
Introduction to

Object-Oriented Programming

Using C++

Peter M�uller

pmueller@uu-gna.mit.edu

Globewide Network Academy (GNA)
www.gnacademy.org/

November 18, 1996

Contents

1 Introduction 1

2 A Survey of Programming Techniques 3

2.1 Unstructured Programming . 3

2.2 Procedural Programming . 4

2.3 Modular Programming . 5

2.4 An Example with Data Structures 6

2.4.1 Handling Single Lists . 6

2.4.2 Handling Multiple Lists 8

2.5 Modular Programming Problems 8

2.5.1 Explicit Creation and Destruction 9

2.5.2 Decoupled Data and Operations 9

2.5.3 Missing Type Safety . 10

2.5.4 Strategies and Representation 10

2.6 Object-Oriented Programming 11

2.7 Excercises . 12

3 Abstract Data Types 13

3.1 Handling Problems . 13

3.2 Properties of Abstract Data Types 15

3.3 Generic Abstract Data Types . 17

3.4 Notation . 17

3.5 Abstract Data Types and Object-Orientation 18

3.6 Excercises . 19

4 Object-Oriented Concepts 21

4.1 Implementation of Abstract Data Types 21

4.2 Class . 23

4.3 Object . 24

4.4 Message . 24

4.5 Summary . 25

4.6 Excercises . 26

i

ii CONTENTS

5 More Object-Oriented Concepts 27
5.1 Relationships . 27
5.2 Inheritance . 30
5.3 Multiple Inheritance . 32
5.4 Abstract Classes . 34
5.5 Excercises . 36

6 Even More Object-Oriented Concepts 39

6.1 Generic Types . 39
6.2 Static and Dynamic Binding . 41
6.3 Polymorphism . 42

7 Introduction to C++ 47

7.1 The C Programming Language 47
7.1.1 Data Types . 47
7.1.2 Statements . 49
7.1.3 Expressions and Operators 50
7.1.4 Functions . 54
7.1.5 Pointers and Arrays . 55
7.1.6 A First Program . 56

7.2 What Next? . 57

8 From C To C++ 59

8.1 Basic Extensions . 59
8.1.1 Data Types . 59
8.1.2 Functions . 62

8.2 First Object-oriented Extensions 63
8.2.1 Classes and Objects . 63
8.2.2 Constructors . 65
8.2.3 Destructors . 68

9 More on C++ 69

9.1 Inheritance . 69
9.1.1 Types of Inheritance . 70
9.1.2 Construction . 70
9.1.3 Destruction . 72
9.1.4 Multiple Inheritance . 72

9.2 Polymorphism . 72
9.3 Abstract Classes . 74
9.4 Operator Overloading . 74
9.5 Friends . 76
9.6 How to Write a Program . 77

9.6.1 Compilation Steps . 78
9.6.2 A Note about Style . 79

9.7 Excercises . 79

CONTENTS iii

10 The List { A Case Study 81
10.1 Generic Types (Templates) . 81
10.2 Shape and Traversal . 83
10.3 Properties of Singly Linked Lists 83
10.4 Shape Implementation . 85

10.4.1 Node Templates . 85
10.4.2 List Templates . 87

10.5 Iterator Implementation . 90
10.6 Example Usage . 93
10.7 Discussion . 93

10.7.1 Separation of Shape and Access Strategies 93
10.7.2 Iterators . 94

10.8 Excercises . 95

Bibliography 97

A Solutions to the Excercises 99
A.1 A Survey of Programming Techniques 99
A.2 Abstract Data Types . 100
A.3 Object-Oriented Concepts . 102
A.4 More Object-Oriented Concepts 103
A.5 More on C++ . 105
A.6 The List { A Case Study . 105

iv CONTENTS

Preface

The �rst course Object-Oriented Programming Using C++ was held in Summer
1994 and was based on a simple ASCII tutorial. After a call for participation,
several highlymotivated people from all over the world joined course coordinator
Marcus Speh as consultants and had pushed the course to its success. Besides
of the many students who spend lots of their time to help doing organizational
stu�.

Then, the \bomb". The original author of the used ASCII tutorial stands
on his copyright and denies us to reuse his work. Unfortunately, Marcus was
unable to spend more time on this project and so the main driving force was
gone.

My experiences made as consultant for this �rst course have lead to my
decision that the course must be o�ered again. So, in Summer 1995 I've just
announced a second round, hoping that somehow a new tutorial could be writ-
ten. Well, here is the result. I hope, that you �nd this tutorial useful and clear.
If not, please send me a note. The tutorial is intended to be a group work and
not a work of one person. It is essential, that you express your comments and
suggestions.

The course and the tutorial could have only been realized with help of many
people. I wish to thank the people from the Globewide Network Academy
(GNA), especially Joseph Wang and Susanne Reading. The tutorial was proof-
read by Ricardo Nassif, who has also participated in the �rst course and who
has followed me in this new one.

Berlin, Germany Peter M�uller

v

Chapter 1

Introduction

This tutorial is a collection of lectures to be held in the on-line course Intro-
duction to Object-Oriented Programming Using C++. In this course, object-
orientation is introduced as a new programming concept which should help you
in developing high quality software. Object-orientation is also introduced as a
concept which makes developing of projects easier. However, this is not a course
for learning the C++ programming language. If you are interested in learning
the language itself, you might want to go through other tutorials, such as C++:
Annotations1 by Frank Brokken and Karel Kubat. In this tutorial only those
language concepts that are needed to present coding examples are introduced.

And what makes object-orientation such a hot topic? To be honest, not
everything that is sold under the term of object-orientation is really new. For
example, there are programs written in procedural languages like Pascal or C
which use object-oriented concepts. But there exist a few important features
which these languages won't handle or won't handle very well, respectively.

Some people will say that object-orientation is \modern". When reading
announcements of new products everything seems to be \object-oriented". \Ob-
jects" are everywhere. In this tutorial we will try to outline characteristics of
object-orientation to allow you to judge those object-oriented products.

The tutorial is organized as follows. Chapter 2 presents a brief overview of
procedural programming to refresh your knowledge in that area. Abstract data
types are introduced in chapter 3 as a fundamental concept of object-orientation.
After that we can start to de�ne general terms and beginning to view the world
as consisting of objects (chapter 4). Subsequent chapters present fundamental
object-oriented concepts (chapters 5 and 6). Chapters 7 through 9 introduce
C++ as an example of an object-oriented programming language which is in
wide-spread use. Finally chapter 10 demonstrates how to apply object-oriented
programming to a real example.

1http://www.icce.rug.nl/docs/cpp.html

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

A Survey of Programming

Techniques

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This chapter is a short survey of programming techniques. We use a simple
example to illustrate the particular properties and to point out their main ideas
and problems.

Roughly speaking, we can distinguish the following learning curve of someone
who learns program:

� Unstructured programming,
� procedural programming,
� modular programming and
� object-oriented programming.

This chapter is organized as follows. Sections 2.1 to 2.3 briey describe the �rst
three programming techniques. Subsequently, we present a simple example of
how modular programming can be used to implement a singly linked list module
(section 2.4). Using this we state a few problems with this kind of technique in
section 2.5. Finally, section 2.6 describes the fourth programming technique.

2.1 Unstructured Programming

Usually, people start learning programming by writing small and simple pro-
grams consisting only of one main program. Here \main program" stands for a
sequence of commands or statements which modify data which is global through-
out the whole program. We can illustrate this as shown in Fig. 2.1.

As you should all know, this programming techniques provide tremendous
disadvantages once the program gets su�ciently large. For example, if the same

3

4 CHAPTER 2. A SURVEY OF PROGRAMMING TECHNIQUES

main program
data

program

Figure 2.1: Unstructured programming. The main program directly operates
on global data.

statement sequence is needed at di�erent locations within the program, the
sequence must be copied. This has lead to the idea to extract these sequences,
name them and o�ering a technique to call and return from these procedures.

2.2 Procedural Programming

With procedural programming you are able to combine returning sequences of
statements into one single place. A procedure call is used to invoke the procedure.
After the sequence is processed, ow of control proceeds right after the position
where the call was made (Fig. 2.2).

main program procedure

Figure 2.2: Execution of procedures. After processing ow of controls proceed
where the call was made.

With introducing parameters as well as procedures of procedures (subpro-
cedures) programs can now be written more structured and error free. For
example, if a procedure is correct, every time it is used it produces correct
results. Consequently, in cases of errors you can narrow your search to those
places which are not proven to be correct.

Now a program can be viewed as a sequence of procedure calls1. The main
program is responsible to pass data to the individual calls, the data is processed
by the procedures and, once the program has �nished, the resulting data is
presented. Thus, the ow of data can be illustrated as a hierarchical graph, a
tree, as shown in Fig. 2.3 for a program with no subprocedures.

1We don't regard parallelism here.

2.3. MODULAR PROGRAMMING 5

main program

procedure1 2procedure procedure3

data

program

Figure 2.3: Procedural programming. The main program coordinates calls to
procedures and hands over appropriate data as parameters.

To sum up: Now we have a single program which is devided into small
pieces called procedures. To enable usage of general procedures or groups of
procedures also in other programs, they must be separately available. For that
reason, modular programming allows grouping of procedures into modules.

2.3 Modular Programming

With modular programming procedures of a common functionality are grouped
together into separate modules. A program therefore no longer consists of only
one single part. It is now devided into several smaller parts which interact
through procedure calls and which form the whole program (Fig. 2.4).

main program

module1 module 2

2data +1data + datadata

procedure1 2procedure procedure
3

data

program

Figure 2.4: Modular programming. The main program coordinates calls to
procedures in separate modules and hands over appropriate data as parameters.

Each module can have its own data. This allows each module to manage an
internal state which is modi�ed by calls to procedures of this module. However,

6 CHAPTER 2. A SURVEY OF PROGRAMMING TECHNIQUES

there is only one state per module and each module exists at most once in the
whole program.

2.4 An Example with Data Structures

Programs use data structures to store data. Several data structures exist, for
example lists, trees, arrays, sets, bags or queues to name a few. Each of these
data structures can be characterized by their structure and their access methods.

2.4.1 Handling Single Lists

You all know singly linked lists which use a very simple structure, consisting of
elements which are strung together, as shown in Fig. 2.5).

Figure 2.5: Structure of a singly linked list.

Singly linked lists just provides access methods to append a new element to
their end and to delete the element at the front. Complex data structures might
use already existing ones. For example a queue can be structured like a singly
linked list. However, queues provide access methods to put a data element at
the end and to get the �rst data element (�rst-in �rst-out (FIFO) behaviour).

We will now present an example which we use to present some design con-
cepts. Since this example is just used to illustrate these concepts and problems
it is neither complete nor optimal. Refer to chapter 10 for a complete object-
oriented discussion about the design of data structures.

Suppose you want to program a list in a modular programming language
such as C or Modula-2. As you believe that lists are a common data structure,
you decide to implement it in a separate module. Typically, this requires to
write two �les: the interface de�nition and the implementation �le. Within this
chapter we will use a very simple pseudo code which you should understand
immediately. Let's assume, that comments are enclosed in \/* ... */". Our
interface de�nition might then look similar to that below:

/*

* Interface definition for a module which implements

* a singly linked list for storing data of any type.

*/

MODULE Singly-Linked-List-1

BOOL list_initialize();

BOOL list_append(ANY data);

2.4. AN EXAMPLE WITH DATA STRUCTURES 7

BOOL list_delete();

list_end();

ANY list_getFirst();

ANY list_getNext();

BOOL list_isEmpty();

END Singly-Linked-List-1

Interface de�nitions just describe what is available and not how it is made
available. You hide the informationof the implementation in the implementation
�le. This is a fundamental principle in software engineering, so let's repeat it:
You hide information of the actual implementation (information hiding). This
enables you to change the implementation, for example to use a faster but more
memory consuming algorithm for storing elements without the need to change
other modules of your program: The calls to provided procedures remain the
same.

The idea of this interface is as follows: Before using the list one have to
call list initialize() to initialize variables local to the module. The following two
procedures implement the mentioned access methods append and delete. The
append procedure needs a more detailed discussion. Function list append() takes
one argument data of arbitrary type. This is necessary since you wish to use
your list in several di�erent environments, hence, the type of the data elements
to be stored in the list is not known beforehand. Consequently, you have to use
a special type ANY which allows to assign data of any type to it2. The third
procedure list end() needs to be called when the program terminates to enable
the module to clean up its internally used variables. For example you might
want to release allocated memory.

With the next two procedures list getFirst() and list getNext() a simple
mechanism to traverse through the list is o�ered. Traversing can be done using
the following loop:

ANY data;

data <- list_getFirst();

WHILE data IS VALID DO

doSomething(data);

data <- list_getNext();

END

Now you have a list module which allows you to use a list with any type
of data elements. But what, if you need more than one list in one of your
programs?

2Not all real languages provide such a type. In C this can be emulated with pointers.

8 CHAPTER 2. A SURVEY OF PROGRAMMING TECHNIQUES

2.4.2 Handling Multiple Lists

You decide to redesign your list module to be able to manage more than one list.
You therefore create a new interface description which now includes a de�nition
for a list handle. This handle is used in every provided procedure to uniquely
identify the list in question. Your interface de�nition �le of your new list module
looks like this:

/*

* A list module for more than one list.

*/

MODULE Singly-Linked-List-2

DECLARE TYPE list_handle_t;

list_handle_t list_create();

list_destroy(list_handle_t this);

BOOL list_append(list_handle_t this, ANY data);

ANY list_getFirst(list_handle_t this);

ANY list_getNext(list_handle_t this);

BOOL list_isEmpty(list_handle_t this);

END Singly-Linked-List-2;

You use DECLARE TYPE to introduce a new type list handle t which repre-
sents your list handle. We do not specify, how this handle is actually represented
or even implemented. You also hide the implementation details of this type in
your implementation �le. Note the di�erence to the previous version where you
just hide functions or procedures, respectively. Now you also hide information
for an user de�ned data type called list handle t.

You use list create() to obtain a handle to a new thus empty list. Every
other procedure now contains the special parameter this which just identi�es
the list in question. All procedures now operate on this handle rather than a
module global list.

Now you might say, that you can create list objects. Each such object can be
uniquely identi�ed by its handle and only those methods are applicable which
are de�ned to operate on this handle.

2.5 Modular Programming Problems

The previous section shows, that you already programwith some object-oriented
concepts in mind. However, the example implies some problems which we will
outline now.

2.5. MODULAR PROGRAMMING PROBLEMS 9

2.5.1 Explicit Creation and Destruction

In the example every time you want to use a list, you explicitly have to declare
a handle and perform a call to list create() to obtain a valid one. After the use
of the list you must explicitly call list destroy() with the handle of the list you
want to be destroyed. If you want to use a list within a procedure, say, foo()
you use the following code frame:

PROCEDURE foo() BEGIN

list_handle_t myList;

myList <- list_create();

/* Do something with myList */

...

list_destroy(myList);

END

Let's compare the list with other data types, for example an integer. Inte-
gers are declared within a particular scope (for example within a procedure).
Once you've de�ned them, you can use them. Once you leave the scope (for
example the procedure where the integer was de�ned) the integer is lost. It
is automatically created and destroyed. Some compilers even initialize newly
created integers to a speci�c value, typically 0 (zero).

Where is the di�erence to list \objects"? The lifetime of a list is also de�ned
by its scope, hence, it must be created once the scope is entered and destroyed
once it is left. On creation time a list should be initialized to be empty. Therefore
we would like to be able to de�ne a list similar to the de�nition of an integer.
A code frame for this would look like this:

PROCEDURE foo() BEGIN

list_handle_t myList; /* List is created and initialized */

/* Do something with the myList */

...

END /* myList is destroyed */

The advantage is, that now the compiler takes care of calling initialization
and termination procedures as appropriate. For example, this ensures that the
list is correctly deleted, returning resources to the program.

2.5.2 Decoupled Data and Operations

Decoupling of data and operations leads usually to a structure based on the
operations rather than the data: Modules group common operations (such as
those list ...() operations) together. You then use these operations by providing
explicitly the data to them on which they should operate. The resulting module

10 CHAPTER 2. A SURVEY OF PROGRAMMING TECHNIQUES

structure is therefore oriented on the operations rather than the actual data.
One could say that the de�ned operations specify the data to be used.

In object-orientation, structure is organized by the data. You choose the data
representations which best �t your requirements. Consequently, your programs
get structured by the data rather than operations. Thus, it is exactly the
other way around: Data speci�es valid operations. Now modules group data
representations together.

2.5.3 Missing Type Safety

In our list example we have to use the special type ANY to allow the list to
carry any data we like. This implies, that the compiler cannot guarantee for
type safety. Consider the following example which the compiler cannot check
for correctness:

PROCEDURE foo() BEGIN

SomeDataType data1;

SomeOtherType data2;

list_handle_t myList;

myList <- list_create();

list_append(myList, data1);

list_append(myList, data2); /* Oops */

...

list_destroy(myList);

END

It is in your responsibility to ensure that your list is used consistently. A
possible solution is to additionally add information about the type to each list
element. However, this implies more overhead and does not prevent you from
knowing what you are doing.

What we would like to have is a mechanism which allows us to specify on
which data type the list should be de�ned. The overall function of the list is
always the same, whether we store apples, numbers, cars or even lists. Therefore
it would be nice to declare a new list with something like:

list_handle_t<Apple> list1; /* a list of apples */

list_handle_t<Car> list2; /* a list of cars */

The corresponding list routines should then automatically return the correct
data types. The compiler should be able to check for type consistency.

2.5.4 Strategies and Representation

The list example implies operations to traverse through the list. Typically
a cursor is used for that purpose which points to the current element. This

2.6. OBJECT-ORIENTED PROGRAMMING 11

implies a traversing strategy which de�nes the order in which the elements of
the data structure are to be visited.

For a simple data structure like the singly linked list one can think of only
one traversing strategy. Starting with the leftmost element one successively
visits the right neighbours until one reaches the last element. However, more
complex data structures such as trees can be traversed using di�erent strategies.
Even worse, sometimes traversing strategies depend on the particular context
in which a data structure is used. Consequently, it makes sense to separate the
actual representation or shape of the data structure from its traversing strategy.
We will investigate this in more detail in chapter 10.

What we have shown with the traversing strategy applies to other strategies
as well. For example insertion might be done such that an order over the
elements is achieved or not.

2.6 Object-Oriented Programming

Object-oriented programming solves some of the problems just mentioned. In
contrast to the other techniques, we now have a web of interacting objects, each
house-keeping its own state (Fig. 2.6).

object

object

object

object

data
1

data
3

data
4

data
2

program

Figure 2.6: Object-oriented programming. Objects of the program interact by
sending messages to each other.

Consider the multiple lists example again. The problem here with modular
programming is, that you must explicitly create and destroy your list handles.
Then you use the procedures of the module to modify each of your handles.

In contrast to that, in object-oriented programming we would have as many
list objects as needed. Instead of calling a procedure which we must provide
with the correct list handle, we would directly send a message to the list object

12 CHAPTER 2. A SURVEY OF PROGRAMMING TECHNIQUES

in question. Roughly speaking, each object implements its own module allowing
for example many lists to coexist.

Each object is responsible to initialize and destroy itself correctly. Conse-
quently, there is no longer the need to explicitly call a creation or termination
procedure.

You might ask: So what? Isn't this just a more fancier modular program-
ming technique? You were right, if this would be all about object-orientation.
Fortunately, it is not. Beginning with the next chapters additional features of
object-orientation are introduced which makes object-oriented programming to
a new programming technique.

2.7 Excercises

1. The list examples include the special type ANY to allow a list to carry
data of any type. Suppose you want to write a module for a specialized
list of integers which provides type checking. All you have is the interface
de�nition of module Singly-Linked-List-2.

(a) How does the interface de�nition for a module Integer-List look like?

(b) Discuss the problems which are introduced with using type ANY for
list elements in module Singly-Linked-List-2.

(c) What are possible solutions to these problems?

2. What are the main conceptual di�erences between object-oriented pro-
gramming and the other programming techniques?

3. If you are familiarwith a modular programming language try to implement
module Singly-Linked-List-2. Subsequently, implement a list of integers
and a list of integer lists with help of this module.

Chapter 3

Abstract Data Types

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

Some authors describe object-oriented programming as programming ab-
stract data types and their relationships. Within this section we introduce
abstract data types as a basic concept for object-orientation and we explore
concepts used in the list example of the last section in more detail.

3.1 Handling Problems

The �rst thing with which one is confronted when writing programs is the
problem. Typically you are confronted with \real-life" problems and you want
to make life easier by providing a program for the problem. However, real-life
problems are nebulous and the �rst thing you have to do is to try to understand
the problem to separate necessary from unnecessary details: You try to obtain
your own abstract view, or model, of the problem. This process of modeling is
called abstraction and is illustrated in Figure 3.1.

The model de�nes an abstract view to the problem. This implies that the
model focusses only on problem related stu� and that you try to de�ne properties
of the problem. These properties include

� the data which are a�ected and
� the operations which are identi�ed

by the problem.
As an example consider the administration of employees in an institution.

The head of the administration comes to you and ask you to create a program
which allows to administer the employees. Well, this is not very speci�c. For
example, what employee information is needed by the administration? What
tasks should be allowed? Employees are real persons which can be characterized
with many properties; very few are:

13

14 CHAPTER 3. ABSTRACT DATA TYPES

Problem

Abstraction

Model

Figure 3.1: Create a model from a problem with abstraction.

� name,
� size,
� date of birth,
� shape,
� social number,
� room number,
� hair colour,
� hobbies.

Certainly not all of these properties are necessary to solve the administration
problem. Only some of them are problem speci�c. Consequently you create a
model of an employee for the problem. This model only implies properties
which are needed to ful�ll the requirements of the administration, for instance
name, date of birth and social number. These properties are called the data
of the (employee) model. Now you have described real persons with help of an
abstract employee.

Of course, the pure description is not enough. There must be some op-
erations de�ned with which the administration is able to handle the abstract
employees. For example, there must be an operation which allows to create a
new employee once a new person enters the institution. Consequently, you have
to identify the operations which should be able to be performed on an abstract
employee. You also decide to allow access to the employees' data only with
associated operations. This allows you to ensure that data elements are always
in a proper state. For example you are able to check if a provided date is valid.

To sum up, abstraction is the structuring of a nebulous problem into well-
de�ned entities by de�ning their data and operations. Consequently, these en-
tities combine data and operations. They are not decoupled from each other.

3.2. PROPERTIES OF ABSTRACT DATA TYPES 15

3.2 Properties of Abstract Data Types

The example of the previous section shows, that with abstraction you create
a well-de�ned entity which can be properly handled. These entities de�ne the
data structure of a set of items. For example, each administered employee has
a name, date of birth and social number.

The data structure can only be accessed with de�ned operations. This set of
operations is called interface and is exported by the entity. An entity with the
properties just described is called an abstract data type (ADT).

Figure 3.2 shows an ADT which consists of an abstract data structure and
operations. Only the operations are viewable from the outside and de�ne the
interface.

operations

abstract data structure

interface

abstract data type

Figure 3.2: An abstract data type (ADT).

Once a new employee is \created" the data structure is �lled with actual
values: You now have an instance of an abstract employee. You can create
as many instances of an abstract employee as needed to describe every real
employed person.

Let's try to put the characteristics of an ADT in a more formal way:

De�nition 3.2.1 (Abstract Data Type) An abstract data type (ADT)
is characterized by the following properties:

1. It exports a type.
2. It exports a set of operations. This set is called interface.
3. Operations of the interface are the one and only access mechanism to the

type's data structure.
4. Axioms and preconditions de�ne the application domain of the type.

With the �rst property it is possible to create more than one instance of an
ADT as exempli�ed with the employee example. You might also remember the
list example of chapter 2. In the �rst version we have implemented a list as
a module and were only able to use one list at a time. The second version
introduces the \handle" as a reference to a \list object". From what we have
learned now, the handle in conjunction with the operations de�ned in the list
module de�nes an ADT List:

1. When we use the handle we de�ne the corresponding variable to be of
type List.

16 CHAPTER 3. ABSTRACT DATA TYPES

2. The interface to instances of type List is de�ned by the interface de�nition
�le.

3. Since the interface de�nition �le does not include the actual representation
of the handle, it cannot be modi�ed directly.

4. The application domain is de�ned by the semantical meaning of provided
operations. Axioms and preconditions include statements such as

� \An empty list is a list."
� \Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in
l=(d1, d2, d3, ..., dN, dM)."

� \The �rst element of a list can only be deleted if the list is not empty."

However, all of these properties are only valid due to our understanding of
and our discipline in using the list module. It is in our responsibility to use
instances of List according to these rules.

Importance of Data Structure Encapsulation

The principle of hiding the used data structure and to only provide a well-de�ned
interface is known as encapsulation. Why is it so important to encapsulate the
data structure?

To answer this question consider the following mathematical example where
we want to de�ne an ADT for complex numbers. For the following it is enough to
know that complex numbers consists of two parts: real part and imaginary part.
Both parts are represented by real numbers. Complex numbers de�ne several
operations: addition, substraction, multiplication or division to name a few.
Axioms and preconditions are valid as de�ned by the mathematical de�nition
of complex numbers. For example, it exists a neutral element for addition.

To represent a complex number it is necessary to de�ne the data structure
to be used by its ADT. One can think of at least two possibilities to do this:

� Both parts are stored in a two-valued array where the �rst value indicates
the real part and the second value the imaginary part of the complex
number. If x denotes the real part and y the imaginary part, you could
think of accessing them via array subscription: x=c[0] and y=c[1].

� Both parts are stored in a two-valued record. If the element name of the
real part is r and that of the imaginary part is i, x and y can be obtained
with: x=c.r and y=c.i.

Point 3 of the ADT de�nition says that for each access to the data struc-
ture there must be an operation de�ned. The above access examples seem to
contradict this requirement. Is this really true?

Have again a look to the performed comparison. Let's stick to the real part.
In the �rst version, x equals c[0]. In the second version, x equals c.r. In both
cases x equals \something". It is this \something" which di�ers from the actual

3.3. GENERIC ABSTRACT DATA TYPES 17

data structure used. But in both cases the performed operation \equal" has the
same meaning to declare x to be equal to the real part of the complex number
c: both cases archieve the same semantics.

If you think of more complex operations the impact of decoupling data struc-
tures from operations becomes even more clear. For example the addition of two
complex numbers requires to perform an addition for each part. Consequently,
you must access the value of each part which is di�erent for each version. By
providing an operation \add" you can encapsulate these details from its actual
use. In an application context you simply \add to complex numbers" regardless
of how this functionality is actually archieved.

Once you have created an ADT for complex numbers, say Complex, you can
use it similarly to well-known data types such as integers.

Let's summarize this: The separation of data structures and operations and
the constraint to only access the data structure via a well-de�ned interface allows
to choose data structures appropriate for the application environment.

3.3 Generic Abstract Data Types

ADTs are used to de�ne a new type from which instances can be created. As
shown in the list example, sometimes these instances should operate on other
data types as well. For instance, one can think of lists of apples, cars or even
lists. The semantical de�nition of a list is always the same. Only the type of
the data elements change according to what type the list should operate on.

This additional information could be speci�ed by a generic parameter which
is speci�ed at instance creation time. Thus an instance of a generic ADT is
actually an instance of a particular variant of the according ADT. A list of
apples can therefore be declared as follows:

List<Apple> listOfApples;

The angle brackets now enclose the data type of which a variant of the
generic ADT List should be created. listOfApples o�ers the same interface as
any other list, but operates on instances of type Apple.

3.4 Notation

As ADTs provide an abstract view to describe properties of sets of entities,
their use is independent from a particular programming language. We therefore
introduce a notation here which is adopted from [3]. Each ADT description
consists of two parts:

� Data: This part describes the structure of the data used in the ADT in
an informal way.

� Operations: This part describes valid operations for this ADT, hence,
it describes its interface. We use the special operation constructor to

18 CHAPTER 3. ABSTRACT DATA TYPES

describe the actions which are to be performed once an entity of this
ADT is created and destructor to describe the actions which are to be
performed once an entity is destroyed. For each operation the provided
arguments as well as preconditions and postconditions are given.

As an example the description of the ADT Integer is presented. Let k be an
integer expression:

ADT Integer is

Data
A sequence of digits optionally pre�xed by a plus or minus sign. We
refer to this signed whole number as N.

Operations

constructor Creates a new integer.

add(k) Creates a new integer which is the sum of N and k.
Consequently, the postcondition of this operation is sum = N+k.
Don't confuse this with assign statements as used in program-
ming languages! It is rather a mathematical equation which
yields \true" for each value sum, N and k after add has been
performed.

sub(k) Similar to add, this operation creates a new integer of the
di�erence of both integer values. Therefore the postcondition for
this operation is sum = N-k.

set(k) Set N to k. The postcondition for this operation is N = k.

...

end

The description above is a speci�cation for the ADT Integer. Please notice,
that we use words for names of operations such as \add". We could use the
more intuitive \+" sign instead, but this may lead to some confusion: You
must distinguish the operation \+" from the mathematical use of \+" in the
postcondition. The name of the operation is just syntax whereas the semantics
is described by the associated pre- and postconditions. However, it is always a
good idea to combine both to make reading of ADT speci�cations easier.

Real programming languages are free to choose an arbitrary implementation
for an ADT. For example, they might implement the operation add with the
in�x operator \+" leading to a more intuitive look for addition of integers.

3.5 Abstract Data Types and Object-
Orientation

ADTs allows the creation of instances with well-de�ned properties and be-
haviour. In object-orientation ADTs are referred to as classes. Therefore a

3.6. EXCERCISES 19

class de�nes properties of objects which are the instances in an object-oriented
environment.

ADTs de�ne functionality by putting main emphasis on the involved data,
their structure, operations as well as axioms and preconditions. Consequently,
object-oriented programming is \programming with ADTs": combining func-
tionality of di�erent ADTs to solve a problem. Therefore instances (objects) of
ADTs (classes) are dynamically created, destroyed and used.

3.6 Excercises

1. ADT Integer.

(a) Why are there no preconditions for operations add and sub?

(b) Obviously, the ADT description of Integer is incomplete. Add meth-
ods mul, div and any other one. Describe their impacts by specifying
pre- and postconditions.

2. Design an ADT Fraction which describes properties of fractions.

(a) What data structures can be used? What are its elements?

(b) What does the interface look like?

(c) Name a few axioms and preconditions.

3. Describe in your own words properties of abstract data types.

4. Why is it necessary to include axioms and preconditions to the de�nition
of an abstract data type?

5. Describe in your own words the relationship between

� instance and abstract data type,
� generic abstract data type and corresponding abstract data type,
� instances of a generic abstract data type.

20 CHAPTER 3. ABSTRACT DATA TYPES

Chapter 4

Object-Oriented Concepts

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

The previous sections already introduce some \object-oriented" concepts.
However, they were applied in an procedural environment or in a verbal manner.
In this section we investigate these concepts in more detail and give them names
as used in existing object-oriented programming languages.

4.1 Implementation of Abstract Data Types

The last section introduces abstract data types (ADTs) as an abstract view to
de�ne properties of a set of entities. Object-oriented programming languages
must allow to implement these types. Consequently, once an ADT is imple-
mented we have a particular representation of it available.

Consider again the ADT Integer. Programming languages such as Pascal,
C, Modula-2 and others already o�er an implementation for it. Sometimes it is
called int or integer. Once you've created a variable of this type you can use its
provided operations. For example, you can add two integers:

int i, j, k; /* Define three integers */

i = 1; /* Assign 1 to integer i */

j = 2; /* Assign 2 to integer j */

k = i + j; /* Assign the sum of i and j to k */

Let's play with the above code fragment and outline the relationship to the
ADT Integer. The �rst line de�nes three instances i, j and k of type Integer.
Consequently, for each instance the special operation constructor should be
called. In our example, this is internally done by the compiler. The compiler
reserves memory to hold the value of an integer and \binds" the corresponding

21

22 CHAPTER 4. OBJECT-ORIENTED CONCEPTS

name to it. If you refer to i you actually refer to this memory area which
was \constructed" by the de�nition of i. Optionally, compilers might choose to
initialize the memory, for example, they might set it to 0 (zero).

The next line

i = 1;

sets the value of i to be 1. Therefore we can describe this line with help of the
ADT notation as follows:

Perform operation set with argument 1 on the Integer instance i. This is written
as follows: i.set(1).

We now have a representation at two levels. The �rst level is the ADT level
where we express everything what is done to an instance of this ADT by the
invocation of de�ned operations. At this level, pre- and postconditions are used
to describe what actually happens. In the following example, these conditions
are enclosed in curly brackets.

f Precondition: i = n where n 2 Integer g
i.set(1)
f Postcondition: i = 1 g

Don't forget that we currently talk about the ADT level! Consequently, the
conditions are mathematical conditions.

The second level is the implementation level, where an actual representation
is chosen for the operation. In C the equal sign \=" implements the set()
operation. However, in Pascal the following representation was chosen:

i := 1;

In either case, the ADT operation set is implemented.
Let's stress these levels a little bit further and have a look to the line

k = i + j;

Obviously, \+" was chosen to implement the add operation. We could read the
part \i + j" as \add the value of j to the value of i", thus at the ADT level this
results in

f Precondition: Let i = n1 and j = n2 with n1; n2 2 Integer g
i.add(j)
f Postcondition: i = n1 and j = n2 g

The postcondition ensures that i and j do not change their values. Please recall
the speci�cation of add. It says that a new Integer is created of which the

4.2. CLASS 23

value is the sum. Consequently, we must provide a mechanism to access this
new instance. We do this with the set operation applied on instance k:

f Precondition: Let k = n where n 2 Integer g
k.set(i.add(j))
f Postcondition: k = i+ j g

As you can see, some programming languages choose a representation which
almost equals the mathematical formulation used in the pre- and postconditions.
This makes it sometimes di�cult to not mix up both levels.

4.2 Class

A class is an actual representation of an ADT. It therefore provides implemen-
tation details for the used data structure and operations. We play with the
ADT Integer and design our own class for it:

class Integer {

attributes:

int i

methods:

setValue(int n)

Integer addValue(Integer j)

}

In the example above as well as in examples which follow we use a notation
which is not programming language speci�c. In this notation class f...g de-
notes the de�nition of a class. Enclosed in the curly brackets are two sections
attributes: and methods: which de�ne the implementation of the data struc-
ture and operations of the corresponding ADT. Again we distinguish the two
levels with di�erent terms: At the implementation level we speak of \attributes"
which are elements of the data structure at the ADT level. The same applies
to \methods" which are the implementation of the ADT operations.

In our example, the data structure consists of only one element: a signed
sequence of digits. The corresponding attribute is an ordinary integer of a
programming language1. We only de�ne two methods setValue() and addValue()
representing the two operations set and add.

De�nition 4.2.1 (Class) A class is the implementation of an abstract data
type (ADT). It de�nes attributes and methods which implement the data
structure and operations of the ADT, respectively.

Instances of classes are called objects. Consequently, classes de�ne properties
and behaviour of sets of objects.

1You might ask, why we should declare an Integer class if there is already an integer type
available. We come back to this when we talk about inheritance.

24 CHAPTER 4. OBJECT-ORIENTED CONCEPTS

4.3 Object

Recall the employee example of chapter 3. We have talked of instances of
abstract employees. These instances are actual \examples" of an abstract em-
ployee, hence, they contain actual values to represent a particular employee. We
call these instances objects.

Objects are uniquely identi�able by a name. Therefore you could have two
distinguishable objects with the same set of values. This is similar to \tradi-
tional" programming languages where you could have, say two integers i and
j both of which equal to \2". Please notice the use of \i" and \j" in the last
sentence to name the two integers. We refer to the set of values at a particular
time as the state of the object.

De�nition 4.3.1 (Object) An object is an instance of a class. It can be
uniquely identi�ed by its name and it de�nes a state which is represented by
the values of its attributes at a particular time.

The state of the object changes according to the methods which are applied to
it. We refer to these possible sequence of state changes as the behaviour of the
object:

De�nition 4.3.2 (Behaviour) The behaviour of an object is de�ned by the
set of methods which can be applied on it.

We now have two main concepts of object-orientation introduced, class and ob-
ject. Object-oriented programming is therefore the implementation of abstract
data types or, in more simple words, the writing of classes. At runtime instances
of these classes, the objects, achieve the goal of the program by changing their
states. Consequently, you can think of your running program as a collection
of objects. The question arises of how these objects interact? We therefore
introduce the concept of a message in the next section.

4.4 Message

A running program is a pool of objects where objects are created, destroyed
and interacting. This interacting is based on messages which are sent from one
object to another asking the recipient to apply a method on itself. To give you
an understanding of this communication, let's come back to the class Integer
presented in section 4.2. In our pseudo programming language we could create
new objects and invoke methods on them. For example, we could use

Integer i; /* Define a new integer object */

i.setValue(1); /* Set its value to 1 */

to express the fact, that the integer object i should set its value to 1. This
is the message \Apply method setValue with argument 1 on yourself." sent to
object i. We notate the sending of a message with \.". This notation is also

4.5. SUMMARY 25

used in C++; other object-oriented languages might use other notations, for
example \->".

Sending a message asking an object to apply a method is similar to a
procedure call in \traditional" programming languages. However, in object-
orientation there is a view of autonomous objects which communicate with each
other by exchanging messages. Objects react when they receive messages by ap-
plying methods on themselves. They also may deny the execution of a method,
for example if the calling object is not allowed to execute the requested method.

In our example, the message and the method which should be applied once
the message is received have the same name: We send \setValue with argument
1" to object i which applies \setValue(1)".

De�nition 4.4.1 (Message) A message is a request to an object to invoke
one of its methods. A message therefore contains

� the name of the method and
� the arguments of the method.

Consequently, invocation of a method is just a reaction caused by receipt of a
message. This is only possible, if the method is actually known to the object.

De�nition 4.4.2 (Method) A method is associated with a class. An object
invokes methods as a reaction to receipt of a message.

4.5 Summary

To view a program as a collection of interacting objects is a fundamental prin-
ciple in object-oriented programming. Objects in this collection react upon
receipt of messages, changing their state according to invocation of methods
which might cause other messages sent to other objects. This is illustrated in
Figure 4.1.

Program

object 2

object 3

object 4

object 1

Figure 4.1: A program consisting of four objects.

26 CHAPTER 4. OBJECT-ORIENTED CONCEPTS

In this �gure, the program consists of only four objects. These objects send
messages to each other, as indicated by the arrowed lines. Note that the third
object sends itself a message.

How does this view help us developing software? To answer this question let's
recall how we have developed software for procedural programming languages.
The �rst step was to divide the problem into smaller manageable pieces. Typ-
ically these pieces were oriented to the procedures which were taken place to
solve the problem, rather than the involved data.

As an example consider your computer. Especially, how a character appears
on the screen when you type a key. In a procedural environment you write down
the several steps necessary to bring a character on the screen:

1. wait, until a key is pressed.
2. get key value
3. write key value at current cursor position
4. advance cursor position

You do not distinguish entities with well-de�ned properties and well-known be-
haviour. In an object-oriented environment you would distinguish the interact-
ing objects key and screen. Once a key receive a message that it should change
its state to be pressed, its corresponding object sends a message to the screen
object. This message requests the screen object to display the associated key
value.

4.6 Excercises

1. Class.

(a) What distinguishes a class from an ADT?

(b) Design a class for the ADT Complex. What representations do you
choose for the ADT operations? Why?

2. Interacting objects. Have a look to your tasks of your day life. Choose
one which does not involve too many steps (for example, watching TV,
cooking a meal, etc.). Describe this task in procedural and object-oriented
form. Try to begin viewing the world to consist of objects.

3. Object view. Regarding the last excercise, what problems do you en-
counter?

4. Messages.

(a) Why do we talk about \messages" rather than \procedure calls"?

(b) Name a few messages which make sense in the Internet environment.
(You must therefore identify objects.)

(c) Why makes the term \message" more sense in the environment of
the last excercise, than the term \procedure call"?

Chapter 5

More Object-Oriented

Concepts

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

Whereas the previous lecture introduces the fundamental concepts of object-
oriented programming, this lecture presents more details about the object-
oriented idea. This section is mainly adopted from [2]1.

5.1 Relationships

In excercise 3.6.5 you already investigate relationships between abstract data
types and instances and describe them in your own words. Let's go in more
detail here.

A-Kind-Of relationship

Consider you have to write a drawing program. This program would allow
drawing of various objects such as points, circles, rectangles, triangles and many
more. For each object you provide a class de�nition. For example, the point
class just de�nes a point by its coordinates:

class Point {

attributes:

int x, y

methods:

1This book is only available in German. However, since this is one of the best books about
object-oriented programming I know of, I decided to cite it here.

27

28 CHAPTER 5. MORE OBJECT-ORIENTED CONCEPTS

setX(int newX)

getX()

setY(int newY)

getY()

}

You continue de�ning classes of your drawing program with a class to describe
circles. A circle de�nes a center point and a radius:

class Circle {

attributes:

int x, y,

radius

methods:

setX(int newX)

getX()

setY(int newY)

getY()

setRadius(newRadius)

getRadius()

}

Comparing both class de�nitions we can observe the following:

� Both classes have two data elements x and y. In the class Point these
elements describe the position of the point, in the case of class Circle they
describe the circle's center. Thus, x and y have the same meaning in both
classes: They describe the position of their associated object by de�ning
a point.

� Both classes o�er the same set of methods to get and set the value of the
two data elements x and y.

� Class Circle \adds" a new data element radius and corresponding access
methods.

Knowing the properties of class Point we can describe a circle as a point plus
a radius and methods to access it. Thus, a circle is \a-kind-of" point. However,
a circle is somewhat more \specialized". We illustrate this graphically as shown
in Figure 5.1.

Circle Point
a-kind-of

Figure 5.1: Illustration of \a-kind-of" relationship.

In this and the following �gures, classes are drawn using rectangles. Their
name always starts with an uppercase letter. The arrowed line indicates the
direction of the relation, hence, it is to be read as \Circle is a-kind-of Point."

5.1. RELATIONSHIPS 29

Is-A relationship

The previous relationship is used at the class level to describe relationships
between two similar classes. If we create objects of two such classes we refer to
their relationship as an \is-a" relationship.

Since the class Circle is a kind of class Point, an instance of Circle, say
acircle, is a point2. Consequently, each circle behaves like a point. For example,
you can move points in x direction by altering the value of x. Similarly, you
move circles in this direction by altering their x value.

Figure 5.2 illustrates this relationship. In this and the following �gures,
objects are drawn using rectangles with round corners. Their name only consists
of lowercase letters.

is-a
circle point

Figure 5.2: Illustration of \is-a" relationship.

Part-Of relationship

You sometimes need to be able to build objects by combining them out of
others. You already know this from procedural programming, where you have
the structure or record construct to put data of various types together.

Let's come back to our drawing program. You already have created several
classes for the available �gures. Now you decide that you want to have a special
�gure which represents your own logo which consists of a circle and a triangle.
(Let's assume, that you already have de�ned a class Triangle.) Thus, your logo
consists of two parts or the circle and triangle are part-of your logo:

class Logo {

attributes:

Circle circle

Triangle triangle

methods:

set(Point where)

}

We illustrate this in Figure 5.3.

Has-A relationship

This relationship is just the inverse version of the part-of relationship. Therefore
we can easily add this relationship to the part-of illustration by adding arrows
in the other direction (Figure 5.4).

2We use lowercase letters when we talk at the object level.

30 CHAPTER 5. MORE OBJECT-ORIENTED CONCEPTS

Circle Logo Triangle

part-of part-of

Figure 5.3: Illustration of \part-of" relationship.

Circle Triangle

part-of part-of

Logo
has-a has-a

Figure 5.4: Illustration of \has-a" relationship.

5.2 Inheritance

With inheritance we are able to make use of the a-kind-of and is-a relationship.
As described there, classes which are a-kind-of another class share properties of
the latter. In our point and circle example, we can de�ne a circle which inherits
from point:

class Circle inherits from Point {

attributes:

int radius

methods:

setRadius(int newRadius)

getRadius()

}

Class Circle inherits all data elements and methods from point. There is no
need to de�ne them twice: We just use already existing and well-known data
and method de�nitions.

On the object level we are now able to use a circle just as we would use a
point, because a circle is-a point. For example, we can de�ne a circle object and
set its center point coordinates:

Circle acircle

acircle.setX(1) /* Inherited from Point */

acircle.setY(2)

acircle.setRadius(3) /* Added by Circle */

\Is-a" also implies, that we can use a circle everywhere where a point is expected.
For example, you can write a function or method, saymove(), which should move
a point in x direction:

move(Point apoint, int deltax) {

apoint.setX(apoint.getX() + deltax)

}

5.2. INHERITANCE 31

As a circle inherits from a point, you can use this function with a circle argument
to move its center point and, hence, the whole circle:

Circle acircle

...

move(acircle, 10) /* Move circle by moving */

/* its center point */

Let's try to formalize the term \inheritance":

De�nition 5.2.1 (Inheritance) Inheritance is the mechanism which allows
a class A to inherit properties of a class B. We say \A inherits from B". Objects
of class A thus have access to attributes and methods of class B without the need
to rede�ne them.

The following de�nition de�nes two terms with which we are able to refer to
participating classes when they use inheritance.

De�nition 5.2.2 (Superclass/Subclass) If class A inherits from class B,
then B is called superclass of A. A is called subclass of B.

Objects of a subclass can be used where objects of the corresponding super-
class are expected. This is due to the fact that objects of the subclass share the
same behaviour as objects of the superclass.

In the literature you may also �nd other terms for \superclass" and \sub-
class". Superclasses are also called parent classes. Subclasses may also be called
child classes or just derived classes.

Of course, you can again inherit from a subclass, making this class the
superclass of the new subclass. This leads to a hierarchy of superclass/subclass
relationships. If you draw this hierarchy you get an inheritance graph.

A common drawing scheme is to use arrowed lines to indicate the inheritance
relationship between two classes or objects. In our examples we have used
\inherits-from". Consequently, the arrowed line starts from the subclass towards
the superclass as illustrated in Figure 5.5.

Point

Circle

inherit-from

Figure 5.5: A simple inheritance graph.

32 CHAPTER 5. MORE OBJECT-ORIENTED CONCEPTS

In the literature you also �nd illustrations where the arrowed lines are used
just the other way around. The direction in which the arrowed line is used,
depends on how the corresponding author has decided to understand it.

Anyway, within this tutorial, the arrowed line is always directed towards the
superclass.

In the following sections an unmarked arrowed line indicates \inherit-from".

5.3 Multiple Inheritance

One important object-oriented mechanism is multiple inheritance. Multiple
inheritance does not mean that multiple subclasses share the same superclass.
It also does not mean that a subclass can inherit from a class which itself is a
subclass of another class.

Multiple inheritance means that one subclass can have more than one super-
class. This enables the subclass to inherit properties of more than one superclass
and to \merge" their properties.

As an example consider again our drawing program. Suppose we already
have a class String which allows convenient handling of text. For example, it
might have a method to append other text. In our program we would like to use
this class to add text to the possible drawing objects. It would be nice to also use
already existing routines such asmove() to move the text around. Consequently,
it makes sense to let a drawable text have a point which de�nes its location
within the drawing area. Therefore we derive a new class DrawableString which
inherits properties from Point and String as illustrated in Figure 5.6.

DrawableString

Point String

Figure 5.6: Derive a drawable string which inherits properties of Point and
String.

In our pseudo language we write this by simply separating the multiple super-
classes by comma:

class DrawableString inherits from Point, String {

attributes:

/* All inherited from superclasses */

methods:

5.3. MULTIPLE INHERITANCE 33

/* All inherited from superclasses */

}

We can use objects of class DrawableString like both points and strings. Because
a drawablestring is-a point we can move them around

DrawableString dstring

...

move(dstring, 10)

...

Since it is a string, we can append other text to them:

dstring.append("The red brown fox ...")

Now it's time for the de�nition of multiple inheritance:

De�nition 5.3.1 (Multiple Inheritance) If class A inherits from more than
one class, ie. A inherits from B1, B2, ..., Bn, we speak of multiple inheri-
tance. This may introduce naming conicts in A if at least two of its super-
classes de�ne properties with the same name.

The above de�nition introduce naming conicts which occur if more than one
superclass of a subclass use the same name for either attributes or methods. For
an example, let's assume, that class String de�nes a method setX() which sets
te string to a sequence of \X" characters3 . The question arises, what should be
inherited by DrawableString? The Point, String version or none of them?

These conicts can be solved in at least two ways:

� The order in which the superclasses are provided de�ne which property
will be accessible by the conict causing name. Others will be \hidden".

� The subclass must resolve the conict by providing a property with the
name and by de�ning how to use the ones from its superclasses.

The �rst solution is not very convenient as it introduces implizit consequences
depending on the order in which classes inherit from each other. For the sec-
ond case, subclasses must explicitly rede�ne properties which are involved in a
naming conict.

A special type of naming conict is introduced if a class D multiply inherits
from superclasses B and C which themselves are derived from one superclass A.
This leads to an inheritance graph as shown in Figure 5.7.
The question arises what properties class D actually inherits from its super-
classes B and C. Some existing programming languages solve this special inher-
itance graph by deriving D with

3Don't argue whether such a method makes really sense or not. It is just introduced for
illustrating purposes.

34 CHAPTER 5. MORE OBJECT-ORIENTED CONCEPTS

A

B C

D

Figure 5.7: A name conict introduced by a shared superclass of superclasses
used with multiple inheritance.

� the properties of A plus
� the properties of B and C without the properties they have inherited
from A.

Consequently, D cannot introduce naming conicts with names of class A. How-
ever, if B and C add properties with the same name, D runs in a naming conict.

Another possible solution is, that D inherits from both inheritance paths.
In this solution, D owns two copies of the properties of A: one is inherited by
B and one by C.

Although multiple inheritance is a powerful object-oriented mechanism the
problems introduced with naming conicts have lead several authors to \doom"
it. As the result of multiple inheritance can always be achieved by using (simple)
inheritance some object-oriented languages even don't allow its use. However,
carefully used, under some conditions multiple inheritance provides an e�cient
and elegant way of formulating things.

5.4 Abstract Classes

With inheritance we are able to force a subclass to o�er the same properties
like their superclasses. Consequently, objects of a subclass behave like objects
of their superclasses.

Sometimes it make sense to only describe the properties of a set of objects
without knowing the actual behaviour beforehand. In our drawing program
example, each object should provide a method to draw itself on the drawing
area. However, the necessary steps to draw an objects depends on its represented
shape. For example, the drawing routine of a circle is di�erent from the drawing

5.4. ABSTRACT CLASSES 35

routine of a rectangle.
Let's call the drawing method print(). To force every drawable object to

include such method, we de�ne a class DrawableObject from which every other
class in our example inherits general properties of drawable objects:

abstract class DrawableObject {

attributes:

methods:

print()

}

We introduce the new keyword abstract here. It is used to express the fact that
derived classes must \rede�ne" the properties to ful�ll the desired functionality.
Thus from the abstract class' point of view, the properties are only speci�ed but
not fully de�ned. The full de�nition including the semantics of the properties
must be provided by derived classes.

Now, every class in our drawing program example inherits properties from
the general drawable object class. Therefore, class Point changes to:

class Point inherits from DrawableObject {

attributes:

int x, y

methods:

setX(int newX)

getX()

setY(int newY)

getY()

print() /* Redefine for Point */

}

We are now able to force every drawable object to have a method called print
which should provide functionality to draw the object within the drawing area.
The superclass of all drawable objects, class DrawableObject, does not provide
any functionality for drawing itself. It is not intended to create objects from
it. This class rather speci�es properties which must be de�ned by every derived
class. We refer to this special type of classes as abstract classes:

De�nition 5.4.1 (Abstract Class) A class A is called abstract class if it
is only used as a superclass for other classes. Class A only speci�es properties.
It is not used to create objects. Derived classes must de�ne the properties of A.

Abstract classes allow us to structure our inheritance graph. However, we actu-
ally don't want to create objects from them: we only want to express common
characteristics of a set of classes.

36 CHAPTER 5. MORE OBJECT-ORIENTED CONCEPTS

5.5 Excercises

1. Inheritance. Consider the drawing program example again.

(a) De�ne class Rectangle by inheriting from class Point. The point
should indicate the upper left corner of the rectangle. What are your
class attributes? What additional methods do you introduce?

(b) All current examples are based on a two-dimensional view. You now
want to introduce 3D objects such as spheres, cubes or cuboids. De-
sign a class Sphere by using a class 3D-Point. Specify the role of the
point in a sphere. What relationship do you use between class Point
and 3D-Point?

(c) What functionality does move() provide for 3D objects? Be as precise
as you can.

(d) Draw the inheritance graph including the following classes Draw-
ableObject, Point, Circle, Rectangle, 3D-Point and Sphere.

(e) Have a look at the inheritance graph of Figure 5.8.

Point

Circle

Sphere

Figure 5.8: Alternative inheritance graph for class Sphere.

A corresponding de�nition might look like this:

class Sphere inherits from Circle {

attributes:

int z /* Add third dimension */

methods:

setZ(int newZ)

getZ()

}

Give reasons for advantages/disadvantages of this alternative.

2. Multiple inheritance. Compare the inheritance graph shown in Figure 5.9
with that of Figure 5.7. Here, we illustrate that B and C have each their
own copy of A.

5.5. EXCERCISES 37

B C

D

A A

Figure 5.9: Illustration of the second multiple inheritance semantics.

What naming conicts can occur? Try to de�ne cases by playing with
simple example classes.

38 CHAPTER 5. MORE OBJECT-ORIENTED CONCEPTS

Chapter 6

Even More Object-Oriented

Concepts

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

We continue with our tour through the world of object-oriented concepts by
presenting a short introduction to static versus dynamic binding. With this, we
can introduce polymorphism as a mechanism which let objects �gure out what
to do at runtime. But �rst, here is a brief overview about generic types.

6.1 Generic Types

We already know generic types from chapter 3 when we have talked about
generic abstract data types. When de�ning a class, we actually de�ne a user
de�ned type. Some of these types can operate on other types. For example,
there could be lists of apples, list of cars, lists of complex numbers of even lists
of lists.

At the time, when we write down a class de�nition, we must be able to say
that this class should de�ne a generic type. However, we don't know with which
types the class will be used. Consequently, we must be able to de�ne the class
with help of a \placeholder" to which we refer as if it is the type on which
the class operates. Thus, the class de�nition provides us with a template of an
actual class. The actual class de�nition is created once we declare a particular
object. Let's exemplify this with the following example. Suppose, you want to
de�ne a list class which should be a generic type. Thus, it should be possible
to declare list objects for apples, cars or any other type.

template class List for T {

attributes:

39

40 CHAPTER 6. EVEN MORE OBJECT-ORIENTED CONCEPTS

... /* Data structure needed to implement */

/* the list */

methods:

append(T element)

T getFirst()

T getNext()

bool more()

}

The above template class List looks like any other class de�nition. However,
the �rst line declares List to be a template for various types. The identi�er T
is used as a placeholder for an actual type. For example, append() takes one
element as an argument. The type of this element will be the data type with
which an actual list object is created. For example, we can declare a list object
for apples1:

List for Apple appleList

Apple anApple,

anotherApple

appleList.append(anotherApple)

appleList.append(anApple)

The �rst line declares appleList to be a list for apples. At this time, the
compiler uses the template de�nition, substitutes every occurrence of T with
Apple and creates an actual class de�nition for it. This leads to a class de�nition
similar to the one that follows:

class List {

attributes:

... /* Data structure needed to implement */

/* the list */

methods:

append(Apple element)

Apple getFirst()

Apple getNext()

bool more()

}

This is not exactly, what the compiler generates. The compiler must ensure
that we can create multiple lists for di�erent types at any time. For example,
if we need another list for, say pears, we can write:

List for Apple appleList

List for Pear pearList

...

1Of course, there must be a de�nition for the type Apple.

6.2. STATIC AND DYNAMIC BINDING 41

In both cases the compiler generates an actual class de�nition. The reason
why both do not conict by their name is that the compiler generates unique
names. However, since this is not viewable to us, we don't go in more detail
here. In any case, if you declare just another list of apples, the compiler can
�gure out if there already is an actual class de�nition and use it or if it has to
be created. Thus,

List for Apple aList

List for Apple anotherList

will create the actual class de�nition for aList and will reuse it for anoth-
erList. Consequently, both are of the same type. We summarize this in the
following de�nition:

De�nition 6.1.1 (Template Class) If a class A is parameterized with a data
type B, A is called template class. Once an object of A is created, B is replaced
by an actual data type. This allows the de�nition of an actual class based
on the template speci�ed for A and the actual data type.

We are able to de�ne template classes with more than one parameter. For ex-
ample, directories are collections of objects where each object can be referenced
by a key. Of course, a directory should be able to store any type of object. But
there are also various possibilities for keys. For instance, they might be strings
or numbers. Consequently, we would de�ne a template class Directory which is
based on two type parameters, one for the key and one for the stored objects.

6.2 Static and Dynamic Binding

In strongly typed programming languages you typically have to declare variables
prior to their use. This also implies the variable's de�nition where the compiler
reserves space for the variable. For example, in Pascal an expression like

var i : integer;

declares variable i to be of type integer. Additionally, it de�nes enough
memory space to hold an integer value.

With the declaration we bind the name i to the type integer. This binding is
true within the scope in which i is declared. This enables the compiler to check
at compilation time for type consistency. For example, the following assignment
will result in a type mismatch error when you try to compile it:

var i : integer;

...

i := 'string';

We call this particular type of binding \static" because it is �xed at compile
time.

42 CHAPTER 6. EVEN MORE OBJECT-ORIENTED CONCEPTS

De�nition 6.2.1 (Static Binding) If the type T of a variable is explicitly
associated with its name N by declaration, we say, that N is statically bound
to T. The association process is called static binding.

There exist programming languages which are not using explicitly typed vari-
ables. For example, some languages allow to introduce variables once they are
needed:

... /* No appearance of i */

i := 123 /* Creation of i as an integer */

The type of i is known as soon as its value is set. In this case, i is of type
integer since we have assigned a whole number to it. Thus, because the content
of i is a whole number, the type of i is integer.

De�nition 6.2.2 (Dynamic Binding) If the type T of a variable with name
N is implicitly associated by its content, we say, that N is dynamically bound
to T. The association process is called dynamic binding.

Both bindings di�er in the time when the type is bound to the variable. Consider
the following example which is only possible with dynamic binding:

if somecondition() == TRUE then

n := 123

else

n := 'abc'

endif

The type of n after the if statement depends on the evaluation of somecon-
dition(). If it is TRUE, n is of type integer whereas in the other case it is of
type string.

6.3 Polymorphism

Polymorphism allows an entity (for example, variable, function or object) to
take a variety of representations. Therefore we have to distinguish di�erent
types of polymorphism which will be outlined here.

The �rst type is similar to the concept of dynamic binding. Here, the type
of a variable depends on its content. Thus, its type depends on the content at
a speci�c time:

v := 123 /* v is integer */

... /* use v as integer */

v := 'abc' /* v "switches" to string */

... /* use v as string */

6.3. POLYMORPHISM 43

De�nition 6.3.1 (Polymorphism (1)) The concept of dynamic binding al-
lows a variable to take di�erent types dependent on the content at a particular
time. This ability of a variable is called polymorphism.

Another type of polymorphism can be de�ned for functions. For example,
suppose you want to de�ne a function isNull() which returns TRUE if its argu-
ment is 0 (zero) and FALSE otherwise. For integer numbers this is easy:

boolean isNull(int i) {

if (i == 0) then

return TRUE

else

return FALSE

endif

}

However, if we want to check this for real numbers, we should use another
comparison due to the precision problem:

boolean isNull(real r) {

if (r < 0.01 and r > -0.99) then

return TRUE

else

return FALSE

endif

}

In both cases we want the function to have the name isNull. In program-
ming languages without polymorphism for functions we cannot declare these
two functions: The name isNull would be doubly de�ned. However, if the lan-
guage would take the parameters of the function into account it would work.
Thus, functions (or methods) are uniquely identi�ed by:

� the name of the function (or method) and
� the types of its parameter list.

Since the parameter list of both isNull functions di�er, the compiler is able
to �gure out the correct function call by using the actual types of the arguments:

var i : integer

var r : real

i = 0

r = 0.0

...

if (isNull(i)) then ... /* Use isNull(int) */

...

if (isNull(r)) then ... /* Use isNull(real) */

44 CHAPTER 6. EVEN MORE OBJECT-ORIENTED CONCEPTS

De�nition 6.3.2 (Polymorphism (2)) If a function (or method) is de�ned
by the combination of

� its name and
� the list of types of its parameters

we speak of polymorphism.

This type of polymorphism allows us to reuse the same name for functions
(or methods) as long as the parameter list di�ers. Sometimes this type of
polymorphism is called overloading.

The last type of polymorphism allows an object to choose correct methods.
Consider the function move() again, which takes an object of class Point as
its argument. We have used this function with any object of derived classes,
because the is-a relation holds.

Now consider a function display() which should be used to display drawable
objects. The declaration of this function might look like this:

display(DrawableObject o) {

...

o.print()

...

}

We would like to use this function with objects of classes derived fromDraw-
ableObject:

Circle acircle

Point apoint

Rectangle arectangle

display(apoint) /* Should invoke apoint.print() */

display(acircle) /* Should invoke acircle.print() */

display(arectangle) /* Should invoke arectangle.print() */

The actual method should be de�ned by the content of the object o of func-
tion display(). Since this is somewhat complicated, here is a more abstract
example:

class Base {

attributes:

methods:

virtual foo()

bar()

}

class Derived inherits from Base {

6.3. POLYMORPHISM 45

attributes:

methods:

virtual foo()

bar()

}

demo(Base o) {

o.foo()

o.bar()

}

Base abase

Derived aderived

demo(abase)

demo(aderived)

In this example we de�ne two classes Base and Derive. Each class de�nes
two methods foo() and bar(). The �rst method is de�ned as virtual. This
means that if this method is invoked its de�nition should be evaluated by the
content of the object.

We then de�ne a function demo() which takes a Base object as its argument.
Consequently, we can use this function with objects of class Derived as the is-a
relation holds. We call this function with a Base object and a Derived object,
respectively.

Suppose, that foo() and bar() are de�ned to just print out their name and
the class in which they are de�ned. Then the output is as follows:

foo() of Base called.

bar() of Base called.

foo() of Derived called.

bar() of Base called.

Why is this so? Let's see what happens. The �rst call to demo() uses a Base
object. Thus, the function's argument is \�lled" with an object of class Base.
When it is time to invoke method foo() it's actual functionality is chosen based
on the current content of the corresponding object o. This time, it is a Base
object. Consequently, foo() as de�ned in class Base is called.

The call to bar() is not subject to this content resolution. It is not marked
as virtual. Consequently, bar() is called in the scope of class Base.

The second call to demo() takes a Derived object as its argument. Thus, the
argument o is �lled with a Derived object. However, o itself just represents the
Base part of the provided object aderived.

Now, the call to foo() is evaluated by examining the content of o, hence, it
is called within the scope of Derived. On the other hand, bar() is still evaluated
within the scope of Base.

46 CHAPTER 6. EVEN MORE OBJECT-ORIENTED CONCEPTS

De�nition 6.3.3 (Polymorphism (3)) Objects of superclasses can be �lled
with objects of their subclasses. Operators and methods of subclasses can be
de�ned to be evaluated in two contextes:

1. Based on object type, leading to an evaluation within the scope of the
superclass.

2. Based on object content, leading to an evaluation within the scope of the
contained subclass.

The second type is called polymorphism.

Chapter 7

Introduction to C++

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This section is the �rst part of the introduction to C++. Here we focus on
C from which C++ was adopted. C++ extends the C programming language
with strong typing, some features and { most importantly { object-oriented
concepts.

7.1 The C Programming Language

Developed in the late 1970s, C gained an huge success due to the development
of Unix which was almost entirely written in this language [4]. In contrast to
other high level languages, C was written from programmers for programmers.
Thus it allows sometimes, say, weird things which in other languages such as
Pascal are forbidden due to its bad inuence on programming style. Anyway,
when used with some discipline, C is as good a language as any other.

The comment in C is enclosed in /* ... */. Comments cannot be nested.

7.1.1 Data Types

Table 7.1 describes the built-in data types of C. The speci�ed Size is measured
in bytes on a 386 PC running Linux 1.2.13. The provided Domain is based on
the Size value. You can obtain information about the size of a data type with
the sizeof operator.

Variables of these types are de�ned simply by preceeding the name with the
type:

int an_int;

float a_float;

long long a_very_long_integer;

47

48 CHAPTER 7. INTRODUCTION TO C++

Type Description Size Domain

char Signed charac-
ter/byte. Char-
acters are en-
closed in single
quotes.

1 -128..127

double Double preci-
sion number

8 ca. 10�308..10308

int Signed integer 4 �231..231� 1
oat Floating point

number
4 ca. 10�38..1038

long (int) Signed long
integer

4 �231..231� 1

long long (int) Signed very
long integer

8 �263..263� 1

short (int) Short integer 2 �215..215� 1
unsigned char Unsigned

character/byte
1 0..255

unsigned (int) Unsigned
integer

4 0..232� 1

unsigned long (int) Unsigned long
integer

4 0..232� 1

unsigned long long (int) Unsigned very
long integer

8 0..264� 1

unsigned short (int) Unsigned short
integer

2 0..216� 1

Table 7.1: Built-in types.

With struct you can combine several di�erent types together. In other lan-
guages this is sometimes called a record:

struct date_s {

int day, month, year;

} aDate;

The above de�nition of aDate is also the declaration of a structure called date s.
We can de�ne other variables of this type by referencing the sturcture by name:

struct date_s anotherDate;

We do not have to name structures. If we omit the name, we just cannot reuse
it. However, if we name a structure, we can just declare it without de�ning a
variable:

7.1. THE C PROGRAMMING LANGUAGE 49

struct time_s {

int hour, minute, second;

};

We are able to use this structure as shown for anotherDate. This is very similar
to a type de�nition known in other languages where a type is declared prior to
the de�nition of a variable of this type.

Variables must be de�ned prior to their use. These de�nitions must occur
before any statement, thus they form the topmost part within a statement block.

7.1.2 Statements

C de�nes all usual ow control statements. Statements are terminated by a
semicolon \;". We can group multiple statements into blocks by enclosing them
in curly brackets. Within each block, we can de�ne new variables:

{

int i; /* Define a global i */

i = 1; /* Assign i the value 0 */

{ /* Begin new block */

int i; /* Define a local i */

i = 2; /* Set its value to 2 */

} /* Close block */

/* Here i is again 1 from the outer block */

}

Table 7.2 lists all ow control statements:
The for statement is the only statement which really di�ers from for state-

ments known from other languages. All other statements more or less only di�er
in their syntax. What follows are two blocks which are totally equal in their
functionality. One uses the while loop the other the for variant:

{

int ix, sum;

sum = 0;

ix = 0; /* initialization */

while (ix < 10) { /* condition */

sum = sum + 1;

ix = ix + 1; /* step */

}

}

{

int ix, sum;

sum = 0;

for (ix = 0; ix < 10; ix = ix + 1)

sum = sum + 1;

}

50 CHAPTER 7. INTRODUCTION TO C++

Statement Description

break; Leave current block. Also used to leave
case statement in switch.

continue; Only used in loops to continue with next
loop immediately.

do

stmt
while (expr);

Execute stmt as long as expr is TRUE.

for ([expr]; [expr]; [expr])
stmt

This is an abbreviation for a while loop
where the �rst expr is the initialization,
the second expr is the condition and the
third expr is the step.

goto label; Jumps to position indicated by label.
The destination is label followed by
colon \:".

if (expr) stmt [else stmt] IF-THEN-ELSE in C notation
return [expr]; Return from function. If function re-

turns void return should be used with-
out additional argument. Otherwise the
value of expr is returned.

switch (expr) f
case const-expr: stmts
case const-expr: stmts
...
[default: stmts]
g

After evaluation of expr its value is com-
pared with the case clauses. Execution
continues at the one that matches. BE-
WARE: You must use break to leave
the switch if you don't want execution
of following case clauses! If no case

clause matches and default clause ex-
ists, its statements are executed.

while (expr) stmt Repeat stmt as long as expr is TRUE.

Table 7.2: Statements.

To understand this, you have to know, that an assignment is an expression.

7.1.3 Expressions and Operators

In C almost everything is an expression. For example, the assignment statement
\=" returns the value of its righthand operand. As a \side e�ect" it also sets
the value of the lefthand operand. Thus,

ix = 12;

sets the value of ix to 12 (assuming that ix has an appropriate type). Now
that the assignment is also an expression, we can combine several of them; for
example:

7.1. THE C PROGRAMMING LANGUAGE 51

kx = jx = ix = 12;

What happens? The �rst assignment assigns kx the value of its righthand side.
This is the value of the assignment to jx. But this is the value of the assignment
to ix. The value of this latter is 12 which is returned to jx which is returned to
kx. Thus we have expressed

ix = 12;

jx = 12;

kx = 12;

in one line.
Truth in C is de�ned as follows. The value 0 (zero) stands for FALSE. Any

other value is TRUE. For example, the standard function strcmp() takes to
strings as argument and returns -1 if the �rst is lower than the second, 0 if they
are equal and 1 if the �rst is greater than the second one. To compare if two
strings str1 and str2 are equal you often see the following if construct:

if (!strcmp(str1, str2)) {

/* str1 == str2 */

}

else {

/* str1 != str2 */

}

The exclamation mark indicates the boolean NOT. Thus the expression evalu-
ates to TRUE only if strcmp() returns 0.

Expressions are combined of both terms and operators. The �rst could be
constansts, variables or expressions. From the latter, C o�ers all operators
known from other languages. However, it o�ers some operators which could be
viewed as abbreviations to combinations of other operators. Table 7.3 lists avail-
able operators. The second column shows their priority where smaller numbers
indicate higher priority and same numbers, same priority. The last column lists
the order of evaluation.

Most of these operators are already known to you. However, some need some
more description. First of all notice that the binary boolean operators &, ^ and
j are of lower priority than the equality operators == and !=. Consequently, if
you want to check for bit patterns as in

if ((pattern & MASK) == MASK) {

...

}

you must enclose the binary operation into parenthesis1.
The increment operators ++ and �� can be explained by the following ex-

ample. If you have the following statement sequence

1This is due to a historical \accident" while developing C [5].

52 CHAPTER 7. INTRODUCTION TO C++

Operator Priority Description Order

() 1 Function call operator from left
[] 1 Subscript operator from left

� > 1 Element selector from left
! 2 Boolean NOT from right
~ 2 Binary NOT from right
++ 2 Post-/Preincrement from right
�� 2 Post-/Predecrement from right
� 2 Unary minus from right

(type) 2 Type cast from right
* 2 Derefence operator from right
& 2 Address operator from right

sizeof 2 Size-of operator from right
* 3 Multiplication operator from left
/ 3 Division operator from left
% 3 Modulo operator from left
+ 4 Addition operator from left
� 4 Subtraction operator from left
<< 5 Left shift operator from left
>> 5 Right shift operator from left
< 6 Lower-than operator from left
<= 6 Lower-or-equal operator from left
> 6 Greater-than operator from left
>= 6 Greater-or-equal operator from left
== 7 Equal operator from left
!= 7 Not-equal operator from left
& 8 Binary AND from left
^ 9 Binary XOR from left
j 10 Binary OR from left

&& 11 Boolean AND from left
jj 12 Boolean OR from left
?: 13 Conditional operator from right
= 14 Assignment operator from right
op= 14 Operator assignment operator from right
, 15 Comma operator from left

Table 7.3: Operators.

a = a + 1;

b = a;

you can use the preincrement operator

b = ++a;

7.1. THE C PROGRAMMING LANGUAGE 53

Similarly, if you have the following order of statements:

b = a;

a = a + 1;

you can use the postincrement operator

b = a++;

Thus, the preincrement operator �rst increments its associated variable and
then returns the new value, whereas the postincrement operator �rst returns
the value and then increments its variable. The same rules apply to the pre-
and postdecrement operator ��.

Function calls, nested assignments and the increment/decrement operators
cause side e�ects when they are applied. This may introduce compiler dependen-
cies as the evaluation order in some situations is compiler dependent. Consider
the following example which demonstrates this:

a[i] = i++;

The question is, whether the old or new value of i is used as the subscript into
the array a depends on the order the compiler uses to evaluate the assignment.

The conditional operator ?: is an abbreviation for a commonly used if

statement. For example to assign max the maximum of a and b we can use the
following if statement:

if (a > b)

max = a;

else

max = b;

These types of if statements can be shorter written as

max = (a > b) ? a : b;

The next unusual operator is the operator assignment. We are often using
assignments of the following form

expr1 = (expr1) op (expr2)

for example

i = i * (j + 1);

In these assignments the lefthand value also appears on the right side. Using
informal speech we could express this as \set the value of i to the current value
of i multiplied by the sum of the value of j and 1". Using a more natural way,
we would rather say \Multiply i with the sum of the value of j and 1". C allows
us to abbreviate these types of assignments to

54 CHAPTER 7. INTRODUCTION TO C++

i *= j + 1;

We can do that with almost all binary operators. Note, that the above op-
erator assignment really implements the long form although \j + 1" is not in
parenthesis.

The last unusal operator is the comma operator ,. It is best explained by
an example:

i = 0;

j = (i += 1, i += 2, i + 3);

This operator takes its arguments and evaluates them from left to right and
returns the value of the rightmost expression. Thus, in the above example, the
operator �rst evaluates \i += 1" which, as a side e�ect, increments the value
of i. Then the next expression \i += 2" is evaluated which adds 2 to i leading
to a value of 3. The third expression is evaluated and its value returned as the
operator's result. Thus, j is assigned 6.

The comma operator introduces a particular pitfall when using n-
dimensional arrays with n > 1. A frequent error is to use a comma separated
list of indices to try to access an element:

int matrix[10][5]; // 2-dim matrix

int i;

...

i = matrix[1,2]; // WON'T WORK!!

i = matrix[1][2]; // OK

What actually happens in the �rst case is, that the comma separated list is
interpreted as the comma operator. Consequently, the result is 2 which leads
to an assignment of the address to the third �ve elements of the matrix!

Some of you might wonder, what C does with values which are not used.
For example in the assignment example above, we have three lines which each
return 12. The answer is, that C ignores values which are not used. This leads
to some strange things. For example, you could write something like this:

ix = 1;

4711;

jx = 2;

But let's forget about these strange things. Let's come back to something more
useful. Let's talk about functions.

7.1.4 Functions

As C is a procedural language it allows the de�nition of functions. Procedures
are \simulated" by functions returning \no value". This value is a special type
called void.

7.1. THE C PROGRAMMING LANGUAGE 55

Functions are declared similar to variables, but they enclose their arguments
in parenthesis (even if there are no arguments, the parenthesis must be speci-
�ed):

int sum(int to); /* Declaration of function sum with one */

/* argument */

int bar(); /* Declaration of function bar with no */

/* argument */

void foo(int ix, int jx);

/* Declaration of function foo with two */

/* arguments */

To actually de�ne a function, just add its body:

int sum(int to) {

int ix, ret;

ret = 0;

for (ix = 0; ix < to; ix = ix + 1)

ret = ret + ix;

return ret; /* return function's value */

} /* sum */

C only allows to pass function arguments by value. Consequently you cannot
change the value of one argument in the function. If you must pass an argument
by reference you must program it on your own. You therefore use pointers.

7.1.5 Pointers and Arrays

One of the most problem in programming in C (and sometimes C++) is the
understanding of pointers and arrays. In C (C++) both are highly related
with some small but essential di�erences. You declare a pointer by putting an
asterisk between the data type and the name of the variable or function:

char *strp; /* strp is `pointer to char' */

You access the content of a pointer by dereferencing it using again the asterisk:

strp = 'a'; / A single character */

As in other languages, you must provide some space for the value to which
the pointer points. A pointer to characters can be used to point to a sequence
of characters: the string. Strings in C are terminated by a special character
NUL (0 or as char 'n0'). Thus, you can have strings of any length. Strings are
enclosed in double quotes:

strp = "hello";

56 CHAPTER 7. INTRODUCTION TO C++

In this case, the compiler automatically adds the terminating NUL character.
Now, strp points to a sequence of 6 characters. The �rst character is `h', the
second `e' and so forth. We can access these characters by an index in strp:

strp[0] /* h */

strp[1] /* e */

strp[2] /* l */

strp[3] /* l */

strp[4] /* o */

strp[5] /* \0 */

The �rst character also equals *strp" which can be written as *(strp + 0)".
This leads to something called pointer arithmetic and which is one of the pow-
erful features of C. Thus, we have the following equations:

*strp == *(strp + 0) == strp[0]

*(strp + 1) == strp[1]

*(strp + 2) == strp[2]

...

Note that these equations are true for any data type. The addition is not
oriented to bytes, it is oriented to the size of the corresponding pointer type!

The strp pointer can be set to other locations. Its destination may vary.
In contrast to that, arrays are �x pointers. They point to a prede�ned area of
memory which is speci�ed in brackets:

char str[6];

You can view str to be a constant pointer pointing to an area of 6 characters.
We are not allowed to use it like this:

str = "hallo"; /* ERROR */

because this would mean, to change the pointer to point to 'h'. We must copy
the string into the provided memory area. We therefore use a function called
strcpy() which is part of the standard C library.

strcpy(str, "hallo"); /* Ok */

Note however, that we can use str in any case where a pointer to a character is
expected, because it is a (�xed) pointer.

7.1.6 A First Program

Here we introduce the �rst program which is so often used: a program which
prints \Hello, world!" to your screen:

7.2. WHAT NEXT? 57

#include <stdio.h>

/* Global variables should be here */

/* Function definitions should be here */

int

main() {

puts("Hello, world!");

return 0;

} /* main */

The �rst line looks something strange. Its explanation requires some informa-
tion about how C (and C++) programs are handled by the compiler. The
compilation step is roughly divided into two steps. The �rst step is called \pre-
processing" and is used to prepare raw C code. In this case this step takes the
�rst line as an argument to include a �le called stdio.h into the source. The an-
gle brackets just indicate, that the �le is to be searched in the standard search
path con�gured for your compiler. The �le itself provides some declarations
and de�nitions for standard input/output. For example, it declares a function
called put(). The preprocessing step also deletes the comments.

In the second step the generated raw C code is compiled to an executable.
Each executable must de�ne a function called main(). It is this function which
is called once the program is started. This function returns an integer which is
returned as the program's exit status.

Function main() can take arguments which represent the command line pa-
rameters. We just introduce them here but do not explain them any further:

#include <stdio.h>

int

main(int argc, char *argv[]) {

int ix;

for (ix = 0; ix < argc; ix++)

printf("My %d. argument is %s\n", ix, argv[ix]);

return 0;

} /* main */

The �rst argument argc just returns the number of arguments given on the
command line. The second argument argv is an array of strings. (Recall that
strings are represented by pointers to characters. Thus, argv is an array of
pointers to characters.)

7.2 What Next?

This section is far from complete. We only want to give you an expression of
what C is. We also want to introduce some basic concepts which we will use in

58 CHAPTER 7. INTRODUCTION TO C++

the following section. Some concepts of C are improved in C++. For example,
C++ introduces the concept of references which allow something similar to call
by reference in function calls.

We suggest that you take your local compiler and start writing a few pro-
grams (if you are not already familiar with C, of course). One problem of
beginners often is that existing library functions are unknown. If you have a
Unix system try to use the man command to get some descriptions. Especially
you might want to try:

man gets

man printf

man puts

man scanf

man strcpy

We also suggest, that you get yourself a good book about C (or to �nd one of
the on-line tutorials). We try to explain everything we introduce in the next
sections. However, it is no fault to have some reference at hand.

Chapter 8

From C To C++

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This section presents extensions to the C language which were introduced
by C++ [6]. It also deals with object-oriented concepts and their realization.

8.1 Basic Extensions

The following sections present extensions to already introduced concepts of C.
Section 8.2 presents object-oriented extensions.

C++ adds a new comment which is introduced by two slashes (//) and which
lasts until the end of line. You can use both comment styles, for example to
comment out large blocks of code:

/* C comment can include // and can span over

several lines. */

// /* This is the C++ style comment */ until end of line

In C you must de�ne variables at the beginning of a block. C++ allows you
to de�ne variables and objects at any position in a block. Thus, variables and
objects should be de�ned where they are used.

8.1.1 Data Types

C++ introduces a new data type called reference. You can think of them as
if they were \aliases" to \real" variables or objects. As an alias cannot exist
without its corresponding real part, you cannot de�ne single references. The
ampersand (&) is used to de�ne a reference. For example:

int ix; /* ix is "real" variable */

int &rx = ix; /* rx is "alias" for ix */

59

60 CHAPTER 8. FROM C TO C++

ix = 1; /* also rx == 1 */

rx = 2; /* also ix == 2 */

References can be used as function arguments and return values. This allows
to pass parameters as reference or to return a \handle" to a calculated variable
or object.

The table 8.1 is adopted from [1] and provides you with an overview of
possible declarations. It is not complete in that it shows not every possible
combination and some of them have not been introduced here, because we are
not going to use them. However, these are the ones which you will probably use
very often.

Declaration name is ... Example

type name; type int count;

type name[]; (open) array of type int count[];

type name[n]; array with n elements of type
type (name[0], name[1], ...,
name[n-1])

int count[3];

type *name; pointer to type int *count;

type *name[]; (open) array of pointers to type int *count;

type *(name[]); (open) array of pointers to type int *(count);

type (*name)[]; pointer to (open) array of type int (*count)[];

type &name; reference to type int &count;

type name(); function returning type int count();

type *name(); function returning pointer to type int *count();

type *(name()); function returning pointer to type int *(count());

type (*name)(); pointer to function returning type int (*count)();

type &name(); function returning reference to type int &count();

Table 8.1: Declaration expressions.

In C and C++ you can use the modi�er const to declare particular aspects
of a variable (or object) to be constant. The next table 8.2 lists possible combi-
nations and describe their meaning. Subsequently, some examples are presented
which demonstrate the use of const.

Now let's investigate some examples of contant variables and how to use
them. Consider the following declarations (again from [1]):

int i; // just an ordinary integer

int *ip; // uninitialized pointer to

// integer

int * const cp = &i; // constant pointer to integer

const int ci = 7; // constant integer

const int *cip; // pointer to constant integer

8.1. BASIC EXTENSIONS 61

Declaration name is ...

const type name = value; constant type
type * const name = value; constant pointer to type
const type *name = value; (variable) pointer to constant

type
const type * const name = value; constant pointer to constant

type

Table 8.2: Constant declaration expresssions.

const int * const cicp = &ci; // constant pointer to constant

// integer

The following assignments are valid:

i = ci; // assign constant integer to integer

*cp = ci; // assign constant integer to variable

// which is referenced by constant pointer

cip = &ci; // change pointer to constant integer

cip = cicp; // set pointer to constant integer to

// reference variable of constant pointer to

// constant integer

The following assignments are invalid:

ci = 8; // cannot change constant integer value

*cip = 7; // cannot change constant integer referenced

// by pointer

cp = &ci; // cannot change value of constant pointer

ip = cip; // this would allow to change value of

// constant integer *cip with *ip

When used with references some peculiarities must be considered. See the fol-
lowing example program:

#include <stdio.h>

int main() {

const int ci = 1;

const int &cr = ci;

int &r = ci; // create temporary integer for reference

// cr = 7; // cannot assign value to constant reference

r = 3; // change value of temporary integer

print("ci == %d, r == %d\n", ci, r);

return 0;

}

62 CHAPTER 8. FROM C TO C++

When compiled with GNU g++, the compiler issues the following warning:

conversion from `const int' to `int &' discards const

What actually happens is, that the compiler automatically creates a temporay
integer variable with value of ci to which reference r is initialized. Consequently,
when changing r the value of the temporary integer is changed. This temporary
variable lives as long as reference r.

Reference cr is de�ned as read-only (constant reference). This disables its
use on the left side of assignments. You may want to remove the comment
in front of the particular line to check out the resulting error message of your
compiler.

8.1.2 Functions

C++ allows function overloading as de�ned in section 6.3. For example, we can
de�ne two di�erent functions max(), one which returns the maximum of two
integers and one which returns the maximum of two strings:

#include <stdio.h>

int max(int a, int b) {

if (a > b) return a;

return b;

}

char *max(char *a, char * b) {

if (strcmp(a, b) > 0) return a;

return b;

}

int main() {

printf("max(19, 69) = %d\n", max(19, 69));

printf("max(abc, def) = %s\n", max("abc", "def"));

return 0;

}

The above example program de�nes these two functions which di�er in their
parameter list, hence, they de�ne two di�erent functions. The �rst printf() call
in function main() issues a call to the �rst version of max(), because it takes
two integers as its argument. Similarly, the second printf() call leads to a call
of the second version of max().

References can be used to provide a function with an alias of an actual
function call argument. This enables to change the value of the function call
argument as it is known from other languages with call-by-reference parameters:

void foo(int byValue, int &byReference) {

8.2. FIRST OBJECT-ORIENTED EXTENSIONS 63

byValue = 42;

byReference = 42;

}

void bar() {

int ix, jx;

ix = jx = 1;

foo(ix, jx);

/* ix == 1, jx == 42 */

}

8.2 First Object-oriented Extensions

In this section we present how the object-oriented concepts of section 4 are used
in C++.

8.2.1 Classes and Objects

C++ allows the declaration and de�nition of classes. Instances of classes are
called objects. Recall the drawing program example of section 5 again. There
we have developed a class Point. In C++ this would look like this:

class Point {

int _x, _y; // point coordinates

public: // begin interface section

void setX(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }

};

Point apoint;

This declares a class Point and de�nes an object apoint. You can think of a class
de�nition as a structure de�nition with functions (or \methods"). Additionally,
you can specify the access rights in more detail. For example, x and y are
private, because elements of classes are private as default. Consequently, we
explicitly must \switch" the access rights to declare the following to be public.
We do that by using the keyword public followed by a colon: Every element
following this keyword are now accessible from outside of the class.

We can switch back to private access rights by starting a private section with
private:. This is possible as often as needed:

class Foo {

64 CHAPTER 8. FROM C TO C++

// private as default ...

public:

// what follows is public until ...

private:

// ... here, where we switch back to private ...

public:

// ... and back to public.

};

Recall that a structure struct is a combination of various data elements which
are accessible from the outside. We are now able to express a structure with
help of a class, where all elements are declared to be public:

class Struct {

public: // Structure elements are public by default

// elements, methods

};

This is exactly what C++ does with struct. Structures are handled like classes.
Whereas elements of classes (de�ned with class) are private by default, ele-
ments of structures (de�ned with struct) are public. However, we can also use
private: to switch to a private section in structures.

Let's come back to our class Point. Its interface starts with the public section
where we de�ne four methods. Two for each coordinate to set and get its value.
The set methods are only declared. Their actual functionality is still to be
de�ned. The get methods have a function body: They are de�ned within the
class or, in other words, they are inlined methods.

This type of method de�nition is useful for small and simple bodies. It also
improve performance, because bodies of inlined methods are \copied" into the
code wherever a call to such a method takes place.

On the contrary, calls to the set methods would result in a \real" function
call. We de�ne these methods outside of the class declaration. This makes
it necessary, to indicate to which class a method de�nition belongs to. For
example, another class might just de�ne a method setX() which is quite di�erent
from that of Point. We must be able to de�ne the scope of the de�nition; we
therefore use the scope operator \::":

void Point::setX(const int val) {

_x = val;

}

void Point::setY(const int val) {

_y = val;

}

8.2. FIRST OBJECT-ORIENTED EXTENSIONS 65

Here we de�ne method setX() (setY()) within the scope of class Point. The
object apoint can use these methods to set and get information about itself:

Point apoint;

apoint.setX(1); // Initialization

apoint.setY(1);

//

// x is needed from here, hence, we define it here and

// initialize it to the x-coordinate of apoint

//

int x = apoint.getX();

The question arises about how the methods \know" from which object they are
invoked. This is done by implicitly passing a pointer to the invoking object
to the method. We can access this pointer within the methods as this. The
de�nitions of methods setX() and setY() make use of class members x and
y, respectively. If invoked by an object, these members are \automatically"
mapped to the correct object. We could use this to illustrate what actually
happens:

void Point::setX(const int val) {

this->_x = val; // Use this to reference invoking

// object

}

void Point::setY(const int val) {

this->_y = val;

}

Here we explicitly use the pointer this to explicitly dereference the invoking
object. Fortunately, the compiler automatically \inserts" these dereferences for
class members, hence, we really can use the �rst de�nitions of setX() and setY().
However, it sometimes make sense to know that there is a pointer this available
which indicates the invoking object.

Currently, we need to call the set methods to initialize a point object1.
However, we would like to initialize the point when we de�ne it. We therefore
use special methods called constructors.

8.2.2 Constructors

Constructors are methods which are used to initialize an object at its de�nition
time. We extend our class Point such that it initializes a point to coordinates
(0, 0):

1In the following we will drop the word \object" and will speak of \the point".

66 CHAPTER 8. FROM C TO C++

class Point {

int _x, _y;

public:

Point() {

_x = _y = 0;

}

void setX(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }

};

Constructors have the same name of the class (thus they are identi�ed to be
constructors). They have no return value. As other methods, they can take
arguments. For example, we may want to initialize a point to other coordi-
nates than (0, 0). We therefore de�ne a second constructor taking two integer
arguments within the class:

class Point {

int _x, _y;

public:

Point() {

_x = _y = 0;

}

Point(const int x, const int y) {

_x = x;

_y = y;

}

void setX(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }

};

Constructors are implicitly called when we de�ne objects of their classes:

Point apoint; // Point::Point()

Point bpoint(12, 34); // Point::Point(const int, const int)

With constructors we are able to initialize our objects at de�nition time as we
have requested it in section 2 for our singly linked list. We are now able to
de�ne a class List where the constructors take care of correctly initializing its
objects.

8.2. FIRST OBJECT-ORIENTED EXTENSIONS 67

If we want to create a point from another point, hence, copying the properties
of one object to a newly created one, we sometimes have to take care of the
copy process. For example, consider the class List which allocates dynamically
memory for its elements. If we want to create a second list which is a copy of
the �rst, we must allocate memory and copy the individual elements. In our
class Point we therefore add a third constructor which takes care of correctly
copying values from one object to the newly created one:

class Point {

int _x, _y;

public:

Point() {

_x = _y = 0;

}

Point(const int x, const int y) {

_x = x;

_y = y;

}

Point(const Point &from) {

_x = from._x;

_y = from._y;

}

void setX(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }

};

The third constructor takes a constant reference to an object of class Point as
an argument and assigns x and y the corresponding values of the provided
object.

This type of constructor is so important that it has its own name: copy
constructor. It is highly recommended that you provide for each of your classes
such a constructor, even if it is as simple as in our example. The copy constructor
is called in the following cases:

Point apoint; // Point::Point()

Point bpoint(apoint); // Point::Point(const Point &)

Point cpoint = apoint; // Point::Point(const Point &)

With help of constructors we have ful�lled one of our requirements of imple-
mentation of abstract data types: Initialization at de�nition time. We still need
a mechanism which automatically \destroys" an object when it gets invalid (for
example, because of leaving its scope). Therefore, classes can de�ne destructors.

68 CHAPTER 8. FROM C TO C++

8.2.3 Destructors

Consider a class List. Elements of the list are dynamically appended and re-
moved. The constructor helps us in creating an initial empty list. However,
when we leave the scope of the de�nition of a list object, we must ensure that
the allocated memory is released. We therefore de�ne a special method called
destructor which is called once for each object at its destruction time:

void foo() {

List alist; // List::List() initializes to

// empty list.

... // add/remove elements

} // Destructor call!

Destruction of objects take place when the object leaves its scope of de�nition
or is explicitly destroyed. The latter happens, when we dynamically allocate an
object and release it when it is no longer needed.

Destructors are declared similar to constructors. Thus, they also use the
name pre�xed by a tilde (~) of the de�ning class:

class Point {

int _x, _y;

public:

Point() {

_x = _y = 0;

}

Point(const int x, const int y) {

_x = xval;

_y = yval;

}

Point(const Point &from) {

_x = from._x;

_y = from._y;

}

~Point() { /* Nothing to do! */ }

void setX(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }

};

Destructors take no arguments. It is even invalid to de�ne one, because destruc-
tors are implicitly called at destruction time: You have no chance to specify
actual arguments.

Chapter 9

More on C++

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This section concludes our introduction to C++. We introduce \real" object-
oriented concepts and we answer the question, how a C++ program is actually
written.

9.1 Inheritance

In our pseudo language, we formulate inheritance with \inherits from". In C++
these words are replaced by a colon. As an example let's design a class for 3D
points. Of course we want to reuse our already existing class Point. We start
designing our class as follows:

class Point3D : public Point {

int _z;

public:

Point3D() {

setX(0);

setY(0);

_z = 0;

}

Point3D(const int x, const int y, const int z) {

setX(x);

setY(y);

_z = z;

}

~Point3D() { /* Nothing to do */ }

69

70 CHAPTER 9. MORE ON C++

int getZ() { return _z; }

void setZ(const int val) { _z = val; }

};

9.1.1 Types of Inheritance

You might notice again the keyword public used in the �rst line of the class
de�nition (its signature). This is necessary because C++ distinguishes two types
of inheritance: public and private. As a default, classes are privately derived
from each other. Consequently, we must explicitly tell the compiler to use public
inheritance.

The type of inheritance inuences the access rights to elements of the various
superclasses. Using public inheritance, everything which is declared private in
a superclass remains private in the subclass. Similarly, everything which is
public remains public. When using private inheritance the things are quite
di�erent as is shown in table 9.1.

Type of Inheritance
private public

private private private
protected private protected
public private public

Table 9.1: Access rights and inheritance.

The leftmost column lists possible access rights for elements of classes. It
also includes a third type protected. This type is used for elements which
should be directly usable in subclasses but which should not be accessible from
the outside. Thus, one could say elements of this type are between private and
public elements in that they can be used within the class hierarchy rooted by
the corresponding class.

The second and third column show the resulting access right of the elements
of a superclass when the subclass is privately and publically derived, respectively.

9.1.2 Construction

When we create an instance of class Point3D its constructor is called. Since
Point3D is derived from Point the constructor of class Point is also called.
However, this constructor is called before the body of the constructor of class
Point3D is executed. In general, prior to the execution of the particular con-
structor body, constructors of every superclass are called to initialize their part
of the created object.

When we create an object with

Point3D point(1, 2, 3);

9.1. INHERITANCE 71

the second constructor of Point3D is invoked. Prior to the execution of the
constructor body, the constructor Point() is invoked, to initialize the point part
of object point. Fortunately, we have de�ned a constructor which takes no
arguments. This constructor initializes the 2D coordinates x and y to 0 (zero).
As Point3D is only derived from Point there are no other constructor calls
and the body of Point3D(const int, const int, const int) is executed. Here we
invoke methods setX() and setY() to explicitly override the 2D coordinates.
Subsequently, the value of the third coordinate z is set.

This is very unsatisfactory as we have de�ned a constructor Point() which
takes two arguments to initialize its coordinates to them. Thus we must only
be able to tell, that instead of using the default constructor Point() the param-
terized Point(const int, const int) should be used. We can do that by specifying
the desired constructors after a single colon just before the body of constructor
Point3D():

class Point3D : public Point {

...

public:

Point3D() { ... }

Point3D(

const int x,

const int y,

const int z) : Point(x, y) {

_z = z;

}

...

};

If we would have more superclasses we simply provide their constructor calls
as a comma separated list. We also use this mechanism to create contained
objects. For example, suppose that class Part only de�nes a constructor with
one argument. Then to correctly create an object of class Compound we must
invoke Part() with its argument:

class Compound {

Part part;

...

public:

Compound(const int partParameter) : part(partParameter) {

...

}

...

};

This dynamic initialization can also be used with built-in data types. For ex-
ample, the constructors of class Point could be written as:

72 CHAPTER 9. MORE ON C++

Point() : _x(0), _y(0) {}

Point(const int x, const int y) : _x(x), _y(y) {}

You should use this initialization method as often as possible, because it allows
the compiler to create variables and objects correctly initialized instead of cre-
ating them with a default value and to use an additional assignment (or other
mechanism) to set its value.

9.1.3 Destruction

If an object is destroyed, for example by leaving its de�nition scope, the de-
structor of the corresponding class is invoked. If this class is derived from other
classes their destructors are also called, leading to a recursive call chain.

9.1.4 Multiple Inheritance

C++ allows a class to be derived from more than one superclass, as was already
briey mentioned in previous sections. You can easily derive from more than
one class by specifying the superclasses in a comma separated list:

class DrawableString : public Point, public DrawableObject {

...

public:

DrawableString(...) :

Point(...),

DrawableObject(...) {

...

}

~DrawableString() { ... }

...

};

We will not use this type of inheritance in the remainder of this tutorial. There-
fore we will not go into further detail here.

9.2 Polymorphism

In our pseudo language we are able to declare methods of classes to be virtual,
to force their evaluation to be based on object content rather than object type.
We can also use this in C++:

class DrawableObject {

public:

virtual void print();

};

9.2. POLYMORPHISM 73

Class DrawableObject de�nes a method print() which is virtual. We can derive
from this class other classes:

class Point : public DrawableObject {

...

public:

...

void print() { ... }

};

Again, print() is a virtual method, because it inherits this property from Draw-
ableObject. The function display() which is able to display any kind of drawable
object, can then be de�ned as:

void display(const DrawableObject &obj) {

// prepare anything necessary

obj.print();

}

When using virtual methods some compilers complain if the corresponding class
destructor is not declared virtual as well. This is necessary when using pointers
to (virtual) subclasses when it is time to destroy them. As the pointer is declared
as superclass normally its destructor would be called. If the destructor is virtual,
the destructor of the actual referenced object is called (and then, recursively,
all destructors of its superclasses). Here is an example adopted from [1]:

class Colour {

public:

virtual ~Colour();

};

class Red : public Colour {

public:

~Red(); // Virtuality inherited from Colour

};

class LightRed : public Red {

public:

~LightRed();

};

Using these classes, we can de�ne a palette as follows:

Colour *palette[3];

palette[0] = new Red; // Dynamically create a new Red object

palette[1] = new LightRed;

palette[2] = new Colour;

74 CHAPTER 9. MORE ON C++

The newly introduced operator new creates a new object of the speci�ed type
in dynamic memory and returns a pointer to it. Thus, the �rst new returns a
pointer to an allocated object of class Red and assigns it to the �rst element of
array palette. The elements of palette are pointers to Colour and, because Red
is-a Colour the assignment is valid.

The contrary operator to new is delete which explicitly destroys an object
referenced by the provided pointer. If we apply delete to the elements of palette
the following destructor calls happen:

delete palette[0];

// Call destructor ~Red() followed by ~Colour()

delete palette[1];

// Call ~LightRed(), ~Red() and ~Colour()

delete palette[2];

// Call ~Colour()

The various destructor calls only happen, because of the use of virtual destruc-
tors. If we would have not declared them virtual, each delete would have only
called ~Colour() (because palette[i] is of type pointer to Colour).

9.3 Abstract Classes

Abstract classes are de�ned just as ordinary classes. However, some of their
methods are designated to be necessarily de�ned by subclasses. We just mention
their signature including their return type, name and parameters but not a
de�nition. One could say, we omit the method body or, in other words, specify
\nothing". This is expressed by appending \= 0" after the method signatures:

class DrawableObject {

...

public:

...

virtual void print() = 0;

};

This class de�nition would force every derived class from which objects should
be created to de�ne a method print(). These method declarations are also called
pure methods.

Pure methods must also be declared virtual, because we only want to
use objects from derived classes. Classes which de�ne pure methods are called
abstract classes.

9.4 Operator Overloading

If we recall the abstract data type for complex numbers, Complex, we could
create a C++ class as follows:

9.4. OPERATOR OVERLOADING 75

class Complex {

double _real,

_imag;

public:

Complex() : _real(0.0), _imag(0.0) {}

Complex(const double real, const double imag) :

_real(real), _imag(imag) {}

Complex add(const Complex op);

Complex mul(const Complex op);

...

};

We would then be able to use complex numbers and to \calculate" with them:

Complex a(1.0, 2.0), b(3.5, 1.2), c;

c = a.add(b);

Here we assign c the sum of a and b. Although absolutely correct, it does not
provide a convenient way of expression. What we would rather like to use is
the well-known \+" to express addition of two complex numbers. Fortunately,
C++ allows us to overload almost all of its operators for newly created types.
For example, we could de�ne a \+" operator for our class Complex:

class Complex {

...

public:

...

Complex operator +(const Complex &op) {

double real = _real + op._real,

imag = _imag + op._imag;

return(Complex(real, imag));

}

...

};

In this case, we have made operator + a member of class Complex. An expression
of the form

c = a + b;

is translated into a method call

76 CHAPTER 9. MORE ON C++

c = a.operator +(b);

Thus, the binary operator + only needs one argument. The �rst argument is
implicitly provided by the invoking object (in this case a).

However, an operator call can also be interpreted as a usual function call,
as in

c = operator +(a, b);

In this case, the overloaded operator is not a member of a class. It is rather
de�ned outside as a normal overloaded function. For example, we could de�ne
operator + in this way:

class Complex {

...

public:

...

double real() { return _real; }

double imag() { return _imag; }

// No need to define operator here!

};

Complex operator +(Complex &op1, Complex &op2) {

double real = op1.real() + op2.real(),

imag = op1.imag() + op2.imag();

return(Complex(real, imag));

}

In this case we must de�ne access methods for the real and imaginary parts be-
cause the operator is de�ned outside of the class's scope. However, the operator
is so closely related to the class, that it would make sense to allow the operator
to access the private members. This can be done by declaring it to be a friend
of class Complex.

9.5 Friends

We can de�ne functions or classes to be friends of a class to allow them direct
access to its private data members. For example, in the previous section we
would like to have the function for operator + to have access to the private data
members real and imag of class Complex. Therefore we declare operator + to
be a friend of class Complex:

class Complex {

9.6. HOW TO WRITE A PROGRAM 77

...

public:

...

friend Complex operator +(

const Complex &,

const Complex &

);

};

Complex operator +(const Complex &op1, const Complex &op2) {

double real = op1._real + op2._real,

imag = op1._imag + op2._imag;

return(Complex(real, imag));

}

You should not use friends very often because they break the data hiding prin-
ciple in its fundamentals. If you have to use friends very often it is always a
sign that it is time to restructure your inheritance graph.

9.6 How to Write a Program

Until now, we have only presented parts of or very small programs which could
easily be handled in one �le. However, greater projects, say, a calendar pro-
gram, should be split into manageable pieces, often called modules. Modules
are implemented in separate �les and we will now briey discuss how modular-
ization is done in C and C++. This discussion is based on Unix and the GNU
C++ compiler. If you are using other constellations the following might vary
on your side. This is especially important for those who are using integrated
development environments (IDEs), for example, Borland C++.

Roughly speaking, modules consist of two �le types: interface descriptions
and implementation �les. To distinguish these types, a set of su�xes are used
when compiling C and C++ programs. Table 9.2 shows some of them.

Extension(s) File Type

.h, .hxx, .hpp interface descriptions (\header"
or \include �les")

.c implementation �les of C

.cc, .C, .cxx, .cpp, .c++ implementation �les of C++

.tpl interface description
(templates)

Table 9.2: Extensions and �le types.

78 CHAPTER 9. MORE ON C++

In this tutorial we will use .h for header �les, .cc for C++ �les and .tpl for
template de�nition �les. Even if we are writing \only" C code, it makes sense
to use .cc to force the compiler to treat it as C++. This simpli�es combination
of both, since the internal mechanism of how the compiler arrange names in the
program di�ers between both languages1.

9.6.1 Compilation Steps

The compilation process takes .cc �les, preprocess them (removing comments,
add header �les)2 and translates them into object �les3. Typical su�xes for that
�le type are .o or .obj.

After successful compilation the set of object �les is processed by a linker.
This program combine the �les, add necessary libraries4 and creates an exe-
cutable. Under Unix this �le is called a.out if not other speci�ed. These steps
are illustrated in Figure 9.1.

libraries

.cc

a.out

compiler

linker

.h, .tpl

.o

Figure 9.1: Compilation steps.

With modern compilers both steps can be combined. For example, our small
example programs can be compiled and linked with the GNU C++ compiler as
follows (\example.cc" is just an example name, of course):

gcc example.cc

1This is due to the fact that C++ supports function polymorphism. Therefore the name
mangling must take function parameters into account.

2This also creates an intermediary preprocessed raw C++ �le. A typical su�x is .i.
3This has nothing to do with objects in the object-oriented sense.
4For example, standard functions such as printf() are provided this way.

9.7. EXCERCISES 79

9.6.2 A Note about Style

Header �les are used to describe the interface of implementation �les. Conse-
quently, they are included in each implementation �le which uses the interface of
the particular implementation �le. As mentioned in previous sections this inclu-
sion is achieved by a copy of the content of the header �le at each preprocessor
#include statement, leading to a \huge" raw C++ �le.

To avoid the inclusion of multiple copies caused by mutual dependencies we
use conditional coding. The preprocessor also de�nes conditional statements to
check for various aspects of its processing. For example, we can check if a macro
is already de�ned:

#ifndef MACRO

#define MACRO /* define MACRO */

...

#endif

The lines between #ifndef and #endif are only included, if MACRO is not already
de�ned. We can use this mechanism to prevent multiple copies:

/*

** Example for a header file which `checks' if it is

** already included. Assume, the name of the header file

** is `myheader.h'

*/

#ifndef __MYHEADER_H

#define __MYHEADER_H

/*

** Interface declarations go here

*/

#endif /* __MYHEADER_H */

MYHEADER H is a unique name for each header �le. You might want to follow
the convention of using the name of the �le pre�xed with two underbars. The
�rst time the �le is included, MYHEADER H is not de�ned, thus every line is
included and processed. The �rst line just de�nes a macro called MYHEADER H.
If accidentally the �le should be included a second time (while processing the
same input �le), MYHEADER H is de�ned, thus everything leading up to the
#endif is skipped.

9.7 Excercises

1. Polymorphism. Explain why

80 CHAPTER 9. MORE ON C++

void display(const DrawableObject obj);

does not produce the desired output.

Chapter 10

The List { A Case Study

Peter M�uller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

10.1 Generic Types (Templates)

In C++ generic data types are called class templates1 or just templates for
short. A class template looks like a normal class de�nition, where some aspects
are represented by placeholders. In the forthcoming list example we use this
mechanism to generate lists for various data types:

template <class T>

class List : ... {

public:

...

void append(const T data);

...

};

In the �rst line we introduce the keyword template which starts every template
declaration. The arguments of a template are enclosed in angle brackets.

Each argument speci�es a placeholder in the following class de�nition. In our
example, we want class List to be de�ned for various data types. One could say,
that we want to de�ne a class of lists2. In this case the class of lists is de�ned
by the type of objects they contain. We use the name T for the placeholder.
We now use T at any place where normally the type of the actual objects are

1C++ also allows the de�nition of function templates. However, as we do not use them,
we will not explain them any further.

2Do not mix up this use of \class" with the \class de�nition" used before. Here we mean
with \class" a set of class de�nitions which share some common properties, or a \class of
classes".

81

82 CHAPTER 10. THE LIST { A CASE STUDY

expected. For example, each list provides a method to append an element to it.
We can now de�ne this method as shown above with use of T.

An actual list de�nition must now specify the type of the list. If we stick to
the class expression used before, we have to create a class instance. From this
class instance we can then create \real" object instances:

List<int> integerList;

Here we create a class instance of a List which takes integers as its data elements.
We specify the type enclosed in angle brackets. The compiler now applies the
provided argument \int" and automatically generates a class de�nition where
the placeholder T is replaced by int, for example, it generates the following
method declaration for append():

void append(const int data);

Templates can take more than one argument to provide more placeholders. For
example, to declare a dictionary class which provides access to its data elements
by a key, one can think of the following declaration:

template <class K, class T>

class Dictionary {

...

public:

...

K getKey(const T from);

T getData(const K key);

...

};

Here we use two placeholders to be able to use dictionaries for various key and
data types.

Template arguments can also be used to generate parameterized class de�ni-
tions. For example, a stack might be implemented by an array of data elements.
The size of the array could be speci�ed dynamically:

template <class T, int size>

class Stack {

T _store[size];

public:

...

};

Stack<int,128> mystack;

In this example, mystack is a stack of integers using an array of 128 elements.
However, in the following we will not use parameterized classes.

10.2. SHAPE AND TRAVERSAL 83

10.2 Shape and Traversal

In the following discussion we distinguish between a data structure's shape and
its traversing strategies. The �rst is the \look", which already provides plenty
information about the building blocks of the data structure.

A traversing strategy de�nes the order in which elements of the data struc-
ture are to be visited. It makes sense to separate the shape from traversing
strategies, because some data structures can be traversed using various strate-
gies.

Traversing of a data structure is implemented using iterators. Iterators guar-
antee to visit each data item of their associated data structure in a well de�ned
order. They must provide at least the following properties:

1. Current element. The iterator visits data elements one at a time. The
element which is currently visited is called \current element".

2. Successor function. The execution of the step to the next data element
depends on the traversing strategy implemented by the iterator. The
\successor function" is used to return the element which is next to be
visited: It returns the successor of the current element.

3. Termination condition. The iterator must provide a mechanism to check
whether all elements are visited or not.

10.3 Properties of Singly Linked Lists

When doing something object-oriented, the �rst question to ask is

What are the basic building blocks of the item to implement?

Have a look at Figure 10.1, which shows a list consisting of four rectangles.
Each rectangle has a bullet in its middle, the �rst three point to their right
neighbour. Since the last rectangle have no right neighbour, there is no pointer.

Figure 10.1: Basic building blocks of a singly linked list.

First let's choose names for these building blocks. Talking of rectangles is
not appropriate, because one can think of a �gure using circles or triangles.

Within the scope of graphs the name node is used. A node contains a pointer
to its successor. Thus, the list in the �gure consists of nodes, each of which has
exactly one pointer associated with it.

Three types of nodes can be distinguished:

84 CHAPTER 10. THE LIST { A CASE STUDY

� The �rst node (head), which has no predecessor,

� the middle nodes, which have exactly one predecessor and exactly one
successor and

� the last node (tail), which has no successor.

Note that the nodes do not carry any content. This is because the bare data
structure list consists only of nodes, which are strung together. Of course real
applications need nodes, carrying some content. But in the sense of object-
orientation this is a specialization of the nodes.

From the �gure we can see, that a list can only be used with one traversing
strategy: forward cursor. Initially, the head will be the �rst current element.
The successor function simply follows the pointer of the current node. The
termination function checks the current element to be the tail.

Note that it is not possible to go back nor to start in the middle of the list.
The latter would contradict the requirement, that each element must be visited.

The next question is, what are the operations o�ered by a list? A list only
de�nes two well known nodes head and tail. Let's have a deeper look to them.

A new node can be put-in-front of the list such that:

� its pointer is set to the current head,
� the new node becomes the new head.

Similarly, a new node can easily be appended to the tail:

� the tail pointer is set to the new node,
� the new node becomes the new tail.

The inverse function to put in front is delete-from-front:

� the successor node of the head becomes the new head,
� the formerly head node is discarded.

You should be able to �gure out why there is no cheap inverse append
function.

Finally, there exist three other cheap primitives, whose meaning is straight
forward. Thus, we will not examine them any further. However, we present
them here for completeness:

� get-�rst: returns the (data of the) head node,

� get-last: returns the (data of the) tail node and

� is-empty: returns whether the list is empty or not.

10.4. SHAPE IMPLEMENTATION 85

10.4 Shape Implementation

10.4.1 Node Templates

The basic building block of a list is the node. Thus, let's �rst declare a class
for it. A node has nothing more than a pointer to another node. Let's assume,
that this neighbour is always on the right side.

Have a look at the following declaration of class Node.

class Node {

Node *_right;

public:

Node(Node *right = NULL) : _right(right) {}

Node(const Node &val) : _right(val._right) {}

const Node *right() const { return _right; }

Node *&right() { return _right; }

Node &operator =(const Node &val) {

_right = val._right;

return *this;

}

const int operator ==(const Node &val) const {

return _right == val._right;

}

const int operator !=(const Node &val) const {

return !(*this == val);

}

};

A look to the �rst version of method right() contains a const just before the
method body. When used in this position, const declares the method to be
constant regarding the elements of the invoking object. Consequently, you are
only allowed to use this mechanism in method declarations or de�nitions, re-
spectively.

This type of const modi�er is also used to check for overloading. Thus,

class Foo {

...

int foo() const;

int foo();

};

declare two di�erent methods. The former is used in constant contexts whereas
the second is used in variable contexts.

86 CHAPTER 10. THE LIST { A CASE STUDY

Although template class Node implements a simple node it seems to de�ne
plenty of functionality. We do this, because it is good practice to o�er at least
the following functionality for each de�ned data type:

� Copy Constructor. The copy constructor is needed to allow de�nition of
objects which are initialized from already existing ones.

� operator =. Each object should know how to assign other objects (of
the same type) to itself. In our example class, this is simply the pointer
assignment.

� operator ==. Each object should know how to compare itself with another
object.

The unequality operator \!=" is implemented by using the de�nition of the
equality operator. Recall, that this points to the invoking object, thus,

Node a, b;

...

if (a != b) ...

would result in a call to operator !=() with this set to the address of a. We
dereference this using the standard dereference operator *". Now, *this is an
object of class Node which is compared to another object using operator ==().
Consequently, the de�nition of operator ==() of class Node is used. Using the
standard boolean NOT operator \!" we negate the result and obtain the truth
value of operator !=().

The above methods should be available for each class you de�ne. This en-
sures that you can use your objects as you would use any other objects, for
example integers. If some of these methods make no sense for whatever reason,
you should declare them in a private section of the class to explicitly mark them
as not for public use. Otherwise the C++ compiler would substitute standard
operators.

Obviously, real applications require the nodes to carry data. As mentioned
above, this means to specialize the nodes. Data can be of any type, hence, we
are using the template construct.

template <class T>

class DataNode : public Node {

T _data;

public:

DataNode(const T data, DataNode *right = NULL) :

Node(right), _data(data) {}

DataNode(const DataNode &val) :

Node(val), _data(val._data) {}

const DataNode *right() const {

10.4. SHAPE IMPLEMENTATION 87

return((DataNode *) Node::right());

}

DataNode *&right() { return((DataNode *&) Node::right()); }

const T &data() const { return _data; }

T &data() { return _data; }

DataNode &operator =(const DataNode &val) {

Node::operator =(val);

_data = val._data;

return *this;

}

const int operator ==(const DataNode &val) const {

return(

Node::operator ==(val) &&

_data == val._data);

}

const int operator !=(const DataNode &val) const {

return !(*this == val);

}

};

The above template DataNode simply specializes class Node to carry data of any
type. It adds functionality to access its data element and also o�ers the same set
of standard functionality: Copy Constructor, operator =() and operator ==().
Note, how we reuse functionality already de�ned by class Node.

10.4.2 List Templates

Now we are able to declare the list template. We also use the template mecha-
nism here, because we want the list to carry data of arbitrary type. For example,
we want to be able to de�ne a list of integers. We start with an abstract class
template ListBase which functions as the base class of all other lists. For ex-
ample, doubly linked lists obviously share the same properties like singly linked
lists.

template <class T>

class ListBase {

public:

virtual ~ListBase() {} // Force destructor to be

// virtual

virtual void flush() = 0;

virtual void putInFront(const T data) = 0;

virtual void append(const T data) = 0;

88 CHAPTER 10. THE LIST { A CASE STUDY

virtual void delFromFront() = 0;

virtual const T &getFirst() const = 0;

virtual T &getFirst() = 0;

virtual const T &getLast() const = 0;

virtual T &getLast() = 0;

virtual const int isEmpty() const = 0;

};

What we actually do is to describe the interface of every list by specifying
the prototypes of required methods. We do that for every operation we have
identi�ed in section 10.3. Additionally, we also include a method ush() which
allows us to delete all elements of a list.

For operations get-�rst and get-last we have declared two versions. One is
for use in a constant context and the other in a variable context.

With this abstract class template we are able to actually de�ne our list class
template:

template <class T>

class List : public ListBase<T> {

DataNode<T> *_head, *_tail;

public:

List() : _head(NULL), _tail(NULL) {}

List(const List &val) : _head(NULL), _tail(NULL) {

*this = val;

}

virtual ~List() { flush(); }

virtual void flush();

virtual void putInFront(const T data);

virtual void append(const T data);

virtual void delFromFront();

virtual const T &getFirst() const { return _head->data(); }

virtual T &getFirst() { return _head->data(); }

virtual const T &getLast() const { return _tail->data(); }

virtual T &getLast() { return _tail->data(); }

virtual const int isEmpty() const { return _head == NULL; }

List &operator =(const List &val) {

flush();

DataNode<T> *walkp = val._head;

while (walkp) append(walkp->data());

10.4. SHAPE IMPLEMENTATION 89

return *this;

}

const int operator ==(const List &val) const {

if (isEmpty() && val.isEmpty()) return 1;

DataNode<T> *thisp = _head,

*valp = val._head;

while (thisp && valp) {

if (thisp->data() != valp->data()) return 0;

thisp = thisp->right();

valp = valp->right();

}

return 1;

}

const int operator !=(const List &val) const {

return !(*this == val);

}

friend class ListIterator<T>;

};

The constructors initialize the list's elements head and tail to NULL which is
the NUL pointer in C and C++. You should know how to implement the
other methods from your programming experience. Here we only present the
implementation of method putInFront():

template <class T> void

List<T>::putInFront(const T data) {

_head = new DataNode<T>(data, _head);

if (!_tail) _tail = _head;

} /* putInFront */

If we de�ne methods of a class template outside of its declaration, we must also
specify the template keyword. Again we use the new operator to create a new
data node dynamically. This operator allows initialization of its created object
with arguments enclosed in parenthesis. In the above example, new creates a new
instance of class DataNode<T>. Consequently, the corresponding constructor
is called.

Also notice how we use placeholder T. If we would create a class instance
of class template List, say, List<int> this would also cause creation of a class
instance of class template DataNode, viz DataNode<int>.

The last line of the class template declaration declares class template List-
Iterator to be a friend of List. We want to separately de�ne the list's iterator.
However, it is closely related, thus, we allow it to be a friend.

90 CHAPTER 10. THE LIST { A CASE STUDY

10.5 Iterator Implementation

In section 10.2 we have introduced the concept of iterators to traverse through
a data structure. Iterators must implement three properties:

� Current element.
� Successor function.
� Termination condition.

Generally speaking, the iterator successively returns data associated with the
current element. Obviously, there will be a method, say, current() which imple-
ments this functionality. The return type of this method depends on the type of
data stored in the particular data structure. For example, when iterating over
List<int> the return type should be int.

The successor function, say, succ(), uses additional information which is
stored in structural elements of the data structure. In our list example, these
are the nodes which carry the data and a pointer to their right neighbour. The
type of the structural elements usually di�ers from that of the raw data. Con-
sider again our List<int> where succ() must use DataNode<int> as structural
elements.

The termination condition is implemented by a method, say, terminate(),
which returns TRUE if (and only if) all data elements of the associated data
structure have been visited. As long as succ() can �nd an element not yet
visited, this method returns FALSE.

Again we want to specify an abstract iterator class which de�nes properties
of every iterator. The thoughts above lead to the following declaration:

template <class Data, class Element>

class Iterator {

protected:

Element _start,

_current;

public:

Iterator(const Element start) :

_start(start), _current(start) {}

Iterator(const Iterator &val) :

_start(val._start), _current(val._current) {}

virtual ~Iterator() {}

virtual const Data current() const = 0;

virtual void succ() = 0;

virtual const int terminate() const = 0;

virtual void rewind() { _current = _start; }

Iterator &operator =(const Iterator &val) {

10.5. ITERATOR IMPLEMENTATION 91

_start = val._start;

_current = val._current;

return *this;

}

const int operator ==(const Iterator &val) const {

return(_start == val._start && _current == val._current);

}

const int operator !=(const Iterator &val) const {

return !(*this == val);

}

};

Again we use the template mechanism to allow the use of the iterator for any
data structure which stores data of type Data and which uses structural elements
of type Element. Each iterator \knows" a starting (structural) element and the
current element. We make both accessible from derived classes because derived
iterators need access to them to implement the following iterator properties.
You should already understand how the constructors operate and why we force
the destructor to be virtual.

Subsequently we specify three methods which should implement the three
properties of an iterator. We also add a method rewind() which simply sets
the current element to the start element. However, complex data structures
(for example hash tables) might require more sophisticated rewind algorithms.
For that reason we also specify this method to be virtual, allowing derived
iterators to rede�ne it for their associated data structure.

The last step in the iterator implementation process is the declaration of
the list iterator. This iterator is highly related to our class template List, for
example, it is clear that the structural elements are class templates DataNode.
The only \open" type is the one for the data. Once again, we use the template
mechanism to provide list iterators for the di�erent list types:

template <class T>

class ListIterator : public Iterator<T, DataNode<T> *> {

public:

ListIterator(const List<T> &list) :

Iterator<T, DataNode<T> *>(list._head) {}

ListIterator(const ListIterator &val) :

Iterator<T, DataNode<T> *>(val) {}

virtual const T current() const { return _current->data(); }

virtual void succ() { _current = _current->right(); }

virtual const int terminate() const {

return _current == NULL;

}

92 CHAPTER 10. THE LIST { A CASE STUDY

T &operator ++(int) {

T &tmp = _current->data();

succ();

return tmp;

}

ListIterator &operator =(const ListIterator &val) {

Iterator<T, DataNode<T> *>::operator =(val);

return *this;

}

};

The class template ListIterator is derived from Iterator. The type of data is, of
course, the type for which the list iterator is declared, hence, we insert place-
holder T for the iterator's data type Data. The iteration process is achieved
with help of the structural elements of type DataNode. Obviously the starting
element is the head of the list head which is of type DataNode<T> *. We
choose this type for the element type Element.

Note that the list iterator actually hides the details about the structural
elements. This type highly depends on the implementation of the list. For
example, if we would have chosen an array implementation, we may have used
integers as structural elements where the current element is indicated by an
array index.

The �rst constructor takes the list to traverse as its argument and initializes
its iterator portion accordingly. As each ListIterator<T> is a friend of List<T>
it has access to the list's private members. We use this to initialize the iterator
to point to the head of the list.

We omit the destructor because we do not have any additional data members
for the list iterator. Consequently, we do nothing special for it. However, the
destructor of class template Iterator is called. Recall that we have to de�ne this
destructor to force derived classes to also have a virtual one.

The next methods just de�ne the required three properties. Now that we
have structural elements de�ned as DataNode<T> * we use them as follows:

� the current element is the data carried by the current structural element,

� the successor function is to set the current structural element to its right
neighbour and

� the termination condition is to check the current structural element if it
is the NULL pointer. Note that this can happen only in two cases:

1. The list is empty. In this case the current element is already NULL

because the list's head head is NULL.

2. The current element reached the last element. In this case the previ-
ous successor function call set the current element to the right neigh-
bour of the last element which is NULL.

10.6. EXAMPLE USAGE 93

We have also included an overloaded postincrement operator \++". To dis-
tinguish this operator from the preincrement operator, it takes an additional
(anonymous) integer argument. As we only use this argument to declare a cor-
rect operator prototype and because we do not use the value of the argument,
we omit the name of the argument.

The last method is the overloaded assignment operator for list iterators. Sim-
ilar to previous assignment operators, we just reuse already de�ned assignments
of superclasses; Iterator<T>::operator =() in this case.

The other methods and operators, namely rewind(), operator ==() and op-
erator !=() are all inherited from class template Iterator.

10.6 Example Usage

The list template as introduced in previous sections can be used as follows:

int

main() {

List<int> list;

int ix;

for (ix = 0; ix < 10; ix++) list.append(ix);

ListIterator<int> iter(list);

while (!iter.terminate()) {

printf("%d ", iter.current());

iter.succ();

}

puts("");

return 0;

}

As we have de�ned a postincrement operator for the list iterator, the loop can
also be written as:

while (!iter.terminate())

print("%d ", iter++);

10.7 Discussion

10.7.1 Separation of Shape and Access Strategies

The presented example focusses on an object-oriented view. In real applications
singly linked lists might o�er more functionality. For example, insertion of new
data items should be no problem due to the use of pointers:

94 CHAPTER 10. THE LIST { A CASE STUDY

1. Take the successor pointer of the new element and set it to the element
which should become its right neighbour,

2. Take the successor pointer of the element after which the new element
should be inserted and set it to the new element.

Two simple operations. However, the problem is to designate the element after
which the new element should be inserted. Again, a mechanism is needed which
traverse through the list. This time, however, traversion stops at a particular
element: It is the element where the list (or the data structure) is modi�ed.

Similar to the existence of di�erent traversing strategies, one can think of
di�erent modi�cation strategies. For example, to create a sorted list, where
elements are sorted in ascending order, use an ascending modi�er.

These modi�ers must have access to the list structural elements, and thus,
they would be declared as friends as well. This would lead to the necessity that
every modi�er must be a friend of its data structure. But who can guarantee,
that no modi�er is forgotten?

A solution is, that modi�cation strategies are not implemented by \external"
classes as iterators are. Instead, they are implemented by inheritance. If a
sorted list is needed, it is a specialization of the general list. This sorted list
would add a method, say insert(), which inserts a new element according to the
modi�cation strategy.

To make this possible, the presented list template must be changed. Because
now, derived classes must have access to the head and tail node to implement
these strategies. Consequently, head and tail should be protected.

10.7.2 Iterators

The presented iterator implementation assumes, that the data structure is not
changed during the use of an iterator. Consider the following example to illus-
trate this:

List<int> ilist;

int ix;

for (ix = 1; ix < 10; ix++)

ilist.append(ix);

ListIterator<int> iter(ilist);

while (!iter.terminate()) {

printf("%d ", iter.current());

iter.succ();

}

printf("\n");

ilist.putInFront(0);

10.8. EXCERCISES 95

iter.rewind();

while (!iter.terminate()) {

printf("%d ", iter.current());

iter.succ();

}

printf("\n");

This code fragment prints

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

instead of

1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

This is due to the fact, that our list iterator only stores pointers to the
list structural elements. Thus, the start element start is initially set to point
to the location where the list's head node head points to. This simply leads
to two di�erent pointers referencing the same location. Consequently, when
changing one pointer as it is done by invoking putInFront() the other pointer is
not a�ected.

For that reason, when rewinding the iterator after putInFront() the cur-
rent element is set to the start element which was set at the time the iterator
constructor was called. Now, the start element actually references the second
element of the list.

10.8 Excercises

1. Similar to the de�nition of the postincrement operator in class template
ListIterator, one could de�ne a preincrement operator as:

T &operator ++() {

succ();

return _current->data();

}

What problems occur?

2. Add the following method

int remove(const T &data);

96 CHAPTER 10. THE LIST { A CASE STUDY

to class template List. The method should delete the �rst occurrence of
data in the list. The method should return 1 if it removed an element or
0 (zero) otherwise.

What functionality must data provide? Remember that it can be of any
type, especially user de�ned classes!

3. Derive a class template CountedList from List which counts its elements.
Add a method count() of arbitrary type which returns the actual number
of elements stored in the list. Try to reuse as much of List as possible.

4. Regarding the iterator problem discussed in section 10.7. What are pos-
sible solutions to allow the list to be altered while an iterator of it is in
use?

Bibliography

[1] Borland International, Inc. Programmer's Guide. Borland International,
Inc., 1993.

[2] Ute Claussen. Objektorientiertes Programmieren. Springer Verlag,
1993. ISBN 3-540-55748-2.

[3] William Ford and William Topp. Data Structures with C++. Prentice-
Hall, Inc., 1996. ISBN 0-02-420971-6.

[4] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, Inc., 1977.

[5] Dennis M. Ritchie. The Development of the C Language3. In Sec-
ond History of Programming Languages conference, Cambridge, Mass., Apr.
1993.

[6] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley, 2nd edition, 1991. ISBN 0-201-53992-6.

3http://sf.www.lysator.liu.se/c/chistory.ps

97

98 BIBLIOGRAPHY

Appendix A

Solutions to the Excercises

This section presents example solutions to the excercises of the previous lectures.

A.1 A Survey of Programming Techniques

1. Discussion of module Singly-Linked-List-2.

(a) Interface de�nition of module Integer-List

MODULE Integer-List

DECLARE TYPE int_list_handle_t;

int_list_handle_t int_list_create();

BOOL int_list_append(int_list_handle_t this,

int data);

INTEGER int_list_getFirst(int_list_handle_t this);

INTEGER int_list_getNext(int_list_handle_t this);

BOOL int_list_isEmpty(int_list_handle_t this);

END Integer-List;

This representation introduces additional problems which are caused
by not separating traversal from data structure. As you may recall,
to iterate over the elements of the list, we have used a loop statement
with the following condition:

WHILE data IS VALID DO

Data was initialized by a call to list getFirst(). The integer list pro-
cedure int list getFirst() returns an integer, consequently, there is

99

100 APPENDIX A. SOLUTIONS TO THE EXCERCISES

no such thing like an \invalid integer" which we could use for loop
termination checking.

2. Di�erences between object-oriented programming and other techniques.
In object-oriented programming objects exchange messages with each
other. In the other programming techniques, data is exchanged between
procedures under control of a main program. Objects of the same kind but
each with its own state can coexist. This contrasts the modular approach
where each module only has one global state.

A.2 Abstract Data Types

1. ADT Integer.

(a) Both operations add and sub can be applied for whatever value is
hold by N. Thus, these operations can be applied at any time: There
is no restriction to their use. However, you can describe this with a
precondition which equals true.

(b) We de�ne three new operations as requested: mul, div and abs. The
latter should return the absolute value of the integer. The operations
are de�ned as follows:

mul(k)

div(k)

abs()

The operation mul does not require any precondition. That's similar
to add and sub. The postcondition is of course res = N*k. The next
operation div requires k to be not 0 (zero). Consequently, we de�ne
the following precondition: k 6= 0. The last operation abs returns
the value of N if N is positive or 0 or -N if N is negative. Again it
does not matter what value N has when this operation is applied.
Here is its postcondition:

abs =

�
N : N � 0

�N : N < 0

2. ADT Fraction.

(a) A simple fraction consists of numerator and denominator. Both are
integer numbers. This is similar to the complex number example
presented in the section. We could choose at least two data structures
to hold the values: an array or a record.

(b) Interface layout. Remember that the interface is just the set of oper-
ations viewable to the outside world. We could describe an interface
of a fraction in a verbal manner. Consequently, we need operations:

A.2. ABSTRACT DATA TYPES 101

� to get the value of nominator/denominator,

� to set the value of nominator/denominator,

� to add a fraction returning the sum,

� to subtract a fraction returning the di�erence,

� ...

(c) Here are some axioms and preconditions for each fraction which also
hold for the ADT:

� The denominator must not equal 0 (zero), otherwise the value of
the fraction is not de�ned.

� If the nominator is 0 (zero) the value of the fraction is 0 for any
value of the denominator.

� Each whole number can be represented by a fraction of which
the nominator is the number and the denominator is 1.

3. ADTs de�ne properties of a set of instances. They provide an abstract
view to these properties by providing a set of operations which can be
applied on the instances. It is this set of operations, the interface, which
de�nes properties of the instances. The use of an ADT is restricted by
axioms and preconditions. Both de�ne conditions and properties of an
environment in which instances of the ADT can be used.

4. We need to state axioms and to de�ne preconditions to ensure the correct
use of instances of ADTs. For example, if we do not declare 0 to be
the neutral element of the addition of integers, there could be an ADT
Integer which do something weird when adding 0 to N. This is not what
is expected from an integer. Thus, axioms and preconditions provide a
means to ensure that ADTs \function" as we wish them to.

5. Description of relationships.

(a) An instance is an actual representative of an ADT. It is thus an
\example" of it. Where the ADT declare to use a \signed whole
number" as its data structure, an instance actually holds a value,
say, \-5".

(b) Generic ADTs de�ne the same properties of their corresponding
ADT. However, they are dedicated to another particular type. For
example, the ADT List de�nes properties of lists. Thus, we might
have an operation append(elem) which appends a new element elem
to the list. We do not say of what type elem actually is, just that it
will be the last element of the list after this operation. If we now use
a generic ADT List the type of this element is known: it's provided
by the generic parameter.

(c) Instances of the same generic ADT could be viewed as \siblings".
They would be \cousins" of instances of another generic ADT if both
generic ADTs share the same ADT.

102 APPENDIX A. SOLUTIONS TO THE EXCERCISES

A.3 Object-Oriented Concepts

1. Class.

(a) A class is the actual implementation of an ADT. For example, an
ADT for integers might include an operation set to set the value of
its instance. This operation is implemented di�erently in languages
such as C or Pascal. In C the equal sign \=" de�nes the set operation
for integers, whereas in Pascal the character string \:=" is used.
Consequently, classes implement operations by providing methods.
Similarly, the data structure of the ADT is implemented by attributes
of the class.

(b) Class Complex

class Complex {

attributes:

Real real,

imaginary

methods:

:=(Complex c) /* Set value to the one of c */

Real realPart()

Real imaginaryPart()

Complex +(Complex c)

Complex -(Complex c)

Complex /(Complex c)

Complex *(Complex c)

}

We choose the well-known operator symbols \+" for addition, \-" for
subtraction, \/" for division and *" for multiplication to implement
the corresponding operations of the ADT Complex. Thus, objects of
class Complex can be used like:

Complex c1, c2, c3

c3 := c1 + c2

You may notice, that we could write the addition statement as fol-
lows:

c3 := c1.+(c2)

You may want to replace the \+" with \add" to come to a repre-
sentation which we have used so far. However, you should be able
to understand that \+" is nothing more than a di�erent name for
\add".

2. Interacting objects.

3. Object view.

A.4. MORE OBJECT-ORIENTED CONCEPTS 103

4. Messages.

(a) Objects are autonomous entities which only provide a well-de�ned
interface. We'd like to talk of objects as if they are active entities.
For example, objects \are responsible" for themselves, \they" might
deny invocation of a method, etc.. This distinguishes an object from
a module, which is passive. Therefore, we don't speak of procedure
calls. We speak of messages with which we \ask" an object to invoke
one of its methods.

(b) The Internet provides several objects. Two of the most well known
ones are \client" and \server". For example, you use an FTP client
(object) to access data stored on an FTP server (object). Thus, you
could view this as if the client \sends a message" to the server asking
for providing data stored there.

(c) In the client/server environment we really have two remotely acting
entities: the client and server process. Typically, these two entities
exchange data in form of Internet messages.

A.4 More Object-Oriented Concepts

1. Inheritance.

(a) De�nition of class Rectangle:

class Rectangle inherits from Point {

attributes:

int _width, // Width of rectangle

_height // Height of rectangle

methods:

setWidth(int newWidth)

getWidth()

setHeight(int newHeight)

getHeight()

}

In this example, we de�ne a rectangle by its upper left corner (co-
ordinates as inherited from Point) and its dimension. Alternatively,
we could have de�ned it by its upper left and lower right corner.

We add access methods for the rectangle's width and height.

(b) 3D objects. A sphere is de�ned by a center in 3D space and a radius.
The center is a point in 3D space, thus, we can de�ne class Sphere
as:

class Sphere inherits from 3D-Point {

attributes:

104 APPENDIX A. SOLUTIONS TO THE EXCERCISES

int _radius;

methods:

setRadius(int newRadius)

getRadius()

}

This is similar to the circle class for 2D space. Now, 3D-Point is just
a Point with an additional dimension:

class 3D-Point inherits from Point {

attributes:

int _z;

methods:

setZ(int newZ);

getZ();

}

Consequently, 3D-Point and Point are related with a is-a relationship.

(c) Functionality of move(). move() as de�ned in the section allows 3D
objects to move on the X-axis, thus only in one dimension. It does
this, by modifying only the 2D part of 3D objects. This 2D part
is de�ned by the Point class inherited directly or indirectly by 3D
objects.

(d) Inheritance graph (see Figure A.1).

Sphere

Rectangle 3D-PointCircle

Point

DrawableObject

Figure A.1: Inheritance graph of some drawable objects.

(e) Alternative inheritance graph. In this example, class Sphere inherits
from Circle and simply adds a third coordinate. This has the advan-
tage that a sphere can be handled like a circle (for example, its radius

A.5. MORE ON C++ 105

can easily be modi�ed by methods/functions which handle circles).
It has the disadvantage, that it \distributes" the object's handle (the
center point in 3D space) over the inheritance hierarchy: from Point
over Circle to Sphere. Thus, this handle is not accessible as a whole.

2. Multiple inheritance. The inheritance graph in Figure 5.9 obviously intro-
duces naming conicts by properties of class A.

However, these properties are uniquely identi�ed by following the path
from D up to A. Thus, D can change properties of A inherited by B by
following the inheritance path through B. Similarly, D can change prop-
erties of A inheritied by C by following the inheritance path through C.
Consequently, this naming conict does not necessarily lead to an error,
as long as the paths are designated.

A.5 More on C++

1. Polymorphism. When using the signature

void display(const DrawableObject obj);

First note, that in C++ function or method parameters are passed by
value. Consequently, obj would be a copy of the actual provided function
call argument. This means, that DrawableObject must be a class from
which objects can be created. This is not the case, if DrawableObject is
an abstract class (as it is when print() is de�ned as pure method.)

If there exists a virtual method print() which is de�ned by class Draw-
ableObject, then (as obj is only a copy of the actual argument) this method
is invoked. It is not the method de�ned by the class of the actual argu-
ment (because it does no longer play any signi�cant role!)

A.6 The List { A Case Study

1. Preincrement operator for iterators. The preincrement operator as de�ned
in the excercise does not check for validity of current. As succ() might
set its value to NULL this may cause access to this NULL-pointer and,
hence, might crash the program. A possible solution might be to de�ne
the operator as:

T &operator ++() {

succ();

return(_current ? _current->data() : (T) 0);

}

However, this does not function as we now assume something about T. It
must be possible to cast it to a kind of ,,NULL\ value.

106 APPENDIX A. SOLUTIONS TO THE EXCERCISES

2. Addition of remove method. We don't give the code solution. Instead we
give the algorithm. The method remove() must iterate over the list until
it reaches an element with the requested data item. It then deletes this
element and returns 1. If the list is empty or if the data item could not
be found, it return 0 (zero).

During the iteration, remove() must compare the provided data item suc-
cessively with those in the list. Consequently, there might exist a compar-
ison like:

if (data == current->data()) {

// found the item

}

Here we use the equation operator ,,==\ to compare both data items.
As these items can be of any type, they especially can be objects of user
de�ned classes. The question is: How is ,,equality\ de�ned for those new
types? Consequently, to allow remove() to work properly, the list should
only be used for types which de�ne the comparison operator (namely,
,,==\ and ,,!=\) properly. Otherwise, default comparisons are used, which
might lead to strange results.

3. Class CountedList. A counted list is a list, which keeps track of the num-
ber of elements in it. Thus, when a data item is added, the number is
incremented by one, when an item is deleted it is decremented by one.
Again, we do not give the complete implementation, we rather show one
method (append()) and how it is altered:

class CountedList : public List {

int _count; // The number of elements

...

public:

...

virtual void append(const T data) {

_count++; // Increment it and ...

List::append(data); // ... use list append

}

...

}

Not every method can be implemented this way. In some methods, one
must check whether count needs to be altered or not. However, the main
idea is, that each list method is just expanded (or specialized) for the
counted list.

4. Iterator problem. To solve the iterator problem one could think of a
solution, where the iterator stores a reference to its corresponding list. At

A.6. THE LIST { A CASE STUDY 107

iterator creation time, this reference is then initialized to reference the
provided list. The iterator methods must then be modi�ed to use this
reference instead of the pointer start.

