this file uses a style sheet to
set left and right margins for paragraphs, and to center level-three headings:

<STYLE TYPE="text/css">

<!--

 P {margin-left:10%; margin-right:10%;}

 H3 {text-align:center; margin-top:4%;}

-->

</STYLE>
, Expanding Colored Squares Example 175

Styles in the Document
C h a p t e r

13
Changing Wrapping Width Example

The previous example, Chapter 12, “Expanding Colored Squares Example,”
illustrates how to expand and contract the clipping region of a layer without
changing the wrapping width of the layer.

This example illustrates how to capture mouse events so that the user can make
a layer’s wrapping width wider or narrower by dragging the mouse.

This example illustrates:

• how to capture mouse events for a layer

• how to change the wrapping width of a layer by using the load() function

The sections in this chapter are:

• Running The Example

• Defining the Block of Content

• Capturing Events for the Layer

• Defining the Dragging Functions
176 Netscape Communicator 4.0 Changes for Content Developers

Running The Example
Running The Example
When the page loads, you’ll see a a blue layer containing a block of text. You
can change the wrapping width of the layer by moving the mouse into the
layer, pressing the mouse button down, and moving the mouse to the left or
right. The wrapping width of the layer increases when you move the mouse to
the right, and decreases when you move the mouse to the left. When you
release the mouse button, the layer stops tracking mouse events and no longer
changes in accordance with the mouse.

To run the <LAYER> version of the example see:

wrapping.htm lewin

For the style sheet version of this example see:

wrapcss.htm lewin

Defining the Block of Content
The definition for the block of content is very simple. It sets the left position,
sets the background color, sets the initial wrapping width, and specifies the
source for the layer:

<LAYER NAME="layer1" LEFT=100

 WIDTH=300 BGCOLOR="#99bbFF"

 SRC="mytext.htm" >

</LAYER>

</BODY>
, Changing Wrapping Width Example 177

Capturing Events for the Layer
Capturing Events for the Layer
The first thing the script does is to define some variables that it needs. These
include layerWidth , which is the initial width of the layer; oldX which
keeps track of the previous x position of the mouse when it is dragged inside
the layer; and layer1 , which is the layer itself.

var layerWidth = 300;

var oldX;

var layer1 = document.layer1;

Next, the script specifies which events layer1 needs to capture:

layer1.document.captureEvents(

 Event.MOUSEUP|Event.MOUSEDOWN|Event.MOUSEDRAG);

Then it specifies that when the mouse is pressed down inside layer1 , the
begindrag() function is called, and when the mouse button is released (let
up) inside layer1, the enddrag() function is called. (These functions will be
defined shortly.)

layer1.document.onmousedown=begindrag;

layer1.document.onmouseup=enddrag;

The script specifies that after layer1 has loaded, the resetcapture()
function is invoked.

layer1.onLoad=resetcapture;

Next comes the definition of the resetcapture() function, which basically
restates which events the layer needs to capture:

function resetcapture() {

 layer1.document.captureEvents(

 Event.MOUSEUP|Event.MOUSEDOWN|Event.MOUSEDRAG|Event.MOUSEMOVE);

}

178 Netscape Communicator 4.0 Changes for Content Developers

Defining the Dragging Functions
Defining the Dragging Functions
When you press the mouse down in the layer, the layer’s onMouseDown event
handler is called, which in this case is the begindrag() function. The
begindrag() function sets the layer’s onMouseMove handler to drag , so
that when you move the mouse while the button is pressed down, the drag()
function is invoked. When you release the mouse button, the layer’s
onMouseUp event handler is invoked, which in this case is the enddrag()
function.

When an event occurs, an event object is created to represent the event. This
event object has a PageX variable, which indicates the x position in the page
where the event occurred.

The begindrag() Function

The begindrag() function tells the layer that it needs to capture mouse-move
events. It sets the onmousemove handler to drag so that the drag() function
will be invoked when the mouse is moved. Then it gets the x position of the
mouse-down event and stores it in the oldX global variable.

function begindrag(e) {

 layer1.document.captureEvents(Event.MOUSEMOVE);

 layer1.document.onmousemove=drag;

 oldX=e.pageX;

 return false;

}

The drag() Function

The drag() function calls the changeWidth() function, which changes the
wrapping width of layer1 by the distance that the mouse moved since the
drag function was last called, or if applicable since the begindrag() function
, Changing Wrapping Width Example 179

Defining the Dragging Functions
was called. This distance is calculated by subtracting the x value of the previous
event (stored in oldX) from the pageX value of the current event. Finally the
drag() function updates the value stored in oldX .

function drag(e) {

 changeWidth(layer1, e.pageX - oldX);

 oldX = e.pageX;

 return false;

}

The only way to change the wrapping width of a layer is to reload the contents
of the layer using the load() function. This function takes two arguments: the
file to use as the content of the layer, and the new wrapping width of the layer.

The changeWidth() function increases the value of the layerWidth global
variable by the amount that the mouse moved. If the distance that the mouse
moved is not zero, the function calls the load() method on the layer to load
the file "mytext.htm" and also to change the layer’s wrapping width to the
new layer width. Since the same file is loaded over and over, in effect the
content does not seem to change, but the wrapping width constantly changes
so that the content wraps neatly at the right edge of the layer.

function changeWidth(layer, delta)

{

 layerWidth = layerWidth + delta;

 if (delta != 0)

 layer.load("mytext.htm", layerWidth);

}

When you use load() to change the wrapping width, the value of
clip.right automatically changes to show the full wrapping width, so long
as you have not changed the value of clip.right from its default initial
value. If you have specifically set the value of clip.right , then the right
edge of the clipping region will not change, even if the wrapping width
changes.
180 Netscape Communicator 4.0 Changes for Content Developers

Defining the Dragging Functions
The enddrag() Function

When you release the mouse, the enddrag() function is called. The only
thing this function does is set the layer’s onMouseMove handler to 0, and
release the mouse-move event. If the mouse-move event was not released, the
layer would continue tracking all mouse move events.

function enddrag(e) {

 layer1.document.onmousemove=0;

 layer1.document.releaseEvents(Event.MOUSEMOVE);

 return false;

}

, Changing Wrapping Width Example 181

Defining the Dragging Functions
182 Netscape Communicator 4.0 Changes for Content Developers

e
Part 3.Downloadabl
Fonts

Contents

Chapter 15. Using Downloadable Fonts 201
Creating and Using Font Definition Files 202

Creating Font Definition Files 203

Linking Font Definition Files Into a Document 203

Using Fonts in the Document 204

Adding a New MIME Type to the Web Server 205

New Attributes for the FONT Tag 205

POINT_SIZE Attribute 206

WEIGHT Attribute 206

Further Information 206
, 183

Javascript-Accessible Style Sheets
C h a p t e r

14
Using Downloadable Fonts

Font enhancements in Communicator include the ability to incorporate
downloadable fonts into your web documents. By using downloadable fonts on
your web pages, you can specify whatever fonts you want to enhance the
appearance of your pages.

The fonts are contained in a font definition file that reside on the host web
server with the HTML document. When the page is accessed by a browser, the
font definition file is downloaded with the HTML file in the same way that a
GIF or JPEG file would be. The font definition file is loaded asynchronously so
that the HTML page doesn’t have to wait while the fonts are loading.

The dowloaded font remains on the end user’s system only while the page is in
the browser’s cache. End users cannot copy the fonts for their own future use.

This document contains the following sections:

• Creating and Using Font Definition Files

• New Attributes for the FONT Tag

• Further Information
184 Javascript-Accessible Style Sheets

Creating and Using Font Definition Files
Creating and Using Font Definition Files
Before you can create font definition files, make sure the fonts you wish to use
in your web document are installed on your system. You can get fonts by
creating them, purchasing them, or finding free fonts on the Internet. Be aware
that fonts are subject to copyright laws, so be sure you have the right to use a
font before you incorporate it as a downloadable font in your web documents.

As a first place to look for fonts to buy or download free, you can search the
web using keywords such as "font buy"or "font free."

Creating Font Definition Files

When the desired fonts are installed on your system, the next step is to make a
font definition file. To do this, you need a font definition file authoring tool,
such as Typograph from HexMac, or the Font Composer Plugin for Communi-
cator.

To download a font definition generation tool from HexMac, go to their web
site at:

http://www.hexmac.com/ fontswin

The exact steps for creating a font definition file depend on the tool you are
using. For example, in HexMac Typograph, you would open your document in
Typograph, and use simple menus to select fonts and apply them to text. You
then burn the file, which saves the document, creates a font definition file that
contains the fonts used by the file, and also links the font defintion file into the
document.

When creating a font definition file, you must specify the domain that is
allowed to use these fonts. That is, only web pages served by the specified
domain are allowed to download the font file. For example, for fonts to be
downloaded with this document, which is served from
developer.netscape.com , the domain for the font file is:

//developer.netscape.com
 Javascript Accessible Style Sheets 185

Javascript-Accessible Style Sheets
Linking Font Definition Files Into a Document

After you have created a font definition file, you can link it directly into
documents either by using a style sheet or by using the <LINK> tag.

The following example links a font definition file using CSS syntax.

<STYLE TYPE="text/css"><!--

 @fontdef url(http://home.netscape.com/fonts/sample.pfr);

--></STYLE>

You can link a font definition file into a document by using a LINK tag whose
REL attribute is FONTDEF, and whose SRC attribute is the pathname to the font
definition file, as shown here:

<LINK REL=FONTDEF SRC="http://home.netscape.com/fonts/sample.pfr">

The source URL can be any valid URL.

Using Fonts in the Document

After linking a font definition file into a document, you can use the fonts that
are contained in the font definition file anywhere in the document. You can
either use the fonts as the value of the FACE attribute in the tag, or
you can use them as the value of the font family style sheet property, as
discussed in the section "Font Family" in Chapter 5, “Style Sheet Reference.”

The following code creates a style sheet that contains a style definition for all
<H1> tags. All <H1> elements will be displayed in the Impress BT font. If that
font is not available (for example, the font definition file cannot be located), the
element uses the Helvetica font. If that font is not available, the generic sans
serif font is used as a last resort.

<STYLE type="text/css">

<!--

H1 {font-family:"Impress BT", "Helvetica", sans-serif;}

-->

</STYLE>

The following example displays an <H1> elemet in the Impress BT font.
186 Javascript-Accessible Style Sheets

New Attributes for the FONT Tag
<H1> This H1 Uses Impress BT Font </H1>

For a further example of the use of downloadable fonts, open the following
page:

fontdef1.htm fontswin

You can view the source code for the file fontdef1.htm to see how the fonts
are used in the file.

Adding a New MIME Type to the Web Server

When you are ready to make your document available on the web, you need to
put the font definition file in the place where the document expects to find it.
The font definition file will be downloaded with documents that use it, so long
as it is served from the domain for which the font definition file was created.

You will also need to add a new MIME type to your web server if it has not
already been added.

Add the MIME type application/font-tdpfr , and specify its ending as
.pfr .

Web servers cananot download font definition files unless they know about this
MIME type.

New Attributes for the FONT Tag
The tag takes new POINT-SIZE and WEIGHT attributes, in addition to
the other attributes it already supports.

POINT_SIZE Attribute

The POINT-SIZE attribute indicates the point size of the font. For example:

<P>

This text appears in 18 pt monspace font.
 Javascript Accessible Style Sheets 187

Javascript-Accessible Style Sheets
</P>

The POINT_SIZE attribute lets you set exact point sizes. (The existing SIZE
attribute lets you set the font size relative to the existing size, for example, "+2"
or "-2".)

WEIGHT Attribute

The WEIGHT attribute indicates the weight, or "boldness" of the font. The value
is from 100 to 900 inclusive (in steps of 100), where 100 indicates the least bold
value, and 900 indicates the boldest value.

If you use the tag to indicate a bold weight, the maximum boldness is
always used. The WEIGHT attribute allows you to specify degrees of boldness,
rather than just "bold" or "not bold,"

For example:

<P>

This text appears in 18 pt monospace font.It is fairly bold, but it
could be even bolder if it needed to be.

</P>

Further Information
For more information about dynamic fonts, see:

http://home.netscape.com/comprod/products/communicator/fonts/index.html

Another information resource is:

http://www.bitstream.com/world/ fontswin

The following link takes you to a very informative article that contains infor-
mation and recommendations about buying fonts:

http://www4.zdnet.com/macuser/mu_0696/desktop/desktop.html fontswin
188 Javascript-Accessible Style Sheets

Further Information
The following link takes you to a paper published by the World Wide Web
Consortium (W3C) discussing fonts and the web.

http://www.w3.org/pub/WWW/Fonts/ fontswin
 Javascript Accessible Style Sheets 189

Javascript-Accessible Style Sheets
190 Javascript-Accessible Style Sheets

Index

Symbols
<BODY> tag

as parent 21

<DIV> tag
example for positioning

content 105

 tag
FACE attribute 186
POINT-SIZE attribute 187
WEIGHT attribute 187

<ILAYER> tag 111

<LAYER> tag
and style sheets 108
caveats 107
example 107
for positioning HTML content 107
using inline JavaScript 116

<LINK> tag
reference entry 46

<NOLAYER> tag 125

<SCRIPT> tag
in positioned content 139

 tag
reference entry 47

<STYLE> tag
for positioning content 104
overview 24
reference entry 46

A
above property

for positioning content 120
of layer objects 134

absolute position

for content 110

absolute-size
font size 52

accessing
positioned content with

JavaScript 127

align
style sheets property 69

animated gifs
onload handler 142

animating
positioned content 140

applets
in positioned content 125

assigning
styles 23

attributes
of positioned blocks of

content 111

auto
margin 63

B
background color

style sheet property 77

background color property
of positioned content 121

background image
of positioned content 122
style sheet property 75

background properties
in style sheets 73

background property
for positioning content 122
191

of layer objects 133

beginDrag()
example function 179

below property
for positioning content 120

bgColor property
for positioning content 121
of layer objects 133

Bitstream
font information 188

blink 58

block level elements
classification property 77
format properties 35
formatting example 35
formatting in style sheets 62
padding overview 41

border characteristic
setting in style sheets 40

border color
style sheet property 67

border style
style sheet property 67

border widths
in style sheets 66

borderWidths()
function 66

bulleted lists
display properties 77

C
capitalize 59

capturing mouse events
example using positioned

content 176

cascading style sheets
position property 105
syntax for definining style

sheets 16
syntax for positioning content 103
W3C specification for positioning

content 103
W3C specification for style

sheets 16

center
text align value 60

changeDirection()
example function 157

changeNow()
example function 172

changePoles()
example function 158

changeWidth()
example function 180

child elements
in style sheets 21

CLASS
HTML attribute 48

classes
in JavaScript syntax style sheets 51
JavaScript property 51
of styles 26

classification properties
in style sheets 77

clear
style sheet property 72

clip property
for positioning content 119

clip.bottom property
of layer object 132

clip.height property
of layer object 132

clip.left property
of layer object 132

clip.right
property of layer object 132

clip.top property
of positioned content 132

clip.width property
of layer object 132

clipping region
example of changing for positioned
192 Dynamic HTML in Communicator 4.0

content 165
of positioned content 119

color
background in style sheets 77
background of positioned

content 121
properties in style sheets 73
style sheet property 74
units 82

combining style sheets 33

comments
in style sheets 45

Communicator
style sheets 15
syntax for positioning content 103

content
for positioned content 117
positioning 102
writing in positioned blocks 137

contextual selection
in style sheets 30

contract()
example function 174

contracting
positioned content example 172

creating
positioned content

dynamically 136
style sheets 23

CSS
see cascading style sheets 16

D
defining

classes of styles 26

DIV block
example use with style sheets 86

document object
layers property 129

document object model 16

downloadable fonts 183

drag()
example function 179

Dynamic HTML 9
positioning content 99
style sheets 13

Dynamic HTNL
introduction 9

dynamically
creating positioned content 136

E
enddrag()

example function 181

event handling
in positioned content 138

examples
expanding colored squares 165
of capturing mouse events in

positioned content 176
of changing positioned content’s

wrapping width 176
of creating positioned content 144
of inline JavaScript 148
of style sheets 83
of using load() function 176
swimming fish 149

expand()
example function 173

expanding
positioned content example 172

external content
for positioned content 117

external style sheets 25

F
FACE attribute 186

Fancy Flowers Farm
positioned content example 144

float
style sheet property 69
193

font definition files
linking 186

font family
style sheet property 53

font properties
in style sheets 52

font size
style sheet property 52

font style
style sheet property 56

font weight
style sheets 55

fonts
downloadable 183
downloading 188
dynamic, see downloadable

fonts 183

format properties
for block level elements 35

forms
example in positioned content

(1) 145
example in positioned content

(2) 152
in positioned content 125

H
height property

for positioning content 119

hide
visibility value 121

HTML layers
see positioned content 102

HTML tags
attributes for style sheets 47
in style sheets 46

I
ID

for styles 29

HTML attribute 49
property of positioned content 113
style for positioning content 104
style sheet property for positioning

content 113

ids
in JavaScript style sheets 52
JavaScript property 52

images
pre-fetching 142
suppressing placeholder icons 143

individual elements
assigning styles for 32

inflow blocks of positioned
content 110

inherit
visibility value 121

inheritance
of styles 21

initializeFish()
example function 156

initializeTopLeft()
example function 171

inline
classification property 77

inline JavaScript
example 148
using with positioned content 116

introduction
to Dynamic HTML 9

J
JavaScript

accessing positioned content 127
document object model 16
example of inline 148
inline in layer definition 116
methods of the layer object 134
syntax for style sheets 17

JavaScript properties
classes 51
194 Dynamic HTML in Communicator 4.0

for styles sheets 51
ids 52
tags 51

justify
text align value 60

L
large

font size 52

layer object 129
above property (ii) 134
background property 133
bgColor property 133
changing source 136
clip.bottom 132
clip.height 132
clip.left 132
clip.right 132
clip.top 132
clip.width 132
document property 129
left property (ii) 131
load() method 136
methods 134
moveAbove() method 135
moveBelow() method 135
moveBy() method 135
moveToAbsolute() method 135
name property (ii) 131
pageX property (ii) 131
pageY property (ii) 132
parentLayer property 134
properties 131
resizeBy() method 135
resizeTo() method 135
siblingAbove property 133
siblingBelow property 133
src property (ii) 134
top property 131
visibility property (ii) 132
zIndex property 132

layer-background-color
style property 122, 123

layer-background-image
style property 123

layers
of HTML content 102
see also positioned content 102

layers array 129

left
text align value 60

left property
for positioning content 113
of layer object 131

length
units 80

line height
style sheet property 57

line-through
text decoration value 58

linking
font definition files 186
to style sheets 25

list style type
style sheet property 78

list-item
display value 77

lists
display properties 77

load() method
of the layer object 136

loading
onLoad handler for positioned

content 124
positioned content 136

lowercase
text transform value 59

M
margins

overview 39
precedence 36
properties in style sheets 63
195

margins()
function 63

medium
font size 52

methods
in layer object 134

modifying
positioned content with

JavaScript 127

moveAbove() method
of layer objects 135

moveBelow() method
of layer objects 135

moveBy() method
of layer objects 135

moveFish()
example function 153

movefish2()
example function 157

moveTo() method
of layer objects 135

moveToAbsolute() method
of layer objects 135

moving
blocks of content

incrementally 135
positioned content to a fixed

position 135

N
name property

for positioning content 113
of layer objects 131

named style
for positioning content 104

Navigator 4.0
syntax for positioning content 103

nesting
blocks of positioned content 103

normal

white space value 80

O
objects

document 129
layer 129

onBlur attribute
of positioned content 123

onFocus
attribute of positioned content 123
event handler 139

onLoad
animated gifs 142
attribute of positioned content 124
event handler for positioned

content 139
example in positioned content 165

onMouseOut
event handler for positioned

content 138

onMouseOver
event handler for positioned

content 138
example in positioned content 165

ordered lists
display properties 77

P
padding

in block level elements 41
style sheet properties 64

padding()
function 64

pageX property
for positioning content 116
of layer objects 131

pageY property
for positioning content 116
of layer objects 132

parent elements
in style sheets 21
196 Dynamic HTML in Communicator 4.0

parentLayer property 134

plugins
in positioned content 125

POINT-SIZE attribute 187

position
absolute 110
of content 113
relative 110

position property
for positioning content 110
for styles 105

positioned content
<LAYER> tag 107
<NOLAYER> 125
above property 120
absolute position 110
animating 140
applets 125
attributes 111
background color 121
background image 122
below property 120
changing wrapping width

example 176
clip property 119
creating dynamically 136
defining position of 113
dynamically positioning 102
event handling 138
example of changing clipping

region of 165
example of changing stacking

order 154
example of contracting 172
example of expanding 172
expanding colored squares

example 165
forms 125
height property 119
ID 113
in Communicator 103
in Navigator 4.0 103
inflow 110
inline 110

introduction 102
layer object 129
left property 113
name property 113
nesting 103
onBlur attribute 123
onFocus attribute 123
onLoad attribute 124
onLoad handlers 142
onMouseOut attribute 123
onMouseOver attribute 123
pageX property 116
pageY property 116
plugins 125
position property 105
properties 111
properties that can be accessed or

modified in scripts 130
relative position 110
scripts 139
source-include property 117
specifying external content 117
specifying stacking order 120
src property 117
top property 113
using JavaScript to access 127
visibility property 121
W3C specification 103
width property 118
wrapping width 118
writing 137
Z-index attribute 120

positioning
content, W3C specification 103
HTML content 102

pre
white space value 80

precedence
of horizontal dimensions 36

properties
of layer object 131
197

R
relative

position value 111
positioned content 110

relative-size
font size 53

replaced elements 42

resetPole()
example function 159

resizeBy() method
of layer objects 135

resizeTo() method
of layer objects 135

resizing
blocks of positioned content

incrementally 135
blocks of positioned content to

specific size 135

restacking blocks of content
moveAbove() method 135
moveBelow() method 135

right
text align value 60

S
scripts

for accessing positioned
content 127

in positioned content 139

setTimeout() function 140

setting
margins 39
padding 41
width in style sheets 39

show
visibility value 121

showForm()
example function 153

siblingAbove property 133

siblingBelow property 133

small
font size 52

source
changing for positioned

content 136

source-include property 117

src property
for positioning content 117
of layer objects 134

stacking order
example of changing for positioned

content 154
of positioned content 120

strict
cascading style sheet syntax 17

STYLE
attribute 47

style sheets
<BODY> tag 21
<LINK> 46
 47
<STYLE> 46
align 69
and content positioning 108
background color 77
background image 75
background properties 73
background property for

positioning content 122
background-color property of

positioned content 121
block level formatting 62
border color 67
border style 67
border width settings 66
CLASS attribute 48
classification properties 77
clear 72
color 73, 74
combining 33
comments 45
contextual selection 30
creating 23
defining in external files 25
198 Dynamic HTML in Communicator 4.0

definining classes of styles 26
example 83
float 69
font family 53
font properties 52
font size 52
font style 56
font weight 55
formatting block level elements 35
height property 119
HTML tags 46
ID attribute 49
in Communicator 15
inheritance 21
introduction 15
JavaScript properties 51
JavaScript syntax 17
left property 113
line height 57
list style type 78
margin settings 63
new HTML tags 47
padding settings 64
setting border characteristics 40
source-include property 117
STYLE attribute 47
text align 60
text color 74
text decoration 58
text indent 61
text properties 56
text transform 58
top property 113
unique styles 29
units 80
visibility property 121
white space 80
width 68
width property 118
Z-index property 120

Style Sheets Ink 83

styles
assigning 23
defining with <STYLE> 24
for individual elements 32

ID 29
unique 29

suppressing placeholder icons 143

T
tags

JavaScript style sheet syntax 51

text align
style sheet property 60

text color 74

text decoration
style sheet property 58

text indent
style sheet property 61

text properties
in style sheets 56

text transform
style sheet property 58

top property
for positioning content 113
of layer objects 131

U
underline

text decoration value 58

unique styles 29
for positioning content 104

units
color 82
for style sheet properties 80
length 80

unordered lists
display properties 77

uppercase
text transform value 59

V
visibility property

for positioning content 121
199

of layer objects 132

visible area
of positioned content 119

W
W3C

fonts and the web 189
specification for positioning

content 103
specification for style sheets 16

web fonts 183

WEIGHT attribute 187

white space
style sheet property 80

width
changing of a block of positioned

content using load()
method 136

overview (style sheets) 39
precedence 36
style sheet property 68

width property
for positioning content 118

wrapping width
example of changing in positioned

content 176
of positioned content 118

writing
positioned blocks of content 137

X
x-large

font size 52

x-small
font size 52

xx-large
font size 53

Z
Z-index property

for positioning content 120

zIndex property
of layer objects 132
200 Dynamic HTML in Communicator 4.0

	Dynamic HTML
	Contents
	About This Guide
	Purpose of This Document
	Structure of This Document
	Typographic Conventions

	Introducing Dynamic HTML
	Introducing Style Sheets
	Introducing Content Positioning
	Introducing Downloadable Fonts

	Introduction To Style Sheets
	Style Sheets in Communicator
	Using Cascading Style Sheets to Define Styles
	Using JavaScript and the Document Object Model to ...
	Introductory Example
	Inheritance of Styles

	Creating Style Sheets and Assigning Styles
	Defining Style Sheets with the <STYLE> Tag
	Defining Style Sheets in External Files
	Defining Classes of Styles
	Defining Named Individual Styles
	Using Contextual Selection Criteria
	Specifying Styles for Individual Elements
	Combining Style Sheets

	Format Properties for Block-Level Elements
	Block-level Formatting Overview and Example
	Setting Margins or Width
	Setting Border Widths, Color, and Style
	Setting Paddings
	Inheritance of Block-Level Formatting Properties

	Style Sheet Reference
	Comments in Style Sheets
	New HTML Tags
	<STYLE>
	<LINK>
	

	New Attributes for Existing HTML Tags
	STYLE
	CLASS
	ID

	New JavaScript Object Properties
	tags
	classes
	ids

	Style Sheet Properties
	Font Properties
	Font Size
	Font Family
	Font Weight
	Font Style

	Text Properties
	Line Height
	Text Decoration
	Text Transform
	Text Alignment
	Text Indent

	Block-Level Formatting Properties
	Margins
	Padding
	Border Widths
	Border Style
	Border Color
	Width
	Alignment
	Clear

	Color and Background Properties
	Color
	Background Image
	Background Color

	Classification Properties
	Display
	List Style Type
	White Space

	Units
	Length Units
	Color Units

	Advanced Style Sheet Example
	Style Sheets Ink Home Page
	Overview of the Style Sheet
	Main Block
	The Introductory Section
	Intro Head
	Text in the Intro Block
	List of Services
	End of the Intro Block

	The Training Section
	The Seminars Section
	Web Sites and Consultation Sections
	The Background Block
	Trouble-shooting Hints

	Introduction
	Overview
	Positioning HTML Content Using Styles
	Positioning HTML Content Using the <LAYER> Tag

	Defining Positioned Blocks of HTML Content
	Absolute versus Relative Positioning
	Absolute Positioning
	Relative Positioning

	Attributes and Properties
	POSITION
	ID
	LEFT and TOP
	PAGEX and PAGEY
	SRC and source-include
	WIDTH
	HEIGHT
	CLIP
	Z-INDEX, ABOVE and BELOW
	VISIBILITY
	BGCOLOR and BACKGROUND-COLOR
	BACKGROUND and BACKGROUND-IMAGE
	OnMouseOver, OnMouseOut
	OnFocus, OnBlur
	OnLoad

	The <NOLAYER> Tag
	Applets, Plug-ins, and Forms

	Using JavaScript With Positioned Content
	Using JavaScript to Bring Your Web Pages to Life
	The Layer Object
	The Document Property of Layers and the Layers Pro...
	How Do You Refer to a Positioned Block of Content ...

	The Layer Object Properties
	The Layer Object Methods

	Creating Positioned Blocks of Content Dynamically
	Writing Content in Positioned Blocks
	Handling Events
	Using Localized Scripts
	Animating Positioned Content
	Animating Images
	Using OnLoad Handlers
	Pre-fetching Images
	Suppressing the Icon for Images that Have Not Yet ...

	Fancy Flowers Farm Example
	Introducing the Flower Farm
	Creating the Form for Flower Selection
	Positioning the Flower Layers

	Swimming Fish Example
	Positioning and Moving the Fish and Poles
	Defining the onLoad Handler for the BODY Element
	Positioning the Fish and Poles
	Defining the Form
	Moving the Fish

	Changing the Stacking Order of Fish and Poles
	Adding Another Layer to Contain the Reverse Fish I...
	Initializing the Fish to Have a Direction Variable...
	Moving the Fish Backward and Forward
	Changing the Direction of the Fish
	Changing the Stacking Order of the Poles and the F...
	Updating the Button That Gets the Fish Going

	Nikki’s Diner Example
	Content in the External Files
	The File for the Main Page

	Expanding Colored Squares Example
	Running the Example
	Creating the Colored Squares
	Definitions for the Layers

	The Initialization Functions
	The Last Layer
	Moving the Mouse Over a Square
	The expand() Function
	The contract() Function
	Styles in the Document

	Changing Wrapping Width Example
	Running The Example
	Defining the Block of Content
	Capturing Events for the Layer
	Defining the Dragging Functions
	The begindrag() Function
	The drag() Function
	The enddrag() Function

	Using Downloadable Fonts
	Creating and Using Font Definition Files
	Creating Font Definition Files
	Linking Font Definition Files Into a Document
	Using Fonts in the Document
	Adding a New MIME Type to the Web Server

	New Attributes for the FONT Tag
	POINT_SIZE Attribute
	WEIGHT Attribute

	Further Information

