

"...not only the best book on Qt I have ever seen, but also the best book presenting any
programming framework. Every sentence appears to be carefully worded, and every chapter
has a sound concept, and so does the work as a whole."
-Matthias Ettrich, Trolltech's lead developer, founder of the KDE project

"The 'Tao of Qt'.... The Qt system is a beautiful example of object oriented design, and the
authors take advantage of this.... The authors have done an excellent job of presenting the
subject in an interesting and engaging way...."
-Ron McCarty, Instructor and Chair of the Department of Computer Science, Penn State Erie,
The Behrend College

The first official Trolltech guide to Qt 3.2 programming!

Straight from Trolltech, this book covers all you need to build industrial-strength applications
with Qt 3.2.x and C++-applications that run natively on Windows, Linux/Unix, Mac OS X, and
embedded Linux with no source code changes! The book teaches solid Qt programming
practices; it is not a rehash of the documentation. You'll find start-to-finish coverage packed
with examples, plus a CD with the Qt 3.2 toolset and Borland C++ compilers-including a non-
commercial Qt 3.2 for Windows available nowhere else!

Build powerful C++ GUI applications quickly and easily

Design dialogs and main windows visually and in code

Learn Qt's innovative typesafe signals and slots mechanism

Use layouts to create forms that automatically size and scale

Create custom signals, slots, events, and controls

[Team LiB]

• Table of Contents

• Index

C++ GUI Programming with Qt 3

By Jasmin Blanchette, Mark Summerfield

Publisher : Prentice Hall PTR

Pub Date : January 15, 2004

ISBN : 0-13-124072-2

Pages : 464

Program the ''Qt way'' with techniques for Qt 3.2 that'll work with Qt 4

Code applications with menus, toolbars, dialogs, and drag and drop

Utilize 2D and 3D graphics, multithreading, and networking

Write database and XML applications

Internationalize to reach foreign markets

Exploit platform-specific-features like ActiveX

Already using Qt or just starting out? Evaluating Qt or managing it? Building open source
applications-or commercial applications? Want to develop for Windows without buying an
expensive compiler? Whatever your goal, this is the only book you need! CD-ROM: Everything
you need to write great GUI programs!

Qt 3.2 Non-Commercial Edition for Windows

Borland C++ 5.5 Non-Commercial Edition

Borland C++ 6.0 Trial Edition

Qt 3.2 Free Editions for Unix/Linux/Mac OS X

SQLite database

The book's code examples

[Team LiB]

[Team LiB]

• Table of Contents

• Index

C++ GUI Programming with Qt 3

By Jasmin Blanchette, Mark Summerfield

Publisher : Prentice Hall PTR

Pub Date : January 15, 2004

ISBN : 0-13-124072-2

Pages : 464

 Copyright

 Bruce Perens' Open Source Series

 Foreword

 Preface

 Acknowledgments

 A Brief History of Qt

 About the Authors

 Production

 About the CD-ROM

 Part I: Basic Qt

 Chapter 1. Getting Started

 Hello Qt

 Making Connections

 Using the Reference Documentation

 Chapter 2. Creating Dialogs

 Subclassing QDialog

 Signals and Slots in Depth

 Rapid Dialog Design

 Shape-Changing Dialogs

 Dynamic Dialogs

 Built-in Widget and Dialog Classes

 Chapter 3. Creating Main Windows

 Subclassing QMainWindow

 Creating Menus and Toolbars

 Implementing the File Menu

 Setting Up the Status Bar

 Using Dialogs

 Storing Settings

 Multiple Documents

 Splash Screens

 Chapter 4. Implementing Application Functionality

 The Central Widget

 Subclassing QTable

 Loading and Saving

 Implementing the Edit Menu

 Implementing the Other Menus

 Subclassing QTableItem

 Chapter 5. Creating Custom Widgets

 Customizing Qt Widgets

 Subclassing QWidget

 Integrating Custom Widgets with Qt Designer

 Double Buffering

 Part II: Intermediate Qt

 Chapter 6. Layout Management

 Basic Layouts

 Splitters

 Widget Stacks

 Scroll Views

 Dock Windows

 Multiple Document Interface

 Chapter 7. Event Processing

 Reimplementing Event Handlers

 Installing Event Filters

 Staying Responsive During Intensive Processing

 Chapter 8. 2D and 3D Graphics

 Painting with QPainter

 Graphics with QCanvas

 Printing

 Graphics with OpenGL

 Chapter 9. Drag and Drop

 Enabling Drag and Drop

 Supporting Custom Drag Types

 Advanced Clipboard Handling

 Chapter 10. Input/Output

 Reading and Writing Binary Data

 Reading and Writing Text

 Handling Files and Directories

 Inter-Process Communication

 Chapter 11. Container Classes

 Vectors

 Lists

 Maps

 Pointer-Based Containers

 QString and QVariant

 Chapter 12. Databases

 Connecting and Querying

 Presenting Data in Tabular Form

 Creating Data-Aware Forms

 Chapter 13. Networking

 Using QFtp

 Using QHttp

 TCP Networking with QSocket

 UDP Networking with QSocketDevice

 Chapter 14. XML

 Reading XML with SAX

 Reading XML with DOM

 Writing XML

 Chapter 15. Internationalization

 Working with Unicode

 Making Applications Translation-Aware

 Dynamic Language Switching

 Translating Applications

 Chapter 16. Providing Online Help

 Tooltips, Status Tips, and "What's This?" Help

 Using QTextBrowser as a Simple Help Engine

 Using Qt Assistant for Powerful Online Help

 Chapter 17. Multithreading

 Working with Threads

 Communicating with the GUI Thread

 Using Qt's Classes in Non-GUI Threads

 Chapter 18. Platform-Specific Features

 Interfacing with Native APIs

 Using ActiveX

 Session Management

 Appendix A. Installing Qt

 A Note on Licensing

 Installing Qt/Windows

 Installing Qt/Mac

 Installing Qt/X11

 Appendix B. Qt's Class Hierarchy

 Index

[Team LiB]

[Team LiB]

Copyright
Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress

Editorial/Production Supervision: Kathleen M. Caren

Cover Design Director: Jerry Votta

Art Director: Gail Cocker-Bogusz

Manufacturing Buyer: Maura Zaldivar

Acquisitions Editor: Jill Harry

Editorial Assistant: Brenda Mulligan

Marketing Manager: Dan Depasquale

Copyright © 2004 Trolltech AS
Published by Pearson Education, Inc.
Publishing as Prentice Hall Professional Technical Reference
Upper Saddle River,
New Jersey 07458

This material may only be distributed subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is available at
http://www.opencontent.org/openpub/).

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact: U.S.Corporate
and Government Sales, 1-800-382-3419, corpsales@pearsontechgroup.com. For sales
outside of the U.S., please contact: International Sales, 1-317-581-3793,
international@pearsontechgroup.com.

Trolltech®, Qt®, and the Trolltech logo are registered trademarks of Trolltech. OpenGL™is a
trademark of Silicon Graphics, Inc. in the United States and other countries. All other company
and product names mentioned herein are the trademarks or registered trademarks of their
respective owners.

The authors, copyright holder, and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. The information in this book is furnished for informational use only, is subject to
change without notice, and does not represent a commitment on the part of the copyright
holder or the publisher. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The software described in this book is furnished under a license agreement or non-disclosure
agreement. The software may be used or copied only in accordance with the terms of the
agreement.

Printed in the United States of America

First Printing

Pearson Education Ltd.
Pearson Education Australia Pty., Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education-Japan
Pearson Education Malaysia, Pte. Ltd.

[Team LiB]

[Team LiB]

Bruce Perens' Open Source Series
C++ GUI Programming with Qt 3
Jasmin Blanchette, Mark Summerfield

Managing Linux Systems with Webmin: System Administration and Module Development
Jamie Cameron

Understanding the Linux Virtual Memory Manager
Mel Gorman

Implementing CIFS: The Common Internet File System
Christopher R. Hertel

Embedded Software Development with eCos
Anthony J. Massa

Rapid Application Development with Mozilla
Nigel McFarlane

The Linux Development Platform: Configuring, Using, and Maintaining a Complete
Programming Environment
Rafeeq Ur Rehman, Christopher Paul

Intrusion Detection Systems with Snort: Advanced IDS Techniques with Snort, Apache,
MySQL, PHP, and ACID
Rafeeq Ur Rehman

The Official Samba-3 HOWTO and Reference Guide
John H. Terpstra, Jelmer R. Vernooij, Editors

[Team LiB]

[Team LiB]

Foreword
Why Qt? Why do programmers like us choose Qt? Sure, there are the obvious answers: Qt's
single-source compatibility, its feature richness, its C++ performance, the availability of the
source code, its documentation, the high-quality technical support, and all the other items
mentioned in Trolltech's glossy marketing materials. This is all very well, but it misses the most
important point: Qt is successful because programmers like it.

How come programmers like one technology, but dislike another? Personally, I believe software
engineers enjoy technology that feels right, but dislike everything that doesn't. How else can we
explain that some of the brightest programmers need help to program a VCR, or that most
engineers seem to have trouble operating the company's phone system? I for one am perfectly
capable of memorizing sequences of random numbers and commands, but if these are required
to control my answering machine, I'd prefer not to have one. At Trolltech, our phone system
forces us to hold the '*' key pressed down for two seconds before we are allowed to type in the
other person's extension number. If you forget to do this but start typing the extension
immediately, you have to dial the entire number again. Why '*'? Why not '#', or '1', or '5', or
any of the other twenty keys on the phone? Why two seconds and not one, or three, or one and
a half? Why anything at all? I find the phone so irritating that I avoid using it whenever I can.
Nobody likes having to do random things, especially when those random things apparently
depend on some equally random context you wish you didn't have to know about in the first
place.

Programming can be a lot like using our phone system, only worse. And this is where Qt comes
to the rescue. Qt is different. For one thing, Qt makes sense. And for another, Qt is fun. Qt lets
you concentrate on your tasks. When Qt's original architects faced a problem, they didn't just
look for a good solution, or a quick solution, or the simplest solution. They looked for the right
solution, and then they documented it. Granted they made mistakes, and granted some of their
design decisions didn't pass the test of time, but they still got a lot of things right, and what
wasn't right could and can be corrected. You can see this by the fact that a system originally
designed to bridge Windows 95 and Unix/Motif now unifies modern desktop systems as diverse
as Windows XP, Mac OS X, and GNU/Linux with KDE.

Long before Qt became so popular and so widely used, the dedication of Qt's developers to
finding the right solutions made Qt special. That dedication is just as strong today and affects
everyone who maintains and develops Qt. For us, working on Qt is a responsibility and a
privilege. We are proud of helping to make your professional and open source lives easier and
more enjoyable.

One of the things that makes Qt a pleasure to use is its online documentation. But the
documentation's focus is primarily on individual classes, with little said about how to build
sophisticated real-world applications. This excellent book fills that gap. It shows you what Qt
has to offer, how to program Qt the "Qt way", and how to get the best from Qt. The book will
teach a C++ programmer how to program Qt, and provides enough advanced material to
satisfy experienced Qt programmers. The book is packed with good examples, advice, and
explanations, and will be the text that we use to induct all new programmers who join Trolltech.

Nowadays, there are a vast number of commercial and free Qt applications available for
purchase or download. Some are specialized for particular vertical markets, while others are
aimed at the mass-market. Seeing so many applications built with Qt fills us with pride and
inspires us to make Qt even better. And with the help of this book, there will be more and
higher quality Qt applications than ever before.

Matthias Ettrich
Oslo, Norway

[Team LiB]

Preface
The Qt toolkit is a C++ class library and a set of tools for building multiplatform GUI programs
using a "write once, compile anywhere" approach. Qt lets programmers use a single source tree
for applications that will run on Windows 95 to XP, Mac OS X, Linux, Solaris, HP-UX, and many
other versions of Unix with X11. A version of Qt is also available for Embedded Linux, with the
same API.

The purpose of this book is to teach you how to write GUI programs using Qt 3. The book starts
with "Hello Qt" and quickly moves on to more advanced topics, such as creating custom widgets
and providing drag and drop. The text is complemented by a CD that contains the source code
of the example programs. The CD also provides Qt and Borland C++ for Windows, Qt for Unix,
and Qt for Mac OS X. Appendix A explains how to install the software.

The book focuses on explaining good idiomatic Qt 3 programming techniques rather than simply
rehashing or summarizing Qt's extensive online documentation. And because we are involved in
the development of Qt 4, we have tried to ensure that most of what we teach here will still be
valid and sensible for Qt 4.

It is assumed that you have a basic knowledge of C++. The code examples use a subset of
C++, avoiding many C++ features that are rarely needed when programming Qt. In the few
places where a more advanced C++ construct is unavoidable, it is explained as it is used.

Qt made its reputation as a multiplatform toolkit, but because of its intuitive and powerful API,
many organizations use Qt for single-platform development. Adobe Photoshop Album is just one
example of a mass-market Windows application written in Qt. Many sophisticated software
systems in vertical markets, such as 3D animation tools, digital film processing, electronic
design automation (for chip design), oil and gas exploration, financial services, and medical
imaging, are built with Qt. If you are making a living with a successful Windows product written
in Qt, you can easily create new markets in the Mac OS X and Linux worlds simply by
recompiling.

Qt is available under various licenses. If you want to build commercial applications, you must
buy a commercial license; if you want to build open source programs, you can use a non-
commercial Qt edition. (The editions of Qt on the CD are non-commercial.) Qt is the foundation
on which the K Desktop Environment (KDE) and the many open source applications that go with
it are built.

In addition to Qt's hundreds of classes, there are add-ons that extend Qt's scope and power.
Some of these products, like the Qt/Motif integration module and Qt Script for Applications
(QSA), are supplied by Trolltech, while others are provided by companies and by the open
source community. See http://www.trolltech.com/products/3rdparty/ for information on Qt
add-ons. Qt also has a well-established and thriving user community that uses the qt-interest
mailing list; see http://lists.trolltech.com/ for details.

The book is divided into two parts. Part I covers all the concepts and practices necessary for
programming GUI applications using Qt. Knowledge of this part alone is sufficient to write useful
GUI applications. Part II covers central Qt topics in more depth and provides more specialized
and advanced material. The chapters of Part II can be read in any order, but they assume
familiarity with the contents of Part I.

If you spot errors in the book, have suggestions for the next edition, or want to give us
feedback, we would be delighted to hear from you. You can reach us at
jasmin.blanchette@trolltech.com and mark.summerfield@trolltech.com. The errata will be
placed on http://vig.prenhall.com/catalog/academic/product/0,4096,0131240722,00.html.

[Team LiB]

Acknowledgments
Our first acknowledgment goes to Eirik Chambe-Eng, Trolltech's president. Eirik not only
enthusiastically encouraged us to write the book, he also allowed us to spend a considerable
amount of our work time writing it. Eirik and Trolltech CEO Haavard Nord both read the
manuscript and provided valuable feedback. Their generosity and foresight was aided and
abetted by Matthias Ettrich, Trolltech's lead developer and our boss. Matthias cheerfully
accepted our neglect of duty as we obsessed over the writing of this book and gave us a lot of
advice on good Qt programming style.

We asked two Qt customers, Paul Curtis and Klaus Schmidinger, to be our external reviewers.
Both are Qt experts with an amazing attention to technical detail, which they proved by
spotting some very subtle errors in our manuscript and suggesting numerous improvements.

Within Trolltech, alongside Matthias, our most stalwart reviewer was Reginald Stadlbauer.[*] His
technical insight was invaluable, and he taught us how to do some things in Qt that we didn't
even know were possible.

[*] Reginald has now moved to Germany, where he co-founded froglogic, a software consultancy.

Our other key reviewers within Trolltech were Trenton Schulz, Andy Shaw, and Andreas Aardal
Hanssen. Trenton and Andy gave feedback on all aspects of the book and were especially
helpful regarding Qt/Mac and Qt/Windows. Andreas gave us invaluable help refining Part I.

In addition to the reviewers mentioned above, we received expert help from Warwick Allison
(2D graphics), Eirik Chambe-Eng (Qt's history), Matthias Ettrich (event processing and custom
widgets), Harald Fernengel (databases), Volker Hilsheimer (ActiveX), Bradley Hughes
(multithreading), Trond Kjernåsen (3D graphics and databases), Lars Knoll (2D graphics), Sam
Magnuson (qmake), Dimitri Papadopoulos (Qt/X11), Paul Olav Tvete (custom widgets and
Qt/Embedded), Rainer Schmid (networking and XML), and Gunnar Sletta (event processing).

Extra thanks are due to Trolltech's support team for helping to keep our support load under
control while the book consumed so much of our time, and to Trolltech's system administrators
for keeping our machines running and our networks communicating throughout the project.

We are also grateful to Troy Kitch from Borland for giving us permission to include Borland C++
compilers on the accompanying CD, and to the SQLite developers for putting their database into
the public domain.

On the production side, Rainer Schmid led the team that created the accompanying CD, ably
supported by Harald Fernengel and Andy Shaw. Trolltech's Cathrine Bore handled the contracts
and legalities on our behalf. Jeff Kingston, author of the Lout typesetting tool, gave us advice
and enhanced the tool in the light of our feedback. Jill Harry of Prentice Hall had faith in the
project from the start and ensured that all the practical matters were smoothly handled, leaving
us free to concentrate on the writing. And Lisa Iarkowski turned our camera-ready manuscript
into the beautiful volume you now hold in your hands.
[Team LiB]

[Team LiB]

A Brief History of Qt
The Qt toolkit first became publicly available in May 1995. It was initially developed by Haavard
Nord (Trolltech's CEO) and Eirik Chambe-Eng (Trolltech's president). Haavard and Eirik met
each other at the Norwegian Institute of Technology in Trondheim, Norway, where they both
graduated with master's degrees in computer science.

Haavard's interest in C++ GUI development began in 1988 when he was commissioned by a
Swedish company to design and implement a C++ GUI toolkit. A couple of years later, in the
summer of 1990, Haavard and Eirik were working together on a C++ database application for
ultrasound images. The system needed to be able to run with a GUI on Unix, Macintosh, and
Windows. One day that summer, Haavard and Eirik went outside to enjoy the sunshine, and as
they sat on a park bench, Haavard said, "We need an object-oriented display system." The
resulting discussion laid the intellectual foundation for the object-oriented multiplatform GUI
toolkit they would soon go on to build.

In 1991, Haavard started writing the classes that eventually became Qt, collaborating with Eirik
on the design. The following year, Eirik came up the ideafor "signals and slots", a simple but
powerful GUI programming paradigm. Haavard took the idea and produced a hand-coded
implementation. By 1993, Haavard and Eirik had developed Qt's first graphics kernel and were
able to implement their own widgets. At the end of the year, Haavard suggested that they go
into business together to build "the world's best C++ GUI toolkit".

The year 1994 began inauspiciously with the two young programmers wanting to enter a well
established market, with no customers, an unfinished product, and no money. Fortunately, both
their wives had work and were willing to support their husbands for the two years Eirik and
Haavard expected to need to develop the product and start earning an income.

They chose 'Q' as the class prefix because the letter looked beautiful in Haavard's Emacs font.
The 't' was added to stand for "toolkit", inspired by "Xt", the X Toolkit. The company was
incorporated on 4 March 1994, originally as "Quasar Technologies", then as "Troll Tech", and
today as "Trolltech".

In April 1995, thanks to a contact made through one of Haavard's University professors, the
Norwegian company Metis gave them a contract to develop software based on Qt. Around this
time, Trolltech hired Arnt Gulbrandsen,[*] who devised and implemented an ingenious
documentation system as well ascontributing to Qt's code.

[*] Arnt left the company a few years ago to pursue his career in Germany.

On 20 May 1995, Qt 0.90 was uploaded to sunsite.unc.edu. Six days later, the release was
announced on comp.os.linux.announce. This was Qt's first public release. Qt could be used for
both Windows and Unix development, offering the same API on both platforms. Qt was
available under two licenses fromday one: A commercial license was required for commercial
development and a free software edition was available for open source development. The Metis
contract kept Trolltech afloat, while for ten long months no one bought a commercial Qt license.

In March 1996, the European Space Agency became the second Qt customer, with a purchase
of ten commercial licenses. With unwavering faith, Eirik and Haavard hired another developer.
Qt 0.97 was released at the end of May, and on 24 September 1996, Qt 1.0 came out. By the
end of the year, Qt had reached version 1.1; eight customers, each in a different country, had
bought 18 licenses between them. This year also saw the founding of the KDE project, led by
Matthias Ettrich.

Qt 1.2 was released in April 1997. Matthias Ettrich's decision to use Qt to build KDE helped Qt
become the de-facto standard for C++ GUI development on Linux. Qt 1.3 was released in
September 1997.

Matthias joined Trolltech in 1998, and the last major Qt 1 release, 1.40, was made in
September of that year. Qt 2.0 was released in June 1999. Qt 2 hadmany major architectural
changes and was a much stronger and more mature product than its predecessor. It also
featured forty new classes and Unicode support. Qt 2 had a new open source license, the Q
Public License (QPL), which complied to the Open Source Definition. In August 1999, Qt won
the LinuxWorld award for best library/tool. Around this time, Trolltech Pty Ltd (Australia) was
established.

Trolltech released Qt/Embedded in 2000. It was designed to run on Embedded Linux devices
and provided is own window system as a lightweight replacement for X11. Both Qt/Embedded
and Qt/X11 were now offered under the widely used GNU General Public License (GPL) as well
as under commercial licenses. By the end of 2000, Trolltech had established Trolltech Inc.
(USA) and had released the first version of Qtopia, an environment for handheld devices.
Qt/Embedded won the LinuxWorld "Best Embedded Linux Solution"award in both 2001 and
2002.

Qt 3.0 was released in 2001. Qt was now available on Windows, Unix, Linux, Embedded Linux,
and Mac OS X. Qt 3.0 provided 42 new classes and the code surpassed 500,000 lines. Qt 3.0
won the Software Development Times "Jolt Productivity Award" in 2002.

Trolltech's sales have doubled year on year since the company's birth. This success is a
reflection both of the quality of Qt and of how enjoyable it is to use. For most of the company's
existence, sales and marketing were handled by just a couple of people. Yet, in less than a
decade, Qt has gone from being a "secret" product, known only to a select group of
professionals, to having thousands of customers and tens of thousands of open source
developers all around the world.
[Team LiB]

[Team LiB]

About the Authors
Jasmin Blanchette

Jasmin graduated in computer science in 2001 from the University of Sherbrooke, Quebec, and
was awarded the Fernand Seguin medal of excellence. He did a work term at Trolltech in the
summer of 2000 as a software engineer and has been working there continuously since early
2001. Now a senior software engineer, he is the driving force behind the Qt Linguist translation
tool and provides Qt Quarterly, Trolltech's technical newsletter, with much of its content. In his
spare time, he is writing a novel in Norwegian and Swedish. He lives in Oslo with his girlfriend
Anne-Lene.

Mark Summerfield

Mark graduated in computer science in 1993 from the University of Wales Swansea. He followed
this with a year's postgraduate research before going into industry. He spent many years
working as a software engineer for a variety of firms before joining Trolltech. For the past few
years, he has been Trolltech's documentation manager, responsible for maintaining over 1500
pages of online Qt documentation and for editing Qt Quarterly. In his free time, he writes open
source software. He lives in the Swansea Valley in South Wales, UK, with his wife Andrea.

[Team LiB]

[Team LiB]

Production
The authors wrote the text using NEdit and Vim. They typeset and indexed the text themselves,
marking it up with a modified Lout syntax that they converted to pure Lout using a custom
preprocessor written in Python. They produced all the diagrams in Lout and used ImageMagick
to convert screenshots to PostScript. The monospaced font used for code is derived from
Courier and was created using PfaEdit. The cover was provided by the publisher; the
photograph is of the fall of the Berlin Wall, November 1989. The marked-up text was converted
to PostScript by Lout, then to PDF by Ghostscript. The authors did all the editing and processing
on Debian GNU/Linux systems under KDE. The example programs were tested on Windows,
Linux, and Mac OS X.
[Team LiB]

[Team LiB]

About the CD-ROM
The CD-ROM included with C++ GUI Programming with Qt 3 contains all the software and
source code needed to create and run applications on Windows, Mac OS X, and Unix/Linux with
X11. The CD-ROM includes the following:

Qt 3.2.1 Non-Commercial Edition for Windows

Qt 3.2.1 Free Edition for Mac OS X

Qt 3.2.1 Free Edition for Unix/Linux with X11

Borland C++ Builder 5 Non-Commercial Edition

Borland C++ Builder 6 Trial Edition

Source code for the book's examples

All versions of Qt come with the Qt library and a set of tools including the qmake build tool, Qt
Designer for visual dialog design, Qt Linguist for internationalization support, and Qt Assistant
for presenting documentation.

The CD-ROM can be used on Microsoft Windows 95, 98, NT 4, ME, 2000, XP, Mac OS X, Linux,
and most versions of Unix.

License Agreement

Each of the software packages on the CD-ROM has its own license agreement. The full legal
texts of the licenses are included with the packages on the CD-ROM.

Technical Support

Neither Prentice Hall nor Trolltech offers any technical support for any of the software on the
CD-ROM. (Fully supported commercial editions of Qt are available from Trolltech; fully
supported commercial editions of Borland C++ Builder are available from Inprise.) If the CD-
ROM is damaged, you can obtain a replacement copy by sending an email that describes the
problem to disc_exchange@prenhall.com.

[Team LiB]

[Team LiB]

Part I: Basic Qt

Chapter 1. Getting Started

Chapter 2. Creating Dialogs

Chapter 3. Creating Main Windows

Chapter 4. Implementing Application Functionality

Chapter 5. Creating Custom Widgets
[Team LiB]
[Team LiB]

Chapter 1. Getting Started
Hello Qt

Making Connections

Using the Reference Documentation

This chapter shows how to combine basic C++ with the functionality provided by Qt to create a
few small graphical user interface (GUI) applications. This chapter also introduces two key Qt
ideas: "signals and slots" and layouts. In Chapter 2, we will go into more depth, and in Chapter
3, we will start building a realistic application.
[Team LiB]
[Team LiB]

Hello Qt
Here's a very simple Qt program:

 1 #include <qapplication.h>
 2 #include <qlabel.h>

 3 int main(int argc, char *argv[])
 4 {
 5 QApplication app (argc, argv);
 6 QLabel *label = new QLabel("Hello Qt!", 0);
 7 app.setMainWidget(label);
 8 label->show();
 9 return app.exec();
10 }

We will first study it line by line, then we will see how to compile and run it.

Lines 1 and 2 include the definitions of the QApplication and QLabel classes.

Line 5 creates a QApplication object to manage application-wide resources. The QApplication
constructor requires argc and argv because Qt supports a few command-line arguments of its
own.

Line 6 creates a QLabel widget that displays "Hello Qt!". In Qt terminology, a widget is a visual
element in a user interface. Buttons, menus, scroll bars, and frames are all examples of
widgets. Widgets can contain other widgets; for example, an application window is usually a
widget that contains a QMenuBar, a QToolBar, a QStatusBar, and some other widgets. The 0
argument to the QLabel constructor (a null pointer) means that the widget is a window in its
own right, not a widget inside another window.

Line 7 makes the label the application's main widget. When the user closes the main widget (by
clicking X in the window's title bar, for example), the program terminates. Without a main
widget, the program would keep running in the background even after the user has closed the
window.

Line 8 makes the label visible. Widgets are always created hidden, so that we can customize
them before showing them, thereby avoiding flicker.

Line 9 passes control of the application on to Qt. At this point, the program enters a kind of
stand-by mode, where it waits for user actions such as mouse clicks and key presses.

User actions generate events (also called "messages") to which the program can respond,
usually by executing one or more functions. In this respect, GUI applications differ drastically
from conventional batch programs, which typically process input, produce results, and
terminate without human intervention.

Figure 1.1. Hello on Windows XP

It is now time to test the program on your machine. First, you will need to install Qt 3.2 (or a
later Qt 3 release), a process that is explained in Appendix A. From now on, we will assume
that you have a correctly installed copy of Qt 3.2 and that Qt's bin directory is in your PATH
environment variable. (On Windows, this is done automatically by the Qt installation program,
so you don't need to worry about it.)

You will also need the Hello program's source code in a file called hello.cpp in a directory
called hello. You can type in hello.cpp yourself, or copy it from the CD provided with this
book, where it is available as \examples\chap01\hello\hello.cpp.

From a command prompt, change directory to hello, then type

qmake -project

to create a platform-independent project file (hello.pro), then type

qmake hello.pro

to create a platform-specific makefile from the project file. Run make to build the program, and
run the program by typing hello on Windows, ./hello on Unix, and open hello.app on Mac
OS X. If you are using Microsoft Visual C++, you will need to run nmake instead of make.
Alternatively, you can create a Visual Studio project file from hello.pro by typing

qmake -tp vc hello.pro

and then build the program in Visual Studio.

Figure 1.2. A label with basic HTML formatting

Now let's have some fun: We will brighten up the label by using some simple HTML-style
formatting. This can be done by replacing the line

QLabel *label = new QLabel("Hello Qt!", 0);

with

QLabel *label = new QLabel("<h2><i>Hello</i> "
 "Qt!</h2>", 0);

and rebuilding the application.
[Team LiB]
[Team LiB]

Making Connections
The next example illustrates how to respond to user actions. The application consists of a
button that the user can click to quit. The source code is very similar to Hello, except that we
are using a QPushButton instead of a QLabel as our main widget, and we are connecting a user
action (clicking a button) to a piece of code.

This application's source code is on the CD in the file \examples\chap01\quit\quit.cpp.

Figure 1.3. The Quit application

 1 #include <qapplication.h>
 2 #include <qpushbutton.h>

 3 int main(int argc, char *argv[])
 4 {
 5 QApplication app(argc, argv);
 6 QPushButton *button = new QPushButton("Quit", 0);
 7 QObject::connect(button, SIGNAL(clicked()),
 8 &app, SLOT(quit()));
 9 app.setMainWidget(button);
10 button->show();
11 return app.exec();
12 }

Qt's widgets emit signals to indicate that a user action or a change of state has occurred.[*] For
instance, QPushButton emits a clicked() signal when the user clicks the button. A signal can

be connected to a function (called a slot in that context), so that when the signal is emitted, the
slot is automatically executed. In our example, we connect the button's clicked() signal to the
QApplication object's quit() slot. The SIGNAL() and SLOT() macros are part of the syntax;
they are explained in more detail in the next chapter.

[*] Qt signals are unrelated to Unix signals. In this book, we are only concerned with Qt signals.

We will now build the application. We assume that you have created a directory called quit
containing quit.cpp. Run qmake in the quit directory to generate the project file, then run it
again to generate a makefile:

qmake -project
qmake quit.pro

Now build the application, and run it. If you click Quit, or press Space (which presses the
button), the application will terminate.

The next example demonstrates how to use signals and slots to synchronize two widgets. The
application asks for the user's age, which the user can enter by manipulating either a spin box
or a slider.

Figure 1.4. The Age application

The application consists of three widgets: a QSpinBox, a QSlider, and a QHBox (horizontal
layout box). The QHBox is the application's main widget. The QSpinBox and the QSlider are
rendered inside the QHBox; they are children of the QHBox.

Figure 1.5. The Age application's widgets

 1 #include <qapplication.h>
 2 #include <qhbox.h>
 3 #include <qslider.h>
 4 #include <qspinbox.h>

 5 int main(int argc, char *argv[])
 6 {
 7 QApplication app(argc, argv);

 8 QHBox *hbox = new QHBox(0);
 9 hbox->setCaption("Enter Your Age");
10 hbox->setMargin(6);
11 hbox->setSpacing(6);

12 QSpinBox *spinBox = new QSpinBox(hbox);
13 QSlider *slider = new QSlider(Qt::Horizontal, hbox);
14 spinBox->setRange(0, 130);
15 slider->setRange(0, 130);

16 QObject::connect(spinBox, SIGNAL(valueChanged(int)),
17 slider, SLOT(setValue(int)));
18 QObject::connect(slider, SIGNAL(valueChanged(int)),
19 spinBox, SLOT(setValue(int)));
20 spinBox->setValue(35);

21 app.setMainWidget(hbox);
22 hbox->show();

23 return app.exec();
24 }

Lines 8 to 11 set up the QHBox.[*] We call setCaption() to set the text displayed in the
window's title bar. Then we put some space (6 pixels) around and in between the child widgets.

[*] If you get a compiler error on the QHBox constructor, it means that you are using an older version of Qt.
Make sure that you are using Qt 3.2.0 or a later Qt 3 release.

Lines 12 and 13 create a QSpinBox and a QSlider with the QHBox as the parent.

Even though we didn't set the position or size of any widget explicitly, the QSpinBox and
QSlider appear nicely laid out side by side inside the QHBox. This is because QHBox
automatically assigns reasonable positions and sizes to its children based on their needs. Qt
provides many classes like QHBox to free us from the chore of hard-coding screen positions in
our applications.

Lines 14 and 15 set the valid range for the spin box and the slider. (We can safely assume that
the user is at most 130 years old.) The two connect() calls shown in lines 16 to 19 ensure that
the spin box and the slider are synchronized so that they always show the same value.
Whenever the value of one widget changes, its valueChanged(int) signal is emitted, and the
setValue(int) slot of the other widget is called with the new value.

Line 20 sets the spin box value to 35. When this happens, the QSpinBox emits the
valueChanged(int) signal with an int argument of 35. This argument is passed to the
QSlider's setValue(int) slot, which sets the slider value to 35. The slider then emits the
valueChanged(int) signal, because its own value changed, triggering the spin box's setValue
(int) slot. But at this point, setValue(int) doesn't emit any signal, since the spin box value is
already 35. This prevents infinite recursion. Figure 1.6 summarizes the situation.

Figure 1.6. Changing one value changes both

Line 22 shows the QHBox and its two child widgets.

Qt's approach to building user interfaces is simple to understand and very flexible. The most
common pattern that Qt programmers use is to instantiate the required widgets and then set
their properties as necessary. Programmers add the widgets to layouts, which automatically
take care of sizing and positioning. User interface behavior is managed by connecting widgets
together using Qt's signals and slots mechanism.
[Team LiB]
[Team LiB]

Using the Reference Documentation
Qt's reference documentation is an essential tool for any Qt developer, since it covers every
class and function in Qt. (Qt 3.2 includes over 400 public classes and over 6000 functions.) This
book makes use of many Qt classes and functions, but it doesn't mention them all, nor does it
provide all the details of those it does mention. To get the most benefit from Qt, you should
familiarize yourself with the Qt reference documentation.

Widget Styles

The screenshots we have seen so far have been taken on Windows XP, but Qt
applications look native on every supported platform. Qt achieves this by emulating
the platform's look and feel, rather than wrapping a particular platform or toolkit's
widget set.

Figure 1.7. Styles available everywhere

The documentation is available in HTML format in Qt's doc\html directory and can be read
using any web browser. You can also use Qt Assistant, the Qt help browser, whose powerful
search and indexing features make it quicker and easier to use than a web browser. To launch
Qt Assistant, click Qt 3.2.x|Qt Assistant in the Start menu on Windows, type assistant on the
command line on Unix, or double-click assistant in the Mac OS X Finder.

Figure 1.9. Qt's documentation in Qt Assistant

Qt application users can override the default style by using the –style command-line
option. For example, to launch the Age application with Platinum style on Unix,
simply type

./age -style=Platinum

on the command line.

Figure 1.8. Platform-specific styles

Unlike the other styles, the Windows XP and Mac styles are only available on their
native platforms, since they rely on the platforms' theme engines.

The links in the "API Reference" section on the home page provide different ways of navigating
Qt's classes. The "All Classes" page lists every class in Qt's API. The "Main Classes" page lists
only the most commonly used Qt classes. As an exercise, you might want to look up the classes
and functions that we have used in this chapter. Note that inherited functions are documented
in the base class; for example, QPushButton has no show() function of its own, but it inherits
one from its ancestor QWidget. Figure 1.10 shows how the classes we have seen so far relate to
each other.

Figure 1.10. Inheritance tree for the Qt classes seen so far

The reference documentation for the current version of Qt and for some earlier versions is
available online at http://doc.trolltech.com/. This site also hosts selected articles from Qt
Quarterly, the Qt programmers' newsletter sent to all commercial licensees.
[Team LiB]
[Team LiB]

Chapter 2. Creating Dialogs
Subclassing QDialog

Signals and Slots in Depth

Rapid Dialog Design

Shape-Changing Dialogs

Dynamic Dialogs

Built-in Widget and Dialog Classes

This chapter will teach you how to create dialog boxes using Qt. They are called dialog boxes,
or simply "dialogs", because they provide a means by which users and applications can "talk to"
each other.

Dialogs present users with options and choices, and allow them to set the options to their
preferred values and to make their choice. Most GUI applications consist of a main window with
a menu bar and toolbar, along with dozens of dialogs that complement the main window. It is
also possible to create dialog applications that respond directly to the user's choices by
performing the appropriate actions (for example, a calculator application).

We will create our first dialog purely by writing code to show how it is done. Then we will see
how to build dialogs using Qt Designer, Qt's visual design tool. Using Qt Designer is a lot faster
than hand-coding and makes it simple to test different designs and to change designs later.

[Team LiB]
[Team LiB]

Subclassing QDialog
Our first example is a Find dialog written entirely in C++. We will implement the dialog as a
class in its own right. By doing so, we make it an independent, self-contained component, with
its own signals and slots.

Figure 2.1. Find dialog on Linux (KDE)

The source code is spread across two files: finddialog.h and finddialog.cpp. We will start
with finddialog.h.

 1 #ifndef FINDDIALOG_H
 2 #define FINDDIALOG_H

 3 #include <qdialog.h>

 4 class QCheckBox;
 5 class QLabel;
 6 class QLineEdit;
 7 class QPushButton;

Lines 1 and 2 (and 27) prevent the header file from multiple inclusions.

Line 3 includes the definition of QDialog, the base class for dialogs in Qt. QDialog inherits
QWidget.

Lines 4 to 7 are forward declarations of the Qt classes that we will use to implement the dialog.
A forward declaration tells the C++ compiler that a class exists, without giving all the detail
that a class definition (usually located in a header file of its own) provides. We will say more
about this shortly.

We then define FindDialog as a subclass of QDialog:

 8 class FindDialog : public QDialog
 9 {
10 Q_OBJECT
11 public:
12 FindDialog(QWidget *parent = 0, const char *name = 0);

The Q_OBJECT macro at the beginning of the class definition is necessary for all classes that
define signals or slots.

The FindDialog constructor is typical of Qt widget classes. The parent parameter specifies the
parent widget, and the name parameter gives the widget a name. The name is optional; it is
primarily used for debugging and testing.

13 signals:
14 void findNext(const QString &str, bool caseSensitive);
15 void findPrev(const QString &str, bool caseSensitive);

The signals section declares two signals that the dialog emits when the user clicks the Find
button. If the Search backward option is enabled, the dialog emits findPrev(); otherwise, it
emits findNext().

The signals keyword is actually a macro. The C++ preprocessor converts it into standard C++
before the compiler sees it.

16 private slots:
17 void findClicked();
18 void enableFindButton(const QString &text);

19 private:
20 QLabel *label;
21 QLineEdit *lineEdit;
22 QCheckBox *caseCheckBox;
23 QCheckBox *backwardCheckBox;
24 QPushButton *findButton;
25 QPushButton *closeButton;
26 };

27 #endif

In the class's private section, we declare two slots. To implement the slots, we will need to
access most of the dialog's child widgets, so we keep pointers to them as well. The slots
keyword is, like signals, a macro that expands into a construct that the C++ compiler can
digest.

Since all the variables are pointers and we don't use them in the header file, the compiler
doesn't need the full class definitions; forward declarations are sufficient. We could have
included the relevant header files (<qcheckbox.h>, <qlabel.h>, etc.) instead, but using
forward declarations when it is possible makes compiling somewhat faster.

We will now look at finddialog.cpp, which contains the implementation of the FindDialog
class:

 1 #include <qcheckbox.h>
 2 #include <qlabel.h>
 3 #include <qlayout.h>
 4 #include <qlineedit.h>
 5 #include <qpushbutton.h>

 6 #include "finddialog.h"

First, we include the header files for all the Qt classes we use, in addition to finddialog.h. For
most Qt classes, the header file is a lower-case version of the class name with a .h extension.

 7 FindDialog::FindDialog(QWidget *parent, const char *name)
 8 : QDialog(parent, name)
 9 {
10 setCaption(tr("Find"));

11 label = new QLabel(tr("Find &what:"), this);
12 lineEdit = new QLineEdit(this);
13 label->setBuddy(lineEdit);

14 caseCheckBox = new QCheckBox(tr("Match &case"), this);
15 backwardCheckBox = new QCheckBox(tr("Search &backward"), this);

16 findButton = new QPushButton(tr("&Find"), this);
17 findButton->setDefault(true);
18 findButton->setEnabled(false);

19 closeButton = new QPushButton(tr("Close"), this);

On line 8, we pass on the parent and name parameters to the base class constructor.

On line 10, we set the window's caption to "Find". The tr() function around the string marks it
for translation to other languages. It is declared in QObject and every subclass that contains
the Q_OBJECT macro. It's a good habit to surround every user-visible string with a tr(), even if
you don't have immediate plans for translating your applications to other languages. Translating
Qt applications is covered in Chapter 15.

Then we create the child widgets. We use ampersands ('&') to indicate accelerator keys. For
example, line 16 creates a Find button, which the user can activate by pressing Alt+F.
Ampersands can also be used to control focus: On line 11 we create a label with an accelerator
key (Alt+W), and on line 13 we set the label's buddy to be the line editor. A buddy is a widget
that accepts the focus when the label's accelerator key is pressed. So when the user presses
Alt+W (the label's accelerator), the focus goes to the line editor (the buddy).

On line 17, we make the Find button the dialog's default button by calling setDefault(true).[*]
The default button is the button that is pressed when the user hits Enter. On line 18, we disable
the Find button. When a widget is disabled, it is usually shown grayed out and will not interact
with the user.

[*] Qt provides TRUE and FALSE for all platforms and uses them throughout as synonyms for the standard
true and false. Nevertheless, there is no reason to use the upper-case versions in your own code unless

you need to use an old compiler that doesn't support true and false.

20 connect(lineEdit, SIGNAL(textChanged(const QString &)),
21 this, SLOT(enableFindButton(const QString &)));
22 connect(findButton, SIGNAL(clicked()),

23 this, SLOT(findClicked()));
24 connect(closeButton, SIGNAL(clicked()),
25 this, SLOT(close()));

The private slot enableFindButton(const QString &) is called whenever the text in the line
editor changes. The private slot findClicked() is called when the user clicks the Find button.
The dialog closes itself when the user clicks Close. The close() slot is inherited from QWidget,
and its default behavior is to hide the widget. We will look at the code for the
enableFindButton() and findClicked() slots later on.

Since QObject is one of FindDialog's ancestors, we can omit the QObject:: prefix in front of
the connect() calls.

26 QHBoxLayout *topLeftLayout = new QHBoxLayout;
27 topLeftLayout->addWidget(label);
28 topLeftLayout->addWidget(lineEdit);

29 QVBoxLayout *leftLayout = new QVBoxLayout;
30 leftLayout->addLayout(topLeftLayout);
31 leftLayout->addWidget(caseCheckBox);
32 leftLayout->addWidget(backwardCheckBox);

33 QVBoxLayout *rightLayout = new QVBoxLayout;
34 rightLayout->addWidget(findButton);
35 rightLayout->addWidget(closeButton);
36 rightLayout->addStretch(1);

37 QHBoxLayout *mainLayout = new QHBoxLayout(this);
38 mainLayout->setMargin(11);
39 mainLayout->setSpacing(6);
40 mainLayout->addLayout(leftLayout);
41 mainLayout->addLayout(rightLayout);
42 }

Finally, we lay out the child widgets using layout managers. A layout manager is an object that
manages the size and position of widgets. Qt provides three layout managers: QHBoxLayout
lays out widgets horizontally from left to right (right to left for some cultures), QVBoxLayout
lays out widgets vertically from top to bottom, and QGridLayout lays out widgets in a grid.

Layouts can contain both widgets and other layouts. By nesting QHBoxLayouts, QVBoxLayouts,
and QGridLayouts in various combinations, it is possible to build very sophisticated dialogs.

For the Find dialog, we use two QHBoxLayouts and two QVBoxLayouts, as shown in Figure 2.2.
The outer layout is the main layout; it is constructed with the FindDialog object (this) as its
parent and is responsible for the dialog's entire area. The other three layouts are sub-layouts.
The little "spring" at the bottom right of Figure 2.2 is a spacer item (or "stretch"). It uses up the
empty space below the Find and Close buttons, ensuring that these buttons occupy the top of
their layout.

Figure 2.2. The Find dialog's layouts

One subtle aspect of the layout manager classes is that they are not widgets. Instead, they
inherit QLayout, which in turn inherits QObject. In the figure, widgets are represented by solid
outlines and layouts are represented by dashed outlines to highlight the difference between
them. In a running application, layouts are invisible.

Although layout managers are not widgets, they can have a parent (and children). The meaning
of "parent" is slightly different for layouts than for widgets. If a layout is constructed with a
widget as its parent (as we did for main–Layout), the layout automatically installs itself on the
widget. If a layout is constructed with no parent (as we did for topLeftLayout, leftLayout,
and right–Layout), the layout must be inserted into another layout using addLayout().

Qt's parent–child mechanism is implemented in QObject, the base class of both QWidget and
QLayout. When we create an object (a widget, layout, or other kind) with a parent, the parent
adds the object to the list of its children. When the parent is deleted, it walks through its list of
children and deletes each child. The children themselves then delete all of their children, and so
on recursively until none remain.

The parent–child mechanism simplifies memory management a lot, reducing the risk of memory
leaks. The only objects we must delete explicitly are the objects we create with new and that
have no parent. And if we delete a child object before its parent, Qt will automatically remove
that object from the parent's list of children.

For widgets, the parent has an additional meaning: Child widgets are shown within the parent's
area. When we delete the parent widget, not only does the child vanish from memory, it also
vanishes from the screen.

When we insert a layout into another using addLayout(), the inner layout is automatically
made a child of the outer layout, to simplify memory management. In contrast, when we insert
a widget into a layout using addWidget(), the widget doesn't change parent.

Figure 2.3 shows the parentage of the widgets and layouts. The parentage can easily be
deduced from the FindDialog constructor code by looking at the lines that contain a new or an
addLayout() call. The important thing to remember is that the layout managers are not parents
of the widgets they manage.

Figure 2.3. The Find dialog's parent–child relationships

In addition to the layout managers, Qt provides some layout widgets: QHBox (which we used in
Chapter 1), QVBox, and QGrid. These classes serve both as parents and as layout managers for
their child widgets. The layout widgets are more convenient to use than layout managers for
small examples, but they are less flexible and require more resources.

This completes the review of FindDialog's constructor. Since we used new to create the dialog's
widgets and layouts, it would seem that we need to write a destructor that calls delete on each
of the widgets and layouts we created. But this isn't necessary, since Qt automatically deletes
child objects when the parent is destroyed, and the objects we allocated with new are all
descendants of the FindDialog.

Now we will look at the dialog's slots:

43 void FindDialog::findClicked()
44 {
45 QString text = lineEdit->text();
46 bool caseSensitive = caseCheckBox->isOn();

47 if (backwardCheckBox->isOn())
48 emit findPrev(text, caseSensitive);
49 else
50 emit findNext(text, caseSensitive);
51 }

52 void FindDialog::enableFindButton(const QString &text)
53 {
54 findButton->setEnabled(!text.isEmpty());
55 }

The findClicked() slot is called when the user clicks the Find button. It emits the findPrev()
or the findNext() signal, depending on the Search backward option. The emit keyword is
specific to Qt; like other Qt extensions, it is converted into standard C++ by the C++
preprocessor.

The enableFindButton() slot is called whenever the user changes the text in the line editor. It
enables the button if there is some text in the editor, and disables it otherwise.

These two slots complete the dialog. We can now create a main.cpp file to test our FindDialog
widget:

 1 #include <qapplication.h>

 2 #include "finddialog.h"

 3 int main(int argc, char *argv[])

 4 {
 5 QApplication app(argc, argv);
 6 FindDialog *dialog = new FindDialog;
 7 app.setMainWidget(dialog);
 8 dialog->show();
 9 return app.exec();
10 }

To compile the program, run qmake as usual. Since the FindDialog class definition contains the
Q_OBJECT macro, the makefile generated by qmake will include special rules to run moc, Qt's
meta-object compiler.

For moc to work correctly, we must put the class definition in a header file, separate from the
implementation file. The code generated by moc includes this header file and adds some magic
of its own.

Classes that use the Q_OBJECT macro must have moc run on them. This isn't a problem because
qmake automatically adds the necessary rules to the makefile. But if you forget to regenerate
your makefile using qmake and moc isn't run, the linker will complain that some functions are
declared but not implemented. The messages can be fairly obscure. GCC produces warnings like
this one:

finddialog.o(.text+0x28): undefined reference to
'FindDialog::QPaintDevice virtual table'

Visual C++'s output starts like this:

finddialog.obj : error LNK2001: unresolved external symbol
"public:~virtual bool __thiscall FindDialog::qt_property(int,
int,class QVariant *)"

If this ever happens to you, run qmake again to update the makefile, then rebuild the
application.

Now run the program. Verify that the accelerator keys Alt+W, Alt+C, Alt+B, and Alt+F trigger
the correct behavior. Press Tab to navigate through the widgets with the keyboard. The default
tab order is the order in which the widgets were created. This can be changed by calling
QWidget::setTabOrder().

Providing a sensible tab order and keyboard accelerators ensures that users who don't want to
(or cannot) use a mouse are able to make full use of the application. Full keyboard control is
also appreciated by fast typists.

In Chapter 3, we will use the Find dialog inside a real application, and we will connect the
findPrev() and findNext() signals to some slots.
[Team LiB]
[Team LiB]

Signals and Slots in Depth
The signals and slots mechanism is fundamental to Qt programming. It enables the application
programmer to bind objects together without the objects knowing anything about each other.
We have already connected some signals and slots together, declared our own signals and
slots, implemented our own slots, and emitted our own signals. Let's take a moment to look at
the mechanism more closely.

Slots are almost identical to ordinary C++ member functions. They can be virtual, they can be

overloaded, they can be public, protected, or private, and they can be directly invoked like any
other C++ member functions. The difference is that a slot can also be connected to a signal, in
which case it is automatically called each time the signal is emitted.

The connect() statement looks like this:

connect (sender, SIGNAL(signal), receiver, SLOT(slot));

where sender and receiver are pointers to QObjects and where signal and slot are function
signatures without parameter names. The SIGNAL() and SLOT() macros essentially convert
their argument to a string.

In the examples we have seen so far, we have always connected different signals to different
slots. There are more possibilities to explore:

One signal can be connected to many slots:

connect(slider, SIGNAL(valueChanged(int)),
 spinBox, SLOT(setValue(int)));
connect(slider, SIGNAL(valueChanged(int)),
 this, SLOT(updateStatusBarIndicator(int)));

When the signal is emitted, the slots are called one after the other, in an arbitrary order.

Many signals can be connected to the same slot:

connect(lcd, SIGNAL(overflow()),
 this, SLOT(handleMathError()));
connect(calculator, SIGNAL(divisionByZero()),
 this, SLOT(handleMathError()));

When either signal is emitted, the slot is called.

A signal can be connected to another signal:

connect(lineEdit, SIGNAL(textChanged(const QString &)),
 this, SIGNAL(updateRecord(const QString &)));

When the first signal is emitted, the second signal is emitted as well. Apart from that,
signal–signal connections are indistinguishable from signal–slot connections.

Connections can be removed:

disconnect(lcd, SIGNAL(overflow()),
 this, SLOT(handleMathError()));

This is rarely needed, because Qt automatically removes all connections involving an
object when that object is deleted.

When connecting a signal to a slot (or to another signal), they must both have the same
parameter types in the same order:

connect(ftp, SIGNAL(rawCommandReply(int, const QString &)),
 this, SLOT(processReply(int, const QString &)));

Exceptionally, if a signal has more parameters than the slot it is connected to, the additional
parameters are simply ignored:

connect(ftp, SIGNAL(rawCommandReply(int, const QString &)),
 this, SLOT(checkErrorCode(int)));

If the parameter types are incompatible, or if the signal or the slot doesn't exist, Qt will issue a
warning at run-time. Similarly, Qt will give a warning if parameter names are included in the
signal or slot signatures.

So far, we have only used signals and slots with widgets. But the mechanism itself is
implemented in QObject, and isn't limited to GUI programming. The mechanism can be used by
any QObject subclass:

class Employee : public QObject
{
 Q_OBJECT
public:
 Employee() { mySalary = 0; }

 int salary() const { return mySalary; }

public slots:

Qt's Meta-Object System

One of Qt's major achievements has been the extension of C++ with a mechanism
for creating independent software components that can be bound together without
any component knowing anything about the other components it is connected to.

The mechanism is called the meta-object system, and it provides two key services:
signals and slots, and introspection. The introspection functionality is necessary for
implementing signals and slots, and allows application programmers to obtain "meta-
information" about QObject subclasses at runtime, including the list of signals and
slots supported by the object and its class name. The mechanism also supports
properties (for Qt Designer) and text translation (for internationalization).

Standard C++ doesn't provide support for the dynamic meta-information needed by
Qt's meta-object system. Qt solves this problem by providing a separate tool, moc,
that parses Q_OBJECT class definitions and makes the information available through
C++ functions. Since moc implements all its functionality using pure C++, Qt's meta-
object system works with any C++ compiler.

The mechanism works as follows:

The Q_OBJECT macro declares some introspection functions that must be
implemented in every QObject subclass: metaObject(), className(), tr(),
and a few more.

Qt's moc tool generates implementations for the functions declared by
Q_OBJECT and for all the signals.

QObject member functions such as connect() and disconnect() use the
introspection functions to do their work.

All of this is handled automatically by qmake, moc, and QObject, so you rarely need
to think about it. But if you are curious, you can look at the C++ source files
generated by moc to see how the implementation works.

 void setSalary(int newSalary);

signals:
 void salaryChanged(int newSalary);

private:
 int mySalary;
};

void Employee::setSalary(int newSalary)
{
 if (newSalary != mySalary) {
 mySalary = newSalary;
 emit salaryChanged(mySalary);
 }
}

Notice how the setSalary() slot is implemented. We only emit the salaryChanged() signal if
newSalary ! = mySalary. This ensures that cyclic connections don't lead to infinite loops.

[Team LiB]
[Team LiB]

Rapid Dialog Design
Qt is designed to be pleasant and intuitive to hand-code, and it is perfectly possible to develop
Qt applications purely by writing C++ source code. Qt Designer expands the options available
to programmers, allowing them to combine visually designed forms with their source code.

In this section, we will use Qt Designer to create the Go-to-Cell dialog shown in Figure 2.4.
Whether we do it in code or in Qt Designer, creating a dialog always involves the same
fundamental steps:

Create and initialize the child widgets.

Put the child widgets in layouts.

Set the tab order.

Establish signal–slot connections.

Implement the dialog's custom slots.

Figure 2.4. Go-to-Cell dialog

To launch Qt Designer, click Qt 3.2.x|Qt Designer in the Start menu on Windows, type
designer on the command line on Unix, or double-click designer in the Mac OS X Finder. When
Qt Designer starts, it will pop up a list of templates. Click the "Dialog" template, then click OK.

You should now have a window called "Form1".

Figure 2.5. Qt Designer with an empty form

The first step is to create the child widgets and place them on the form. Create one text label,
one line editor, one (horizontal) spacer, and two push buttons. For each item, click its name or
icon in the "toolbox" at the left of Qt Designer's main window and then click the form roughly
where the item should go. Now drag the bottom of the form up to make it shorter. This should
produce a form that is similar to Figure 2.6. Don't spend too much time positioning the items on
the form; Qt's layout managers will lay them out precisely later on.

Figure 2.6. The form with some widgets

The spacer item is shown in Qt Designer as a blue spring. It is invisible in the final form.

Set each widget's properties using the property editor on the right of Qt Designer's main
window:

1. Click the text label. Set its name property to "label" and its text property to "&Cell
Location:".

2. Click the line editor. Set its name property to "lineEdit".

3. Click the spacer. Make sure that the spacer's orientation property is set to "Horizontal".

4. Click the first button. Set its name property to "okButton", its enabled property to "False",
its default property to "True", and its text property to "OK".

5. Click the second button. Set its name property to "cancelButton" and its text property to
"Cancel".

6. Click the background of the form to select the form itself. Set its name property to
"GoToCellDialog" and its caption property to "Go to Cell".

All the widgets look fine now, except the text label, which shows &Cell Location. Click Tools|Set
Buddy. Click the label and drag the rubber band to the line editor, then release. The label
should now show Cell Location and have the line editor as its buddy. You can verify this by
checking that the label's buddy property is set to "lineEdit".

Figure 2.7. The form with properties set

The next step is to lay out the widgets on the form:

1. Click the Cell Location label and press Shift as you click the line editor next to it so that
they are both selected. Click Layout|Lay Out Horizontally.

2. Click the spacer, then hold Shift as you click the form's OK and Cancel buttons. Click
Layout|Lay Out Horizontally.

3. Click the background of the form to deselect any selected items, then click Layout|Lay
Out Vertically.

4. Click Layout|Adjust Size to resize the form to its optimal size.

The red lines that appear on the form show the layouts that have been created. They never
appear when the form is run.

Figure 2.8. The form with the layouts

Now click Tools|Tab Order. A number in a blue circle will appear next to every widget that can
accept focus. Click each widget in turn in the order you want them to accept focus, then press
Esc.

Figure 2.9. Setting the form's tab order

Now that the form has been designed, we are ready to make it functional by setting up some
signal–slot connections and by implementing some custom slots. Click Edit|Connections to
invoke the connection editor.

Figure 2.10. Qt Designer's connection editor (after making the
connections)

We need to establish three connections. To create a connection, click New and set the Sender,
Signal, Receiver, and Slot fields using the drop-down comboboxes.

Connect the okButton's clicked() signal to the GoToCellDialog's accept() slot. Connect the
cancelButton's clicked() signal to the GoToCellDialog's reject() slot. Click Edit Slots to
invoke Qt Designer's slot editor (shown in Figure 2.11), and create an enableOkButton()
private slot. Finally, connect the lineEdit's textChanged(const QString &) signal to the
GoToCellDialog's new enableOkButton() slot.

Figure 2.11. Qt Designer's slot editor

To preview the dialog, click the Preview|Preview Form menu option. Check the tab order by

pressing Tab repeatedly. Press Alt+C to move the focus to the line editor. Click Cancel to close
the dialog.

Save the dialog as gotocelldialog.ui in a directory called gotocell, and create a main.cpp
file in the same directory using a plain text editor:

#include <qapplication.h>

#include "gotocelldialog.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 GoToCellDialog *dialog = new GoToCellDialog;
 app.setMainWidget(dialog);
 dialog->show();
 return app.exec();
}

Now run qmake to create a .pro file and a makefile (qmake -project; qmake gotocell.pro).
The qmake tool is smart enough to detect the user interface file gotocelldialog.ui and to
generate the appropriate makefile rules to create gotocelldialog.h and gotocelldialog.cpp.
The .ui file is converted to C++ by uic, Qt's user interface compiler.

One of the beauties of using Qt Designer is that it allows programmers great freedom to modify
their form designs without disturbing their source code. When you develop a form purely by
writing C++ code, changes to the design can be quite time-consuming. With Qt Designer, no
time is lost since uic simply regenerates the source code for any forms that have changed.

If you run the program now, the dialog will work, but it doesn't function exactly as we want:

The OK button is always disabled.

The line editor accepts any text, instead of only accepting valid cell locations.

We must write some code to solve these problems.

Double-click the background of the form to invoke Qt Designer's code editor. In the editor
window, enter the following code:

#include <qvalidator.h>

void GoToCellDialog::init()
{
 QRegExp regExp("[A–Za–z] [1–9] [0–9] {0, 2}");
 lineEdit->setValidator(new QRegExpValidator(regExp, this));
}

void GoToCellDialog::enableOkButton()
{
 okButton->setEnabled(lineEdit->hasAcceptableInput());
}

The init() function is automatically called at the end of the form's constructor (generated by
uic). We set up a validator to restrict the range of the input. Qt provides three built-in validator
classes: QIntValidator, QDoubleValidator, and QRegExpValidator. Here we use a
QRegExpValidator with the regular expression "[A-Za-z][1-9][0-9]{0,2}", which means: Allow
one upper or lower-case letter, followed by one digit in the range 1 to 9, followed by up to two

digits each in the range 0 to 9. (For an introduction to regular expressions, see the QRegExp
class documentation.)

By passing this to the QRegExpValidator constructor, we make it a child of the
GoToCellDialog object. By doing so, we don't have to worry about deleting the
QRegExpValidator later; it will be deleted automatically when its parent is deleted.

The enableOkButton() slot enables or disables the OK button, according to whether the line
edit contains a valid cell location. QLineEdit::hasAcceptableInput() uses the validator we set
in the init() function.

Figure 2.12. Qt Designer's code editor

After typing the code, save the dialog again. This will effectively save two files: the user
interface file gotocelldialog.ui, and the C++ source file gotocelldialog.ui.h. Make the
application once more and run it again. Type "A12" in the line edit, and notice that the OK
button becomes enabled. Try typing some random text to see how the validator does its job.
Click Cancel to close the dialog.

In this example, we edited the dialog in Qt Designer, then we added some code using Qt
Designer's code editor. The dialog's user interface is saved in a .ui file (an XML-based file
format), while the code is saved in a .ui.h file (a C++ source file). This split is very convenient
for developers who want to edit the .ui.h file in their favorite text editor.

An alternative to the .ui.h approach is to create a .ui file with Qt Designer as usual, then
create an additional class that inherits the uic-generated class and adds the extra functionality
there. For example, for the Go-to-Cell dialog, this would mean creating a GoToCellDialogImpl
class that inherits GoToCellDialog and that implements what's missing. It is straightforward to
convert the .ui.h code to use this approach. The result is this header file:

#ifndef GOTOCELLDIALOGIMPL_H
#define GOTOCELLDIALOGIMPL_H

#include "gotocelldialog.h"

class GoToCellDialogImpl : public GoToCellDialog
{
 Q_OBJECT
public:
 GoToCellDialogImpl(QWidget *parent = 0, const char *name = 0);

private slots:
 void enableOkButton();
};

#endif

And this source file:

#include <qlineedit.h>
#include <qpushbutton.h>
#include <qvalidator.h>

#include "gotocelldialogimpl.h"

GoToCellDialogImpl::GoToCellDialogImpl(QWidget *parent,
 const char *name)
 : GoToCellDialog(parent, name)
{
 QRegExp regExp("[A-Za-z][1-9][0-9]{0,2}");
 lineEdit->setValidator(new QRegExpValidator(regExp, this));
}

void GoToCellDialogImpl::enableOkButton()
{
 okButton->setEnabled(lineEdit->hasAcceptableInput());
}

Developers who prefer the subclassing approach would probably call the base class
GoToCellDialogBase and the derived class GoToCellDialog, keeping the better name for the
class that contains all the functionality.

The uic tool provides command-line options to simplify the creation of subclasses based on
forms created with Qt Designer. Use –subdecl to generate a skeleton header file, and use –
subimpl to generate the matching implementation file.

In this book, we use the .ui.h approach since this is the most common practice, and since it is
easy to convert .ui.h files into subclasses. You might want to read the "Designer Approach"
chapter in Qt Designer's manual for a technical appreciation of the differences between
subclassing and using .ui.h files. Another chapter in the manual, "Creating Dialogs",
demonstrates how to use Qt Designer's Members tab to declare member variables in uic-
generated classes.
[Team LiB]
[Team LiB]

Shape-Changing Dialogs
We have seen how to create dialogs that always show the same widgets whenever they are
used. In some cases, it is desirable to provide dialogs that can change shape. The two most
common kinds of shape-changing dialogs are extension dialogs and multi-page dialogs. Both
types of dialog can be implemented in Qt, either purely in code or using Qt Designer.

Extension dialogs usually present a simple appearance but have a toggle button that allows the
user to switch between the dialog's simple and extended appearances. Extension dialogs are
commonly used for applications that are trying to cater for both casual and power users, hiding
the advanced options unless the user explicitly asks to see them. In this section, we will use Qt
Designer to create the extension dialog shown in Figure 2.13.

Figure 2.13. Sort dialog with simple and extended appearances

The dialog is a Sort dialog in a spreadsheet application, where the user can select one or
several columns to sort on. The dialog's simple appearance allows the user to enter a single
sort key, and its extended appearance provides for two extra sort keys. A More button lets the
user switch between the simple and extended appearances.

We will create the widget with its extended appearance in Qt Designer, and hide the secondary
and tertiary keys at run-time as needed. The widget looks complicated, but it's fairly easy to do
in Qt Designer. The trick is to do the primary key part first, then copy and paste it twice to
obtain the secondary and tertiary keys:

1. Create a group box, two text labels, two comboboxes, and one horizontal spacer.

2. Drag the bottom right corner of the group box to make it larger.

3. Move the other widgets into the group box and position them approximately as shown in
Figure 2.14(a).

4. Drag the right edge of the second combobox to make it about twice as wide as the first
combobox.

5. Set the group box's title property to "&Primary Key", the first label's text property to
"Column:", and the second label's text property to "Order:".

6. Double-click the first combobox to pop up Qt Designer's list box editor, and create one
item with the text "None".

7. Double-click the second combobox and create an "Ascending" item and a "Descending"
item.

8. Click the group box, then click Layout|Lay Out in a Grid. This will produce the layout
shown in Figure 2.14(b).

Figure 2.14. Laying out the group box's children in a grid

If a layout doesn't turn out quite right or if you make a mistake, you can always click
Edit|Undo, then roughly reposition the widgets being laid out and try again.

We will now add the Secondary Key and Tertiary Key group boxes:

1. Make the dialog window tall enough for the extra parts. Select the group box, click
Edit|Copy, then click Edit|Paste twice to obtain two additional group boxes. Drag the two
new group boxes to the approximate positions that they should occupy. Change their
title property to "&Secondary Key" and "&Tertiary Key".

2. Create the OK, Cancel, and More buttons.

3. Set the OK button's default property to "True" and the More button's toggle property to
"True".

4. Create two vertical spacers.

5. Arrange the OK, Cancel, and More buttons vertically, with a vertical spacer between the
Cancel and More buttons. Then select all four items and click Layout|Lay Out Vertically.

6. Place the second vertical spacer between the primary key group box and the secondary
Key group box.

7. Set the two vertical spacer items' sizeHint property to (20, 10).

8. Arrange the widgets in the grid-like pattern shown in Figure 2.15(a).

9. Click Layout|Lay Out in a Grid. The form should now match Figure 2.15(b).

Figure 2.15. Laying out the form's children in a grid

The resulting grid layout has two columns and four rows, giving a total of eight cells. The
Primary Key group box, the leftmost vertical spacer item, the Secondary Key group box, and
the Tertiary Key group box each occupy a single cell. The vertical layout that contains the OK,
Cancel, and More buttons occupies two cells. That leaves two empty cells in the bottom-right of
the dialog. If this isn't what you have, undo the layout, reposition the widgets, and try again.

Change the form's resizeMode property from "Auto" to "Fixed", making the dialog non-
resizable by the user. The layout then takes over the responsibility for resizing, and resizes the
dialog automatically when child widgets are shown or hidden, ensuring that the dialog is always
displayed at its optimal size.

Rename the form "SortDialog" and change its caption to "Sort". Set the names of the child
widgets to those shown in Figure 2.16.

Figure 2.16. Naming the form's widgets

Finally, set up the connections:

1. Connect the okButton's clicked() signal to the form's accept() slot.

2. Connect the cancelButton's clicked() signal to the form's reject() slot.

3. Connect the moreButton's toggled(bool) signal to the secondaryGroupBox's setShown
(bool) slot.

4. Connect the moreButton's toggled(bool) signal to the tertiaryGroupBox's setShown
(bool) slot.

Double-click the form to launch Qt Designer's C++ code editor and type in the following code:

 1 void SortDialog::init()
 2 {
 3 secondaryGroupBox->hide();
 4 tertiaryGroupBox->hide();
 5 setColumnRange('A', 'Z');
 6 }

 7 void SortDialog::setColumnRange(QChar first, QChar last)
 8 {
 9 primaryColumnCombo->clear();
10 secondaryColumnCombo->clear();
11 tertiaryColumnCombo->clear();

12 secondaryColumnCombo->insertItem(tr("None"));
13 tertiaryColumnCombo->insertItem(tr("None"));

14 primaryColumnCombo->setMinimumSize(
15 secondaryColumnCombo->sizeHint());
16 QChar ch = first;
17 while (ch <= last) {
18 primaryColumnCombo->insertItem(ch);
19 secondaryColumnCombo->insertItem(ch);
20 tertiaryColumnCombo->insertItem(ch);
21 ch = ch.unicode() + 1;
22 }
23 }

The init() function hides the secondary and tertiary key parts of the dialog.

The setColumnRange() slot initializes the contents of the comboboxes based on the selected
columns in the spreadsheet. We insert a "None" item in the comboboxes for the (optional)
secondary and tertiary keys. Although we have not created this slot using Qt Designer's slot
editor, Qt Designer will detect that we have created a new slot in code, and uic will
automatically generate the correct function declaration in the SortDialog class definition.

Lines 14 and 15 present a subtle layout idiom. The QWidget::sizeHint() function returns a
widget's "ideal" size, which the layout system tries to honor. This explains why different kinds
of widgets, or similar widgets with different contents, may be assigned different sizes by the
layout system. For comboboxes, this means that the secondary and tertiary comboboxes, which
contain "None", end up larger than the primary combobox, which contains only single-letter
entries. To avoid this inconsistency, we set the primary combobox's minimum size to the
secondary combobox's ideal size.

Here is a main() test function that sets the range to include columns 'C' to 'F' and then shows
the dialog:

#include <qapplication.h>

#include "sortdialog.h"

int main(int argc, char *argv[])
{

 QApplication app(argc, argv);
 SortDialog *dialog = new SortDialog;
 app.setMainWidget(dialog);
 dialog->setColumnRange('C', 'F');
 dialog->show();
 return app.exec();
}

That completes the extension dialog. As the example illustrates, an extension dialog isn't much
more difficult to design than a plain dialog: All we need is a toggle button, a few extra signal–
slot connections, and a non-resizable layout.

The other common type of shape-changing dialogs, multi-page dialogs, are even easier to
create in Qt, either in code or using Qt Designer. These dialogs can be built in many different
ways.

A QTabWidget can be used in its own right. It provides a tab bar along the top that
controls a built-in QWidgetStack.

A QListBox and a QWidgetStack can be used together, with the QListBox's current item
determining which page the QWidgetStack shows.

A QListView or a QIconView can be used with a QWidgetStack in a similar way to a
QListBox.

The QWidgetStack class is covered in Chapter 6 (Layout Management).
[Team LiB]
[Team LiB]

Dynamic Dialogs
Dynamic dialogs are dialogs that are created from a Qt Designer .ui file at runtime. Dynamic
dialogs are not converted into C++ code by uic. Instead, the .ui file is loaded at run-time
using the QWidgetFactory class, in the following way:

QDialog *sortDialog = (QDialog *)
 QWidgetFactory::create("sortdialog.ui");

We can access the form's child widgets using QObject::child():

QComboBox *primaryColumnCombo = (QComboBox *)
 sortDialog->child("primaryColumnCombo", "QComboBox");

The child() function returns a null pointer if the dialog has no child that matches the given
name and type.

The QWidgetFactory class is located in a separate library. To use QWidgetFactory from a Qt
application, we must add this line to the application's .pro file:

LIBS += -lqui

This syntax works on all platforms, even though it has a definite Unix flavor.

Dynamic dialogs make it possible to change the layout of the form without recompiling the
application. For a complete example of an application that uses a dynamic dialog, see the
"Subclassing and Dynamic Dialogs" chapter in the Qt Designer manual.

[Team LiB]
[Team LiB]

Built-in Widget and Dialog Classes
Qt provides a complete set of built-in widgets and common dialogs that cater for most
situations. In this section, we present screenshots of almost all of them. A few specialized
widgets are deferred until later: Main window widgets such as QMenuBar, QPopupMenu, and
QToolBar are covered in Chapter 3, and database widgets such as QDataView and QDataTable
are covered in Chapter 12. Most of the built-in widgets and dialogs are used in the examples
presented in this book. In the screenshots below, the widgets are shown using the classic
Windows style.

Figure 2.17. Qt's button widgets

Qt provides three kinds of "buttons": QPushButton, QCheckBox, and QRadioButton.
QPushButton is most commonly used to initiate an action when it is clicked, but it can also
behave like a toggle button (click to press down, click to release). QRadioButtons are usually
used inside a QButtonGroup and are mutually exclusive within their group, whereas QCheckBox
can be used for independent on/off options.

Figure 2.18. Qt's container widgets

Qt's container widgets are widgets that contain other widgets. QFrame can also be used on its
own to simply to draw lines and is inherited by many other widget classes, notably QLabel and
QLineEdit. QButtonGroup is not shown; it is visually identical to QGroupBox.

QTabWidget and QToolBox are multi-page widgets. Each page is a child widget, and the pages
are numbered from 0.

Figure 2.19. Qt's item view widgets

The item views are optimized for handling large amounts of data, and often use scroll bars. The
scroll bar mechanism is implemented in QScrollView, a base class for item views and other
kinds of views.

Figure 2.20. Qt's display widgets

Qt provides a few widgets that are used purely for displaying information. QLabel is the most
important of these, and it can be used for showing rich text (using a simple HTML-like syntax)
and images.

QTextBrowser (not shown) is a read-only QTextEdit subclass that has basic HTML support
including lists, tables, images, and hypertext links; Qt Assistant uses QTextBrowser to present
documentation to the user.

Figure 2.21. Qt's input widgets

Qt provides many widgets for data entry. QLineEdit can restrict its input using an input mask
or a validator. QTextEdit is a QScrollView subclass capable of editing large amounts of text.

Figure 2.22. Qt's color dialog and font dialog

Qt provides the standard set of common dialogs that make it easy to ask the user to select a
color, font, or file, or to print a document.

Figure 2.23. Qt's file dialog and print dialog

On Windows and Mac OS X, Qt uses the native dialogs rather than its own common dialogs
when possible.

Figure 2.24. Qt's feedback dialogs

Qt provides a versatile message box and an error dialog that remembers which messages it has
shown. The progress of time-consuming operations can be indicated using QProgressDialog or
using the QProgressBar shown earlier. QInputDialog is very convenient when a single line of
text or a single number is required from the user.

Finally, QWizard provides a framework for creating wizards. Qt Designer provides a "Wizard"
template for creating wizards visually.

Figure 2.25. Qt's QWizard dialog

A lot of ready-to-use functionality is provided by the built-in widgets and common dialogs. More
specialized requirements can often be satisfied by connecting signals to slots and implementing
custom behavior in the slots.

In some situations, it may be desirable to create a custom widget from scratch. Qt makes this
straightforward, and custom widgets can access all the same platform-independent drawing
functionality as Qt's built-in widgets. Custom widgets can even be integrated with Qt Designer
so that they can be used in the same way as Qt's built-in widgets. Chapter 5 explains how to
create custom widgets.

[Team LiB]
[Team LiB]

Chapter 3. Creating Main Windows
Subclassing QMainWindow

Creating Menus and Toolbars

Implementing the File Menu

Setting Up the Status Bar

Using Dialogs

Storing Settings

Multiple Documents

Splash Screens

This chapter will teach you how to create main windows using Qt. By the end, you will be able
to build an application's entire user interface, complete with menus, toolbars, status bar, and as
many dialogs as the application requires.

An application's main window provides the framework upon which the application's user
interface is built. The main window for the Spreadsheet application shown in Figure 3.1 will
form the basis of this chapter. The Spreadsheet application makes use of the Find, Go-to-Cell,
and Sort dialogs that we created in Chapter 2.

Figure 3.1. Spreadsheet application

Behind most GUI applications lies a body of code that provides the underlying functionality—for
example, code to read and write files or to process the data presented in the user interface. In
Chapter 4, we will see how to implement such functionality, again using the Spreadsheet
application as our example.

[Team LiB]
[Team LiB]

Subclassing QMainWindow
An application's main window is created by subclassing QMainWindow. Many of the techniques
we saw in Chapter 2 for creating dialogs are also relevant for creating main windows, since both
QDialog and QMainWindow inherit from QWidget.

Main windows can be created using Qt Designer, but in this chapter we will use code to
demonstrate how it's done. If you prefer the more visual approach, see the "Creating a Main
Window Application" chapter in Qt Designer's manual.

The source code for the Spreadsheet application's main window is spread across mainwindow.h
and mainwindow.cpp. Let's start with the header file:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <qmainwindow.h>
#include <qstringlist.h>

class QAction;
class QLabel;
class FindDialog;

class Spreadsheet;

class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0, const char *name = 0);

protected:
 void closeEvent(QCloseEvent *event);
 void contextMenuEvent(QContextMenuEvent *event);

We define the class MainWindow as a subclass of QMainWindow. It contains the Q_OBJECT macro
because it provides its own signals and slots.

The closeEvent() function is a virtual function in QWidget that is automatically called when the
user closes the window. It is reimplemented in MainWindow so that we can ask the user the
standard question "Do you want to save your changes?" and to save user preferences to disk.

Similarly, the contextMenuEvent() function is called when the user right-clicks a widget or
presses a platform-specific Menu key. It is reimplemented in MainWindow to pop up a context
menu.

private slots:
 void newFile();
 void open();
 bool save();
 bool saveAs();
 void find();
 void goToCell();
 void sort();
 void about();

Some menu options, like File|New and Help|About, are implemented as private slots in
MainWindow. Most slots have void as their return value, but save() and saveAs() return a
bool. The return value is ignored when a slot is executed in response to a signal, but when we
call a slot as a function the return value is available to us just as it is when we call any ordinary
C++ function.

 void updateCellIndicators()
 void spreadsheetModified();
 void openRecentFile(int param);

private:
 void createActions();
 void createMenus();
 void createToolBars();
 void createStatusBar();
 void readSettings();
 void writeSettings();
 bool maybeSave();
 void loadFile(const QString &fileName);
 void saveFile(const QString &fileName);
 void setCurrentFile(const QString &fileName);
 void updateRecentFileItems();
 QString strippedName(const QString &fullFileName);

The main window needs some more private slots and several private functions to support the
user interface.

 Spreadsheet *spreadsheet;

 FindDialog *findDialog;
 QLabel *locationLabel;
 QLabel *formulaLabel;
 QLabel *modLabel;
 QStringList recentFiles;
 QString curFile;
 QString fileFilters;
 bool modified;

 enum { MaxRecentFiles = 5 };
 int recentFileIds[MaxRecentFiles];

 QPopupMenu *fileMenu;
 QPopupMenu *editMenu;
 QPopupMenu *selectSubMenu;
 QPopupMenu *toolsMenu;
 QPopupMenu *optionsMenu;
 QPopupMenu *helpMenu;
 QToolBar *fileToolBar;
 QToolBar *editToolBar;
 QAction *newAct;
 QAction *openAct;
 QAction *saveAct;
 ...
 QAction *aboutAct;
 QAction *aboutQtAct;
};
#endif

In addition to its private slots and private functions, MainWindow also has lots of private
variables. All of these will be explained as we use them.

We will now review the implementation:

#include <qaction.h>
#include <qapplication.h>
#include <qcombobox.h>
#include <qfiledialog.h>
#include <qlabel.h>
#include <qlineedit.h>
#include <qmenubar.h>
#include <qmessagebox.h>
#include <qpopupmenu.h>
#include <qsettings.h>
#include <qstatusbar.h>

#include "cell.h"
#include "finddialog.h"
#include "gotocelldialog.h"
#include "mainwindow.h"
#include "sortdialog.h"
#include "spreadsheet.h"

We include the header files for the Qt classes used in our subclass, and also some custom
header files, notably finddialog.h, gotocelldialog.h, and sortdialog.h from Chapter 2.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 spreadsheet = new Spreadsheet(this);
 setCentralWidget(spreadsheet);

 createActions();
 createMenus();
 createToolBars();
 createStatusBar();

 readSettings();

 setCaption(tr("Spreadsheet"));
 setIcon(QPixmap::fromMimeSource("icon.png"));

 findDialog = 0;
 fileFilters = tr("Spreadsheet files (*.sp)");
 modified = false;
}

In the constructor, we begin by creating a Spreadsheet widget and setting it to be the main
window's central widget. The central widget occupies the area between the toolbars and the
status bar. The Spreadsheet class is a QTable subclass with some spreadsheet capabilities,
such as support for spreadsheet formulas. We will implement it in Chapter 4.

Figure 3.2. QMainWindow's constituent widgets

Then we call the private functions createActions(), createMenus(), create-ToolBars(), and
createStatusBar() to create the rest of the main window. We also call the private function
readSettings() to read the application's stored settings.

We set the window's icon to icon.png, a PNG file. Qt supports many image formats, including
BMP, GIF,[*] JPEG, MNG, PNG, PNM, XBM, and XPM. Calling QWidget::setIcon() sets the icon
shown in the top-left corner of the window. Unfortunately, there is no platform-independent
way of setting the application icon that appears on the desktop. The procedure is explained at
http://doc.trolltech.com/3.2/appicon.html.

[*] If you are in a country that recognizes software patents and where Unisys holds a patent on LZW
decompression, Unisys may require you to license the technology to use GIF. Because of this, GIF support is
disabled in Qt by default. We believe that this patent will have expired worldwide by the end of 2004.

GUI applications generally use many images, with some images being used in several different
contexts. Qt has a variety of methods for providing images to the application. The most
common are:

Storing images in files and loading them at run-time.

Including XPM files in the source code. (This works because XPMfiles are also valid C++
files.)

Using Qt's "image collection" mechanism.

Here we use the "image collection" approach because it is easier and more efficient than loading
files at run-time, and it works with any supported file format. The images are stored in the
source tree in a subdirectory called images. By adding the entry

IMAGES = images/icon.png \
 images/new.png \
 images/open.png \
 ...
 images/find.png \
 images/gotocell.png

to the application's .pro file, we tell uic to generate a C++ source code file that contains the
data for all the specified images. The data is then compiled into the application's executable and
can be retrieved using QPixmap::fromMime-Source(). This has the advantage that icons and
other images cannot get lost; they are always in the executable.

If you use Qt Designer to create your main windows as well as your dialogs, you can also use it
to handle your .pro file and to visually add images to the image collection.

[Team LiB]
[Team LiB]

Creating Menus and Toolbars
Most modern GUI applications provide both menus and toolbars, and typically they contain
more or less the same commands. The menus enable users to explore the application and learn
how to do new things, while the toolbars provide quick access to frequently used functionality.

Qt simplifies the programming of menus and toolbars through its "action" concept. An action is
an item that can be added to a menu, a toolbar, or both. Creating menus and toolbars in Qt
involves these steps:

Create the actions.

Add the actions to menus.

Add the actions to toolbars.

In the Spreadsheet application, actions are created in createActions():

void MainWindow::createActions()
{
 newAct = new QAction(tr("&New"), tr("Ctrl+N"), this);
 newAct->setIconSet(QPixmap::fromMimeSource("new.png"));
 newAct->setStatusTip(tr("Create a new spreadsheet file"));
 connect(newAct, SIGNAL(activated()), this, SLOT(newFile()));

The New action has a shortcut key (New), an accelerator (Ctrl+N), a parent (the main window),
an icon (new.png), and a status tip. We connect the action's activated() signal to the main
window's private newFile() slot, which we'll implement in the next section. Without the
connection, nothing would happen when the user chooses the File|New menu item or clicks the
New toolbar button.

The other actions for the File, Edit, and Tools menus are very similar to the New action.

Figure 3.3. The Spreadsheet application's menus

The Show Grid action in the Options menu is different:

showGridAct = new QAction(tr("&Show Grid"), 0, this);
showGridAct->setToggleAction(true);
showGridAct->setOn(spreadsheet->showGrid());
showGridAct->setStatusTip(tr("Show or hide the spreadsheet's "
 "grid"));
connect(showGridAct, SIGNAL(toggled(bool)),
 spreadsheet, SLOT(setShowGrid(bool)));

Show Grid is a toggle action. It is rendered with a checkmark in the menu and implemented as
a toggle button in the toolbar. When the action is turned on, the Spreadsheet component
displays a grid. We initialize the action with the default for the Spreadsheet component, so that
they are synchronized at start up. Then we connect the Show Grid action's toggled(bool)
signal to the Spreadsheet component's setShowGrid(bool) slot, which it inherits from QTable.
Once this action is added to a menu or toolbar, the user can toggle the grid on and off.

The Show Grid and Auto-recalculate actions are independent toggle actions. QAction also
provides for mutually exclusive actions through its QActionGroup subclass.

Figure 3.4. About Qt

 aboutQtAct = new QAction(tr("About &Qt"), 0, this);
 aboutQtAct->setStatusTip(tr("Show the Qt library's About box"));
 connect(aboutQtAct, SIGNAL(activated()), qApp, SLOT(aboutQt()));
}

For About Qt, we use the QApplication object's aboutQt() slot, accessible through the qApp

global variable.

Now that we have created the actions, we can move on to building a menu system through
which the actions can be invoked:

void MainWindow::createMenus()
{
 fileMenu = new QPopupMenu(this);
 newAct->addTo(fileMenu);
 openAct->addTo(fileMenu);
 saveAct->addTo(fileMenu);
 saveAsAct->addTo(fileMenu);
 fileMenu->insertSeparator();
 exitAct->addTo(fileMenu);

 for (int i = 0; i < MaxRecentFiles; ++i)
 recentFileIds[i] = -1;

In Qt, all menus are instances of QPopupMenu. We create the File menu and then add the New,
Open, Save, Save As, and Exit actions to it. We insert a separator to visually group closely
related items together. The for loop takes care of initializing the recentFilesIds array. We
will use recentFilesIds in the next section when implementing the File menu slots.

editMenu = new QPopupMenu(this);
cutAct->addTo(editMenu);
copyAct->addTo(editMenu);
pasteAct->addTo(editMenu);
deleteAct->addTo(editMenu);

selectSubMenu = new QPopupMenu(this);
selectRowAct->addTo(selectSubMenu);
selectColumnAct->addTo(selectSubMenu);
selectAllAct->addTo(selectSubMenu);
editMenu->insertItem(tr("&Select"), selectSubMenu);

editMenu->insertSeparator();
findAct->addTo(editMenu);
goToCellAct->addTo(editMenu);

The Edit menu includes a submenu. The submenu, like the menu it belongs to, is a QPopupMenu.
We simply create the submenu with this as parent and insert it into the Edit menu where we
want it to appear.

toolsMenu = new QPopupMenu(this);
recalculateAct->addTo(toolsMenu);
sortAct->addTo(toolsMenu);

optionsMenu = new QPopupMenu(this);
showGridAct->addTo(optionsMenu);
 autoRecalcAct->addTo(optionsMenu);

 helpMenu = new QPopupMenu(this);
 aboutAct->addTo(helpMenu);
 aboutQtAct->addTo(helpMenu);

 menuBar()->insertItem(tr("&File"), fileMenu);
 menuBar()->insertItem(tr("&Edit"), editMenu);
 menuBar()->insertItem(tr("&Tools"), toolsMenu);
 menuBar()->insertItem(tr("&Options"), optionsMenu);
 menuBar()->insertSeparator();
 menuBar()->insertItem(tr("&Help"), helpMenu);
}

We create the Tools, Options, and Help menus in a similar fashion, and we insert all the menus
into the menu bar. The QMainWindow::menuBar() function returns a pointer to a QMenuBar.
(The menu bar is created the first time menuBar() is called.) We insert a separator between the
Options and Help menu. In Motif and similar styles, the separator pushes the Help menu to the
right; in other styles, the separator is ignored.

Figure 3.5. Menu bar in Motif and Windows styles

Creating toolbars is very similar to creating menus:

void MainWindow::createToolBars()
{
 fileToolBar = new QToolBar(tr("File"), this);
 newAct->addTo(fileToolBar);
 openAct->addTo(fileToolBar);
 saveAct->addTo(fileToolBar);

 editToolBar = new QToolBar(tr("Edit"), this);
 cutAct->addTo(editToolBar);
 copyAct->addTo(editToolBar);
 pasteAct->addTo(editToolBar);
 editToolBar->addSeparator();
 findAct->addTo(editToolBar);
 goToCellAct->addTo(editToolBar);
}

We create a File toolbar and an Edit toolbar. Just like a popup menu, a toolbar can have
separators.

Figure 3.6. The Spreadsheet application's toolbars

Now that we have finished the menus and toolbars, we will add a context menu to complete the
interface:

void MainWindow::contextMenuEvent(QContextMenuEvent *event)
{
 QPopupMenu contextMenu(this);
 cutAct->addTo(&contextMenu);
 copyAct->addTo(&contextMenu);
 pasteAct->addTo(&contextMenu);
 contextMenu.exec(event->globalPos());
}

When the user clicks the right-mouse button (or presses the Menu key on some keyboards), a
"context menu" event is sent to the widget. By reimplementing the
QWidget::contextMenuEvent() function, we can respond to this event and pop up a context
menu at the current mouse pointer position.

Figure 3.7. The Spreadsheet application's context menu

Just like signals and slots, events are a fundamental aspect of Qt programming. Events are
generated by Qt's kernel to report mouse clicks, key presses, resize requests, and similar
occurrences. They can be handled by reimplementing virtual functions, as we are doing here.

We have chosen to implement the context menu in MainWindow because that's where we store
the actions, but it would also have been possible to implement it in Spreadsheet. When the
user right-clicks the Spreadsheet widget, Qt sends a context menu event to that widget first. If
Spreadsheet reimplements contextMenuEvent() and handles the event, the event stops there;
otherwise, it is sent to the parent (the MainWindow). Events are fully explained in Chapter 7.

The context menu event handler differs from all the code seen so far because it creates a
widget (a QPopupMenu) as a variable on the stack. We could just as easily have used new and
delete:

QPopupMenu *contextMenu = new QPopupMenu(this);
cutAct->addTo(contextMenu);
copyAct->addTo(contextMenu);
pasteAct->addTo(contextMenu);
contextMenu->exec(event->globalPos());
delete contextMenu;

Another noteworthy aspect of the code is the exec() call. QPopupMenu::exec() shows the
popup menu at a given screen position and waits until the user chooses an option (or dismisses
the popup menu) before it returns. At this point, the QPopupMenu object has achieved its
purpose, so we can destroy it. If the QPopupMenu object is located on the stack, it is destroyed
automatically at the end of the function; otherwise, we must call delete.

We have now completed the user interface part of the menus and toolbars. We still have not
implemented all of the slots or written code to handle the File menu's recently opened files. The
next two sections will address these issues.

[Team LiB]
[Team LiB]

Implementing the File Menu
In this section, we will implement the slots and private functions necessary to make the File
menu options work.

void MainWindow::newFile()
{
 if (maybeSave()) {
 spreadsheet->clear();
 setCurrentFile("");
 }
}

The newFile() slot is called when the user clicks the File|New menu option or clicks the New
toolbar button. The maybeSave() private function asks the user "Do you want to save your
changes?" if there are unsaved changes. It returns true if the user chooses either Yes or No

(saving the document on Yes), and it returns false if the user chooses Cancel. The
setCurrentFile() private function updates the window's caption to indicate that an untitled
document is being edited.

bool MainWindow::maybeSave()
{
 if (modified) {
 int ret = QMessageBox::warning(this, tr("Spreadsheet"),
 tr("The document has been modified.\n"
 "Do you want to save your changes?"),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No,
 QMessageBox::Cancel | QMessageBox::Escape);
 if (ret == QMessageBox::Yes)
 return save();
 else if (ret == QMessageBox::Cancel)
 return false;
 }
 return true;
}

In maybeSave(), we display the message box shown in Figure 3.8. The message box has a Yes,
a No, and a Cancel button. The QMessageBox::Default modifier makes Yes the default button.
The QMessageBox::Escape modifier makes the Esc key a synonym for No.

Figure 3.8. "Do you want to save your changes?"

The call to warning() may look a bit complicated at first sight, but the general syntax is
straightforward:

QMessageBox::warning(parent, caption, messageText,
 button0, button1, ...);

QMessageBox also provides information(), question(), and critical(), which behave like
warning() but display a different icon.

Figure 3.9. Message box icons

void MainWindow::open()
{
 if (maybeSave()) {
 QString fileName =
 QFileDialog::getOpenFileName(".", fileFilters, this);
 if (!fileName.isEmpty())
 loadFile(fileName);

 }
}

The open() slot corresponds to File|Open. Like newFile(), it first calls maybeSave() to handle
any unsaved changes. Then it uses the static convenience function
QFileDialog::getOpenFileName() to obtain a file name. The function pops up a file dialog,
lets the user choose a file, and returns the file name—or an empty string if the user clicked
Cancel.

We give the getOpenFileName() function three arguments. The first argument tells it which
directory it should start from, in our case the current directory. The second argument,
fileFilters, specifies the file filters. A file filter consists of a descriptive text and a wildcard
pattern. In the MainWindow constructor, fileFilters was initialized as follows:

fileFilters = tr("Spreadsheet files (*.sp)");

Had we supported comma-separated values files and Lotus 1-2-3 files in addition to
Spreadsheet's native file format, we would have initialized the variable as follows:

fileFilters = tr("Spreadsheet files (*.sp)\n"
 "Comma-separated values files (*.csv)\n"
 "Lotus 1-2-3 files (*.wk?)");

Finally, the third argument to getOpenFileName() specifies that the QFileDialog that pops up
should be a child of the main window.

The parent–child relationship doesn't mean the same thing for dialogs as for other widgets. A
dialog is always a top-level widget (a window in its own right), but if it has a parent, it is
centered on top of the parent by default. A child dialog also shares the parent's taskbar entry.

void MainWindow::loadFile(const QString &fileName)
{
 if (spreadsheet->readFile(fileName)) {
 setCurrentFile(fileName);
 statusBar()->message(tr("File loaded"), 2000);
 } else {
 statusBar()->message(tr("Loading canceled"), 2000);
 }
}

The loadFile() private function was called in open() to load the file. We make it an
independent function because we will need the same functionality to load recently opened files.

We use Spreadsheet::readFile() to read the file from the disk. If loading is successful, we
call setCurrentFile() to update the window's caption. Otherwise, Spreadsheet::loadFile()
will have already notified the user of the problem through a message box. In general, it is good
practice to let the lower-level components issue error messages, since they can provide the
precise details of what went wrong.

In both cases, we display a message in the status bar for 2000 milliseconds (2 seconds) to keep
the user informed about what the application is doing.

bool MainWindow::save()
{
 if (curFile.isEmpty()) {
 return saveAs();
 } else {
 saveFile(curFile);
 return true;

 }
}
void MainWindow::saveFile(const QString &fileName)
{
 if (spreadsheet->writeFile(fileName)) {
 setCurrentFile(fileName);
 statusBar()->message(tr("File saved"), 2000);
 } else {
 statusBar()->message(tr("Saving canceled"), 2000);
 }
}

The save() slot corresponds to File|Save. If the file already has a name because it was opened
before or has already been saved, save() calls saveFile() with that name; otherwise, it
simply calls saveAs().

bool MainWindow::saveAs()
{
 QString fileName =
 QFileDialog::getSaveFileName(".", fileFilters, this);
 if (fileName.isEmpty())
 return false;

 if (QFile::exists(fileName)) {
 int ret = QMessageBox::warning(this, tr("Spreadsheet"),
 tr("File %1 already exists. \n"
 "Do you want to overwrite it?")
 .arg(QDir::convertSeparators(fileName)),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No | QMessageBox::Escape);
 if (ret == QMessageBox::No)
 return true;
 }
 if (!fileName.isEmpty())
 saveFile(fileName);
 return true;
}

The saveAs() slot corresponds to File|Save As. We call QFileDialog::getSaveFileName() to
obtain a file name from the user. If the user clicks Cancel, we return false, which is
propagated up to maybeSave(). Otherwise, the returned file name may be a new name or the
name of an existing file. In the case of an existing file, we call QMessageBox::warning() to
display the message box shown in Figure 3.10.

Figure 3.10. "Do you want to overwrite it?"

The text we passed to the message box is

tr("File %1 already exists\n"
 "Do you want to override it?")
.arg(QDir::convertSeparators(fileName))

The QString::arg() function replaces the lowest-numbered "%n" parameter with its argument
and returns the resulting string. For example, if the file name is A:\tab04.sp, the code above is
equivalent to

"File A:\\tab04.sp already exists.\n"
"Do you want to override it?"

assuming that the application isn't translated into another language. The
QDir::convertSeparators() call converts forward slashes, which Qt uses as a portable
directory separator, into the platform-specific separator ('/' on Unix and Mac OS X, '\' on
Windows).

void MainWindow::closeEvent(QCloseEvent *event)
{
 if (maybeSave()) {
 writeSettings();
 event->accept();
 } else {
 event->ignore();
 }
}

When the user clicks File|Exit, or clicks X in the window's title bar, the QWidget::close() slot
is called. This sends a "close" event to the widget. By reimplementing QWidget::closeEvent(),
we can intercept attempts to close the main window and decide whether we want the window to
close or not.

If there are unsaved changes and the user chooses Cancel, we "ignore" the event and leave the
window unaffected by it. Otherwise, we accept the event, resulting in Qt closing the window and
the application terminating.

void MainWindow::setCurrentFile(const QString &fileName)
{
 curFile = fileName;
 modLabel->clear();
 modified = false;

 if (curFile.isEmpty()) {
 setCaption(tr("Spreadsheet"));
 } else {
 setCaption(tr("%1 - %2").arg(strippedName(curFile))
 .arg(tr("Spreadsheet")));
 recentFiles.remove(curFile);
 recentFiles.push_front(curFile);
 updateRecentFileItems();
 }
}
QString MainWindow::strippedName(const QString &fullFileName)
{
 return QFileInfo(fullFileName).fileName();
}

In setCurrentFile(), we set the curFile private variable that stores the name of the file
being edited, clear the MOD status indicator, and update the caption. Notice how arg() is used
with two %n parameters. The first call to arg() replaces "%1" the second call replaces "%2". It
would have been easier to write

setCaption(strippedName(curFile) + tr(" - Spreadsheet"));

but using arg() gives more flexibility to translators. We remove the file's path with

strippedName() to make the file name more user-friendly.

If there is a file name, we update recentFiles, the application's recently opened files list. We
call remove() to remove any occurrence of the file name in the list; then we call push_front()
to add the file name as the first item. Calling remove() first is necessary to avoid duplicates.
After updating the list, we call the private function updateRecentFileItems() to update the
entries in the File menu.

The recentFiles variable is of type QStringList (list of QStrings). Chapter 11 explains
container classes such as QStringList in detail and how they relate to the C++ Standard
Template Library (STL).

This almost completes the implementation of the File menu. There is one function and one
supporting slot that we have not implemented yet. Both are concerned with managing the
recently opened files list.

Figure 3.11. File menu with recently opened files

void MainWindow::updateRecentFileItems()
{
 while ((int)recentFiles.size() > MaxRecentFiles)
 recentFiles.pop_back();

 for (int i = 0; i < (int)recentFiles.size(); ++i) {
 QString text = tr("&%1 %2")
 .arg(i + 1)
 .arg(strippedName(recentFiles[i]));
 if (recentFileIds[i] == –1) {
 if (i == 0)
 fileMenu->insertSeparator(fileMenu->count() – 2);
 recentFileIds[i] =
 fileMenu->insertItem(text, this,
 SLOT(openRecentFile(int)),
 0, –1,
 fileMenu->count() – 2);
 fileMenu->setItemParameter(recentFileIds[i], i);
 } else {
 fileMenu->changeItem(recentFileIds[i], text);
 }
 }
}

The updateRecentFileItems() private function is called to update the recently opened files
menu items. We begin by making sure that there are no more items in the recentFiles list

than are allowed (MaxRecentFiles, defined as 5 in mainwindow.h), removing any extra items
from the end of the list.

Then, for each entry, we either create a new menu item or reuse an existing item if one exists.
The very first time we create a menu item, we also insert a separator. We do this here and not
in createMenus() to ensure that we never display two separators in a row. The
setItemParameter() call will be explained in a moment.

It may seem strange that we create items in updateRecentFileItems() but never delete
items. This is because we can assume that the recently opened files list never shrinks during a
session.

The QPopupMenu::insertItem() function we called has the following syntax:

fileMenu->insertItem(text, receiver, slot, accelerator, id, index);

The text is the text displayed in the menu. We use strippedName() to remove the path from
the file names. We could keep the full file names, but that would make the File menu very wide.
If full file names are preferred, the best solution is to put the recently opened files in a
submenu.

The receiver and slot parameters specify the slot that should be called when the user
chooses the item. In our example, we connect to MainWindow's openRecentFile(int) slot.

For accelerator and id, we pass default values, meaning that the menu item has no
accelerator and an automatically generated ID. We store the generated ID in the
recentFileIds array so that we can access the items later.

The index is the position where we want to insert the item. By passing the value fileMenu-
>count() - 2, we insert it above the Exit item's separator.

void MainWindow::openRecentFile(int param)
{
 if (maybeSave())
 loadFile(recentFiles[param]);
}

The openRecentFile() slot is where everything falls into place. The slot is called when a
recently opened file is chosen from the File menu. The int parameter is the value that we set
earlier with setItemParameter(). We chose the values in such a way that we can use them
magically as indexes into the recentFiles list.

Figure 3.12. Managing recently opened files

This is one way to solve the problem. A less elegant solution would have been to create five
actions and connect them to five separate slots.

[Team LiB]
[Team LiB]

Setting Up the Status Bar
With the menus and toolbars complete, we are ready to tackle the Spreadsheet application's
status bar. In its normal state, the status bar contains three indicators: the current cell's
location, the current cell's formula, and MOD. The status bar is also used to display status tips
and other temporary messages.

The MainWindow constructor calls createStatusBar() to set up the status bar:

void MainWindow::createStatusBar()
{
 locationLabel = new QLabel(" W999 ", this);
 locationLabel->setAlignment(AlignHCenter);
 locationLabel->setMinimumSize(locationLabel->sizeHint());

 formulaLabel = new QLabel(this);

 modLabel = new QLabel(tr(" MOD "), this);
 modLabel->setAlignment(AlignHCenter);
 modLabel->setMinimumSize(modLabel->sizeHint());
 modLabel->clear();

 statusBar()->addWidget(locationLabel);
 statusBar()->addWidget(formulaLabel, 1);
 statusBar()->addWidget(modLabel);

 connect(spreadsheet, SIGNAL(currentChanged(int, int)),
 this, SLOT(updateCellIndicators()));
 connect(spreadsheet, SIGNAL(modified()),
 this, SLOT(spreadsheetModified()));

 updateCellIndicators();
}

The QMainWindow::statusBar() function returns a pointer to the status bar. (The status bar is
created the first time statusBar() is called.) The status indicators are simply QLabels whose
text we change whenever necessary. When constructing the QLabels, we pass this as the
parent, but it doesn't really matter since QStatusBar::addWidget() automatically "reparents"
them to make them children of the status bar.

Figure 3.13 shows that the three labels have different space requirements. The cell location and
MOD indicators require very little space, and when the window is resized, any extra space
should go to the cell formula indicator in the middle. This is achieved by specifying a stretch
factor of 1 in its QStatusBar::addWidget() call. The other two indicators have the default
stretch factor of 0, meaning that they prefer not to be stretched.

Figure 3.13. The Spreadsheet application's status bar

When QStatusBar lays out indicator widgets, it tries to respect each widget's ideal size as given
by QWidget::sizeHint() and then stretches any stretchable widgets to fill the available space.
A widget's ideal size is itself dependent on the widget's content and varies as we change the
content. To avoid constant resizing of the location and MOD indicators, we set their minimum
sizes to be wide enough to contain the largest possible text on each of the indicators ("W999"
and "MOD"), with a little extra space. We also set their alignment to AlignHCenter to
horizontally center their text.

Near the end of the function, we connect two of Spreadsheet's signals to two of MainWindow's
slots: updateCellIndicators() and spreadsheetModified().

void MainWindow::updateCellIndicators()
{
 locationLabel->setText(spreadsheet->currentLocation());
 formulaLabel->setText(" " + spreadsheet->currentFormula());
}

The updateCellIndicator() slot updates the cell location and the cell formula indicators. It is
called whenever the user moves the cell cursor to a new cell. The slot is also used as an
ordinary function at the end of createStatusBar() to initialize the indicators. This is necessary
because Spreadsheet doesn't emit a currentChanged() signal at startup.

void MainWindow::spreadsheetModified()
{
 modLabel->setText(tr("MOD"));
 modified = true;
 updateCellIndicators();
}

The spreadsheetModified() slot updates all three indicators so that they reflect the current
state of affairs, and sets the modified variable to true. (We used the modified variable when
implementing the File menu to determine whether or not there were unsaved changes.)

[Team LiB]
[Team LiB]

Using Dialogs
In this section, we will explain how to use dialogs in Qt—how to create and initialize them, run
them, and respond to choices made by the user interacting with them. We will make use of the
Find, Go-to-Cell, and Sort dialogs that we created in Chapter 2. We will also create a simple
About box.

We will begin with the Find dialog. Since we want the user to be able to switch between the
main Spreadsheet window and the Find dialog at will, the Find dialog must be modeless. A
modeless window is one that runs independently of any other windows in the application.

When modeless dialogs are created, they normally have their signals connected to slots that
respond to the user's interactions.

void MainWindow::find()
{
 if (!findDialog) {
 findDialog = new FindDialog(this);
 connect(findDialog, SIGNAL(findNext(const QString &, bool)),
 spreadsheet, SLOT(findNext(const QString &, bool)));
 connect(findDialog, SIGNAL(findPrev(const QString &, bool)),
 spreadsheet, SLOT(findPrev(const QString &, bool)));
 }

 findDialog->show();
 findDialog->raise();
 findDialog->setActiveWindow();
}

The Find dialog is a window that enables the user to search for text in the spreadsheet. The
find() slot is called when the user clicks Edit|Find to pop up the Find dialog. At that point,
several scenarios are possible:

This is the first time the user has invoked the Find dialog.

The Find dialog was invoked before, but the user closed it.

The Find dialog was invoked before and is still visible.

If the Find dialog doesn't already exist, we create it and connect its findNext() and findPrev
() signals to Spreadsheet's matching slots. We could also have created the dialog in the
MainWindow constructor, but delaying its creation makes startup faster. Also, if the dialog is
never used, it is never created, saving both time and memory.

Then we call show(), raise(), and setActiveWindow() to ensure that the window is visible, on
top of the others, and active. A call to show() alone is sufficient to make a hidden window
visible, but the Find dialog may be invoked when its window is already visible, in which case
show() does nothing. Since we must make the dialog's window visible, active, and on top
regardless of its previous state, we must use the raise() and setActiveWindow() calls. An
alternative would have been to write

if (findDialog->isHidden()) {
 findDialog->show();
} else {
 findDialog->raise();
 findDialog->setActiveWindow();
}

the programming equivalent of driving along at 90 in a 100 km/h zone.

We will now look at the Go-to-Cell dialog. We want the user to pop it up, use it, and close it
without being able to switch from the Go-to-Cell dialog to any other window in the application.
This means that the Go-to-Cell dialog must be modal. A modal window is a window that pops up
when invoked and blocks the application, preventing any other processing or interactions from
taking place until the window is closed. With the exception of the Find dialog, all the dialogs we
have used so far have been modal.

A dialog is modeless if it's invoked using show() (unless we call setModal() beforehand to
make it modal); it is modal if it's invoked using exec(). When we invoke modal dialogs using

exec(), we typically don't need to set up any signal–slot connections.

void MainWindow::goToCell()
{
 GoToCellDialog dialog(this);
 if (dialog.exec()) {
 QString str = dialog.lineEdit->text();
 spreadsheet->setCurrentCell(str.mid(1).toInt() - 1,
 str[0].upper().unicode() - 'A');
 }
}

The QDialog::exec() function returns true if the dialog is accepted, false otherwise. (Recall
that when we created the Go-to-Cell dialog using Qt Designer in Chapter 2, we connected OK to
accept() and Cancel to reject().) If the user chooses OK, we set the current cell to the value
in the line editor; if the user chooses Cancel, exec() returns false and we do nothing.

The QTable::setCurrentCell() function expects two arguments: a row index and a column
index. In the Spreadsheet application, cell A1 is cell (0, 0) and cell B27 is cell (26, 1). To obtain
the row index from the QString returned by QLabel::text(), we extract the row number using
QString::mid() (which returns a substring from the start position to the end of the string),
convert it to an int using QString::toInt(), and subtract 1 to make it 0-based. For the
column number, we subtract the numeric value of 'A' from the numeric value of the string's
upper-cased first character.

Unlike Find, the Go-to-Cell dialog is created on the stack. This is a common programming
pattern for modal dialogs, just as it is for context menus, since we don't need the dialog after
we have used it.

We will now turn to the Sort dialog. The Sort dialog is a modal dialog that allows the user to
sort the currently selected area by the columns they specify. Figure 3.14 shows an example of
sorting, with column B as the primary sort key and column A as the secondary sort key (both
ascending).

Figure 3.14. Sorting the spreadsheet's selected area

void MainWindow::sort()
{
 SortDialog dialog(this);
 QTableSelection sel = spreadsheet->selection();
 dialog.setColumnRange('A' + sel.leftCol(), 'A' + sel.rightCol());

 if (dialog.exec()) {
 SpreadsheetCompare compare;
 compare.keys[0] =
 dialog.primaryColumnCombo->currentItem();
 compare.keys[1] =

 dialog.secondaryColumnCombo->currentItem() - 1;
 compare.keys[2] =
 dialog.tertiaryColumnCombo->currentItem() - 1;
 compare.ascending[0] =
 (dialog.primaryOrderCombo->currentItem() == 0);
 compare.ascending[1] =
 (dialog.secondaryOrderCombo->currentItem() == 0);
 compare.ascending[2] =
 (dialog.tertiaryOrderCombo->currentItem() == 0);
 spreadsheet->sort(compare);
 }
}

The code in sort() follows a similar pattern to that used for goToCell():

We create the dialog on the stack and initialize it.

We pop up the dialog using exec().

If the user clicks OK, we extract the values entered by the user from the dialog's widgets
and make use of them.

The compare object stores the primary, secondary, and tertiary sort keys and sort orders. (We
will see the definition of the SpreadsheetCompare class in the next chapter.) The object is used
by Spreadsheet::sort() to compare two rows. The keys array stores the column numbers of
the keys. For example, if the selection extends from C2 to E5, column C has position 0. The
ascending array stores the order associated with each key as a
bool.QComboBox::currentItem() returns the index of the currently selected item, starting at
0. For the secondary and tertiary keys, we subtract one from the current item to account for
the "None" item.

The sort() dialog does the job, but it is very fragile. It takes for granted that the Sort dialog is
implemented in a certain way, with comboboxes and "None" items. This means that if we
redesign the Sort dialog, we may also need to rewrite this code. While this approach is
adequate for a dialog that is only called from one place, it opens the door to maintenance
nightmares if the dialog is used in several places.

A more robust approach is to make the SortDialog class smarter by having it create a
SpreadsheetCompare object itself, which can then be accessed by its caller. This simplifies
MainWindow::sort() significantly:

void MainWindow::sort()
{
 SortDialog dialog(this);
 QTableSelection sel = spreadsheet->selection();
 dialog.setColumnRange('A' + sel.leftCol(), 'A' + sel.rightCol());
 if (dialog.exec())
 spreadsheet->performSort(dialog.comparisonObject());
}

This approach leads to loosely coupled components and is almost always the right choice for
dialogs that will be called from more than one place.

A more radical approach is to pass a pointer to the Spreadsheet object when initializing the
SortDialog object and to allow the dialog to operate directly on the Spreadsheet. This makes
the SortDialog much less general, since it will only work on a certain type of widget, but it
simplifies the code ever further by eliminating the SortDialog::setColumnRange() function.
The MainWindow::sort() function then becomes

void MainWindow::sort()
{
 SortDialog dialog(this);
 dialog.setSpreadsheet(spreadsheet);
 dialog.exec();
}

This approach mirrors the first: Instead of the caller needing intimate knowledge of the dialog,
the dialog needs intimate knowledge of the data structures supplied by the caller. This approach
may be useful where the dialog needs to apply changes live. But just as the caller code is fragile
using the first approach, this third approach breaks if the data structures change.

Some developers choose just one approach to using dialogs and stick with that. This has the
benefit of familiarity and simplicity since all their dialog usages follow the same pattern, but it
also misses the benefits of the approaches that are not used. The decision on which approach to
use should be made on a per-dialog basis.

We will round off this section with a simple About box. We could create a custom dialog like the
Find or Go-to-Cell dialogs to present the "about" information, but since most About boxes are
highly stylized, Qt provides a simpler solution.

void MainWindow::about()
{
 QMessageBox::about(this, tr("About Spreadsheet"),
 tr("<h2>Spreadsheet 1.0</h2>"
 "<p>Copyright © 2003 Software Inc."
 "<p>Spreadsheet is a small application that "
 "demonstrates QAction, QMainWindow, "
 "QMenuBar, QStatusBar, "
 "QToolBar, and many other Qt classes."));
}

The About box is obtained by calling QMessageBox::about(), a static convenience function. The
function is very similar to QMessageBox::warning(), except that it uses the parent window's
icon instead of the standard "warning" icon.

Figure 3.15. About Spreadsheet

So far we have used several convenience static functions from both QMessageBox and
QFileDialog. These functions create a dialog, initialize it, and call exec() on it. It is also
possible, although less convenient, to create a QMessageBox or a QFileDialog widget like any
other widget and explicitly call exec(), or even show(), on it.
[Team LiB]
[Team LiB]

Storing Settings
In the MainWindow constructor, we called readSettings() to load the application's stored
settings. Similarly, in closeEvent(), we called writeSettings() to save the settings. These
two functions are the last MainWindow member functions that need to be implemented.

The arrangement we opted for in MainWindow, with all the QSettings-related code in
readSettings() and writeSettings(), is just one of many possible approaches. A QSettings
object can be created to query or modify some setting at any time during the execution of the
application and from anywhere in the code.

void MainWindow::writeSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "Spreadsheet");
 settings.beginGroup("/Spreadsheet");
 settings.writeEntry("/geometry/x", x());
 settings.writeEntry("/geometry/y", y());
 settings.writeEntry("/geometry/width", width());
 settings.writeEntry("/geometry/height", height());
 settings.writeEntry("/recentFiles", recentFiles);
 settings.writeEntry("/showGrid", showGridAct->isOn());
 settings.writeEntry("/autoRecalc", showGridAct->isOn());
 settings.endGroup();
}

The writeSettings() function saves the main window's geometry (position and size), the list
of recently opened files, and the Show Grid and Auto-recalculate options.

QSettings stores the application's settings in platform-specific locations. On Windows, it uses
the system registry; on Unix, it stores the data in text files; on Mac OS X, it uses the Carbon
preferences API. The setPath() call provides QSettings with the organization's name (as an
Internet domain name) and the product's name. This information is used in a platform-specific
way to find a location for the settings.

QSettings stores settings as key–value pairs. The key is similar to a file system path and
should always start with the name of the application. For example, /Spreadsheet/geometry/x
and /Spreadsheet/showGrid are valid keys. (The beginGroup() call saves us from
writing /Spreadsheet in front of every key.) The value can be an int, a bool, a double, a
QString, or a QStringList.

void MainWindow::readSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "Spreadsheet");
 settings.beginGroup("/Spreadsheet");

 int x = settings.readNumEntry("/geometry/x", 200);
 int y = settings.readNumEntry("/geometry/y", 200);
 int w = settings.readNumEntry("/geometry/width", 400);
 int h = settings.readNumEntry("/geometry/height", 400);
 move(x,y);
 resize(w, h);

 recentFiles = settings.readListEntry("/recentFiles");
 updateRecentFileItems();

 showGridAct->setOn(
 settings.readBoolEntry("/showGrid", true));

 autoRecalcAct->setOn(
 settings.readBoolEntry("/autoRecalc" true));

 settings.endGroup();
}

The readSettings() function loads the settings that were saved by writeSettings(). The
second argument to the "read" functions specifies a default value, in case there are no settings
available. The default values are used the first time the application is run.

We have now completed the Spreadsheet's MainWindow implementation. In the following
sections, we will discuss how the Spreadsheet application can be modified to handle multiple
documents and how to implement a splash screen. We will complete its functionality in the next
chapter.
[Team LiB]
[Team LiB]

Multiple Documents
We are now ready to code the Spreadsheet application's main() function:

#include <qapplication.h>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow mainWin;
 app.setMainWidget(&mainWin);
 mainWin.show();
 return app.exec();
}

This main() function is a little bit different from those we have written so far: We have created
the MainWindow instance as a variable on the stack instead of using new. The MainWindow
instance is then automatically destroyed when the function terminates.

With the main() function shown above, the Spreadsheet application provides a single main
window and can only handle one document at a time. If we want to edit multiple documents at
the same time, we could start multiple instances of the Spreadsheet application. But this isn't
as convenient for users as having a single instance of the application providing multiple main
windows, just as one instance of a web browser can provide multiple browser windows
simultaneously.

We will modify the Spreadsheet application so that it can handle multiple documents. First, we
need a slightly different File menu:

File|New creates a new main window with an empty document, instead of recycling the
current main window.

File|Close closes the current main window.

File|Exit closes all windows.

Figure 3.16. The new File menu

In the original version of the File menu, there was no Close option because that would have
been the same as Exit.

This is the new main() function:

#include <qapplication.h>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow *mainWin = new MainWindow;
 mainWin->show();
 QObject::connect(&app, SIGNAL(lastWindowClosed()),
 &app, SLOT(quit()));
 return app.exec();
}

We connect QApplication's lastWindowClosed() slot to QApplication's quit() slot, which
will terminate the application.

With multiple windows, it now makes sense to create MainWindow with new, because then we
can use delete on a main window when we have finished with it to save memory. This issue
doesn't arise if the application uses just one main window.

This is the new MainWindow::newFile() slot:

void MainWindow::newFile()
{
 MainWindow *mainWin = new MainWindow;
 mainWin->show();
}

We simply create a new MainWindow instance. It may seem odd that we don't keep any pointer
to the new window, but that isn't a problem since Qt keeps track of all the windows for us.

These are the actions for Close and Exit:

closeAct = new QAction(tr("&Close"), tr("Ctrl+W"), this);
connect(closeAct, SIGNAL(activated()), this, SLOT(close()));

exitAct = new QAction(tr("E&xit"), tr("Ctrl+Q"), this);
connect(exitAct, SIGNAL(activated()),
 qApp, SLOT(closeAllWindows()));

QApplication's closeAllWindows() slot closes all of the application's windows, unless one of
them rejects the close event. This is exactly the behavior we need here. We don't have to worry
about unsaved changes because that's handled in MainWindow::closeEvent() whenever a

window is closed.

It looks as if we have finished making the application capable of handling multiple windows.
Unfortunately, there is a hidden problem lurking: If the user keeps creating and closing main
windows, the machine might run out of memory! This is because we keep creating MainWindow
widgets in newFile() but we never delete them. When the user closes a main window, the
default behavior is to hide it, so it still remains in memory. With many main windows, this can
be a problem.

The solution is to add the WDestructiveClose flag to the constructor:

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name, WDestructiveClose)
{
 ...
}

This tells Qt to delete the window when it is closed. The WDestructiveClose flag is one of
many flags that can be passed to the QWidget constructor to influence a widget's behavior.
Most of the other flags are rarely needed in Qt applications.

Memory leaking isn't the only problem that we must deal with. Our original application design
included an implied assumption that we would only have one main window. With multiple
windows, each main window has its own recently opened files list and its own options. Clearly,
the recently opened files list should be global to the whole application. We can achieve this
quite easily by declaring the recentFiles variable static, so that only one instance of it exists
for the whole application. But then we must ensure that wherever we called
updateRecentFileItems() to update the File menu, we must call it on all main windows.
Here's the code to achieve this:

QWidgetList *list = QApplication::topLevelWidgets();
QWidgetListIt it(*list);
QWidget *widget;
while ((widget = it.current())) {
 if (widget->inherits("MainWindow"))
 ((MainWindow *)widget)->updateRecentFileItems();
 ++it;
}
delete list;

The code iterates over all the application's top-level widgets and calls updateRecentFileItems
() on all widgets of type MainWindow. Similar code can be used for synchronizing the Show Grid
and Auto-recalculate options, or to make sure that the same file isn't loaded twice. The
QWidgetList type is a typedef for QPtrList<QWidget>, which is presented in Chapter 11
(Container Classes).

Applications that provide one document per main window are said to be SDI (single document
interface) applications. A popular alternative is MDI (multiple document interface), where the
application has a single main window that manages multiple document windows within its
central area. Qt can be used to create both SDI and MDI applications on all its supported
platforms. Figure 3.17 shows the Spreadsheet application using both approaches. MDI is
explained in Chapter 6 (Layout Management).

Figure 3.17. SDI vs. MDI

[Team LiB]
[Team LiB]

Splash Screens
Many applications present a splash screen at startup. Some developers use a splash screen to
disguise a slow startup, while others do it to satisfy their marketing departments. Adding a
splash screen to Qt applications is very easy using the QSplashScreen class.

The QSplashScreen class shows an image before the application proper has started. It can also
draw a message on the image, to inform the user about the progress of the application's
initialization process. Typically, the splash screen code is located in main(), before the call to
QApplication::exec().

Below is an example main() function that uses QSplashScreen to present a splash screen in an
application that loads modules and establishes network connections at startup.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QSplashScreen *splash =
 new QSplashScreen(QPixmap::fromMimeSource("splash.png"));
 splash->show();

 splash->message(QObject::tr("Setting up the main window..."),
 Qt::AlignRight | Qt::AlignTop, Qt::white);
 MainWindow mainWin;
 app.setMainWidget(&mainWin);

 splash->message(QObject::tr("Loading modules..."),
 Qt::AlignRight | Qt::AlignTop, Qt::white);
 loadModules();

 splash->message(QObject::tr("Establishing connections..."),
 Qt::AlignRight | Qt::AlignTop, Qt::white);
 establishConnections();

 mainWin.show();
 splash->finish(&mainWin);
 delete splash;

 return app.exec();
}

Figure 3.18. A QSplashScreen widget

We have now completed the Spreadsheet application's user interface. In the next chapter, we
will complete the application by implementing the core spreadsheet functionality.

[Team LiB]
[Team LiB]

Chapter 4. Implementing Application
Functionality

The Central Widget

Subclassing QTable

Loading and Saving

Implementing the Edit Menu

Implementing the Other Menus

Subclassing QTableItem

In the previous two chapters, we explained how to create the Spreadsheet application's user
interface. In this chapter, we will complete the program by coding its underlying functionality.
Among other things, we will see how to load and save files, how to store data in memory, how
to implement clipboard operations, and how to add support for spreadsheet formulas to QTable.
[Team LiB]
[Team LiB]

The Central Widget
The central area of a QMainWindow can be occupied by any kind of widget. Here's an overview
of the possibilities:

1. Use a standard Qt widget.

A standard widget like QTable or QTextEdit can be used as a central widget. In this case,
the application's functionality, such as loading and saving files, must be implemented
elsewhere (for example, in a QMainWindow subclass).

2. Use a custom widget.

Specialized applications often need to show data in a custom widget. For example, an icon
editor program would have an IconEditor widget as its central widget. Chapter 5
explains how to write custom widgets in Qt.

3. Use a plain QWidget with a layout manager.

Sometimes the application's central area is occupied by many widgets. This can be done
by using a QWidget as the parent of all the other widgets, and using layout managers to
size and position the child widgets.

4. Use a splitter.

Another way of using multiple widgets together is to use a QSplitter. The QSplitter
arranges its child widgets side by side like a QHBox, or in a column like a QVBox, with
splitter handles to give some sizing control to the user. Splitters can contain all kinds of
widgets, including other splitters.

5. Use an MDI workspace.

If the application uses MDI, the central area is occupied by a QWorkspace widget, and
each of the MDI windows is a child of that widget.

Layouts, splitters, and MDI workspaces can be used in combination with standard Qt widgets or
with custom widgets. Chapter 6 covers these classes in depth.

For the Spreadsheet application, a QTable subclass is used as the central widget. The QTable
class already provides most of the spreadsheet capability we need, but it doesn't understand
spreadsheet formulas like "=A1+A2+A3", and it doesn't support clipboard operations. We will
implement this missing functionality in the Spreadsheet class, which inherits from QTable.

[Team LiB]
[Team LiB]

Subclassing QTable
We will now start implementing the Spreadsheet widget, beginning with the header file:

#ifndef SPREADSHEET_H
#define SPREADSHEET_H

#include <qstringlist.h>
#include <qtable.h>

class Cell;
class SpreadsheetCompare;

The header starts with forward declarations for the Cell and SpreadsheetCompare classes.

Figure 4.1. Inheritance tree for Spreadsheet and Cell

The attributes of a QTable cell, such as its text and its alignment, are stored in a QTableItem.
Unlike QTable, QTableItem isn't a widget class; it is a pure data class. The Cell class is a
QTableItem subclass. In addition to the standard QTableItem attributes, Cell stores a cell's
formula.

We will explain the Cell class when we present its implementation in the last section of this
chapter.

class Spreadsheet : public QTable
{
 Q_OBJECT
public:
 Spreadsheet(QWidget *parent = 0, const char *name = 0);

 void clear();
 QString currentLocation() const;
 QString currentFormula() const;
 bool autoRecalculate() const { return autoRecalc; }
 bool readFile(const QString &fileName);
 bool writeFile(const QString &fileName);
 QTableSelection selection();
 void sort(const SpreadsheetCompare &compare);

The Spreadsheet class inherits from QTable. Subclassing QTable is very similar to subclassing
QDialog or QMainWindow.

In Chapter 3, we relied on many public functions in Spreadsheet when we implemented
MainWindow. For example, we called clear() from MainWindow::newFile() to reset the
spreadsheet. We also used some functions inherited from QTable, notably setCurrentCell()
and setShowGrid().

public slots:
 void cut();
 void copy();
 void paste();
 void del();
 void selectRow();
 void selectColumn();
 void selectAll();
 void recalculate();
 void setAutoRecalculate(bool on);
 void findNext(const QString &str, bool caseSensitive);
 void findPrev(const QString &str, bool caseSensitive);

signals:
 void modified();

Spreadsheet provides many slots that implement actions from the Edit, Tools, and Options
menus.

protected:
 QWidget *createEditor(int row, int col, bool initFromCell) const;
 void endEdit(int row, int col, bool accepted, bool wasReplacing);

Spreadsheet reimplements two virtual functions from QTable. These functions are called by
QTable itself when the user starts editing the value of a cell. We need to reimplement them to
support spreadsheet formulas.

private:
 enum { MagicNumber = 0x7F51C882, NumRows = 999, NumCols = 26 };

 Cell *cell(int row, int col) const;
 void setFormula(int row, int col, const QString &formula);
 QString formula(int row, int col) const;
 void somethingChanged();

 bool autoRecalc;
};

In the class's private section, we define three constants, four functions, and one variable.

class SpreadsheetCompare
{
public:
 bool operator()(const QStringList &row1,
 const QStringList &row2) const;

 enum { NumKeys = 3 };
 int keys[NumKeys];
 bool ascending[NumKeys];
};

#endif

The header file ends with the SpreadsheetCompare class declaration. We will explain this when
we review Spreadsheet::sort().

We will now look at the implementation, explaining each function in turn:

#include <qapplication.h>
#include <qclipboard.h>
#include <qdatastream.h>
#include <qfile.h>
#include <qlineedit.h>
#include <qmessagebox.h>
#include <qregexp.h>
#include <qvariant.h>

#include <algorithm>
#include <vector>
using namespace std;

#include "cell.h"
#include "spreadsheet.h"

We include the header files for the Qt classes the application will use. We also include the
standard C++ <algorithm> and <vector> header files. The using namespace directive imports

all the symbols from the std namespace into the global namespace, allowing us to write
stable_sort() and vector<T> instead of std::stable_sort() and std::vector<T>.

Spreadsheet::Spreadsheet(QWidget *parent, const char *name)
 : QTable(parent, name)
{
 autoRecalc = true;
 setSelectionMode(Single);
 clear();
}

In the constructor, we set the QTable selection mode to Single. This ensures that only one
rectangular area in the spreadsheet can be selected at a time.

void Spreadsheet::clear()
{
 setNumRows(0);
 setNumCols(0);
 setNumRows(NumRows);
 setNumCols(NumCols);
 for (int i = 0; i < NumCols; i++)
 horizontalHeader()->setLabel(i, QChar('A' + i));
 setCurrentCell(0, 0);
}

The clear() function is called from the Spreadsheet constructor to initialize the spreadsheet. It
is also called from MainWindow::newFile().

We resize the spreadsheet down to 0 x 0, effectively clearing the whole spreadsheet, and resize
it again to NumCols x NumRows (26x999). We change the column labels to "A", "B", ..., "Z" (the
default is "1", "2", ..., "26") and move the cell cursor to cell A1.

Figure 4.2. QTable's constituent widgets

A QTable is composed of many child widgets. It has a horizontal QHeader at the top, a vertical
QHeader on the left, a QScrollBar on the right, and a QScrollBar at the bottom. The area in
the middle is occupied by a special widget called the viewport, on which QTable draws the cells.
The different child widgets are accessible through functions in QTable and its base class,
QScrollView. For example, in clear(), we access the table's top QHeader through QTable::
horizontalHeader().

Storing Data as Items

In the Spreadsheet application, every non-empty cell is stored in memory as an
individual QTableItem object. This pattern of storing data as items is not specific to

QScrollView is the natural base class for widgets that can present lots of data. It provides a
scrollable viewport and two scroll bars, which can be turned on and off. It is covered in Chapter
6.

Cell *Spreadsheet::cell(int row, int col) const
{
 return (Cell *)item(row, col);
}

The cell() private function returns the Cell object for a given row and column. It is almost
the same as QTable::item(), except that it returns a Cell pointer instead of a QTableItem
pointer.

QString Spreadsheet::formula(int row, int col) const
{
 Cell *c = cell(row, col);
 if (c)
 return c->formula();
 else
 return "";
}

The formula() private function returns the formula for a given cell. If cell() returns a null
pointer, the cell is empty, so we return an empty string.

void Spreadsheet::setFormula(int row, int col,
 const QString &formula)
{
 Cell *c = cell(row, col);
 if (c) {

QTable; Qt's QIconView, QListBox, and QListView classes also operate on items
(QIconViewItems, QListBoxItems and QListViewItems).

Qt's item classes can be used out of the box as data holders. For example, a
QTableItem already stores a few attributes, including a string, a pixmap, and a
pointer back to the QTable. By subclassing the item class, we can store additional
data and reimplement virtual functions to use that data.

Many toolkits provide a void pointer in their item classes to store custom data. Qt
doesn't burden every item with a pointer that may not be used; instead, it gives
programmers the freedom to subclass the item classes and to store the data there,
possibly as a pointer to another data structure. If a void pointer is required, it can be
trivially achieved by subclassing an item class and adding a void pointer member
variable.

With QTable, it is possible to bypass the item mechanism by reimplementing low-
level functions such as paintCell() and clearCell(). If the data to display in a
QTable is already available in memory in another data structure, this approach can
be used to avoid data duplication. For details, see the Qt Quarterly article "A
Model/View Table for Large Datasets", available online at
http://doc.trolltech.com/qq/qq07-big-tables.html.

Qt 4 is expected to be more flexible than Qt 3 for storing data. In addition to
supporting items, Qt 4 will probably offer a single unified item type usable by all item
views, and the item views will not take ownership of the items they display, making it
possible to display the same items in multiple views simultaneously.

 c->setFormula(formula);
 updateCell(row, col);
 } else {
 setItem(row, col, new Cell (this, formula));
 }
}

The setFormula() private function sets the formula for a given cell. If the cell already has a
Cell object, we reuse it and call updateCell() to tell QTable to repaint the cell if it's shown on
screen. Otherwise, we create a new Cell object and call QTable::setItem() to insert it into
the table and repaint the cell. We don't need to worry about deleting the Cell object later on;
QTable takes ownership of the cell and will delete it automatically at the right time.

QString Spreadsheet::currentLocation() const
{
 return QChar('A' + currentColumn())
 + QString::number(currentRow() + 1);
}

The currentLocation() function returns the current cell's location in the usual spreadsheet
format of column letter followed by row number. MainWindow::updateCellIndicators() uses
it to show the location in the status bar.

QString Spreadsheet::currentFormula() const
{
 return formula(currentRow(), currentColumn());
}

The currentFormula() function returns the current cell's formula. It is called from
MainWindow::updateCellIndicators().

QWidget *Spreadsheet::createEditor(int row, int col,
 bool initFromCell) const
{
 QLineEdit *lineEdit = new QLineEdit(viewport());
 lineEdit->setFrame(false);
 if (initFromCell)
 lineEdit->setText(formula(row, col));
 return lineEdit;
}

The createEditor() function is reimplemented from QTable. It is called when the user starts
editing a cell—either by clicking the cell, pressing F2, or simply starting to type. Its role is to
create an editor widget to be shown on top of the cell. If the user clicked the cell or pressed F2
to edit the cell, initFromCell is true and the editor must start with the current cell's content.
If the user simply started typing, the cell's previous content is ignored.

The default behavior of this function is to create a QLineEdit and initialize it with the cell's text
if initFromCell is true. We reimplement the function to show the cell's formula instead of the
cell's text.

We create the QLineEdit as a child of the QTable's viewport. QTable takes care of resizing the
QLineEdit to match the cell's size and of positioning it over the cell that is to be edited. QTable
also takes care of deleting the QLineEdit when it is no longer needed.

Figure 4.3. Editing a cell by superimposing a QLineEdit

In many cases, the formula and the text are the same; for example, the formula "Hello"
evaluates to the string "Hello", so if the user types "Hello" into a cell and presses Enter, that
cell will show the text "Hello". But there are some exceptions:

If the formula is a number, it is interpreted as such. For example, the formula "1.50"
evaluates to the double value 1.5, which is rendered as a right-aligned "1.5" in the
spreadsheet.

If the formula starts with a single quote, the rest of the formula is interpreted as text. For
example, the formula "'12345" evaluates to the string "12345".

If the formula starts with an equals sign ('='), the formula is interpreted as an arithmetic
formula. For example, if cell A1 contains "12" and cell A2 contains "6", the formula
"=A1+A2" evaluates to 18.

The task of converting a formula into a value is performed by the Cell class. For the moment,
the important thing to bear in mind is that the text shown in the cell is the result of evaluating
the formula, not the formula itself.

void Spreadsheet::endEdit(int row, int col, bool accepted,
 bool wasReplacing)
{
 QLineEdit *lineEdit = (QLineEdit *)cellWidget(row, col);
 if (!lineEdit)
 return;
 QString oldFormula = formula(row, col);
 QString newFormula = lineEdit->text();

 QTable::endEdit(row, col, false, wasReplacing);

 if (accepted && newFormula != oldFormula) {
 setFormula(row, col, newFormula);
 somethingChanged();
 }
}

The endEdit() function is reimplemented from QTable. It is called when the user has finished
editing a cell, either by clicking elsewhere in the spreadsheet (which confirms the edit), by
pressing Enter (which also confirms the edit), or by pressing Esc (which rejects the edit). The
function's purpose is to transfer the editor's content back into the Cell object if the edit is
confirmed.

The editor is available from QTable::cellWidget(). We can safely cast it to a QLineEdit since
the widget we create in createEditor() is always a QLineEdit.

Figure 4.4. Returning a QLineEdit's content to a cell

In the middle of the function, we call QTable's implementation of endEdit(), because QTable
needs to know when editing has finished. We pass false as third argument to endEdit() to
prevent it from modifying the table item, since we want to create or modify it ourselves. If the
new formula is different from the old one, we call setFormula() to modify the Cell object and

call somethingChanged().

void Spreadsheet::somethingChanged()
{
 if (autoRecalc)
 recalculate();
 emit modified();
}

The somethingChanged() private function recalculates the whole spreadsheet if Auto-
recalculate is enabled and emits the modified() signal.
[Team LiB]
[Team LiB]

Loading and Saving
We will now implement the loading and saving of Spreadsheet files using a custom binary
format. We will do this using QFile and QDataStream, which together provide platform-
independent binary I/O.

We will start with writing a Spreadsheet file:

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_WriteOnly)) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("Cannot write file %1:\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return false;
 }

 QDataStream out(&file);
 out.setVersion(5);

 out <<(Q_UINT32) MagicNumber;

 QApplication::setOverrideCursor(waitCursor);
 for (int row = 0; row < NumRows; ++row) {
 for (int col = 0; col > NumCols; ++col) {
 QString str = formula(row, col);
 if (!str.isEmpty())
 out << (Q_UINT16)row << (Q_UINT16)col << str;
 }
 }
 QApplication::restoreOverrideCursor();
 return true;
}

The writeFile() function is called from MainWindow::saveFile() to write the file to disk. It
returns true on success, false on error.

We create a QFile object with the given file name and call open() to open the file for writing.
We also create a QDataStream object that operates on the QFile and use it to write out the
data. Just before we write the data, we change the application's cursor to the standard wait
cursor (usually an hourglass) and restore the normal cursor once all the data is written. At the
end of the function, the file is automatically closed by QFile's destructor.

QDataStream supports basic C++ types as well as many of Qt's types. The syntax is modeled
after the standard <iostream> classes. For example,

out << x << y << z;

writes the variables x, y, and z to a stream, and

in >> x >> y >> z;

reads them from a stream.

Because the C++ basic types char, short, int, long, and long long may have different sizes
on different platforms, it is safest to cast these values to one of Q_INT8, Q_UINT8, Q_INT16,
Q_UINT16, Q_INT32, Q_UINT32, Q_INT64, and Q_UINT64, which are guaranteed to be of the size
they advertise (in bits).

QDataStream is very versatile. It can be used on a QFile, but also on a QBuffer, a QSocket, or
a QSocketDevice. Similarly, QFile can be used with a QTextStream instead of QDataStream, or
even raw. Chapter 10 explains these classes in depth.

The Spreadsheet application's file format is fairly simple. A Spreadsheet file starts with a 32-bit
number that identifies the file format (MagicNumber, defined as 0x7F51C882 in
spreadsheet.h). Then come a series of blocks, each of which contains a single cell's row,
column, and formula. To save space, we don't write out empty cells.

Figure 4.5. The Spreadsheet file format

The precise binary representation of the data types is determined by QDataStream. For
example, a Q_UINT16 is represented as two bytes in big-endian order, and a QString as the
string's length followed by the Unicode characters.

The binary representation of Qt types has evolved quite a lot since Qt 1.0. It is likely to
continue evolving in future Qt releases to keep pace with the evolution of existing types and to
allow for new Qt types. By default, QDataStream uses the most recent version of the binary
format (version 5 in Qt 3.2), but it can be set to read older versions. To avoid any compatibility
problems if the application is recompiled later using a newer Qt release, we tell QDataStream to
use version 5 irrespective of the version of Qt we are compiling against.

bool Spreadsheet::readFile(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_ReadOnly)) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("Cannot read file %1:\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return false;
 }

 QDataStream in(&file);
 in.setVersion(5);

 Q_UINT32 magic;
 in >> magic;
 if (magic != MagicNumber) {

 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("The file is not a "
 "Spreadsheet file."));
 return false;
 }

 clear();

 Q_UINT16 row;
 Q_UINT16 col;
 QString str;

 QApplication::setOverrideCursor(waitCursor);
 while (!in.atEnd()) {
 in >> row >> col >> str;
 setFormula(row, col, str);
 }
 QApplication::restoreOverrideCursor();
 return true;
}

The readFile() function is very similar to writeFile(). We use QFile to read in the file, but
this time using the IO_ReadOnly flag rather than IO_WriteOnly. Then we set the QDataStream
version to 5. The format for reading must always be the same as for writing.

If the file has the correct magic number at the beginning, we call clear() to blank out all the
cells in the spreadsheet and we read in the cell data. The call to clear() is necessary to blank
out the cells that are not specified in the file.
[Team LiB]
[Team LiB]

Implementing the Edit Menu
We are now ready to implement the slots that correspond to the application's Edit menu.

void Spreadsheet::cut()
{
 copy();
 del();
}

The cut() slot corresponds to Edit|Cut. The implementation is simple since Cut is the same as
Copy followed by Delete.

Figure 4.6. The Spreadsheet application's Edit menu

void Spreadsheet::copy()
{
 QTableSelection sel = selection();
 QString str;

 for (int i = 0; i < sel.numRows(); ++i) {
 if (i > 0)
 str += "\n";
 for (int j = 0; j < sel.numCols(); ++j) {
 if (j > 0)
 str += "\t";
 str += formula(sel.topRow() + i, sel.leftCol() + j);
 }
 }
 QApplication::clipboard()->setText(str);
}

The copy() slot corresponds to Edit|Copy. It iterates over the current selection. Each selected
cell's formula is added to a QString, with rows separated by newline characters and columns
separated by tab characters.

Figure 4.7. Copying a selection onto the clipboard

The system clipboard is available in Qt through the QApplication::clipboard() static
function. By calling QClipboard::setText(), we make the text available on the clipboard, both
to this application and to other applications that support plain text. Our format with tab and
newline characters as separator is understood by a variety of applications, including Microsoft
Excel.

QTableSelection Spreadsheet::selection()
{
 if (QTable::selection(0).isEmpty())
 return QTableSelection(currentRow(), currentColumn(),
 currentRow(), currentColumn());
 return QTable::selection(0);
}

The selection() private function returns the current selection. It depends on
QTable::selection(), which returns a selection by number. Since we set the selection mode
to Single, there is only one selection, numbered 0. But it's also possible that there is no
selection at all. This is because QTable doesn't treat the current cell as a selection in its own
right. This behavior is reasonable, but slightly inconvenient here, so we implement a selection
() function that either returns the current selection or, if there isn't one, the current cell.

void Spreadsheet::paste()
{
 QTableSelection sel = selection();
 QString str = QApplication::clipboard()->text();
 QStringList rows = QStringList::split("\n", str, true);
 int numRows = rows.size();
 int numCols = rows.first().contains("\t") + 1;

 if (sel.numRows() * sel.numCols() != 1
 && (sel.numRows() != numRows

 || sel.numCols() != numCols)) {
 QMessageBox::information(this, tr("Spreadsheet"),
 tr("The information cannot be pasted because the "
 "copy and paste areas aren't the same size."));
 return;
 }

 for (int i = 0; i < numRows; ++i) {
 QStringList cols = QStringList::split("\t", rows[i], true);
 for (int j = 0; j < numCols; ++j) {
 int row = sel.topRow() + i;
 int col = sel.leftCol() + j;
 if (row < NumRows && col < NumCols)
 setFormula(row, col, cols[j]);
 }
 }
 somethingChanged();
}

The paste() slot corresponds to Edit|Paste. We fetch the text on the clipboard and call the
static function QStringList::split() to break the string into a QStringList. Each row
becomes one string in the QStringList.

Next, we determine the dimension of the copy area. The number of rows is the number of
strings in the QStringList; the number of columns is the number of tab characters in the first
row, plus 1.

If only one cell is selected, we use that cell as the top-left corner of the paste area. Otherwise,
we use the current selection as the paste area.

To perform the paste, we iterate over the rows and split each of them into cells by using
QStringList::split() again, but this time using tab as the separator. Figure 4.8 illustrates
the steps.

Figure 4.8. Pasting clipboard text into the spreadsheet

void Spreadsheet::del()
{
 QTableSelection sel = selection();
 for (int i = 0; i < sel.numRows(); ++i) {
 for (int j = 0; j < sel.numCols(); ++j)
 delete cell(sel.topRow() + i, sel.leftCol() + j);
 }
 clearSelection();
}

The del() slot corresponds to Edit|Delete. It is sufficient to use delete on each of the Cell
objects in the selection to clear the cells. The QTable notices when its QTableItems are deleted
and automatically repaints itself. If we call cell() with the location of a deleted cell, it will
return a null pointer.

void Spreadsheet::selectRow()
{
 clearSelection();
 QTable::selectRow(currentRow());
}

void Spreadsheet::selectColumn()
{
 clearSelection();
 QTable::selectColumn(currentColumn());
}

void Spreadsheet::selectAll()
{
 clearSelection();
 selectCells(0, 0, NumRows – 1, NumCols – 1);
}

The selectRow(), selectColumn(), and selectAll() functions correspond to the
Edit|Select|Row, Edit|Select|Column, and Edit|Select|All menu options. The implementation
relies on QTable's selectRow(), selectColumn(), and selectCells() functions.

void Spreadsheet::findNext(const QString &str, bool caseSensitive)
{
 int row = currentRow();
 int col = currentColumn() + 1;

 while (row < NumRows) {
 while (col < NumCols) {
 if (text(row, col).contains(str, caseSensitive)) {
 clearSelection();
 setCurrentCell(row, col);
 setActiveWindow();
 return;
 }
 ++col;
 }
 col = 0;
 ++row;
 }
 qApp->beep();
}

The findNext() slot iterates through the cells starting from the cell to the right of the cursor
and moving right until the last column is reached, then continues from the first column in the
row below, and so on until the text is found or until the very last cell is reached. For example, if
the current cell is cell C27, we search D27, E27, ..., Z27, then A28, B28, C28, ..., Z28, and so
on until Z999. If we find a match, we clear the current selection, we move the cell cursor to the
cell that matched, and we make the window that contains the Spreadsheet active. If no match
is found, we make the application beep to indicate that the search finished unsuccessfully.

void Spreadsheet::findPrev(const QString &str, bool caseSensitive)
{
 int row = currentRow();
 int col = currentColumn() – 1;

 while (row >= 0) {
 while (col >= 0) {
 if (text(row, col).contains(str, caseSensitive)) {
 clearSelection();
 setCurrentCell(row, col);
 setActiveWindow();
 return;
 }
 ––col;
 }
 col = NumCols – 1;
 ––row;
 }
 qApp->beep();
}

The findPrev() slot is similar to findNext(), except that it iterates backward and stops at cell
A1.

[Team LiB]
[Team LiB]

Implementing the Other Menus
We will now implement the slots for the Tools and Options menus.

Figure 4.9. The Spreadsheet application's Tools and Options menus

void Spreadsheet::recalculate()
{
 int row;

 for (row = 0; row < NumRows; ++row) {
 for (int col = 0; col < NumCols; ++col) {
 if (cell(row, col))
 cell(row, col)->setDirty();
 }
 }
 for (row = 0; row < NumRows; ++row) {
 for (int col = 0; col < NumCols; ++col) {
 if (cell(row, col))
 updateCell(row, col);
 }
 }
}

The recalculate() slot corresponds to Tools|Recalculate. It is also called automatically by
Spreadsheet when necessary.

We iterate over all the cells and call setDirty() on every cell to mark each one as requiring
recalculation. The next time QTable calls text() on a Cell to obtain the value to show in the
spreadsheet, the value will be recalculated.

Then we call updateCell() on all the cells to repaint the whole spreadsheet. The repaint code
in QTable then calls text() on each visible cell to obtain the value to display. Because we
called setDirty() on every cell, the calls to text() will use a freshly calculated value. The
calculation is performed by the Cell class.

void Spreadsheet::setAutoRecalculate(bool on)
{
 autoRecalc = on;
 if (autoRecalc)
 recalculate();
}

The setAutoRecalculate() slot corresponds to Options|Auto-recalculate. If the feature is
turned on, we recalculate the whole spreadsheet immediately to make sure that it's up to date.
Afterward, recalculate() is called automatically from somethingChanged().

We don't need to implement anything for Options|Show Grid because QTable already provides a
setShowGrid(bool) slot. All that remains is Spreadsheet::sort(), which we called from
MainWindow::sort():

void Spreadsheet::sort(const SpreadsheetCompare &compare)
{
 vector<QStringList> rows;
 QTableSelection sel = selection();
 int i;

 for (i = 0; i < sel.numRows(); ++i) {
 QStringList row;
 for (int j = 0; j < sel.numCols(); ++j)
 row.push_back(formula(sel.topRow() + i,
 sel.leftCol() + j));
 rows.push_back(row);
 }

 stable_sort(rows.begin(), rows.end(), compare);

 for (i = 0; i < sel.numRows(); ++i) {
 for (int j = 0; j < sel.numCols(); ++j)
 setFormula(sel.topRow() + i, sel.leftCol() + j,
 rows[i][j]);
 }

 clearSelection();
 somethingChanged();
}

Sorting operates on the current selection and reorders the rows according to the sort keys and
sort orders stored in the compare object. We represent each row of data with a QStringList
and store the selection as a vector of rows. The vector<T> class is a standard C++ class; it is
explained in Chapter 11 (Container Classes). For simplicity, we sort by formula rather than by
value.

Figure 4.10. Storing the selection as a vector of rows

We call the standard C++ stable_sort() function on the rows to perform the actual sorting.
The stable_sort() function accepts a begin iterator, an end iterator, and a comparison
function. The comparison function is a function that takes two arguments (two QStringLists)
and that returns true if the first argument is "less than" the second argument, false
otherwise. The compare object we pass as the comparison function isn't really a function, but it
can be used as one, as we will see shortly.

Figure 4.11. Putting the data back into the table after sorting

After performing the stable_sort(), we move the data back into the table, clear the selection,
and call something Changed().

In spreadsheet.h, the SpreadsheetCompare class was defined like this:

class SpreadsheetCompare
{
public:
 bool operator()(const QStringList &row1,
 const QStringList &row2) const;

 enum { NumKeys = 3 };
 int keys[NumKeys];
 bool ascending[NumKeys];
};

The SpreadsheetCompare class is special because it implements a () operator. This allows us to
use the class as if it were a function. Such classes are called functors. To understand how
functors work, we will start with a simple example:

class Square
{
public:
 int operator()(int x) const { return x * x; }
};

The Square class provides one function, operator()(int), that returns the square of its
parameter. By naming the function operator()(int) rather than, say, compute(int), we gain
the capability of using an object of type Square as if it were a function:

Square square;
int y = square(5);

Now let's see an example involving SpreadsheetCompare:

QStringList row1, row2;
SpreadsheetCompare compare;
...
if (compare(row1, row2)) {
 // row1 is less than row2
}

The compare object can be used just as if it had been a plain compare() function. Additionally,
it can access all the sort keys and sort orders, which it stores as member variables.

An alternative to this scheme would have been to store the sort keys and sort orders in global
variables and use a plain compare() function. However, communicating through global variables
is inelegant and can lead to subtle bugs. Functors are a more powerful idiom for interfacing with
template functions such as stable_sort().

Here is the implementation of the function that is used to compare two spreadsheet rows:

bool SpreadsheetCompare::operator() (const QStringList &row1,
 const QStringList &row2) const
{
 for (int i = 0; i < NumKeys; ++i) {
 int column = keys[i];
 if (column != -1) {
 if (row1[column] != row2[column]) {
 if (ascending[i])
 return row1[column] < row2[column];
 else
 return row1[column] > row2[column];
 }
 }
 }
 return false;
}

It returns true if the first row is less than the second row; otherwise, it returns false. The
standard stable_sort() function uses the result of this function to perform the sort.

The SpreadsheetCompare object's keys and ascending arrays are populated in the
MainWindow::sort() function (shown in Chapter 2). Each key holds a column index, or –1
("None").

We compare the corresponding cell entries in the two rows for each key in order. As soon as we
find a difference, we return an appropriate true or false value. If all the comparisons turn out
to be equal, we return false. The stable_sort() function uses the order before the sort to
resolve tie situations; if row1 preceded row2 originally and neither compares as "less than" the
other, row1 will still precede row2 in the result. This is what distinguishes std::stable_sort()
from its more famous (but less stable) cousin std::sort().

We have now completed the Spreadsheet class. In the next section, we will review the Cell
class. This class is used to hold cell formulas and provides a reimplementation of the text()
function that Spreadsheet calls to display the result of calculating a cell's formula.
[Team LiB]
[Team LiB]

Subclassing QTableItem
The Cell class inherits from QTableItem. The class is designed to work well with Spreadsheet,
but it has no specific dependencies on that class and could in theory be used in any QTable.

Here's the header file:

#ifndef CELL_H
#define CELL_H

#include <qtable.h>
#include <qvariant.h>

class Cell : public QTableItem
{
public:
 Cell(QTable *table, const QString &formula);

 void setFormula(const QString &formula);
 QString formula() const;
 void setDirty();
 QString text() const;
 int alignment() const;

private:
 QVariant value() const;
 QVariant evalExpression(const QString &str, int &pos) const;
 QVariant evalTerm(const QString &str, int &pos) const;
 QVariant evalFactor(const QString &str, int &pos) const;

 QString formulaStr;
 mutable QVariant cachedValue;
 mutable bool cacheIsDirty;
};

#endif

The Cell class extends QTableItem by adding three private variables:

formulaStr stores the cell's formula as a QString.

cachedValue caches the cell's value as a QVariant.

cacheIsDirty is true if the cached value isn't up to date.

The QVariant type can hold values of many C++ and Qt types. We use it because some cells
have a double value, while others have a QString value.

The cachedValue and cacheIsDirty variables are declared with the C++ mutable keyword.
This allows us to modify these variables in const functions. Alternatively, we could recalculate
the value each time text() is called, but that would be needlessly inefficient.

Notice that there is no Q_OBJECT macro in the class definition. Cell is a plain C++ class, with
no signals or slots. In fact, because QTableItem doesn't inherit from QObject, we cannot have
signals and slots in Cell as it stands. Qt's item classes don't inherit from QObject to keep their
overhead to the barest minimum. If signals and slots are needed, they can be implemented in
the widget that contains the items or, exceptionally, using multiple inheritance with QObject.

Here's the start of cell.cpp:

#include <qlineedit.h>
#include <qregexp.h>

#include "cell.h"

Cell::Cell(QTable *table, const QString &formula)
 : QTableItem(table, OnTyping)

{
 setFormula(formula);
}

The constructor accepts a pointer to a QTable and a formula. The pointer is passed on to the
QTableItem constructor and is accessible afterward as QTableItem::table(). The second
argument to the base class constructor, OnTyping, means that an editor pops up when the user
starts typing in the current cell.

void Cell::setFormula(const QString &formula)
{
 formulaStr = formula;
 cacheIsDirty = true;
}

The setFormula() function sets the cell's formula. It also sets the cacheIsDirty flag to true,
meaning that cachedValue must be recalculated before a valid value can be returned. It is
called from the Cell constructor and from Spreadsheet::setFormula().

 QString Cell::formula() const
 {
 return formulaStr;
 }

The formula() function is called from Spreadsheet::formula().

void Cell::setDirty()
{
 cacheIsDirty = true;
}

The setDirty() function is called to force a recalculation of the cell's value. It simply sets
cacheIsDirty to true. The recalculation isn't performed until it is really necessary.

QString Cell::text() const
{
 if (value().isValid())
 return value().toString();
 else
 return "####";
}

The text() function is reimplemented from QTableItem. It returns the text that should be
shown in the spreadsheet. It relies on value() to compute the cell's value. If the value is
invalid (presumably because the formula is wrong), we return "####".

The value() function used by text() returns a QVariant. A QVariant can store values of
different types, such as double and QString, and provides functions to convert the variant to
other types. For example, calling toString() on a variant that holds a double value produces a
string representation of the double. A QVariant constructed using the default constructor is an
"invalid" variant.

int Cell::alignment() const
{
 if (value().type() == QVariant::String)

 return AlignLeft | AlignVCenter;
 else
 return AlignRight | AlignVCenter;
}

The alignment() function is reimplemented from QTableItem. It returns the alignment for the
cell's text. We have chosen to left-align string values and to right-align numeric values. We
vertically center all values.

const QVariant Invalid;
QVariant Cell::value() const
{
 if (cacheIsDirty) {
 cacheIsDirty = false;

 if (formulaStr.startsWith("'")) {
 cachedValue = formulaStr.mid(1);
 } else if (formulaStr.startsWith("=")) {
 cachedValue = Invalid;
 QString expr = formulaStr.mid(1);
 expr.replace(" ", "");
 int pos = 0;
 cachedValue = evalExpression(expr, pos);
 if (pos < (int) expr.length())
 cachedValue = Invalid;
 } else {
 bool ok;
 double d = formulaStr.toDouble(&ok);
 if (ok)
 cachedValue = d;
 else
 cachedValue = formulaStr;
 }
 }
 return cachedValue;
}

The value() private function returns the cell's value. If cacheIsDirty is true, we need to
recalculate the value.

If the formula starts with a single quote (for example, "'12345"), the value is the string from
position 1 to the end. (The single quote occupies position 0.)

If the formula starts with '=', we take the string from position 1 and delete any spaces it may
contain. Then we call evalExpression() to compute the value of the expression. The pos
argument is passed by reference; it indicates the position of the character where parsing should
begin. After the call to evalExpression(), pos is equal to the length of the expression that was
successfully parsed. If the parse failed before the end, we set cachedValue to be Invalid.

If the formula doesn't begin with a single quote or an equals sign ('='), we attempt to convert it
to a floating point value using toDouble(). If the conversion works, we set cachedValue to be
the resulting number; otherwise, we set cachedValue to be the formula string. For example, a
formula of "1.50" causes toDouble() to set ok to true and return 1.5, while a formula of
"World Population" causes toDouble() to set ok to false and return 0.0.

The value() function is a const function. We had to declare cachedValue and cacheIsValid as
mutable variables so that the compiler will allow us to modify them in const functions. It might
be tempting to make value() non-const and remove the mutable keywords, but that would not
compile because we call value() from text(), a const function. In C++, caching and mutable
usually go hand in hand.

We have now completed the Spreadsheet application, apart from parsing formulas. The rest of
this section covers evalExpression() and the two helper functions evalTerm() and
evalFactor(). The code is a bit complicated, but it is included here to make the application
complete. Since the code is not related to GUI programming, you can safely skip it and continue
reading from Chapter 5.

The evalExpression() function returns the value of a spreadsheet expression. An expression is
defined as one or more terms separated by '+' or '-' operators; for example, "2*C5+D6" is an
expression with "2*C5" as its first term and "D6" as its second term. The terms themselves are
defined as one or more factors separated by '*' or '/' operators; for example, "2*C5" is a term
with "2" as its first factor and "C5" as its second factor. Finally, a factor can be a number ("2"),
a cell location ("C5"), or an expression in parentheses, optionally preceded by a unary minus.
By breaking down expressions into terms and terms into factors, we ensure that the operators
are applied with the correct precedence.

The syntax of spreadsheet expressions is defined in Figure 4.12. For each symbol in the
grammar (Expression, Term, and Factor), there is a corresponding Cell member function that
parses it and whose structure closely follows the grammar. Parsers written this way are called
recursive-descent parsers.

Figure 4.12. Syntax diagram for spreadsheet expressions

Let's start with evalExpression(), the function that parses an Expression:

QVariant Cell::evalExpression(const QString &str, int &pos) const
{
 QVariant result = evalTerm(str, pos);
 while (pos < (int)str.length()) {
 QChar op = str[pos];
 if (op != '+' && op != '–')
 return result;
 ++pos;

 QVariant term = evalTerm(str, pos);
 if (result.type() == QVariant::Double
 && term.type() == QVariant::Double) {
 if (op == '+')
 result = result.toDouble() + term.toDouble();
 else
 result = result.toDouble() - term.toDouble();
 } else {
 result = Invalid;
 }
 }
 return result;
}

First, we call evalTerm() to get the value of the first term. If the following character is '+' or '-
', we continue by calling evalTerm() a second time; otherwise, the expression consists of a
single term, and we return its value as the value of the whole expression. After we have the
value of the first two terms, we compute the result of the operation, depending on the operator.
If both terms evaluated to a double, we compute the result as a double; otherwise, we set the

result to be Invalid.

We continue like this until there are no more terms. This works correctly because addition and
subtraction are left-associative; that is, "1–2–3" means "(1–2)–3", not "1–(2–3)".

QVariant Cell::evalTerm(const QString &str, int &pos) const
{
 QVariant result = evalFactor(str, pos);
 while (pos < (int)str.length()) {
 QChar op = str[pos];
 if (op != '*' && op != '/')
 return result;
 ++pos;

 QVariant factor = evalFactor(str, pos);
 if (result.type() == QVariant::Double
 && factor.type() == QVariant::Double) {
 if (op == '*') {
 result = result.toDouble() * factor.toDouble();
 } else {
 if (factor.toDouble() == 0.0)
 result = Invalid;
 else
 result = result.toDouble() / factor.toDouble();
 }
 } else {
 result = Invalid;
 }
 }
 return result;
}

The evalTerm() function is very similar to evalExpression(), except that it deals with
multiplication and division. The only subtlety in evalTerm() is that we must avoid division by
zero. While it is generally inadvisable to test floating point values for equality because of
rounding errors, it is safe to do so to prevent division by zero.

QVariant Cell::evalFactor(const QString &str, int &pos) const
{
 QVariant result;
 bool negative = false;
 if (str[pos] == '–') {
 negative = true;
 ++pos;
 }

 if (str[pos] == '(') {
 ++pos;
 result = evalExpression(str, pos);
 if (str[pos] != ')')
 result = Invalid;
 ++pos;
 } else {
 QRegExp regExp("[A–Za–z] [1–9] [0–9] {0,2}");
 QString token;

 while (str[pos].isLetterOrNumber() || str[pos] == '.') {
 token += str[pos];
 ++pos;
 }

 if (regExp.exactMatch(token)) {

 int col = token[0].upper().unicode() – 'A';
 int row = token.mid(1).toInt() – 1;

 Cell *c = (Cell *)table()->item(row, col);
 if (c)
 result = c->value();
 else
 result = 0.0;
 } else {
 bool ok;
 result = token.toDouble(&ok);
 if (!ok)
 result = Invalid;
 }
 }

 if (negative) {
 if (result.type() == QVariant::Double)
 result = -result.toDouble();
 else
 result = Invalid;
 }
 return result;
}

The evalFactor() function is a bit more complicated than evalExpression() and evalTerm().
We start by noting whether the factor is negated. We then see if it begins with an open
parenthesis. If it does, we evaluate the contents of the parentheses as an expression by calling
evalExpression(). This is where recursion occurs in the parser; evalExpression() calls
evalTerm(), which calls evalFactor(), which calls evalExpression() again.

If the factor isn't a nested expression, we extract the next token, which may be a cell location
or a number. If the token matches the QRegExp, we take it to be a cell reference and we call
value() on the cell at the given location. The cell could be anywhere in the spreadsheet, and it
could have dependencies on other cells. The dependencies are not a problem; they will simply
trigger more value() calls and (for "dirty" cells) more parsing until all the dependent cell
values are calculated. If the token isn't a cell location, we take it to be a number.

What happens if cell A1 contains the formula "=A1"? Or if cell A1 contains "=A2" and cell A2
contains "=A1"? Although we have not written any special code to detect circular dependencies,
the parser handles these cases gracefully by returning an invalid QVariant. This works because
we set cacheIsDirty to false and cachedValue to Invalid in value() before we call
evalExpression(). If evalExpression() recursively calls value() on the same cell, it returns
Invalid immediately, and the whole expression then evaluates to Invalid.

We have now completed the formula parser. It would be straightforward to extend it to handle
predefined spreadsheet functions, like "sum()" and "avg()", by extending the grammatical
definition of Factor. Another easy extension is to implement the '+' operator with string
operands (as concatenation); this requires no changes to the grammar.

[Team LiB]
[Team LiB]

Chapter 5. Creating Custom Widgets
Customizing Qt Widgets

Subclassing QWidget

Integrating Custom Widgets with Qt Designer

Double Buffering

This chapter explains how to create custom widgets using Qt. Custom widgets can be created
by subclassing an existing Qt widget or by subclassing QWidget directly. We will demonstrate
both approaches, and we will also see how to integrate a custom widget with Qt Designer so
that it can be used just like a built-in Qt widget. We will round off the chapter by presenting a
custom widget that uses a powerful technique for eliminating flicker: double buffering.

[Team LiB]
[Team LiB]

Customizing Qt Widgets
In some cases, we find that a Qt widget requires more customization than is possible by setting
its properties in Qt Designer or by calling its functions. A simple and direct solution is to
subclass the relevant widget class and adapt it to suit our needs.

Figure 5.1. The HexSpinBox widget

In this section, we will develop a hexadecimal spin box to show how this works. QSpinBox only
supports decimal integers, but by subclassing it's quite easy to make it accept and display
hexadecimal values.

#ifndef HEXSPINBOX_H
#define HEXSPINBOX_H

#include <qspinbox.h>

class HexSpinBox : public QSpinBox
{
public:
 HexSpinBox(QWidget *parent, const char *name = 0);

protected:
 QString mapValueToText(int value);
 int mapTextToValue(bool *ok);
};

#endif

The HexSpinBox inherits most of its functionality from QSpinBox. It provides a typical
constructor and reimplements two virtual functions from QSpinBox. Since the class doesn't
define its own signals and slots, it doesn't need the Q_ OBJECT macro.

#include <qvalidator.h>

#include "hexspinbox.h"

HexSpinBox::HexSpinBox(QWidget *parent, const char *name)

 : QSpinBox(parent, name)
{
 QRegExp regExp("[0-9A-Fa-f]+");
 setValidator(new QRegExpValidator(regExp, this));
 setRange(0, 255);
}

The user can modify a spin box's current value either by clicking its up and down arrows or by
typing a value into the spin box's line editor. In the latter case, we want to restrict the user's
input to legitimate hexadecimal numbers. To achieve this, we use a QRegExpValidator that
accepts one or more characters from the ranges '0' to '9', 'A' to 'F', and 'a' to 'f'. We also set the
default range to be 0 to 255 (0x00 to 0xFF), which is more appropriate for a hexadecimal spin
box than QSpinBox's default of 0 to 99.

QString HexSpinBox::mapValueToText(int value)
{
 return QString::number(value, 16).upper();
}

The mapValueToText() function converts an integer value to a string. QSpinBox calls it to
update the editor part of the spin box when the user presses the spin box's up or down arrows.
We use the static function QString::number() with a second argument of 16 to convert the
value to lower-case hexadecimal, and call QString::upper() on the result to make it upper-
case.

int HexSpinBox::mapTextToValue(bool *ok)
{
 return text().toInt(ok, 16);
}

The mapTextToValue() function performs the reverse conversion, from a string to an integer
value. It is called by QSpinBox when the user types a value into the editor part of the spin box
and presses Enter. We use the QString::toInt() function to attempt to convert the current
text (returned by QSpinBox::text()) to an integer value, again using base 16.

If the conversion is successful, toInt() sets *ok to true; otherwise, it sets it to false. This
behavior happens to be exactly what QSpinBox expects.

We have now finished the hexadecimal spin box. Customizing other Qt widgets follows the same
pattern: Pick a suitable Qt widget, subclass it, and reimplement some virtual functions to
change its behavior. This technique is common in Qt programming; in fact, we have already
used it in Chapter 4 when we subclassed QTable and reimplemented createEditor() and
endEdit().
[Team LiB]
[Team LiB]

Subclassing QWidget
Most custom widgets are simply a combination of existing widgets, whether they are built-in Qt
widgets or other custom widgets such as HexSpinBox. Custom widgets that are built by
composing existing widgets can usually be developed in Qt Designer:

Create a new form using the "Widget" template.

Add the necessary widgets to the form, then lay them out.

Set up the signals and slots connections and add any necessary code (either in a .ui.h
file or in a subclass) to provide the desired behavior.

Naturally, this can also be done entirely in code. Whichever approach is taken, the resulting
class inherits directly from QWidget.

If the widget has no signals and slots of its own and doesn't reimplement any virtual functions,
it is even possible to simply assemble the widget by aggregating existing widgets without a
subclass. That's the approach we used in Chapter 1 to create the Age application, with a QHBox,
a QSpinBox, and a QSlider. Even so, we could just as easily have subclassed QHBox and
created the QSpinBox and QSlider in the subclass's constructor.

When none of Qt's widgets are suitable for the task at hand, and when there's no way to
combine or adapt existing widgets to obtain the desired result, we can still create the widget we
want. This is achieved by subclassing QWidget and reimplementing a few event handlers to
paint the widget and to respond to mouse clicks. This approach gives us complete freedom to
define and control both the appearance and the behavior of our widget. Qt's built-in widgets,
like QLabel, QPushButton, and QTable, are implemented this way. If they didn't exist in Qt, it
would still be possible to create them ourselves using the public functions provided by QWidget
in a totally platform-independent manner.

To demonstrate how to write a custom widget using this approach, we will create the
IconEditor widget shown in Figure 5.2. The IconEditor is a widget that could be used in an
icon editing program.

Figure 5.2. The IconEditor widget

Let's begin by reviewing the header file.

#ifndef ICONEDITOR_H
#define ICONEDITOR_H

#include <qimage.h>
#include <qwidget.h>

class IconEditor : public QWidget
{
 Q_OBJECT
 Q_PROPERTY(QColor penColor READ penColor WRITE setPenColor)
 Q_PROPERTY(QImage iconImage READ iconImage WRITE setIconImage)
 Q_PROPERTY(int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:
 IconEditor(QWidget *parent = 0, const char *name = 0);

 void setPenColor(const QColor &newColor);
 QColor penColor()const { return curColor; }
 void setZoomFactor(int newZoom);

 int zoomFactor() const { return zoom; }
 void setIconImage(const QImage &newImage);
 const QImage &iconImage() const { return image; }
 QSize sizeHint() const;

The IconEditor class uses the Q_PROPERTY() macro to declare three custom properties:
penColor, iconImage, and zoomFactor. Each property has a type, a "read" function, and a
"write" function. For example, the penColor property is of type QColor and can be read and
written using the penColor() and setPenColor() functions.

When we make use of the widget in Qt Designer, custom properties appear in Qt Designer's
property editor below the properties inherited from QWidget. Properties may be of any type
supported by QVariant. The Q_OBJECT macro is necessary for classes that define properties.

protected:
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void paintEvent(QPaintEvent *event);
private:
 void drawImagePixel(QPainter *painter, int i, int j);
 void setImagePixel(const QPoint &pos, bool opaque);

 QColor curColor;
 QImage image;
 int zoom;
};

#endif

IconEditor reimplements three protected functions from QWidget and has a few private
functions and variables. The three private variables hold the values of the three properties.

The implementation file begins with #include directives and the IconEditor's constructor:

#include <qpainter.h>

#include "iconeditor.h"

IconEditor::IconEditor(QWidget *parent, const char *name)
 : QWidget(parent, name, WStaticContents)
{
 setSizePolicy(QSizePolicy::Minimum, QSizePolicy::Minimum);
 curColor = black;
 zoom = 8;
 image.create(16, 16, 32);
 image.fill(qRgba(0, 0, 0, 0));
 image.setAlphaBuffer(true);
}

The constructor has some subtle aspects such as the setSizePolicy() call and the
WStaticContents flag. We will discuss them shortly.

The zoom factor is set to 8, meaning that each pixel in the icon will be rendered as an 8 x 8
square. The pen color is set to black; the black symbol is a predefined value in the Qt class
(QObject's base class).

The icon data is stored in the image member variable and can be accessed through the
setIconImage() and iconImage() functions. An icon editor program would typically call
setIconImage() when the user opens an icon file and iconImage() to retrieve the icon when

the user wants to save it.

The image variable is of type QImage. We initialize it to 16 x 16 pixels and 32-bit depth, clear
the image data, and enable the alpha buffer.

The QImage class stores an image in a hardware-independent fashion. It can be set to use a 1-
bit, 8-bit, or 32-bit depth. An image with 32-bit depth uses 8 bits for each of the red, green,
and blue components of a pixel. The remaining 8 bits store the pixel's alpha component—that
is, its opacity. For example, a pure red color's red, green, blue, and alpha components have the
values 255, 0, 0, and 255. In Qt, this color can be specified as

QRgb red = qRgba(255, 0, 0, 255);

or as

QRgb red = qRgb(255, 0, 0);

QRgb is simply a typedef for unsigned int, and qRgb() and qRgba() are inline functions that
combine their arguments into one 32-bit integer value. It is also possible to write

QRgb red = 0xFFFF0000;

where the first FF corresponds to the alpha component and the second FF to the red
component. In the IconEditor constructor, we fill the QImage with a transparent color by using
0 as the alpha component.

Qt provides two types for storing colors: QRgb and QColor. While QRgb is only a typedef used in
QImage to store 32-bit pixel data, QColor is a class with many useful functions and is widely
used in Qt to store colors. In the IconEditor widget, we only use QRgb when dealing with the
QImage; we use QColor for everything else, including the penColor property.

QSize IconEditor::sizeHint() const
{
 QSize size = zoom * image.size();
 if (zoom >= 3)
 size += QSize(1, 1);
 return size;
}

The sizeHint() function is reimplemented from QWidget and returns the ideal size of a widget.
Here, we take the image size multiplied by the zoom factor, with one extra pixel in each
direction to accommodate a grid if the zoom factor is 3 or more. (We don't show a grid if the
zoom factor is 2 or 1, because the grid would hardly leave any room for the icon's pixels.)

A widget's size hint is mostly useful in conjunction with layouts. Qt's layout managers try as
much as possible to respect a widget's size hint when they lay out a form's child widgets. For
IconEditor to be a good layout citizen, it must report a credible size hint.

In addition to the size hint, widgets have a size policy that tells the layout system whether they
like to be stretched and shrunk. By calling setSizePolicy() in the constructor with
QSizePolicy::Minimum as horizontal and vertical policies, we tell any layout manager that is
responsible for this widget that the widget's size hint is really its minimum size. In other words,
the widget can be stretched if required, but it should never shrink below the size hint. This can
be overridden in Qt Designer by setting the widget's sizePolicy property. The meaning of the
various size policies is explained in Chapter 6 (Layout Management).

void IconEditor::setPenColor(const QColor &newColor)

{
 curColor = newColor;
}

The setPenColor() function sets the current pen color. The color will be used for newly drawn
pixels.

void IconEditor::setIconImage(const QImage &newImage)
{
 if (newImage != image) {
 image = newImage.convertDepth(32);
 image.detach();
 update();
 updateGeometry();
 }
}

The setIconImage() function sets the image to edit. We call convertDepth() to make the
image 32-bit if it isn't already. Elsewhere in the code, we will assume that the image data is
stored as 32-bit QRgb values.

We also call detach() to take a deep copy of the data stored in the image. This is necessary
because the image data might be stored in ROM. QImage tries to save time and memory by
copying the image data only when explicitly requested to do so. This optimization is called
explicit sharing and is discussed with QMemArray<T> in the "Pointer-Based Containers" section of
Chapter 11.

After setting the image variable, we call QWidget::update() to force a repainting of the widget
using the new image. Next, we call QWidget::updateGeometry() to tell any layout that
contains the widget that the widget's size hint has changed. The layout will then automatically
adapt to the new size hint.

void IconEditor::setZoomFactor(int newZoom)
{
 if (newZoom < 1)
 newZoom = 1;

 if (newZoom != zoom) {
 zoom = newZoom;
 update();
 updateGeometry();
 }
}

The setZoomFactor() function sets the zoom factor for the image. To prevent division by zero
later, we correct any value below 1. Again, we call update() and updateGeometry() to repaint
the widget and to notify any managing layout about the size hint change.

The penColor(), iconImage(), and zoomFactor() functions are implemented as inline
functions in the header file.

We will now review the code for the paintEvent() function. This function is IconEditor's
most important function. It is called whenever the widget needs repainting. The default
implementation in QWidget does nothing, leaving the widget blank.

Just like contextMenuEvent() and closeEvent(), which we met in Chapter 3, paintEvent() is
an event handler. Qt has many other event handlers, each of which corresponds to a different
type of event. Chapter 7 covers event processing in depth.

There are many situations when a paint event is generated and paintEvent() is called:

When a widget is shown for the first time, the system automatically generates a paint
event to force the widget to paint itself.

When a widget is resized, the system automatically generates a paint event.

If the widget is obscured by another window and then revealed again, a paint event is
generated for the area that was hidden (unless the window system stored the area).

We can also force a paint event by calling QWidget::update() or QWidget::repaint(). The
difference between these two functions is that repaint() forces an immediate repaint, whereas
update() simply schedules a paint event for when Qt next processes events. (Both functions do
nothing if the widget isn't visible on screen.) If update() is called multiple times, Qt
compresses the consecutive paint events into a single paint event to avoid flicker. In
IconEditor, we always use update().

Here's the code:

void IconEditor::paintEvent(QPaintEvent *)
{
 QPainter painter(this);

 if (zoom >= 3) {
 painter.setPen(colorGroup().foreground());
 for (int i = 0; i <= image.width(); ++i)
 painter.drawLine(zoom * i, 0,
 zoom * i, zoom * image.height());
 for (int j = 0; j <= image.height(); ++j)
 painter.drawLine(0, zoom * j,
 zoom * image.width(), zoom * j);
 }

 for (int i = 0; i < image.width(); ++i) {
 for (int j = 0; j < image.height(); ++j)
 drawImagePixel(&painter, i, j);
 }
}

We start by constructing a QPainter object on the widget. If the zoom factor is 3 or more, we
draw the horizontal and vertical lines that form the grid using the QPainter::drawLine()
function.

A call to QPainter::drawLine() has the following syntax:

painter.drawLine(x1, y1, x2, y2);

where (x1, y1) is the position of one end of the line and (x2, y2) is the position of the other
end. There is also an overloaded version of the function that takes two QPoints instead of four
ints.

The top-left pixel of a Qt widget is located at position (0, 0), and the bottomright pixel is
located at (width()– 1, height()– 1). This is similar to the conventional Cartesian coordinate
system, but upside down, and makes a lot of sense in GUI programming. It is perfectly possible
to change QPainter's coordinate system by using transformations, such as translation, scaling,
rotation, and shearing. This is covered in Chapter 8 (2D and 3D Graphics).

Figure 5.3. Drawing a line using QPainter

Before we call drawLine() on the QPainter, we set the line's color using setPen(). We could
hard-code a color, like black or gray, but a better approach is to use the widget's palette.

Every widget is equipped with a palette that specifies which colors should be used for what. For
example, there is a palette entry for the background color of widgets (usually light gray) and
one for the color of text on that background (usually black). By default, a widget's palette
adopts the window system's color scheme. By using colors from the palette, we ensure that
IconEditor respects the user's preferences.

A widget's palette consists of three color groups: active, inactive, and disabled. Which color
group should be used depends on the widget's current state:

The active color group is used for widgets in the currently active window.

The inactive color group is used for widgets in the other windows.

The disabled color group is used for disabled widgets in any window.

The QWidget::palette() function returns the widget's palette as a QPalette object. The color
groups are available through QPalette's active(), inactive(), and disabled() functions,
and are of type QColorGroup. For convenience, QWidget::colorGroup() returns the correct
color group for the current state of the widget, so we rarely need to access the palette directly.

The paintEvent() function finishes by drawing the image itself, using the
IconEditor::drawImagePixel() function to draw each of the icon's pixels as filled squares.

void IconEditor::drawImagePixel(QPainter *painter, int i, int j)
{
 QColor color;
 QRgb rgb = image.pixel(i, j);

 if (qAlpha(rgb) == 0)
 color = colorGroup().base();
 else
 color.setRgb(rgb);

 if (zoom >= 3) {
 painter->fillRect(zoom * i + 1, zoom * j + 1,
 zoom - 1, zoom - 1, color);
 } else {
 painter->fillRect(zoom * i, zoom * j,
 zoom, zoom, color);
 }
}

The drawImagePixel() function draws a zoomed pixel using a QPainter. The i and j

parameters are pixel coordinates in the QImage—not in the widget. (If the zoom factor is 1, the
two coordinate systems coincide exactly.) If the pixel is transparent (its alpha component is 0),
we use the current color group's "base" color (typically white) to draw the pixel; otherwise, we
use the pixel's color in the image. Then we call QPainter::fillRect() to draw a filled square.
If the grid is shown, the square is reduced by one pixel in both directions to avoid painting over
the grid.

Figure 5.4. Drawing a rectangle using QPainter

The call to QPainter::fillRect() has the following syntax:

painter->fillRect(x, y, w, h, brush);

where (x, y) is the position of the top-left corner of the rectangle, w x h is the size of the
rectangle, and brush specifies the color to fill with and the fill pattern to use. By passing a
QColor as the brush, we obtain a solid fill pattern.

void IconEditor::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->button() == RightButton)
 setImagePixel(event->pos(), false);
}

When the user presses a mouse button, the system generates a "mouse press" event. By
reimplementing QWidget::mousePressEvent(), we can respond to this event and set or clear
the image pixel under the mouse cursor.

If the user pressed the left mouse button, we call the private function setImagePixel() with
true as the second argument, telling it to set the pixel to the current pen color. If the user
pressed the right mouse button, we also call setImagePixel(), but pass false to clear the
pixel.

void IconEditor::mouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->state() & RightButton)
 setImagePixel(event->pos(), false);
}

The mouseMoveEvent() handles "mouse move" events. By default, these events are only
generated when the user is holding down a button. It is possible to change this behavior by
calling QWidget::setMouseTracking(), but we don't need to do so for this example.

Just as pressing the left or right mouse button sets or clears a pixel, keeping it pressed and
hovering over a pixel is also enough to set or clear a pixel. Since it's possible to hold more than

one button pressed down at a time, the value returned by QMouseEvent::state() is a bitwise
OR of the mouse buttons (and of modifier keys like Shift and Ctrl). We test whether a certain
button is pressed down using the & operator, and if it is, we call setImagePixel().

void IconEditor::setImagePixel(const QPoint &pos, bool opaque)
{
 int i = pos.x() / zoom;
 int j = pos.y() / zoom;

 if (image.rect().contains(i, j)) {
 if (opaque)
 image.setPixel(i, j, penColor().rgb());
 else
 image.setPixel(i, j, qRgba(0, 0, 0, 0));

 QPainter painter(this);
 drawImagePixel(&painter, i, j);
 }
}

The setImagePixel() function is called from mousePressEvent() and mouseMoveEvent() to set
or clear a pixel. The pos parameter is the position of the mouse on the widget.

The first step is to convert the mouse position from widget coordinates to image coordinates.
This is done by dividing the x and y components of the mouse position by the zoom factor.
Next, we check whether the point is within the correct range. The check is easily made using
QImage::rect() and QRect::contains(); this effectively checks that i is between 0 and
image.width() – 1 and that j is between 0 and image.height() – 1.

Depending on the opaque parameter, we set or clear the pixel in the image. Clearing a pixel is
really setting it to be transparent. At the end, we call drawImagePixel() to repaint the
individual pixel that changed.

Now that we have reviewed the member functions, we will return to the WStaticContents flag
that we used in the constructor. This flag tells Qt that the widget's content doesn't change when
the widget is resized and that the content stays rooted to the widget's top-left corner. Qt uses
this information to avoid needlessly repainting areas that are already shown when resizing the
widget.

Normally, when a widget is resized, Qt generates a paint event for the widget's entire visible
area. But if the widget is created with the WStaticContents flag, the paint event's region is
restricted to the pixels that were not previously shown. If the widget is resized to a smaller
size, no paint event is generated at all.

Figure 5.5. Resizing a WStaticContents widget

The IconEditor widget is now complete. Using the information and examples from earlier
chapters, we could write code that uses the IconEditor as a window in its own right, as a
central widget in a QMainWindow, as a child widget inside a layout, or as a child widget inside a
QScrollView (p. 145). In the next section, we will see how to integrate it with Qt Designer.

[Team LiB]
[Team LiB]

Integrating Custom Widgets with Qt Designer
Before we can use custom widgets in Qt Designer, we must make Qt Designer aware of them.
There are two techniques for doing this: the "simple custom widget" approach and the plugin
approach.

The "simple custom widget" approach consists of filling in a dialog box in Qt Designer with some
information about the custom widget. The widget can then be used in forms developed using Qt
Designer, but the widget is only represented by an icon and a dark gray rectangle while the
form is edited or previewed. Here's how to integrate the HexSpinBox widget using this
approach:

1. Click Tools|Custom|Edit Custom Widget. This will launch Qt Designer's custom widget
editor.

2. Click New Widget.

3. Change the class name from MyCustomWidget to HexSpinBox and the header file from
mycustomwidget.h to hexspinbox.h.

4. Change the size hint to (60, 20).

5. Change the size policy to (Minimum, Fixed).

The widget will then be available in the "Custom Widgets" section of Qt Designer's toolbox.

Figure 5.6. Qt Designer's custom widget editor

The plugin approach requires the creation of a plugin library that Qt Designer can load at run-
time and use to create instances of the widget. The real widget is then used by Qt Designer
when editing the form and for previewing. We will integrate the IconEditor as a plugin to
demonstrate how to do it.

First, we must subclass QWidgetPlugin and reimplement some virtual functions. We can do
everything in the same source file. We will assume that the plugin source code is located in a
directory called iconeditorplugin and that the IconEditor source code is located in a parallel
directory called iconeditor.

Here's the header file:

#include <qwidgetplugin.h>

#include "../iconeditor/iconeditor.h"

class IconEditorPlugin : public QWidgetPlugin
{
public:
 QStringList keys() const;
 QWidget *create(const QString &key, QWidget *parent,
 const char *name);
 QString includeFile(const QString &key) const;
 QString group(const QString &key) const;
 QIconSet iconSet(const QString &key) const;
 QString toolTip(const QString &key) const;
 QString whatsThis(const QString &key) const;
 bool isContainer(const QString &key) const;
};

The IconEditorPlugin subclass is a factory class that encapsulates the IconEditor widget.
The functions are used by Qt Designer to create instances of the class and to obtain information
about it.

QStringList IconEditorPlugin::keys() const
{
 return QStringList() << "IconEditor";
}

The keys() function returns a list of widgets provided by the plugin. The example plugin only
provides the IconEditor widget.

QWidget *IconEditorPlugin::create(const QString &, QWidget *parent,
 const char *name)
{
 return new IconEditor(parent, name);
}

The create() function is called by Qt Designer to create an instance of a widget class. The first
argument is the widget's class name. We can ignore it in this example, because we only provide
one class. All the other functions also take a class name as their first argument.

QString IconEditorPlugin::includeFile(const QString &) const
{
 return "iconeditor.h";
}

The includeFile() function returns the name of the header file for the specified widget
encapsulated by the plugin. The header file is included in the code generated by the uic tool.

bool IconEditorPlugin::isContainer(const QString &) const
{
 return false;
}

The isContainer() function returns true if the widget can contain other widgets; otherwise, it
returns false. For example, QFrame is a widget that can contain other widgets. We return
false for the IconEditor, since it doesn't make sense for it to contain other widgets. Strictly
speaking, any widget can contain other widgets, but Qt Designer disallows this when
isContainer() returns false.

QString IconEditorPlugin::group(const QString &) const
{
 return "Plugin Widgets";
}

The group() function returns the name of the toolbox group this custom widget should belong
to. If the name isn't already in use, Qt Designer automatically creates a new group for the
widget.

QIconSet IconEditorPlugin::iconSet(const QString &) const
{
 return QIconSet(QPixmap::fromMimeSource("iconeditor.png"));
}

The iconSet() function returns the icon to use to represent the custom widget in Qt Designer's
toolbox.

QString IconEditorPlugin::toolTip(const QString &) const
{
 return "Icon Editor";
}

The toolTip() function returns the tooltip to show when the mouse hovers over the custom
widget in Qt Designer's toolbox.

QString IconEditorPlugin::whatsThis(const QString &) const
{
 return "Widget for creating and editing icons";
}

The whatsThis() function returns the "What's This?" text for Qt Designer to display.

Q_EXPORT_PLUGIN(IconEditorPlugin)

At the end of the source file that implements the plugin class, we must use the
Q_EXPORT_PLUGIN() macro to make the plugin available to Qt Designer.

The .pro file for building the plugin looks like this:

TEMPLATE = lib
CONFIG += plugin
HEADERS = ../iconeditor/iconeditor.h
SOURCES = iconeditorplugin.cpp \
 ../iconeditor/iconeditor.cpp
IMAGES = images/iconeditor.png
DESTDIR = $(QTDIR)/plugins/designer

The .pro file assumes that the QTDIR environment variable is set to the directory where Qt is
installed. When you type make or nmake to build the plugin, it will automatically install itself in
Qt Designer's plugins directory.

Once the plugin is built, the IconEditor widget can be used in Qt Designer in the same way as

any of Qt's built-in widgets.
[Team LiB]
[Team LiB]

Double Buffering
Double buffering is a technique that can be used to provide a snappier user interface and to
eliminate flicker. Flicker occurs when the same pixel is painted multiple times with different
colors in a very short period of time. If this occurs for only one pixel, it isn't a problem, but if it
occurs for lots of pixels at the same time, it can be distracting for the user.

When Qt generates a paint event, it first erases the widget using the palette's background
color. Then, in paintEvent(), the widget only needs to paint the pixels that are not the same
color as the background. This two-step approach is very convenient, because it means we can
simply paint what we need on the widget without worrying about the other pixels.

Unfortunately, the two-step approach is also a major source of flicker. For example, if the user
resizes the widget, the widget is first cleared in its entirety, and then the pixels are painted. The
flicker is even worse if the window system shows the contents of the window as it is resized,
because then the widget is repeatedly erased and painted.

Figure 5.7. Resizing a widget that has no provision against flicker

The WStaticContents flag used to implement the IconEditor widget is one solution to this
problem, but it can only be used for widgets whose content is independent of the size of the
widget. Such widgets are rare. Most widgets tend to stretch their contents to consume all the
available space. They need to be completely repainted when they are resized. We can still avoid
flicker, but the solution is slightly more complicated.

The first rule to avoid flicker is to construct the widget with the WNoAutoErase flag. This flag
tells Qt not to erase the widget before a paint event. The old pixels are then left unchanged,
and any newly revealed pixels are undefined.

Figure 5.8. Resizing a WNoAutoErase widget

When using WNoAutoErase, it is important that the paint handler sets all the pixels explicitly.
Any pixel that is not set in the paint event will keep its previous value, which isn't necessarily
the background color.

The second rule to avoid flicker is to paint every pixel just once. The easiest way to implement
this requirement is to draw the whole widget in an offscreen pixmap and to copy the pixmap
onto the widget in one go. Using this approach, it doesn't matter if some pixels are painted

multiple times because the painting takes place off-screen. This is double buffering.

Adding double buffering to a custom widget to eliminate flicker is straightforward. Suppose the
original paint event handler looks like this:

void MyWidget::paintEvent(QPaintEvent *)
{
 QPainter painter(this);
 drawMyStuff(&painter);
}

The double-buffered version looks like this:

void MyWidget::paintEvent(QPaintEvent *event)
{
 static QPixmap pixmap;
 QRect rect = event->rect();

 QSize newSize = rect.size().expandedTo(pixmap.size());
 pixmap.resize(newSize);
 pixmap.fill(this, rect.topLeft());

 QPainter painter (&pixmap, this);
 painter.translate(-rect.x(), -rect.y());
 drawMyStuff(&painter);
 bitBlt(this, rect.x(), rect.y(), &pixmap, 0, 0,
 rect.width(), rect.height());
}

First, we resize a QPixmap to be at least as large as the bounding rectangle of the region to
repaint. (A "region" is very often either a rectangle or an L-shaped area, but it can be arbitrarily
complex.) We make the QPixmap a static variable to avoid repeatedly allocating and
deallocating it. For the same reason, we never shrink the QPixmap; the calls to
QSize::expandedTo() and QPixmap::resize() ensure that it is always large enough. After
resizing, we fill the QPixmap with the widget's erase color or background pixmap using
QPixmap::fill(). The second argument to fill() specifies which point in the widget the
QPixmap's top-left pixel corresponds to. (This makes a difference if the widget is to be erased
using a pixmap instead of a uniform color.)

The QPixmap class is similar to both QImage and QWidget. Like a QImage, it stores an image, but
the color depth and possibly the colormap are aligned with the display, rather like a hidden
QWidget. If the window system is running in 8-bit mode, all widgets and pixmaps are restricted
to 256 colors, and Qt automatically maps 24-bit color specifications onto 8-bit colors. (Qt's color
allocation strategy is controlled by calling QApplication::setColorSpec().)

Next, we create a QPainter to operate on the pixmap. By passing the this pointer to the
constructor, we tell QPainter to adopt some of the widget's settings, such as its font. We
translate the painter to paint the correct rectangle into the pixmap, before we perform the
drawing using the QPainter as usual.

Finally, we copy the pixmap to the widget using the bitBlt() global function, whose name
stands for "bit-block transfer".

Double buffering is not only useful for avoiding flicker. It is beneficial if the widget's rendering is
complex and needed repeatedly. We can then store a pixmap permanently with the widget,
always ready for the next paint event, and copy the pixmap to the widget whenever we receive
a paint event. It is especially helpful when we want to do small modifications, such as drawing a
rubber band, without recomputing the whole widget's rendering over and over.

We will round off this chapter by reviewing the Plotter custom widget. This widget uses double
buffering, and also demonstrates some other aspects of Qt programming, including keyboard
event handling, manual layout, and coordinate systems.

The Plotter widget displays one or more curves specified as vectors of coordinates. The user
can draw a rubber band on the image, and the Plotter will |zoom in on the area enclosed by
the rubber band. The user draws the rubber band by clicking a point on the graph, dragging the
mouse to another position with the left mouse button held down, and releasing the mouse
button.

Figure 5.9. Zooming in on the Plotter widget

The user can zoom in repeatedly by drawing a rubber band multiple times, zooming out using
the Zoom Out button, and then zooming back in using the Zoom In button. The Zoom In and
Zoom Out buttons appear the first time they become available, so that they don't clutter the
display if the user doesn't zoom the graph.

The Plotter widget can hold the data for any number of curves. It also maintains a stack of
PlotSettings, each of which corresponds to a particular zoom level.

Let's review the class, starting with plotter.h:

#ifndef PLOTTER_H
#define PLOTTER_H

#include <qpixmap.h>
#include <qwidget.h>

#include <map>
#include <vector>

class QToolButton;
class PlotSettings;

typedef std::vector<double> CurveData;

We include the standard <map> and <vector> header files. We don't import all the std
namespace's symbols into the global namespace, because it's bad style to do this in a header
file.

We define CurveData as a synonym for std::vector<double>. We will store a curve's points as
successive pairs of x and y values in the vector. For example, the curve defined by the points
(0, 24), (1, 44), (2,89) is represented by the vector [0, 24, 1, 44, 2, 89].

class Plotter : public QWidget
{
 Q_OBJECT

public:
 Plotter(QWidget *parent = 0, const char *name = 0,
 WFlags flags = 0);

 void setPlotSettings(const PlotSettings &settings);
 void setCurveData(int id, const CurveData &data);
 void clearCurve(int id);
 QSize minimumSizeHint() const;
 QSize sizeHint() const;

public slots:
 void zoomIn();
 void zoomOut();

We provide three public functions for setting up the plot, and two public slots for zooming in
and out. We also reimplement minimumSizeHint() and sizeHint() from QWidget.

protected:
 void paintEvent(QPaintEvent *event);
 void resizeEvent(QResizeEvent *event);
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseReleaseEvent(QMouseEvent *event);
 void keyPressEvent(QKeyEvent *event);
 void wheelEvent(QWheelEvent *event);

In the protected section of the class, we declare all the QWidget event handlers that we need to
reimplement.

private:
 void updateRubberBandRegion();
 void refreshPixmap();
 void drawGrid(QPainter *painter);
 void drawCurves(QPainter *painter);

 enum { Margin = 40 };

 QToolButton *zoomInButton;
 QToolButton *zoomOutButton;
 std::map<int, CurveData> curveMap;
 std::vector<PlotSettings> zoomStack;
 int curZoom;
 bool rubberBandIsShown;
 QRect rubberBandRect;
 QPixmap pixmap;
};

In the private section of the class, we declare a constant, a few functions for painting the
widget, and several member variables. The Margin constant is used to provide some spacing
around the graph.

Among the member variables is pixmap of type QPixmap. This variable holds a copy of the
whole widget's rendering, identical to what is shown on screen. The plot is always drawn onto
this off-screen pixmap first; then the pixmap is copied onto the widget.

class PlotSettings
{
public:
 PlotSettings();

 void scroll(int dx, int dy);

 void adjust();
 double spanX() const { return maxX - minX; }
 double spanY() const { return maxY - minY; }

 double minX;
 double maxX;
 int numXTicks;
 double minY;
 double maxY;
 int numYTicks;

private:
 void adjustAxis(double &min, double &max, int &numTicks);
};

#endif

The PlotSettings class specifies the range of the x and y axes and the number of ticks for
these axes. Figure 5.10 shows the correspondence between a PlotSettings object and the
scales on a Plotter widget.

Figure 5.10. PlotSettings's member variables

By convention, numXTicks and numYTicks are off by one; if numXTicks is 5, Plotter will
actually draw 6 tick marks on the x axis. This simplifies the calculations later on.

Now let's review the implementation file:

#include <qpainter.h>
#include <qstyle.h>
#include <qtoolbutton.h>

#include <cmath>
using namespace std;

#include "plotter.h"

We include the expected header files and import all the std namespace's symbols into the
global namespace.

Plotter::Plotter(QWidget *parent, const char *name, WFlags flags)
 : QWidget(parent, name, flags | WNoAutoErase)
{
 setBackgroundMode(PaletteDark);
 setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);
 setFocusPolicy(StrongFocus);

 rubberBandIsShown = false;

 zoomInButton = new QToolButton(this);
 zoomInButton->setIconSet(QPixmap::fromMimeSource("zoomin.png"));
 zoomInButton->adjustSize();
 connect(zoomInButton, SIGNAL(clicked()), this, SLOT(zoomIn()));

 zoomOutButton = new QToolButton(this);
 zoomOutButton->setIconSet(
 QPixmap::fromMimeSource("zoomout.png"));
 zoomOutButton->adjustSize();
 connect(zoomOutButton, SIGNAL(clicked()), this, SLOT(zoomOut()));

 setPlotSettings(PlotSetting());
}

The Plotter has a flags parameter in addition to parent and name. This parameter is simply
passed on to the base class constructor, along with WNoAutoErase. The parameter is especially
useful for widgets that are likely to be used as stand-alone windows, because it allows the user
of the class to configure the window frame and title bar.

The setBackgroundMode() call tells QWidget to use the "dark" component of the palette as the
color for erasing the widget, instead of the "background" component. Although we pass the
WNoAutoErase flag to the base class constructor, Qt still needs a default color that it may use to
fill any newly revealed pixels when the widget is resized to a larger size, before paintEvent()
even has the chance to paint the new pixels. Since the background of the Plotter widget will
be dark, it makes sense to paint these pixels dark.

The setSizePolicy() call sets the widget's size policy to QSizePolicy::Expanding in both
directions. This tells any layout manager that is responsible for the widget that the widget is
especially willing to grow, but can also shrink. This setting is typical for widgets that can take
up a lot of screen space. The default is QSizePolicy::Preferred in both directions, which
means that the widget prefers to be the size of its size hint, but it can be shrunk down to its
minimum size hint or expanded indefinitely if necessary.

The setFocusPolicy() call makes the widget accept focus by clicking or by pressing Tab. When
the Plotter has focus, it will receive events for key presses. The Plotter widget understands a
few keys: + to zoom in, - to zoom out, and the arrow keys to scroll up, down, left, and right.

Figure 5.11. Scrolling the Plotter widget

Still in the constructor, we create two QToolButtons, each with an icon. These buttons allow
the user to navigate through the zoom stack. The button's icons are stored in an image
collection. Any application that uses the Plotter widget will need this entry in its .pro file:

IMAGES += images/zoomin.png \
 images/zoomout.png

The calls to adjustSize() on the buttons sets their sizes to be that of their size hints.

The call to setPlotSettings() at the end does the rest of the initialization.

void Plotter::setPlotSettings(const PlotSettings &settings)
{
 zoomStack.resize(1);
 zoomStack[0] = settings;
 curZoom = 0;
 zoomInButton->hide();
 zoomOutButton->hide();
 refreshPixmap();
}

The setPlotSettings() function is used to specify the PlotSettings to use for displaying the
plot. It is called by the Plotter constructor, and can be called by users of the class. The plotter
starts out at its default zoom level. Each time the user zooms in, a new PlotSettings instance
is created and put onto the zoom stack.

The zoom stack is represented by two member variables:

zoomStack holds the different zoom settings as a vector<PlotSettings>.

curZoom holds the current PlotSettings's index in the zoomStack.

After a call to setPlotSettings(), the zoom stack contains only one entry, and the Zoom In
and Zoom Out buttons are hidden. These buttons will not be shown until we call show() on
them in the zoomIn() and zoomOut() slots. (Normally, it is sufficient to call show() on the top-
level widget to show all the children. But when we explicitly call hide() on a child widget, it is
hidden until we call show() on it.)

The call to refreshPixmap() is necessary to update the display. Usually, we would call update
(), but here we do things slightly differently because we want to keep a QPixmap up to date at
all times. After regenerating the pixmap, refreshPixmap() calls update() to copy the pixmap
onto the widget.

void Plotter::zoomOut()
{
 if (curZoom > 0) {
 --curZoom;
 zoomOutButton->setEnabled(curZoom > 0);
 zoomInButton->setEnabled(true);
 zoomInButton->show();
 refreshPixmap();
 }
}

The zoomOut() slot zooms out if the graph is zoomed in. It decrements the current zoom level
and enables the Zoom Out button depending on whether the graph can be zoomed out any
more or not. The Zoom In button is enabled and shown, and the display is updated with a call
to refreshPixmap().

void Plotter::zoomIn()
{
 if (curZoom > (int)zoomStack.size() - 1) {
 ++curZoom;
 zoomInButton->setEnabled(
 curZoom < (int)zoomStack.size() - 1);

 zoomOutButton->setEnabled(true);
 zoomOutButton->show();
 refreshPixmap();
 }
}

If the user has previously zoomed in and then out again, the PlotSettings for the next zoom
level will be in the zoom stack, and we can zoom in. (Otherwise, it is still possible to zoom in
using a rubber band.)

The slot increments curZoom to move one level deeper into the zoom stack, sets the Zoom In
button enabled or disabled depending on whether it's possible to zoom in any further, and
enables and shows the Zoom Out button. Again, we call refreshPixmap() to make the plotter
use the latest zoom settings.

void Plotter::setCurveData(int id, const CurveData &data)
{
 curveMap[id] = data;
 refreshPixmap();
}

The setCurveData() function sets the curve data for a given curve ID. If a curve with the same
ID already exists in the plotter, it is replaced with the new curve data;otherwise, the new curve
is simply inserted. The curves are stored in the curveMap member variable of type map<int,
CurveData>.

Again, we call our own refreshPixmap() function, rather than update(), to update the display.

void Plotter::clearCurve(int id)
{
 curveMap.erase(id);
 refreshPixmap();
}

The clearCurve() function removes a curve from curveMap.

QSize Plotter::minimumSizeHint() const
{
 return QSize(4 * Margin, 4 * Margin);
}

The minimumSizeHint() function is similar to sizeHint(); just as sizeHint() specifies a
widget's ideal size, minimumSizeHint() specifies a widget's ideal minimum size. A layout never
resizes a widget below its minimum size hint.

The value we return is 160 x 160 to allow for the margin on all four sides and some space for
the plot itself. Below that size, the plot would be too small to be useful.

QSize Plotter::sizeHint() const
{
 return QSize(8 * Margin, 6 * Margin);
}

In sizeHint(), we return an "ideal" size in proportion to the margin and with a pleasing 4:3
aspect ratio.

This finishes the review of the Plotter's public functions and slots. Now let's review the
protected event handlers.

void Plotter::paintEvent(QPaintEvent *event)
{
 QMemArray<QRect> rects = event->region().rects();
 for (int i = 0; i < (int)rects.size(); ++i)
 bitBlt(this, rects[i].topLeft(), &pixmap, rects[i]);

 QPainter painter(this);

 if (rubberBandIsShown) {
 painter.setPen(colorGroup().light());
 painter.drawRect(rubberBandRect.normalize());
 }
 if (hasFocus()) {
 style().drawPrimitive(QStyle::PE_FocusRect, &painter,
 rect(), colorGroup(),
 QStyle::Style_FocusAtBorder,
 colorGroup().dark());
 }
}

Normally, paintEvent() is the place where we perform all the drawing. But here all the plot
drawing is done beforehand in refreshPixmap(), so we can render the entire plot simply by
copying the pixmap onto the widget.

The call to QRegion::rect() returns an array of QRects that define the region to repaint. We
use bitBlt() to copy each rectangular area from the pixmap to the widget. The bitBlt()
global function has the following syntax:

bitBlt(dest, destPos, source, sourceRect);

where source is the source widget or pixmap, sourceRect is the rectangle in the source that
should be copied, dest is the destination widget or pixmap, and destPos is the top-left position
in the destination.

Figure 5.12. Copying arbitrary rectangles to and from pixmaps and
widgets

It would have been equally correct to call bitBlt() just once on the region's bounding
rectangle, as we did in a previous code snippet (p. 113). However, because we call update() to
erase and redraw the rubber band repeatedly in the mouse event handlers (as we will see
shortly), and the rubber band outline is basically four tiny rectangles (two 1-pixel-wide
rectangles and two 1-pixel-high rectangles), we gain some speed by breaking the region down
into its constituent rectangles and calling bitBlt() for each rectangle.

Once the plot is shown on screen, we draw the rubber band and the focus rectangle on top of it.
For the rubber band, we use the "light" component from the widget's current color group as the
pen color to ensure good contrast with the "dark" background. Notice that we draw directly on
the widget, leaving the off-screen pixmap untouched. The focus rectangle is drawn using the

widget style's drawPrimitive() function with PE_FocusRect as its first argument.

The QWidget::style() function returns the widget style to use to draw the widget. In Qt, a
widget style is a subclass of QStyle. The built-in styles include QWindowStyle,
QWindowsXPStyle, QMotifStyle, and QMacStyle. Each of these styles reimplements the virtual
functions in QStyle to perform the drawing in the correct way for the platform the style is
emulating. The drawPrimitive() function is one of these functions; it draws "primitive
elements" like panels, buttons, and focus rectangles. The widget style is usually the same for all
widgets in an application (QApplication::style()), but it can be overriden on a per-widget
basis using QWidget::setStyle().

By subclassing QStyle, it is possible to define a custom style. This can be done to give a
distinctive look at an application or a suite of applications. While it is generally advisable to use
the target platform's native look and feel, Qt offers a lot of flexibility if you want to be
adventurous.

Qt's built-in widgets rely almost exclusively on QStyle to paint themselves. This is why they
look like native widgets on all platforms supported by Qt. Custom widgets can be made style-
aware either by using QStyle to paint themselves or by using built-in Qt widgets as child
widgets. For Plotter, we use both approaches: The focus rectangle is drawn using QStyle, and
the Zoom In and Zoom Out buttons are built-in Qt widgets.

void Plotter::resizeEvent(QResizeEvent *)
{
 int x = width() - (zoomInButton->width()
 + zoomOutButton->width() + 10);
 zoomInButton->move(x, 5);
 zoomOutButton->move(x + zoomInButton->width() + 5, 5);
 refreshPixmap();
}

Whenever the Plotter widget is resized, Qt generates a "resize" event. Here, we reimplement
resizeEvent() to place the Zoom In and Zoom Out buttons at the top right of the Plotter
widget.

We move the Zoom In button and the Zoom Out button to be side by side, separated by a 5-
pixel gap and with a 5-pixel offset from the top and right edges of the parent widget.

If we wanted the buttons to stay rooted to the top-left corner, whose coordinates are (0, 0), we
would simply have moved them there in the Plotter constructor. But we want to track the top-
right corner, whose coordinates depend on the size of the widget. Because of this, it's
necessary to reimplement resizeEvent() and to set the position there.

We didn't set any positions for the buttons in the Plotter constructor. This isn't an issue, since
Qt always generates a resize event before a widget is shown for the first time.

An alternative to reimplementing resizeEvent() and laying out the child widgets manually
would have been to use a layout manager (for example, QGridLayout). However, it would have
been a little more complicated and would have consumed more resources. When we write
widgets from scratch as we are doing here, laying out our child widgets manually is usually the
right approach.

At the end, we call refreshPixmap() to redraw the pixmap at the new size.

void Plotter::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton) {

 rubberBandIsShown = true;
 rubberBandRect.setTopLeft(event->pos());
 rubberBandRect.setBottomRight(event->pos());
 updateRubberBandRegion();
 setCursor(crossCursor);
 }
}

When the user presses the left mouse button, we start displaying a rubber band. This involves
setting rubberBandIsShown to true, initializing the rubberBandRect member variable with the
current mouse pointer position, scheduling a paint event to paint the rubber band, and
changing the mouse cursor to have a crosshair shape.

Qt provides two mechanisms for controlling the mouse cursor's shape:

QWidget::setCursor() sets the cursor shape to use when the mouse hovers over a
particular widget. If no cursor is set for a widget, the parent widget's cursor is used. The
default for top-level widgets is an arrow cursor.

QApplication::setOverrideCursor() sets the cursor shape for the entire application,
overriding the cursors set by individual widgets until restoreOverrideCursor() is called.

In Chapter 4, we called QApplication::setOverrideCursor() with waitCursor to change the
application's cursor to the standard wait cursor.

void Plotter::mouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton) {
 updateRubberBandRegion();
 rubberBandRect.setBottomRight(event->pos());
 updateRubberBandRegion();
 }
}

When the user moves the mouse cursor while holding the left button, we call
updateRubberBandRegion() to schedule a paint event to repaint the area where the rubber
band was, we update rubberBandRect to account for the mouse move, and we call
updateRubberBandRegion() a second time to repaint the area where the rubber band has
moved to. This effectively erases the rubber band and redraws it at the new coordinates.

The rubberBandRect variable is of type QRect. A QRect can be defined either as an (x, y, w, h)
quadruple—where (x, y) is the position of the top-left corner and w x h is the size of the
rectange—or as a top-left and a bottom-right coordinate pair. Here, we have used the
coordinate pair representation. We set the point where the user clicked the first time as the
top-left corner and the current mouse position as the bottom-right corner.

If the user moves the mouse upward or leftward, it's likely that rubberBandRect's nominal
bottom-right corner will end up above or to the left of its top-left corner. If this occurs, the
QRect will have a negative width or height. QRect has a normalize() function that a adjusts
the top-left and bottom-right coordinates to obtain a nonnegative width and height.

void Plotter::mouseReleaseEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton) {
 rubberBandIsShown = false;
 updateRubberBandRegion();
 unsetCursor();

 QRect rect = rubberBandRect.normalize();

 if (rect.width() < 4 || rect.height() < 4)
 return;
 rect.moveBy(-Margin, -Margin);

 PlotSettings prevSettings = zoomStack[curZoom];
 PlotSettings settings;
 double dx = prevSettings.spanX() / (width() - 2 * Margin);
 double dy = prevSettings.spanY() / (height() - 2 * Margin);
 settings.minX = prevSettings.minX + dx * rect.left();
 settings.maxX = prevSettings.minX + dx * rect.right();
 settings.minY = prevSettings.maxY - dy * rect.bottom();
 settings.maxY = prevSettings.maxY - dy * rect.top();
 settings.adjust();

 zoomStack.resize(curZoom + 1);
 zoomStack.push_back(settings);
 zoomIn();
 }
}

When the user releases the left mouse button, we erase the rubber band and restore the
standard arrow cursor. If the rubber band is at least 4 x 4, we perform the zoom. If the rubber
band is smaller than that, it's likely that the user clicked the widget by mistake or to give it
focus, so we do nothing.

The code to perform the zoom is a bit complicated. This is because we deal with two coordinate
systems at the same time: widget coordinates and plotter coordinates. Most of the work we
perform here is to convert the rubberBandRect from widget coordinates to plotter coordinates.

Once we have done the conversion, we call PlotSettings::adjust() to round the numbers
and find a sensible number of ticks for each axis.

Figure 5.13. Converting the rubber band from widget to plotter
coordinates

Figure 5.14. Adjusting plotter coordinates and zooming in on the rubber
band

Then we perform the zoom. The zoom is achieved by pushing the new PlotSettings that we
have just calculated on top of the zoom stack and calling zoomIn() to do the job.

void Plotter::keyPressEvent(QKeyEvent * event)
{
 switch (event->key()) {
 case Key_Plus:
 zoomIn();
 break;
 case Key_Minus:
 zoomOut();
 break;
 case Key_Left:
 zoomStack[curZoom].scroll(-1, 0);
 refreshPixmap();
 break;
 case Key_Right:
 zoomStack[curZoom].scroll(+1, 0);
 refreshPixmap();
 break;
 case Key_Down:
 zoomStack[curZoom].scroll(0, -1);
 refreshPixmap();
 break;
 case Key_Up:
 zoomStack[curZoom].scroll(0, +1);
 refreshPixmap();
 break;
 default:
 QWidget::keyPressEvent(event);
 }
}

When the user presses a key and the Plotter widget has focus, the keyPressEvent() function
is called. We reimplement it here to respond to six keys: +, -, Up, Down, Left, and Right. If the
user pressed a key that we are not handling, we call the base class implementation. For
simplicity, we ignore the Shift, Ctrl, and Alt modifier keys, which are available through
QKeyEvent::state().

void Plotter::wheelEvent(QWheelEvent *event)
{
 int numDegrees = event->delta() / 8;
 int numTicks = numDegrees / 15;

 if (event->orientation() == Horizontal)
 zoomStack[curZoom].scroll(numTicks, 0);
 else
 zoomStack[curZoom].scroll(0, numTicks);
 refreshPixmap();

}

Wheel events occur when a mouse wheel is turned. Most mice only provide a vertical wheel, but
some also have a horizontal wheel. Qt supports both kinds of wheels. Wheel events go to the
widget that has the focus. The delta() function returns the distance the wheel was rotated in
eighths of a degree. Mice typically work in steps of 15 degrees.

The most common use of the wheel mouse is to scroll a scroll bar. When we subclass
QScrollView (covered in Chapter 6) to provide scroll bars, QScrollView handles the wheel
mouse events automatically, so we don't so we reimplement wheelEvent() ourselves. Qt
classes like QListView, QTable, and QTexEdit that inherit QScrollView also support wheel
events without needing additional code.

This finishes the implementation of the event handlers. Now let's review the private functions.

void Plotter::updateRubberBandRegion()
{
 QRect rect = rubberBandRect.normalize();
 update(rect.left(), rect.top(), rect.width(), 1);
 update(rect.left(), rect.top(), 1, rect.height());
 update(rect.left(), rect.bottom(), rect.width(), 1);
 update(rect.right(), rect.top(), 1, rect.height());
}

The updateRubberBand() function is called from mousePressEvent(), mouseMoveEvent(), and
mouseReleaseEvent() to erase or redraw the rubber band. It consists of four calls to update()
that schedule a paint event for the four small rectangular areas that are covered by the rubber
band.

Using NOT to Draw the Rubber Band

A common way to draw a rubber band is to use the NOT (or the XOR) mathematical
operator, which replaces each pixel value on the rubber band rectangle with the
opposite bit pattern. Here's a new version of updateRubberBandRegion() that does
this:

void Plotter::updateRubberBandRegion()
{
 QPainter painter(this);
 painter.setRasterOp(NotROP);
 painter.drawRect(rubberBandRect.normalize());
}

The setRasterOp() call sets the painter's raster operation to be NotROP. In the
original version, we kept the default value, CopyROP, which told QPainter to simply
copy the new value over the original.

When we call updateRubberBandRegion() a second time with the same coordinates,
the original pixels are restored, since two NOTs cancel each other out.

The advantage of using NOT is that it's easy to implement and it eliminates the need
to keep a copy of the covered areas. But it isn't generally applicable. For example, if
we draw text instead of a rubber band, the text could become very hard to read.
Also, NOT doesn't always produce good contrast; for example, medium gray stays
medium gray. Finally, NOT isn't supported on Mac OS X.

Another approach is to render the rubber band as an animated dotted line. This is

void Plotter::refreshPixmap()
{
 pixmap.resize(size());
 pixmap.fill(this, 0, 0);
 QPainter painter(&pixmap, this);
 drawGrid(&painter);
 drawCurves(&painter);
 update();
}

The refreshPixmap() function redraws the plot onto the off-screen pixmap and updates the
display.

We resize the pixmap to have the same size as the widget and fill it with the widget's erase
color. This color is the "dark" component of the palette, because of the call to
setBackgroundMode() in the Plotter constructor.

Then we create a QPainter to draw on the pixmap and call drawGrid() and drawCurves() to
perform the drawing. At the end, we call update() to schedule a paint event for the whole
widget. The pixmap is copied to the widget in the paintEvent() function (p. 121).

void Plotter::drawGrid(QPainter *painter)
{
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);
 PlotSettings settings = zoomStack[curZoom];
 QPen quiteDark = colorGroup().dark().light();
 QPen light = colorGroup().light();

 for (int i = 0; i <= settings.numXTicks; ++i) {
 int x = rect.left() + (i * (rect.width() - 1)
 / settings.numXTicks);
 double label = settings.minX + (i * settings.spanX()
 / settings.numXTicks);
 painter->setPen(quiteDark);
 painter->drawLine(x, rect.top(), x, rect.bottom());
 painter->setPen(light);
 painter->drawLine(x, rect.bottom(), x, rect.bottom() + 5);
 painter->drawText(x - 50, rect.bottom() + 5, 100, 15,
 AlignHCenter | AlignTop,
 QString::number(label));
 }
 for (int j = 0; j <= settings.numYTicks; ++j) {
 int y = rect.bottom() - (j * (rect.height() - 1)
 / settings.numYTicks);
 double label = settings.minY + (j * settings.spanY()
 / settings.numYTicks);
 painter->setPen(quiteDark);
 painter->drawLine(rect.left(), y, rect.right(), y);
 painter->setPen(light);
 painter->drawLine(rect.left() - 5, y, rect.left(), y);
 painter->drawText(rect.left() - Margin, y - 10,
 Margin - 5, 20,
 AlignRight | AlignVCenter,

often used in image manipulation programs, because it provides good contrast no
matter what colors are found in the image. To do this in Qt, the trick is to
reimplement QObject::timerEvent() to erase the rubber band and then repaint it
but starting drawing the dots at a slightly different offset each time, producing the
illusion of movement.

 QString::number(label));
 }
 painter->drawRect(rect);
}

The drawGrid() function draws the grid behind the curves and the axes.

The first for loop draws the grid's vertical lines and the ticks along the x axis. The second for
loop draws the grid's horizontal lines and the ticks along the y axis. The drawText() function is
used to draw the numbers corresponding to the tick mark on both axes.

The calls to drawText() have the following syntax:

painter.drawText(x, y, w, h, alignment, text);

where (x, y, w, h) define a rectangle, alignment the position of the text within that rectangle,
and text the text to draw.

void Plotter::drawCurves(QPainter *painter)
{
 static const QColor colorForIds[6] = {
 red, green, blue, cyan, magenta, yellow
 };
 PlotSettings settings = zoomStack[curZoom];
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);

 painter->setClipRect(rect.x() + 1, rect.y() + 1,
 rect.width() - 2, rect.height() - 2);

 map<int, CurveData>::const_iterator it = curveMap.begin();
 while (it != curveMap.end()) {
 int id = (*it).first;
 const CurveData &data = (*it).second;
 int numPoints = 0;
 int maxPoints = data.size() / 2;
 QPointArray points(maxPoints);

 for (int i = 0; i < maxPoints; ++i) {
 double dx = data[2 * i] - settings.minX;
 double dy = data[2 * i + 1] - settings.minY;
 double x = rect.left() + (dx * (rect.width() - 1)
 / settings.spanX());
 double y = rect.bottom() - (dy * (rect.height() - 1)
 / settings.spanY());
 if (fabs(x) < 32768 && fabs(y) < 32768) {
 points[numPoints] = QPoint((int)x, (int)y);
 ++numPoints;
 }
 }
 points.truncate(numPoints);
 painter->setPen(colorForIds[(uint)id % 6]);
 painter->drawPolyline(points);
 ++it;
 }
}

The drawCurves() function draws the curves on top of the grid. We start by calling
setClipRect() to set the QPainter's clip region to the rectangle that contains the curves
(excluding the margins). QPainter will then ignore drawing operations on pixels outside the
area.

Next, we iterate over all the curves, and for each curve, we iterate over the (x, y) coordinate
pairs that constitute it. The first member of the iterator's value gives us the ID of the curve
and the second member gives us the curve data.

The inner part of the for loop converts a coordinate pair from plotter coordinates to widget
coordinates and stores it in the points variable, provided that it lies within reasonable bounds.
If the user zooms in a lot, we could easily end up with numbers that cannot be represented as
16-bit signed integers, leading to incorrect rendering by some window systems.

Once we have converted all the points of a curve to widget coordinates, we set the pen color for
the curve (using one of a set of predefined colors) and call drawPolyline() to draw a line that
goes through all the curve's points.

This is the complete Plotter class. All that remains are a few functions in PlotSettings.

PlotSettings::PlotSettings()
{
 minX = 0.0;
 maxX = 10.0;
 numXTicks = 5;

 minY = 0.0;
 maxY = 10.0;
 numYTicks = 5;
}

The PlotSettings constructor initializes both axes to the range 0 to 10 with 5 tick marks.

void PlotSettings::scroll(int dx, int dy)
{
 double stepX = spanX() / numXTicks;
 minX += dx * stepX;
 maxX += dx * stepX;

 double stepY = spanY() / numYTicks;
 minY += dy * stepY;
 maxY += dy * stepY;
}

The scroll() function increments (or decrements) minX, maxX, minY, and maxY by the interval
between two ticks times a given number. This function is used to implement scrolling in
Plotter::keyPressEvent().

void PlotSettings::adjust()
{
 adjustAxis(minX, maxX, numTicks);
 adjustAxis(minY, maxY, numYTicks);
}

The adjust() function is called from mouseReleaseEvent() to round the minX, maxX, minY, and
maxY values to "nice" values and to determine the number of ticks appropriate for each axis.
The private function adjustAxis() does its work one axis at a time.

void PlotSettings::adjustAxis(double &min, double &max,
 int &numTicks)
{
 const int MinTicks = 4;
 double grossStep = (max - min) / MinTicks;
 double step = pow(10, floor(log10(grossStep)));

 if (5 * step < grossStep)
 step *= 5;
 else if (2 * step < grossStep)
 step *= 2;

 numTicks = (int) (ceil(max / step) - floor(min / step));
 min = floor(min / step) * step;
 max = ceil(max / step) * step;
}

The adjustAxis() function converts its min and max parameters into "nice" numbers and sets
its numTicks parameter to the number of ticks it calculates to be appropriate for the given [min,
max] range. Because adjustAxis() needs to modify the actual variables (minX, maxX,
numXTicks, etc.) and not just copies, its parameters are non-const references.

Most of the code in adjustAxis() simply attempts to determine an appropriate value for the
interval between two ticks (the "step"). To obtain nice numbers along the axis, we must select
the step with care. For example, a step value of 3.8 would lead to an axis with multiples of 3.8,
which is difficult for people to relate to. For axes labelled in decimal notation, "nice" step values
are numbers of the form 10n, 2.10n, or 5.10n.

We start by computing the "gross step", a kind of maximum for the step value. Then we find
the corresponding number of the form 10n that is smaller than or equal to the gross step. We
do this by taking the decimal logarithm of the gross step, then rounding that value down to a
whole number, then raising 10 to the power of this rounded number. For example, if the gross
step is 236, we compute log 236 = 2.37291...; then we round it down to 2 and obtain 102 =
100 as the candidate step value of the form 10n.

Once we have the first candidate step value, we can use it to calculate the other two
candidates: 2.10n and 5.10n. For the example above, the two other candidates are 200 and
500. The 500 candidate is larger than the gross step, so we can't use it. But 200 is smaller than
236, so we use 200 for the step size in this example.

It's fairly easy to derive numTicks, min, and max from the step value. The new min value is
obtained by rounding the original min down to the nearest multiple of the step, and the new max
value is obtained by rounding up to the nearest multiple of the step. The new numTicks is the
number of intervals between the the rounded min and max values. For example, if min is 240
and max is 1184 upon entering the function, the new range becomes [200, 1200], with 5 tick
marks.

This algorithm will give suboptimal results in some cases. A more sophisticated algorithm is
described in Paul S. Heckbert's article "Nice Numbers for Graph Labels" published in Graphics
Gems (ISBN 0-12-286166-3). Also of interest is the Qt Quarterly article "Fast and Flicker-Free",
available online at http://doc.trolltech.com/qq/qq06-flicker-free.html, which presents some
more ideas for eliminating flicker.

This chapter has brought us to the end of Part I. It has explained how to customize an existing
Qt widget and how to build a widget from the ground up using QWidget as the base class. We
have already seen how to compose a widget from existing widgets in Chapter 2, and we will
explore the theme further in Chapter 6.

At this point, we know enough to write complete GUI applications using Qt. In Part II, we will
explore Qt in greater depth, so that we can make full use of Qt's power.

[Team LiB]

[Team LiB]

Part II: Intermediate Qt

Chapter 6. Layout Management

Chapter 7. Event Processing

Chapter 8. 2D and 3D Graphics

Chapter 9. Drag and Drop

Chapter 10. Input/Output

Chapter 11. Container Classes

Chapter 12. Databases

Chapter 13. Networking

Chapter 14. XML

Chapter 15. Internationalization

Chapter 16. Providing Online Help

Chapter 17. Multithreading

Chapter 18. Platform-Specific Features

Appendix A. Installing Qt

Appendix B. Qt's Class Hierarchy
[Team LiB]
[Team LiB]

Chapter 6. Layout Management
Basic Layouts

Splitters

Widget Stacks

Scroll Views

Dock Windows

Multiple Document Interface

Every widget that is placed on a form must be given an appropriate size and position. Some
large widgets may also need scroll bars to give the user access to all their contents. In this
chapter, we will review the different ways of laying out widgets on a form, and also see how to
implement dockable windows and MDI windows.

[Team LiB]
[Team LiB]

Basic Layouts
Qt provides three basic ways of managing the layout of child widgets on a form: absolute
positioning, manual layout, and layout managers. We will look at each of these approaches in
turn, using the Find File dialog shown in Figure 6.1 as our example.

Figure 6.1. The Find File dialog

Absolute positioning is the crudest way of laying out widgets. It is achieved by assigning hard-
coded sizes and positions (geometries) to the form's child widgets and a fixed size to the form.
Here's what the FindFileDialog constructor looks like using absolute positioning:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 ...
 namedLable->setGeometry(10, 10, 50, 20);
 namedLineEdit->setGeometry(70, 10, 200, 20);
 lookInLabel->setGeometry(10, 35, 50, 20);
 lookInLineEdit->setGeometry(70, 35, 200, 20);
 subfoldersCheckBox->setGeometry(10, 60, 260, 20);
 listView->setGeometry(10, 85, 260, 100);
 messageLabel->setGeometry(10, 190, 260, 20);
 findButton->setGeometry(275, 10, 80, 25);
 stopButton->setGeometry(275, 40, 80, 25);
 closeButton->setGeometry(275, 70, 80, 25);
 helpButton->setGeometry(275, 185, 80, 25);

 setFixedSize(365, 220);
}

Absolute positioning has many disadvantages. The foremost problem is that the user cannot

resize the window. Another problem is that some text may be truncated if the user chooses an
unusually large font or if the application is translated into another language. And this approach
also requires us to perform tedious position and size calculations.

An alternative to absolute positioning is manual layout. With manual layout, the widgets are still
given absolute positions, but their sizes are made propor tional to the size of the window rather
than being entirely hard-coded. This can be achieved by reimplementing the form's
resizeEvent() function to set its child widget's geometries:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 ...
 setMinimumSize(215, 170);
 resize(365, 220);
}

void FindFileDialog::resizeEvent(QResizeEvent *)
{

 int extraWidth = width() - minimumWidth();
 int extraHeight = height() - minimumHeight();

 namedLabel->setGeometry(10, 10, 50, 20);
 namedLineEdit->setGeometry(70, 10, 50 + extraWidth, 20);
 lookInLabel->setGeometry(10, 35, 50, 20);
 lookInLineEdit->setGeometry(70, 35, 50 + extraWidth, 20);
 subfoldersCheckBox->setGeometry(10, 60, 110 + extraWidth, 20);
 listView->setGeometry(10, 85,
 110 + extraWidth, 50 + extraHeight);
 messageLabel->setGeometry(10, 140 + extraHeight,
 110 + extraWidth, 20);
 findButton->setGeometry(125 + extraWidth, 10, 80, 25);
 stopButton->setGeometry(125 + extraWidth, 40, 80, 25);
 closeButton->setGeometry(125 + extraWidth, 70, 80, 25);
 helpButton->setGeometry(125 + extraWidth, 135 + extraHeight,
 80, 25);
}

We set the form's minimum size to 215 x 170 in the FindFileDialog constructor and its initial
size to 365 x 220. In the resizeEvent() function, we give any extra space to the widgets that
we want to grow.

Just like absolute positioning, manual layout requires a lot of hard-coded constands to be
calculated by the programmer. Writing code like this is tiresome, especially if the design
changes. And there is still the risk of text truncation. The risk can be avoided by taking account
of the child widgets' size hints, but that would complicate the code even further.

Figure 6.2. Resizing a resizable dialog

The best solution for laying out widgets on a form is to use Q's layout managers. The layout
managers provide sensible defaults for every type of widget and take into account each
widget's size hint, which in turn typically depends on the widget's font, style, and contents.
Layout managers also respect minimum and maximum sizes, and automatically adjust the
layout in response to font changes, text changes, and window resizing.

Qt provides three layout managers: QHBoxLayout, QVBoxLayout, and QGridLayout. These
classes inherit QLayout, which provides the basic framework for layouts. All three classes are
fully supported by Qt Designer and can also be used in code. Chapter 2 presented examples of
both approaches.

Here's the FindFileDialog code using layout managers:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 ...
 QGridLayout *leftLayout = new QGridLayout;
 leftLayout->addWidget(namedLabel, 0, 0);
 leftLayout->addWidget(namedLineEdit, 0, 1);
 leftLayout->addWidget(lookInLabel, 1, 0);
 leftLayout->addWidget(lookInLineEdit, 1, 1);
 leftLayout->addMultiCellWidget(subfoldersCheckBox, 2, 2, 0, 1);
 leftLayout->addMultiCellWidget(listView, 3, 3, 0, 1);
 leftLayout->addMultiCellWidget(messageLabel, 4, 4, 0, 1);

 QVBoxLayout *rightLayout = new QVBoxLayout;
 rightLayout->addWidget(findButton);
 rightLayout->addWidget(stopButton);
 rightLayout->addWidget(closeButton);
 rightLayout->addStretch(1);
 rightLayout->addWidget(helpButton);

 QHBoxLayout *mainLayout = new QHBoxLayout(this);
 mainLayout->setMargin(11);
 mainLayout->setSpacing(6);
 mainLayout->addLayout(leftLayout);
 mainLayout->addLayout(rightLayout);
}

The layout is handled by one QHBoxLayout, one QGridLayout, and one QVBoxLayout The
QGridLayout on the left and the QVBoxLayout on the right are placed side by side by the outer
QHBoxLayout. The margin around the dialog is 11 pixels and the spacing between the child
widgets is 6 pixels.

Figure 6.3. The Find File dialog's layout

QGridLayout works on a two-dimensional grid of cells. The QLabel at the top-left corner of the
layout is at position (0, 0), and the corresponding QLineEdit is at position (0, 1). The
QCheckBox spans two columns; it occupies the cells in positions (2, 0) and (2, 1). The
QListView and the QLabel beneath it also span two columns. The calls to addMultiCellWidget
() have the following syntax:

leftLayout->addMultiCellWidget(widget, row1, row2, col1, col2);

where widget is the child widget to insert into the layout, (row1, col1) is the top-left cell
occupied by the widget, and (row2, col2) is the bottom-right cell occupied by the widget.

The same dialog could be created visually in Qt Designer by placing the child widgets in their
approximate positions, selecting those that need to be laid out together, and clicking
Layout|Lay Out Horizontally, Layout|Lay Out Vertically, or Layout|Lay Out in a Grid. We used
this approach in Chapter 2 for creating the Spreadsheet application's Go-to-Cell and Sort
dialogs.

Using layout managers provides additional benefits to those we have discussed so far. If we add
a widget to a layout or remove a widget from a layout, the layout will automatically adapt to
the new situation. The same applies if we call hide() or show() on a child widget. If a child
widget's size hint changes, the layout managers automatically redone, taking into account the
new size hint. Also, layout managers automatically set a minimum size for the form as a whole,
based on the form's child widgets' minimum sizes and size hints.

In every example presented so far, we have simply put the widgets in layouts, with spacer
items to consume any excess space. Sometimes this isn't sufficient to make the layout look
exactly the way we want. In such situations, we can adjust the layout by changing the size
policies and size hints of the widgets being laid out.

A widget's size policy tells the layout system how it should stretch or shrink. Qt provides
sensible default size policy values for all its built-in widgets, but since no single default can
account for every possible layout, it is still common for developers to change the size policies
for one or two widgets on a form. A size policy has both a horizontal and a vertical component.
The most useful values for each component are Fixed, Minimum, Maximum, Preferred, and
Expanding:

Fixed means that the widget cannot grow or shrink. The widget always stays at the size
of its size hint.

Minimum means that the widget's size hint is its minimum size. The widget cannot shrink
below the size hint, but it can grow to fill available space if necessary.

Maximum means that the widget's size hint is its maximum size. The widget can be shrunk
down to its minimum size hint.

Preferred means that the widget's size hint is its preferred size, but that the widget can
still shrink or grow if necessary.

Expanding means that the widget can shrink or grow and that it is especially willing to
grow.

Figure 6.4 summarizes the meaning of the different size policies, using a QLabel showing the
text "Some Text" as an example.

Figure 6.4. The meaning of the different size policies

When a form that contains both Preferred and Expanding widgets is resized, extra space is
given to the Expanding widgets, while the Preferred widgets stay at their size hint.

There are two other size policies: MinimumExpanding and Ignored. The former was necessary
in a few rare cases in older versions of Qt, but it isn't useful any more; a better approach is to
use Expanding and reimplement minimumSizeHint() appropriately. The latter is similar to
Expanding, except that it ignores the widget's size hint.

In addition to the size policy's horizontal and vertical components, the QSizePolicy class stores
both a horizontal and a vertical stretch factor. These stretch factors can be used to indicate that
different child widgets should grow at different rates when the form expands. For example, if
we have a QListView above a QTextEdit and we want the QTextEdit to be twice as tall as the
QListView, we can set the QTextEdit's vertical stretch factor to 2 and the QListView's vertical
stretch factor to 1.

Another way of influencing a layout is to set a minimum size, a maximum size, or a fixed size
on the child widgets. The layout manager will respect these constraints when laying out the
widgets. And if this isn't sufficient, we can always derive from the child widget's class and
reimplement sizeHint() to obtain the size hint we need.
[Team LiB]
[Team LiB]

Splitters
A splitter is a widget that contains other widgets and that separates them with splitter handles.
Users can change the sizes of a splitter's child widgets by dragging the handles. Splitters can
often be used as an alternative to layout managers, to give more control to the user.

Qt supports splitters with the QSplitter widget. The child widgets of a QSplitter are
automatically placed side by side (or one below the other) in the order in which they are
created, with splitter bars between adjacent widgets. Here's the code for creating the window
depicted in Figure 6.5:

Figure 6.5. The Splitter application's widgets

#include <qapplication.h>
#include <qsplitter.h>
#include <qtextedit.h>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QSplitter splitter(Qt::Horizontal);
 splitter.setCaption(QObject::tr("Splitter"));
 app.setMainWidget(&splitter);

 QTextEdit *firstEditor = new QTextEdit(&splitter);
 QTextEdit *secondEditor = new QTextEdit(&splitter);
 QTextEdit *thirdEditor = new QTextEdit(&splitter);

 splitter.show();
 return app.exec();
}

The example consists of three QTextEdits laid out horizontally by a QSplitter widget. Unlike
layout managers, which simply lay out a form's child widgets, QSplitter inherits from QWidget
and can be used like any other widget.

A QSplitter can lay out its child widgets either horizontally or vertically. Complex layouts can
be achieved by nesting horizontal and vertical QSplitters. For example, the Mail Client
application shown in Figure 6.6 consists of a horizontal QSplitter that contains a vertical
QSplitter on its right side.

Figure 6.6. The Mail Client application on Mac OS X

Here's the code in the constructor of the Mail Client application's QMainWindow subclass:

MailClient::MailClient(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 horizontalSplitter = new QSplitter(Horizontal, this);
 setCentralWidget(horizontalSplitter);

 foldersListView = new QListView(horizontalSplitter);
 foldersListView->addColumn(tr("Folders"));
 foldersListView->setResizeMode(QListView::AllColumns);
 verticalSplitter = new QSplitter(Vertical, horizontalSplitter);

 messagesListView = new QListView(verticalSplitter);
 messagesListView->addColumn(tr("Subject"));
 messagesListView->addColumn(tr("Sender"));
 messagesListView->addColumn(tr("Date"));
 messagesListView->setAllColumnsShowFocus(true);
 messagesListView->setShowSortIndicator(true);
 messagesListView->setResizeMode(QListView::AllColumns);

 textEdit = new QTextEdit(verticalSplitter);
 textEdit->setReadOnly(true);

 horizontalSplitter->setResizeMode(foldersListView,
 QSplitter::KeepSize);
 verticalSplitter->setResizeMode(messagesListView,
 QSplitter::KeepSize);
 ...
 readSettings();
}

We create the horizontal QSplitter first and set it to be the QMainWindow's central widget.
Then we create the child widgets and their child widgets.

When the user resizes a window, QSplitter normally distributes the space so that the relative
sizes of the child widgets stay the same. In the Mail Client example, we don't want this
behavior; instead we want the two QListViews to maintain their size and we want to give any
extra space to the QTextEdit. This is achieved by the two setResizeMode() calls near the end.

When the application is started, QSplitter gives the child widgets appropriate sizes based on
their initial sizes. We can move the splitter handles programmatically by calling
QSplitter::setSizes(). The QSplitter class also provides a means of saving and restoring
its state the next time the application is run. Here's the writeSettings() function that saves
the Mail Client's settings:

void MailClient::writeSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "MailClient");
 settings.beginGroup("/MailClient");

 QString str;
 QTextOStream out1(&str);
 out1 >> *horizontalSplitter;
 settings.writeEntry("/horizontalSplitter", str);
 QTextOStream out2(&str);
 out2 >> *verticalSplitter;
 settings.writeEntry("/verticalSplitter", str);

 settings.endGroup();
}

Here's the corresponding readSettings() function:

void MailClient::readSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "MailClient");
 settings.beginGroup("/MailClient");

 QString str1 = settings.readEntry("/horizontalSplitter");
 QTextIStream in1(&str1);
 in1 >> *horizontalSplitter;
 QString str2 = settings.readEntry("/verticalSplitter");
 QTextIStream in2(&str2);
 in2 >> *verticalSplitter;

 settings.endGroup();
}

These functions rely on QTextIStream and QTextOStream, two QTextStream convenience
subclasses.

By default, a splitter handle is shown as a rubber band while the user is dragging it, and the
widgets on either side of the splitter handle are resized only when the user releases the mouse
button. To make QSplitter resize the child widgets in real time, we would call
setOpaqueResize(true).

QSplitter is fully supported by Qt Designer. To put widgets into a splitter, place the child
widgets approximately in their desired positions, select them, and click Layout|Lay Out
Horizontally (in Splitter) or Layout|Lay Out Vertically (in Splitter).
[Team LiB]
[Team LiB]

Widget Stacks
Another useful widget for managing layouts is QWidgetStack. This widget contains a set of child
widgets, or "pages", and shows only one at a time, hiding the others from the user. The pages
are numbered from 0. If we want to make a specific child widget visible, we can call
raiseWidget() with either a page number or a pointer to the child widget.

The QWidgetStack itself is invisible and provides no intrinsic means for the user to change
page. The small arrows and the dark gray frame in Figure 6.7 are provided by Qt Designer to
make the QWidgetStack easier to design with.

Figure 6.7. QWidgetStack

The Configure dialog shown in Figure 6.8 is an example that uses QWidgetStack. The dialog
consists of a QListBox on the left and a QWidgetStack on the right. Each item in the QListBox
corresponds to a different page in the QWidgetStack. Forms like this are very easy to create
using Qt Designer:

1. Create a new form based on the "Dialog" or the "Widget" template.

2. Add a list box and a widget stack to the form.

3. Fill each widget stack page with child widgets and layouts. (To create a new page, right-
click and choose Add Page; to switch pages, click the tiny left or right arrow located at the
top-right of the widget stack.)

4. Lay the widgets out side by side using a horizontal layout.

5. Connect the list box's highlighted(int) signal to the widget stack's raiseWidget(int)
slot.

6. Set the value of the list box's currentItem property to 0.

Figure 6.8. The Configure dialog

Since we have implemented page-switching using predefined signals and slots, the dialog will
exhibit the correct page-switching behavior when previewed in Qt Designer.
[Team LiB]
[Team LiB]

Scroll Views
The QScrollView class provides a scrollable viewport, two scroll bars, and a "corner" widget
(usually an empty QWidget). If we want to add scroll bars to a widget, it is much simpler to use
a QScrollView than to instantiate our own QScrollBars and implement the scrolling
functionality ourselves.

Figure 6.9. QScrollView's constituent widgets

The easiest way to use QScrollView is to call addChild() with the widget we want to add scroll
bars to. QScrollView automatically reparents the widget to make it a child of the viewport
(accessible through QScrollView::viewport()) if it isn't already. For example, if we want
scroll bars around the IconEditor widget we developed in Chapter 5, we can write this:

#include <qapplication.h>
#include <qscrollview.h>

#include "iconeditor.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QScrollView scrollView;
 scrollView.setCaption(QObject::tr("Icon Editor"));

 app.setMainWidget(&scrollView);

 IconEditor *iconEditor = new IconEditor;
 scrollView.addChild(iconEditor);

 scrollView.show();
 return app.exec();
}

By default, the scroll bars are only displayed when the viewport is smaller than the child widget.
We can force the scroll bars to always be shown by writing this code:

scrollView.setHScrollBarMode(QScrollView::AlwaysOn);
scrollView.setVScrollBarMode(QScrollView::AlwaysOn);

When the child widget's size hint changes, QScrollView automatically adapts to the new size
hint.

Figure 6.10. Resizing a QScrollView

An alternative way of using a QScrollView with a widget is to make the widget inherit
QScrollView and to reimplement drawContents() to draw the contents. This is the approach
used by Qt classes like QIconView, QListBox, QListView, QTable, and QTextEdit. If a widget
is likely to require scroll bars, it's usually a good idea to implement it as a subclass of
QScrollView.

To show how this works, we will implement a new version of the IconEditor class as a
QScrollView subclass. We will call the new class ImageEditor, since its scroll bars make it
capable of handling large images.

#ifndef IMAGEEDITOR_H
#define IMAGEEDITOR_H

#include <qimage.h>
#include <qscrollview.h>
class ImageEditor : public QScrollView
{
 Q_OBJECT
 Q_PROPERTY(QColor penColor READ penColor WRITE setPenColor)
 Q_PROPERTY(QImage image READ image WRITE setImage)
 Q_PROPERTY(int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:
 ImageEditor(QWidget *parent = 0, const char *name = 0);

 void setPenColor(const QColor &newColor);
 QColor penColor() const { return curColor; }
 void setZoomFactor(int newZoom);
 int zoomFactor() const { return zoom; }
 void setImage(const QImage &newImage);
 const QImage &image() const { return curImage; }

protected:
 void contentsMousePressEvent(QMouseEvent *event);
 void contentsMouseMoveEvent(QMouseEvent *event);
 void drawContents(QPainter *painter, int x, int y,
 int width, int height);

private:
 void drawImagePixel(QPainter *painter, int i, int j);
 void setImagePixel(const QPoint &pos, bool opaque);
 void resizeContents();

 QColor curColor;
 QImage curImage;
 int zoom;
};

#endif

The header file is very similar to the original (p. 100). The main difference is that we inherit
from QScrollView instead of QWidget. We will run into the other differences as we review the
class's implementation.

ImageEditor::ImageEditor(QWidget *parent, const char *name)
 : QScrollView(parent, name, WStaticContents | WNoAutoErase)
{
 curColor = black;
 zoom = 8;
 curImage.create(16, 16, 32);
 curImage.fill(qRgba(0, 0, 0, 0));
 curImage.setAlphaBuffer(true);
 resizeContents();
}

The constructor passes the WStaticContents and WNoAutoErase flags to the QScrollView.
These flags are actually set on the viewport. We don't set a size policy, because QScrollView's
default of (Expanding, Expanding) is appropriate.

In the original version, we didn't call updateGeometry() in the constructor because we could
depend on Qt's layout managers picking up the initial widget size by themselves. But here we
must give the QScrollView base class an initial size to work with, and we do this with the
resizeContents() call.

void ImageEditor::resizeContents()
{
 QSize size = zoom * curImage.size();
 if (zoom >= 3)
 size += QSize(1, 1);
 QScrollView::resizeContents(size.width(), size.height());
}

The resizeContents() private function calls QScrollView::resizeContents() with the size of

the content part of the QScrollView. The QScrollView displays scroll bars depending on the
content's size in relation to the viewport's size.

We don't need to reimplement sizeHint(); QScrollView's version uses the content's size to
provide a reasonable size hint.

void ImageEditor::setImage(const QImage &newImage)
{
 if (newImage != curImage) {
 curImage = newImage.convertDepth(32);
 curImage.detach();
 resizeContents();
 updateContents();
 }
}

In many of the original IconEditor functions, we called update() to schedule a repaint and
updateGeometry() to propagate a size hint change. In the QScrollView versions, these calls
are replaced by resizeContents() to inform the QScrollView about a change of the content's
size and updateContents() to force a repaint.

void ImageEditor::drawContents(QPainter *painter, int, int, int, int)
{
 if (zoom >= 3) {
 painter->setPen(colorGroup().foreground());
 for (int i = 0; i <= curImage.width(); ++i)
 painter->drawLine(zoom * i, 0,
 zoom * i, zoom * curImage.height());
 for (int j = 0; j <= curImage.height(); ++j)
 painter->drawLine(0, zoom * j,
 zoom * curImage.width(), zoom * j);
 }

 for (int i = 0; i < curImage.width(); ++i) {
 for (int j = 0; j < curImage.height(); ++j)
 drawImagePixel(painter, i, j);
 }
}

The drawContents() function is called by QScrollView to repaint the content's area. The
QPainter object is already initialized to account for the scrolling offset. We just need to perform
the drawing as we normally do in a paintEvent().

The second, third, fourth, and fifth parameters specify the rectangle that must be redrawn. We
could use this information to only draw the rectangle that needs repainting, but for the sake of
simplicity we redraw everything.

The drawImagePixel() function that is called near the end of drawContents() is essentially the
same as in the original IconEditor class (p. 106), so it is not reproduced here.

void ImageEditor::contentsMousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->button() == RightButton)
 setImagePixel(event->pos(), false);
}

void ImageEditor::contentsMouseMoveEvent(QMouseEvent *event)
{

 if (event->state() & LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->state() & RightButton)
 setImagePixel(event->pos(), false);
}

Mouse events for the content part of the scroll view can be handled by reimplementing special
event handlers in QScrollView, whose names all start with contents. Behind the scenes,
QScrollView automatically converts the viewport coordinates to content coordinates, so we
don't need to convert them ourselves.

void ImageEditor::setImagePixel(const QPoint &pos, bool opaque)
{
 int i = pos.x() / zoom;
 int j = pos.y() / zoom;

 if (curImage.rect().contains(i, j)) {
 if (opaque)
 curImage.setPixel(i, j, penColor().rgb());
 else
 curImage.setPixel(i, j, qRgba(0, 0, 0, 0));

 QPainter painter(viewport());
 painter.translate(-contentsX(), -contentsY());
 drawImagePixel(&painter, i, j);
 }
}

The setImagePixel() function is called from contentsMousePressEvent() and
contentsMouseMoveEvent() to set or clear a pixel. The code is almost the same as the original
version, except for the way the QPainter object is initialized. We pass viewport() as the
parent because the painting is performed on the viewport, and we translate the QPainter's
coordinate system to account for the scrolling offset.

We could replace the three lines that deal with the QPainter with this line:

updateContents(i * zoom, j * zoom, zoom, zoom);

This would tell QScrollView to update only the small rectangular area occupied by the
(zoomed) image pixel. But since we didn't optimize drawContents() to draw only the necessary
area, this would be inefficient, so it's better to construct a QPainter and do the painting
ourselves.

If we use ImageEditor now, it is practically indistinguishable from the original, QWidget-based
IconEditor used inside a QScrollView widget. However, for certain more sophisticated
widgets, subclassing QScrollView is the more nattural approach. For example, a class such as
QTextEdit that implements wordwrapping needs tight integration between the document that is
shown and the QScrollView.

Also note that you should subclass QScrollView if the contents are likely to be very tall or
wide, because some window systems don't support widgets that are larger than 32,767 pixels.

One thing that the ImageEditor example doesn't demonstrate is that we can put child widgets
in the viewport area. The child widgets simply need to be added using addWidget(), and can be
moved using moveWidget(). Whenever the user scrolls the content area, QScrollView
automatically moves the child widgets on screen. (If the QScrollView contains many child
widgets, this can slow down scrolling. We can call enableClipper(true) to optimize this case.)
One example where this approach would make sense is for a web browser. Most of the contents

would be drawn directly on the viewport, but buttons and other form-entry elements would be
represented by child widgets.
[Team LiB]
[Team LiB]

Dock Windows
Dock windows are windows that can be docked in dock areas. Toolbars are the primary example
of dock windows, but there can be other types.

QMainWindow provides four dock areas: one above, one below, one to the left, and one to the
right of the window's central widget. When we create QToolBars, they automatically put
themselves in their parent's top dock area.

Figure 6.11. Floating dock windows

Every dock window has a handle. This appears as two gray lines at the left or top of each dock
window shown in Figure 6.12. Users can move dock windows from one dock area to another by
dragging the handle. They can also detach a dock window from an area and let the dock
window float as a top-level window by dragging the dock window outside of any dock area. Free
floating dock windows have their own caption, and can have a close button. They are always
"on top" of their main window.

Figure 6.12. A QMainWindow with five dock windows

To turn on the close button when the dock window is floating, call setCloseMode() as follows:

dockWindow->setCloseMode(QDockWindow::Undocked);

QDockArea provides a context menu with the list of all dock windows and toolbars. Once a dock
window is closed, the user can restore it using the context menu.

Figure 6.13. A QDockArea context menu

Dock windows must be subclasses of QDockWindow. If we just need a toolbar with buttons and
some other widgets, we can use QToolBar, which inherits QDockWindow. Here's how to create a
QToolBar containing a QComboBox, a QSpinBox, and some toolbar buttons, and how to put it in
the bottom dock area:

QToolBar *toolBar = new QToolBar(tr("Font"), this);
QComboBox *fontComboBox = new QComboBox(true, toolBar);
QSpinBox *fontSize = new QSpinBox(toolBar);
boldAct->addTo(toolBar);
italicAct->addTo(toolBar);
underlineAct->addTo(toolBar);
moveDockWindow(toolBar, DockBottom);

This toolbar would look ugly if the user moves it to a QMainWindow's left or right dock areas
because the QComboBox and the QSpinBox require too much horizontal space. To prevent this
from happening, we can call QMainWindow::setDockEnabled() as follows:

setDockEnabled(toolBar, DockLeft, false);
setDockEnabled(toolBar, DockRight, false);

If what we need is something more like a floating widget or tool palette, we can use
QDockWindow directly, by calling setWidget() to set the widget to be shown inside the
QDockWindow. The widget can be as complicated as we like. If we want the user to be able to
resize the dock window even when it's in a dock area, we can call setResizeEnabled() on the
dock window. The dock window will then be rendered with a splitter-like handle on the side.

If we want the widget to change itself depending on whether it is put in a horizontal or in a
vertical dock area, we can reimplement QDockWindow::setOrientation() and change it there.

If we want to save the position of all the toolbars and other dock windows so that we can
restore them the next time the application is run, we can write code that is similar to the code
we used to save a QSplitter's state (p. 143), using QMainWindow's << operator to write out the
state and QMainWindow's >> operator to read it back in.

Applications like Microsoft Visual Studio and Qt Designer make extensive use of dock windows
to provide a very flexible user interface. In Qt, this kind of user interface is usually achieved by
using a QMainWindow with many custom QDockWindows and a QWorkspace in the middle to
control MDI child windows.
[Team LiB]
[Team LiB]

Multiple Document Interface
Applications that provide multiple documents within the main window's central area are called
MDI (multiple document interface) applications. In Qt, an MDI application is created by using
the QWorkspace class as the central widget and by making each document window a child of the
QWorkspace.

It is conventional for MDI applications to provide a Windows menu that includes some
commands for managing the windows and the list of windows. The active window is identified
with a checkmark. The user can make any window active by clicking its entry in the Windows
menu.

In this section, we will develop the Editor application shown in Figure 6.14 to demonstrate how
to create an MDI application and how to implement its Windows menu.

Figure 6.14. The Editor application

The application consists of two classes: MainWindow and Editor. Its code is on the CD, and
since most of it is the same or similar to the Spreadsheet application from Part I, we will only
present the new code.

Figure 6.15. The Editor application's menus

Let's start with the MainWindow class.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 workspace = new QWorkspace(this);

 setCentralWidget(workspace);
 connect(workspace, SIGNAL(windowActivated(QWidget *)),
 this, SLOT(updateMenus()));
 connect(workspace, SIGNAL(windowActivated(QWidget *)),
 this, SLOT(updateModIndicator()));

 createActions();
 createMenus();
 createToolBars();
 createStatusBar();

 setCaption(tr("Editor"));
 setIcon(QPixmap::fromMimeSource("icon.png"));
}

In the MainWindow constructor, we create a QWorkspace widget and make it the central widget.
We connect the QWorkspace's windowActivated() signal to two private slots. These slots
ensure that the menus and the status bar always reflect the state of the currently active child
window.

void MainWindow::newFile()
{
 Editor *editor = createEditor();
 editor->newFile();
 editor->show();
}

The newFile() slot corresponds to the File|New menu option. It depends on the createEditor
() private function to create a child Editor window.

Editor *MainWindow::createEditor()
{
 Editor *editor = new Editor(workspace);
 connect(editor, SIGNAL(copyAvailable(bool)),
 this, SLOT(copyAvailable(bool)));
 connect(editor, SIGNAL(modificationChanged(bool)),
 this, SLOT(updateModIndicator()));
 return editor;
}

The createEditor() function creates an Editor widget and sets up two signal–slot
connections. The first connection ensures that Edit|Cut and Edit|Copy are enabled or disabled
depending on whether there is any selected text. The second connection ensures that the MOD
indicator in the status bar is always up to date.

Because we are using MDI, it is possible that there will be multiple Editor widgets in use. This
is a concern since we are only interested in responding to the copyAvailable(bool) and
modificationChanged() signals from the active Editor window, not from the others. But these
signals can only ever be emitted by the active window, so this isn't really a problem.

void MainWindow::open()
{
 Editor *editor = createEditor();
 if (editor->open())
 editor->show();
 else
 editor->close();
}

The open() function corresponds to File|Open. It creates a new Editor for the new document

and calls open() on the Editor. It makes more sense to implement the file operations in the
Editor class than in the MainWindow class, because each Editor needs to maintain its own
independent state. If the open() fails, we simply close the editor since the user will have
already been notified of the error.

void MainWindow::save()
{
 if (activeEditor()) {
 activeEditor()->save();
 updateModIndicator();
 }
}

The save() slot calls save() on the active editor, if there is one. Again, the code that performs
the real work is located in the Editor class.

Editor *MainWindow::activeEditor()
{
 return (Editor *)workspace->activeWindow();
}

The activeEditor() private function returns the active child window as an Editor pointer.

void MainWindow::cut()
{
 if (activeEditor())
 activeEditor()->cut();
}

The cut() slot calls cut() on the active editor. The copy(), paste(), and del() slots follow
the same pattern.

void MainWindow::updateMenus()
{
 bool hasEditor = (activeEditor() != 0);
 saveAct->setEnabled(hasEditor);
 saveAsAct->setEnabled(hasEditor);
 pasteAct->setEnabled(hasEditor);
 deleteAct->setEnabled(hasEditor);
 copyAvailable(activeEditor()
 && activeEditor()->hasSelectedText());
 closeAct->setEnabled(hasEditor);
 closeAllAct->setEnabled(hasEditor);
 tileAct->setEnabled(hasEditor);
 cascadeAct->setEnabled(hasEditor);
 nextAct->setEnabled(hasEditor);
 previousAct->setEnabled(hasEditor);

 windowsMenu->clear();
 createWindowsMenu();
}

The updateMenus() slot is called whenever a window is activated (or when the last window is
closed) to update the menu system, thanks to the signal–slot connection we put in the
MainWindow constructor.

Most menu options only make sense if there is an active window, so we disable them if there
isn't one. Then we clear the Windows menu and call createWindowsMenu() to reinitialize it with
a fresh list of child windows.

void MainWindow::createWindowsMenu()
{
 closeAct->addTo(windowsMenu);
 closeAllAct->addTo(windowsMenu);
 windowsMenu->insertSeparator();
 tileAct->addTo(windowsMenu);
 cascadeAct->addTo(windowsMenu);
 windowsMenu->insertSeparator();
 nextAct->addTo(windowsMenu);
 previousAct->addTo(windowsMenu);

 if (activeEditor()) {
 windowsMenu->insertSeparator();
 windows = workspace->windowList();
 int numVisibleEditors = 0;

 for (int i = 0; i < (int)windows.count(); ++i) {
 QWidget *win = windows.at(i);
 if (!win->isHidden()) {
 QString text = tr("%1 %2")
 .arg(numVisibleEditors + 1)
 .arg(win->caption());
 if (numVisibleEditors < 9)
 text.prepend("&");
 int id = windowsMenu->insertItem(
 text, this, SLOT(activateWindow(int)));
 bool isActive = (activeEditor() == win);
 windowsMenu->setItemChecked(id, isActive);
 windowsMenu->setItemParameter(id, i);
 ++numVisibleEditors;
 }
 }
 }
}

The createWindowsMenu() private function fills the Windows menu with actions and a list of
visible windows. The actions are all typical of such menus and are easily implemented using
QWorkspace's closeActiveWindow(), closeAllWindows(), tile(), and cascade() slots.

The entry for the active window is shown with a checkmark next to its name. When the user
chooses a window entry, the activateWindow() slot is called with the index in the windows list
as the parameter, because of the call to setItemParameter(). This is very similar to what we
did in Chapter 3 when we implemented the Spreadsheet application's recently opened files list
(p. 54).

For the first nine entries, we put an ampersand in front of the number to make that number's
single digit into a shortcut key. We don't provide a shortcut key for the other entries.

void MainWindow::activateWindow(int param)
{
 QWidget *win = windows.at(param);
 win->show();
 win->setFocus();
}

The activateWindow() function is called when a window is chosen from the Windows menu.
The int parameter is the value that we set with setItemParameter(). The windows data
member holds the list of windows and was set in createWindowsMenu().

void MainWindow::copyAvailable(bool available)
{

 cutAct->setEnabled(available);
 copyAct->setEnabled(available);
}

The copyAvailable() slot is called whenever text is selected or deselected in an editor. It is
also called from updateMenus(). It enables or disables the Cut and Copy actions.

void MainWindow::updateModIndicator()
{
 if (activeEditor() && activeEditor()->isModified())
 modLabel->setText(tr("MOD"));
 else
 modLabel->clear();
}

The updateModIndicator() updates the MOD indicator in the status bar. It is called whenever
text is modified in an editor. It is also called when a new window is activated.

void MainWindow::closeEvent(QCloseEvent *event)
{
 workspace->closeAllWindows();
 if (activeEditor())
 event->ignore();
 else
 event->accept();
}

The closeEvent() function is reimplemented to close all child windows. If one of the child
widgets "ignores" its close event (presumably because the user canceled an "unsaved changes"
message box), we ignore the close event for the MainWindow; otherwise we accept it, resulting
in Qt closing the window. If we didn't reimplement closeEvent() in MainWindow, the user
would not be given the opportunity to save any unsaved changes.

We have now finished our review of MainWindow, so we can move on to the Editor
implementation. The Editor class represents one child window. It inherits from QTextEdit,
which provides the text editing functionality. Just as any Qt widget can be used as a stand-
alone window, any Qt widget can be used as a child window in an MDI workspace.

Here's the class definition:

class Editor : public QTextEdit
{
 Q_OBJECT
public:
 Editor(QWidget *parent = 0, const char *name = 0);

 void newFile();
 bool open();
 bool openFile(const QString &fileName);
 bool save();
 bool saveAs();
 QSize sizeHint() const;

signals:
 void message(const QString &fileName, int delay);

protected:
 void closeEvent(QCloseEvent *event);

private:
 bool maybeSave();

 void saveFile(const QString &fileName);
 void setCurrentFile(const QString &fileName);
 QString strippedName(const QString &fullFileName);
 bool readFile(const QString &fileName);
 bool writeFile(const QString &fileName);

 QString curFile;
 bool isUntitled;
 QString fileFilters;
};

Four of the private functions that were in the Spreadsheet application's MainWindow class (p.
51) are also present in the Editor class: maybeSave(), saveFile(), setCurrentFile(), and
strippedName().

Editor::Editor(QWidget *parent, const char *name)
 : QTextEdit(parent, name)
{
 setWFlags(WDestructiveClose);
 setIcon(QPixmap::fromMimeSource("document.png"));

 isUntitled = true;
 fileFilters = tr("Text files (*.txt)\n"
 "All files (*)");
}

The Editor constructor sets the WDestructiveClose flag using setWFlags(). When a class
constructor doesn't provide a flags parameter (as is the case with QTextEdit), we can still set
most flags using setWFlags().

Since we allow users to create any number of editor windows, we must make some provision
for naming them so that they can be distinguished before they have been saved for the first
time. One common way of handling this is to allocate names that include a number (for
example, document1.txt). We use the isUntitled variable to distinguish between names
supplied by the user and names we have created programmatically.

After the constructor, we expect either newFile() or open() to be called.

void Editor::newFile()
{
 static int documentNumber = 1;

 curFile = tr("document%1.txt").arg(documentNumber);
 setCaption(curFile);
 isUntitled = true;
 ++documentNumber;
}

The newFile() function generates a name like document2.txt for the new document. The code
belongs in newFile(), rather than the constructor, because we don't want to consume numbers
when we call open() to open an existing document in a newly created Editor. Since
documentNumber is declared static, it is shared across all Editor instances.

bool Editor::open()
{
 QString fileName =
 QFileDialog::getOpenFileName(".", fileFilters, this);
 if (fileName.isEmpty())
 return false;

 return openFile(fileName);
}

The open() function tries to open an existing file using openFile().

bool Editor::save()
{
 if (isUntitled) {
 return saveAs();
 } else {
 saveFile(curFile);
 return true;
 }
}

The save() function uses the isUntitled variable to determine whether it should call saveFile
() or saveAs().

void Editor::closeEvent(QCloseEvent *event)
{
 if (maybeSave())
 event->accept();
 else
 event->ignore();
}

The closeEvent() function is reimplemented to allow the user to save unsaved changes. The
logic is coded in the maybeSave() function, which pops up a message box that asks, "Do you
want to save your changes?" If maybeSave() returns true, we accept the close event;
otherwise, we "ignore" it and leave the window unaffected by it.

void Editor::setCurrentFile(const QString &fileName)
{
 curFile = fileName;
 setCaption(strippedName(curFile));
 isUntitled = false;
 setModified(false);
}

The setCurrentFile() function is called from openFile() and saveFile() to update the
curFile and isUntitled variables, to set the window caption, and to set the editor's
"modified" flag to false. The Editor class inherits setModified() and isModified() from
QTextEdit, so it doesn't need to maintain its own modified flag. Whenever the user modifies
the text in the editor, QTextEdit emits the modificationChanged() signal and sets its internal
modified flag to true.

QSize Editor::sizeHint() const
{
 return QSize(72 * fontMetrics().width('x'),
 25 * fontMetrics().lineSpacing());
}

The sizeHint() function returns a size based on the width of the letter 'x' and the height of a
text line. QWorkspace uses the size hint to give an initial size to the window.

Finally, here's the Editor application's main.cpp file:

#include <qapplication.h>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow mainWin;
 app.setMainWidget(&mainWin);

 if (argc > 1) {
 for (int i = 1; i < argc; ++i)
 mainWin.openFile(argv[i]);
 } else {
 mainWin.newFile();
 }

 mainWin.show();
 return app.exec();
}

If the user specifies any files on the command line, we attempt to load them. Otherwise, we
start with an empty document. Qt-specific command-line options, such as -style and -font,
are automatically removed from the argument list by the QApplication constructor. So if we
write

editor -style=motif readme.txt

on the command line, the Editor application starts up with one document, readme.txt.

MDI is one way of handling multiple documents simultaneously. Another approach is to use
multiple top-level windows. This approach is covered in the "Multiple Documents" section of
Chapter 3.

[Team LiB]
[Team LiB]

Chapter 7. Event Processing
Reimplementing Event Handlers

Installing Event Filters

Staying Responsive During Intensive Processing

GUI applications are event-driven: Everything that happens once the application has started is
the result of an event. When we program with Qt, we seldom need to think about events,
because Qt widgets emit signals when something significant occurs. Events become useful when
we write our own custom widgets or when we want to modify the behavior of existing Qt
widgets.

In this chapter, we will explore Qt's event model. We will see how to handle the different types
of events in Qt. We will also look at how to use event filters to monitor events before they reach
their destinations. Finally, we will examine Qt's event loop, reviewing how to keep the user
interface responsive during intensive processing.

[Team LiB]

[Team LiB]

Reimplementing Event Handlers
Events are generated by the window system or by Qt in response to various occurrences. When
the user presses or releases a key or mouse button, a key or mouse event is generated. When
a window is moved to reveal a window that was underneath, a paint event is generated to tell
the newly visible window that it needs to repaint itself. An event is also generated whenever a
widget gains or loses keyboard focus. Most events are generated in response to user actions,
but some, like timer events, are generated independently by the system.

Events should not be confused with signals. Signals are useful when using a widget, whereas
events are useful when implementing a widget. For example, when we are using QPushButton,
we are more interested in its clicked() signal than in the low-level mouse or key events that
caused the signal to be emitted. But if we are implementing a class like QPushButton, we need
to write code to handle mouse and key events and emit the clicked() signal when necessary.

Events are notified to objects through their event() function, inherited from QObject. The
event() implementation in QWidget forwards the most common types of events to specific
event handlers, such as mousePressEvent(), keyPressEvent(), and paintEvent(), and
ignores other kinds of events.

We have already seen many event handlers when implementing MainWindow, IconEditor,
Plotter, ImageEditor, and Editor in the previous chapters. There are many other types of
events, listed in the QEvent reference documentation, and it is also possible to create custom
event types and dispatch custom events ourselves. Custom events are particularly useful in
multithreaded applications, so they are discussed in Chapter 17 (Multithreading). Here, we will
review two event types that deserve more explanation: key events and timer events.

Key events are handled by reimplementing keyPressEvent() and keyReleaseEvent(). The
Plotter widget reimplements keyPressEvent(). Normally, we only need to reimplement
keyPressEvent() since the only keys for which release is important are the modifier keys Ctrl,
Shift, and Alt, and these can be checked for in a keyPressEvent() using state(). For example,
if we were implementing a CodeEditor widget, its stripped-down keyPressEvent() that
distinguishes between Home and Ctrl+Home would look like this:

void CodeEditor::keyPressEvent(QKeyEvent *event)
{
 switch (event->key()) {
 case Key_Home:
 if (event->state() & ControlButton)
 goToBeginningOfDocument();
 else
 goToBeginningOfLine();
 break;
 case Key_End:
 ...
 default:
 QWidget::keyPressEvent(event);
 }
}

The Tab and Backtab (Shift+Tab) keys are special cases. They are handled by QWidget::event
() before it calls keyPressEvent(), with the semantic of passing the focus to the next or
previous widget in the focus chain. This behavior is usually what we want, but in a CodeEditor
widget, we might prefer to make Tab indent a line. The event() reimplementation would then
look like this:

bool CodeEditor::event(QEvent * event)
{
 if (event->type() == QEvent::KeyPress) {
 QKeyEvent *keyEvent = (QKeyEvent *) event;
 if (keyEvent->key() == Key_Tab) {
 insertAtCurrentPosition('\t');
 return true;
 }
 }
 return QWidget::event(event);
}

If the event is a key press, we cast the QEvent object to a QKeyEvent and check which key was
pressed. If the key is Tab, we do some processing and return true to tell Qt that we have
handled the event. If we returned false, Qt would propagate the event to the parent widget.

A higher-level approach for implementing key bindings is to use a QAction. For example, if
goToBeginningOfLine() and goToBeginningOfDocument() are public slots in the CodeEditor
widget, and the CodeEditor is used as the central widget in a MainWindow class, we could add
the key bindings with the following code:

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 editor = new CodeEditor(this);
 setCentralWidget(editor);

 goToBeginningOfLineAct =
 new QAction(tr("Go to Beginning of Line"),
 tr("Home"), this);
 connect(goToBeginningOfLineAct, SIGNAL(activated()),
 editor, SLOT(goToBeginningOfLine()));

 goToBeginningOfDocumentAct =
 new QAction(tr("Go to Beginning of Document"),
 tr("Ctrl+Home"), this);
 connect(goToBeginningOfDocumentAct, SIGNAL(activated()),
 editor, SLOT(goToBeginningOfDocument()));
 ...
}

This makes it easy to add the commands to a menu or a toolbar, as we saw in Chapter 3. If the
commands don't appear in the user interface, the QAction objects could be replaced with a
QAccel object, the class used by QAction internally to support key bindings.

The choice between reimplementing keyPressEvent() and using QAction (or QAccel) is similar
to that between reimplementing resizeEvent() and using a QLayout subclass. If we are
implementing a custom widget by subclassing QWidget, it's straightforward to reimplement a
few more event handlers and hard-code the behavior there. But if we are merely using a
widget, the higherlevel interfaces provided by QAction and QLayout are more convenient.

Another common type of event is the timer event. While most types of events occur as a result
of a user action, timer events allow applications to perform processing at regular time intervals.
Timer events can be used to implement blinking cursors and other animations, or simply to
refresh the display.

To demonstrate timer events, we will implement a Ticker widget. This widget shows a text
banner that scrolls left by one pixel every 30 milliseconds. If the widget is wider than the text,
the text is repeated as often as necessary to fill the entire width of the widget.

Figure 7.1. The Ticker widget

Here's the header file:

#ifndef TICKER_H
#define TICKER_H

#include <qwidget.h>

class Ticker : public QWidget
{
 Q_OBJECT
 Q_PROPERTY(QString text READ text WRITE setText)

public:
 Ticker(QWidget *parent = 0, const char *name = 0);

 void setText(const QString &newText);
 QString text() const { return myText; }
 QSize sizeHint() const;

protected:
 void paintEvent(QPaintEvent *event);
 void timerEvent(QTimerEvent *event);
 void showEvent(QShowEvent *event);
 void hideEvent(QHideEvent *event);

private:
 QString myText;
 int offset;
 int myTimerId;
};

#endif

We reimplement four event handlers in Ticker, three of which we have not seen before:
timerEvent(), showEvent(), and hideEvent().

Now let's review the implementation:

#include <qpainter.h>

#include "ticker.h"

Ticker::Ticker(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 offset = 0;
 myTimerId = 0;
}

The constructor initializes the offset variable to 0. The x coordinate at which the text is drawn
is derived from the offset value.

void Ticker::setText(const QString &newText)
{
 myText = newText;
 update();

 updateGeometry();
}

The setText() function sets the text to display. It calls update() to force a repaint and
updateGeometry() to notify any layout manager responsible for the Ticker widget about a size
hint change.

QSize Ticker::sizeHint() const
{
 return fontMetrics().size(0, text());
}

The sizeHint() function returns the space needed by the text as the widget's ideal size. The
QWidget::fontMetrics() function returns a QFontMetrics object that can be queried to obtain
information relating to the widget's font. In this case, we ask for the size required by the given
text.

void Ticker::paintEvent(QPaintEvent *)
{
 QPainter painter(this);

 int textWidth = fontMetrics().width(text());
 if (textWidth < 1)
 return;
 int x = -offset;
 while (x < width()) {
 painter.drawText(x, 0, textWidth, height(),
 AlignLeft | AlignVCenter, text());
 x += textWidth;
 }
}

The paintEvent() function draws the text using QPainter::drawText(). It uses fontMetrics
() to ascertain how much horizontal space the text requires, and then draws the text as many
times as necessary to fill the entire width of the widget, taking offset into account.

void Ticker::showEvent(QShowEvent *)
{
 myTimerId = startTimer(30);
}

The showEvent() function starts a timer. The call to QObject::startTimer() returns an ID
number, which we can use later to identify the timer. QObject supports multiple independent
timers, each with its own time interval. After the call to startTimer(), Qt will generate a timer
event approximately every 30 milliseconds; the accuracy depends on the underlying operating
system.

We could have called startTimer() in the Ticker constructor, but we save some resources by
having Qt generate timer events only when the widget is actually visible.

void Ticker::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 ++offset;
 if (offset >= fontMetrics().width(text()))
 offset = 0;
 scroll(-1, 0);
 } else {
 QWidget::timerEvent(event);
 }

}

The timerEvent() function is called at intervals by the system. It increments offset by 1 to
simulate movement, wrapping at the width of the text. Then it scrolls the contents of the widget
one pixel to the left using QWidget::scroll(). It would have been sufficient to call update()
instead of scroll(), but scroll() is more efficient and prevents flicker, because it simply
moves the existing pixels on screen and only generates a paint event for the widget's newly
revealed area (a 1-pixel-wide strip in this case).

If the timer event isn't for the timer we are interested in, we pass it on to our base class.

void Ticker::hideEvent(QHideEvent *)
{
 killTimer(myTimerId);
}

The hideEvent() function calls QObject::killTimer() to stop the timer.

Timer events are low-level, and if we need multiple timers, it can become cumbersome to keep
track of all the timer IDs. In such situations, it is usually easier to create a QTimer object for
each timer. QTimer emits the timeout() signal at each time interval. QTimer also provides a
convenient interface for single-shot timers (timers that time out just once).
[Team LiB]
[Team LiB]

Installing Event Filters
One really powerful feature of Qt's event model is that a QObject instance can be set to
monitor the events of another QObject instance before the latter object even sees them.

Let's suppose that we have a CustomerInfoDialog widget composed of several QLineEdits
and that we want to use the Space key to move the focus to the next QLineEdit. This non-
standard behavior might be appropriate for an in-house application whose users are trained in
its use. A straightforward solution is to subclass QLineEdit and reimplement keyPressEvent()
to call focusNextPrevChild(), like this:

void MyLineEdit::keyPressEvent(QKeyEvent *event)
{
 if (event->key() == Key_Space)
 focusNextPrevChild(true);
 else
 QLineEdit::keyPressEvent(event);
}

This approach has many disadvantages. Because MyLineEdit isn't a standard Qt class, it must
be integrated with Qt Designer if we want to design forms that make use of it. Also, if we use
several different kinds of widgets in the form (for example, QComboBoxes and QSpinBoxes), we
must also subclass them to make them exhibit the same behavior and integrate them with Qt
Designer as well.

A better solution is to make CustomerInfoDialog monitor its child widgets' key press events
and implement the required behavior in the monitoring code. This can be achieved using event
filters. Setting up an event filter involves two steps:

1. Register the monitoring object with the target object by calling installEventFilter() on
the target.

2. Handle the target object's events in the monitor's eventFilter() function.

A good place to register the monitoring object is in the CustomerInfoDialog constructor:

CustomerInfoDialog::CustomerInfoDialog(QWidget *parent,
 const char *name)
 : QDialog(parent, name)
{
 ...
 firstNameEdit->installEventFilter(this);
 lastNameEdit->installEventFilter(this);
 cityEdit->installEventFilter(this);
 phoneNumberEdit->installEventFilter(this);
}

Once the event filter is registered, the events that are sent to the firstNameEdit,
lastNameEdit, cityEdit, and phoneNumberEdit widgets are first sent to the
CustomerInfoDialog's eventFilter() function before they are sent on to their intended
destination. (If multiple event filters are installed on the same object, the filters are activated in
turn, from the most recently installed back to the first installed.)

Here's the eventFilter() function that receives the events:

bool CustomerInfoDialog::eventFilter(QObject *target, QEvent *event)
{
 if (target == firstNameEdit || target == lastNameEdit
 || target == cityEdit || target == phoneNumberEdit) {
 if (event->type() == QEvent::KeyPress) {
 QKeyEvent *keyEvent = (QKeyEvent *) event;
 if (keyEvent->key() == Key_Space) {
 focusNextPrevChild(true);
 return true;

 }
 }
 }
 return QDialog::evenFilter(target, event);
}

First, we check to see if the target widget is one of the QLineEdits. It's easy to forget that the
base class, QDialog, might monitor some widgets of its own. (In Qt 3.2, this is not the case for
QDialog. However, other Qt widget classes, such as QMainWindow, do monitor some of their
child widgets for various reasons.)

If the event is a key press, we cast it to QKeyEvent and check which key is pressed. If the
pressed key is Space, we call focusNextPrevChild() to pass focus on to the next widget in the
focus chain, and we return true to tell Qt that we have handled the event. If we returned
false, Qt would send the event to its intended target, resulting in a spurious space being
inserted into the QLineEdit.

If the event isn't a Space key press, we pass control to the base class's implementation of
eventFilter().

Qt offers five levels at which events can be processed and filtered:

1. We can reimplement a specific event handler.

Reimplementing event handlers such as mousePressEvent(), keyPressEvent(), and

paintEvent() is by far the most common way to process events. We have already seen
many examples of this.

2. We can reimplement QObject::event().

By reimplementing the event() function, we can process events before they reach the
specific event handlers. This approach is mostly needed to override the default meaning
of the Tab key, as shown earlier (p. 164). This is also used to handle rare types of events
for which no specific event handler exists (for example, LayoutDirectionChange). When
we reimplement event(), we need to call the base class's event() function for handling
the cases we don't explicitly handle.

3. We can install an event filter on a single QObject.

Once an object has been registered using installEventFilter(), all the events for the
target object are first sent to the monitoring object's eventFilter() function. We have
used this approach to handle Space key presses in the CustomerInfoDialog example
above.

4. We can install an event filter on the QApplication object.

Once an event filter has been registered for qApp (the unique QApplication object),
every event for every object in the application is sent to the eventFilter() function
before it is sent to any other event filter. This approach is mostly useful for debugging
and for hiding Easter eggs. It can also be used to handle mouse events sent to disabled
widgets, which QApplication normally discards.

5. We can subclass QApplication and reimplement notify().

Qt calls QApplication::notify() to send out an event. Reimplementing this function is
the only way to get all the events, before any event filters get the opportunity to look at
them. Event filters are generally more useful, because there can be any number of
concurrent event filters, but only one notify() function.

Many event types, including mouse and key events, can be propagated. If the event has not
been handled on the way to its target object or by the target object itself, the whole event
processing process is repeated, but this time with the target object's parent as the new target.
This continues, going from parent to parent, until either the event is handled or the top-level
object is reached.

Figure 7.2 shows how a key press event is propagated from child to parent in a dialog. When
the user presses a key, the event is first sent to the widget that has focus, in this case the
bottom-right QCheckBox. If the QCheckBox doesn't handle the event, Qt sends it to the
QGroupBox, and finally to the QDialog object.

Figure 7.2. Event propagation in a dialog

[Team LiB]
[Team LiB]

Staying Responsive During Intensive Processing
When we call QApplication::exec(), we start Qt's event loop. Qt issues a few events on
startup to show and paint the widgets. After that, the event loop is running, constantly checking
to see if any events have occurred and dispatching these events to QObjects in the application.

While one event is being processed, additional events may be generated and appended to Qt's
event queue. If we spend too much time processing a particular event, the user interface will
become unresponsive. For example, any events generated by the window system while the
application is saving a file to disk will not be processed until the file is saved. During the save,
the application will not respond to requests from the window system to repaint itself.

One solution is to use multiple threads: one thread for the application's user interface and
another thread to perform file saving (or any other time-consuming operation). This way, the
application's user interface will stay responsive while the file is being saved. We will see how to
achieve this in Chapter 17.

A simpler solution is to make frequent calls to QApplication::processEvents() in the file
saving code. This function tells Qt to process any pending events, and then returns control to
the caller. In fact, QApplication::exec() is little more than a while loop around a
processEvents() function call.

Here's an example of how we can keep the user interface responsive using processEvents(),
based on the file saving code for Spreadsheet (p. 77):

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);
 ...
 for (int row = 0; row < NumRows; ++row) {
 for (int col = 0; col < NumCols; ++col) {
 QString str = formula(row, col);
 if (!str.isEmpty())
 out << (Q_UINT16)row << (Q_UINT16)col << str;
 }
 qApp->processEvents();
 }
 return true;
}

One danger with this approach is that the user might close the main window while the
application is still saving, or even click File|Save a second time, resulting in undefined behavior.
The easiest solution to this problem is to replace the

qApp->processEvents();

call with a

qApp->eventLoop()->processEvents(QEventLoop::ExcludeUserInput);

call, which tells Qt to ignore mouse and key events.

Often, we want to show a QProgressDialog while a long running operation is taking place.
QProgressDialog has a progress bar that keeps the user informed about the progress being
made by the application. QProgressDialog also provides a Cancel button that allows the user
to abort the operation. Here's the code for saving a Spreadsheet file using this approach:

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);
 ...
 QProgressDialog progress(tr("Saving file..."), tr("Cancel"),
 NumRows);
 progress.setModal(true);
 for (int row = 0; row < NumRows; ++row) {
 progress.setProgress(row);
 qApp->processEvents();
 if (progress.wasCanceled()) {
 file.remove();
 return false;
 }

 for (int col = 0; col < NumCols; ++col) {
 QString str = formula(row, col);
 if (!str.isEmpty())
 out << (Q_UINT16)row << (Q_UINT16)col << str;
 }
 }
 return true;
}

We create a QProgressDialog with NumRows as the total number of steps. Then, for each row,
we call setProgress() to update the progress bar. QProgressDialog automatically computes a
percentage by dividing the current progress value by the total number of steps. We call
QApplication::processEvents() to process any repaint events or any user clicks or key
presses (for example, to allow the user to click Cancel). If the user clicks Cancel, we abort the
save and remove the file.

We don't call show() on the QProgressDialog because progress dialogs do that for themselves.
If the operation turns out to be short, presumably because the file to save is small or because
the machine is fast, QProgressDialog will detect this and will not show itself at all.

There is a completely different way of dealing with long running operations. Instead of
performing the processing when the user requests, we can defer the processing until the
application is idle. This can work if the processing can be safely interrupted and resumed, since
we cannot predict how long the application will be idle.

In Qt, this approach can be implemented by using a special kind of timer: a 0-millisecond timer.
These timers time out whenever there are no pending events. Here's an example timerEvent()
implementation that shows the idle processing approach:

void Spreadsheet::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 while (step < MaxStep && !qApp->hasPendingEvents()) {
 performStep(step);

 ++step;
 }
 } else {
 QTable::timerEvent(event);
 }
}

If hasPendingEvents() returns true, we stop processing and give control back to Qt. The
processing will resume when Qt has handled all its pending events.

[Team LiB]
[Team LiB]

Chapter 8. 2D and 3D Graphics
Painting with QPainter

Graphics with QCanvas

Printing

Graphics with OpenGL

In this chapter, we will explore Qt's graphics capabilities. The cornerstone of Qt's 2D drawing
engine is QPainter, which can be used to draw on a widget on the screen, on an off-screen
pixmap, or on a physical printer. Qt also includes a QCanvas class that provides a higher-level
way of doing graphics, using an item-based approach that can efficiently handle thousands and
thousands of items of various shapes. Many predefined items are provided, and it is easy to
create custom canvas items.

An alternative to QPainter and QCanvas is to use the OpenGL library. OpenGL is a standard
library for drawing 3D graphics, but it can also be used for drawing 2D graphics. It is very easy
to integrate OpenGL code into Qt applications, as we will demonstrate.
[Team LiB]
[Team LiB]

Painting with QPainter
A QPainter can be used to draw on a "paint device", such as a widget or a pixmap. QPainter is
useful when we write custom widgets or custom item classes with their own look and feel.
QPainter is also the class to use for printing; this will be explained in detail later in the chapter.

QPainter can draw geometric shapes: points, lines, rectangles, ellipses, arcs, chords, pie
segments, polygons, and cubic Bézier curves. It can also draw pixmaps, images, and text.

When we pass a paint device to the QPainter constructor, QPainter adopts some settings from
the device and initializes other settings to default values. These settings influence the way
drawing is performed. The three most important are the painter's pen, brush, and font:

The pen is used for drawing lines and geometric shape boundaries. It consists of a color,
a width, a line style, a cap style, and a join style.

Figure 8.1. QPainter functions for drawing geometric shapes

Figure 8.2. Pen styles

The brush is the pattern used for filling geometric shapes. It consists of a color and a
style.

The font is used for drawing text. A font has many attributes, including a family and a
point size.

These settings can be modified by calling one of setPen(), setBrush(), and setFont() with a
QPen, QBrush, or QFont object.

Figure 8.3. Cap and join styles

Figure 8.4. Brush styles

Here's the code to draw the ellipse shown in Figure 8.5 (a):

Figure 8.5. Geometric shape examples

QPainter painter(this);
painter.setPen(QPen(black, 3, DashDotLine));
painter.setBrush(QBrush(red, SolidPattern));
painter.drawEllipse(20, 20, 100, 60);

Here's the code to draw the pie segment shown in Figure 8.5 (b):

QPainter painter(this);
painter.setPen(QPen(black, 5, SolidLine));
painter.setBrush(QBrush(red, DiagCrossPattern));

painter.drawPie(20, 100, 60, 60 * 16, 270 * 16);

The last two arguments to drawPie() are expressed in sixteenths of a degree.

Here's the code to draw the cubic Bézier curve shown in Figure 8.5 (c):

QPainter painter(this);
QPointArray points(4);
points[0] = QPoint(20, 80);
points[1] = QPoint(50, 20);
points[2] = QPoint(80, 20);
points[3] = QPoint(120, 80);
painter.setPen(QPen(black, 3, SolidLine));
painter.drawCubicBezier(points);

The current state of a painter can be saved on a stack by calling save() and restored later on
by calling restore(). This can be useful if we want to temporarily change some painter settings
and then reset them to their previous values.

The other settings that control a painter, in addition to the pen, brush, and font, are:

The background color is used to fill the background of geometric shapes (beneath the
brush pattern), text, or bitmaps when the background mode is OpaqueMode (the default is
TransparentMode).

The raster operation specifies how the newly drawn pixels should interact with the pixels
already present on the paint device. The default is CopyROP, which means that the new
pixels are simply copied onto the device, ignoring the previous pixel value. Other raster
operations include XorROP, NotROP, AndROP, and NotAndROP.

The brush origin is the starting point for brush patterns, normally the top-left corner of
the widget.

The clip region is the area of the device that can be painted. Drawing operations
performed outside the clip region are ignored.

The viewport, window, and world matrix determine how logical QPainter coordinates map
to physical paint device coordinates. By default, these are set up so that the logical and
physical coordinate systems coincide.

Let's take a closer look at the coordinate system defined by the viewport, window, and world
matrix. (In this context, the term "window" does not refer to a window in the sense of a top-
level widget, and the "viewport" has nothing to do with QScrollView's viewport.)

The viewport and the window are tightly bound. The viewport is an arbitrary rectangle specified
in physical coordinates. The window specifies the same rectangle, but in logical coordinates.
When we do the painting, we specify points in logical coordinates, and those coordinates are
converted into physical coordinates in a linear algebraic manner, based on the current window–
viewport settings.

By default, the viewport and the window are set to the device's rectangle. For example, if the
device is a 320 x 200 widget, both the viewport and the window are the same 320 x 200
rectangle with its top-left corner at position (0, 0). In this case, the logical and physical
coordinate systems are the same.

The window–viewport mechanism is useful to make the drawing code independent of the size or

resolution of the paint device. We can always do the arithmetic to map logical coordinates to
physical coordinates ourselves, but it's usually simpler to let QPainter do the work. For
example, if we want the logical coordinates to extend from (-50, -50) to (+50, +50), with (0,
0) in the middle, we can set the window as follows:

painter.setWindow(QRect(-50, -50, 100, 100));

The (-50, -50) pair specifies the origin, and the (100, 100) pair specifies the width and height.
This means that the logical coordinates (-50, -50) now correspond to the physical coordinates
(0, 0), and the logical coordinates (+50, +50) correspond to the physical coordinates (320,
200). In this example, as is often the case, we don't need to change the viewport.

Figure 8.6. Converting logical coordinates into physical coordinates

Now comes the world matrix. The world matrix is a transformation matrix that is applied in
addition to the window–viewport conversion. It allows us to translate, scale, rotate, or shear the
items we are drawing. For example, if we wanted to draw text at a 45° angle, we would use this
code:

QWMatrix matrix;
matrix.rotate(45.0);
painter.setWorldMatrix(matrix);
painter.drawText(rect, AlignCenter, tr("Revenue"));

The logical coordinates we pass to drawText() are transformed by the world matrix, then
mapped to physical coordinates using the window–viewport settings.

If we specify multiple transformations, they are applied in the order in which they are given. For
example, if we want to use the point (10, 20) as the rotation's pivot point, we can do so by
translating the window, performing the rotation, and then translating the window back to its
original position:

QWMatrix matrix;
matrix.translate(-10.0, -20.0);
matrix.rotate(45.0);
matrix.translate(+10.0, +20.0);
painter.setWorldMatrix(matrix);
painter.drawText(rect, AlignCenter, tr("Revenue"));

A simpler way to specify transformations is to use QPainter's translate(), scale(), rotate
(), and shear() convenience functions:

painter.translate(-10.0, -20.0);
painter.rotate(45.0);
painter.translate(+10.0, +20.0);
painter.drawText(rect, AlignCenter, tr("Revenue"));

But if we want to use the same transformations repeatedly, it's faster to store them in a
QWMatrix object and set the world matrix on the painter whenever the transformations are

needed.

If we want to just save the world matrix and restore it later, we can use saveWorldMatrix()
and restoreWorldMatrix().

To illustrate painter transformations, we will review the code of the OvenTimer widget shown in
Figure 8.7. The OvenTimer widget is modeled after the physical oven timers that were used
before it was common to have ovens with clocks builtin. The user can click a notch to set the
duration. The wheel automatically turns counterclockwise until 0 is reached, at which point
OvenTimer emits the timeout() signal.

Figure 8.7. The OvenTimer widget

class OvenTimer : public QWidget
{
 Q_OBJECT
public:
 OvenTimer(QWidget *parent, const char *name = 0);

 void setDuration(int secs);
 int duration() const;
 void draw(QPainter *painter);

signals:
 void timeout();

protected:
 void paintEvent(QPaintEvent *event);
 void mousePressEvent(QMouseEvent *event);

private:
 QDateTime finishTime;
 QTimer *updateTimer;
 QTimer *finishTimer;
};

The OvenTimer class inherits QWidget and reimplements two virtual functions: paintEvent()
and mousePressEvent().

#include <qpainter.h>
#include <qpixmap.h>
#include <qtimer.h>

#include <cmath>
using namespace std;

#include "oventimer.h"

const double DegreesPerMinute = 7.0;
const double DegreesPerSecond = DegreesPerMinute / 60;
const int MaxMinutes = 45;
const int MaxSeconds = MaxMinutes * 60;
const int UpdateInterval = 10;

OvenTimer::OvenTimer(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 finishTime = QDateTime::currentDateTime();
 updateTimer = new QTimer(this);
 finishTimer = new QTimer(this);
 connect(updateTimer, SIGNAL(timeout()), this, SLOT(update()));
 connect(finishTimer, SIGNAL(timeout()), this, SIGNAL(timeout()));
}

In the constructor, we create two QTimer objects: updateTimer is used to refresh the
appearance of the widget at regular intervals, and finishTimer emits the widget's timeout()
signal when the timer reaches 0.

void OvenTimer::setDuration(int secs)
{
 if (secs > MaxSeconds)
 secs = MaxSeconds;
 finishTime = QDateTime::currentDateTime().addSecs(secs);
 updateTimer->start(UpdateInterval * 1000, false);
 finishTimer->start(secs * 1000, true);
 update();
}

The setDuration() function sets the duration of the oven timer to the given number of
seconds. The false argument passed in the updateTimer's start() call tells Qt that this a
repeating timer that will time out every 10 seconds. The finishTimer only needs to timeout
once, so we use a true argument to indicate that it is a single-shot timer. We compute the
finish time by adding the duration in seconds to the current time, obtained from
QDateTime::currentDateTime(), and store it in the finishTime private variable.

The finishTime variable is of type QDateTime, the Qt data type for storing a date and a time.
The date component of the QDateTime is important in situations where the current time is
before midnight and the finish time is after midnight.

int OvenTimer::duration() const
{
 int secs = QDateTime::currentDateTime().secsTo(finishTime);
 if (secs < 0)
 secs = 0;
 return secs;
}

The duration() function returns the number of seconds left before the timer is due to finish.

void OvenTimer::mousePressEvent(QMouseEvent *event)
{
 QPoint point = event->pos() - rect().center();
 double theta = atan2(-(double)point.x(), -(double)point.y())
 * 180 / 3.14159265359;
 setDuration((int)(duration() + theta / DegreesPerSecond));
 update();
}

If the user clicks the widget, we find the closest notch using a subtle but effective mathematical
formula, and we use the result to set the new duration. Then we schedule a repaint. The notch
that the user clicked will now be at the top and will move counterclockwise as time passes until
0 is reached.

void OvenTimer::paintEvent(QPaintEvent *)
{
 QPainter painter(this);
 int side = QMIN(width(), height());
 painter.setViewport((width() - side) /2, (height() - side) /2,
 side, side);
 painter.setWindow(-50, -50, 100, 100);
 draw(&painter);
}

In paintEvent(), we set the viewport to be the largest square area that fits inside the widget,
and we set the window to be the rectangle(-50, -50, 100, 100), that is, the 100 x 100 rectangle
extending from (-50, -50) to (+50, +50). The QMIN() macro returns the lowest of its two
arguments.

Figure 8.8. The OvenTimer widget at three different sizes

If we had not set the viewport to be a square, the oven timer would be an ellipse when the
widget is resized to a non-square rectangle. In general, if we want to avoid such deformations,
we must set the viewport and the window to rectangles with the same aspect ratio.

The window setting of (-50, -50, 100, 100) was also chosen bearing these issues in mind:

QPainter's draw functions take int coordinate values. If we choose a window that is too
small, we might not be able to specify all the points we need as integers.

If we use a large window and use drawText() to draw some text, we will need a larger
font to compensate.

This makes (-50, -50, 100, 100) a better choice than, say, (-5, -5, 10, 10) or (-2000, -2000,
4000, 4000).

Now let's look at the drawing code:

void OvenTimer::draw(QPainter *painter)

{
 static const QCOORD triangle[3][2] = {
 { -2, -49 }, { +2, -49 }, { 0, -47 }
 };
 QPen thickPen(colorGroup().foreground(), 2);
 QPen thinPen(colorGroup().foreground(), 1);

 painter->setPen(thinPen);
 painter->setBrush(colorGroup().foreground());
 painter->drawConvexPolygon(QPointArray(3, &triangle[0] [0]));

We start by drawing the tiny triangle that marks the 0 position at the top of the widget. The
triangle is specified by three hard-coded coordinates, and we use drawConvexPolygon() to
render it. We could have used drawPolygon(), but when we know the polygon we are drawing
is convex, we can save some microseconds by calling drawConvexPolygon().

What is so convenient about the window–viewport mechanism is that we can hard-code the
coordinates we use in the draw commands and still get good resizing behavior. Nor do we have
to worry about non-square widgets; this is handled by setting the viewport appropriately.

painter->setPen(thickPen);
painter->setBrush(colorGroup().light());
painter->drawEllipse(-46, -46, 92, 92);
painter->setBrush(colorGroup().mid());
painter->drawEllipse(-20, -20, 40, 40);
painter->drawEllipse(-15, -15, 30, 30);

We draw the outer circle and the two inner circles. The outer circle is filled with the palette's
"light" component (typically white), while the two inner circles are filled with the "mid"
component (typically medium gray).

 int secs = duration();
 painter->rotate(secs * DegreesPerSecond);
 painter->drawRect(-8, -25, 16, 50);

 for (int i = 0; i <= MaxMinutes; ++i) {
 if (i % 5 == 0) {
 painter->setPen(thickPen);
 painter->drawLine(0, -41, 0, -44);
 painter->drawText(-15, -41, 30, 25,
 AlignHCenter | AlignTop,
 QString::number(i));
 } else {
 painter->setPen(thinPen);
 painter->drawLine(0, -42, 0, -44);
 }
 painter->rotate(-DegreesPerMinute);
 }
}

We draw the knob, the notches, and at every fifth notch we draw the number of minutes. We
call rotate() to rotate the painter's coordinate system. In the old coordinate system, the 0-
minute mark was on top; now, the 0-minute mark is moved to the place that's appropriate for
the time left. We draw the rectangular knob handle after the rotation, since its orientation
depends on the rotation angle.

In the for loop, we draw the tick marks along the outer circle's edge and the numbers for each
multiple of 5 minutes. The text is put in an invisible rectangle underneath the tick mark. At the
end of one iteration, we rotate the painter clockwise by 7°, the amount corresponding to one
minute. The next time we draw a tick mark, it will be at a different position around the circle,
although the coordinates we pass to the drawLine() and drawText() calls are always the

same.

Another way of implementing an oven timer would have been to compute the (x,y) positions
ourselves, using sin() and cos() to find the positions along the circle. But then we would still
need to use a translation and a rotation to draw the text at an angle.

There is one issue left: flicker. Every ten seconds, we repaint the widget entirely, causing it to
flicker each time. The solution is to add double buffering. This can be done by passing the
WNoAutoErase to the base class constructor and by replacing the paintEvent() function shown
earlier with this one:

void OvenTimer::paintEvent(QPaintEvent *event)
{
 static QPixmap pixmap;
 QRect rect = event->rect();

 QSize newSize = rect.size().expandedTo(pixmap.size());
 pixmap.resize(newSize);
 pixmap.fill(this, rect.topLeft());

 QPainter painter(&pixmap, this);
 int side = QMIN(width(), height());
 painter.setViewport((width() - side) / 2 - event->rect().x(),
 (height() - side) / 2 - event->rect().y(),
 side, side);
 painter.setWindow(-50, -50, 100, 100);
 draw(&painter);
 bitBlt(this, event->rect().topLeft(), &pixmap);
}

This time, we paint on a pixmap instead of on the widget directly. The pixmap is given the size
of the area to repaint, and the window–viewport pair is initialized in such a way that the
painting is performed the same as if it was done directly on the widget. The draw() function is
also unchanged. At the end, we copy the pixmap onto the widget using bitBlt().

This is similar to what we explained in the "Double Buffering" section of Chapter 5 (p. 113), but
there's one important difference: In Chapter 5, we used translate() to translate the painter,
while here we subtract the paint event's x and y coordinates when setting up the viewport.
Using translation here would not be as convenient, because the translation would have to be
expressed in logical window coordinates, whereas the event's rectangle is in physical
coordinates.
[Team LiB]
[Team LiB]

Graphics with QCanvas
QCanvas offers a higher-level interface for doing graphics than QPainter provides. A QCanvas
can contain items of any shape and uses double buffering internally to avoid flicker. For
applications that need to present many user-manipulable items, like data visualization
programs and 2D games, using QCanvas is often a better approach than reimplementing
QWidget::paintEvent() or QScrollView::drawContents() and painting everything manually.

The items shown on a QCanvas are instances of QCanvasItem or of one of its subclasses. Qt
provides a useful set of predefined subclasses: QCanvasLine, QCanvasRectangle,
QCanvasPolygon, QCanvasPolygonalItem, QCanvasEllipse, QCanvasSpline, QCanvasSprite,
and QCanvasText. These classes can themselves be subclassed to provide custom canvas items.

A QCanvas and its QCanvasItems are purely data and have no visual representation. To render

the canvas and its items, we must use a QCanvasView widget. This separation of the data from
its visual representation makes it possible to have multiple QCanvasView widgets visualizing the
same canvas. Each of these QCanvasViews can present its own portion of the canvas, possibly
with different transformation matrices.

QCanvas is highly optimized to handle a large number of items. When an item changes, QCanvas
only redraws the "chunks" that have changed. It also provides an efficient collision-detection
algorithm. For these reasons alone, it's worth considering QCanvas as an alternative to
reimplementing QWidget::paintEvent() or QScrollView::drawContents().

Figure 8.9. The DiagramView widget

To demonstrate QCanvas usage, we present the code for the DiagramView widget, a minimalist
diagram editor. The widget supports two kinds of shapes (boxes and lines) and provides a
context menu that lets the user add new boxes and lines, copy and paste them, delete them,
and edit their properties.

class DiagramView : public QCanvasView
{
 Q_OBJECT
public:
 DiagramView(QCanvas *canvas, QWidget *parent = 0,
 const char *name = 0);

public slots:
 void cut();
 void copy();
 void paste();
 void del();
 void properties();
 void addBox();
 void addLine();
 void bringToFront();
 void sendToBack();

The DiagramView class inherits QCanvasView, which itself inherits QScrollView. It provides
many public slots that an application could connect to. The slots are also used by the widget
itself to implement its context menu.

protected:
 void contentsContextMenuEvent(QContextMenuEvent *event);
 void contentsMousePressEvent(QMouseEvent *event);
 void contentsMouseMoveEvent(QMouseEvent *event);
 void contentsMouseDoubleClickEvent(QMouseEvent *event);

private:

 void createActions();
 void addItem(QCanvasItem *item);
 void setActiveItem(QCanvasItem *item);
 void showNewItem(QCanvasItem *item);

 QCanvasItem *pendingItem;
 QCanvasItem *activeItem;
 QPoint lastPos;
 int minZ;
 int maxZ;

 QAction *cutAct;
 QAction *copyAct;
 ...
 QAction *sendToBackAct;
};

The protected and private members of the class will be explained shortly.

Figure 8.10. The DiagramBox and DiagramLine canvas items

Along with the DiagramView class, we also need to define two custom canvas item classes to
represent the shapes we want to draw. We will call these classes DiagramBox and DiagramLine.

class DiagramBox : public QCanvasRectangle
{
public:
 enum { RTTI = 1001 };
 DiagramBox(QCanvas *canvas);
 ~DiagramBox();

 void setText(const QString &newText);
 QString text() const { return str; }
 void drawShape(QPainter &painter);
 QRect boundingRect() const;
 int rtti() const { return RTTI; }

private:
 QString str;
};

The DiagramBox class is a type of canvas item that displays a box and a piece of text. It inherits
some of its functionality from QCanvasRectangle, a QCanvasItem subclass that displays a
rectangle. To QCanvasRectangle we add the ability to show some text in the middle of the
rectangle and the ability to show tiny squares ("handles") at each corner to indicate that an
item is active. In a realworld application, we would make it possible to click and drag the
handles to resize the box, but to keep the code short we will not do so here.

The rtti() function is reimplemented from QCanvasItem. Its name stands for "run-time type
identification", and by comparing its return value with the RTTI constant, we can determine
whether an arbitrary item in the canvas is a DiagramBox or not. We could perform the same
check using C++'s dynamic_cast<T>() mechanism, but that would restrict us to C++ compilers
that support this feature.

The value of 1001 is arbitrary. Any value above 1000 is acceptable, as long as it doesn't collide
with other item types used in the same application.

class DiagramLine : public QCanvasLine
{
public:
 enum { RTTI = 1002 };

 DiagramLine(QCanvas *canvas);
 ~DiagramLine();

 QPoint offset() const { return QPoint((int)x(), (int)y()); }
 void drawShape(QPainter &painter);
 QPointArray areaPoints() const;
 int rtti() const { return RTTI; }
};

The DiagramLine class is a canvas item that displays a line. It inherits some of its functionality
from QCanvasLine, and adds the ability to show handles at each end to indicate that the line is
active.

Now we will review the implementations of these three classes.

DiagramView::DiagramView(QCanvas *canvas, QWidget *parent,
 const char *name)
 : QCanvasView(canvas, parent, name)
{
 pendingItem = 0;
 activeItem = 0;
 minZ = 0;
 maxZ = 0;
 createActions();
}

The DiagramView constructor takes a canvas as its first argument and passes it on to the base
class constructor. The DiagramView will show this canvas.

The QActions are created in the createActions() private function. We have implemented
several versions of this function in earlier chapters, and this one follows the same pattern, so
we will not reproduce it here.

void DiagramView::contentsContextMenuEvent(QContextMenuEvent *event)
{
 QPopupMenu contextMenu(this);
 if (activeItem) {
 cutAct->addTo(&contextMenu);
 copyAct->addTo(&contextMenu);
 deleteAct->addTo(&contextMenu);
 contextMenu.insertSeparator();
 bringToFrontAct->addTo(&contextMenu);
 sendToBackAct->addTo(&contextMenu);
 contextMenu.insertSeparator();
 propertiesAct->addTo(&contextMenu);
 } else {
 pasteAct->addTo(&contextMenu);
 contextMenu.insertSeparator();
 addBoxAct->addTo(&contextMenu);
 addLineAct->addTo(&contextMenu);
 }
 contextMenu.exec(event->globalPos());
}

The contentsContextMenuEvent() function is reimplemented from QScrollView to create a
context menu.

Figure 8.11. The DiagramView widget's context menus

If an item is active, the menu is populated with the actions that make sense on an item: Cut,
Copy, Delete, Bring to Front, Send to Back, and Properties. Otherwise, the menu is populated
with Paste, Add Box, and Add Line.

void DiagramView::addBox()
{
 addItem(new DiagramBox(canvas()));
}

void DiagramView::addLine()
{
 addItem(new DiagramLine(canvas()));
}

The addBox() and addLine() slots create a DiagramBox or a DiagramLine item on the canvas
and then call addItem() to perform the rest of the work.

void DiagramView::addItem(QCanvasItem *item)
{
 delete pendingItem;
 pendingItem = item;
 setActiveItem(0);
 setCursor(crossCursor);
}

The addItem() private function changes the cursor to a crosshair and sets pendingItem to be
the newly created item. The item is not visible in the canvas until we call show() on it.

When the user chooses Add Box or Add Line from the context menu, the cursor changes to a
crosshair. The item is not actually added until the user clicks on the canvas.

void DiagramView::contentsMousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton && pendingItem) {
 pendingItem->move(event->pos().x(), event->pos().y());
 showNewItem(pendingItem);
 pendingItem = 0;
 unsetCursor();
 } else {
 QCanvasItemList items = canvas()->collisions(event->pos());
 if (items.empty())
 setActiveItem(0);
 else
 setActiveItem(*items.begin());
 }
 lastPos = event->pos();

}

If users press the left mouse button while the cursor is a crosshair, they have already asked to
create a box or line, and have now clicked the canvas at the position where they want the new
item to appear. We move the "pending" item to the position of the click, show it, and reset the
cursor to the normal arrow cursor.

Any other mouse press event on the canvas is interpreted as an attempt to select or deselect
an item. We call collisions() on the canvas to obtain a list of all the items under the cursor
and make the first item the current item. If the list contains many items, the first one is always
the one that is rendered on top of the others.

void DiagramView::contentsMouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton) {
 if (activeItem) {
 activeItem->moveBy(event->pos().x() - lastPos.x(),
 event->pos().y() - lastPos.y());
 lastPos = event->pos();
 canvas()->update();
 }
 }
}

The user can move an item on the canvas by pressing the left mouse button on an item and
dragging. Each time we get a mouse move event, we move the item by the horizontal and
vertical distance by which the mouse moved and call update() on the canvas. Whenever we
modify a canvas item, we must call update() to notify the canvas that it needs to redraw itself.

void DiagramView::contentsMouseDoubleClickEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton && activeItem
 && activeItem->rtti() == DiagramBox::RTTI) {
 DiagramBox *box = (DiagramBox *)activeItem;
 bool ok;

 QString newText = QInputDialog::getText(
 tr("Diagram"), tr("Enter new text:"),
 QLineEdit::Normal, box->text(), &ok, this);
 if (ok) {
 box->setText(newText);
 canvas()->update();
 }
 }
}

If the user double-clicks an item, we call the item's rtti() function and compare its return
value with DiagramBox::RTTI (defined as 1001).

Figure 8.12. Changing the text of a DiagramBox item

If the item is a DiagramBox, we pop up a QInputDialog to allow the user to change the text

shown in the box. The QInputDialog class provides a label, a line editor, an OK button, and a
Cancel button.

void DiagramView::bringToFront()
{
 if (activeItem) {
 ++maxZ;
 activeItem->setZ(maxZ);
 canvas()->update();
 }
}

The bringToFront() slot raises the currently active item to be on top of the other items in the
canvas. This is accomplished by setting the item's z coordinate to a value that is higher than
any other value attributed to an item so far. When two items occupy the same (x, y) position,
the item that has the highest z value is shown in front of the other item. (If the z values are
equal, QCanvas will break the tie by comparing the item pointers.)

void DiagramView::sendToBack()
{
 if (activeItem) {
 --minZ;
 activeItem->setZ(minZ);
 canvas()->update();
 }
}

The sendToBack() slot puts the currently active item behind all the other items in the canvas.
This is done by setting the item's z coordinate to a value that is lower than any other z value
attributed to an item so far.

void DiagramView::cut()
{
 copy();
 del();
}

The cut() slot is trivial.

void DiagramView::copy()
{
 if (activeItem) {
 QString str;

 if (activeItem->rtti() == DiagramBox::RTTI) {
 DiagramBox *box = (DiagramBox *) activeItem;
 str = QString("DiagramBox %1 %2 %3 %4 %5")
 .arg(box->width())
 .arg(box->height())
 .arg(box->pen().color().name())
 .arg(box->brush().color().name())
 .arg(box->text());
 } else if (activeItem->rtti() == DiagramLine::RTTI) {
 DiagramLine * line = (DiagramLine *)activeItem;
 QPoint delta = line->endPoint() - line->startPoint();
 str = QString("DiagramLine %1 %2 %3")
 .arg(delta.x())
 .arg(delta.y())
 .arg(line->pen().color().name());
 }
 QApplication::clipboard()->setText(str);

 }
}

The copy() slot converts the active item into a string and copies the string to the clipboard. The
string contains all the information necessary to reconstruct the item. For example, a black-on-
white 320 x 40 box containing "My Left Foot" would be represented by this string:

DiagramBox 320 40 #000000 #ffffff My Left Foot

We don't bother storing the position of the item on the canvas. When we paste the item, we
simply put the duplicate near the canvas's top-left corner. Converting an object to a string is an
easy way to add clipboard support, but it is also possible to put arbitrary binary data onto the
clipboard, as we will see in Chapter 9 (Drag and Drop).

void DiagramView::paste()
{
 QString str = QApplication::clipboard()->text();
 QTextIStream in(&str);
 QString tag;

 in >> tag;
 if (tag == "DiagramBox") {
 int width;
 int height;
 QString lineColor;
 QString fillColor;
 QString text;

 in >> width >> height >> lineColor >>fillColor;
 text = in.read();

 DiagramBox *box = new DiagramBox(canvas());
 box->move(20, 20);
 box->setSize(width, height);
 box->setText(text);
 box->setPen(QColor(lineColor));
 box->setBrush(QColor(fillColor));
 showNewItem(box);
 } else if (tag == "DiagramLine") {
 int deltaX;
 int deltaY;
 QString lineColor;

 in >> deltaX >> deltaY >> lineColor;

 DiagramLine *line = new DiagramLine(canvas());
 line->move(20, 20);
 line->setPoints(0, 0, deltaX, deltaY);
 line->setPen(QColor(lineColor));
 showNewItem(line);
 }
}

The paste() slot uses QTextIStream to parse the contents of the clipboard. QTextIStream
works on whitespace-delimited fields in a similar way to cin. We extract each field using the >>
operator, except the last field of the DiagramBox item, which might contain spaces. For this
field, we use QTextStream::read(), which reads in the rest of the string.

void DiagramView::del()
{
 if (activeItem) {

 QCanvasItem *item = activeItem;
 setActiveItem(0);
 delete item;
 canvas()->update();
 }
}

The del() slot deletes the active item and calls QCanvas::update() to redraw the canvas.

void DiagramView::properties()
{
 if (activeItem) {
 PropertiesDialog dialog;
 dialog.exec(activeItem);
 }
}

The properties() slot pops up a Properties dialog for the active item. The PropertiesDialog
class is a "smart" dialog; we simply need to pass it a pointer to the item we want it to act on
and it takes care of the rest.

Figure 8.13. The Properties dialog's two appearances

The .ui and .ui.h files for the PropertiesDialog are on the CD that accompanies this book.

void DiagramView::showNewItem(QCanvasItem *item)
{
 setActiveItem(item);
 bringToFront();
 item->show();
 canvas()->update();
}

The showNewItem() private function is called from a few places in the code to make a newly
created canvas item visible and active.

void DiagramView::setActiveItem(QCanvasItem *item)
{
 if (item != activeItem) {
 if (activeItem)
 activeItem->setActive(false);
 activeItem = item;
 if (activeItem)
 activeItem->setActive(true);
 canvas()->update();

 }
}

Finally, the setActiveItem() private function clears the old active item's "active" flag, sets the
activeItem variable, and sets the new active item's flag. The item's "active" flag is stored in
QCanvasItem. Qt doesn't use the flag itself; it is provided purely for the convenience of
subclasses. We use the flag in the DiagramBox and DiagramLine subclasses because we want
them to paint themselves differently depending on whether they are active or not.

Let's now review the code for DiagramBox and DiagramLine.

const int Margin = 2;

void drawActiveHandle(QPainter &painter, const QPoint ¢er)
{
 painter.setPen(Qt::black);
 painter.setBrush(Qt::gray);
 painter.drawRect(center.x() - Margin, center.y() - Margin,
 2 * Margin + 1, 2 * Margin + 1);
}

The drawActiveHandle() function is used by both DiagramBox and DiagramLine to draw a tiny
square indicating that an item is the active item.

DiagramBox::DiagramBox(QCanvas *canvas)
 : QCanvasRectangle (canvas)
{
 setSize(100, 60);
 setPen(black);
 setBrush(white);
 str = "Text";
}

In the DiagramBox constructor, we set the size of the rectangle to 100 x 60. We also set the
pen color to black and the brush color to white. The pen color is used to draw the box outline
and the text, while the brush color is used for the background of the box.

DiagramBox::~DiagramBox()
{
 hide();
}

The DiagramBox destructor calls hide() on the item. This is necessary for all classes that
inherit from QCanvasPolygonlItem (QCanvasRectangle's base class) because of the way
QCanvasPolygonalItem works.

void DiagramBox::setText(const QString &newText)
{
 str = newText;
 update();
}

The setText() function sets the text shown in the box and calls QCanvasItem::update() to
mark this item as changed. The next time the canvas repaints itself, it will know that it must
repaint this item.

void DiagramBox::drawShape(QPainter &painter)
{
 QCanvasRectangle::drawShape(painter);

 painter.drawText(rect(), AlignCenter, text());
)if (isActive()) {
 drawActiveHandle(painter, rect().topLeft());
 drawActiveHandle(painter, rect().topRight());
 drawActiveHandle(painter, rect().bottomLeft());
 drawActiveHandle(painter, rect().bottomRight());
 }
}

The drawShape() function is reimplemented from QCanvasPolygonalItem to draw the text, and
if the item is active, the four handles. We use the base class to draw the rectangle itself.

QRect DiagramBox::boundingRect() const
{
 return QRect((int)x() - Margin, (int)y() - Margin,
 width() + 2 * Margin, height() + 2 * Margin);
}

The boundingRect() function is reimplemented from QCanvasItem. It is used by QCanvas to
perform collision-detection and to optimize painting. The rectangle it returns must be at least as
large as the area painted in drawShape().

The default QCanvasRectangle implementation is not sufficient, because it does not take into
account the handles that we paint at each corner of the rectangle if the item is active.

DiagramLine::DiagramLine(QCanvas *canvas)
 : QCanvasLine(canvas)
{
 setPoints(0, 0, 0, 99);
}

In the DiagramLine constructor, we set the two points that define the line to be (0, 0) and (0,
99). The result is a 100-pixel-long vertical line.

DiagramLine::~DiagramLine()
{
 hide();
}

Again, we must call hide() in the destructor.

void DiagramLine::drawShape(QPainter &painter)
{
 QCanvasLine::drawShape(painter);
 if (isActive()) {
 drawActiveHandle(painter, startPoint() + offset());
 drawActiveHandle(painter, endPoint() + offset());
 }
}

The drawShape() function is reimplemented from QCanvasLine to draw handles at both ends of
the line if the item is active. We use the base class to draw the line itself. The offset()
function was implemented in the DiagramLine class definition. It returns the position of the
item on the canvas.

QPointArray DiagramLine::areaPoints() const
{
 const int Extra = Margin + 1;
 QPointArray points(6);
 QPoint pointA = startPoint() + offset();

 QPoint pointB = endPoint() + offset();

 if (pointA.x() > pointB.x())
 swap(pointA, pointB);

 points[0] = pointA + QPoint(-Extra, -Extra);
 points[1] = pointA + QPoint(-Extra, +Extra);
 points[3] = pointB + QPoint(+Extra, +Extra);
 points[4] = pointB + QPoint(+Extra, -Extra);
 if (pointA.y() > pointB.y()) {
 points[2] = pointA + QPoint(+Extra, +Extra);
 points[5] = pointB + QPoint(-Extra, -Extra);
 } else {
 points[2] = pointB + QPoint(-Extra, +Extra);
 points[5] = pointA + QPoint(+Extra, -Extra);
 }
 return points;
}

The areaPoints() function plays a similar role to the boundingRect() function in DiagramBox.
For a diagonal line, and indeed for most polygons, a bounding rectangle is too crude an
approximation. For these, we must reimplement areaPoints() and return the outline of the
area painted by the item. The QCanvasLine implementation already returns a decent outline for
a line, but it doesn't take the handles into account.

The first thing we do is to store the two points in pointA and pointB and to ensure that pointA
is to the left of pointB, by swapping them if necessary using swap() (defined in <algorithm>).
Then there are only two cases to consider: ascending and descending lines.

The bounding area of a line is always represented by six points, but these points vary
depending on whether the line is ascending or descending. Nevertheless, four of the six points
(numbered 0, 1, 3, and 4) are the same in both cases. For example, points 0 and 1 are always
located at the top-left and bottom-left corners of handle A; in contrast, point 2 is located at the
bottom-right corner of handle A for an ascending line and at the bottom-left corner of handle B
for a descending line.

Figure 8.14. The bounding area of a DiagramLine

Considering how little code we have written, the DiagramView widget already provides
considerable functionality, with support for selecting and moving items and for context menus.

One thing that is missing is that the handles shown when an item is active cannot be dragged
to resize the item. If we wanted to change that, we would probably take a different approach to
the one we have used here. Instead of drawing the handles in the items' drawShape()
functions, we would probably make each handle a canvas item. If we wanted the cursor to
change when hovering over a handle, we would call setCursor() in real time as it is moved.
For this to work, we would need to call setMouseTracking(true) first, because normally Qt
only sends mouse move events when a mouse button is pressed.

Another obvious improvement would be to support multiple selections and item grouping. The
Qt Quarterly article "Canvas Item Groupies", available online at
http://doc.trolltech.com/qq/qq05-canvasitemgrouping.html, presents one way to achieve this.

This section has provided a working example of QCanvas and QCanvasView use, but it has not
covered all of QCanvas's functionality. For example, canvas items can be set to move on the
canvas at regular intervals by calling setVelocity(). See the documentation for QCanvas and
its related classes for the details.

[Team LiB]
[Team LiB]

Printing
Printing in Qt is similar to drawing on a widget or on a pixmap. It consists of the following
steps:

1. Create a QPrinter to serve as the "paint device".

2. Call QPrinter::setup() to pop up a print dialog, allowing the user to choose a printer
and to set a few options.

3. Create a QPainter to operate on the QPrinter.

4. Draw a page using the QPainter.

5. Call QPrinter::newPage() to advance to the next page.

6. Repeat steps 4 and 5 until all the pages are printed.

On Windows and Mac OS X, QPrinter uses the system's printer drivers. On Unix, it generates
PostScript and sends it to lp or lpr (or to whatever program has been set using
QPrinter::setPrintProgram()).

Figure 8.15. Printing an OvenTimer, a QCanvas, and a QImage

Let's start with some simple examples that all print on a single page. The first example prints
an OvenTimer widget:

void PrintWindow::printOvenTimer(OvenTimer *ovenTimer)

{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 int side = QMIN(rect.width(), rect.height());
 painter.setViewport(0, 0, side, side);
 painter.setWindow(-50, -50, 100, 100);
 ovenTimer->draw(&painter);
 }
}

We assume that the PrintWindow class has a member variable called printer of type
QPrinter. We could simply have created the QPrinter on the stack in printOvenTimer(), but
then it would not remember the user's settings from one print run to another.

We call setup() to pop up a print dialog. It returns true if the user clicked the OK button;
otherwise, it returns false. After the call to setup(), the QPrinter object is ready to use.

We create a QPainter to draw on the QPrinter. Then we make the painter's viewport square
and initialize the painter's window to (-50, -50, 100, 100), the rectangle expected by
OvenTimer. We call draw() to do the painting. If we didn't bother making the viewport square,
the OvenTimer would be vertically stretched to fill the entire page height.

By default, the QPainter's window is initialized so that the printer appears to have a similar
resolution as the screen (usually somewhere between 72 and 100 dots per inch), making it easy
to reuse widget-painting code for printing. Here, it didn't matter, because we set our own
window to be (-50, -50, 100, 100).

Printing an OvenTimer isn't a very realistic example, because the widget is meant for on-screen
user interaction. But for other widgets, such as the Plotter widget we developed in Chapter 5,
it makes lots of sense to reuse the widget's painting code for printing.

A more practical example is printing a QCanvas. Applications that use it often need to be able to
print what the user has drawn. This can be done in a generic way as follows:

void PrintWindow::printCanvas(QCanvas *canvas)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 QSize size = canvas->size();
 size.scale(rect.size(), QSize::ScaleMin);
 painter.setViewport(rect.x(), rect.y(),
 size.width(), size.height());
 painter.setWindow(canvas->rect());
 painter.drawRect(painter.window());
 painter.setClipRect(painter.viewport());

 QCanvasItemList items = canvas->collisions(canvas->rect());
 QCanvasItemList::const_iterator it = items.end();
 while (it != items.begin()) {
 --it;
 (*it)->draw(painter);
 }
 }
}

This time, we set the painter's window to the canvas's bounding rectangle, and we restrict the
viewport to a rectangle with the same aspect ratio. To accomplish this, we use QSize::scale()
with ScaleMin as its second argument. For example, if the canvas has a size of 640 x 480 and

the painter's viewport has a size of 5000 x 5000, the resulting viewport size that we use is 5000
x 3750.

We call collisions() with the canvas's rectangle as argument to obtain the list of all visible
canvas items sorted from highest to lowest z value. We iterate over the list from the end to
paint the items with a lower z value before those with a higher z value and call
QCanvasItem::draw() on them. This ensures that the items that appear nearer the front are
drawn on top of the items that are further back.

Our third example is to draw a QImage.

void PrintWindow::printImage(const QImage &image)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 QSize size = image.size();
 size.scale(rect.size(), QSize::ScaleMin);
 painter.setViewport(rect.x(), rect.y(),
 size.width(), size.height());
 painter.setWindow(image.rect());
 painter.drawImage(0, 0, image);
 }
}

We set the window to the image's rectangle and the viewport to a rectangle with the same
aspect ratio, and we draw the image at position (0, 0).

Printing items that take up no more than a single page is simple, as we have seen. But many
applications need to print multiple pages. For those, we need to paint one page at a time and
call newPage() to advance to the next page. This raises the problem of determining how much
information we can print on each page.

There are two approaches to handling multi-page documents with Qt:

We can convert the data we want to HTML and render it using QSimpleRichText, Qt's rich
text engine.

We can perform the drawing and the page breaking by hand.

We will review both approaches in turn.

As an example, we will print a flower guide: a list of flower names with a textual description.
Each entry in the guide is stored as a string of the format "name:description", for example:

Miltonopsis santanae: An most dangerous orchid species.

Since each flower's data is represented by a single string, we can represent all the flowers in
the guide using one QStringList.

Here's the function that prints a flower guide using Qt's rich text engine:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 QString str;
 QStringList::const_iterator it = entries.begin();
 while (it != entries.end()) {
 QStringList fields = QStringList::split(": ", *it);

 QString title = QStyleSheet::escape(fields[0]);
 QString body = QStyleSheet::escape(fields[1]);

 str += "<table width=\"100%\" border=1 cellspacing=0>\n"
 "<tr><td bgcolor=\"lightgray\">"
 "<i>" + title + "</i>\n<tr><td>"
 + body + "\n</table>\n
\n";
 ++it;
 }
 printRichText(str);
}

Figure 8.16. Printing a flower guide using QSimpleRichText

The first step is to convert the data into HTML. Each flower becomes an HTML table with two
cells. We use QStyleSheet::escape() to replace the special characters '&', '<', '>' with the
corresponding HTML entities ("&", "<", ">"). Then we call printRichText() to print
the text.

const int LargeGap = 48;

void PrintWindow::printRichText(const QString &str)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 int pageHeight = painter.window().height() - 2 * LargeGap;
 QSimpleRichText richText(str, bodyFont, "", 0, 0,
 pageHeight);
 richText.setWidth(&painter, painter.window().width());
 int numPages = (int)ceil((double)richText.height()
 / pageHeight);
 int index;

 for (int i = 0; i < (int)printer.numCopies(); ++i) {
 for (int j = 0; j < numPages; ++j) {
 if (i > 0 || j > 0)
 printer.newPage();

 if (printer.pageOrder()
 == QPrinter::LastPageFirst) {

 index = numPages - j - 1;
 } else {
 index = j;
 }
 printPage(&painter, richText, pageHeight, index);
 }
 }
 }
}

The printRichText() function takes care of printing an HTML document. It can be reused "as
is" in any Qt application to print arbitrary HTML.

We compute the height of one page based on the window size and the size of the gap we want
to leave at the top and bottom of the page for a header and a footer. Then we create a
QSimpleRichText object containing the HTML data. The last argument to the QSimpleRichText
constructor is the page height; QSimpleRichText uses it to produce nice page breaks.

Figure 8.17. The flower guide's page layout

Then we print each page. The outer for loop iterates as many times as necessary to produce
the number of copies requested by the user. Most printer drivers support multiple copies, so for
those QPrinter::numCopies() always returns 1. If the printer driver doesn't support multiple
copies, numCopies() returns the number of copies requested by the user, and the application is
responsible for printing that amount. In the previous examples, we ignored numCopies() for the
sake of simplicity.

The inner for loop iterates through the pages. If the page isn't the first page, we call newPage
() to flush the old page and start painting on a fresh page. We call printPage() to paint each
page.

The print dialog allows the user to print the pages in reverse order. It is our responsibility to
honor that option.

We assume that printer, bodyFont, and footerFont are member variables of the
PrintWindow class.

void PrintWindow::printPage(QPainter *painter,
 const QSimpleRichText &richText,
 int pageHeight, int index)

{
 QRect rect(0, index * pageHeight + LargeGap,
 richText.width(), pageHeight);

 painter->saveWorldMatrix();
 painter->translate(0, -rect.y());
 richText.draw(painter, 0, LargeGap, rect, colorGroup());
 painter->restoreWorldMatrix();

 painter->setFont(footerFont);
 painter->drawText(painter->window(), AlignHCenter | AlignBottom,
 QString::number(index + 1));
}

The printPage() function prints the (index + 1)-th page of the document. The page consists
of some HTML and of a page number in the footer area.

We translate the QPainter and call draw() with a position and rectangle specifying the portion
of the rich text we want to draw. It might help to visualize the rich text as a single very long
page that must be cut into smaller portions, each of height pageHeight.

Then we draw the page number centered at the bottom of the page. If we wanted to have a
header on each page, we would just use an extra drawText() call.

The LargeGap constant is set to 48. Assuming a screen resolution of 96 dots per inch, this is
half an inch (12.7 mm). To obtain a precise length regardless of screen resolution, we could
have used the QPaintDeviceMetrics class as follows:

QPaintDeviceMetrics metrics(&printer);
int LargeGap = metrics.logicalDpiY() / 2;

Here's one way we can initialize bodyFont and footerFont in the PrintWindow constructor:

bodyFont = QFont("Helvetica", 14);
footerFont = bodyFont;

Let's now see how we can draw a flower guide using QPainter. Here's the new
printFlowerGuide() function:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 vector<QStringList> pages;
 int index;

 paginate(&painter, &pages, entries);
 for (int i = 0; i < (int)printer.numCopies(); ++i) {
 for (int j = 0; j < (int)pages.size(); ++j) {
 if (i > 0 || j > 0)
 printer.newPage();

 if (printer.pageOrder() == QPrinter::LastPageFirst) {
 index = pages.size() - j - 1;
 } else {
 index = j;
 }
 printPage(&painter, pages, index);
 }
 }

 }
}

The first thing we do after setting up the printer and constructing the painter is to call the
paginate() helper function to determine which entry should appear on which page. The result
of this is a vector of QStringLists, with each QStringList holding the entries for one page.

For example, let's suppose that the flower guide contains 6 entries, which we will refer to as A,
B, C, D, E, and F. Now let's suppose that there is room for A and B on the first page, C, D, and
E on the second page, and F on the third page. The pages vector would then have the list [A, B]
at index position 0, the list [C, D, E] at index position 1, and the list [F] at index position 2.

The rest of the function is nearly identical to what we did earlier in printRichText(). The
printPage() function, however, is different, as we will see shortly.

void PrintWindow::paginate(QPainter *painter,
 vector<QStringList> *pages,
 const QStringList &entries)
{
 QStringList currentPage;
 int pageHeight = painter->window().height() - 2 * LargeGap;
 int y = 0;

 QStringList::const_iterator it = entries.begin();
 while (it != entries.end()) {
 int height = entryHeight(painter, *it);
 if (y + height > pageHeight && !currentPage.empty()) {
 pages->push_back(currentPage);
 currentPage.clear();
 y = 0;
 }
 currentPage.push_back(*it);
 y += height + MediumGap;
 ++it;
 }
 if (!currentPage.empty())
 pages->push_back(currentPage);
}

The paginate() function distributes the flower guide entries into pages. It relies on the
entryHeight() function, which computes the height of one entry.

Figure 8.18. Printing a flower guide using QPainter

We iterate through the entries and append them to the current page until we come to an entry
that doesn't fit; then we append the current page to the pages vector and start a new page.

int PrintWindow::entryHeight(QPainter *painter, const QString &entry)
{
 QStringList fields = QStringList::split(": ", entry);
 QString title = fields[0];
 QString body = fields[1];

 int textWidth = painter->window().width() - 2 * SmallGap;
 int maxHeight = painter->window().height();
 painter->setFont(titleFont);
 QRect titleRect = painter->boundingRect(0, 0,
 textWidth, maxHeight,
 WordBreak, title);
 painter->setFont(bodyFont);
 QRect bodyRect = painter->boundingRect(0, 0,
 textWidth, maxHeight,
 WordBreak, body);
 return titleRect.height() + body Rect.height() + 4 * SmallGap;
}

The entryHeight() function uses QPainter::boundingRect() to compute the vertical space
needed by one entry. Figure 8.19 shows the layout of a flower entry and the meaning of the
SmallGap and MediumGap constants.

Figure 8.19. A flower entry's layout

void PrintWindow::printPage(QPainter *painter,
 const vector<QStringList> &pages,
 int index)
{
 painter->saveWorldMatrix();
 painter->translate(0, LargeGap);
 QStringList::const_iterator it = pages[index].begin();
 while (it != pages[index].end()) {
 QStringList fields = QStringList::split(": ", *it);
 QString title = fields[0];
 QString body = fields[1];
 printBox(painter, titleFont, title, lightGray);
 printBox(painter, bodyFont, body, white);
 painter->translate(0, MediumGap);
 ++it;
 }
 painter->restoreWorldMatrix();

 painter->setFont(footerFont);
 painter->drawText(painter->window(), AlignHCenter | AlignBottom,
 QString::number(index + 1));
}

The printPage() function iterates through all the flower guide entries and prints them using
two calls to printBox(): one for the title (the flower's name) and one for the body (its
description). It also draws the page number centered at the bottom of the page.

void PrintWindow::printBox(QPainter *painter, const QFont &font,
 const QString &str, const QBrush &brush)
{
 painter->setFont(font);

 int boxWidth = painter->window().width();
 int textWidth = boxWidth - 2 * SmallGap;
 int maxHeight = painter->window().height();
 QRect textRect = painter->boundingRect(SmallGap, SmallGap,
 textWidth, maxHeight,
 WordBreak, str);
 int boxHeight = textRect.height() + 2 * SmallGap;
 painter->setPen(QPen(black, 2, SolidLine));
 painter->setBrush(brush);
 painter->drawRect(0, 0, boxWidth, boxHeight);
 painter->drawText(textRect, WordBreak, str);
 painter->translate(0, boxHeight);
}

The printBox() function draws the outline of a box, then draws the text inside the box.

If the user prints a long document, or requests multiple copies of a short document, it is usually
a good idea to pop up a QProgressDialog to give the user the opportunity of canceling the
printing operation (by clicking Cancel). Here's a modified version of printFlowerGuide() that
does this:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 vector<QStringList> pages;
 int index;

 paginate(&painter, &pages, entries);

 int numSteps = printer.numCopies() * pages.size();
 int step = 0;
 QProgressDialog progress(tr("Printing file..."),
 tr("Cancel"), numSteps, this);
 progress.setModal(true);

 for (int i = 0; i < (int)printer.numCopies(); ++i) {
 for (int j = 0; j < (int)pages.size(); ++j) {
 progress.setProgress(step);
 qApp->processEvents();
 if (progress.wasCanceled()) {
 printer.abort();
 return;
 }
 ++step;

 if (i > 0 || j > 0)
 printer.newPage();

 if (printer.pageOrder() == QPrinter::LastPageFirst) {
 index = pages.size() - j - 1;
 } else {
 index = j;
 }
 printPage(&painter, pages, index);
 }
 }
 }
}

When the user clicks Cancel, we call QPrinter::abort() to stop the printing operation.

[Team LiB]
[Team LiB]

Graphics with OpenGL
OpenGL is a standard API for rendering 2D and 3D graphics. Qt applications can draw OpenGL
graphics by using Qt's QGL module. This section assumes that you are familiar with OpenGL. If
OpenGL is new to you, a good place to start learning it is http://www.opengl.org/.

Drawing graphics with OpenGL from a Qt application is straightforward: We must subclass
QGLWidget, reimplement a few virtual functions, and link the application against the QGL and
OpenGL libraries. Because QGLWidget inherits from QWidget, most of what we already know still
applies. The main difference is that we use standard OpenGL functions to perform the drawing

instead of QPainter.

To show how this works, we will review the code of the Cube application shown in Figure 8.20.
The application presents a 3D cube with faces of different colors. The user can rotate the cube
by pressing a mouse button and dragging. The user can set the color of a face by double-
clicking it and choosing a color from the QColorDialog that pops up.

Figure 8.20. The Cube application

class Cube : public QGLWidget
{
public:
 Cube(QWidget *parent = 0, const char *name = 0);

protected:
 void initializeGL();
 void resizeGL(int width, int height);
 void paintGL();
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseDoubleClickEvent(QMouseEvent *event);

private:
 void draw();
 int faceAtPosition(const QPoint &pos);

 GLfloat rotationX;
 GLfloat rotationY;
 GLfloat rotationZ;
 QColor faceColors[6];
 QPoint lastPos;
};

Cube inherits from QGLWidget. The initializeGL(), resizeGL(), and paintGL() functions are
reimplemented from QGLWidget. The mouse event handlers are reimplemented from QWidget
as usual. QGLWidget is defined in <qgl.h>.

Cube::Cube(QWidget *parent, const char *name)
 : QGLWidget(parent, name)
{
 setFormat(QGLFormat(DoubleBuffer | DepthBuffer));
 rotationX = 0;
 rotationY = 0;

 rotationZ = 0;
 faceColors[0] = red;
 faceColors[1] = green;
 faceColors[2] = blue;
 faceColors[3] = cyan;
 faceColors[4] = yellow;
 faceColors[5] = magenta;
}

In the constructor, we call QGLWidget::setFormat() to specify the OpenGL display context,
and we initialize the class's private variables.

void Cube::initializeGL()
{
 qglClearColor(black);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
}

The initializeGL() function is called once before paintGL() is called. This is the place where
we can set up the OpenGL rendering context, define display lists, and perform other
initializations.

All the code is standard OpenGL, except for the call to QGLWidget's qglClearColor() function.
If we wanted to stick to standard OpenGL, we would call glClearColor() in RGBA mode and
glClearIndex() in color index mode instead.

void Cube::resizeGL(int width, int height)
{
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 GLfloat x = (GLfloat)width / height;
 glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);
 glMatrixMode(GL_MODELVIEW);
}

The resizeGL() function is called once before paintGL() is called the first time, but after
initializeGL() is called. This is the place where we can set up the OpenGL viewport,
projection, and any other settings that depend on the widget's size.

void Cube::paintGL()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 draw();
}

The paintGL() function is called whenever the widget needs to be repainted. This is similar to
QWidget::paintEvent(), but instead of QPainter functions we use OpenGL functions. The
actual drawing is performed by the private function draw().

void Cube::draw()
{
 static const GLfloat coords[6] [4] [3] = {
 { { +1.0, -1.0, +1.0 }, { +1.0, -1.0, -1.0 },
 { +1.0, +1.0, -1.0 }, { +1.0, +1.0, +1.0 } },
 { { -1.0, -1.0, -1.0 }, { -1.0, -1.0, +1.0 },
 { -1.0, +1.0, +1.0 }, { -1.0, +1.0, -1.0 } },
 { { +1.0, -1.0, -1.0 }, { -1.0, -1.0, -1.0 },

 { -1.0, +1.0, -1.0 }, { +1.0, +1.0, -1.0 } },
 { { -1.0, -1.0, +1.0 }, { +1.0, -1.0, +1.0 },
 { +1.0, +1.0, +1.0 }, { -1.0, +1.0, +1.0 } },
 { { -1.0, -1.0, -1.0 }, { +1.0, -1.0, -1.0 },
 { +1.0, -1.0, +1.0 }, { -1.0, -1.0, +1.0 } },
 { { -1.0, +1.0, +1.0 }, { +1.0, +1.0, +1.0 },
 { +1.0, +1.0, -1.0 }, { -1.0, +1.0, -1.0 } }
 };

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -10.0);
 glRotatef(rotationX, 1.0, 0.0, 0.0);
 glRotatef(rotationY, 0.0, 1.0, 0.0);
 glRotatef(rotationZ, 0.0, 0.0, 1.0);

 for (int i = 0; i < 6; ++i) {
 glLoadName(i);
 glBegin(GL_QUADS);
 qglColor(faceColors[i]);
 for (int j = 0; j < 4; ++j) {
 glVertex3f(coords[i] [j] [0], coords[i] [j] [1],
 coords[i] [j] [2]);
 }
 glEnd();
 }
}

In draw(), we draw the cube, taking into account the x, y, and z rotations and the colors stored
in the faceColors array. Everything is standard OpenGL, except for the qglColor() call. We
could have used one of the OpenGL functions glColor3d() or glIndex(), depending on the
mode.

void Cube::mousePressEvent(QMouseEvent *event)
{
 lastPos = event->pos();
}

void Cube::mouseMoveEvent(QMouseEvent *event)
{
 GLfloat dx = (GLfloat) (event->x() - lastPos.x()) / width();
 GLfloat dy = (GLfloat) (event->y() - lastPos.y()) / height();

 if (event->state() & LeftButton) {
 rotationX += 180 * dy;
 rotationY += 180 * dx;
 updateGL();
 } else if (event->state() & RightButton) {
 rotationX += 180 * dy;
 rotationZ += 180 * dx;
 updateGL();
 }
 lastPos = event->pos();
}

The mousePressEvent() and mouseMoveEvent() functions are reimplement from QWidget to
allow the user to rotate the view by clicking and dragging. The left mouse button allows the
user the rotate around to x and y axes, the right mouse button around the x and z axes.

After modifying the rotationX, rotationY, and/or rotationZ variables, we call updateGL() to
redraw the scene.

void Cube::mouseDoubleClickEvent(QMouseEvent *event)
{
 int face = faceAtPosition(event->pos());
 if (face != -1) {
 QColor color = QColorDialog::getColor(faceColors[face],
 this);
 if (color.isValid()) {
 faceColors[face] = color;
 updateGL();
 }
 }
}

The mouseDoubleClickEvent() is reimplemented from QWidget to allow the user to set the
color of a cube face by double-clicking it. We call the private function faceAtPosition() to
determine which cube face, if any, is located under the cursor. If a face was double-clicked, we
call QColorDialog::getColor() to obtain a new color for that face. Then we update the
faceColors array with the new color, and we call updateGL() to redraw the scene.

int Cube::faceAtPosition(const QPoint &pos)
{
 const int MaxSize = 512;
 GLuint buffer[MaxSize];
 GLint viewport[4];

 glGetIntegerv(GL_VIEWPORT, viewport);
 glSelectBuffer(MaxSize, buffer);
 glRenderMode(GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 gluPickMatrix((GLdouble)pos.x(),
 (GLdouble) (viewport[3] - pos.y()),
 5.0, 5.0, viewport);
 GLfloat x = (GLfloat)width() / height();
 glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);
 draw();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 if (!glRenderMode(GL_RENDER))
 return -1;
 return buffer[3];
}

The faceAtPosition() function returns the number of the face at a certain position on the
widget, or –1 if there is no face at that position. The code for determining this in OpenGL is a
bit complicated. Essentially, what we do is render the scene in GL_SELECT mode to take
advantage of OpenGL's picking capabilities and then retrieve the face number (its "name") from
the OpenGL hit record.

Here's main.cpp:

#include <qapplication.h>

#include "cube.h"

int main(int argc, char *argv[])

{
 QApplication app(argc, argv);
 if (!QGLFormat::hasOpenGL())
 qFatal("This system has no OpenGL support");

 Cube cube;
 cube.setCaption(QObject::tr("Cube"));
 cube.resize(300, 300);
 app.setMainWidget(&cube);

 cube.show();
 return app.exec();
}

If the user's system doesn't support OpenGL, we print an error message to the console and
abort using Qt's qFatal() global function.

To link the application against the QGL and OpenGL libraries, the .pro file needs this entry:

CONFIG += opengl

That completes the Cube application. For more information about the QGL module, see the
reference documentation for QGLWidget, QGLFormat, QGLContext, and QGLColormap.
[Team LiB]
[Team LiB]

Chapter 9. Drag and Drop
Enabling Drag and Drop

Supporting Custom Drag Types

Advanced Clipboard Handling

Drag and drop is a modern and intuitive way of transferring information within an application or
between different applications. It is often provided in addition to clipboard support for moving
and copying data.

In this chapter, we will begin by showing how to add drag and drop support to a Qt application.
Then we will reuse the drag and drop code to implement clipboard support. This code reuse is
possible because both mechanisms rely on QMimeSource, an abstract base class that provides
data in different formats.

[Team LiB]
[Team LiB]

Enabling Drag and Drop
Drag and drop involves two distinct actions: dragging and dropping. Widgets can serve as drag
sites, as drop sites, or as both.

Drag and drop is a powerful mechanism for transferring data between applications. But in some
cases, it's possible to implement drag and drop without using Qt's drag and drop facilities. If all
you want to do is to move data within one widget in one application, it is usually simpler to

reimplement the widget's mouse event handlers. This is the approach we took in the
DiagramView widget in Chapter 8 (p. 190).

Our first example shows how to make a Qt application accept a drag initiated by another
application. The Qt application is a main window with a QTextEdit as its central widget. When
the user drags a file from the desktop or from a file explorer and drops it onto the application,
the application loads the file into the QTextEdit.

Here's the definition of the MainWindow class:

class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0, const char *name = 0);

protected:
 void dragEnterEvent(QDragEnterEvent *event);
 void dropEvent(QDropEvent *event);

private:
 bool readFile(const QString &fileName);
 QString strippedName(const QString &fullFileName);

 QTextEdit *textEdit;
};

The MainWindow class reimplements dragEnterEvent() and dropEvent() from QWidget. Since
the purpose of the example is to show drag and drop, much of the functionality we would
expect to be in a main window class has been omitted.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 setCaption(tr("Drag File"));
 textEdit = new QTextEdit(this);
 setCentralWidget(textEdit);
 textEdit->viewport() ->setAcceptDrops (false);
 setAcceptDrops(true);
}

In the constructor, we create a QTextEdit and set it as the central widget. We disable dropping
on the QTextEdit's viewport and enable dropping on the main window.

The reason we must disable dropping on the QTextEdit is that we want to take over drag and
drop handling ourselves in our MainWindow subclass. By default, QTextEdit accepts textual
drags from other applications, and if the user drops a file onto it, it will insert the file name into
the text. Since we want to drop the entire contents of the file rather than the file's name, we
cannot make use of QTextEdit's drag and drop functionality and must implement our own.

Because drop events are propagated from child to parent, we get the drop events for the whole
main window, including those for the QTextEdit, in MainWindow.

void MainWindow::dragEnterEvent(QDragEnterEvent *event)
{
 event->accept(QUriDrag::canDecode(event));
}

The dragEnterEvent() is called whenever the user drags an object onto a widget. If we call

accept(true) on the event, we indicate that the user can drop the drag object on this widget;
if we call accept(false), we indicate that the widget can't accept the drag. Qt automatically
changes the cursor to indicate to the user whether or not the widget is a legitimate drop site.

Here we want the user to be allowed to drag files, but nothing else. To do so, we ask QUriDrag,
the Qt class that handles file drags, whether it can decode the dragged object. The class can
more generally be used for any universal resource identifier (URI), such as HTTP and FTP paths;
hence the name QUriDrag.

 void MainWindow::dropEvent(QDropEvent *event)
 {
 QStringList fileNames;
 if (QUriDrag::decodeLocalFiles(event, fileNames)) {
 if (readFile(fileNames[0]))
 setCaption(tr("%1 - Drag File")
 .arg(strippedName(fileNames[0])));
 }
 }

The dropEvent() is called when the user drops an object onto the widget. We call the static
function QUriDrag::decodeLocalFiles() to get a list of file names dragged by the user and
read in the first file in the list. (The second argument is passed as a non-const reference.)
Typically, users only drag one file at a time, but it is possible for them to drag multiple files by
dragging a selection.

QWidget also provides dragMoveEvent() and dragLeaveEvent(), but for most applications they
don't need to be reimplemented.

The second example illustrates how to initiate a drag and accept a drop. We will create a
QListBox subclass that supports drag and drop, and use it as a component in the Project
Chooser application shown in Figure 9.1.

Figure 9.1. The Project Chooser application

The Project Chooser application presents the user with two list boxes, populated with names.
Each list box represents a project. The user can drag and drop the names in the list boxes to
move a person from one project to another.

The drag and drop code is all located in the QListBox subclass. Here's the class definition:

class ProjectView : public QListBox
{
 Q_OBJECT

public:

 ProjectView(QWidget *parent, const char *name = 0);

protected:
 void contentsMousePressEvent(QMouseEvent *event);
 void contentsMouseMoveEvent(QMouseEvent *event);
 void contentsDragEnterEvent(QDragEnterEvent *event);
 void contentsDropEvent(QDropEvent *event);

private:
 void startDrag();

 QPoint dragPos;
};

ProjectView reimplements four of the event handlers declared in QScrollView (QListBox's
base class).

ProjectView::ProjectView(QWidget *parent, const char *name)
 : QListBox(parent, name)

{
 viewport()->setAcceptDrops(true);
}

In the constructor, we enable drops on the QScrollView viewport.

void ProjectView::contentsMousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton)
 dragPos = event->pos();
 QListBox::contentsMousePressEvent(event);
}

When the user presses the left mouse button, we store the mouse position in the dragPos
private variable. We call QListBox's implementation of contentsMousePressEvent() to ensure
that QListBox has the opportunity to process mouse press events as usual.

void ProjectView::contentsMouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton) {
 int distance = (event->pos() - dragPos).manhattanLength();
 if (distance > QApplication::startDragDistance())
 startDrag();
 }
 QListBox::contentsMouseMoveEvent(event);
}

When the user moves the mouse cursor while holding the left mouse button, we consider
starting a drag. We compute the distance between the current mouse position and the position
where the left mouse button was pressed.

If the distance is larger than QApplication's recommended drag start distance (normally 4
pixels), we call the private function startDrag() to start dragging. This avoids initiating a drag
just because the user's hand shakes.

void ProjectView::startDrag()
{
 QString person = currentText();
 if (!person.isEmpty()) {
 QTextDrag *drag = new QTextDrag(person, this);

 drag->setSubtype("x-person");
 drag->setPixmap(QPixmap::fromMimeSource("person.png"));
 drag->drag();
 }
}

In startDrag(), we create an object of type QTextDrag with this as its parent. The QTextDrag
class represents a drag and drop object for transferring text. It is one of several predefined
types of drag objects that Qt provides; others include QImageDrag, QColorDrag, and QUriDrag.
We also set a pixmap to represent the drag. The pixmap is a small icon that follows the cursor
while the drag is taking place.

We call setSubtype() to set the subtype of the object's MIME type to x-person. This causes
the object's full MIME type to be text/x-person. If we didn't call setSubtype(), the MIME type
would be text/plain.

Standard MIME types are defined by the Internet Assigned Numbers Authority (IANA). They
consist of a type and a subtype separated by a slash. When we create non-standard types, such
as text/x-person, it is recommended that an x- is prepended to the subtype. MIME types are
used by the clipboard and by the drag and drop system to identify different types of data.

The drag() call starts the dragging operation. After the call, the QTextDrag object will remain
in existence until the drag operation is finished. Qt takes ownership of the drag object and will
delete it when it is no longer required, even if it is never dropped.

void ProjectView::contentsDragEnterEvent(QDragEnterEvent *event)
{
 event->accept(event->provides("text/x-person"));
}

The ProjectView widget not only originates drags of type text/x-person, it also accepts such
drags. When a drag enters the widget, we check whether it has the correct MIME type and
reject it if it hasn't.

void ProjectView::contentsDropEvent(QDropEvent *event)
{
 QString person;

 if (QTextDrag::decode(event, person)) {
 QWidget *fromWidget = event->source();
 if (fromWidget && fromWidget != this
 && fromWidget->inherits("ProjectView")) {
 ProjectView *fromProject = (ProjectView *) fromWidget;
 QListBoxItem *item =
 fromProject->findItem(person, ExactMatch);
 delete item;
 insertItem(person);
 }
 }
}

In contentsDropEvent(), we use the QTextDrag::decode() function to extract the text carried
by the drag. The QDropEvent::source() function returns a pointer to the widget that initiated
the drag, if that widget is part of the same application. If the source widget is different from the
target widget and is a ProjectView, we remove the item from the source widget (by calling
delete) and insert a new item into the target.
[Team LiB]
[Team LiB]

Supporting Custom Drag Types
In the examples so far, we have relied on predefined Qt classes to hold the drag data. For
example, we used QUriDrag for a file drag and QTextDrag for a text drag. Both of these classes
inherit QDragObject, the base class for all drag objects. QDragObject itself inherits
QMimeSource, an abstraction for providing MIME-typed data.

If we want to drag text, images, URIs, or colors, we can use Qt's QTextDrag, QImageDrag,
QUriDrag, and QColorDrag classes. But if we want to drag custom data, none of these
predefined classes is suitable, and so we must choose one of two alternatives:

We can store the drag as binary data in a QStoredDrag object.

We can create our own drag class by subclassing QDragObject and reimplementing a
couple of virtual functions.

QStoredDrag allows us to store arbitrary binary data, so it can be used for any MIME type. For
example, if we want to initiate a drag with the contents of a binary file that stores data in the
(fictitious) ASDF format, we could use the following code:

void MyWidget::startDrag()
{
 QByteArray data = toAsdf();
 if (!data.isEmpty()) {
 QStoredDrag *drag = new QStoredDrag("octet-stream/x-asdf",
 this);
 drag->setEncodedData(data);
 drag->setPixmap(QPixmap::fromMimeSource("asdf.png"));
 drag->drag();
 }
}

One inconvenience of QStoredDrag is that it can only store a single MIME type. If we perform
drag and drop within the same application or between multiple instances of the same
application, this is seldom a problem. But if we want to interact nicely with other applications,
one MIME type is rarely sufficient.

Another inconvenience is that we need to convert our data structure to a QByteArray even if
the drag is not accepted in the end. If the data is large, this can slow down the application
needlessly. It would be better to perform the data conversion only when the user actually drops
the drag object.

A solution to both of these problems is to subclass QDragObject and reimplement format() and
encodedData(), the two virtual functions used by Qt to obtain information about a drag. To
show how this works, we will develop a Cell-Drag class that stores the contents of one or more
cells in a rectangular QTable selection.

class CellDrag : public QDragObject
{
public:
 CellDrag(const QString &text, QWidget *parent = 0,
 const char *name = 0);

 const char *format(int index) const;
 QByteArray encodedData(const char *format) const;

 static bool canDecode(const QMimeSource *source);
 static bool decode(const QMimeSource *source, QString &str);

private:
 QString toCsv() const;
 QString toHtml() const;

 QString plainText;
};

The CellDrag class inherits QDragObject. The two functions that really matter for dragging are
format() and encodedData(). It is convenient, although not strictly necessary, to provide
canDecode() and decode() static functions to extract the data on a drop.

CellDrag::CellDrag(const QString &text, QWidget *parent,
 const char *name)
 : QDragObject(parent, name)
{
 plainText = text;
}

The CellDrag constructor accepts a string that represents the contents of the cells that are
being dragged. The string is in the "tabs and newlines" plain text format that we used in
Chapter 4 when we added clipboard support to the Spreadsheet application (p. 80).

const char *CellDrag::format(int index) const
{
 switch (index) {
 case 0:
 return "text/csv";
 case 1:
 return "text/html";
 case 2:
 return "text/plain";
 default:
 return 0;
 }
}

The format() function is reimplemented from QMimeSource to return the different MIME types
supported by the drag. We support three types: comma-separated values (CSV), HTML, and
plain text.

When Qt needs to determine which MIME types are provided by the drag, it calls format() with
an index parameter of 0, 1, 2, ..., up until format() returns a null pointer. The MIME types for
CSV and HTML were obtained from the official list, available at
http://www.iana.org/assignments/media-types/

The precise order of the formats is usually irrelevant, but it's good practice to put the "best"
formats first. Applications that support many formats will sometimes use the first one that
matches.

QByteArray CellDrag::encodedData(const char *format) const
{
 QByteArray data;
 QTextOStream out(data);

 if (qstrcmp(format, "text/CSV") == 0) {
 out << toCsv();
 } else if (qstrcmp(format, "text/html") == 0) {
 out << toHTML();
 } else if (qstrcmp(format, "text/plain") == 0) {

 out << plainText;
 }
 return data;
}

The encodedData() function returns the data for a given MIME type. The value of the format
parameter is normally one of the strings returned by format(), but we can't assume that, since
not all applications check the MIME type against format() beforehand. In Qt applications, this
check is usually done by calling provides() on a QDragEnterEvent or QDragMoveEvent, as we
did earlier (p. 219).

To convert a QString into a QByteArray, the best approach is to use a QText-Stream. If the
string contains non-ASCII characters, QTextStream will assume that the encoding is the local 8-
bit encoding. (For most European countries, this means ISO 8859-1 or ISO 8859-15; see
Chapter 15 for details.) It can be instructed to use other encodings by calling setEncoding() or
setCodec() on the stream, as explained in Chapter 15.

QString CellDrag::toCsv() const
{
 QString out = plainText;
 out.replace("\\", "\\\\");
 out.replace("\"", "\\\"");
 out.replace("\t", "\", \"");
 out.replace("\n", "\"\n\"");
 out.prepend("\"");
 out.append("\"");
 return out;
}

QString CellDrag::toHtml() const
{
 QString out = QStyleSheet::escape(plainText);
 out.replace("\t", "<td>");
 out.replace("\n", "\n<tr><td>");
 out.prepend("<table>\n<tr><td>");
 out.append("\n</table>");
 return out;
}

The toCsv() and toHtml() functions convert a "tabs and newlines" string into a CSV or an
HTML string. For example, the data

Red Green Blue
Cyan Yellow Magenta

is converted to

"Red", "Green", "Blue"
"Cyan", "Yellow", "Magenta"

or to

<table>
<tr><td>Red<td>Green<td>Blue
<tr><td>Cyan<td>Yellow<td>Magenta
</table>

The conversion is performed in the simplest way possible, using QString::replace(). To
escape HTML special characters, we use the QStyleSheet::escape() static convenience
function.

bool CellDrag::canDecode(const QMimeSource *source)
{
 return source->provides("text/plain");
}

The canDecode() function returns true if we can decode the given drag, false otherwise. For
maximum flexibility, its argument is a QMimeSource. The QMimeSource class is a base class of
QDragObject, QDragEnterEvent, QDragMoveEvent, and QDropEvent.

Although we provide the data in three different formats, we only accept plain text. The reason
for this is that plain text is normally sufficient. If the user drags cells from a QTable to an HTML
editor, we want the cells to be converted into an HTML table. But if the user drags arbitrary
HTML into a QTable, we don't want to accept it.

bool CellDrag::decode(const QMimeSource *source, QString &str)
{
 QByteArray data = source->encodedData("text/plain");
 str = QString::fromLocal8Bit((const char *)data, data.size());
 return !str.isEmpty();
}

Finally, the decode() function converts the text/plain data into a QString. Again, we assume
the text is encoded using the local 8-bit encoding.

If we want to be certain of using the right encoding, we could use the charset parameter of the
text/plain MIME type to specify an explicit encoding. Here are a few examples:

text/plain;charset=US-ASCII
text/plain;charset=ISO-8859-1
text/plain;charset=Shift_JIS

When we use QTextDrag, it always exports UTF-8, UCS-2 (UTF-16), US-ASCII, and the local 8-
bit encoding, and accepts drops from other encodings as well. Considering this, it might be
smarter to implement CellDrag::decode() simply by calling QTextDrag::decode(). But even
with this approach, it's still a good idea to provide a CellDrag::decode() separate from
QTextDrag::decode(), in case we want to extend it later to decode another type of drag (for
example, CSV drags) in addition to plain text.

Now we have our CellDrag class. To make it useful, we must integrate it with QTable. It turns
out that QTable already does almost all of the work for us. All we need to do is to subclass it,
call setDragEnabled(true) in our subclass's constructor, and reimplement
QTable::dragObject() to return a CellDrag. Here's an example:

QDragObject *MyTable::dragObject()
{
 return new CellDrag(selectionAsString(), this);
}

We have not shown the code for the selectionAsString(), because it is the same as the core
of the Spreadsheet::copy() function (p. 80).

Adding drop support to a QTable would require us to reimplement contentsDragEnterEvent()
and contentsDropEvent() in the same way as we did for the Project Chooser application.

[Team LiB]
[Team LiB]

Advanced Clipboard Handling
Most applications make use of Qt's built-in clipboard handling in one way or another. For
example, the QTextEdit class provides support for Ctrl+X, Ctrl+C, and Ctrl+V, along with cut
(), copy(), and paste() slots, so little or no additional code is required.

When writing our own classes, we can access the clipboard through
QApplication ::clipboard(), which returns a pointer to the application's QClipboard object.
Handling the system clipboard is easy: Call setText(), setImage(), or setPixmap() to put
data on the clipboard, and text(), image(), or pixmap() to retrieve the data. We have already
seen examples of clipboard use in the Spreadsheet application from Chapter 4 and in the
Diagram application from Chapter 8.

For some applications, the built-in functionality might not be sufficient. For example, we might
want to provide data that isn't just text or an image. Or we might want to provide data in many
different formats, for maximum interoperability with other applications. The issue is very similar
to what we encountered earlier with drag and drop, and the answer is also similar: We must
subclass QMimeSource and reimplement format() and encodedData().

If our application supports drag and drop, we can simply reuse our custom QDragObject
subclass and put it on the clipboard using the setData() function. Since QDragObject inherits
QMimeSource and the clipboard understand QMimeSources, this works seamlessly.

For example, here's how we could implement the copy() function of a QTable subclass:

void MyTable::copy()
{
 QApplication::clipboard()->setData(dragObject());
}

At the end of the previous section, we implemented dragObject() to return a CellDrag that
stores the selected cells' contents.

To retrieve the data, we can call data() on the clipboard. Here's how we could implement the
paste() function of a QTable subclass:

void MyTable::paste()
{
 QMimeSource *source = QApplication::clipboard() ->data();
 if (CellDrag::canDecode(source)) {
 QString str;
 CellDrag::decode(source, str);
 performPaste(str);
 }
}

The performPaste() is essentially the same as the Spreadsheet::paste() function presented
in Chapter 4 (p. 81).

This is all that is required, along with a custom QMimeSource, to add clipboard support for a
custom type.

The X11 clipboard provides additional functionality not available on Windows or Mac OS X. On
X11, it is usually possible to paste a selection by clicking the middle button of a three-button
mouse. This is done using a separate "selection" clipboard. If you want your widgets to support
this kind of clipboard as well as the standard one, you must pass QClipboard::Selection as

an additional argument to the various clipboard calls. For example, here's how we would
reimplement mouseReleaseEvent() in a text editor to support pasting using the middle mouse
button:

void MyTextEditor::mouseReleaseEvent(QMouseEvent *event)
{
 QClipboard *clipboard = QApplication::clipboard();
 if (event->button() == MidButton
 && clipboard->supportsSelection()) {
 QString text = clipboard->text(QClipboard::Selection);
 pasteText(text);
 }
}

On X11, the supportsSelection() function returns true. On other platforms, it returns false.

[Team LiB]
[Team LiB]

Chapter 10. Input/Output
Reading and Writing Binary Data

Reading and Writing Text

Handling Files and Directories

Inter-Process Communication

This chapter covers reading and writing files, traversing the file system, and interacting with
external programs.

Qt's QDataStream and QTextStream classes make it simple to read and write files. These
classes take care of issues such as byte ordering and text encodings, ensuring that Qt
applications running on different platforms can read and write each other's files.

Many applications need to traverse directories or get information about a file. Qt's QDir and
QFileInfo classes makes this possible.

In some situations, it is necessary to run external programs from within a GUI program. Qt's
QProcess class allows us to execute external programs asynchronously, keeping the GUI
responsive, with signals to tell us how the execution is progressing.
[Team LiB]
[Team LiB]

Reading and Writing Binary Data
Reading and writing binary data using QDataStream is the simplest way to load and save
custom data with Qt. QDataStream supports many Qt data types, including QByteArray, QFont,
QImage, QMap<K, T>, QPixmap, QString, QValueList<T>, and QVariant. The data types that
QDataStream understands and the formats it uses to store them are described online at
http://doc.trolltech.com/3.2/ datastreamformat.html.

To show how to handle binary data, we will use two example classes: Drawing and Gallery.
The Drawing class holds some basic information about a drawing (the artist's name, the title,
and the year it was created), and the Gallery class holds a list of Drawings.

We will start with the Gallery class.

class Gallery : public QObject
{
public:
 bool loadBinary(const QString &fileName);
 bool saveBinary(const QString &fileName);
 ...

private:
 enum { MagicNumber = 0x98c58f26 };

 void writeToStream(QDataStream &out);
 void readFromStream(QDataStream &in);
 void error(const QFile &file, const QString &message);
 void ioError(const QFile &file, const QString &message);

 QByteArray getData();
 void setData(const QByteArray &data);
 QString toString();

 std::list<Drawing> drawings;
};

The Gallery class contains public functions to save and load its data. The data is a list of
drawings held in the drawings data member. The private functions will be reviewed as we make
use of them.

Here is a simple function for saving a Gallery' drawings as binary data:

bool Gallery::saveBinary(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_WriteOnly)) {
 ioError(file, tr("Cannot open file %1 for writing"));
 return false;
 }

 QDataStream out(&file);
 out.setVersion(5);

 out << (Q_UINT32)MagicNumber;
 writeToStream(out);

 if (file.status() != IO_Ok) {
 ioError(file, tr("Error writing to file %1"));
 return false;

 }
 return true;
}

We open a file and make the file the target of a QDataStream. We set the QDataStream's
version to 5 (the most recent version in Qt 3.2). The version number influences the way Qt data
types are represented. Basic C++ data types are always represented the same way.

We then output a number that identifies the Gallery file format (MagicNumber). To ensure that

the number is written as a 32-bit integer on all platforms, we cast it to Q_UINT32, a data type
that is guaranteed to be exactly 32 bits.

The file body is written by the writeToStream() private function. We don't need to explicitly
close the file; this is done automatically when the QFile variable goes out of scope at the end
of the function.

After the call to writeToStream(), we check the status of the QFile device. If there was an
error, we call ioError() to present a message box to the user and return false.

void Gallery::ioError(const QFile &file, const QString &message)
{
 error(file, message + ": " + file.errorString());
}

The ioError() function relies on the more general error() function:

void Gallery::error(const QFile &file, const QString &message)
{
 QMessageBox::warning(0, tr("Gallery"), message.arg(file.name()));
}

Now let's review the writeToStream() function:

void Gallery::writeToStream(QDataStream &out)
{
 list<Drawing>::const_iterator it = drawings.begin();
 while (it != drawings.end()) {
 out << *it;
 ++it;
 }
}

The writeToStream() function iterates over all of the Gallery's drawings and outputs them to
the stream it has been given, relying on the Drawing class's << operator. If we had used a
QValueList<Drawing> to store the drawings instead of a list<Drawing>, we could have
omitted the loop and simply written

out << drawings;

When a QValueList<T> is streamed, each item stored in the list is output using the item type's
<< operator.

QDataStream &operator<<(QDataStream &out, const Drawing &drawing)
{
 out << drawing.myTitle << drawing.myArtist << drawing.myYear;
 return out;
}

To output a Drawing, we simply output its three private member variables: myTitle, myArtist,
and myYear. We need to declare operator<<() as a friend of Drawing for this to work. At the
end of the function, we return the stream. This is a common C++ idiom that allows us to use a
chain of << operators with an output stream. For example:

out << drawing1 << drawing2 << drawing3;

The definition of the Drawing class follows.

class Drawing
{
 friend QDataStream &operator<<(QDataStream &, const Drawing &);
 friend QDataStream &operator>>(QDataStream &, Drawing &);

public:
 Drawing() { myYear = 0; }
 Drawing(const QString &title, const QString &artist, int year)
 { myTitle = title; myArtist = artist; myYear = year; }

 QString title() const { return myTitle; }
 void setTitle(const QString &title) { myTitle = title; }
 QString artist() const { return myArtist; }
 void setArtist(const QString &artist) { myArtist = artist; }
 int year() const { return myYear; }
 void setYear(int year) { myYear = year; }

private:
 QString myTitle;
 QString myArtist;
 int myYear;
};

Now let's see how to read the data from a Gallery file:

bool Gallery::loadBinary(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_ReadOnly)) {
 ioError(file, tr("Cannot open file %1 for reading"));
 return false;
 }
 QDataStream in (&file);
 in.setVersion(5);

 Q_UINT32 magic;
 in >> magic;
 if (magic != MagicNumber) {
 error(file, tr("File %1 is not a Gallery file"));
 return false;
 }

 readFromStream(in);

 if (file.status() != IO_Ok) {
 ioError(file, tr("Error reading from file %1"));
 return false;
 }
 return true;
}

We open the file for reading and create a QDataStream to extract the data from the file. We set
the QDataStream's version to 5, because that's the version we used for writing. By using a fixed
version number of 5, we guarantee that the application can always read and write the data,
providing it is compiled with Qt 3.2 or later.

We start by reading back the magic number we wrote and compare it against MagicNumber.
This ensures that we are really reading a Gallery file. We then read the data itself using the
readFromStream() function.

void Gallery::readFromStream(QDataStream &in)
{

 drawings.clear();
 while (!in.atEnd()) {
 Drawing drawing;
 in >> drawing;
 drawings.push_back(drawing);
 }
}

In readFromStream(), we start by clearing any existing data. We then read in one drawing at a
time, relying on the >> operator, and append each one to the Gallery's list of drawings. If we
were using a QValueList<Drawing> to store the data instead of a list<Drawing>, we could
read in all the drawings without looping:

in >> drawings;

QValueList<T> relies on the item type's >> operator to read in the items.

QDataStream &operator>>(QDataStream &in, Drawing &drawing)
{
 in >> drawing.myTitle >> drawing.myArtist >> drawing.myYear;
 return in;
}

The implementation of the >> operator mirrors that of the << operator. When we use
QDataStream, we don't need to perform any kind of parsing.

If we want to read and write some raw binary data, we can use readRawBytes() and
writeRawBytes() to read and write a block of bytes through a QDataStream. The raw bytes are
not preceded by a block size.

We can read and write standard binary formats, such as DBF files and TEX DVI files, using the
>> and << operators on basic types (like Q_UINT16 or float) or with readRawBytes() and
writeRawBytes(). The default byte ordering used by QDataStream is big-endian. If we want to
read and write data as little-endian, we must call

stream.setByteOrder(QDataStream::LittleEndian);

If the QDataStream is being used purely to read and write basic C++ data types, there is no
need to use setVersion().

If we want to read or write a file in one go, we can avoid using QDataStream altogether and
instead use QFile's writeBlock() and readAll() functions. For example:

file.writeBlock(getData());

Data written in this way is just a sequence of bytes. We are responsible for structuring the data
when we write it and for parsing it when we read it back. We rely on Gallery's private getData
() function to create the QByteArray and populate it with data. Reading it back is just as easy:

setData(file.readAll());

We use Gallery's setData() function to extract the information out of the QByteArray.

Having all the data in a QByteArray requires more memory, but it offers some advantages. For
example, we can then use Qt's qCompress() function to compress the data (using zlib):

file.writeBlock(qCompress(getData()));

We can then use qUncompress() to uncompress the data:

setData(qUncompress(file.readAll()));

One way to implement getData() and setData() is to use a QDataStream on a QByteArray.
Here's getData():

QByteArray Gallery::getData()
{
 QByteArray data;
 QDataStream out(data, IO_WriteOnly);
 writeToStream(out);
 return data;
}

We create a QDataStream that writes to a QByteArray rather than to a QFile, and we use the
writeToStream() function we wrote earlier to fill the array with binary data.

Similarly, the setData() function can use the readFromStream() function we wrote earlier:

void Gallery::setData(const QByteArray &data)
{
 QDataStream in(data, IO_ReadOnly);
 readFromStream(in);
}

In the earlier examples, we loaded and saved the data with the stream's version hard-coded to
5. This approach is simple and safe, but it does have one small drawback: We cannot take
advantage of new or updated formats. For example, if a later version of Qt added a new
component to QFont (in addition to its point size, family, etc.), that component would not be
saved or loaded.

One solution is to embed the QDataStream version number in the file:

QDataStream out(&file);
out << (Q_UINT32)MagicNumber;
out << (Q_UINT16)out.version();
writeToStream(out);

This ensures that we always write the data using the most recent version of QDataStream,
whatever that happens to be.

When we come to read the file, we read the magic number and the stream version:

QDataStream in(&file);

Q_UINT32 magic;
Q_UINT16 streamVersion;
in >> magic >> streamVersion;

if (magic != MagicNumber) {
 error(file, tr("File %1 is not a Gallery file"));
 return false;
} else if ((int)streamVersion > in.version()) {
 error(file, tr("File %1 is from a more recent version of the "
 "application"));
 return false;
}

in.setVersion(streamVersion);
readFromStream(in);

We can read the data as long as the stream version is less than or equal to the version used by
the application. Otherwise, we report an error.

If the file format contains a version number of its own, we can use that instead of the stream
version number. For example, let's suppose that the file format is for version 1.3 of our
application. We might then write the data as follows:

QDataStream out(&file);
out.setVersion(5);
out << (Q_UINT32)MagicNumber;
out << (Q_UINT16)0x0103;
writeToStream(out);

When we read it back, we determine which QDataStream version to use based on the
application's version number:

QDataStream in(&file);

Q_UINT32 magic;
Q_UINT16 appVersion;
in >> magic >> appVersion;

if (magic != MagicNumber) {
 error(file, tr("File %1 is not a Gallery file"));
 return false;
} else if (appVersion > 0x0103) {
 error(file, tr("File %1 is from a more recent version of the "
 "application"));
 return false;
}

if (appVersion <= 0x0102) {
 in.setVersion(4);
} else {
 in.setVersion(5);
}
readFromStream(in);

In this example, we say that any file saved with version 1.2 or earlier of the application uses
data stream version 4, and that files saved with version 1.3 of the application use data stream
version 5.

Once we have a policy for handling QDataStream versions, reading and writing binary data
using Qt is simple and reliable.
[Team LiB]
[Team LiB]

Reading and Writing Text
Qt provides the QTextStream class for reading and writing textual data. We can use
QTextStream for reading and writing plain text files or files of other textual file formats, such as
HTML, XML, and source files. It takes care of converting between Unicode and the system's
local 8-bit encoding, and transparently handles the different line-ending conventions used by
different operating systems.

QTextStream uses QChar as its fundamental unit of data. In addition to characters and strings,

QTextStream supports C++'s basic numeric types, which it converts to and from strings.

To show how to use QTextStream, we will continue with the Gallery example from the previous
section. Here's the code for a saveText() function that saves the drawings data from a
Gallery:

bool Gallery::saveText(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_WriteOnly | IO_Translate)) {
 ioError(file, tr("Cannot open file %1 for writing"));
 return false;
 }

 QTextStream out(&file);
 out.setEncoding(QTextStream::UnicodeUTF8);

 list<Drawing>::const_iterator it = drawings.begin();
 while (it != drawings.end()) {
 out << *it;
 ++it;
 }
 if (file.status() != IO_Ok) {
 ioError(file, tr("Error writing to file %1"));
 return false;
 }
 return true;
}

We open the file with the IO_Translate flag to translate newline characters to the correct
sequence for the target platform ("\r\n" on Windows, "\r" on Mac OSX). Then we set the
encoding to UTF-8, an ASCII-compatible encoding that can represent the entire Unicode
character set. (For more information about Unicode, see Chapter 15.) To handle the output, we
iterate over each drawing in the Gallery relying on the << operator:

QTextStream &operator<<(QTextStream &out, const Drawing &drawing)
{
 out << drawing.myTitle << ":" << drawing.myArtist << ":"
 << drawing.myYear << endl;
 return out;
}

When writing out a drawing, we use a colon to separate the drawing's title from the artist's
name and another colon to separate the artist's name from the year, and we end the data with
a newline. We assume that the title and the artist's name don't contain colons or newlines.

Here's an example file output by saveText():

The False Shepherds:Hans Bol:1576
Panoramic Landscape:Jan Brueghel the Younger:1619
Dune Landscape:Jan van Goyen:1630
River Delta:Jan van Goyen:1653

Now let's look at how we can read the data from the file:

bool Gallery::loadText(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_ReadOnly | IO_Translate)) {
 ioError(file, tr("Cannot open file %1 for reading"));

 return false;
 }

 drawings.clear();
 QTextStream in(&file);
 in.setEncoding(QTextStream::UnicodeUTF8);

 while (!in.atEnd()) {
 Drawing drawing;
 in >> drawing;
 drawings.push_back(drawing);
 }

 if (file.status() != IO_Ok) {
 ioError(file, tr("Error reading from file %1"));
 return false;
 }
 return true;
}

The interesting part is the while loop. As long as there is more data available, we read it in
using the >> operator.

Implementing the >> operator isn't trivial, because textual data is fundamentally ambiguous.
Let's consider the following example:

out << "alpha" << "bravo";

If out is a QTextStream, the data that actually gets written is the string "alphabravo". We can't
really expect this to work with a QTextStream:

in >> str1 >> str2;

In fact, what happens then is that str1 gets the whole word "alphabravo", and str2 gets
nothing. QDataStream doesn't have that problem because it stores the length of each string in
front of the character data.

If the text we write out consists of single words, we can put spaces between them and read the
data back word by word. (The DiagramView::copy() and DiagramView::paste() functions of
Chapter 8 use this approach.) We can't do this for the drawings because artist names and
drawing titles usually contain more than one word. So we read each line in as a whole and then
split it into fields using QStringList::split():

QTextStream &operator>>(QTextStream &in, Drawing &drawing)
{
 QString str = in.readLine();
 QStringList fields = QStringList::split(":", str);
 if (fields.size() == 3) {
 drawing.myTitle = fields[0];
 drawing.myArtist = fields[1];
 drawing.myYear = fields[2].toInt();
 }
 return in;
}

We can read entire text files in one go using QTextStream::read():

QString wholeFile = in.read();

In the resulting string, the end of each line is signified with a newline character ('\n') regardless
of the line-ending convention used by the file being read.

Reading in an entire text file can be very convenient if we need to preprocess the data. For
example:

wholeFile.replace("&", "&");
wholeFile.replace("<", "<");
wholeFile.replace(">", ">");

For writing in one go, we could put all our data into a single string and simply output that.

QString Gallery::saveToString()
{
 QString result;
 QTextOStream out(&result);
 list<Drawing>::const_iterator it = drawings.begin();
 while (it != drawings.end()) {
 out << *it;
 ++it;
 }
 return result;
}

It is just as easy to stream text into a string as it is to stream it to a file, again relying on the
<< operator.

void Gallery::readFromString(const QString &data)
{
 QString string = data;
 drawings.clear();
 QTextIStream in(&string);
 while (!in.atEnd()) {
 Drawing drawing;
 in >> drawing;
 drawings.push_back(drawing);
 }
}

Extracting the data from a string using a QTextStream is straightforward. No parsing is
necessary because we rely on the >> operator.

Writing text data isn't difficult, but reading text can be challenging. For complex formats, a full-
blown parser might be required. Such a parser would typically work by reading the data
character by character using >> on a QChar, or line by line using readLine() and iterating
through the returned QString.

[Team LiB]
[Team LiB]

Handling Files and Directories
Qt's QDir class provides a platform-independent means of traversing directories and retrieving
information about files. To see how QDir is used, we will write a small console application that
calculates the space consumed by all the images in a particular directory and all its
subdirectories to any depth.

The heart of the application is the imageSpace() function, which computes the size of a given
directory:

int imageSpace(const QString &path)
{
 QDir dir(path);
 QStringList::Iterator it;
 int size = 0;

 QStringList files = dir.entryList("*.png *.jpg *.jpeg",
 QDir::Files);
 it = files.begin();
 while (it != files.end()) {
 size += QFileInfo(path, *it).size();
 ++it;
 }

 QStringList dirs = dir.entryList(QDir::Dirs);
 it = dirs.begin();
 while (it != dirs.end()) {
 if (*it != "." && *it != "..")
 size += imageSpace(path + "/" + *it);
 ++it;
 }
 return size;
}

We begin by creating a QDir object using the given path. We pass the entryList() function
two arguments. The first is a space-separated list of file name filters. These can contain '*' and
'?' wildcard characters. In this example, we are filtering to include only PNG and JPEG files. The
second argument specifies what kind of entries we want (normal files, directories, drives, etc.).

We iterate over the list of files, accumulating their sizes. The QFileInfo class allows us to
access a file's attributes, such as its size, permissions, owner, and timestamps.

The second entryList() call retrieves all the subdirectories in this directory. We iterate over
them and recursively call imageSpace() to ascertain their accumulated image sizes.

To create each subdirectory's path, we combine the current directory's path with the
subdirectory name (*it), separating them with a slash. QDir treats'/' as a directory separator
on all platforms, in addition to '\' on Windows. When presenting paths to the user, we can call
the static function QDir::convertSeparators() to convert slashes to the correct platform-
specific separator.

Let's add a main() function to our small program:

int main(int argc, char *argv[])
{
 QString path = QDir::currentDirPath();
 if (argc > 1)
 path = argv[1];

 cerr << "Space used by images in " << endl
 << path.ascii() << endl
 << "and its subdirectories is"
 << (imageSpace(path) / 1024) << " KB" << endl;

 return 0;
}

For this example, we don't need a QApplication object, because we are only using Qt's tool
classes. See http://doc.trolltech.com/3.2/tools.html for the list of these classes.

We use QDir::currentDirPath() to initialize the path to the current directory. Alternatively,
we could have used QDir::homeDirPath() to initialize it to the user's home directory. If the
user has specified a path on the command line, we use that instead. Finally, we call our
imageSpace() function to calculate how much space is consumed by images.

The QDir class provides other file and directory-related functions, including rename(), exists
(), mkdir(), and rmdir(). The QFile class provides some static convenience functions,
including remove() and exists().
[Team LiB]
[Team LiB]

Inter-Process Communication
The QProcess class allows us to execute and interact with external programs. The class works
asynchronously, doing its work in the background so that the user interface remains responsive.
QProcess emits signals to notify us when the external process has data or has finished.

We will develop a small application that provides a user interface for an external image
conversion program. For this example, we make use of the ImageMagick convert program,
which is freely available for all major platforms.

Figure 10.1. The Image Converter application

The Image Converter's user interface was created in Qt Designer. The .ui file is on the CD that
accompanies this book. Here, we will focus on the .ui.h file that contains the code. Note that
the process and fileFilters variables were declared in Qt Designer's Members tab as follows:

QProcess *process;
QString fileFilters;

The uic tool includes these variables as part of the generated ConvertDialog class.

void ConvertDialog::init()
{
 process = 0;

 QStringList imageFormats = QImage::outputFormatList();
 targetFormatComboBox->insertStringList(imageFormats);
 fileFilters = tr("Images") + " (*."
 + imageFormats.join(" *.").lower() + ")";
}

A file filter consists of a descriptive text and one or more wildcard patterns(for example, "Text
files(*.txt)"). The QImage::outputFormatList() function returns a list of the image output
formats that are supported by Qt. This list can vary depending on the options that were
selected when Qt was installed.

void ConvertDialog::browse()
{
 QString initialName = sourceFileEdit->text();
 if (initialName.isEmpty())
 initialName = QDir::homeDirPath();
 QString fileName =
 QFileDialog::getOpenFileName(initialName, fileFilters,
 this);

 fileName = QDir::convertSeparators(fileName);
 if (!fileName.isEmpty()) {
 sourceFileEdit->setText(fileName);
 convertButton->setEnabled(true);
 }
}

The dialog's Browse button is connected to the browse() slot. If the user has previously
selected a file, we initialize the file dialog with that file's path; otherwise, we use the user's
home directory.

void ConvertDialog::convert()
{
 QString sourceFile = sourceFileEdit->text();
 targetFile = QFileInfo(sourceFile).dirPath()
 + QDir::separator() + QFileInfo(sourceFile).baseName();
 targetFile += ".";
 targetFile += targetFormatComboBox->currentText().lower();
 convertButton->setEnabled(false);
 outputTextEdit->clear();

 process = new QProcess(this);
 process->addArgument("convert");
 if (enhanceCheckBox->isChecked())
 process->addArgument("-enhance");
 if (monochromeCheckBox->isChecked())
 process->addArgument("-monochrome");
 process->addArgument(sourceFile);
 process->addArgument(targetFile);
 connect(process, SIGNAL(readyReadStderr()),
 this, SLOT(updateOutputTextEdit()));
 connect(process, SIGNAL(processExited()),
 this, SLOT(processExited()));
 process->start();
}

The dialog's Convert button is connected to the convert() slot. We copy the source file's name
and change its suffix to match the target file format.

We then create a QProcess object. The first argument given to a QProcess object using
addArgument() is the name of the external program to execute. Subsequent arguments

become this program's arguments.

We connect the Qprocess's readyReadStderr() to the dialog's updateOutputTextEdit() slot
to display error messages from the external program in the dialog's QTextEdit as they are
generated. We also connect the Qprocess's processExited() signal to the dialog's slot of the
same name.

void ConvertDialog::updateOutputTextEdit()
{
 QByteArray data = process->readStderr();
 QString text = outputTextEdit->text() + QString(data);
 outputTextEdit->setText(text);
}

Whenever the external process writes to stderr, our updateOutputTextEdit() slot is called.
We read the error text and append it to the QTextEdit.

void ConvertDialog::processExited()
{
 if (process->normalExit()) {
 outputTextEdit->append(tr("File %1 created")
 .arg(targetFile));
 } else {
 outputTextEdit->append(tr("Conversion failed"));
 }
 delete process;
 process = 0;
 convertButton->setEnabled(true);
}

When the process has finished, we let the user know the outcome and then delete the process.

Wrapping a console application in this way can be useful because it allows us to make use of
preexisting functionality rather than having to implement that functionality ourselves. Another
use of QProcess is to launch other GUI applications, such as a web browser or an email client.
[Team LiB]
[Team LiB]

Chapter 11. Container Classes
Vectors

Lists

Maps

Pointer-Based Containers

QString and QVariant

Container classes are general purpose template classes that store items of a given type in
memory. Standard C++ already includes many containers as part of the Standard Template
Library (STL).

Qt provides its own container classes, so when we write Qt programs, we can use both the Qt
and the STL containers. If you are already familiar with the STL containers and have STL

available on your target platforms, there's no particular reason to use the Qt containers.

In this chapter, we review the most important STL and Qt containers. We also look at QString
and QVariant, two classes that have many things in common with containers and that can be
used as alternatives to containers in some contexts.

For more information about the STL classes and functions, a good place to start is SGI's STL
web site: http://www.sgi.com/tech/stl/.
[Team LiB]
[Team LiB]

Vectors
The STL and Qt classes for vectors, lists, and maps are template classes parameterized by the
types of the objects we want to store in them. The values that can be stored in these classes
can be basic types (like int and double), pointers, or classes that have a default constructor (a
constructor that takes or needs no arguments), a copy constructor, and an assignment
operator. Classes that qualify include QDateTime, QRegExp, QString, and QVariant. Qt classes
that inherit from QObject don't qualify, because they don't implement a copy constructor and
an assignment operator. This isn't usually a problem, since we can still store pointers to these
types.

In this section, we will review the most common operations for vectors, and in the next two
sections, we will review lists and maps. For most of the examples, we will use the Film class,
which stores the title and duration of a film. (We will not call the class Movie because that looks
too similar to Qt's QMovie class, which is used to show animated images.)

Here's the definition of Film:

class Film
{
public:
 Film(int id = 0, const QString &title = "", int duration = 0);

 int id() const { return myId; }
 void setId(int catalogId) { myId = catalogId; }
 QString title() const { return myTitle; }
 void setTitle(const QString &title) { myTitle = title; }
 int duration() const { return myDuration; }
 void setDuration(int minutes) { myDuration = minutes; }

private:
 int myId;
 QString myTitle;
 int myDuration;
};

int operator==(const Film &film1, const Film &film2);
int operator<(const Film &film1, const Film &film2);

We don't explicitly provide a copy constructor or an assignment operator because the ones
automatically supplied by C++ suffice here. If the class had included pointers to memory
allocated by the class, we would have to implement them ourselves.

In addition to the class, we provide an equality operator and a "less than" operator. The
equality operator is used when we search a container to see if it contains a particular item. The
"less than" operator is used for comparing items when sorting them. We don't need to
implement the four other comparison operators (!=, <=, >, >=) since STL never uses them.

Here's the implementation of the three non-inline functions:

Film::Film(int id, const QString &title, int duration)
{
 myId = id;
 myTitle = title;
 myDuration = duration;
}

int operator==(const Film &film1, const Film &film2)
{
 return film1.id() == film2.id();
}

int operator<(const Film &film1, const Film &film2)
{
 return film1.id() < film2.id();
}

When comparing Film objects, we use IDs rather than titles because titles are not necessarily
unique.

Figure 11.1. A vector of Films

A vector is a data structure that stores its items at adjacent positions in memory. What
distinguishes a vector from a plain C++ array is that a vector knows its own size and can be
resized. Appending extra elements to the end of a vector is fairly efficient, but inserting
elements at the front or in the middle of a vector is expensive.

The STL's vector class is called std::vector<T> and is defined in <vector>. Here's an example:

vector<Film> films;

The Qt equivalent is called QValueVector<T>:

QValueVector<Film> films;

A vector created like this has size 0. If we know in advance how many elements we are going to
need, we can give the vector an initial size when we define it and use the [] operator to assign
a value to its elements; otherwise, we must either resize it later or append items.

A convenient way to populate a vector is to use push_back(). This function appends an element
at the end, extending the vector by one:

films.push_back(Film(4812, "A Hard Day's Night", 85));
films.push_back(Film(5051, "Seven Days to Noon", 94));
films.push_back(Film(1301, "Day of Wrath", 105));
films.push_back(Film(9227, "A Special Day", 110));

films.push_back(Film(1817, "Day for Night", 116));

In general, Qt offers the same function names as the STL, although in some cases Qt has
additional more Qt-like names. For example, if we are using the Qt classes, we can append
items using either push_back() or append().

Another way to populate a vector is to give the vector an initial size and to initialize the
elements individually:

vector<Film> films(5);
films[0] = Film(4812, "A Hard Day's Night", 85);
films[1] = Film(5051, "Seven Days to Noon", 94);
films[2] = Film(1301, "Day of Wrath", 105);
films[3] = Film(9227, "A Special Day", 110);
films[4] = Film(1817, "Day for Night", 116);

Vector entries that are created without being assigned an explicit value are initialized using the
item class's default constructor. For basic and pointer types, the value is undefined, just as it is
when we define variables of these types on the stack.

We can iterate over the vector's elements using the [] operator:

for (int i = 0; i < (int)films.size(); ++i)
 cerr << films[i].title().ascii() << endl;

Alternatively, we can use an iterator:

vector<Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << (*it).title().ascii() << endl;
 ++it;
}

Every container class has two iterator types: iterator and const_iterator. The difference
between the two is that const_iterator doesn't allow us to modify the data.

A container's begin() function returns an iterator that refers to the first item in the container
(for example, films[0]). A container's end() function returns an iterator that refers to the "one
past the last" item (for example, films[5]). If a container is empty, begin() equals end().
This can be used to see if the container has any elements, although it is more convenient to call
empty() for this purpose.

Iterators have an intuitive syntax that resembles the syntax of C++ pointers. We can use the
++ and -- operators to move to the next or previous item, and unary * to retrieve the item
stored at the current iterator position. In fact, for vector<T>, the iterator and
const_iterator types are merely typedefs for T * and const T *.

If we want to find an item in a vector using a linear search, we can use the STL find()
function:

vector<Film>::iterator it = find(films.begin(), films.end(),
 Film(4812));
if (it != films.end())
 films.erase(it);

The find() function returns an iterator to the first item that compared equal (using
operator==()) to the item passed as the last argument. It is defined in <algorithm>, along
with many other template functions. These functions typically operate on iterators. Qt provides

a few of these functions under different names (for example, qFind()). You can use them if you
want to use Qt without the STL.

To sort the items in a vector, we can call sort():

sort(films.begin(), films.end());

The sort() function uses the < operator to compare items, unless we pass a different
comparison function.

Once sorted, we can use the binary_search() function to see if an item is present. On a sorted
vector, binary_search() gives the same result as find() (assuming no two films have the
same ID), but is much faster:

int id = 1817;
if (binary_search(films.begin(), films.end(), Film(id)))
 cerr << "Found" << id << endl;

Given a position indicated by an iterator, we can expensively insert a new item using insert()
or remove an existing item using erase():

films.erase(it);

The items that follow the erased item in the vector are then moved one position to the left to fill
its position, and the vector's size is reduced by one.
[Team LiB]
[Team LiB]

Lists
A list (or linked list) is a data structure that stores its items at non-adjacent locations in
memory. Unlike vectors, lists have very poor random access performance; on the other hand,
insert() and erase() are very fast.

Many algorithms that work on vectors don't work on lists, notably sort() and binary_search
(). This is because lists don't provide fast random access. For sorting an STL list, we can use its
sort() member function.

Figure 11.2. A list of Films

The STL's list class is called std::list<T> and is defined in <list>. Here's an example:

list<Film> films;

The Qt equivalent is called QValueList<T>:

QValueList<Film> films;

The Film class was presented in the previous section (p. 244).

New items can be added using push_back() or with insert(). Unlike vectors, inserting at the
beginning or in the middle of a list is not expensive.

STL lists do not provide the [] operator, so iterators must be used to traverse their elements.
(Qt lists support the [] operator, but it can be very slow on large lists.) The syntax and usage
is exactly the same as for vectors, except that we write list<T> instead of vector<T> in front
of the iterator type. For example:

list<Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << (*it).title().ascii() << endl;
 ++it;
}

Otherwise, lists mostly provide the same functions as vectors, including empty(), size(),
erase(), and clear(). The find() algorithm can also be used on lists.

A few Qt functions return a QValueList<T>. If we want to iterate over the return value of a
function, we must take a copy of the list and iterate over the copy. For example, the following
code is the correct way to iterate over the QValueList<int> returned by QSplitter::sizes():

QValueList<int> list = splitter->sizes();
QValueList<int>::const_iterator it = list.begin();
while (it != list.end()) {
 do_something(*it);
 ++it;
}

The following code is wrong:

// WRONG
QValueList<int>::const_iterator it = splitter->sizes().begin();
while (it != splitter->sizes().end()) {
 do_something(*it);
 ++it;
}

This is because QSplitter::sizes() returns a new QValueList<int> by value every time it is
called. If we don't store the return value, C++ automatically destroys it before we have even
started iterating, leaving us with a dangling iterator. To make matters worse, each time the
loop is run, QSplitter::sizes() must generate a new copy of the list because of the
splitter->sizes().end() call. In summary: Always iterate on a copy of a container returned
by value.

Copying a container like this sounds expensive, but it isn't, because Qt uses an optimization
called implicit sharing. This optimization means that we can program as if the data has been
copied, even though behind the scenes no data copying has taken place.

The QStringList class, which is used in many places in Qt, is a subclass of
QValueList<QString>. In addition to the functions it inherits from its base class, it provides

some extra functions that make the class more powerful. These functions will be discussed in
the last section of this chapter.

[Team LiB]
[Team LiB]

Maps
A map holds an arbitrary number of items of the same type, indexed by a key. Maps store one
unique value per key. Maps have good random access and insertion performance. If a new
value is assigned to an existing key, the old value is replaced by the new value.

Figure 11.3. A map of Films

Since maps contain key–value pairs, it is common to design data structures that work with
maps in a slightly different way from those that are designed for use with vectors and lists.
Here's a version of the Film class that we will use to illustrate map usage:

class Film
{
public:
 Film(const QString &title = "", int duration = 0);

 QString title() const { return myTitle; }
 void setTitle(const QString &title) { myTitle = title; }
 int duration() const { return myDuration; }
 void setDuration(int minutes) { myDuration = minutes; }

private:
 QString myTitle;
 int myDuration;
};
Film::Film(const QString &title, int duration)
{
 myTitle = title;
 myDuration = duration;
}

We don't store the catalog ID in the Film class since we will use that as the key to the map.
Nor do we need the comparison operators for Film. Maps are ordered by their keys, not by
their values.

The STL's map class is called std::map<K, T> and is defined in <map>. Here's an example of a
map whose keys are ints (catalog IDs) and whose values are Films:

map<int, Film> films;

The Qt equivalent is QMap<K, T>:

QMap<int, Film> films;

The most natural way to insert items into a map is to assign a value to a given key:

films[4812] = Film("A Hard Day's Night", 85);
films[5051] = Film("Seven Days to Noon", 94);
films[1301] = Film("Day of Wrath", 105);
films[9227] = Film("A Special Day", 110);
films[1817] = Film("Day for Night", 116);

The map iterator provides a key–pair value. The key part is extracted using (*it).first and
the value part using (*it).second:

map<int, Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << (*it).first << ": "
 << (*it).second.title().ascii() << endl;
 ++it;
}

Most compilers also allow us to write it->first and it->second, but it's more portable to
write (*it).first and (*it).second.

The Qt map's iterator differs slightly from the STL one. In a Qt map, the key is retrieved from
an iterator using it.key() and the value with it.data():

QMap<int, Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << it.key() << ": " << it.data().title().ascii() << endl;
 ++it;
}

When iterating over a map, the items are always ordered by key.

The [] operator can be used for both insertion and retrieval, but if [] is used to retrieve a value
for a non-existent key, a new item will be created with the given key and an empty value. To
avoid accidentally creating empty values, use the find() member function to retrieve items:

map<int, Film>::const_iterator it = films.find(1817);
if (it != films.end())
 cerr << "Found " << (*it).second.title().ascii() << endl;

This function returns the end() iterator if the key is not in the map.

In the example we have used an integer key, but other types of keys are possible, one popular
choice being a QString key. For example:

map<QString, QString> actorToNationality;
actorToNationality["Doris Day"] = "American";
actorToNationality["Greta Garbo"] = "Swedish";

If we need to store multiple values for the same key, we can use multimap<K, T>. If we only
need to store keys, we can use set<K> or multiset<K>. Qt provides no equivalent for these
classes.

Qt's QMap<K, T> class has a couple of additional convenience functions that are especially

useful when dealing with small data sets. QMap<K, T>::keys() and QMap<K, T>::values()
return QValueLists of a map's keys and values.
[Team LiB]
[Team LiB]

Pointer-Based Containers
Along with the STL-like containers described in the previous sections, Qt also provides an
additional set of container classes. These classes were developed in the early 1990s for Qt 1.0,
before the STL became part of C++, and therefore have their own particular syntax. Because
these classes operate on pointers to objects, they are often referred to as pointer-based
containers, in contrast to Qt's and the STL's value-based containers. In Qt 4, the pointer-based
containers will continue to be available for compatibility, but it is expected that their use will be
deprecated in favor of the value-based containers.

The main reason for using the pointer-based classes in newly written Qt code is that a few
important functions in Qt 3 rely on them. We have already seen one example of this in Chapter
3, where we iterated over an application's top-level widgets (p.66), and another example in
Chapter 6, where we iterated over an application's MDI windows (p. 156).

The main pointer-based containers are QPtrVector<T>, QPtrList<T>, QDict<T>,
QAsciiDict<T>, QIntDict<T>, and QPtrDict<T>.

QPtrVector<T> stores a vector of pointers. Here's how we would populate a QPtrVector<Film>
with five Film objects:

QPtrVector<Film> films(5);
films.setAutoDelete(true);
films.insert(0, new Film(4812, "A Hard Day's Night", 85));
films.insert(1, new Film(5051, "Seven Days to Noon", 94));
films.insert(2, new Film(1301, "Day of Wrath", 105));
films.insert(3, new Film(9227, "A Special Day", 110));
films.insert(4, new Film(1817, "Day for Night", 116));

QPtrVector<T> does not provide an append() function, so we must resize the vector ourselves
and insert items at specific index positions. In this example, we are using the original Film
class, which includes catalog IDs.

One nice feature of Qt's pointer-based containers is the "auto-delete" property. If auto-delete is
enabled, Qt takes ownership of all the objects inserted into the container and deletes them
when the container is deleted (or when remove() or clear() are used).

To remove an item from the vector, we can call remove() with an index:

films.remove(2);

The remove() operation does not change the size of the vector; instead, the item is set to a null
pointer. If auto-delete is on, the item is automatically deleted.

To traverse a QPtrVector<T>, we can simply use indexes:

for (int i = 0; i < (int)films.count(); ++i) {
 if (films[i])
 cerr << films[i]->title().ascii() << endl;
}

We check that the pointer at the given index is not null before using it, in case it has been

erased or has never had anything assigned to it.

The QPtrList<T> class stores a list of pointers. We can add new items to a QPtrList<T> by
calling append(), prepend(), or insert():

QPtrList<Film> films;
films.setAutoDelete(true);
films.append(new Film(4812, "A Hard Day's Night", 85));
films.append(new Film(5051, "Seven Days to Noon", 94));

Pointer lists have a "current" item, which is updated when we call traversal functions such as
first(), next(), prev(), and last(). One way to iterate over a list is like this:

Film *film = films.first();
while (film) {
 cerr << film->title().ascii() << endl;
 film = films.next();
}

It's also possible to iterate over a list using at():

for (int i = 0; i < (int)films.count(); ++i)
 cerr << films.at(i)->title().ascii() << endl;

A third option is to use QPtrListIterator<T>.

The QDict<T>, QAsciiDict<T>, QIntDict<T>, and QPtrDict<T> classes are the nearest
pointer-based equivalents to map<K, T>. These classes also operate on key–value pairs. The
key can be any one of four different types (QString, const char *, int, or void *),
depending on which of the four classes is used. Since all four classes provide the same
functions, we will just look at QIntDict<T>.

We will use this to store Films of the same type we used with map<K, T> earlier, using catalog
IDs as keys.

QIntDict<Film> films(101);
films.setAutoDelete(true);

The QIntDict<T> constructor accepts a number. That number is used internally by the class to
determine how many "buckets" it puts the data into. For good performance, that number should
be a prime number a little larger than the number of items we expect to hold. A list of the
prime numbers smaller than 10,000 is available at http://doc.trolltech.com/3.2/primes.html.

Inserting new items is done with insert(), which accepts a key and a value:

films.insert(4812, new Film("A Hard Day's Night", 85));
films.insert(5051, new Film("Seven Days to Noon", 94));

We can use find() or the [] operator to look up items, remove() to delete an item, and
replace() to change the value associated with a given key.

If we call insert() multiple times with the same key, only the most recently inserted item will
be accessible. If we call remove(), the items are removed in the reverse order in which they
were inserted. To avoid multiple values under the same key, we can use replace() instead of
insert().

The entire container can be traversed using an iterator:

QIntDictIterator<Film> it(films);
while (it.current()) {
 cerr << it.currentKey() << ": "
 << it.current()->title().ascii() << endl;
 ++it;
}

The iterator provides the current key with currentKey() and the current value with current().
The order in which the items appear is undefined.

Qt provides a special vector-like class, QMemArray<T>, for storing items of basic types like int
and double or of structs of basic types. Few applications use it directly; however, its two
subclasses QByteArray (QMemArray<char>) and QPointArray (QMemArray<QPoint>) are very
common, and we have used them many times in earlier chapters.

For example, here's how to create a QByteArray:

QByteArray bytes(4);
bytes[0] = 'A';
bytes[1] = 'C';
bytes[2] = 'D';
bytes[3] = 'C';

When we create a QMemArray<T>, we can either pass it an initial size or call resize() later. We
can then access array entries using the [] operator:

for (int i = 0; i < (int)bytes.size(); ++i)
 cerr << bytes[i] << endl;

We can search for an item using QMemArray<T>::find():

if (bytes.find('A') != -1)
 cerr << "Found" << endl;

A subtle pitfall with QMemArray<T> and its subclasses is that they are explicitly shared. This
means that when we create a copy of an object (using the class's copy constructor or its
assignment operator), both the original and the copy share the same data. When we modify
one of them, the other one is also modified. Explicit sharing should not be confused with implicit
sharing, which does not have this problem.

The defensive way to program using QMemArray<T> is to call copy() to force a deep copy of the
container when copying it:

duplicate = bytes.copy();

This ensures that no two QMemArray<T> objects point to the same data.

To avoid the inherent problems of explicit sharing, the QMemArray<T> class will probably be
deprecated in favor of QValueVector<T> in Qt 4. The QByteArray and QPointArray classes will
then use QValueVector<T> as their base class.

[Team LiB]
[Team LiB]

QString and QVariant

Strings are used by every GUI program, not only for the user interface, but often also as data
structures.

C++ natively provides two kinds of strings: traditional C-style '\0'-terminated character arrays
and the string class. Qt's QString class is more powerful than either of them. The QString
class holds 16-bit Unicode values. Unicode contains ASCII and Latin-1 as a subset, with their
usual numeric values. But since QString is 16-bit, it can represent thousands of other
characters for writing most of the world's languages. See Chapter 15 for more information
about Unicode.

QString provides a binary + operator to concatenate two strings and a += operator to append
one string to another. Here's an example that combines both:

QString str = "User: ";
str += userName + "\n";

There is also a QString::append() function that does the same thing as the += operator:

str = "User: ";
str.append(userName);
str.append("\n");

A completely different way of combining strings is to use QString's sprintf() function:

str.sprintf("%s %.1f%%", "perfect competition", 100.0);

This function supports the same format specifiers as the C++ library's sprintf() function. In
the example above, str is assigned "perfect competition 100.0%".

Yet another way of building a string from other strings or from numbers is to use arg():

str = QString("%1 %2 (%3s-%4s)")
 .arg("permissive").arg("society").arg(1950).arg(1970);

In this example, "%1" is replaced by "permissive", "%2" is replaced by "society", "%3" is
replaced by "1950", and "%4" is replaced by "1970". The result is "permissive society (1950s-
1970s)". There are arg() overloads to handle various data types. Some overloads have extra
parameters for controlling the field width, the numerical base, or the floating-point precision. In
general, arg() is a much better solution than sprintf(), because it is type-safe, fully supports
Unicode, and allows translators to change the order of the "%n" parameters.

QString can convert numbers into strings using the QString::number() static function:

str = QString::number(59.6);

Or using the setNum() function:

str.setNum(59.6);

The reverse conversion, from a string to a number, is achieved using toInt(), toLongLong(),
toDouble(), and so on. For example:

bool ok;
double d = str.toDouble(&ok);

These functions also accept an optional pointer to a bool and set the bool to true or false

depending on the success of the conversion. When the conversion fails, these functions always
return 0.

Once we have a string, we often want to extract parts of it. The mid() function returns the
substring starting at a given position and of a given length. For example, the following code
prints "pays" to the console:

QString str = "polluter pays principle";
cerr << str.mid(9, 4).ascii() << endl;

If we omit the second argument (or pass –1), mid() returns the substring starting at a given
position and ending at the end of the string. For example, the following code prints "pays
principle" to the console:

QString str = "polluter pays principle";
cerr << str.mid(9).ascii() << endl;

There are also left() and right() functions that perform a similar job. Both accept a number
of characters, n, and return the first or last n characters of the string. For example, the
following code prints "polluter principle" to the console:

QString str = "polluter pays principle";
cerr << str.left(8).ascii() << " " << str.right(9).ascii()
 << endl;

If we want to check if a string starts or ends with something, we can use the startsWith() and
endsWith() functions:

if (uri.startsWith("http:") && uri.endsWith(".png"))
 ...

This is both simpler and faster than this:

if (uri.left(5) == "http:" && uri.right(4) == ".png")
 ...

String comparison with the == operator is case sensitive. For case insensitive comparisons, we
can use upper() or lower(). For example:

if (fileName.lower() == "readme.txt")
 ...

If we want to replace a certain part of a string by another string, we can use replace():

QString str = "a sunny day";
str.replace(2, 5, "cloudy");

The result is "a cloudy day". The code can be rewritten to use remove() and insert():

str.remove(2, 5);
str.insert(2, "cloudy");

First, we remove five characters starting at position 2, resulting in the string "a day" (with two
spaces), then we insert "cloudy" at position 2.

There are overloaded versions of replace() that replace all occurrences of their first argument
with their second argument. For example, here's how to replace all occurrences of "&" with

"&" in a string:

str.replace("&", "&");

One very frequent need is to strip the whitespace (such as spaces, tabs, and newlines) from a
string. QString has a function that strips whitespace from both ends of a string:

QString str = " BOB \t THE \nDOG \n";
cerr << str.stripWhiteSpace().ascii() << endl;

String str can be depicted as

The string returned by stripWhiteSpace() is

When handling user input, we often also want to replace every sequence of one or more
internal whitespace characters with single spaces, in addition to stripping whitespace from both
ends. This is what the simplifyWhiteSpace() function does:

QString str = " BOB \t THE \nDOG \n";
cerr << str.simplifyWhiteSpace().ascii() << endl;

The string returned by simplifyWhiteSpace() is

A string can be split into substrings using QStringList::split():

QString str = "polluter pays principle";
QStringList words = QStringList::split(" ", str);

In the example above, we split the string "polluter pays principle" into three substrings:
"polluter", "pays", and "principle". The split() function has an optional bool third argument
that specifies whether empty substrings should be ignored (the default) or not.

The elements in a QStringList can be joined to form a single string using join(). The
argument to join() is inserted between each pair of joined strings. For example, here's how to
create a single string that is composed of all the strings contained in a QStringList sorted into
alphabetical order and separated by newlines:

words.sort();
str = words.join("\n");

When dealing with strings, we often need to determine whether a string is empty or not. One
way of testing this is to call isEmpty(); another way is to check whether length() is 0.

QString distinguishes between null strings and empty strings. This distinction has its roots in
the C language, which differentiates between 0 (a null pointer) and "" (an empty string). To test
whether a string is null, we can call isNull(). For most applications, what matters is whether
or not a string contains any characters. The isEmpty() function provides this information,
returning true if a string has no characters (is null or empty), and false otherwise.

The conversions between const char * strings and QString is automatic in most cases, for
example:

str += " (1870)";

Here we add a const char * to a QString without formality.

In some situations, it is necessary to explicitly convert between const char * and QString. To
convert a QString to a const char *, use ascii() or latin1(). To convert the other way, use
a QString cast.

When we call ascii() or latin1() on a QString, or when we let the automatic conversion to
const char * do its work, the returned string is owned by the QString object. This means that
we don't need to worry about memory leaks; Qt will reclaim the memory for us. On the other
hand, we must be careful not to use the pointer for too long. For example, if we modify the
original QString, the pointer is not guaranteed to remain valid. If we need to store the const
char * for any length of time, we can assign it to a variable of type QByteArray or QCString.
These will hold a complete copy of the data.

QString is implicitly shared. This means that copying a QString is about as fast as copying a
single pointer. Only if one of the copies is changed is data actually copied—and this is all
handled automatically behind the scenes. For this reason, implicit sharing is sometimes referred
to as "copy on write".

The beauty of implicit sharing is that it is an optimization that we don't have to think about; it
simply works, without requiring any programmer intervention.

Qt uses implicit sharing for many other classes, including QBrush, QFont, QPen, QPixmap,
QMap<K, T>, QValueList<T>, and QValueVector<T>. This makes these classes very efficient to
pass by value, both as function parameters and as return values.

C++ is a strongly typed language, and this provides many benefits, including type safety and
efficiency. However, in some situations, it is useful to be able to store data more generically,
and one conventional way of doing so is to use strings. For example, a string could hold a
textual value or a numeric value in string form. Qt provides a much cleaner way of handling
variables that can hold different types: QVariant.

The QVariant class can hold values of many Qt types, including QBrush, QColor, QCursor,
QDateTime, QFont, QKeySequence, QPalette, QPen, QPixmap, QPoint, QRect, QRegion, QSize,
and QString. The QVariant class can also hold containers: QMap<QString, QVariant>,
QStringList, and QValueList<QVariant>. We used a QVariant in the implementation of the
Spreadsheet application in Chapter 4 to hold the value of a cell, which could be either a
QString, a double, or an invalid value.

One common use of variants is in a map that uses strings as keys and variants as values.
Configuration data is normally saved and retrieved using QSettings, but some applications may
handle this data directly, perhaps storing it in a database. QMap<QString, QVariant> is ideal for
such situations:

QMap<QString, QVariant> config;
config["Width"] = 890;
config["Height"] = 645;
config["ForegroundColor"] = black;
config["BackgroundColor"] = lightGray;
config["SavedDate"] = QDateTime::currentDateTime();
QStringList files;
files << "2003-05.dat" << "2003-06.dat" << "2003-07.dat";

config["RecentFiles"] = files;

Iterating over a map that holds variant values can be slightly tricky if some of the values are
containers. We need to use type() to check the type that a variant holds so that we can
respond appropriately:

QMap<QString, QVariant>::const_iterator it = config.begin();
while (it != config.end()) {
 QString str;
 if (it.data().type() == QVariant::StringList)
 str = it.data().toStringList().join(", ");
 else
 str = it.data().toString();
 cerr << it.key().ascii() << ": " << str.ascii() << endl;
 ++it;

How Implicit Sharing Works

Implicit sharing works automatically behind the scenes, so when we use classes that
are implicitly shared, we don't have to do anything in our code to make this
optimization happen. But since it's nice to know how things work, we will study an
example and see what happens under the hood.

QString str1 = "Humpty";
QString str2 = str1;

We set str1 to "Humpty" and str2 to be equal to str1. At this point, both QStrings
point to the same data structure in memory (of type QStringData). Along with the
character data, the data structure holds a reference count that indicates how many
QStrings point to the same data structure. Since both str1 and str2 point to the
same data, the reference count is 2.

str2[0] = 'D';

When we modify str2, it first makes a deep copy of the data, to ensure that str1
and str2 point to different data structures, and it then applies the change to its own
copy of the data. The reference count of str1's data ("Humpty") becomes 1, and the
reference count of str2's data ("Dumpty") is set to 1.A reference count of 1 means
that the data isn't shared.

str2.truncate(4);

If we modify str2 again, no copying takes place because the reference count of
str2's data is 1. The truncate() function operates directly on str2's data, resulting
in the string "Dump". The reference count stays at 1.

str1 = str2;

When we assign str2 to str1, the reference count for str1's data goes down to 0,
which means that no QString is using the "Humpty" data anymore. The data is then
freed from memory. Both QStrings now point to "Dump", which now has a reference
count of 2.

Writing implicitly shared classes isn't very difficult. The Qt Quarterly article "Data
Sharing with Class", available online at http://doc.trolltech.com/qq/qq02-data-
sharing-with-class.html, explains how to do it.

}

It is possible to create arbitrarily complex data structures using QVariant by holding values of
container types:

QMap<QString, QVariant> price;
price["Orange"] = 2.10;
price["Pear"].asMap()["Standard"] = 1.95;
price["Pear"].asMap()["Organic"] = 2.25;
price["Pineapple"] = 3.85;

Here we have created a map with string keys (product names) and values that are either
floating-point numbers (prices) or maps. The top level map contains three keys: "Orange",
"Pear", and "Pineapple". The value associated with the "Pear" key is a map that contains two
keys ("Standard" and "Organic").

Creating data structures like this can be very seductive since we can structure the data in any
way we like. But the convenience of QVariant comes at a price. For the sake of readability, it is
usually worth defining a proper C++ class to store our data. A custom class provides type
safety and will also be more speed- and memory-efficient than using QVariant.

[Team LiB]
[Team LiB]

Chapter 12. Databases
Connecting and Querying

Presenting Data in Tabular Form

Creating Data-Aware Forms

Qt's SQL module provides a platform- and database-independent interface for accessing SQL
databases, and a set of classes for integrating databases into the user interface.

The chapter begins by showing how to open database connections and how to execute arbitrary
SQL statements on a database. The second and third sections focus on providing the user with
ways of viewing and modifying a database through the user interface, using QDataTable to
present data in a table widget and using QSqlForm to present data as a form. These classes are
designed to interact nicely with each other, making common database idioms such as master–
detail views and drill-down easy to implement.

[Team LiB]
[Team LiB]

Connecting and Querying
To execute SQL queries, we must first establish a connection with a database. Typically,
database connections are set up in a separate function that we call at application startup. For
example:

bool createConnection()
{

 QSqlDatabase *db = QSqlDatabase::addDatabase("QOCI8");
 db->setHostName("mozart.konkordia.edu");
 db->setDatabaseName("musicdb");
 db->setUserName("gbatstone");
 db->setPassword("T17aV44");
 if (!db->open()) {
 db->lastError().showMessage();
 return false;
 }
 return true;
}

First, we call QSqlDatabase::addDatabase() to create a QSqlDatabase object. The argument
to addDatabase() specifies which database driver Qt must use to access the database. In this
case, we use Oracle. The commercial version of Qt 3.2 includes the following drivers: QODBC3
(ODBC), QOCI8 (Oracle), QTDS7 (Sybase Adaptive Server), QPSQL7 (PostgreSQL), QMYSQL3
(MySQL), and QDB2 (IBM DB2). The free and non-commercial editions contain a subset of these.
[*] See http://doc.trolltech.com/3.2/sql-driver.html for information on building the database
drivers.

[*] The Qt packages on the accompanying CD include SQLite, a public domain in-process database, and
QSQLITEX, an experimental driver. These are only intended for use with the examples on the CD.

Next, we set the database host name, the database name, the user name, and the password,
and we try to open the connection. If open() fails, we show an error message using
QSqlError::showMessage().

Typically, we would call createConnection() in main():

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!createConnection())
 return 1;
 ...
 return app.exec();
}

Once a connection is established, we can use QSqlQuery to execute any SQL statement that the
underlying database supports. For example, here's how to execute a SELECT statement:

QSqlQuery query;
query.exec("SELECT title, year FROM cd WHERE year >= 1998");

After the exec() call, we can navigate through the query's result set:

while (query.next()) {
 QString title = query.value(0).toString();
 int year = query.value(1).toInt();
 cerr << title.ascii() << ": " << year << endl;
}

We call next() once to position the QSqlQuery on the first record of the result set. Subsequent
calls to next() advance the record pointer by one record each time, until the end is reached, at
which point next() returns false. If the result set is empty, the first call to next() will return
false.

The value() function returns the value of a field as a QVariant. The fields are numbered from

0 in the order given in the SELECT statement. The QVariant class can hold many C++ and Qt
types, including int and QString. The different types of data that can be stored in a database
are mapped into the corresponding C++ and Qt types and stored in QVariants. For example, a
VARCHAR is represented as a QString and a DATETIME as a QDateTime.

QSqlQuery provides some other functions to navigate through the result set: first(), last(),
prev(), seek(), and at(). These functions are convenient, but for some databases they can be
slow and memory-hungry. For an easy optimization when operating on large data sets, we can
call QSqlQuery::setForwardOnly(true) before calling exec(), and then only use next() for
navigating the result set.

Earlier we specified the SQL query as an argument to exec(), but we can also pass it directly to
the constructor, which executes it immediately:

QSqlQuery query("SELECT title, year FROM cd WHERE year >= 1998");

Here's how we would check for an error and pop up a QMessageBox if a problem occurred:

if (!query.isActive())
 query.lastError().showMessage();

Doing an INSERT is almost as easy as doing a SELECT:

QSqlQuery query("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (203, 102, 'Living in America', 2002)");

After this, QSqlQuery::numRowsAffected() returns the number of rows that were affected by
the SQL statement (or -1 if the database cannot provide that information).

If we need to insert a lot of records, or if we want to avoid converting values to strings (and
escaping them correctly), we can use prepare() to specify a query that contains placeholders
and then bind the values we want to insert. Qt supports both the Oracle-style and the ODBC-
style syntax for placeholders for all databases, using native support where it is available and
simulating it otherwise. Here's an example that uses the Oracle-style syntax with named
placeholders:

QSqlQuery query(db);
query.prepare("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (:id, :artistid, :title, :year)");
query.bindValue(":id", 203);
query.bindValue(":artistid", 102);
query.bindValue(":title", QString("Living in America"));
query.bindValue(":year", 2002);
query.exec();

Here's the same example using ODBC-style positional placeholders:

QSqlQuery query(db);
query.prepare("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (?, ?, ?, ?)");
query.addBindValue(203);
query.addBindValue(102);
query.addBindValue(QString("Living in America"));
query.addBindValue(2002);
query.exec();

After the call to prepare(), we can call bindValue() or addBindValue() to bind new values,
then call exec() again to execute the query with the new values.

Placeholders are often used to specify binary data or strings that contain non-ASCII or non-
Latin-1 characters. Behind the scenes, Qt uses Unicode with those databases that support
Unicode, and for those that don't, Qt transparently converts strings to the appropriate
encoding.

Qt supports SQL transactions on databases where they are available. To start a transaction, we
call transaction() on the QSqlDatabase object that represents the database connection. To
terminate the transaction, we call either commit() or rollback(). For example, here's how we
would look up a foreign key and execute an INSERT statement inside a transaction:

QSqlDatabase::database()->transaction();
QSqlQuery query;
query.exec("SELECT id FROM artist WHERE name = 'Gluecifer'");
if (query.next()) {
 int artistId = query.value(0).toInt();
 query.exec("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (201, " + QString::number(artistId)
 + ", 'Riding the Tiger', 1997)");
}
QSqlDatabase::database()->commit();

The QSqlDatabase::database() function returns a pointer to the QSqlDatabase object we
created in createConnection(). If a transaction cannot be started,
QSqlDatabase::transaction() returns false.

Some databases don't support transactions. For those, the transaction(), commit(), and
rollback() functions do nothing. We can test whether a database supports transactions using
hasFeature() on the QSqlDriver associated with the database:

QSqlDriver *driver = QSqlDatabase::database()->driver();
if (driver->hasFeature(QSqlDriver::Transactions))
 ...

In the examples so far, we have assumed that the application is using a single database
connection. If we want to use multiple connections, we can pass a name as second argument to
addDatabase(). For example:

QSqlDatabase *db = QSqlDatabase::addDatabase("QPSQL7", "OTHER");
db->setHostName("saturn.mcmanamy.edu");
db->setDatabaseName("starsdb");
db->setUserName("gilbert");
db->setPassword("ixtapa6");

We can then retrieve a pointer to the QSqlDatabase object by passing the name to
QSqlDatabase::database():

QSqlDatabase *db = QSqlDatabase::database("OTHER");

To execute queries using the other connection, we pass the QSqlDatabase object to the
QSqlQuery constructor:

QSqlQuery query(db);
query.exec("SELECT id FROM artist WHERE name = 'Mando Diao'");

Multiple connections are useful if we want to perform more than one transaction at a time, since
each connection can only handle a single active transaction. When we use multiple database
connections, we can still have one nameless connection, and QSqlQuery will use that connection
if none is specified.

In addition to QSqlQuery, Qt provides the QSqlCursor class, a higher-level class that inherits
QSqlQuery and extends it with convenience functions so that we can avoid typing raw SQL for
performing the most common SQL operations: SELECT, INSERT, UPDATE, and DELETE.
QSqlCursor is also the class that ties a QDataTable to a database. We will cover QSqlCursor
here, and in the next section we will see how to use QDataTable, a database-aware QTable
subclass.

Here's an example that uses QSqlCursor to perform a SELECT:

QSqlCursor cursor("cd");
cursor.select("year >= 1998");

An equivalent QSqlQuery would be

QSqlQuery query("SELECT id, artistid, title, year FROM cd "
 "WHERE year >= 1998");

Navigating through the result set is the same as for QSqlQuery, except that we can pass field
names to value() instead of field numbers:

while (cursor.next()) {
 QString title = cursor.value("title").toString();
 int year = cursor.value("year").toInt();
 cerr << title.ascii() << ": " << year << endl;
}

To insert a record into a table, we must first call primeInsert(), which returns a pointer to a
new QSqlRecord. Then we call setValue() for each of the fields in the QSqlRecord that we
want to set, and we call insert() to insert the QSqlRecord's data into the database. For
example:

QSqlCursor cursor("cd");
QSqlRecord *buffer = cursor.primeInsert();
buffer->setValue("id", 113);
buffer->setValue("artistid", 224);
buffer->setValue("title", "Shanghai My Heart");
buffer->setValue("year", 2003);
cursor.insert();

To update a record, we must first position the QSqlCursor on the record we want to modify (for
example, using select() and next()). Then we call primeUpdate() to get a pointer to a
QSqlRecord that contains a copy of the record's data. We can then use setValue() to set the
fields we want to change, and call update() to write these changes back to the database. For
example:

QSqlCursor cursor("cd");
cursor.select("id = 125");
if (cursor.next()) {
 QSqlRecord *buffer = cursor.primeUpdate();
 buffer->setValue("title", "Melody A.M.");
 buffer->setValue("year", buffer->value("year").toInt() + 1);
 cursor.update();
}

Deleting a record is similar to updating, but easier:

QSqlCursor cursor("cd");
cursor.select("id = 128");

if (cursor.next()) {
 cursor.primeDelete();
 cursor.del();
}

The QSqlQuery and QSqlCursor classes provide an interface between Qt and a SQL database.
In the next two sections, we will see how to use them from within a GUI application to allow the
user to view and interact with the data stored in a database.
[Team LiB]
[Team LiB]

Presenting Data in Tabular Form
The QDataTable class is a database-aware QTable widget that supports browsing and editing. It
interacts with a database through a QSqlCursor. Here, we will review two dialogs that use
QDataTable. Together with the QSqlForm-based dialog presented in the next section, these
forms constitute the CD Collection application.

The application uses three tables, defined as follows:

CREATE TABLE artist (
 id INTEGER PRIMARY KEY,
 name VARCHAR(40) NOT NULL,
 country VARCHAR(40));

CREATE TABLE cd (
 id INTEGER PRIMARY KEY,
 artistid INTEGER NOT NULL,
 title VARCHAR(40) NOT NULL,
 year INTEGER NOT NULL,
 FOREIGN KEY (artistid) REFERENCES artist);

CREATE TABLE track (
 id INTEGER PRIMARY KEY,
 cdid INTEGER NOT NULL,
 number INTEGER NOT NULL,
 title VARCHAR(40) NOT NULL,
 duration INTEGER NOT NULL,
 FOREIGN KEY (cdid) REFERENCES cd);

Some databases don't support foreign keys. For those, we must remove the FOREIGN KEY
clauses. The example will still work, but the database will not enforce referential integrity.

Figure 12.1. The CD Collection application's tables

The first class that we will write is a dialog that allows the user to edit a list of artists. The user
can insert, update, or delete artists using the QDataTable's context menu. The changes are
applied to the database when the user clicks Update.

Figure 12.2. The ArtistForm dialog

Here's the class definition for the dialog:

class ArtistForm : public QDialog
{
 Q_OBJECT
public:
 ArtistForm(QWidget *parent = 0, const char *name = 0);

protected slots:
 void accept();
 void reject();

private slots:
 void primeInsertArtist(QSqlRecord *buffer);
 void beforeInsertArtist(QSqlRecord *buffer);
 void beforeDeleteArtist(QSqlRecord *buffer);

private:
 QSqlDatabase *db;
 QDataTable *artistTable;
 QPushButton *updateButton;
 QPushButton *cancelButton;
};

The accept() and reject() slots are reimplemented from QDialog.

ArtistForm::ArtistForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Update Artists"));

 db = QSqlDatabase::database("ARTIST");
 db->transaction();

 QSqlCursor *artistCursor = new QSqlCursor("artist", true, db);
 artistTable = new QDataTable(artistCursor, false, this);
 artistTable->addColumn("name", tr("Name"));
 artistTable->addColumn("country", tr("Country"));
 artistTable->setAutoDelete(true);
 artistTable->setConfirmDelete(true);
 artistTable->setSorting(true);
 artistTable->refresh();

 updateButton = new QPushButton(tr("Update"), this);
 updateButton->setDefault(true);
 cancelButton = new QPushButton(tr("Cancel"), this);

In the ArtistForm constructor, we start a transaction using the "ARTIST" database connection.
Then we create a QSqlCursor on the database's artist table, and a QDataTable to display it.

The second argument to the QSqlCursor constructor is an "auto-populate" flag. By passing
true, we tell QSqlCursor to load information about every field in the table and to operate on all
the fields.

The QDataTable constructor's second argument is also an auto-populate flag. If true, the
QDataTable automatically creates columns for each field in the QSqlCursor's result set. We
pass false and call addColumn() to provide two columns corresponding to the result set's name
and country fields.

We pass ownership of the QSqlCursor to the QDataTable by calling setAuto–Delete(), so we
don't need to delete it ourselves. We call setConfirmDelete() to make the QDataTable pop up
a message box asking the user to confirm deletions. We call setSorting(true) to allow the
user to click on the column headers to sort the table according to a certain column. Finally, we
call refresh() to populate the QDataTable with data from the database.

We also create an Update and a Cancel button.

connect(artistTable, SIGNAL(beforeDelete(QSqlRecord *)),
 this, SLOT(beforeDeleteArtist(QSqlRecord *)));
connect(artistTable, SIGNAL(primeInsert(QSqlRecord *)),
 this, SLOT(primeInsertArtist(QSqlRecord *)));
connect(artistTable, SIGNAL(beforeInsert(QSqlRecord *)),
 this, SLOT(beforeInsertArtist(QSqlRecord *)));
connect(updateButton, SIGNAL(clicked()),
 this, SLOT(accept()));
connect(cancelButton, SIGNAL(clicked()),
 this, SLOT(reject()));

We connect three of the QDataTable's signals to three private slots. We connect the Update
button to accept() and the Cancel button to reject().

 QHBoxLayout *buttonLayout = new QHBoxLayout;
 buttonLayout->addStretch(1);
 buttonLayout->addWidget(updateButton);
 buttonLayout->addWidget(cancelButton);

 QVBoxLayout *mainLayout = new QVBoxLayout(this);
 mainLayout->setMargin(11);
 mainLayout->setSpacing(6);
 mainLayout->addWidget(artistTable);
 mainLayout->addLayout(buttonLayout);
}

Finally, we put the QPushButtons into a horizontal layout, and we put the QDataTable and the
horizontal layout into a vertical layout.

void ArtistForm::accept()
{
 db->commit();
 QDialog::accept();
}

If the user clicks Update, we commit the transaction and call the base class's accept()
function.

void ArtistForm::reject()

{
 db->rollback();
 QDialog::reject();
}

If the user clicks Cancel, we roll back the transaction and call the base class's reject()
function.

void ArtistForm::beforeDeleteArtist(QSqlRecord *buffer)
{
 QSqlQuery query(db);
 query.exec("DELETE FROM track WHERE track.id IN "
 "(SELECT track.id FROM track, cd "
 "WHERE track.cdid = cd.id AND cd.artistid = "
 + buffer->value("id").toString() + ")");
 query.exec("DELETE FROM cd WHERE artistid = "
 + buffer->value("id").toString());
}

The beforeDeleteArtist() slot is connected to the QDataTable's beforeDelete() signal,
which is emitted just before a record is deleted. Here, we perform a cascading delete by
executing two queries: one to delete all the tracks from CDs by the artist and one to delete all
the CDs by the artist. Performing these deletions does not risk relational integrity, because they
are all done within the context of the transaction that began in the form's constructor.

Another approach would have been to prevent the user from deleting artists that are referred to
by the cd table. To achieve this, we would have to reimplement
QDataTable::contextMenuEvent() so that we could handle the deletion ourselves. A crude
alternative that will work if the database has been set up to enforce relational integrity is to
simply attempt the deletion and leave it to the database to prevent it.

void ArtistForm::primeInsertArtist(QSqlRecord *buffer)
{
 buffer->setValue("country", "USA");
}

The primeInsertArtist() slot is connected to the QDataTable's primeInsert() signal, which
is emitted just before the user starts editing a new record. We use it to set the default value of
the new record's country field to "USA", the ideal default for a U.S.-centric application.

This is one way of setting default values for fields. Another way is to subclass QSqlCursor and
reimplement primeInsert(), which makes sense if we will use the same QSqlCursor many
times in the same application and want to ensure consistent behavior. A third way is to do it at
the database level, using DEFAULT clauses in the CREATE TABLE statements.

void ArtistForm::beforeInsertArtist(QSqlRecord *buffer)
{
 buffer->setValue("id", generateId("artist", db));
}

The beforeInsertArtist() slot is connected to the QDataTable's beforeInsert() signal,
which is emitted when the user has finished editing a new record and presses Enter to save it.
We set the value of the id field to a generated value. We rely on a function called generateId
() to produce a unique primary key.

Since we will need generateId() a few times, we define it inline in a header file and include it
each time we need it. Here's a quick (and inefficient) way of implementing it:

inline int generateId(const QString &table, QSqlDatabase *db)

{
 QSqlQuery query(db);
 query.exec("SELECT max(id) FROM " + table);
 query.next();
 return query.value(0).toInt() + 1;
}

The generateId() function can only be guaranteed to work correctly if it is executed within the
context of the same transaction as the corresponding INSERT statement.

Some databases support auto-generated fields. For these, we simply need to tell the database
to auto-generate the id field and call setGenerated("id", false) on the QSqlCursor to tell it
not to generate the value of the id field.

We will now review another dialog that uses QDataTable. For this dialog, we will implement a
master–detail view. The master view is a list of CDs. The detail view is a list of tracks for the
current CD. This dialog is the main window of the CD Collection application.

This time, we provide Add, Edit, and Delete buttons to allow the user to modify the CD list,
rather than relying on a context menu. When the user clicks Add or Edit, a CdForm dialog pops
up. (CdForm is covered in the next section.)

Figure 12.3. The MainForm dialog

Another difference between this example and the previous one is that we must resolve a foreign
key, so we can show the artist's name and country rather than the artist's ID. To accomplish
this, we must use QSqlSelectCursor, a subclass of QSqlCursor that supports arbitrary SELECT
statements, in this case a join.

First, the class definition:

class MainForm : public QDialog
{
 Q_OBJECT
public:
 MainForm(QWidget *parent = 0, const char *name = 0);

private slots:
 void addCd();

 void editCd();
 void deleteCd();
 void currentCdChanged(QSqlRecord *record);

private:
 QSplitter *splitter;
 QDataTable *cdTable;
 QDataTable *trackTable;
 QPushButton *addButton;
 ...
 QPushButton *quitButton;
};

The MainForm class inherits from QDialog.

MainForm::MainForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("CD Collection"));

 splitter = new QSplitter(Vertical, this);

 QSqlSelectCursor *cdCursor = new QSqlSelectCursor(
 "SELECT cd.id, title, name, country, year "
 "FROM cd, artist WHERE cd.artistid = artist.id");
 if (!cdCursor->isActive()) {
 QMessageBox::critical(this, tr("CD Collection"),
 tr("The database has not been created.\n"
 "Run the cdtables example to create a sample "
 "database, then copy cdcollection.dat into "
 "this directory and restart this application."));
 qApp->quit();
 }

 cdTable = new QDataTable(cdCursor, false, splitter);
 cdTable->addColumn("title", tr("CD"));
 cdTable->addColumn("name", tr("Artist"));
 cdTable->addColumn("country", tr("Country"));
 cdTable->addColumn("year", tr("Year"));
 cdTable->setAutoDelete(true);
 cdTable->refresh();

In the constructor, we create a read-only QDataTable for the cd table and its associated cursor.
The cursor is based on a query that joins the cd and the artist tables. The QDataTable is
read-only because it operates on a QSqlSelectCursor. Read-only tables don't provide a context
menu.

If the cursor query fails, we pop up a message box indicating that something is wrong and
terminate the application.

 QSqlCursor *trackCursor = new QSqlCursor("track");
 trackCursor->setMode(QSqlCursor::ReadOnly);
 trackTable = new QDataTable(trackCursor, false, splitter);
 trackTable->setSort(trackCursor->index("number"));
 trackTable->addColumn("title", tr("Track"));
 trackTable->addColumn("duration", tr("Duration"));

We create the second QDataTable and its cursor. We make the table read-only by calling
setMode(QSqlCursor::ReadOnly) on the cursor, and call setSort() to sort the tracks by track
number.

 addButton = new QPushButton(tr("&Add"), this);
 editButton = new QPushButton(tr("&Edit"), this);
 deleteButton = new QPushButton(tr("&Delete"), this);
 refreshButton = new QPushButton(tr("&Refresh"), this);
 quitButton = new QPushButton(tr("&Quit"), this);
 connect(addButton, SIGNAL(clicked()),
 this, SLOT(addCd()));
 ...
 connect(quitButton, SIGNAL(clicked()),
 this, SLOT(close()));
 connect(cdTable, SIGNAL(currentChanged(QSqlRecord *)),
 this, SLOT(currentCdChanged(QSqlRecord *)));
 connect(cdTable,
 SIGNAL(doubleClicked(int, int, int, const QPoint &)),
 this, SLOT(editCd()));
 ...
}

We set up the rest of the user interface and create the signal–slot connections necessary to
produce the desired behavior.

void MainForm::addCd()
{
 CdForm form(this);
 if (form.exec()) {
 cdTable->refresh();
 trackTable->refresh();
 }
}

When the user clicks Add, we pop up a modal CdForm dialog, and if the user clicks Update on it,
we refresh the QDataTables.

void MainForm::editCd()
{
 QSqlRecord *record = cdTable->currentRecord();
 if (record) {
 CdForm form(record->value("id").toInt(), this);
 if (form.exec()) {
 cdTable->refresh();
 trackTable->refresh();
 }
 }
}

When the user clicks Edit, we pop up a modal CdForm dialog, with the current CD's ID as
argument to the CdForm constructor. This will cause the dialog to start up with its fields
populated with the current CD's data.

When we parameterize a form with an ID as we have done here, it is possible that the ID will
not be valid by the time the form appears. For example, the user could click Edit a fraction of a
second before another user deletes the CD. What we could have done in CdForm is to execute a
SELECT on the ID that is passed in immediately after the transaction() call and only proceed
if the ID still exists. Here, we simply rely on the database to report an error if an attempt to use
an invalid ID is made.

void MainForm::deleteCd()
{
 QSqlRecord *record = cdTable->currentRecord();
 if (record) {
 QSqlQuery query;

 query.exec("DELETE FROM track WHERE cdid = "
 + record->value("id").toString());
 query.exec("DELETE FROM cd WHERE id = "
 + record->value("id").toString());
 cdTable->refresh();
 trackTable->refresh();
 }
}

When the user clicks Delete, we remove all the tracks for the current CD from the track table
and then the current CD from the cd table. Then we update both tables.

void MainForm::currentCdChanged(QSqlRecord *record)
{
 trackTable->setFilter("cdid = "
 + record->value("id").toString());
 trackTable->refresh();
}

The currentCdChanged() slot is connected to the cdTable's currentChanged() signal, which is
emitted when the user modifies the current CD or when the user makes another CD current.
Whenever the current CD changes, we call setFilter() on the track table and refresh it to
make it display the tracks related to the current CD, and we call refresh() to force the table to
repopulate itself with the relevant data.

This is all the code that is needed to implement MainForm. One possible improvement would be
to show the duration of each track split into minutes and seconds (for example, "02:35") rather
than just as seconds ("155"). We could accomplish this by subclassing QSqlCursor and
reimplementing the calculate–Field() function to transform the duration field into a
QString with the desired format:

QVariant TrackSqlCursor::calculateField(const QString &name)
{
 if (name == "duration") {
 int duration = value("duration").toInt();
 return QString("%1:%2").arg(duration / 60, 2)
 .arg(duration % 60, 2);
 }
 return QVariant();
}

We would also need to call setCalculated("duration", true) on the cursor to tell
QDataTable to use the value returned by calculateField() for the duration field, instead of
simply using value().

[Team LiB]
[Team LiB]

Creating Data-Aware Forms
Qt takes an innovative approach to database interaction with forms. Instead of having a
separate database-enabled version of every built-in widget, Qt is able to make any widget data-
aware, using QSqlForm and QSqlPropertyMap to relate database fields to widgets. Any built-in
or custom widget can be made data-aware using these classes.

QSqlForm is a QObject subclass that makes it easy to create forms to browse or edit individual
records in a database. The common pattern of usage is this:

1. Create the editor widgets (QLineEdits, QComboBoxes, QSpinBoxes, etc.) for the record's
fields.

2. Create a QSqlCursor and move it to the record to edit.

3. Create a QSqlForm object.

4. Tell the QSqlForm which editor widget is bound to which database field.

5. Call the QSqlForm::readFields() function to populate the editor widgets with the data
from the current record.

6. Show the dialog.

7. Call the QSqlForm::writeFields() function to copy the updated values back into the
database.

To illustrate this, we will look at the code for the CdForm dialog. This dialog allows the user to
create or edit a CD record. The user can specify the CD's title, artist, and release year, and the
title and duration of each track.

Figure 12.4. The CdForm dialog

Let's start with the class definition:

class CdForm : public QDialog
{
 Q_OBJECT
public:
 CdForm(QWidget *parent = 0, const char *name = 0);
 CdForm(int id, QWidget *parent = 0, const char *name = 0);
 ~CdForm();

protected slots:
 void accept();
 void reject();

private slots:

 void addNewArtist();
 void moveTrackUp();
 void moveTrackDown();
 void beforeInsertTrack(QSqlRecord *buffer);
 void beforeDeleteTrack(QSqlRecord *buffer);

private:
 void init();
 void createNewRecord();
 void swapTracks(int trackA, int trackB);

 QLabel *titleLabel;
 QLabel *artistLabel;
 ...
 QDataTable *trackTable;
 QSqlForm *sqlForm;
 QSqlCursor *cdCursor;
 QSqlCursor *trackCursor;
 int cdId;
 bool newCd;
};

We have declared two constructors: one for inserting a new CD into the database, the other for
updating an existing CD. The accept() and reject() slots are reimplemented from QDialog.

CdForm::CdForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Add a CD"));
 cdId = -1;
 init();
}

The first constructor sets the dialog's caption to "Add a CD" and calls the private init()
function to do the rest.

CdForm::CdForm(int id, QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Edit a CD"));
 cdId = id;
 init();
}

The second constructor sets the caption to "Edit a CD" and also calls init().

void CdForm::init()
{
 db = QSqlDatabase::database("CD");
 db->transaction();
 if (cdId == -1)
 createNewRecord();

In init(), we start a transaction using the "CD" database connection. We need to use different
connections in CdForm and ArtistForm, because we can have both forms open at the same
time, and we don't want one form to roll back the transaction initiated by the other form.

If we have no CD to operate on, we call the private function createNewRecord() to insert a
blank one into the database. This will allow us to use the CD ID as a foreign key in the tracks'
QDataTable. If the user clicks Cancel, we roll back the transaction and the blank record will
disappear.

For this dialog, we use a different connection to the database than in the ArtistForm. This is
because we can only have one active transaction per connection, and we can end up in a
situation where we need two, for example, if the user clicks Add New to pop up the
ArtistForm.

 titleLabel = new QLabel(tr("&Title:"), this);
 artistLabel = new QLabel(tr("&Artist:"), this);
 yearLabel = new QLabel(tr("&Year:"), this);
 titleLineEdit = new QLineEdit(this);
 yearSpinBox = new QSpinBox(this);
 yearSpinBox->setRange(1900, 2100);
 yearSpinBox->setValue(QDate::currentDate().year());
 artistComboBox = new ArtistComboBox(db, this);
 artistButton = new QPushButton(tr("Add &New..."), this);
 ...
 cancelButton = new QPushButton(tr("Cancel"), this);

We create the labels, the line edit, the spin box, the combobox, and the buttons that form the
user interface. The combobox is of type ArtistComboBox, which we will cover later on.

 trackCursor = new QSqlCursor("track", true, db);
 trackTable = new QDataTable(trackCursor, false, this);
 trackTable->setFilter("cdid = " + QString::number(cdId));
 trackTable->setSort(trackCursor->index("number"));
 trackTable->addColumn("title", tr("Track"));
 trackTable->addColumn("duration", tr("Duration"));
 trackTable->refresh();

We set up the QDataTable that allows the user to browse and edit the tracks on the current CD.
This is very similar to what we did in the previous section with the ArtistForm class.

 cdCursor = new QSqlCursor("cd", true, db);
 cdCursor->select("id = " + QString::number(cdId));
 cdCursor->next();

We set up the QSqlCursor associated with the QSqlForm and make it point to the record with
the correct ID.

 QSqlPropertyMap *propertyMap = new QSqlPropertyMap;
 propertyMap->insert("ArtistComboBox", "artistId");
 sqlForm = new QSqlForm(this);
 sqlForm->installPropertyMap(propertyMap);
 sqlForm->setRecord(cdCursor->primeUpdate());
 sqlForm->insert(titleLineEdit, "title");
 sqlForm->insert(artistComboBox, "artistid");
 sqlForm->insert(yearSpinBox, "year");
 sqlForm->readFields();

We create a QSqlPropertyMap. The QSqlPropertyMap class tells QSqlForm which Qt property
holds the value of a certain type of editor widget. By default, QSqlForm already knows that a
QLineEdit stores its value in the text property and that a QSpinBox stores its value in the
value property. But it doesn't know anything about custom widgets such as ArtistComboBox.
By inserting the pair ("ArtistComboBox", "artistId") in the property map and by calling
installPropertyMap() on the QSqlForm, we tell QSqlForm to use the artistId property for
widgets of type ArtistComboBox.

The QSqlForm object also needs a buffer to operate on, which we obtain by calling primeUpdate
() on the QSqlCursor, and it needs to know which editor widget corresponds to which database
field. At the end, we call readFields() to read the data from the database into the editor

widgets.

 connect(artistButton, SIGNAL(clicked()),
 this, SLOT(addNewArtist()));
 connect(moveUpButton, SIGNAL(clicked()),
 this, SLOT(moveTrackUp()));
 connect(moveDownButton, SIGNAL(clicked()),
 this, SLOT(moveTrackDown()));
 connect(updateButton, SIGNAL(clicked()),
 this, SLOT(accept()));
 connect(cancelButton, SIGNAL(clicked()),
 this, SLOT(reject()));
 connect(trackTable, SIGNAL(beforeInsert(QSqlRecord *)),
 this, SLOT(beforeInsertTrack(QSqlRecord *)));
 ...
}

We connect the buttons' clicked() signals and the QDataTable's beforeInsert() signal to the
private slots that are described next.

void CdForm::accept()
{
 sqlForm->writeFields();
 cdCursor->update();
 db->commit();
 QDialog::accept();
}

If the user clicks Update, we write the data into the QSqlCursor's edit buffer, we call update()
to perform an UPDATE on the database, we call commit() to really write the record into the
database, and we call the base class's accept() implementation to close the form.

void CdForm::reject()
{
 db->rollback();
 QDialog::reject();
}

If the user clicks Cancel, we roll back, leaving the database unchanged, and close the form.

void CdForm::addNewArtist()
{
 ArtistForm form(this);
 if (form.exec()) {
 artistComboBox->refresh();
 updateButton->setEnabled(artistComboBox->count() > 0);
 }
}

If the user clicks Add New, we pop up a modal ArtistForm dialog. The dialog allows the user to
add new artists, and also to edit and delete existing artists. If the user clicks Update, we call
ArtistComboBox::refresh() to ensure that its list of artists is up to date.

We enable or disable the Update button depending on whether there are any artists, since we
don't want to allow a new CD to be created without an artist name.

void CdForm::beforeInsertTrack(QSqlRecord *buffer)
{
 buffer->setValue("id", generateId("track", db));
 buffer->setValue("number", trackCursor->size() + 1);

 buffer->setValue("cdid", cdId);
}

The beforeInsertTrack() slot is connected to the QDataTable's beforeInsert() signal. We
set the record's id, number, and cdid fields.

void CdForm::beforeDeleteTrack(QSqlRecord *buffer)
{
 QSqlQuery query(db);
 query.exec("UPDATE track SET number = number - 1 "
 "WHERE track.number > "
 + buffer->value("number").toString());
}

The beforeDeleteTrack() slot is connected to the QDataTable's beforeDelete() signal. We
renumber all the tracks that have a number higher than the track we delete to ensure that the
track numbers remain consecutive. For example, if the CD contains six tracks and the user
deletes track 4, then track 5 becomes track 4 and track 6 becomes track 5.

There are four functions that we have not covered: moveTrackUp(), moveTrackDown(),
swapTracks(), and createNewRecord(). These are necessary to make the application usable,
but their implementations do not show any new techniques, so we will not review them here.
Their source code is on the CD.

Now that we have seen all the forms in the CD Collection application, we are ready to review
the custom ArtistComboBox. As usual, we start with the class definition:

class ArtistComboBox : public QComboBox
{
 Q_OBJECT
 Q_PROPERTY(int artistId READ artistId WRITE setArtistId)
public:
 ArtistComboBox(QSqlDatabase *database, QWidget *parent = 0,
 const char *name = 0);

 void refresh();
 int artistId() const;
 void setArtistId(int id);

private:
 void populate();

 QSqlDatabase *db;
 QMap<int, int> idFromIndex;
 QMap<int, int> indexFromId;
};

The ArtistComboBox class inherits QComboBox and adds an artistId property and a few
functions.

In the private section, we declare a QMap<int, int> that associates artist IDs with combobox
indexes and a QMap<int, int> that associates combobox indexes with artist IDs.

ArtistComboBox::ArtistComboBox(QSqlDatabase *database,
 QWidget *parent, const char *name)
 : QComboBox(parent, name)
{
 db = database;
 populate();
}

In the constructor, we call the private function populate() to fill the combobox with the names
and IDs in the artist table.

void ArtistComboBox::refresh()
{
 int oldArtistId = artistId();
 clear();
 idFromIndex.clear();
 indexFromId.clear();
 populate();
 setArtistId(oldArtistId);
}

In the refresh() function, we repopulate the combobox with the latest data from the database.
We are also careful to ensure that the artist who was selected before the refresh is still selected
afterward, unless that artist has have been deleted from the database.

void ArtistComboBox::populate()
{
 QSqlCursor cursor("artist", true, db);
 cursor.select(cursor.index("name"));

 int index = 0;
 while (cursor.next()) {
 int id = cursor.value("id").toInt();
 insertItem(cursor.value("name").toString(), index);
 idFromIndex[index] = id;
 indexFromId[id] = index;
 ++index;
 }
}

In the private function populate(), we iterate through all the artists and call
QComboBox::insertItem() to add them to the combobox. We also update the idFromIndex
and the indexFromId maps.

int ArtistComboBox::artistId() const
{
 return idFromIndex[currentItem()];
}

The artistId() function returns the ID for the current artist.

void ArtistComboBox::setArtistId(int id)
{
 if (indexFromId.contains(id))
 setCurrentItem(indexFromId[id]);
}

The setArtistId() function sets the current artist based on an artist ID.

In applications that often need comboboxes that show foreign keys, it would probably be
worthwhile creating a generic DatabaseComboBox class whose constructor would allow us to
specify the table name, the field to display, and the field to use for IDs.

Let's finish the CD Collection application by implementing its createConnections() and main()
functions.

inline bool createOneConnection(const QString &name)
{

 QSqlDatabase *db;
 if (name.isEmpty())
 db = QSqlDatabase::addDatabase("QSQLITEX");
 else
 db = QSqlDatabase::addDatabase("QSQLITEX", name);
 db->setDatabaseName("cdcollection.dat");
 if (!db->open()) {
 db->lastError().showMessage();
 return false;
 }
 return true;
}
inline bool createConnections()
{
 return createOneConnection("")
 && createOneConnection("ARTIST")
 && createOneConnection("CD");
}

In createConnections(), we create three identical connections to the CD database. We don't
give any name to the first one; it is used by default when we don't specify a database. The
other ones are called "ARTIST" and "CD"; they are used by ArtistForm and CdForm.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!createConnections())
 return 1;

 MainForm mainForm;
 app.setMainWidget(&mainForm);
 mainForm.resize(480, 320);
 mainForm.show();
 return app.exec();
}

The main() function is the same as most other Qt main() functions, except for the addition of a
createConnections() call.

As we mentioned at the end of the previous section, one possible improvement would be to
display the duration of each track as minutes and seconds rather than just seconds. Besides
reimplementing QSqlCursor::calculateField(), this would also involve subclassing
QSqlEditorFactory to provide a custom editor (which we could base on QTimeEdit) and using
a QSqlPropertyMap to tell QDataTable how to get the value back from the editor. See the
documentation for QDataTable's installEditorFactory() and installPropertyMap()
functions for more information.

Another improvement would be to store an image of each CD's cover in the database and to
show it in the CdForm. To implement this, we could store the image data as a BLOB in the
database, retrieve it as a QByteArray, and pass the QByteArray to the QImage constructor.

[Team LiB]
[Team LiB]

Chapter 13. Networking
Using QFtp

Using QHttp

TCP Networking with QSocket

UDP Networking with QSocketDevice

Qt provides the QFtp and QHttp classes for working with FTP and HTTP. These protocols are
easy to use for downloading and uploading files and, in the case of HTTP, for sending requests
to web servers and retrieving the results.

Qt's QFtp and QHttp classes are built on the lower-level QSocket class, which provides a TCP
socket. TCP operates in terms of data streams transmitted between network nodes. QSocket is
in turn implemented on top of QSocketDevice, a thin wrapper around the platform-specific
network APIs. The QSocketDevice class supports both TCP and UDP.

In this chapter, we will learn how to use the four classes mentioned above and other closely
related classes, like QServerSocket and QSocketNotifier. We will also cover uploading and
downloading files and how to use a web form programmatically. We will use TCP in a server
application and in a corresponding client application. Similarly, we will use UDP in a sender
application and in a corresponding receiver application. The coverage of QFtp and QHttp should
be accessible to anyone, but the coverage of QSocket and especially QSocketDevice does
assume some networking experience.

[Team LiB]
[Team LiB]

Using QFtp
The QFtp class implements the client side of the FTP protocol in Qt. It provides various
functions to perform the most common FTP operations, including get(), put(), remove(), and
mkdir(), and provides a means of executing arbitrary FTP commands.

The QFtp class works asynchronously. When we call a function like get() or put(), it returns
immediately and the data transfer occurs when control passes back to Qt's event loop. This
ensures that the user interface remains responsive while FTP commands are executed.

We will start with an example that shows how to retrieve a single file using get(). The example
assumes that the application's MainWindow class needs to retrieve a price list from an FTP site.

class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0, const char *name = 0);

 void getPriceList();
 ...

private slots:
 void ftpDone(bool error);

private:
 QFtp ftp;
 QFile file;

 ...
};

The class has a public function, getPriceList(), that retrieves the price list file, and a private
slot, ftpDone(bool), that is called when the file transfer is completed. The class also has two
private variables: The ftp variable, of type QFtp, encapsulates the connection to an FTP server;
the file variable is used for writing the downloaded file to disk.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 ...
 connect(&ftp, SIGNAL(done(bool)), this, SLOT(ftpDone(bool)));
}

In the constructor, we connect the QFtp object's done(bool) signal to our ftpDone(bool)
private slot. QFtp emits the done(bool) signal when it has finished processing all requests. The
bool parameter indicates whether an error occurred or not.

void MainWindow::getPriceList()
{
 file.setName("price-list.csv");
 if (!file.open(IO_WriteOnly)) {
 QMessageBox::warning(this, tr("Sales Pro"),
 tr("Cannot write file %1\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return;
 }

 ftp.connectToHost("ftp.trolltech.com");
 ftp.login();
 ftp.cd("/topsecret/csv");
 ftp.get("price-list.csv", &file);
 ftp.close();
}

The getPriceList() function downloads the
ftp://ftp.trolltech.com/topsecret/csv/price-list.csv file and saves it as price-
list.csv in the current directory.

We start by opening the QFile for writing. Then we execute a sequence of five FTP commands
using our QFtp object. The second argument to get() specifies the output I/O device.

The FTP commands are queued and executed in Qt's event loop. The completion of the
commands is indicated by QFtp's done(bool) signal, which we connected to ftpDone(bool) in
the constructor.

void MainWindow::ftpDone(bool error)
{
 if (error)
 QMessageBox::warning(this, tr("Sales Pro"),
 tr("Error while retrieving file with "
 "FTP: %1.")
 .arg(ftp.errorString()));
 file.close();
}

Once the FTP commands are executed, we close the file. If an error occurred, we display it in a
QMessageBox.

QFtp provides these operations: connectToHost(), login(), close(), list(), cd(), get(),
put(), remove(), mkdir(), rmdir(), and rename(). All of these functions schedule an FTP
command and return an ID number that identifies the command. Arbitrary FTP commands can
be executed using rawCommand(). For example, here's how to execute a SITE CHMOD command:

ftp.rawCommand("SITE CHMOD 755 fortune");

QFtp emits the commandStarted(int) signal when it starts executing a command, and it emits
the commandFinished(int, bool) signal when the command is finished. The int parameter is
the ID number that identifies a command. If we are interested in the fate of individual
commands, we can store the ID numbers when we schedule the commands. Keeping track of
the ID numbers allows us to provide detailed feedback to the user. For example:

void MainWindow::getPriceList()
{
 ...
 connectId = ftp.connectToHost("ftp.trolltech.com");
 loginId = ftp.login();
 cdId = ftp.cd("/topsecret/csv");
 getId = ftp.get("price-list.csv", &file);
 closeId = ftp.close();
}
void MainWindow::commandStarted(int id)
{
 if (id == connectId) {
 statusBar()->message(tr("Connecting..."));
 } else if (id == loginId) {
 statusBar()->message(tr("Logging in..."));
 ...
}

Another way of providing feedback is to connect to QFtp's stateChanged() signal.

In most applications, we are only interested in the fate of the whole sequence of commands.
We can then simply connect to the done(bool) signal, which is emitted whenever the command
queue becomes empty.

When an error occurs, QFtp automatically clears the command queue. This means that if the
connection or the login fails, the commands that follow in the queue are never executed. But if
we schedule new commands after the error has occurred using the same QFtp object, these
commands will be queued and executed as if nothing had happened.

We will now review a more advanced example:

class Downloader : public QObject
{
 Q_OBJECT
public:
 Downloader(const QUrl &url);

signals:
 void finished();

private slots:
 void ftpDone(bool error);
 void listInfo(const QUrlInfo &urlInfo);

private:
 QFtp ftp;
 std::vector<QFile *> openedFiles;

};

The Downloader class downloads all the files located in an FTP directory. The directory is
specified as a QUrl passed to the class's constructor. The QUrl class is a Qt class that provides
a high-level interface for extracting the different parts of a URL, such as the file name, path,
protocol, and port.

Downloader::Downloader(const QUrl &url)
{
 if (url.protocol() != "ftp") {
 QMessageBox::warning(0, tr("Downloader"),
 tr("Protocol must be 'ftp'."));
 emit finished();
 return;
 }

 int port = 21;
 if (url.hasPort())
 port = url.port();
 connect(&ftp, SIGNAL(done(bool)),
 this, SLOT(ftpDone(bool)));
 connect(&ftp, SIGNAL(listInfo(const QUrlInfo &)),
 this, SLOT(listInfo(const QUrlInfo &)));

 ftp.connectToHost(url.host(), port);
 ftp.login(url.user(), url.password());
 ftp.cd(url.path());
 ftp.list();
}

In the constructor, we first check that the URL starts with "ftp:". Then we extract a port
number. If no port is specified, we use port 21, the default port for FTP.

Next, we establish two signal–slot connections, and we schedule four FTP commands. The last
FTP command, list(), retrieves the name of every file in the directory and emits a listInfo
(const QUrlInfo &) signal for each name that it retrieves. This signal is connected to a slot
also called listInfo(), which downloads the file associated with the URL it is given.

void Downloader::listInfo(const QUrlInfo &urlInfo)
{
 if (urlInfo.isFile() && urlInfo.isReadable()) {
 QFile *file = new QFile(urlInfo.name());
 if (!file->open(IO_WriteOnly)) {
 QMessageBox::warning(0, tr("Downloader"),
 tr("Error: Cannot open file "
 "%1:\n%2.")
 .arg(file->name())
 .arg(file->errorString()));
 emit finished();
 return;
 }

 ftp.get(urlInfo.name(), file);
 openedFiles.push_back(file);
 }
}

The listInfo() slot's QUrlInfo parameter provides detailed information about a remote file. If
the file is a normal file (not a directory) and is readable, we call get() to download it. The
QFile object used for downloading is allocated using new and a pointer to it is stored in the
openedFiles vector.

void Downloader::ftpDone(bool error)
{
 if (error)
 QMessageBox::warning(0, tr("Downloader"),
 tr("Error: %1.")
 .arg(ftp.errorString()));
 for (int i = 0; i < (int)openedFiles.size(); ++i)
 delete openedFiles[i];
 emit finished();
}

The ftpDone() slot is called when all the FTP commands have finished, or if an error occurred.
We delete the QFile objects to prevent memory leaks, and also to close each file. (The QFile
destructor automatically closes the file if it's open.)

If there are no errors, the sequence of FTP commands and signals is as follows:

connectToHost(host)
login()
cd(path)
list()
 emit listInfo(file_1)
 get(file_1)
 emit listInfo(file_2)
 get(file_2)
 ...
 emit listInfo(file_N)
 get(file_N)
emit done()

If a network error occurs while downloading the fifth of, say, twenty files to download, the
remaining files will not be downloaded. If we wanted to download as many files as possible, one
solution would be to schedule the GET operations one at a time and to wait for the done(bool)
signal before scheduling a new GET operation. In listInfo(), we would simply append the file
name to a QStringList, instead of calling get() right away, and in done(bool) we would call
get() on the next file to download in the QStringList. The sequence of execution would then
look like this:

connectToHost(host)
login()
cd(path)
list()
 emit listInfo(file_1)
 emit listInfo(file_2)
 ...
 emit listInfo(file_N)
emit done()

get(file_1)
emit done()

get(file_2)
emit done()
...
get(file_N)
emit done()

Another solution would be to use one QFtp object per file. This would enable us to download the
files in parallel, through separate FTP connections.

int main(int argc, char *argv[])

{
 QApplication app(argc, argv);
 QUrl url("ftp://ftp.example.com/");
 if (argc >= 2)
 url = argv[1];
 Downloader downloader(url);
 QObject::connect(&downloader, SIGNAL(finished()),
 &app, SLOT(quit()));
 return app.exec();
}

The main() function completes the program. If the user specifies a URL on the command line,
we use it; otherwise, we fall back on ftp://ftp.example.com/.

In both examples, the data retrieved using get() was written to a QFile. This doesn't have to
be the case. If we wanted the data in memory, we could use a QBuffer, the QIODevice
subclass that wraps a QByteArray. For example:

QBuffer *buffer = new QBuffer(byteArray);
buffer->open(IO_WriteOnly);
ftp.get(urlInfo.name(), buffer);

We could also omit the I/O device argument to get(), or pass a null pointer. The QFtp class
then emits a readyRead() signal every time new data is available, and the data can be read
using readBlock() or readAll().

If we want to provide the user with feedback while the data is being downloaded, we can
connect QFtp's dataTransferProgress(int, int) signal to the setProgress(int, int) slot
in a QProgressBar or in a QProgressDialog. We would then also connect the QProgressBar or
QProgressDialog's canceled() signal to QFtp's abort() slot.

[Team LiB]
[Team LiB]

Using QHttp
The QHttp class implements the client side of the HTTP protocol in Qt. It provides various
functions to perform the most common HTTP operations, including get() and post(), and
provides a means of sending arbitrary HTTP requests. If you have read the previous section
about QFtp, you will find that there are many similarities between QFtp and QHttp.

The QHttp class works asynchronously. When we call a function like get() or post(), the
function returns immediately, and the data transfer occurs later, when control returns to Qt's
event loop. This ensures that the application's user interface remains responsive while HTTP
requests are being processed.

We will review an example that shows how to download an HTML file from Trolltech's web site
from a Qt application's MainWindow class. We will omit the header file because it is very similar
to the one we used in the previous section (p.284), with a private slot (httpDone(bool)) and
private variables (http of type QHttp and file of type QFile).

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 ...
 connect(&http, SIGNAL(done(bool)), this, SLOT(httpDone(bool)));

}

In the constructor, we connect the QHttp object's done(bool) signal to the MainWindow's
httpDone(bool) slot.

void MainWindow::getFile()
{
 file.setName("aboutqt.html");
 if (!file.open(IO_WriteOnly)) {
 QMessageBox::warning(this, tr("HTTP Get"),
 tr("Cannot write file %1\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return;
 }

 http.setHost("doc.trolltech.com");
 http.get("/3.2/aboutqt.html", &file);
 http.closeConnection();
}

The getFile() function downloads the http://doc.trolltech.com/3.2/aboutqt.html file and saves
it as aboutqt.html in the current directory.

We open the QFile for writing and schedule a sequence of three HTTP requests using our QHttp
object. The second argument to get() specifies the output I/O device.

The HTTP requests are queued and executed in Qt's event loop. The completion of the
commands is indicated by QHttp's done(bool) signal, which we connected to httpDone(bool)
in the constructor.

void MainWindow::httpDone(bool error)
{
 if (error)
 QMessageBox::warning(this, tr("HTTP Get"),
 tr("Error while fetching file with"
 "HTTP: %1.")
 .arg(http.errorString()));
 file.close();
}

Once the HTTP requests are finished, we close the file. If an error occurred, we display the error
message in a QMessageBox.

QHttp provides the following operations: setHost(), get(), post(), and head(). For example,
here's how we would use post() to send a list of "name = value" pairs to a CGI script:

http.setHost("www.example.com");
http.post("/cgi/somescript.py", QCString("x=200&y=320"), &file);

For more control, we can use the request() function, which accepts an arbitrary HTTP header
and data. For example:

QHttpRequestHeader header("POST", "/search.html");
header.setValue("Host", "www.trolltech.com");
header.setContentType("application/x-www-form-urlencoded");
http.setHost("www.trolltech.com");
http.request(header, QCString("qt-interest=on&search=opengl"));

QHttp emits the requestStarted(int) signal when it starts executing a request, and it emits
the requestFinished(int, bool) signal when the request has finished. The int parameter is
an ID number that identifies a request. If we are interested in the fate of individual requests,
we can store the ID numbers when we schedule the requests. Keeping track of the ID numbers
allows us to provide detailed feedback to the user.

In most applications, we only want to know whether the entire sequence of requests completed
successfully or not. This is easily achieved by connecting to the done(bool) signal, which is
emitted when the request queue becomes empty.

When an error occurs, the request queue is automatically cleared. But if we schedule new
requests after the error has occurred using the same QHttp object, these requests will be
queued and sent as usual.

Like QFtp, QHttp provides a readyRead() signal as well as the readBlock() and readAll()
functions that we can use instead of specifying an I/O device. It also provides a
dataTransferProgress(int, int) signal that can be connected to a QProgressBar or to a
QProgressDialog's setProgress(int, int) slot.

[Team LiB]
[Team LiB]

TCP Networking with QSocket
The QSocket class can be used to implement TCP clients and servers. TCP is a transport
protocol that forms the basis of many application-level Internet protocols, including FTP and
HTTP, and that can also be used for custom protocols.

TCP is a stream-oriented protocol. For applications, the data appears to be a long stream,
rather like a large flat file. The high-level protocols built on top of TCP are typically either line-
oriented or block-oriented:

Line-oriented protocols transfer data as lines of text, each terminated by a newline.

Block-oriented protocols transfer data as binary data blocks. Each block consists of a size
field followed by size bytes of data.

QSocket inherits from QIODevice, so it can be read from and written to using a QDataStream or
a QTextStream. One notable difference when reading data from a network compared with
reading from a file is that we must make sure that we have received enough data from the peer
before we use the >> operator. Failing to do so may result in undefined behavior.

In this section, we will review the code of a client and a server that use a custom block-oriented
protocol. The client is called Trip Planner and allows users to plan their next train trip. The
server is called Trip Server and provides the trip information to the client. We will start by
writing the Trip Planner application.

Figure 13.1. The Trip Planner application

The Trip Planner provides a From field, a To field, a Date field, an Approximate Time field, and
two radio buttons to select whether the approximate time is that of departure or arrival. When
the user clicks Search, the application sends a request to the server, which responds with a list
of train trips that match the user's criteria. The list is shown in a QListView in the Trip Planner
window. The very bottom of the window is occupied by a QLabel that shows the status of the
last operation and a QProgressBar.

The Trip Planner's user interface was created using Qt Designer. Here, we will focus on the
source code in the corresponding .ui.h file. Note that the following four variables were
declared in Qt Designer's Members tab:

QSocket socket;
QTimer connectionTimer;
QTimer progressBarTimer;
Q_UINT16 blockSize;

The socket variable of type QSocket encapsulates the TCP connection. The connectionTimer
variable is used to time out a connection that lasts too long. The progressBarTimer variable is
used to refresh the progress bar periodically when the application is busy. Finally, the
blockSize variable is used when parsing the blocks received from the server.

void TripPlanner::init()
{
 connect(&socket, SIGNAL(connected()),
 this, SLOT(sendRequest()));
 connect(&socket, SIGNAL(connectionClosed()),
 this, SLOT(connectionClosedByServer()));
 connect(&socket, SIGNAL(readyRead()),
 this, SLOT(updateListView()));
 connect(&socket, SIGNAL(error(int)),
 this, SLOT(error(int)));

 connect(&connectionTimer, SIGNAL(timeout()),
 this, SLOT(connectionTimeout()));
 connect(&progressBarTimer, SIGNAL(timeout()),
 this, SLOT(advanceProgressBar()));

 QDateTime dateTime = QDateTime::currentDateTime();
 dateEdit->setDate(dateTime.date());
 timeEdit->setTime(QTime(dateTime.time().hour(), 0));

}

In init(), we connect the QSocket's connected(), connectionClosed(), readyRead(), and
error(int) signals, and the two timers' timeout() signals, to our own slots. We also fill the
Date and Approximate Time fields with default values based on the current date and time.

void TripPlanner::advanceProgressBar()
{
 progressBar->setProgress(progressBar->progress() + 2);
}

The advanceProgressBar() slot is connected to the progressBarTimer's timeout() signal. We
advance the progress bar by two units. In Qt Designer, the progress bar's totalSteps property
was set to 0, a special value meaning that the bar should behave as a busy indicator.

void TripPlanner::connectToServer()
{
 listView->clear();

 socket.connectToHost("tripserver.zugbahn.de", 6178);

 searchButton->setEnabled(false);
 stopButton->setEnabled(true);
 statusLabel->setText(tr("Connecting to server..."));

 connectionTimer.start(30 * 1000, true);
 progressBarTimer.start(200, false);

 blockSize = 0;
}

The connectToServer() slot is executed when the user clicks Search to start a search. We call
connectToHost() on the QSocket object to connect to the server, which we assume is
accessible at port 6178 on the fictitious host tripserver. zugbahn.de. (If you want to try the
example on your own machine, replace the host name with localhost.) The connectToHost()
call is asynchronous; it always returns immediately. The connection is typically established
later. The QSocket object emits the connected() signal when the connection is up and running,
or error(int) (with an error code) if the connection failed.

Next, we update the user interface and start the two timers. The first timer, connectionTimer,
is a single-shot timer that gets triggered when the connection has been idle for 30 seconds. The
second timer, progressBarTimer, times out every 200 milliseconds to update the application's
progress bar, giving a visual cue to the user that the application is working.

Finally, we set the blockSize variable to 0. The blockSize variable stores the length of the
next block received from the server. We have chosen to use the value of 0 to mean that we
don't yet know the size of the next block.

void TripPlanner::sendRequest()
{
 QByteArray block;
 QDataStream out(block, IO_WriteOnly);
 out.setVersion(5);
 out << (Q_UINT16)0 << (Q_UINT8) 'S'
 << fromComboBox->currentText()
 << toComboBox->currentText() << dateEdit->date()
 << timeEdit->time();
 if (departureRadioButton->isOn())
 out << (Q_UINT8) 'D';
 else

 out << (Q_UINT8) 'A';
 out.device()->at(0);
 out << (Q_UINT16) (block.size() - sizeof(Q_UINT16));
 socket.writeBlock(block.data(), block.size());

 statusLabel->setText(tr("Sending request..."));
}

The sendRequest() slot is executed when the QSocket object emits the connected() signal,
indicating that a connection has been established. The slot's task is to generate a request to the
server, with all the information entered by the user.

The request is a binary block with the following format:

We first write the data to a QByteArray called block. We can't write the data directly to the
QSocket because we don't know the size of the block, which must be sent first, until after we
have put all the data into the block.

We initially write 0 as the block size, followed by the rest of the data. Then we call at(0) on the
I/O device (a QBuffer created by QDataStream behind the scenes) to move back to the
beginning of the byte array, and overwrite the initial 0 with the size of the block's data. The size
is calculated by taking the block's size and subtracting sizeof(Q_UINT16) (that is, 2) to exclude
the size field from the byte count. After that, we call writeBlock() on the QSocket to send the
block to the server.

void TripPlanner::updateListView()
{
 connectionTimer.start(30 * 1000, true);

 QDataStream in(&socket);
 in.setVersion(5);

 for (;;) {
 if (blockSize == 0) {
 if (socket.bytesAvailable() < sizeof(Q_UINT16))
 break;
 in >> blockSize;
 }

 if (blockSize == 0xFFFF) {
 closeConnection();
 statusLabel->setText(tr("Found %1 trip(s)")
 .arg(listView->childCount()));
 break;
 }

 if (socket.bytesAvailable() < blockSize)
 break;

Q_UINT16 Block size in bytes (excluding this field)

Q_UINT8 Request type (always 'S')

QString Departure city

QString Arrival city

QDate Date of travel

QTime Approximate time of travel

Q_UINT8 Time is for departure ('D') or arrival ('A')

 QDate date;
 QTime departureTime;
 QTime arrivalTime;
 Q_UINT16 duration;
 Q_UINT8 changes;
 QString trainType;

 in >> date >> departureTime >> duration >> changes
 >> trainType;
 arrivalTime = departureTime.addSecs(duration * 60);

 new QListViewItem(listView,
 date.toString(LocalDate),
 departureTime.toString(tr("hh:mm")),
 arrivalTime.toString(tr("hh:mm")),
 tr("%1 hr %2 min").arg(duration / 60)
 .arg(duration % 60),
 QString::number(changes),
 trainType);
 blockSize = 0;
 }
}

The updateListView() slot is connected to the QSocket's readyRead() signal, which is emitted
whenever the QSocket has received new data from the server. The first thing we do is to restart
the single-shot connection timer. Whenever we receive some data from the server, we know
that the connection is alive, so we set the timer running for another 30 seconds.

The server sends us a list of possible train trips that match the user's criteria. Each matching
trip is sent as a single block, and each block starts with a size. What complicates the code in the
for loop is that we don't necessarily get one block of data from the server at a time. We might
have received an entire block, or just part of a block, or one and a half blocks, or even all of the
blocks at once.

Figure 13.2. The Trip Server's blocks

So how does the for loop work? If the blockSize variable is 0, this means that we have not
read the size of the next block. We try to read it (assuming there are at least 2 bytes available
for reading). The server uses a size value of 0xFFFF to signify that there is no more data to
receive, so if we read this value, we know that we have reached the end.

If the block size is not 0xFFFF, we try to read in the next block. First, we check to see if there
are block size bytes available to read. If there are not, we stop there for now. The readyRead()
signal will be emitted again when more data is available, and we will try again then.

Once we are sure that an entire block has arrived, we can safely use the >> operator on the
QDataStream we set up on the QSocket to extract the information related to a trip, and we
create a QListViewItem with that information. A block received from the server has the
following format:

Q_UINT16 Block size in bytes (excluding this field)

QDate Departure date

At the end, we reset the blockSize variable to 0 to indicate that the next block's size is
unknown and needs to be read.

void TripPlanner::closeConnection()
{
 socket.close();
 searchButton->setEnabled(true);
 stopButton->setEnabled(false);
 connectionTimer.stop();
 progressBarTimer.stop();
 progressBar->setProgress(0);
}

The closeConnection() private function closes the connection to the TCP server, updates the
user interface, and stops the timers. It is called from updateListView() when the 0xFFFF is
read and from several other slots that we will cover shortly.

void TripPlanner::stopSearch()
{
 statusLabel->setText(tr("Search stopped"));
 closeConnection();
}

The stopSearch() slot is connected to the Stop button's clicked() signal. Essentially it just
calls closeConnection().

void TripPlanner::connectionTimeout()
{
 statusLabel->setText(tr("Error: Connection timed out"));
 closeConnection();
}

The connectionTimeout() slot is connected to the connectionTimer's timeout() signal.

void TripPlanner::connectionClosedByServer()
{
 if (blockSize != 0xFFFF)
 statusLabel->setText(tr("Error: Connection closed by "
 "server"));
 closeConnection();
}

The connectionClosedByServer() slot is connected to socket's connectionClosed() signal. If
the server closes the connection and we have not yet received the 0xFFFF end-of-stream
marker, we tell the user that an error occurred. We call closeConnection() as usual to update
the user interface and to stop the timers.

void TripPlanner::error(int code)
{
 QString message;

 switch (code) {

QTime Departure time

Q_UINT16 Duration (in minutes)

Q_UINT8 Number of changes

QString Train type

 case QSocket::ErrConnectionRefused:
 message = tr("Error: Connection refused");
 break;
 case QSocket::ErrHostNotFound:
 message = tr("Error: Server not found");
 break;
 case QSocket::ErrSocketRead:
 default:
 message = tr("Error: Data transfer failed");
 }
 statusLabel->setText(message);
 closeConnection();
}

The error(int) slot is connected to socket's error(int) signal. We produce an error message
based on the error code.

The main() function for the Trip Planner application looks just as we would expect:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 TripPlanner tripPlanner;
 app.setMainWidget(&tripPlanner);
 tripPlanner.show();
 return app.exec();
}

Now let's implement the server. The server consists of two classes: TripServer and
ClientSocket. The TripServer class inherits QServerSocket, a class that allows us to accept
incoming TCP connections. ClientSocket reimplements QSocket and handles a single
connection. At any one time, there are as many ClientSocket objects in memory as there are
clients being served.

class TripServer : public QServerSocket
{
public:
 TripServer(QObject *parent = 0, const char *name = 0);

 void newConnection(int socket);
};

The TripServer class reimplements the newConnection() function from QServerSocket. This
function is called whenever a client attempts to connect to the port the server is listening to.

TripServer::TripServer(QObject *parent, const char *name)
 : QServerSocket(6178, 1, parent, name)
{
}

In the TripServer constructor, we pass the port number (6178) to the base class constructor.
The second argument, 1, is the number of pending connections we want to allow.

void TripServer::newConnection(int socketId)
{
 ClientSocket *socket = new ClientSocket(this);
 socket->setSocket(socketId);
}

In newConnection(), we create a ClientSocket object as a child of the TripServer object,

and we set its socket ID to the number provided to us.

class ClientSocket : public QSocket
{
 Q_OBJECT
public:
 ClientSocket(QObject *parent = 0, const char *name = 0);
private slots:
 void readClient();

private:
 void generateRandomTrip(const QString &from, const QString &to,
 const QDate &date, const QTime &time);

 Q_UINT16 blockSize;
};

The ClientSocket class inherits from QSocket and encapsulates the state of a single client.

ClientSocket::ClientSocket(QObject *parent, const char *name)
 : QSocket(parent, name)
{
 connect(this, SIGNAL(readyRead()),
 this, SLOT(readClient()));
 connect(this, SIGNAL(connectionClosed()),
 this, SLOT(deleteLater()));
 connect(this, SIGNAL(delayedCloseFinished()),
 this, SLOT(deleteLater()));

 blockSize = 0;
}

In the constructor, we establish the necessary signal–slot connections, and we set the
blockSize variable to 0, indicating that we do not yet know the size of the block sent by the
client.

The connectionClosed() and delayedCloseFinished() signals are connected to deleteLater
(), a QObject-inherited function that deletes the object when control returns to Qt's event loop.
This ensures that the ClientSocket object is deleted when the connection is closed by the peer
or when a delayed close is finished. We will see what that means in a moment.

void ClientSocket::readClient()
{
 QDataStream in(this);
 in.setVersion(5);

 if (blockSize == 0) {
 if (bytesAvailable() < sizeof(Q_UINT16))
 return;
 in >> blockSize;
 }
 if (bytesAvailable() < blockSize)
 return;

 Q_UINT8 requestType;
 QString from;
 QString to;
 QDate date;
 QTime time;
 Q_UINT8 flag;

 in >> requestType;

 if (requestType == 'S') {
 in >> from >> to >> date >> time >> flag;

 srand(time.hour() * 60 + time.minute());
 int numTrips = rand() % 8;
 for (int i = 0; i < numTrips; ++i)
 generateRandomTrip(from, to, date, time);

 QDataStream out(this);
 out << (Q_UINT16)0xFFFF;
 }
 close();
 if (state() == Idle)
 deleteLater();
}

The readClient() slot is connected to QSocket's readyRead() signal. If blockSize is 0, we
start by reading the blockSize; otherwise, we have already read it, and instead we check to
see if a whole block has arrived. Once an entire block is ready for reading, we read it. We use
the QDataStream directly on the QSocket (the this object) and read the fields using the >>
operator.

Once we have read the client's request, we are ready to generate a reply. If this were a real
application, we would look up the information in a train schedule database and try to find
matching train trips. But here we will be content with a function called generateRandomTrip()
that will generate a random trip. We call the function a random number of times, and we send
0xFFFF to signify the end of the data.

Finally, we close the connection. If the socket's output buffer is empty, the connection is
terminated immediately and we call deleteLater() to delete this object when control returns
to Qt's event loop. (This is safer than delete this.) Otherwise, QSocket will complete sending
out all the data, and will then close the connection and emit the delayedCloseFinished()
signal.

void ClientSocket::generateRandomTrip(const QString &,
 const QString &, const QDate &date, const QTime &time)
{
 QByteArray block;
 QDataStream out(block, IO_WriteOnly);
 out.setVersion(5);
 Q_UINT16 duration = rand() % 200;
 out << (Q_UINT16)0 << date << time << duration
 << (Q_UINT8) 1 << QString("InterCity");
 out.device()->at(0);
 out << (Q_UINT16) (block.size() - sizeof(Q_UINT16));
 writeBlock(block.data(), block.size());
}

The generateRandomTrip() function shows how to send a block of data over a TCP connection.
This is very similar to what we did in the client in the sendRequest() function (p.294). Once
again, we write the block to a QByteArray so that we can determine its size before we send it
using writeBlock().

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 TripServer server;
 if (!server.ok()) {
 qWarning("Failed to bind to port");
 return 1;

 }
 QPushButton quitButton(QObject::tr("&Quit"), 0);
 quitButton.setCaption(QObject::tr("Trip Server"));
 app.setMainWidget(&quitButton);
 QObject::connect(&quitButton, SIGNAL(clicked()),
 &app, SLOT(quit()));
 quitButton.show();
 return app.exec();
}

In main(), we create a TripServer object and a QPushButton that enables the user to stop the
server.

This completes our client–server example. In this case, we used a block-oriented protocol that
allows us to use QDataStream for reading and writing. If we wanted to use a line-oriented
protocol, the simplest approach would be to use QSocket's canReadLine() and readLine()
functions in a slot connected to the readyRead() signal:

QStringList lines;
while (socket.canReadLine())
 lines.append(socket.readLine());

We would then process each line that has been read. As for sending data, that can be done
using a QTextStream on the QSocket.

The server implementation that we have used doesn't scale very well when there are lots of
connections. The problem is that while we are processing a request, we don't handle the other
connections. A more scalable approach would be to start a new thread for each connection. But
QSocket can only be used in the thread that contains the event loop (the call to
QApplication:: exec()), for reasons that are explained in Chapter 17 (Multithreading). The
solution is to use the low-level QSocketDevice class directly, which doesn't rely on the event
loop.

[Team LiB]
[Team LiB]

UDP Networking with QSocketDevice
The QSocketDevice class provides a low-level interface that can be used for TCP and for UDP.
For most TCP applications, the higher-level QSocket class is all we need, but if we want to use
UDP, we must use QSocketDevice directly.

UDP is an unreliable, datagram-oriented protocol. Some application-level protocols use UDP
because it is more lightweight than TCP. With UDP, data is sent as packets (datagrams) from
one host to another. There is no concept of connection, and if a UDP packet doesn't get
delivered successfully, no error is reported to the system.

Figure 13.3. The Weather Station application

We will see how to use UDP from a Qt application through the Weather Balloon and Weather
Station example. The Weather Balloon application is a non-GUI application that sends a UDP
datagram containing the current atmospheric conditions every 5 seconds. The Weather Station
application receives these datagrams and displays them on screen. We will start by reviewing
the code for the Weather Balloon.

class WeatherBalloon : public QPushButton
{
 Q_OBJECT
public:
 WeatherBalloon(QWidget *parent = 0, const char *name = 0);

 double temperature() const;
 double humidity() const;
 double altitude() const;

protected:
 void timerEvent(QTimerEvent *event);

private:
 QSocketDevice socketDevice;
 int myTimerId;
};

The WeatherBalloon class inherits from QPushButton. It uses its QSocketDevice private
variable for communicating with the Weather Station.

WeatherBalloon::WeatherBalloon(QWidget *parent, const char *name)
 : QPushButton(tr("Quit"), parent, name),
 socketDevice(QSocketDevice::Datagram)
{
 socketDevice.setBlocking(false);
 myTimerId = startTimer(5 * 1000);
}

In the constructor's initialization list, we pass QSocketDevice::Datagram to the QSocketDevice
constructor to create a UDP socket device. In the constructor body, we call setBlocking
(false) to make the QSocketDevice asynchronous. (By default, QSocketDevice is
synchronous.)

We call startTimer() to generate a timer event every 5 seconds.

void WeatherBalloon::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 QByteArray datagram;
 QDataStream out (datagram, IO_WriteOnly);
 out.setVersion(5);
 out << QDateTime::currentDateTime() << temperature()

 << humidity() << altitude();
 socketDevice.writeBlock(datagram, datagram.size(),
 0x7F000001, 5824);
 } else {
 QPushButton::timerEvent(event);
 }
}

In the timer event handler, we generate a datagram containing the current date, time,
temperature, humidity, and altitude:

The datagram is sent using writeBlock(). The third and fourth arguments to writeBlock()
are the IP address and the port number of the peer (the Weather Station). For this example, we
assume that the Weather Station is running on the same machine as the Weather Balloon, so
we use an IP address of 127.0.0.1 (0x7F000001), a special address that designates the local
host. Unlike QSocket, QSocketDevice does not accept host names, only host numbers. If we
wanted to resolve a host name to its IP address here, we would need to use the QDns class.

As usual, we need a main() function:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 WeatherBalloon balloon;
 balloon.setCaption(QObject::tr("Weather Balloon"));
 app.setMainWidget(&balloon);
 QObject::connect(&balloon, SIGNAL(clicked()),
 &app, SLOT(quit()));
 balloon.show();
 return app.exec();
}

The main() function simply creates a WeatherBalloon object, which serves both as a UDP peer
and as a QPushButton on screen. By clicking the QPushButton, the user can quit the
application.

Now let's review the source code for the Weather Station.

class WeatherStation : public QDialog
{
 Q_OBJECT
public:
 WeatherStation(QWidget *parent = 0, const char *name = 0);

private slots:
 void dataReceived();

private:
 QSocketDevice socketDevice;
 QSocketNotifier *socketNotifier;

 QLabel *dateLabel;
 QLabel *timeLabel;

QDateTime Date and time of measurement

double Temperature (in °C)

double Humidity (in %)

double Altitude (in meters)

 ...
 QLineEdit *altitudeLineEdit;
};

The WeatherStation class inherits from QDialog. It listens to a certain UDP port, parses any
incoming datagrams (from the Weather Balloon), and displays their contents in five read-only
QLineEdits.

The class has two private variables of interest here: socketDevice and socket-Notifier. The
socketDevice variable, of type QSocketDevice, is used for reading datagrams. The
socketNotifier variable, of type QSocketNotifier, is used to make the application aware of
incoming datagrams.

WeatherStation::WeatherStation(QWidget *parent, const char *name)
 : QDialog(parent, name),
 socketDevice (QSocketDevice::Datagram)
{
 socketDevice.setBlocking(false);
 socketDevice.bind(QHostAddress(), 5824);

 socketNotifier = new QSocketNotifier(socketDevice.socket(),
 QSocketNotifier::Read,
 this);
 connect(socketNotifier, SIGNAL(activated(int)),
 this, SLOT(dataReceived()));
 ...
}

In the constructor's initialization list, we pass QSocketDevice::Datagram to the QSocketDevice
constructor to create a UDP socket device. In the constructor body, we call setBlocking
(false) to make the socket asynchronous and we call bind() to assign a port number to the
socket. The first argument is the IP address of the Weather Station. By passing QHostAddress
(), we indicate that we will accept datagrams to any IP address that belongs to the machine
the Weather Station is running on. The second argument is the port number.

Then we create a QSocketNotifier object to monitor the socket. The QSocketNotifier will
emit an activated(int) signal whenever the socket receives a datagram. We connect that
signal to our dataReceived() slot.

void WeatherStation::dataReceived()
{
 QDateTime dateTime;
 double temperature;
 double humidity;
 double altitude;

 QByteArray datagram(socketDevice.bytesAvailable());
 socketDevice.readBlock(datagram.data(), datagram.size());

 QDataStream in(datagram, IO_ReadOnly);
 in.setVersion(5);
 in >> dateTime >> temperature >> humidity >> altitude;

 dateLineEdit->setText(dateTime.date().toString());
 timeLineEdit->setText(dateTime.time().toString());
 temperatureLineEdit->setText(tr("%1 °C").arg(temperature));
 humidityLineEdit->setText(tr("%1%").arg(humidity));
 altitudeLineEdit->setText(tr("%1 m").arg(altitude));
}

In dataReceived(), we call readBlock() on the QSocketDevice to read in the datagram.
QByteArray::data() returns a pointer to the QByteArray's data, which readBlock()
populates. Then, we extract the different fields using a QDataStream, and we update the user
interface to show the information we received. From the application's point of view, datagrams
are always sent and received as a single unit of data. This means that if any bytes are
available, then exactly one datagram has arrived and can be read.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 WeatherStation station;
 app.setMainWidget(&station);
 station.show();
 return app.exec();
}

Finally, in main(), we create a WeatherStation and make it the application's main widget.

We have now finished our UDP sender and receiver. The applications are as simple as possible,
with the Weather Balloon sending datagrams and the Weather Station receiving them. In most
real-world applications, both applications would need to both read and write on their socket.
The QSocketDevice class has a peerAddress() and a peerPort() function that can be used by
the server to determine what address and port to reply to.

[Team LiB]
[Team LiB]

Chapter 14. XML
Reading XML with SAX

Reading XML with DOM

Writing XML

XML (Extensible Markup Language) is a text file format that is popular for data interchange and
for data storage.

Qt provides two distinct APIs for processing XML documents:

SAX (Simple API for XML) reports parsing events directly to the application through virtual
functions.

DOM (Document Object Model) converts an XML document into a tree structure, which
the application can then navigate.

There are many factors to take into account when choosing between DOM and SAX for a
particular application. SAX is more low-level and usually faster, which makes it especially
appropriate both for simple tasks (like finding all occurrences of a given tag in an XML
document) and for reading very large files that may not fit in memory. But for many
applications, the convenience offered by DOM outweighs the potential speed and memory
benefits of SAX.

In this chapter, we will see how to read XML files using both APIs, and we will show how to

write XML files. This chapter assumes a basic knowledge of XML.

[Team LiB]
[Team LiB]

Reading XML with SAX
SAX is a public domain de-facto standard Java API for reading XML documents. Qt's SAX classes
are modeled after the SAX2 Java implementation, with some differences in naming to match the
Qt conventions. For more information about SAX, see http://www.saxproject.org/.

Qt provides a SAX-based non-validating XML parser called QXmlSimpleReader. This parser
recognizes well-formed XML and supports XML namespaces. When the parser goes through the
document, it calls virtual functions in registered handler classes to indicate parsing events.
(These "parsing events" are unrelated to Qt events, such as key and mouse events.) For
example, let's assume the parser is analyzing the following XML document:

<doc>
 <quote>Errare humanum est</quote>
</doc>

The parser would call the following parsing event handlers:

startDocument()
startElement("doc")
startElement("quote")
characters("Errare humanum est")
endElement("quote")
endElement("doc")
endDocument()

The above functions are all declared in QXmlContentHandler. For simplicity, we omitted some
of the arguments of startElement() and endElement().

QXmlContentHandler is just one of many handler classes that can be used in conjunction with
QXmlSimpleReader. The others are QXmlEntityResolver, QXmlDTDHandler, QXmlErrorHandler,
QXmlDeclHandler, and QXmlLexicalHandler. These classes only declare pure virtual functions
and give information about different kinds of parsing events. For most applications,
QXmlContentHandler and QXmlErrorHandler are the only two that are needed.

For convenience, Qt also provides QXmlDefaultHandler, a class that inherits (through multiple
inheritance) from all the handler classes and that provides trivial implementations for all the
functions. This design, with many abstract handler classes and one trivial subclass, is rather
unusual for Qt; it was adopted to closely follow the model Java implementation.

We will now review an example that shows how to use QXmlSimpleReader and
QXmlDefaultHandler to parse an ad-hoc XML file format and render its contents in a
QListView. The QXmlDefaultHandler subclass is called SaxHandler, and the format it handles
is that of a book index, with index entries and subentries.

Figure 14.1. Inheritance tree for SaxHandler

Here's the book index file that is displayed in the QListView in Figure 14.2:

Figure 14.2. A book index file loaded in a QListView

<?xml version="1.0"?>
<bookindex>
 <entry term="sidebearings">
 <page>10</page>
 <page>34-35</page>
 <page>307-308</page>
 </entry>
 <entry term="subtraction">
 <entry term="of pictures">
 <page>115</page>
 <page>244</page>
 </entry>
 <entry term="of vectors">
 <page>9</page>
 </entry>
 </entry>
</bookindex>

The first step to implement the parser is to subclass QXmlDefaultHandler:

class SaxHandler : public QXmlDefaultHandler
{
public:
 SaxHandler(QListView *view);

 bool startElement(const QString &namespaceURI,
 const QString &localName,
 const QString &qName,
 const QXmlAttributes &attribs);
 bool endElement(const QString &namespaceURI,
 const QString &localName,
 const QString &qName);
 bool characters(const QString &str);
 bool fatalError(const QXmlParseException &exception);

private:
 QListView *listView;
 QListViewItem *currentItem;
 QString currentText;
};

The SaxHandler class inherits QXmlDefaultHandler and reimplements four functions:

startElement(), endElement(), characters(), and fatalError(). The first three functions
are declared in QXmlContentHandler; the last function is declared in QXmlErrorHandler.

SaxHandler::SaxHandler(QListView *view)
{
 listView = view;
 currentItem = 0;
}

The SaxHandler constructor accepts the QListView we want to fill with the information stored
in the XML file.

bool SaxHandler::startElement(const QString &, const QString &,
 const QString &qName,
 const QXmlAttributes &attribs)
{
 if (qName == "entry") {
 if (currentItem) {
 currentItem = new QListViewItem(currentItem);
 } else {
 currentItem = new QListViewItem(listView);
 }
 currentItem->setOpen(true);
 currentItem->setText(0, attribs.value("term"));
 } else if (qName == "page") {
 currentText = "";
 }
 return true;
}

The startElement() function is called when the reader encounters a new opening tag. The
third parameter is the tag's name (or more precisely, its "qualified name"). The fourth
parameter is the list of attributes. In this example, we ignore the first and second parameters.
They are useful for XML files that use XML's namespace mechanism, a subject that is discussed
in detail in the reference documentation.

If the tag is <entry>, we create a new QListView item. If the tag is nested within another
<entry> tag, the new tag defines a subentry in the index, and the new QListViewItem is
created as a child of the QListViewItem that represents the encompassing entry. Otherwise,
we create the QListViewItem with listView as its parent, making it a top-level item. We call
setOpen(true) on the item to show its children, and we call setText() to set the text shown in
column 0 to the value of the <entry> tag's term attribute.

If the tag is <page>, we set the currentText to be an empty string. The currentText serves as
an accumulator for the text located between the <page> and </page> tags.

At the end, we return true to tell SAX to continue parsing the file. If we wanted to report
unknown tags as errors, we would return false in those cases. We would then also
reimplement errorString() from QXmlDefaultHandler to return an appropriate error
message.

bool SaxHandler::characters(const QString &str)
{
 currentText += str;
 return true;
}

The characters() function is called to report character data in the XML document. We simply
append the characters to the currentText variable.

bool SaxHandler::endElement(const QString &, const QString &,
 const QString &qName)
{
 if (qName == "entry") {
 currentItem = currentItem->parent();
 } else if (qName == "page") {
 if (currentItem) {
 QString allPages = currentItem->text(1);
 if (!allPages.isEmpty())
 allPages += ", ";
 allPages += currentText;
 currentItem->setText(1, allPages);
 }
 }
 return true;
}

The endElement() function is called when the reader encounters a closing tag. Just as with
startElement(), the third parameter is the name of the tag.

If the tag is </entry>, we update the currentItem private variable to point to the current
QListViewItem's parent. This ensures that the currentItem variable is restored to the value it
held before the corresponding </entry> tag was read.

If the tag is </page>, we add the specified page number or page range to the comma-
separated list in the current item's text in column 1.

bool SaxHandler::fatalError(const QXmlParseException &exception)
{
 qWarning("Line %d, column %d: %s", exception.lineNumber(),
 exception.columnNumber(), exception.message().ascii());
 return false;
}

The fatalError() function is called when the reader fails to parse the XML file. If this occurs,
we simply output a warning, giving the line number, the column number, and the parser's error
text.

This completes the implementation of the SaxHandler class. Now let's see how we can make
use of the class:

bool parseFile(const QString &fileName)
{
 QListView *listView = new QListView(0);
 listView->setCaption(QObject::tr("SAX Handler"));
 listView->setRootIsDecorated(true);
 listView->setResizeMode(QListView::AllColumns);
 listView->addColumn(QObject::tr("Terms"));
 listView->addColumn(QObject::tr("Pages"));
 listView->show();

 QFile file(fileName);
 QXmlSimpleReader reader;

 SaxHandler handler(listView);
 reader.setContentHandler(&handler);
 reader.setErrorHandler(&handler);
 return reader.parse(&file);
}

We set up a QListView with two columns. Then we create a QFile object for the file that is to

be read and a QXmlSimpleReader to parse the file. We don't need to open the QFile ourselves;
Qt does that automatically.

Finally, we create a SaxHandler object, we install it on the reader both as a content handler
and as an error handler, and we call parse() on the reader to perform the parsing.

In SaxHandler, we only reimplemented functions from the QXmlContentHandler and
QXmlErrorHandler classes. If we had implemented functions from other handler classes, we
would also have needed to call their corresponding setter functions on the reader.
[Team LiB]
[Team LiB]

Reading XML with DOM
DOM is a standard API for parsing XML developed by the World Wide Web Consortium (W3C).
Qt provides a non-validating DOM Level 2 implementation for reading, manipulating, and
writing XML documents.

DOM represents an XML file as a tree in memory. We can navigate through the DOM tree as
much as we want, and we can modify the tree and save it back to disk as an XML file.

Let's consider the following XML document:

<doc>
 <quote>Errare humanum est</quote>
 <translation>To err is human</translation>
</doc>

It corresponds to the following DOM tree:

The DOM tree contains nodes of different types. For example, an Element node corresponds to
an opening tag and its matching closing tag. The material that falls between the tags appears
as child nodes of the Element node.

In Qt, the node types (like all other DOM-related classes) have a QDom prefix. Thus,
QDomElement represents an Element node, and QDomText represents a Text node.

Different types of nodes can have different kinds of child nodes. For example, an Element node
can contain other Element nodes, and also EntityReference, Text, CDATASection,
ProcessingInstruction, and Comment nodes. Figure 14.3 specifies which nodes can have
which kinds of child nodes. The nodes shown in gray cannot have any child nodes of their own.

Figure 14.3. Parent–child relationships between DOM nodes

To illustrate how to use DOM for reading XML files, we will write a parser for the book index file
format described in the previous section (p. 308).

class DomParser
{
public:
 DomParser(QIODevice *device, QListView *view);

private:
 void parseEntry(const QDomElement &element,
 QListViewItem *parent);
 QListView *listView;
};

We define a class called DomParser that will parse a book index XML document and display the
result in a QListView. The class does not inherit from any other class.

DomParser::DomParser(QIODevice *device, QListView *view)
{
 listView = view;
 QString errorStr;
 int errorLine;
 int errorColumn;
 QDomDocument doc;
 if (!doc.setContent(device, true, &errorStr, &errorLine,
 &errorColumn)) {
 qWarning("Line %d, column %d: %s", errorLine, errorColumn,
 errorStr.ascii());
 return;
 }

 QDomElement root = doc.documentElement();
 if (root.tagName() != "bookindex") {
 qWarning("The file is not a bookindex file");
 return;
 }

 QDomNode node = root.firstChild();
 while (!node.isNull()) {
 if (node.toElement().tagName() == "entry")
 parseEntry(node.toElement(), 0);
 node = node.nextSibling();
 }
}

In the constructor, we create a QDomDocument object and call setContent() on it to have it
read the XML document provided by the QIODevice. The setContent() function automatically

opens the device if it isn't already open. Then we call documentElement() on the QDomDocument
to obtain its single QDomElement child, and we check that it is a <bookindex> element. Then we
iterate over all the child nodes, and if the node is an <entry> element, we call parseEntry() to
parse it.

The QDomNode class can store any type of node. If we want to process a node further, we must
first convert it to the right data type. In this example, we only care about Element nodes, so we
call toElement() on the QDomNode to convert it to a QDomElement and then call tagName() to
retrieve the element's tag name. If the node is not of type Element, the toElement() function
returns a null QDomElement object, with an empty tag name.

void DomParser::parseEntry(const QDomElement &element,
 QListViewItem *parent)
{
 QListViewItem *item;
 if (parent) {
 item = new QListViewItem(parent);
 } else {
 item = new QListViewItem(listView);
 }
 item->setOpen(true);
 item->setText(0, element.attribute("term"));

 QDomNode node = element.firstChild();
 while (!node.isNull()) {
 if (node.toElement().tagName() == "entry") {
 parseEntry(node.toElement(), item);
 } else if (node.toElement().tagName() == "page") {
 QDomNode childNode = node.firstChild();
 while (!childNode.isNull()) {
 if (childNode.nodeType() == QDomNode::TextNode) {
 QString page = childNode.toText().data();
 QString allPages = item->text(1);
 if (!allPages.isEmpty())
 allPages += ", ";
 allPages += page;
 item->setText(1, allPages);
 break;
 }
 childNode = childNode.nextSibling();
 }
 }
 node = node.nextSibling();
 }
}

In parseEntry(), we create a QListView item. If the tag is nested within another <entry> tag,
the new tag defines a subentry in the index, and we create the QListViewItem as a child of the
QListViewItem that represents the encompassing entry. Otherwise, we create the
QListViewItem with listView as its parent, making it a top-level item. We call setOpen(true)
on the item to ensure that any subentries will be visible, and call setText() to set the text
shown in column 0 to the value of the <entry> tag's term attribute.

Once we have initialized the QListViewItem, we iterate over the child nodes of the
QDomElement node corresponding to the current <entry> tag.

If the element is <entry>, we call parseEntry() with the current item as the second argument.
The new entry's QListViewItem will then be created with the encompassing entry's
QListViewItem as its parent.

If the element is <page>, we navigate through the element's child list to find a Text node. Once
we have found it, we call toText() to convert it to a QDomText object, and data() to extract
the text as a QString. Then we add the text to the comma-separated list of page numbers in
column 1 of the QListViewItem.

Let's now see how we can use the DomParser class to parse a file:

void parseFile(const QString &fileName)
{
 QListView *listView = new QListView(0);
 listView->setCaption(QObject::tr("DOM Parser"));
 listView->setRootIsDecorated(true);
 listView->setResizeMode(QListView::AllColumns);
 listView->addColumn(QObject::tr("Terms"));
 listView->addColumn(QObject::tr("Pages"));
 listView->show();

 QFile file(fileName);
 DomParser(&file, listView);
}

We start by setting up a QListView. Then we create a QFile and a DomParser. When the
DomParser is constructed, it parses the file and populates the list view.

As the example illustrates, navigating through a DOM tree can be cumber-some. Simply
extracting the text between <page> and </page> required us to iterate through a list of
QDomNodes using firstChild() and nextSibling(). Programmers who use DOM a lot often
write their own higher level wrapper functions to simplify commonly needed operations, such as
extracting the text between tags.

[Team LiB]
[Team LiB]

Writing XML
There are basically two approaches for generating XML files from Qt applications:

We can build a DOM tree and call save() on it.

We can generate XML by hand.

The choice between these approaches is often independent of whether we use SAX or DOM for
reading XML documents.

Here's a code snippet that illustrates how we can create a DOM tree and write it using a
QTextStream:

const int Indent = 4;

QDomDocument doc;
QDomElement root = doc.createElement("doc");
QDomElement quote = doc.createElement("quote");
QDomElement translation = doc.createElement("translation");
QDomText quoteText = doc.createTextNode("Errare humanum est");
QDomText translationText = doc.createTextNode("To err is human");

doc.appendChild(root);
root.appendChild(quote);
root.appendChild(translation);
quote.appendChild(quoteText);
translation.appendChild(translationText);

QTextStream out(&file);
doc.save(out, Indent);

The second argument to save() is the indentation size to use. A non-zero value makes the file
easier for humans to read. Here's the XML file output:

<doc>
 <quote>Errare humanum est</quote>
 <translation>To err is human</translation>
</doc>

Another scenario occurs in applications that use the DOM tree as their primary data structure.
These applications would normally read in XML documents using DOM, then modify the DOM
tree in memory, and finally call save() to convert the tree back to XML.

In the example above, we used UTF-8 as the encoding. We can use another encoding by
prepending

<?xml version="1.0" encoding="ISO-8859-1"?>

to the DOM tree. The following code snippet shows how to do this:

QTextStream out(&file);
QDomNode xmlNode = doc.createProcessingInstruction("xml",
 "version=\"1.0\" encoding=\"ISO-8859-1\"");
doc.insertBefore(xmlNode, doc.firstChild());
doc.save(out, Indent);

Generating XML files by hand isn't much harder than using DOM. We can use QTextStream and
write the strings as we would do with any text file. The most tricky part is to escape special
characters in text and attribute values. We can do this in a separate function:

QString escapeXml(const QString &str)
{
 QString xml = str;
 xml.replace("&", "&");
 xml.replace("<", "<");
 xml.replace(">", ">");
 xml.replace("'", "'");
 xml.replace("\"", """);
 return xml;
}

Here's an example that makes use of it:

QTextStream out(&file);
out.setEncoding(QTextStream::UnicodeUTF8);
out << "<doc>\n"
 << " <quote>" << escapeXml(quoteText) << "</quote>\n"
 << " <translation>" << escapeXml(translationText)
 << "</translation>\n"
 << "</doc>\n"

The Qt Quarterly article "Generating XML", available online at http://doc.

trolltech.com/qq/qq05-generating-xml.html, presents a very simple class that makes it easy to
generate XML files. The class takes care of the details such as special characters, indentation,
and encoding issues, leaving us free to concentrate on the XML we want to generate.
[Team LiB]
[Team LiB]

Chapter 15. Internationalization
Working with Unicode

Making Applications Translation-Aware

Dynamic Language Switching

Translating Applications

In this chapter, we will cover how to write Qt applications in languages other than English and
how to translate an existing Qt application to other languages.

The first section discusses Unicode, Qt's native character encoding. The information contained
in this section is useful to all Qt developers, since even an application with an English user
interface could one day be run on a Greek or Japanese user's machine.

The second section shows how to make applications translation-ready. This process is so easy
that it's worth doing even if you don't have plans to offer translated versions of your software.
It then leaves you in a good position to hire a translator and create a new market for your
applications at a later date.

The third section is aimed at truly international applications and shows how to make an
application change language on the fly.

The last section describes the translation process as a whole. It also shows how programmers
and translators can work together using Qt Linguist and Qt's other translation tools.

[Team LiB]
[Team LiB]

Working with Unicode
Unicode is a character encoding standard that supports most of the world's writing systems.
The original idea behind Unicode is that by using 16 bits for storing characters instead of 8 bits,
it would be possible to encode around 65,000 characters instead of only 256. Unicode contains
ASCII and ISO 8859-1 (Latin-1) as subsets at the same code positions. For example, the
character 'A' has value 0x41 in ASCII, Latin-1, and Unicode, and the character 'β' has value
0xDF in both Latin-1 and Unicode.

Qt's QString class stores strings as Unicode. Each character in a QString is a 16-bit QChar
rather than an 8-bit char. Here are two ways of setting the first character of a string to 'A':

str[0] = 'A';
str[0] = QChar(0x41);

If the source file is encoded in Latin-1, specifying Latin-1 characters is just as easy:

str[0] = 'β;'

And if the source file has another encoding, the numeric value works:

str[0] = QChar(0xDF);

We can specify any Unicode character by its numeric value. For example, here's how to specify
the Greek capital letter sigma ('Σ') and the euro currency symbol ('€'):

str[0] = QChar(0x3A3);
str[0] = QChar(0x20AC);

The numeric values of all the characters supported by Unicode are listed at
http://www.unicode.org/unicode/standard/standard.html. If you rarely need non-Latin-1
Unicode characters, looking up characters online is sufficient; but Qt provides more convenient
ways of entering Unicode strings in a Qt program, as we will see later in this section.

Qt 3.2's text engine supports the following writing systems on all platforms: Arabic, Chinese,
Cyrillic, Greek, Hebrew, Japanese, Korean, Lao, Latin, Thai, and Vietnamese. It also supports all
the Unicode 3.2 scripts that don't require any special processing. In addition, the following
writing systems are supported on X11 with Xft and on NT-based versions of Windows: Bengali,
Devanagari, Gujarati, Gurmukhi, Kannada, Khmer, Syriac, Tamil, Telugu, and Thaana. Finally,
Malayalam and Tibetan are supported on X11, and Divehi is supported on Windows XP.
Assuming that the proper fonts are installed on the system, Qt can render text using any of
these writing systems. And assuming that the proper input methods are installed, users will be
able to enter text that uses these writing systems in their Qt applications.

Programming with QChar is slightly different from programming with char. To obtain the
numeric value of a QChar, call unicode() on it. To obtain the ASCII or Latin-1 value of a QChar
(as a char), call latin1(). For non-Latin-1 characters, latin1() returns 0.

If we know that all the strings in a program are ASCII or Latin-1, we can use standard
<cctype> functions like isalpha(), isdigit(), and isspace(). These work because QChars
automatically convert into chars (as Latin-1) given the right context, just as QStrings
automatically convert into const char *. However, it is generally better to use QChar's member
functions for performing these operations, since they will work for any Unicode character. The
functions QChar provides include isPrint(), isPunct(), isSpace(), isMark(), isLetter(),
isNumber(), isLetterOrNumber(), isDigit(), isSymbol(), lower(), and upper(). For
example, here's one way to test that a character is a digit or an upper-case letter:

if (ch.isDigit() || ch != ch.lower())
 ...

The lower() function returns the lower-case version of the character. If the lower-case version
of the character is different from the character itself, then the character must be upper-case (or
title-case). The code snippet works for any alphabet that distinguishes between upper- and
lower-case, including Latin, Greek, and Cyrillic.

Once we have a Unicode string, we can use it anywhere in Qt's API where a QString is
expected. It is then Qt's responsibility to display it properly and to convert it to other encodings
when talking to the operating system.

Special care is needed when we read and write text files. Text files can use a variety of
encodings, and it's often impossible to guess a text file's encoding from its contents. By default,
QTextStream uses the system's local 8-bit encoding (available as
QTextCodec::codecForLocale()) for both reading and writing. For American and West
European locales, this usually means Latin-1.

If we design our own file format and want to be able to read and write arbitrary Unicode
characters, we can save the data as Unicode by calling setEncoding(QTextStream::Unicode)
before we start writing to the QTextStream. The data will then be saved in UTF-16, a format
that requires two bytes per character. The UTF-16 format is very close to the memory
representation of a QString, so reading and writing Unicode strings in UTF-16 can be very fast.
However, there is an inherent overhead when saving pure ASCII data in UTF-16 format, since it
stores two bytes for every character instead of just one.

When reading back the text, QTextStream normally detects Unicode automatically, but for
absolute certainty it is best to call setEncoding(QTextStream::Unicode) before reading.

Another encoding that supports the whole of Unicode is UTF-8. Its main advantage over UTF-16
is that it is a superset of ASCII. Any character in the range 0x00 to 0x7F is represented as a
single byte. Other characters, including Latin-1 characters above 0x7F, are represented by
multi-byte sequences. For text that is mostly ASCII, UTF-8 takes up about half the space
consumed by UTF-16. To use UTF-8 with QTextStream, call setEncoding
(QTextStream::UnicodeUTF8) before reading and writing.

If we always want to read and write Latin-1 regardless of the user's locale, we can call
setEncoding(QTextStream::Latin1) on the QTextStream.

Other encodings can be specified by calling setCodec() with an appropriate QTextCodec.A
QTextCodec is an object that converts between Unicode and a given encoding. QTextCodecs are
used in a variety of contexts by Qt. Internally, they are used to support fonts, input methods,
the clipboard, drag and drop, and file names. But they are also available to us when we write Qt
applications.

For example, if we want to read in a file with the EUC-KR encoding, we can write this:

QTextStream in(&file);
QTextCodec *koreanCodec = QTextCodec::codecForName("EUC-KR");
if (koreanCodec)
 in.setCodec(koreanCodec);

Some file formats specify their encoding in their header. The header is typically plain ASCII to
ensure that it is read correctly no matter what encoding is used (assuming that it is a superset
of ASCII). The XML file format is an interesting example of this. XML files are normally encoded
as UTF-8 or UTF-16. The proper way to read them in is to call setEncoding
(QTextStream::UnicodeUTF8). If the format is UTF-16, QTextStream will automatically detect
this and adjust itself. The <?xml?> header of an XML file sometimes contains an encoding
argument, for example:

<?xml version="1.0" encoding="EUC-KR"?>

Since QTextStream doesn't allow us to change the encoding once it has started reading, the
right way to respect an explicit encoding is to start reading the file anew, using the correct
codec (obtained from QTextCodec::codecForName()).

In the case of XML, we can avoid having to handle the encoding ourselves by using Qt's XML
classes, described in Chapter 14.

Another use of QTextCodecs is to specify the encoding of strings that occur in the source code.
Let's consider the example of a team of Japanese programmers who are writing an application
targeted primarily at Japan's home market. These programmers are likely to write their source
code in a text editor that uses an encoding such as EUC-JP or Shift-JIS. Such an editor allows
them to type in Japanese characters seamlessly, so that they can write code like this:

QPushButton *button = new QPushButton(tr(" "), 0);

By default, Qt interprets arguments to tr() as Latin-1. To change this, call the
QTextCodec::setCodecForTr() static function. For example:

QTextCodec *japaneseCodec = QTextCodec::codecForName("EUC-JP");
QTextCodec::setCodecForTr(japaneseCodec);

This must be done before the first call to tr(). Typically, we would do this in main(), right after
the QApplication object is created.

Other strings specified in the program will still be interpreted as Latin-1 strings. If the
programmers want to enter Japanese characters in those as well, they can explicitly convert
them to Unicode using a QTextCodec:

QString text = japaneseCodec->toUnicode(" ");

Alternatively, they can tell Qt to use a specific codec when converting between const char *
and QString by calling QTextCodec::setCodecForCStrings():

QTextCodec::setCodecForCStrings(japaneseCodec);

Because Qt's internals sometimes convert ASCII strings to QString, the encoding must be a
superset of ASCII.

The techniques described above can be applied to any non-Latin-1 language, including Chinese,
Greek, Korean, and Russian.

Here's a list of the encodings supported by Qt 3.2:

Apple Roman

Big5-HKSCS

CP874

CP1250

CP1251

CP1252

CP1253

CP1254

CP1255

CP1256

CP1257

CP1258

EUC-JP

EUC-KR

GB2312

GB18030

GBK

IBM-850

IBM-866

ISO 8859-1

ISO 8859-2

ISO 8859-3

ISO 8859-4

ISO 8859-5

ISO 8859-6

ISO 8859-7

ISO 8859-8

ISO 8859-8-I

ISO 8859-9

ISO 8859-10

ISO 8859-11

ISO 8859-13

ISO 8859-14

ISO 8859-15

ISO 10646

UCS-2

JIS7

KO18-R

KOI8-U

Shift-JIS

TIS-620

TSCII

UTF-8

For all of these, QTextCodec::codecForName() will always return a valid pointer. Other
encodings can be supported either by subclassing QTextCodec or by creating a charmap file and
using QTextCodec::loadCharmapFile(). See the QTextCodec reference documentation for
details.

[Team LiB]
[Team LiB]

Making Applications Translation-Aware
If we want to make our applications available in multiple languages, we must do two things:

Make sure that every user-visible string goes through tr().

Load a translation (.qm) file at startup.

Neither of these is necessary for applications that will never be translated. However, using tr()
requires almost no effort and leaves the door open for doing translations at a later date.

The tr() function is a static function defined in QObject and overridden in every subclass
defined with the Q_OBJECT macro. When writing code inside a QObject subclass, we can call tr
() without formality. A call to tr() returns a translation if one is available; otherwise, the
original text is returned.

To prepare translation files, we must run Qt's lupdate tool. This tool extracts all the string
literals that appear in tr() calls and produces translation files that contain all of these strings
ready to be translated. The files can then be sent to a translator to have the translations added.
This process is explained in the "Translating Applications" section later in this chapter.

A tr() call has the following general syntax:

Context::tr(sourceText, comment)

The Context part is the name of a QObject subclass defined with the Q_OBJECT macro. We
don't need to specify it if we call tr() from a member function of the class in question. The
sourceText part is the string literal that needs to be translated. The comment part is optional; it
can be used to provide additional information to the translator.

Here are a few examples:

BlueWidget::BlueWidget(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 QString str1 = tr("Legal");
 QString str2 = BlueWidget::tr("Legal");
 QString str3 = YellowDialog::tr("Legal");
 QString str4 = YellowDialog::tr("Legal", "US paper size");
}

The first two calls to tr() have "BlueWidget" as context, and the last two calls have
"YellowDialog". All four have "Legal" as source text. The last call also has a comment to help
the translator understand the meaning of the source text.

Strings in different contexts (classes) are translated independently of each other. Translators

normally work on one context at a time, often with the application running and showing the
widget or dialog being translated.

When we call tr() from a global function, we must specify the context explicitly. Any QObject
subclass in the application can be used as the context. If none is appropriate, we can always
use QObject itself. For example:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 ...
 QPushButton button(QObject::tr("Hello Qt!"), 0);
 app.setMainWidget(&button);
 button.show();
 return app.exec();
}

This idiom is useful for translating the name of the application. Instead of typing it multiple
times and leaving the translator to translate it for each class it appears in, it is usually more
convenient to define an APPNAME macro that expands to the translated application name and to
put the macro in a header file included by all the application's files:

#define APPNAME MainWindow::tr("OpenDrawer 2D")

In every example so far, the context has been a class name. This is convenient, because we can
almost always omit it, but this doesn't have to be the case. The most general way of translating
a string in Qt is to use the QApplications::translate() function, which accepts up to three
arguments: the context, the source text, and the optional comment. For example, here's
another way to define APPNAME:

#define APPNAME qApp->translate("Global Stuff", "OpenDrawer 2D")

This time, we put the text in the "Global Stuff" context.

The tr() and translate() functions serve a dual purpose: They are markers that lupdate
uses to find user-visible strings, and at the same time they are C++ functions that translate
text. This has an impact on how we write code. For example, the following will not work:

// WRONG
const char *appName = "OpenDrawer 2D";
QString translated = tr(appName);

The problem here is that lupdate will not be able to extract the "OpenDrawer 2D" string literal,
as it doesn't appear inside a tr() call. This means that the translator will not have the
opportunity to translate the string. This issue often arises in conjunction with dynamic strings:

// WRONG
statusBar()->message(tr("Host " + hostName + " found"));

Here, the string we pass to tr() varies depending on the value of hostName, so we can't
reasonably expect tr() to translate it correctly.

The solution is to use QString::arg():

statusBar()->message(tr("Host %1 found") .arg(hostName));

Notice how it works: The string literal "Host %1 found" is passed to tr(). Assuming a French

translation file is loaded, tr() would return something like "Hôte %1 trouvé". Then the "%1"
parameter is replaced with the contents of the hostName variable.

Although it is generally inadvisable to call tr() on a variable, it can be made to work. We must
use the QT_TR_NOOP() macro to mark the string literals for translation before we assign them to
a variable. This is mostly useful for static arrays of strings. For example:

void OrderForm::init()
{
 static const char * const flowers[] = {
 QT_TR_NOOP("Medium Stem Pink Roses"),
 QT_TR_NOOP("One Dozen Boxed Roses"),
 QT_TR_NOOP("Calypso Orchid"),
 QT_TR_NOOP("Dried Red Rose Bouquet"),
 QT_TR_NOOP("Mixed Peonies Bouquet"),
 0
 };
 int i = 0;
 while (flowers[i]) {
 comboBox->insertItem(tr(flowers[i]));
 ++i;
 }
}

The QT_TR_NOOP() simply returns its argument. But lupdate will extract all the strings wrapped
in QT_TR_NOOP(), so that they can be translated. When using the variable later on, we call tr()
to perform the translation as usual. Even though we have passed tr() a variable, the
translation will still work.

There is also a QT_TRANSLATE_NOOP() macro, which works like QT_TR_NOOP() but also takes a
context. This macro is useful when initializing variables outside of a class:

static const char * const flowers[] = {
 QT_TRANSLATE_NOOP("OrderForm", "Medium Stem Pink Roses"),
 QT_TRANSLATE_NOOP("OrderForm", "One Dozen Boxed Roses"),
 QT_TRANSLATE_NOOP("OrderForm", "Calypso Orchid"),
 QT_TRANSLATE_NOOP("OrderForm", "Dried Red Rose Bouquet"),
 QT_TRANSLATE_NOOP("OrderForm", "Mixed Peonies Bouquet"),
 0
};

The context argument must be the same as the context given to tr() or translate() later on.

When we start using tr() in an application, it's easy to forget to surround some user-visible
strings with a tr() call, especially when we first start doing it. These missing tr() calls are
eventually discovered by the translator or, worse, by users of the translated application, when
some strings appear in the original language. To avoid this problem, we can tell Qt to forbid
implicit conversions from const char * to QString. We do this by defining the
QT_NO_CAST_ASCII preprocessor symbol before including <qstring.h>. The easiest way to
ensure this symbol is set is to add the following line to the application's .pro file:

DEFINES += QT_NO_CAST_ASCII

This will force every string literal to need to be wrapped by tr() or QString::fromAscii(),
depending on whether it should be translated or not. Strings that are not suitably wrapped will
produce a compile-time error, thereby compelling us to add the missing tr() or
QString::fromAscii() call.

Once we have wrapped every user-visible string by a tr() call, the only thing left to do to
enable translation is to load a translation file. Typically, we would do this in the application's
main() function. For example, here's how we would try to load a translation file depending on
the user's locale:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QTranslator appTranslator;
 appTranslator.load(QString("app_") + QTextCodec::locale(),
 qApp->applicationDirPath());
 app.installTranslator(&appTranslator);
 ...
 return app.exec();
}

The QTextCodec::locale() function returns a string that specifies the user's locale. Locales
can be more or less precise;for example,fr specifies a French-language locale, fr_CA specifies
a French Canadian locale, and fr_CA.ISO8859-15 specifies a French Canadian locale with ISO

8859-15 encoding (an encoding that supports '€', 'Œ', 'œ', and ' ').

Assuming that the locale is fr_CA.ISO8859-15, load() first attempts to load the file
app_fr_CA.ISO8859-15.qm. If this file does not exist, load() next tries app_fr_CA.qm, then
app_fr.qm, and finally app.qm before giving up. Normally, we would only provide app_fr.qm,
containing a standard French translation, but if we need a different file for French-speaking
Canada, we can also provide app_fr_CA.qm and it will be used for fr_CA locales.

The second argument to load() is the directory where we want load() to look for the
translation file. In this case, we assume that the translation files are located in the same
directory as the executable.

The Qt library itself contains a few strings that need to be translated. Trolltech provides French
and German translations in Qt's translations directory. (A few other languages are provided
as well, but these are contributed by Qt users and are not officially supported.) The Qt library's
translation file should also be loaded:

QTranslator qtTranslator;
qtTranslator.load(QString("qt_") + QTextCodec::locale(),
 qApp->applicationDirPath());
app.installTranslator(&qtTranslator);

A QTranslator object can only hold one translation file at a time, so we use a separate
QTranslator for Qt's translation. Having just one file per translator is not a problem since we
can install as many translators as we need. QApplication will use all of them when searching
for a translation.

Some languages, such as Arabic and Hebrew, are written right-to-left instead of left-to-right. In
those languages, the whole layout of the application must be reversed, which is done by calling
QApplication::setReverseLayout(true). The translation files for the Qt library contain a
special marker called "LTR" that tells Qt whether the language is left-to-right or right-to-left, so
we normally don't need to worry about it.

It may prove more convenient for our users if we supply our applications with the translation
files embedded into the executable. Not only does this reduce the number of files distributed as
part of the product, but it also avoids the risk of translation files getting lost or deleted by
accident. Qt provides the qembed tool (located in Qt's tools directory), which can convert .qm
files to a C++ array that can be passed to QTranslator::load().

We have now covered all that is required to make an application able to operate using
translations into other languages. But language and the direction of the writing system are not
the only things that vary between countries and cultures. An internationalized program must
also take into account the local date and time formats, monetary formats, numeric formats, and
string collation order. Qt 3.2 provides no specific functions for accessing these, but we can use
the standard C++ setlocale() and localeconv() functions to query the program's current
locale.[*]

[*] Qt 3.3 will probably include a QLocale class that will provide localized numeric formats

Some Qt classes and functions adapt their behavior to the locale:

QString::localeAwareCompare() compares two strings in a locale-dependent manner. It
is used by classes like QIconView and QListView for sorting items.

The toString() function provided by QDate, QTime, and QDateTime returns a string in a
local format when called with Qt::LocalDate as argument.

By default, QDateEdit, QTimeEdit, and QDateTimeEdit present dates in the local
format.

Finally, a translated application may need to use different icons in certain situations rather than
the original icons. For example, the left and right arrows on a web browser's Back and Forward
buttons should be swapped when dealing with a right-to-left language. We can do this as
follows:

if (QApplication::reverseLayout()) {
 backAct->setIconSet(forwardIcon);
 forwardAct->setIconSet(backIcon);
} else {
 backAct->setIconSet(backIcon);
 forwardAct->setIconSet(forwardIcon);
}

Icons that contain alphabetic characters very commonly need to be translated. For example, the
letter 'I' on a toolbar button associated with a word processor's Italic option should be replaced
by a 'C' in Spanish (Cursivo) and by a 'K' in Danish, Dutch, German, Norwegian, and Swedish
(Kursiv). Here's a quick way to do it:

if (tr("Italic")[0] == 'C') {
 italicAct->setIconSet(iconC);
} else if (tr("Italic")[0] == 'K') {
 italicAct->setIconSet(iconK);
} else {
 italicAct->setIconSet(iconI);
}

[Team LiB]
[Team LiB]

Dynamic Language Switching
For most applications, detecting the user's preferred language in main() and loading the
appropriate .qm files there is perfectly satisfactory. But there are some situations where users
might need the ability to switch language dynamically. An application that is used continuously
by different people in shifts may need to change language without having to be restarted. For

example, applications used by call center operators, by simultaneous translators, and by
computerized cash register operators often require this capability.

Making an application able to switch language dynamically requires a little more work than
loading a single translation at startup, but it is not difficult. Here's what must be done:

Provide a means by which the user can switch language.

For every widget or dialog, set all of its translatable strings in a separate function (often
called retranslateStrings()) and call this function when the language changes.

Let's review the relevant parts of a Call Center application's source code. The application
provides a Language menu to allow the user to set the language at run-time. The default
language is English.

Figure 15.1. The Call Center application's Language menu

Since we don't know which language the user will want to use when the application is started,
we no longer load translations in the main() function. Instead we will load them dynamically
when they are needed, so all the code that we need to handle translations must go in the main
window and dialog classes.

Let's have a look at the Call Center application's QMainWindow subclass:

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 journalView = new JournalView(this);
 setCentralWidget(journalView);

 qmPath = qApp->applicationDirPath() + "/translations";
 appTranslator = new QTranslator(this);
 qtTranslator = new QTranslator(this);
 qApp->installTranslator(appTranslator);
 qApp->installTranslator(qtTranslator);

 createActions();
 createMenus();

 retranslateStrings();
}

In the constructor, we set the central widget to be a JournalView, a QListView subclass. Then
we set up a few private member variables related to translation:

The qmPath variable is a QString that specifies the path of the directory that contains the

application's translation files.

The appTranslator variable is a pointer to the QTranslator object used for storing the
current application translation.

The qtTranslator variable is a pointer to the QTranslator object used for storing Qt's
translation.

At the end, we call the createActions() and createMenus() private functions to create the
menu system, and we call retranslateStrings(), also a private function, to set the user-
visible strings for the first time.

void MainWindow::createActions()
{
 newAct = new QAction(this);
 connect(newAct, SIGNAL(activated()), this, SLOT(newFile()));
 ...
 aboutQtAct = new QAction(this);
 connect(aboutQtAct, SIGNAL(activated()), qApp, SLOT(aboutQt()));
}

The createActions() function creates the QAction objects as usual, but without setting any of
the texts or accelerator keys. These will be done in retranslateStrings().

void MainWindow::createMenus()
{
 fileMenu = new QPopupMenu(this);
 newAct->addTo(fileMenu);
 openAct->addTo(fileMenu);
 saveAct->addTo(fileMenu);
 exitAct->addTo(fileMenu);
 ...
 createLanguageMenu();
}

The createMenus() function creates menus, but does not insert these menus into the menu
bar. Again, this will be done in retranslateStrings().

At the end of the function, we call createLanguageMenu() to fill the Language menu with the
list of supported languages. We will review its source code in a moment. First, let's look at
retranslateStrings():

void MainWindow::retranslateStrings()
{
 setCaption(tr("Call Center"));

 newAct->setMenuText(tr("&New"));
 newAct->setAccel(tr("Ctrl+N"));
 newAct->setStatusTip(tr("Create a new journal"));
 ...
 aboutQtAct->setMenuText(tr("About &Qt"));
 aboutQtAct->setStatusTip(tr("Show the Qt library's About box"));

 menuBar()->clear();
 menuBar()->insertItem(tr("&File"), fileMenu);
 menuBar()->insertItem(tr("&Edit"), editMenu);
 menuBar()->insertItem(tr("&Reports"), reportsMenu);
 menuBar()->insertItem(tr("&Language"), languageMenu);
 menuBar()->insertItem(tr("&Help"), helpMenu);
}

The retranslateStrings() function is where all the tr() calls for the MainWindow class occur.
It is called at the end of the MainWindow constructor and also every time a user changes the
application's language using the Language menu.

We set each QAction's menu text, accelerator, and status tip. We also insert the menus into
the menu bar, with their translated names. (The call to clear() is necessary when
retranslateStrings() is called more than once.)

The createMenus() function referred to earlier called createLanguageMenu() to populate the
Language menu with a list of languages:

void MainWindow::createLanguageMenu()
{
 QDir dir(qmPath);
 QStringList fileNames = dir.entryList("callcenter_*.qm");

 for (int i = 0; i < (int)fileNames.size(); ++i) {
 QTranslator translator;
 translator.load(fileNames[i], qmPath);

 QTranslatorMessage message =
 translator.findMessage("MainWindow", "English");
 QString language = message.translation();

 int id = languageMenu->insertItem(
 tr("&%1 %2").arg(i + 1).arg(language),
 this, SLOT(switchToLanguage(int)));
 languageMenu->setItemParameter(id, i);
 if (language == "English")
 languageMenu->setItemChecked(id, true);

 QString locale = fileNames[i];
 locale = locale.mid(locale.find('_') + 1);
 locale.truncate(locale.find('.'));
 locales.push_back(locale);
 }
}

Instead of hard-coding the languages supported by the application, we create one menu entry
for each .qm file located in the application's translations directory. For simplicity, we assume
that English also has a .qm file. An alternative would have been to call clear() on the
QTranslator objects when the user chooses English.

One particular difficulty is to present a nice name for the language provided by each .qm file.
Just showing "en" for "English" or "de" for "Deutsch", based on the name of the .qm file, looks
crude and will confuse some users. The solution used in createLanguageMenu() is to check the
translation of the string "English" in the "MainWindow" context. That string should be translated
to "Deutsch" in a German translation, to "Français" in a French translation, and to " " in a
Japanese translation.

We create menu items using QPopupMenu::insertItem(). They are all connected to the main
window's switchToLanguage(int) slot, which we will review next. The parameter to the
switchToLanguage(int) slot is the value set using setItemParameter(). This is very similar to
what we did in Chapter 3 when we implemented the Spreadsheet application's recently opened
files list (p. 54).

At the end, we append the locale in a QStringList called locales, which we will use for
implementing switchToLanguage().

void MainWindow::switchToLanguage(int param)
{
 appTranslator->load("callcenter_" + locales[param], qmPath);
 qtTranslator->load("qt_" + locales[param], qmPath);

 for (int i = 0; i < (int)languageMenu->count(); ++i)
 languageMenu->setItemChecked(languageMenu->idAt(i),
 i == param);
 retranslateStrings();
}

The switchToLanguage() slot is called when the user chooses a language from the Language
menu. We start by loading the translation files for the application and for Qt. Then we update
the check marks next to the Language menu entries so that the language in use is ticked, and
we call retranslateStrings() to retranslate all the strings for the main window.

On Microsoft Windows, an alternative to providing a Language menu is to respond to
LocaleChange events, a type of event emitted by Qt when it detects a change in the
environment's locale. The event type exists on all platforms supported by Qt, but is only
actually generated on Windows, when the user changes the system's locale settings (in the
Regional and Language Options from the Control Panel). To handle LocaleChange events, we
can reimplement QObject::event() as follows:

bool MainWindow::event(QEvent *event)
{
 if (event->type() == QEvent::LocaleChange) {
 appTranslator->load(QString("callcenter_")
 + QTextCodec::locale(),
 qmPath);
 qtTranslator->load(QString("qt_") + QTextCodec::locale(),
 qmPath);
 retranslateStrings();
 }
 return QMainWindow::event(event);
}

If the user switches locale while the application is being run, we attempt to load the correct
translation files for the new locale and call retranslateStrings() to update the user interface.

In all cases, we pass the event on to the base class's event() function, since one of our base
classes may also be interested in LocaleChange events.

We have now finished our review of the MainWindow code. We will now review the code for one
of the application's widget classes, the JournalView class, to see what changes are needed to
make it support dynamic translation.

JournalView::JournalView(QWidget *parent, const char *name)
 : QListView(parent, name)
{
 ...
 retranslateStrings();
}

The JournalView class is a QListView subclass. At the end of the constructor, we call the
private function retranslateStrings() to set the widget's strings. This is similar to what we
did for MainWindow.

bool JournalView::event(QEvent *event)
{

 if (event->type() == QEvent::LanguageChange)
 retranslateStrings();
 return QListView::event(event);
}

We reimplement the event() function to call retranslateStrings() on LanguageChange
events.

Qt generates a LanguageChange event when the contents of a QTranslator currently installed
on QApplication changes. In the Call Center application, this occurs when we call load() on
appTranslator or qtTranslator, either from MainWindow::switchToLanguage() or from
MainWindow::event().

LanguageChange events are not the same as LocaleChange events. A LocaleChange event tells
the application, "Maybe you should load a new translation." In contrast, a LanguageChange
event tells the application's widgets, "Maybe you should retranslate all your strings."

When we implemented MainWindow, we didn't need to respond to Language-Change. Instead,
we simply called retranslateStrings() whenever we called load() on a QTranslator.

void JournalView::retranslateStrings()
{
 for (int i = columns() - 1; i >= 0; --i)
 removeColumn(i);
 addColumn(tr("Time"));
 addColumn(tr("Priority"));
 addColumn(tr("Phone Number"));
 addColumn(tr("Subject"));
}

The retranslateStrings() function recreates the QListView column headers with newly
translated texts. We do this by removing all column headings and then adding new column
headings. This operation only affects the QListView header, not the data stored in the
QListView.

This completes the translation-related code of a hand-written widget. For widgets and dialogs
developed with Qt Designer, the uic tool automatically generates a function similar to our
retranslateStrings() function that is automatically called in response to LanguageChange
events. All we need to do is to load a translation file when the user switches language.
[Team LiB]
[Team LiB]

Translating Applications
Translating a Qt application that contains tr() calls is a three-step process:

1. Run lupdate to extract all the user-visible strings from the application's source code.

2. Translate the application using Qt Linguist.

3. Run lrelease to generate binary .qm files that the application can load using
QTranslator.

Steps 1 and 3 are performed by application developers. Step 2 is handled by translators. This
cycle can be repeated as often as necessary during the application's development and lifetime.

As an example, we will show how to translate the Spreadsheet application of Chapter 3. The
application already contains tr() calls around every user-visible string.

First, we must modify the application's .pro file slightly to specify which languages we want to
support. For example, if we want to support German and French in addition to English, we
would add the following TRANSLATIONS entry to spreadsheet.pro:

TRANSLATIONS = spreadsheet_de.ts \
 spreadsheet_fr.ts

Here, we specify two translation files: one for German and one for French. These files will be
created the first time we run lupdate, and are updated every time we subsequently run
lupdate.

These files normally have a .ts extension. They are in a straightforwardXML format and are not
as compact as the binary .qm files understood by QTranslator. It is lrelease's job to convert
human-readable .ts files into machine-efficient .qm files. For the curious, .ts stands for
"translation source" and .qm for "Qt message" file.

Assuming that we are located in the directory that contains the Spreadsheet application's
source code, we can run lupdate on spreadsheet.pro from the command line as follows:

lupdate -verbose spreadsheet.pro

The -verbose argument is optional. It tells lupdate to provide more feedback than usual.
Here's the expected output:

Updating 'spreadsheet_de.ts'...
 0 known, 101 new and 0 obsoleted messages
Updating 'spreadsheet_fr.ts'...
 0 known, 101 new and 0 obsoleted messages

Every string that appears within a tr() call in the application's source code is stored in the .ts
files, along with an empty translation. Strings that appear in the application's .ui files are also
included.

The lupdate tool assumes by default that the arguments to tr() are Latin-1 strings. If this isn't
the case, we must add a CODEC entry to the .pro file. For example:

CODEC = EUC-JP

This must be done in addition to calling QTextCodec::setCodecForTr() from the application's
main() function.

Translations then need to be added to the spreadsheet_de.ts and spreadsheet_fr.ts files
using Qt Linguist, a GUI tool for translating Qt applications.

To launch Qt Linguist, click Qt 3.2.x|Qt Linguist in the Start menu on Windows, type linguist
on the command line on Unix, or double-click linguist in the Mac OS X Finder. To start adding
translations to a .ts file, click File|Open and choose the file.

The left-hand side of Qt Linguist's main window shows the list of contexts for the application
being translated. For the Spreadsheet application, the contexts are "FindDialog",
"GoToCellDialog", "MainWindow", "SortDialog", and "Spreadsheet". The top-right area is the list
of source texts for the current context. Each source text is shown along with with a translation
and a Done flag. The middle-right area is where we can enter a translation for the current

source item. The bottom-right area is a list of suggestions automatically provided by Qt
Linguist.

Once we have a translated .ts file, we need to convert it to a binary .qm file for it to be
understandable by QTranslator. To do this from within Qt Linguist, click File|Release. Typically,
we would start by translating only a few strings and run the application with the .qm file to
make sure that everything works.

Figure 15.2. Qt Linguist in action

If we want to regenerate the .qm files for all .ts files, we can use the lrelease command-line
tool as follows:

lrelease -verbose spreadsheet.pro

Assuming that we translated 19 strings to French and clicked the Done flag for 17 of them,
lrelease produces the following output:

Updating 'spreadsheet_de.qm'...
 0 finished, 0 unfinished and 101 untranslated messages
Updating 'spreadsheet_fr.qm'...
 17 finished, 2 unfinished and 82 untranslated messages

Untranslated strings are shown in the original languages when running the application. The
Done flag isn't used by lrelease; it can be used by translators to identify which translations
are finished and which ones must be revisited.

When we modify the source code of the application, the translation files may become out of
date. The solution is to run lupdate again, provide translations for the new strings, and
regenerate the .qm files. Some development teams find it useful to run lupdate frequently,
while others prefer to wait until just before a final product release.

The lupdate and Qt Linguist tools are quite smart. Translations that are no longer used are
kept in the .ts files in case they are needed in later releases. When updating .ts files, lupdate
uses an intelligent merging algorithm that can save translators considerable time with text that
is the same or similar in different contexts.

For more information about Qt Linguist, lupdate, and lrelease, refer to the Qt Linguist manual
at http://doc.trolltech.com/3.2/linguist-manual.html. The manual contains a full explanation of
Qt Linguist's user interface and a step-by-step tutorial for programmers.
[Team LiB]
[Team LiB]

Chapter 16. Providing Online Help
Tooltips, Status Tips, and "What's This?" Help

Using QTextBrowser as a Simple Help Engine

Using Qt Assistant for Powerful Online Help

Most applications provide their users with online help. Some help is short, such as tooltips,
status tips, and "What's This?" help. Qt supports all of these. Other help can be much more
extensive, involving many pages of text. For this kind of help, you can use QTextBrowser as a
simple online help browser, or you can invoke Qt Assistant or another HTML browser from your
application.

[Team LiB]
[Team LiB]

Tooltips, Status Tips, and "What's This?" Help
A tooltip is a small piece of text that appears when the mouse hovers over a widget for a
certain period of time. Tooltips are presented with black text on a yellow background. Their
primary use is to provide textual descriptions of toolbar buttons.

We can add tooltips to arbitrary widgets in code using QToolTip::add(). For example:

QToolTip::add(findButton, tr("Find next"));

To set the tooltip of a toolbar button that corresponds to a QAction, we can simply call
setToolTip() on the action. For example:

newAct = new QAction(tr("&New"), tr("Ctrl+N"), this);
newAct->setToolTip(tr("New file"));

If we don't explicitly set a tooltip, QAction will automatically derive one from the action text
and the accelerator key (for example, "New (Ctrl+N)").

A status tip is also a short piece of descriptive text, usually a little longer than a tooltip. When
the mouse hovers over a toolbar button or a menu option, a status tip appears in the status
bar. Call setStatusTip() to add a status tip to an action:

newAct->setStatusTip(tr("Create a new file"));

In the absence of a status tip, QAction will use the tooltip text instead.

If we don't use QActions, we need to pass a QToolTipGroup object and a status tip as the third
and fourth arguments to QToolTip::add():

QToolTip::add(findButton, tr("Find next"), toolTipGroup,
 tr("Find the next occurrence of the search text"));

The application can be made to show the longer text in the status bar by connecting the
QToolTipGroup'sshowTip() and removeTip() signals to the status bar's message() and clear
() slots. The QToolTipGroup object is responsible for maintaining contact between tooltips and
a widget that can show the longer help text.

Figure 16.1. An application showing a tooltip and a status tip

In Qt Designer, tooltips and status tips are accessible through the toolTip and statusTip
properties of a widget or action.

In some situations, it is desirable to provide more information about a widget than can be given
by tooltips or status tips. For example, we might want to provide a complex dialog with
explanatory text about each field without forcing the user to invoke a separate help window.
"What's This?" mode is an ideal solution for this. When a window is in "What's This?" mode, the
cursor changes to and the user can click on any user interface component to obtain its help
text. To enter "What's This?" mode, the user can either click the ? button in the dialog's title bar
(on Windows and KDE) or press Shift+F1.

The help text can be set by calling QWhatsThis::add(). Here's an example:

QWhatsThis::add(sourceLineEdit,
 tr(""
 " The meaning of the Source field depends on the "
 "Type field:"
 ""
 "Books have a Publisher"
 "Articles have a Journal name with volume and "
 "issue number"
 "Thesis have an Institution name and a "
 "department name"
 ""));

As with many other Qt widgets, we can use HTML-style tags to format the text of a tooltip. In
the example, we include an image (which is listed in the application's .pro file IMAGE entry), a

bulleted list, and some text in bold. The tags that Qt supports are specified in the QStyleSheet
documentation.

Figure 16.2. A dialog showing a "What's This?" help text

We can also set a "What's This?" text on an action:

openAct->setWhatsThis(tr(" "
 "Click this option to open an "
 "existing file."));

The text will be shown when the user clicks the menu item or toolbar button or presses the
accelerator key while in "What's This?" mode. In Qt Designer, the "What's This?" text for a
widget or action is available through the whatsThis property.

When the user interface components of an application's main window provide "What's This?"
text, it is customary to provide a What's This? option in the Help menu as well as a What's This?
toolbar button. This can be done by creating a What's This? action and connecting its
activated() signal to the QMainWindow's whatsThis() slot, which enters "What's This?" mode
when executed.
[Team LiB]
[Team LiB]

Using QTextBrowser as a Simple Help Engine
Large and sophisticated applications may require more online help than tooltips, status tips, and
"What's This?" help can provide. A simple solution to this is to provide a help browser.
Applications that provide a help browser typically have a Help entry in the main window's Help
menu and a Help button in every dialog.

In this section, we present the simple help browser shown in Figure 16.3 and explain how it can
be used within an application. The window uses a QTextBrowser to display help pages that are
marked up with an HTML-based syntax. QTextBrowser can handle a lot of simple HTML tags, so
it is ideal for this purpose.

Figure 16.3. The HelpBrowser widget

We begin with the header file:

#include <qwidget.h>

class QPushButton;
class QTextBrowser;

class HelpBrowser : public QWidget
{
 Q_OBJECT
public:
 HelpBrowser(const QString &path, const QString &page,
 QWidget *parent = 0, const char *name = 0);

 static void showPage(const QString &page);

private slots:
 void updateCaption();

private:
 QTextBrowser *textBrowser;
 QPushButton *homeButton;
 QPushButton *backButton;
 QPushButton *closeButton;
};

The HelpBrowser provides a static function that can be called from anywhere in the application.
This function creates a HelpBrowser window and shows the given page.

Here's the beginning of the implementation:

#include <qapplication.h>
#include <qlayout.h>
#include <qpushbutton.h>
#include <qtextbrowser.h>

#include "helpbrowser.h"

HelpBrowser::HelpBrowser(const QString &path, const QString &page,
 QWidget *parent, const char *name)
 : QWidget(parent, name, WGroupLeader | WDestructiveClose)

{
 textBrowser = new QTextBrowser(this);
 homeButton = new QPushButton(tr("&Home"), this);
 backButton = new QPushButton(tr("&Back"), this);
 closeButton = new QPushButton(tr("&Close"), this);
 closeButton->setAccel(tr("Esc"));

 QVBoxLayout *mainLayout = new QVBoxLayout(this);
 QHBoxLayout *buttonLayout = new QHBoxLayout(mainLayout);
 buttonLayout->addWidget(homeButton);
 buttonLayout->addWidget(backButton);
 buttonLayout->addStretch(1);
 buttonLayout->addWidget(closeButton);
 mainLayout->addWidget(textBrowser);

 connect(homeButton, SIGNAL(clicked()),
 textBrowser, SLOT(home()));
 connect(backButton, SIGNAL(clicked()),
 textBrowser, SLOT(backward()));
 connect(closeButton, SIGNAL(clicked()),
 this, SLOT(close()));
 connect(textBrowser, SIGNAL(sourceChanged(const QString &)),
 this, SLOT(updateCaption()));

 textBrowser->mimeSourceFactory()->addFilePath(path);
 textBrowser->setSource(page);
}

The layout is simply a row of buttons above a QTextBrowser. The path parameter is a path in
the file system that contains the application's documentation. The page parameter is the name
of the documentation file, with an optional HTML anchor.

We use the WGroupLeader flag because we want to pop up HelpBrowser windows from modal
dialogs in addition to the main window. Modal dialogs normally prevent the user from
interacting with any other window in the application. However, after requesting help, the user
must obviously be allowed to interact with both the modal dialog and the help browser. Using
the WGroupLeader flag makes this interaction possible.

void HelpBrowser::updateCaption()
{
 setCaption(tr("Help: %1").arg(textBrowser->documentTitle()));
}

Whenever the source page changes, the updateCaption() slot is executed. The documentTitle
() function returns the text specified in the page's <title> tag.

void HelpBrowser::showPage(const QString &page)
{
 QString path = qApp->applicationDirPath() + "/doc";
 HelpBrowser *browser = new HelpBrowser(path, page);
 browser->resize(500, 400);
 browser->show();
}

In the showPage() static function, we create the HelpBrowser window and then show it. The
window will be destroyed automatically when the user closes it, since we set the
WDestructiveClose flag in the constructor.

For this example, we assume that the documentation is located in the doc subdirectory of the
directory containing the application's executable. All the pages passed to the showPage()

function will be taken from this doc subdirectory.

Now we are ready to invoke the help browser from the application. In the application's main
window, we would create a Help action and connect it to a help() slot that could look like this:

void MainWindow::help()
{
 HelpBrowser::showPage("index.html");
}

This assumes that the main help file is called index.html. For dialogs, we would connect the
Help button to a help() slot that could look like this:

void EntryDialog::help()
{
 HelpBrowser::showPage("dialogs.html#entrydialog");
}

Here we look in a different help file, dialogs.html, and scroll the QTextBrowser to the
entrydialog anchor.

One other place from which we might want to invoke help is a "What's This?" text. We can link
the "What's This?" text to the documentation by using HTML tags.

Figure 16.4. A "What's This?" text with links

To make hypertext links work from "What's This?" text, we must use a QWhatsThis that is
aware of the help browser. This is accomplished by subclassing QWhatsThis and reimplementing
its clicked() function to call HelpBrowser::showPage(). Here's the class definition:

class MyWhatsThis : public QWhatsThis
{
public:
 MyWhatsThis(QWidget *widget, const QString &text);

 QString text(const QPoint &point);
 bool clicked(const QString &page);

private:
 QString myText;
};

The text() and clicked() functions are reimplemented from QWhatsThis.

MyWhatsThis::MyWhatsThis(QWidget *widget, const QString &text)
 : QWhatsThis(widget)
{
 myText = text;

}

The constructor accepts a widget and a "What's This?" text for that widget. We pass on the
widget to the base class and store the text in a private variable.

QString MyWhatsThis::text(const QPoint &)
{
 return myText;
}

The text() function returns the "What's This?" text for a widget given a certain mouse cursor
position. For some widgets, it might make sense to return a different text depending on where
the user clicked on it, but here we always return the same text.

bool MyWhatsThis::clicked(const QString &page)
{
 if (page.isEmpty()) {
 return true;
 } else {
 HelpBrowser::showPage(page);
 return false;
 }
}

The clicked() function is called by QWhatsThis when the user clicks on the "What's This?"
window. If the user clicked on an HTML link, QWhatsThis passes the target page to the clicked
() function. (If anything else is clicked, an empty string is passed.) We invoke the help browser
with the given page.

The return value of clicked() is used by QWhatsThis to determine whether it should hide the
"What's This?" text (indicated by true) or continue to show it. When the user clicks a link, we
want the "What's This?" to stay visible along with the help window, so we return false. If the
user clicked elsewhere in the "What's This?" window, we return true to hide the "What's This?"
window.

Here's how the MyWhatsThis class can be used:

new MyWhatsThis(sourceLineEdit,
 tr(""
 " The meaning of the "
 "Source field depends on "
 "the Type field:"
 ""
 "Books have a Publisher"
 "Articles have a Journal name with volume and "
 "issue number"
 "Thesis have an Institution name and a department "
 "name"
 ""));

Instead of calling QWhatsThis::add(), we create a MyWhatsThis object with the widget and its
associated text. But this time, if the user clicks a link, the help browser is invoked.

It may look strange that we allocate an object with new and don't assign the value to a variable.
This is not a problem here because Qt keeps track of all QWhatsThis objects and deletes them
when they are no longer needed.

[Team LiB]

[Team LiB]

Using Qt Assistant for Powerful Online Help
Qt Assistant is a redistributable online help application supplied by Trolltech. Its main virtues
are that it supports indexing and full text search and that it can handle multiple documentation
sets for multiple applications.

To make use of Qt Assistant, we must incorporate the necessary code in our application, and we
must make Qt Assistant aware of our documentation.

Communication between a Qt application and Qt Assistant is handled by the QAssistantClient
located in a separate library. To link this library with an application, we must add the following
line to the application's .pro file:

LIBS += -lqassistantclient

We will now review the code of a new HelpBrowser class that uses Qt Assistant.

#ifndef HELPBROWSER_H
#define HELPBROWSER_H

class QAssistantClient;

class HelpBrowser
{
public:
 static void showPage(const QString &page);

private:
 static QAssistantClient *assistant;
};

#endif

Here's the new helpbrowser.cpp:

#include <qassistantclient.h>

#include "helpbrowser.h"

QAssistantClient *HelpBrowser::assistant = 0;

void HelpBrowser::showPage(const QString &page)
{
 if (!assistant)
 assistant = new QAssistantClient("");
 assistant->showPage(page);
}

The QAssistantClient constructor accepts a path string as its first argument, which it uses to
locate the Qt Assistant executable. By passing an empty path, we signify that
QAssistantClient should look for the executable in the PATH environment variable.
QAssistantClient has its own showPage() function that accepts a page name with an optional
HTML anchor, just like the earlier QTextBrowser subclass's showPage() function.

The next step is to tell Qt Assistant where the documentation is located. This is done by
creating a Qt Assistant profile and creating a .dcf file that provides information about the
documentation. All this is explained in Qt Assistant's online documentation, so we will not

duplicate that information here.

An alternative to using QTextBrowser or Qt Assistant is to use platform-specific approaches to
providing online help. For Windows applications, it might be desirable to create Windows HTML
Help files and to provide access to them using Microsoft Internet Explorer. You could use Qt's
QProcess class or the ActiveQt framework for this. For Unix and Mac OS X applications, a
suitable approach might be to provide HTML files and launch a web browser.

[Team LiB]
[Team LiB]

Chapter 17. Multithreading
Working with Threads

Communicating with the GUI Thread

Using Qt's Classes in Non-GUI Threads

Conventional GUI applications have one thread of execution and perform one operation at a
time. If the user invokes a time-consuming operation from the user interface in a single-
threaded application, the interface typically freezes while the operation is in progress. Chapter 7
(Event Processing) provides some solutions to this problem. Multithreading is another solution.

In a multithreaded Qt application, the GUI runs in its own thread and the processing takes place
in one or more other threads. This results in applications that have responsive GUIs even during
intensive processing. Another benefit of multithreading is that on multiprocessor machines
different threads may be executed simultaneously on different processors, resulting in better
performance.

In this chapter, we will start by showing how to subclass QThread and how to use QMutex,
QSemaphore, and QWaitCondition to synchronize threads. Then we will see how to
communicate with the GUI thread from non-GUI threads while the event loop is running, and
round off with a review of which Qt classes can be used in non-GUI threads and which cannot.

Multithreading is a large topic with many books devoted exclusively to the subject. Here, it is
assumed that you already understand the fundamentals of multithreaded programming; the
focus is on explaining how to develop multithreaded Qt applications rather than on the subject
of threading itself.

[Team LiB]
[Team LiB]

Working with Threads
Providing multiple threads in a Qt application is straightforward: We just subclass QThread and
reimplement its run() function. To show how this works, we will start by reviewing the code for
a very simple QThread subclass that repeatedly prints the same text on a console.

class Thread : public QThread
{
public:

 Thread();

 void setMessage(const QString &message);
 void run();
 void stop();

private:
 QString messageStr;
 volatile bool stopped;
};

The Thread class inherits from QThread and reimplements the run() function. It provides two
additional functions: setMessage() and stop().

The stopped variable is declared volatile because it is accessed from different threads and we
want to be sure that it is freshly read every time it is needed. If we omitted the volatile
keyword, the compiler might optimize access to the variable, possibly leading to incorrect
results.

Thread::Thread()
{
 stopped = false;
}

We set stopped to false in the constructor.

void Thread::run()
{
 while (!stopped)
 cerr << messageStr.ascii();
 stopped = false;
 cerr << endl;
}

The run() function is called to start executing the thread. As long as the stopped variable is
false, the function keeps printing the given message to the console. The thread terminates
when control leaves the run() function.

void Thread::stop()
{
 stopped = true;
}

The stop() function sets the stopped variable to true, thereby telling run() to stop printing
text to the console. This function can be called from any thread at any time. For the purposes of
this example, we assume that assignment to a bool is an atomic operation. This is a reasonable
assumption, considering that a bool is either true or false. We will see later in this section
how to use QMutex to guarantee that assigning to a variable is an atomic operation.

QThread provides a terminate() function that terminates the execution of a thread while it is
still running. Using terminate() is not recommended, since it can stop the thread at any point
and does not give the thread any chance to clean up after itself. It is always safer to use a
stopped variable and a stop() function, as we did here.

Figure 17.1. The Threads application

We will now see how to use the Thread class in a small Qt application that uses two threads, A
and B, in addition to the initial thread.

class ThreadForm : public QDialog
{
 Q_OBJECT
public:
 ThreadForm(QWidget *parent = 0, const char *name = 0);

protected:
 void closeEvent(QCloseEvent *event);

private slots:
 void startOrStopThreadA();
 void startOrStopThreadB();

private:
 Thread threadA;
 Thread threadB;
 QPushButton *threadAButton;
 QPushButton *threadBButton;
 QPushButton *quitButton;
};

The ThreadForm class declares two variables of type Thread and some buttons to provide a
basic user interface.

ThreadForm::ThreadForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Threads"));

 threadA.setMessage("A");
 threadB.setMessage("B");

 threadAButton = new QPushButton(tr("Start A"), this);
 threadBButton = new QPushButton(tr("Start B"), this);
 quitButton = new QPushButton(tr("Quit"), this);
 quitButton->setDefault(true);

 connect(threadAButton, SIGNAL(clicked()),
 this, SLOT(startOrStopThreadA()));
 connect(threadBButton, SIGNAL(clicked()),
 this, SLOT(startOrStopThreadB()));
 connect(quitButton, SIGNAL(clicked()),
 this, SLOT(close()));
 ...
}

In the constructor, we call setMessage() to make the first thread repeatedly print "A" and the
second thread "B".

void ThreadForm::startOrStopThreadA()
{
 if (threadA.running()) {
 threadA.stop();

 threadAButton->setText(tr("Start A"));
 } else {
 threadA.start();
 threadAButton->setText(tr("Stop A"));
 }
}

When the user clicks the button for thread A, startOrStopThreadA() stops the thread if it was
running and starts it otherwise. It also updates the button's text.

void ThreadForm::startOrStopThreadB()
{
 if (threadB.running()) {
 threadB.stop();
 threadBButton->setText(tr("Start B"));
 } else {
 threadB.start();
 threadBButton->setText(tr("Stop B"));
 }
}

The code for startOrStopThreadB() is very similar.

void ThreadForm::closeEvent(QCloseEvent *event)
{
 threadA.stop();
 threadB.stop();
 threadA.wait();
 threadB.wait();
 event->accept();
}

If the user clicks Quit or closes the window, we stop any running threads and wait for them to
finish (using QThread::wait()) before we call QCloseEvent::accept(). This ensures that the
application exits in a clean state, although it doesn't really matter in this example.

To compile the application, we must add this line to the .pro file:

CONFIG += thread

This tells qmake to use the threaded version of the Qt library. To build a threaded Qt library,
pass the -thread command-line option to the configure script on Unix and Mac OS X. On
Windows, the Qt library is threaded by default. For this particular example, we also need the
console option since we want the program's output to appear in the console on Windows:

win32:CONFIG += console

If you run the application and click Start A, the console will be filled with 'A's. If you click Start
B, it will now fill with alternating sequences of 'A's and 'B's. Click Stop A, and now it will only
print 'B's.

A common requirement for multithreaded applications is that of synchronizing several threads.
Qt provides the following classes to do this: QMutex, QMutexLocker, QSemaphore, and
QWaitCondition.

The QMutex class provides a means of protecting a variable or a piece of code so that only one
thread can access it at a time. The class provides a lock() function that locks the mutex. If the
mutex is unlocked, the current thread seizes it immediately and locks it; otherwise, the current
thread is blocked until the thread that holds the mutex unlocks it. Either way, when the call to

lock() returns, the current thread holds the mutex until it calls unlock(). QMutex also provides
a tryLock() function that returns immediately if the mutex is already locked.

For example, let's suppose that we wanted to protect the stopped variable of the Thread class
with a QMutex. We would then add the following data member to Thread:

QMutex mutex;

The run() function would change to this:

void Thread::run()
{
 for (;;) {
 mutex.lock();
 if (stopped) {
 stopped = false;
 mutex.unlock();
 break;
 }
 mutex.unlock();

 cerr << messageStr.ascii();
 }
 cerr << endl;
}

The stop() function would become this:

void Thread::stop()
{
 mutex.lock();
 stopped = true;
 mutex.unlock();
}

Locking and unlocking a mutex in complex functions, especially functions that use C++
exceptions, can be error-prone. Qt provides the QMutexLocker convenience class to simplify
mutex handling. QMutexLocker's constructor accepts a QMutex as argument and locks it.
QMutexLocker's destructor unlocks the mutex. For example, we could rewrite the stop()
function above as follows:

void Thread::stop()
{
 QMutexLocker locker(&mutex);
 stopped = true;
}

QSemaphore provides semaphores in Qt. A semaphore is a generalization of mutexes that can
be used to guard a certain number of identical resources.

The following two code snippets show the correspondence between QSemaphore and QMutex:

The postfix ++ and -- operators acquire and release one resource protected by the semaphore.

QSemaphore semaphore(1); QMutex mutex;

semaphore++; mutex.lock();

semaphore--; mutex.unlock();

By passing 1 to the constructor, we tell the semaphore that it controls a signal resource. The
advantage of using a semaphore is that we can pass numbers other than 1 to the constructor
and then call ++ multiple times to acquire many resources.

A typical application of semaphores is when transfering a certain amount of data (DataSize)
between two threads using a shared circular buffer of a certain size (BufferSize):

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

The producer thread writes data to the buffer until it reaches the end, and then restarts from
the beginning, overwriting existing data. The consumer thread reads the data as it is generated.
Figure 17.2 illustrates this, assuming a tiny 16-byte buffer.

Figure 17.2. The producer–consumer model

The need for synchronization in the producer–consumer example is twofold: If the producer
generates the data too fast, it will overwrite data that the consumer hasn't yet read; if the
consumer reads the data too fast, it will pass the producer and read garbage.

A crude way to solve this problem is to have the producer fill the buffer, then wait until the
consumer has read the entire buffer, and so on. However, on multiprocessor machines, this
isn't as fast as letting the producer and consumer threads operate on different parts of the
buffer at the same time.

One way to efficiently solve the problem is to use two semaphores:

QSemaphore freeSpace(BufferSize);
QSemaphore usedSpace(BufferSize);

The freeSpace semaphore governs the part of the buffer that the producer can fill with data.
The usedSpace semaphore governs the area that the consumer can read. These two areas are
complementary. Both are initialized with BufferSize (4096), meaning that they can administer
up to that many resources.

For this example, each byte counts as one resource. In a real-world application, we would
probably operate on larger units (for example, 64 or 256 bytes at a time) to reduce the
overhead associated with using semaphores.

void acquire(QSemaphore &semaphore)
{
 semaphore++;
}

The acquire() function attempts to acquire one resource (one byte in the buffer). QSemaphore
uses the postfix ++ operator for this, but in our particular example it is more intuitive to use a
function called acquire().

void release(QSemaphore &semaphore)
{
 semaphore--;
}

Similarly, we implement the release() function as a synonym for the postfix -- operator.

void Producer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 acquire(freeSpace);
 buffer[i % BufferSize] = "ACGT"[(uint)rand() % 4];
 release(usedSpace);
 }
}

In the producer, we start by acquiring one "free" byte. If the buffer is full of data that the
consumer hasn't read yet, the call to acquire() will block until the consumer has started to
consume the data. Once we have acquired the byte, we fill it with some random data ('A', 'C',
'G', or 'T') and release the byte as "used", so that it can be read by the consumer thread.

void Consumer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 acquire(usedSpace);
 cerr << buffer[i % BufferSize];
 release(freeSpace);
 }
 cerr << endl;
}

In the consumer, we start by acquiring one "used" byte. If the buffer contains no data to read,
the call to acquire() will block until the producer has produced some. Once we have acquired
the byte, we print it and release the byte as "free", making it possible for the producer to fill it
with data again.

int main()
{
 usedSpace += BufferSize;

 Producer producer;
 Consumer consumer;
 producer.start();
 consumer.start();
 producer.wait();
 consumer.wait();
 return 0;
}

Finally, in main(), we start by acquiring all the "used" space (using QSemaphore's
counterintuitive += operator) to ensure that the consumer will not acquire it and read garbage.
Then we start the producer and consumer threads. What happens then is that the producer
converts some "free" space into "used" space, and the consumer can then convert it back to
"free" space.

When we run the program, it writes a random sequence of 100,000 'A's, 'C's, 'G's, and 'T's to
the console and then terminates. To really understand what is going on, we can disable writing
the output and instead write 'P' each time the producer generates a byte and 'c' each time the
consumer reads a byte. And to make things as simple to follow as possible, we can use much
smaller values for DataSize and BufferSize.

For example, here's a possible run with a DataSize of 10 and a BufferSize of 4:
"PcPcPcPcPcPcPcPcPcPc". In this case, the consumer reads the bytes as soon as they are
generated by the producer; the two threads are executing at the same speed. Another
possibility is that the producer fills the whole buffer before the consumer even starts reading it:
"PPPPccccPPPPccccPPcc". There are many other possibilities. Semaphores give a lot of latitude
to the system-specific thread scheduler, which can study the threads' behavior and choose an
optimal scheduling policy.

A different approach to the problem of synchronizing a producer and a consumer is to use
QWaitCondition and QMutex. A QWaitCondition allows a thread to wake up other threads
when some condition has been met. This allows for more precise control than is possible with
mutexes alone. To show how it works, we will redo the producer–consumer example using wait
conditions.

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

QWaitCondition bufferIsNotFull;
QWaitCondition bufferIsNotEmpty;
QMutex mutex;
int usedSpace = 0;

In addition to the buffer, we declare two QWaitConditions, one QMutex, and one variable that
stores how many bytes in the buffer are "used" bytes.

void Producer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 mutex.lock();
 while (usedSpace == BufferSize)
 bufferIsNotFull.wait(&mutex);
 buffer[i % BufferSize] = "ACGT"[(uint)rand() % 4];
 ++usedSpace;
 bufferIsNotEmpty.wakeAll();
 mutex.unlock();
 }
}

In the producer, we start by checking whether the buffer is full. If it is, we wait on the "buffer is
not full" condition. When that condition is met, we write one byte to the buffer, increment
usedSpace, and wake any thread waiting for the "buffer is not empty" condition to turn true.

We use a mutex to protect all accesses to the usedSpace variable. The QWaitCondition::wait
() function can take a locked mutex as its first argument, which it unlocks before blocking the
current thread and then locks before returning.

For this example, we could have replaced the while loop

while (usedSpace == BufferSize)
 bufferIsNotFull.wait(&mutex);

with this if statement:

if (usedSpace == BufferSize) {
 mutex.unlock();
 bufferIsNotFull.wait();
 mutex.lock();
}

However, this would break as soon as we allow more than one producer thread, since another
producer could seize the mutex immediately after the wait() call and make the "buffer is not
full" condition false again.

void Consumer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 mutex.lock();
 while (usedSpace == 0)
 bufferIsNotEmpty.wait(&mutex);
 cerr << buffer[i % BufferSize];
 --usedSpace;
 bufferIsNotFull.wakeAll();
 mutex.unlock();
 }
 cerr << endl;
}

The consumer does the opposite of the producer: It waits for the "buffer is not empty" condition
and wakes up any thread waiting for the "buffer is not full" condition.

In all the examples so far, our threads have accessed the same global variables. But some
threaded applications need to have a global variable hold different values in different threads.
This is often called thread-local storage (TLS) or thread-specific data (TSD). We can fake it
using a map keyed on thread IDs (returned by QThread::currentThread()), but a nicer
approach is to use the QThreadStorage<T> class.

A common use of QThreadStorage<T> is for caches. By having a separate cache in different
threads, we avoid the overhead of locking, unlocking, and possibly waiting for a mutex. For
example:

QThreadStorage<QMap<int, double> *> cache;

void insertIntoCache(int id, double value)
{
 if (!cache.hasLocalData())
 cache.setLocalData(new QMap<int, double>);
 cache.localData()->insert(id, value);
}

void removeFromCache(int id)
{
 if (cache.hasLocalData())
 cache.localData()->remove(id);
}

The cache variable holds one pointer to a QMap<int, double> per thread. (Because of
problems with some compilers, the template type in QThreadStorage<T> must be a pointer
type.) The first time we use the cache in a particular thread, hasLocalData() returns false
and we create the QMap<int, double> object.

In addition to caching, QThreadStorage<T> can be used for global error-state variables (similar
to errno), to ensure that modifications in one thread don't affect other threads.
[Team LiB]
[Team LiB]

Communicating with the GUI Thread
When a Qt application starts, only one thread is running—the initial thread. This is the only

thread that is allowed to create the QApplication object and call exec() on it. For this reason,
we normally refer to this thread as the GUI thread. After the call to exec(), this thread is either
waiting for an event or processing an event.

The GUI thread can start new threads by creating objects of a QThread subclass, as we did in
the previous section. If these new threads need to communicate among themselves, they can
use shared variables together with mutexes, semaphores, or wait conditions. But none of these
techniques can be used to communicate with the GUI thread, since they would lock the event
loop and freeze the user interface.

The solution for communicating from a non-GUI thread to the GUI thread is to use custom
events. Qt's event mechanism allows us to define custom event types in addition to the built-in
types, and allows us to post events of these types using QApplication::postEvent().
Furthermore, since postEvent() is thread-safe, we can use it from any thread to post events to
the GUI thread.

Figure 17.3. The Image Pro application

To illustrate how this works, we will review the code of the Image Pro application, a basic image
processing application that allows the user to rotate, resize, and change the color depth of an
image. The application uses one non-GUI thread to perform operations on images without
locking the event loop. This makes a significant difference when processing large images. The
non-GUI thread has a list of tasks, or "transactions", to accomplish, and sends events to the
main window to report progress.

ImageWindow::ImageWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 thread.setTargetWidget(this);
 ...
}

In the ImageWindow constructor, we set the "target widget" of the non-GUI thread to be the
ImageWindow. The thread will post progress events to that widget. The thread variable is of
type TransactionThread, which we will cover in a moment.

void ImageWindow::flipHorizontally()
{
 addTransaction(new FlipTransaction(Horizontal));
}

The flipHorizontally() slot creates a "flip" transaction and registers it using the private
function addTransaction(). The flipVertical(), resizeImage(), convertTo32Bit(),
convertTo8Bit(), and convertTo1Bit() functions are similar.

void ImageWindow::addTransaction(Transaction *transact)
{
 thread.addTransaction(transact);
 openAct->setEnabled(false);
 saveAct->setEnabled(false);
 saveAsAct->setEnabled(false);
}

The addTransaction() function adds a transaction to the non-GUI thread's transaction queue
and disables the Open, Save, and Save As actions while transactions are being processed.

void ImageWindow::customEvent(QCustomEvent *event)
{
 if ((int)event->type() == TransactionStart) {
 TransactionStartEvent *startEvent =
 (TransactionStartEvent *)event;
 infoLabel->setText(startEvent->message);
 } else if ((int)event->type() == AllTransactionsDone) {
 openAct->setEnabled(true);
 saveAct->setEnabled(true);
 saveAsAct->setEnabled(true);
 imageLabel->setPixmap(QPixmap(thread.image()));
 infoLabel->setText(tr("Ready"));
 modLabel->setText(tr("MOD"));
 modified = true;
 statusBar()->message(tr("Done"), 2000);
 } else {
 QMainWindow::customEvent(event);
 }
}

The customEvent() function is reimplemented from QObject to handle custom events. The
TransactionStart and AllTransactionsDone constants are defined in transactionthread.h
as

enum { TransactionStart = 1001, AllTransactionsDone = 1002 };

Qt's built-in events have values below 1000. Higher values can be used for custom events.

The data type for custom events is QCustomEvent, a QEvent subclass that stores a void pointer
in addition to the event type. For TransactionStart events, we use a QCustomEvent subclass
that stores an additional data member:

class TransactionStartEvent : public QCustomEvent
{
public:
 TransactionStartEvent();

 QString message;
};

TransactionStartEvent::TransactionStartEvent()
 : QCustomEvent(TransactionStart)
{
}

In the constructor, we pass the TransactionStart constant to the base class constructor.

Now, let's turn to the TransactionThread class:

class TransactionThread : public QThread
{
public:
 void run();
 void setTargetWidget(QWidget *widget);
 void addTransaction(Transaction *transact);
 void setImage(const QImage &image);
 QImage image();

private:
 QWidget *targetWidget;
 QMutex mutex;
 QImage currentImage;
 std::list<Transaction *> transactions;
};

The TransactionThread class maintains a list of transactions to process and executes them one
after the other in the background.

void TransactionThread::addTransaction(Transaction *transact)
{
 QMutexLocker locker(&mutex);
 transactions.push_back(transact);
 if (!running())
 start();
}

The addTransaction() function adds a transaction to the transaction queue and starts the
transaction thread if it isn't already running.

void TransactionThread::run()
{
 Transaction *transact;

 for (;;) {
 mutex.lock();
 if (transactions.empty()) {
 mutex.unlock();
 break;
 }
 QImage oldImage = currentImage;
 transact = *transactions.begin();
 transactions.pop_front();
 mutex.unlock();

 TransactionStartEvent *event = new TransactionStartEvent;
 event->message = transact->messageStr();
 QApplication::postEvent(targetWidget, event);

 QImage newImage = transact->apply(oldImage);
 delete transact;

 mutex.lock();

 currentImage = newImage;
 mutex.unlock();
 }
 QApplication::postEvent(targetWidget,
 new QCustomEvent(AllTransactionsDone));
}

The run() function goes through the transaction queue and executes each transaction in turn
(by calling apply() on them). All accesses to the transactions and currentImage member
variables are protected with a mutex.

When a transaction is started, we post a TransactionStart event to the target widget (the
ImageWindow). When all the transactions have finished processing, we post an
AllTransactionsDone event.

class Transaction
{
public:
 virtual QImage apply(const QImage &image) = 0;
 virtual QString messageStr() = 0;
};

The Transaction class is an abstract base class for operations that the user can perform on an
image. It has three concrete subclasses: FlipTransaction, ResizeTransaction, and
ConvertDepthTransaction. We will only review FlipTransaction; the other two classes are
similar.

class FlipTransaction : public Transaction
{
public:
 FlipTransaction(Qt::Orientation orient);

 QImage apply(const QImage &image);
 QString messageStr();

private:
 Qt::Orientation orientation;
};

The FlipTransaction constructor takes one parameter that specifies the orientation of the flip
(Horizontal or Vertical).

QImage FlipTransaction::apply(const QImage &image)
{
 return image.mirror(orientation == Qt::Horizontal,
 orientation == Qt::Vertical);
}

The apply() function calls QImage::mirror() on the QImage it receives as parameter and
returns the resulting QImage.

QString FlipTransaction::messageStr()
{
 if (orientation == Qt::Horizontal)
 return QObject::tr("Flipping image horizontally...");
 else
 return QObject::tr("Flipping image vertically...");
}

The messageStr() returns the message to display in the status bar while the operation is in

progress. This function is called in ImageWindow::customEvent(), in the GUI thread.

For long-running operations, it might be desirable to report fine-grained progress. We can
achieve this by creating an additional custom event and posting it when a certain percentage of
the processing is completed.

[Team LiB]
[Team LiB]

Using Qt's Classes in Non-GUI Threads
A function is said to be thread-safe when it can safely be called from different threads
simultaneously. If two thread-safe functions are called from different threads on the same
shared data, the result is always defined. By extension, a class is said to be thread-safe when
all of its functions can be called from different threads simultaneously without interfering with
each other, even when operating on the same object.

Qt's thread-safe classes are QThread, QMutex, QMutexLocker, QSemaphore,
QThreadStorage<T>, and QWaitCondition. In addition, the following functions are thread-safe:
QApplication::postEvent(), QApplication::removePostedEvents(),
QApplication::removePostedEvent(), and QEventLoop::wakeUp().

Most of Qt's non-GUI classes meet a less stringent requirement: They are reentrant. A class is
reentrant if different instances of the class can be used simultaneously in different threads.
However, accessing the same reentrant object in multiple threads simultaneously is not safe,
and such accesses should be protected with a mutex. Reentrant classes are marked as such in
the Qt reference documentation. Typically, any C++ class that doesn't reference global or
otherwise shared data is reentrant.

QObject is reentrant, but none of Qt's QObject subclasses are reentrant. One consequence of
this is that we cannot directly call functions on a widget from a non-GUI thread. If we want to,
say, change the text of a QLabel from a non-GUI thread, we must post a custom event to the
GUI thread, asking it to change the text for us.

Deleting a QObject with delete is not reentrant. To delete a QObject from a non-GUI thread,
we can call QObject::deleteLater(), which posts a "deferred delete" event.

QObject's signals and slots mechanism can be used in any thread. When a signal is emitted in
one thread, the slots that are connected to it are called immediately, and the execution takes
place in the same thread—not in the thread where the receiver object was created. This means
that we can't use signals and slots to communicate with the GUI thread from other threads.

The QTimer class and the networking classes QFtp, QHttp, QSocket, and QSocketNotifier all
depend on the event loop, so we cannot use them in non-GUI threads. The only networking
class available is QSocketDevice, the low-level wrapper for the platform-specific networking
APIs. A common technique is to use a synchronous QSocketDevice in a non-GUI thread. Some
programmers find that it leads to simpler code than using QSocket (which works
asynchronously), and by working in a non-GUI thread, they don't block the event loop.

Qt's SQL and OpenGL modules can also be used in multithreaded applications, but have their
own restrictions, which vary from system to system. For details, see
http://doc.trolltech.com/3.2/sql-driver.html as well as the Qt Quarterly article "Glimpsing the
Third Dimension", available online at http://doc.trolltech.com/qq/qq06-glimpsing.html.

Many of Qt's non-GUI classes, including QImage, QString, and the container classes, use

implicit or explicit sharing as an optimization technique. These classes are reentrant except for
their copy constructors and assignment operators. When a copy of an instance of these classes
is taken, only a pointer to the internal data is copied. This is dangerous if multiple threads
attempt to modify the data simultaneously. In such cases, a solution is to use the
QDeepCopy<T> class when performing an assignment to an instance of an implicitly or explicitly
shared class. For example:

QString password;
QMutex mutex;

void setPassword(const QString &str)
{
 mutex.lock();
 password = QDeepCopy<QString>(str);
 mutex.unlock();
}

Qt 4 will probably provide enhanced threading support. Among other things, it is expected that
the signal–slot mechanism will be extended to support connections across threads, eliminating
the need to use custom events for communicating with the GUI thread. It is also expected that
non-GUI classes like QSocket and QTimer will be available in non-GUI threads, and that
QDeepCopy<T> will no longer be necessary when copying instances of implicitly and explicitly
shared classes across threads.

[Team LiB]
[Team LiB]

Chapter 18. Platform-Specific Features
Interfacing with Native APIs

Using ActiveX

Session Management

In this chapter, we will look at some of the platform-specific options available to Qt
programmers. We begin by looking at how to access native APIs such as the Win32 API on
Windows, Core Graphics on Mac OS X, and Xlib on X11. We then move on to explore Qt's
ActiveQt extension, showing how to use ActiveX controls within Qt/Windows applications and
how to create applications that act as ActiveX servers. And in the last section, we explain how
to make Qt applications cooperate with the session manager under X11.

In addition to the features presented here, the Enterprise Edition of Qt includes the Qt/Motif
extension to ease the migration of Motif and Xt applications to Qt. A similar extension for Tcl/Tk
applications is provided by froglogic, and a Microsoft Windows resource converter is available
from Klarälvdalens Datakonsult. And for embedded development, Trolltech provides the Qtopia
application framework. See the following web pages for details:

http://doc.trolltech.com/3.2/motif-extension.html

http://www.froglogic.com/tq/

http://www.klaralvdalens-datakonsult.se/?page=products&sub=knut

http://www.trolltech.com/products/qtopia/

[Team LiB]
[Team LiB]

Interfacing with Native APIs
Qt provides a comprehensive API that caters for most needs on all platforms. But in some
circumstances, we may want to use the underlying, platform-specific APIs. In this section, we
will show how to use the native APIs for the different platforms supported by Qt to accomplish
particular tasks.

On every platform, QWidget provides a winId() function that returns the window ID (the HWND
on Windows). QWidget also provides a static function called find() that returns the QWidget
with a particular window ID. We can pass this ID to native API functions to achieve platform-
specific effects. For example, the following code uses winId() to make a QLabel semi-
transparent on Mac OS X using native Core Graphics functions:[*]

[*] Qt 3.3 will probably provide a function to achieve this without resorting to native API calls.

include <qapplication.h>
#include <qlabel.h>
#include <qt_mac.h>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QLabel *label = new QLabel("Hello Qt!", 0);
 app.setMainWidget(label);

 CGSWindowRef winRef =
 GetNativeWindowFromWindowRef((WindowRef)label->winId());
 CGSSetWindowAlpha(_CGSDefaultConnection(), winRef, 0.5);

 label->show();
 return app.exec();
}

Here's how to achieve the same effect on Windows, using the Win32 API:

#define _WIN32_WINNT 0x0501

#include <qapplication.h>
#include <qt_windows.h>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QLabel *label = new QLabel("Hello Qt!", 0);
 app.setMainWidget(label);

 int exstyle = GetWindowLong(label->winId(), GWL_EXSTYLE);
 exstyle |= WS_EX_LAYERED;
 SetWindowLong(label->winId(), GWL_EXSTYLE, exstyle);
 SetLayeredWindowAttributes(label->winId(), 0, 128,
 LWA_ALPHA);

 label->show();

 return app.exec();
}

This code assumes that the platform is Windows 2000 or XP. If we wanted the application to
compile and run on older versions of Windows that don't support semi-transparency, we could
use QLibrary to resolve the SetLayeredWindowAttributes symbol at run-time instead of at
link-time:

typedef BOOL (__stdcall *PSetLayeredWindowAttributes)
 (HWND, COLORREF, BYTE, DWORD);
PSetLayeredWindowAttributes pSetLayeredWindowAttributes =
 (PSetLayeredWindowAttributes) QLibrary::resolve("user32",
 "SetLayeredWindowAttributes");
if (pSetLayeredWindowAttributes) {
 int exstyle = GetWindowLong(label->winId(), GWL_EXSTYLE);
 exstyle |= WS_EX_LAYERED;
 SetWindowLong(label->winId(), GWL_EXSTYLE, exstyle);
 pSetLayeredWindowAttributes(label->winId(), 0, 128,
 LWA_ALPHA);
}

Qt/Windows uses this technique internally to ensure that Qt applications take advantage of
advanced features such as native Unicode support and font transformations where they are
available, while still being able to run on old Windows versions.

On X11, there is no standard way to achieve transparency. However, here's how we would
modify an X11 window property:

Atom atom = XInternAtom(win->x11Display(), "MY_PROPERTY", False);
long data = 1;
XChangeProperty(win->x11Display(), win->winId(), atom, atom,
 32, PropModeReplace, (unsigned char *)&data, 1);

Qt/Embedded differs from the other Qt versions in that it is implemented directly on top of the
Linux frame buffer, with no native API in between. It also provides its own window system,
QWS, which can be configured by subclassing Qt/Embedded-specific classes like QWSDecoration
and QWSInputMethod. Another difference of Qt/Embedded is that its size can be reduced by
compiling out unused classes and features. For more information about Qt/Embedded, see
http://www.trolltech.com/products/embedded/ and http://doc.trolltech.com/
3.2/winsystem.html.

If we want to use platform-specific code in an otherwise portable Qt application, we can
surround the native code with #if and #endif. For example:

#if defined(Q_WS_MAC)
 CGSWindowRef winRef =
 GetNativeWindowFromWindowRef((WindowRef)label->winId());
 CGSSetWindowAlpha(_CGSDefaultConnection(), winRef, 0.5);
#endif

Qt defines one of the following four window system symbols: Q_WS_WIN, Q_WS_X11, Q_WS_MAC,
and Q_WS_QWS. We must make sure to include at least one Qt header before we use them in
applications. Qt also provides preprocessor symbols to identify the operating system:

Q_OS_WIN32

Q_OS_WIN64

Q_OS_DGUX

Q_OS_DYNIX

Q_OS_LINUX

Q_OS_LYNX

Q_OS_QNX6

Q_OS_RELIANT

We can assume that at most one of these will be defined. For convenience, Qt defines Q_OS_WIN
when either Win32 or Win64 is detected, and Q_OS_UNIX when any Unix-based operating
system (including Mac OS X) is detected. At runtime, we can call QApplication::winVersion()
or QApplication::macVersion() to distinguish between different versions of Windows (95, 98,
etc.) or Mac OS X (10.0, 10.1, etc.).

Several of Qt's GUI-related classes provide a platform-specific handle() function that returns a
low-level handle to the object. Figure 18.1 lists the return type of handle() on different
platforms.

Figure 18.1. Platform-specific handle types

The QWidget, QPixmap, QPrinter, and QPicture classes all inherit from QPaintDevice. On
X11 and Mac OS X, handle() means the same thing as winId() on a QWidget. On Windows,
handle() returns the device context, whereas winId() returns the window handle. Similarly,
QPixmap provides a hbm() function that returns a bitmap handle (HBITMAP) on Windows.

On X11, QPaintDevice provides many functions that return various pointers or handles,
including x11Display() and x11Screen(). We can use these to set up an X11 graphics context
on a QWidget or QPixmap, for example.

Qt applications that need to interface with other toolkits or libraries frequently need to access
the low-level events (XEvents on X11, MSGs on Windows and Mac OS X, QWSEvents on
Qt/Embedded) before they are converted into QEvents. We can do this by subclassing
QApplication and reimplementing the relevant platform-specific event filter, one of
winEventFilter(), x11EventFilter(), macEventFilter(), and qwsEventFilter().

We can access the platform-specific events that are sent to a given QWidget by reimplementing
one of winEvent(), x11Event(), macEvent(), and qwsEvent(). This can be useful for handling
certain types of events that Qt normally ignores, such as joystick events.

For more information about platform-specific issues, including how to get started with
Qt/Embedded and how to deploy Qt applications on different platforms, see
http://doc.trolltech.com/3.2/winsystem.html.

Q_OS_CYGWIN

Q_OS_MAC

Q_OS_AIX

Q_OS_BSDI

Q_OS_FREEBSD

Q_OS_HPUX

Q_OS_HURD

Q_OS_IRIX

Q_OS_NETBSD

Q_OS_OPENBSD

Q_OS_OSF

Q_OS_QNX

Q_OS_SCO

Q_OS_SOLARIS

Q_OS_ULTRIX

Q_OS_UNIXWARE

[Team LiB]

[Team LiB]

Using ActiveX
Microsoft's ActiveX technology allows applications to incorporate user interface components
provided by other applications or libraries. It is built on Microsoft COM and defines one set of
interfaces for applications that use components and another set of interfaces for applications
and libraries that provide components.

Qt/Windows Enterprise Edition provides the ActiveQt framework to seamlessly combine ActiveX
and Qt. ActiveQt consists of two modules:

The QAxContainer module allows us to use COM objects and to embed ActiveX controls in
Qt applications.

The QAxServer module allows us to export custom COM objects and ActiveX controls
written using Qt.

Our first example will embed the Windows Media Player in a Qt application using QAxContainer.
The Qt application adds an Open button, a Play/Pause button, a Stop button, and a slider to the
Windows Media Player ActiveX control.

Figure 18.2. The Media Player application

The application's main window is of type PlayerWindow:

class PlayerWindow : public QWidget
{
 Q_OBJECT
 Q_ENUMS(ReadyStateConstants)
public:
 enum PlayStateConstants { Stopped = 0, Paused = 1, Playing = 2 };
 enum ReadyStateConstants { Uninitialized = 0, Loading = 1,
 Interactive = 3, Complete = 4 };

 PlayerWindow(QWidget *parent = 0, const char *name = 0);

protected:
 void timerEvent(QTimerEvent *event);
private slots:
 void onPlayStateChange(int oldState, int newState);
 void onReadyStateChange(ReadyStateConstants readyState);
 void onPositionChange(double oldPos, double newPos);

 void sliderValueChanged(int newValue);
 void openFile();

The PlayerWindow class inherits from QWidget. The Q_ENUMS() macro is necessary to tell moc
that the ReadyStateConstants type used in the onReadyStateChange() slot is an enum type.

private:
 QAxWidget *wmp;
 QToolButton *openButton;
 QToolButton *playPauseButton;
 QToolButton *stopButton;
 QSlider *seekSlider;
 QString fileFilters;
 int updateTimer;
};

In the private section, we declare a QAxWidget * data member.

PlayerWindow::PlayerWindow(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 ...
 wmp = new QAxWidget(this);
 wmp->setControl("{22D6F312-B0F6-11D0-94AB-0080C74C7E95}");

In the constructor, we create a QAxWidget object to encapsulate the Windows Media Player
ActiveX control. The QAxContainer module consists of three classes: QAxObject encapsulates a
COM object, QAxWidget encapsulates an ActiveX control, and QAxBase implements the core
COM functionality for QAxObject and QAxWidget.

Figure 18.3. Inheritance tree for the QAxContainer module

We call setControl() on the QAxWidget with the class ID of the Windows Media Player 6.4
control. This will create an instance of the required component. From then on, all the
properties, events, and methods of the ActiveX control are available as Qt properties, signals,
and slots through the QAxWidget object.

The COM data types are automatically converted into the corresponding Qt types, as
summarized in Figure 18.4. For example, an in-parameter of type VARIANT_BOOL becomes a
bool, and an out-parameter of type VARIANT_BOOL becomes a bool &. If the resulting type is a
Qt class (QString, QDateTime, etc.), the in-parameter is a const reference (for example, const
QString &).

Figure 18.4. Relationship between COM types and Qt types

To obtain the list of all the properties, signals, and slots available in a QAxObject or QAxWidget
with their Qt data types, call generateDocumentation() or use Qt's dumpdoc command-line
tool, located in Qt's extensions\activeqt\example directory.

wmp->setProperty("ShowControls", QVariant(false, 0));
wmp->setSizePolicy(QSizePolicy::Expanding,
 QSizePolicy::Expanding);
connect(wmp, SIGNAL(PlayStateChange(int, int)),
 this, SLOT(onPlayStateChange(int, int))),
connect(wmp, SIGNAL(ReadyStateChange(ReadyStateConstants)),
 this, SLOT(onReadyStateChange(ReadyStateConstants)));
connect(wmp, SIGNAL(PositionChange(double, double)),
 this, SLOT(onPositionChange(double, double)));

After calling setControl() in the PlayerWindow constructor, we call setProperty() to set the
ShowControls property of the Windows Media Player to false, since we provide our own
buttons to manipulate the component. The setProperty() function is defined in QObject and
can be used both for COM properties and for normal Qt properties. Its second parameter is of
type QVariant. Because some C++ compilers don't support the bool type properly yet, the
QVariant constructor that takes a bool also has a dummy int parameter. For types other than
bool, the conversion to QVariant is automatic.

Next, we call setSizePolicy() to make the ActiveX control take all the available space in the
layout, and we connect three ActiveX events from the COM component to three slots.

The rest of the PlayerWindow constructor follows the usual pattern, except that we connect
some Qt signals to slots provided by the COM object (Play(), Pause(), and Stop()).

Let's leave the constructor and look at the timerEvent() function:

void PlayerWindow::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == updateTimer) {
 double curPos = wmp->property("CurrentPosition").toDouble();
 onPositionChange(-1, curPos);
 } else {
 QWidget::timerEvent(event);
 }
}

The timerEvent() function is called at regular intervals while a media clip is playing. We use it
to advance the slider. This is done by calling property() on the ActiveX control to obtain the
value of the CurrentPosition property as a QVariant and calling toDouble() to convert it to a
double. We then call onPositionChange() to perform the update.

We will not review the rest of the code because most of it isn't directly relevant to ActiveX and
doesn't show anything that we haven't covered already. The code is included on the CD.

In the .pro file, we need this entry to link with the QAxContainer module:

LIBS += -lqaxcontainer

One frequent need when dealing with COM objects is to be able to call a COM method directly
(as opposed to connecting it to a Qt signal). The easiest way to do this is to call dynamicCall()
with the name and signature of the method as first parameter and the arguments to the
method as additional parameters. For example:

wmp->dynamicCall("TitlePlay(uint)", 6);

The dynamicCall() function takes up to eight parameters of type QVariant and returns a
QVariant. If we need to pass an IDispatch * or an IUnknown * this way, we can encapsulate
the component in a QAxObject and call asVariant() on it to convert it to a QVariant. If we
need to call a COM method that returns an IDispatch * or an IUnknown *, or if we need to
access a COM property of one of those types, we must use querySubObject() instead:

QAxObject *session = outlook.querySubObject("Session");
QAxObject *defaultContacts =
 session->querySubObject("GetDefaultFolder(OlDefaultFolders)",
 "olFolderContacts");

If we want to call functions that have unsupported data types in their parameter list, we can
use QAxBase::queryInterface() to retrieve the COM interface and call the function directly.
We must call Release() when we have finished using the interface.

If we often need to call such functions, we can subclass QAxObject or QAxWidget and provide
member functions that encapsulate the COM interface calls. However, be aware that QAxObject
and QAxWidget subclasses cannot define their own properties, signals, and slots.

We will now review the QAxServer module. This module enables us to turn a standard Qt
program into an ActiveX server. The server can either be a shared library or a stand-alone
application. Servers built as shared libraries are often called in-process servers, and stand-
alone applications are called out-of-process servers.

Our first QAxServer example is an in-process server that provides a widget that shows a ball
bouncing left and right. We will also see how to embed the widget in Internet Explorer.

Figure 18.5. The AxBouncer widget in Internet Explorer

Here's the beginning of the class definition of the AxBouncer widget:

class AxBouncer : public QWidget, public QAxBindable
{
 Q_OBJECT
 Q_ENUMS(Speed)
 Q_PROPERTY(QColor color READ color WRITE setColor)
 Q_PROPERTY(Speed speed READ speed WRITE setSpeed)
 Q_PROPERTY(int radius READ radius WRITE setRadius)
 Q_PROPERTY(bool running READ isRunning)

AxBouncer inherits from both QWidget and QAxBindable. The QAxBindable class provides an
interface between the widget and an ActiveX client. Any QWidget can be exported as an ActiveX
control, but by subclassing QAxBindable we can notify the client when a property's value
changes, and we can implement COM interfaces to supplement those already implemented by
QAxServer.

When doing multiple inheritance involving a QObject-derived class, we must always put the
QObject-derived class first so that moc can pick it up.

We declare three read-write properties and one read-only property. The Q_ENUMS() macro is
necessary to tell moc that the Speed type is an enum type. The Speed enum is declared in the
public section of the class.

public:
 enum Speed { Slow, Normal, Fast };

 AxBouncer(QWidget *parent = 0, const char *name = 0);

 void setSpeed(Speed newSpeed);
 Speed speed() const { return ballSpeed; }
 void setRadius(int newRadius);
 int radius() const { return ballRadius; }
 void setColor(const QColor &newColor);
 QColor color() const { return ballColor; }
 bool isRunning() const { return myTimerId != 0; }

 QSize sizeHint() const;
 QAxAggregated *createAggregate();

public slots:
 void start();
 void stop();

signals:
 void bouncing();

The AxBouncer constructor is a standard constructor for a widget, with a parent and a name
parameter. The QAXFACTORY_DEFAULT() macro, which we will use to export the component,
expects a constructor with this signature.

The createAggregate() function is reimplemented from QAxBindable. We will explain it in a
moment.

protected:
 void paintEvent(QPaintEvent *event);
 void timerEvent(QTimerEvent *event);

private:
 int intervalInMilliseconds() const;

 QColor ballColor;
 Speed ballSpeed;
 int ballRadius;
 int myTimerId;
 int x;
 int delta;
};

The protected and private sections of the class are the same as what we would have in a
standard Qt widget.

AxBouncer::AxBouncer(QWidget *parent, const char *name)
 : QWidget(parent, name, WNoAutoErase)
{
 ballColor = blue;
 ballSpeed = Normal;
 ballRadius = 15;
 myTimerId = 0;
 x = 20;
 delta = 2;
}

The AxBouncer constructor initializes the class's private variables.

void AxBouncer::setColor(const QColor &newColor)
{
 if (newColor != ballColor && requestPropertyChange("color")) {
 ballColor = newColor;
 update();
 propertyChanged("color");
 }
}

The setColor() function sets the value of the color property. It calls update() to repaint the
widget.

The unusual part is the requestPropertyChange() and propertyChanged() calls. These

functions are inherited from QAxBindable and should ideally be called whenever we change a
property. The requestPropertyChange() asks the client's permission to change a property, and
returns true if the client allows the change. The propertyChanged() function notifies the client
that the property has been changed.

The setSpeed() and setRadius() property setters also follow this pattern, and so do the start
() and stop() slots, since they change the value of the running property.

There is one interesting AxBouncer member function left:

QAxAggregated *AxBouncer::createAggregate()
{
 return new ObjectSafetyImpl;
}

The createAggregate() function is reimplemented from QAxBindable. It allows us to
implement COM interfaces that the QAxServer module doesn't already implement or to bypass
QAxServer's default COM interfaces. Here, we do it to provide the IObjectSafety interface,
which is used by Internet Explorer to access a component's safety options. This is the standard
trick to get rid of Internet Explorer's infamous "Object not safe for scripting" error message.

Here's the definition of the class that implements the IObjectSafety interface:

class ObjectSafetyImpl : public QAxAggregated, public IObjectSafety
{
public:
 long queryInterface(const QUuid &iid, void **iface);

 QAXAGG_IUNKNOWN

 HRESULT WINAPI GetInterfaceSafetyOptions(REFIID riid,
 DWORD *pdwSupportedOptions, DWORD *pdwEnabledOptions);
 HRESULT WINAPI SetInterfaceSafetyOptions(REFIID riid,
 DWORD pdwSupportedOptions, DWORD pdwEnabledOptions);
};

The ObjectSafetyImpl class inherits both QAxAggregated and IObjectSafety. The
QAxAggregated class is an abstract base class for implementations of additional COM interfaces.
The COM object that the QAxAggregated extends is accessible through controllingUnknown().
This COM object is created behind the scenes by the QAxServer module.

The QAXAGG_IUNKNOWN macro provides standard implementations of QueryInterface(), AddRef
(), and Release(). These implementations simply call the same functions on the controlling
COM object.

long ObjectSafetyImpl::queryInterface(const QUuid &iid, void **iface)
{
 *iface = 0;
 if (iid == IID_IObjectSafety)
 *iface = (IObjectSafety *)this;
 else
 return E_NOINTERFACE;

 AddRef();
 return S_OK;
}

The queryInterface() function is a pure virtual function of QAxAggregated. It is called by the
controlling COM object to give access to the interfaces provided by the QAxAggregated

subclass. We must return E_NOINTERFACE for interfaces that we don't implement and for
IUnknown.

HRESULT WINAPI ObjectSafetyImpl::GetInterfaceSafetyOptions(
 REFIID riid, DWORD *pdwSupportedOptions,
 DWORD *pdwEnabledOptions)
{
 *pdwSupportedOptions = INTERFACESAFE_FOR_UNTRUSTED_DATA
 | INTERFACESAFE_FOR_UNTRUSTED_CALLER;
 *pdwEnabledOptions = *pdwSupportedOptions;
 return S_OK;
}

HRESULT WINAPI ObjectSafetyImpl::SetInterfaceSafetyOptions(REFIID,
 DWORD, DWORD)
{
 return S_OK;
}

The GetInterfaceSafetyOptions() and SetInterfaceSafetyOptions() functions are declared
in IObjectSafety. We implement them to tell the world that our object is safe for scripting.

Let's now review main.cpp:

#include <qaxfactory.h>

#include "axbouncer.h"

QAXFACTORY_DEFAULT(AxBouncer,
 "{5e2461aa-a3e8-4f7a-8b04-307459a4c08c}",
 "{533af11f-4899-43de-8b7f-2ddf588d1015}",
 "{772c14a5-a840-4023-b79d-19549ece0cd9}",
 "{dbce1e56-70dd-4f74-85e0-95c65d86254d}",
 "{3f3db5e0-78ff-4e35-8a5d-3d3b96c83e09}")
int main()
{
 return 0;
}

The QAXFACTORY_DEFAULT() macro exports an ActiveX control. We can use it for ActiveX
servers that export only one control. Otherwise, we must subclass QAxFactory and use a macro
called QAXFACTORY_EXPORT(). The next example in this section shows how to do it.

The first argument to QAXFACTORY_DEFAULT() is the name of the Qt class to export. This is also
the name under which the control is exported. The other five arguments are the class ID, the
interface ID, the event interface ID, the type library ID, and the application ID. We can use
standard tools like guidgen or uuidgen to generate these identifiers.

Because the server is a library, we don't need a real main() function. We must still provide a
fake implementation to pacify the linker.

Here's the .pro file for our in-process ActiveX server:

TEMPLATE = lib
CONFIG += activeqt dll
HEADERS = axbouncer.h \
 objectsafetyimpl.h
SOURCES = axbouncer.cpp \
 main.cpp \
 objectsafetyimpl.cpp

RC_FILE = qaxserver.rc
DEF_FILE = qaxserver.def

The qaxserver.rc and qaxserver.def files referred to in the .pro file are standard files that
can be copied from Qt's extensions\activeqt\control directory.

The makefile or Visual C++ project file generated by qmake contains rules to register the server
in the Windows registry. To register the server on end user machines, we can use the regsvr32
tool available on all Windows systems.

We can then include the Bouncer component in an HTML page using the <object> tag:

<object id="AxBouncer"
 classid="clsid:5e2461aa-a3e8-4f7a-8b04-307459a4c08c">
The ActiveX control is not available. Make sure you have built and
registered the component server.
</object>

We can create buttons that invoke slots:

<input type="button" value="Start" onClick="AxBouncer.start()">
<input type="button" value="Stop" onClick="AxBouncer.stop()">

And we can manipulate the widget using JavaScript or VBScript just like any other ActiveX
control. See the demo.html file on the CD for a rudimentary page that uses the ActiveX server.

Our last example is a scriptable Address Book application. The application can serve as a
standard Qt/Windows application or an out-of-process ActiveX server. The latter possibility
allows us to script the application using, say, Visual Basic.

class AddressBook : public QMainWindow
{
 Q_OBJECT
 Q_PROPERTY(int count READ count)
public:
 AddressBook(QWidget *parent = 0, const char *name = 0);
 ~AddressBook() ;

 int count() const;

public slots:
 ABItem *createEntry(const QString &contact) ;
 ABItem *findEntry(const QString &contact) const;
 ABItem *entryAt(int index) const;
 ...
};

The AddressBook widget is the application's main window. The property and the slots it
provides will be available for scripting.

class ABItem : public QObject, public QListViewItem
{
 Q_OBJECT
 Q_PROPERTY(QString contact READ contact WRITE setContact)
 Q_PROPERTY(QString address READ address WRITE setAddress)
 Q_PROPERTY(QString phoneNumber READ phoneNumber
 WRITE setPhoneNumber)
public:
 ABItem(QListView *listView);

 void setContact(const QString &contact);
 QString contact() const { return text (0); }
 void setAddress(const QString &address);
 QString address() const { return text(1); }
 void setPhoneNumber(const QString &number);
 QString phoneNumber() const { return text(2); }
public slots:
 void remove();
};

The ABItem class represents one entry in the address book. It inherits from QListViewItem so
that it can be shown in a QListView and from QObject so that it can be exported as a COM
object.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!QAxFactory::isServer()) {
 AddressBook addressBook;
 app.setMainWidget(&addressBook);
 addressBook.show();
 return app.exec();
 }
 return app.exec();
}

In main(), we check whether the application is being run stand-alone or as a server. The -
activex command-line option makes it run as a server. If the application isn't run as a server,
we create the main widget and show it as we would normally do in any stand-alone Qt
application.

In addition to -activex, ActiveX servers understand the following commandline options:

-regserver registers the server in the system registry.

-unregserver unregisters the server from the system registry.

-dumpidl file writes the server's IDL to the specified file.

For the case where the application is run as a server, we need to export the AddressBook and
ABItem classes as COM components:

QAXFACTORY_EXPORT(ABFactory,
 "{2b2b6f3e-86cf-4c49-9df5-80483b47f17b}",
 "{8e827b25-148b-4307-ba7d-23f275244818}")

The QAXFACTORY_EXPORT() macro exports a factory for creating COM objects. Since we want to
export two types of COM objects, we cannot simply use QAXFACTORY_DEFAULT() as we did in
the previous example.

The first argument to QAXFACTORY_EXPORT() is the name of the QAxFactory class that provides
the application's COM objects. The other two arguments are the type library ID and the
application ID.

class ABFactory : public QAxFactory
{
public:
 ABFactory(const QUuid &lib, const QUuid &app);

 QStringList featureList() const;
 QWidget *create(const QString &key, QWidget *parent,
 const char *name);
 QUuid classID(const QString &key) const;
 QUuid interfaceID(const QString &key) const;
 QUuid eventsID(const QString &key) const;
 QString exposeToSuperClass(const QString &key) const;
};

The ABFactory class inherits QAxFactory and reimplements virtual functions to export the
AddressBook class as an ActiveX control and the ABItem class as a COM component.

ABFactory::ABFactory(const QUuid &lib, const QUuid &app)
 : QAxFactory(lib, app)
{
}

The ABFactory constructor simply forwards its two parameters to the base class constructor.

QStringList ABFactory::featureList() const
{
 return QStringList() << "AddressBook" << "ABItem";
}

The featureList() function returns a list of the COM components provided by the factory.

QWidget *ABFactory::create(const QString &key, QWidget *parent,
 const char *name)
{
 if (key == "AddressBook")
 return new AddressBook(parent, name);
 else
 return 0;
}

The create() function creates an instance of an ActiveX control. We return a null pointer for
ABItem because we don't want users to create ABItem objects. Furthermore, the return type of
create() is QWidget *, which prevents it from returning COM objects that aren't ActiveX
controls.

QUuid ABFactory::classID(const QString &key) const
{
 if (key == "AddressBook")
 return QUuid("{588141ef-110d-4beb-95ab-ee6a478b576d}");
 else if (key == "ABItem")
 return QUuid("{bc82730e-5f39-4e5c-96be-461c2cd0d282}");
 else
 return QUuid();
}

The classId() function returns the class ID for all the classes exported by the factory.

QUuid ABFactory::interfaceID(const QString &key) const
{
 if (key == "AddressBook")
 return QUuid("{718780ec-b30c-4d88-83b3-79b3d9e78502}");
 else if (key == "ABItem")
 return QUuid("{c8bc1656-870e-48a9-9937-fbe1ceff8b2e}");
 else
 return QUuid();

}

The interfaceID() function returns the interface ID for the classes exported by the factory.

QUuid ABFactory::eventsID(const QString &key) const
{
 if (key == "AddressBook")
 return QUuid("{0a06546f-9f02-4f14-a269-d6d56ffeb861}");
 else if (key == "ABItem")
 return QUuid("{105c6b0a-3fc7-460b-ae59-746d9d4b1724}");
 else
 return QUuid();
}

The eventsId() function returns the event interface ID for the classes exported by the factory.

QString ABFactory::exposeToSuperClass(const QString &key) const
{
 return key;
}

By default, ActiveX controls expose not only their own properties, signals, and slots to clients,
but also those of their superclasses up to QWidget. We can reimplement the
exposeToSuperClass() function to return the highest superclass (in the inheritance tree) that
we want to expose.

Here, we return the class name of the component("AddressBook" or"ABItem") as the highest
superclass to export, meaning that properties, signals, and slots defined in AddressBook's and
ABItem's superclasses will not be exported.

This is the .pro file for our out-of-process ActiveX server:

CONFIG += activeqt
HEADERS = abfactory.h \
 abitem.h\
 addressbook.h\
 editdialog.h
SOURCES = abfactory.cpp\
 abitem.cpp\
 addressbook.cpp\
 editdialog.cpp\
 main.cpp
RC_FILE = qaxserver.rc

The qaxserver.rc file referred to in the .pro file is a standard file that can be copied from Qt's
extensions\activeqt\control directory.

Look in the example's vb directory for a Visual Basic project that uses the Address Book server.

This completes our overview of the ActiveQt framework. The Qt distribution includes additional
examples, and the documentation contains information about how to build the QAxContainer
and QAxServer modules and how to solve common interoperability issues.

[Team LiB]
[Team LiB]

Session Management

When we log out on X11, some window managers ask us whether we want to save the session.
If we say yes, the applications that were running are automatically restarted the next time we
log in, with the same screen positions and, ideally, with the same state as they had when we
logged out.

The X11-specific component that takes care of saving and restoring the session is called the
session manager. To make a Qt application aware of the session manager, we must
reimplement QApplication::saveState() and save the application's state there.

Figure 18.6. Logging out on KDE

Windows 2000 and XP (and some Unix systems) offer a different mechanism, called
hibernation. When the user puts the computer into hibernation, the operating system simply
dumps the computer's memory onto disk and reloads it on startup. Applications do not need to
do anything or even be aware that this happens.

When the user initiates a shutdown, we can take control just before the shutdown occurs by
reimplementing QApplication::commitData(). This allows us to save any unsaved data and to
interact with the user if required. This works the same way on both X11 and Windows.

We will explore session management by going through the code of a sessionaware Tic-Tac-Toe
application. First, let's look at the main() function:

int main(int argc, char *argv[])
{
 Application app(argc, argv);
 TicTacToe tic(0, "tic");
 app.setTicTacToe(&tic);
 tic.show();
 return app.exec();
}

We create an Application object. The Application class inherits from QApplication and
reimplements both commitData() and saveState() to support session management.

Next, we create a TicTacToe widget, make the Application object aware of it, and show it.
We have called the TicTacToe widget "tic". We must give unique names to top-level widgets if
we want the session manager to restore the windows' sizes and positions.

Figure 18.7. The Tic-Tac-Toe application

Here's the definition of the Application class:

class Application : public QApplication
{
 Q_OBJECT
public:
 Application(int &argc, char *argv[]);

 void setTicTacToe(TicTacToe *tic);
 void commitData(QSessionManager &sessionManager);
 void saveState(QSessionManager &sessionManager);

private:
 TicTacToe *ticTacToe;
};

The Application class keeps a pointer to the TicTacToe widget as a private variable.

void Application::saveState(QSessionManager &sessionManager)
{
 QString fileName = ticTacToe->saveState();

 QStringList discardCommand;
 discardCommand << "rm" << fileName;
 sessionManager.setDiscardCommand(discardCommand);
}

On X11, the saveState() function is called when the session manager wants the application to
save its state. The function is available on other platforms as well, but it is never called. The
QSessionManager parameter allows us to communicate with the session manager.

We start by asking the TicTacToe widget to save its state to a file. Then we set the session
manager's discard command. A discard command is a command that the session manager must
execute to delete any stored information regarding the current state. For this example, we set it
to

rm file

where file is the name of the file that contains the saved state for the session, and rm is the
standard Unix command to remove files.

The session manager also has a restart command. This is the command that the session
manager must execute to restart the application. By default, Qt provides the following restart
command:

appname -session id_key

The first part, appname, is derived from argv[0]. The id part is the session ID provided by the
session manager; it is guaranteed to be unique among different applications and among
different runs of the same application. The key part comes in addition to uniquely identify the
time at which the state was saved. For various reasons, the session manager can call
saveState() multiple times during the same session, and the different states must be
distinguished.

Because of limitations in existing session managers, we need to make sure that the
application's directory is in the PATH environment variable if we want the application to restart
correctly. In particular, if you want to try out the Tic-Tac-Toe example for yourself, you must
install it in, say, /usr/bin and invoke it as tictactoe.

For simple applications, including Tic-Tac-Toe, we could save the state as an additional
command-line argument to the restart command. For example:

tictactoe -state OX-XO-X-O

This would save us from storing the data in a file and providing a discard command to remove
the file.

void Application::commitData(QSessionManager &sessionManager)
{
 if (ticTacToe->gameInProgress()
 && sessionManager.allowsInteraction()) {
 int ret = QMessageBox::warning(ticTacToe, tr("Tic-Tac-Toe"),
 tr("The game hasn't finished.\n"
 "Do you really want to quit?"),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No | QMessageBox::Escape);
 if (ret == QMessageBox::Yes)
 sessionManager.release();
 else
 sessionManager.cancel();
 }
}

The commitData() function is called when the user logs out. We can reimplement it to pop up a
message box warning the user about potential data loss. The default implementation closes all
top-level widgets, which results in the same behavior as when the user closes the windows one
after another by clicking the X button in their title bars. In Chapter 3, we saw how to
reimplement closeEvent() to catch this and pop up a message box.

For the purposes of this example, we reimplement commitData() and pop up a message box
asking the user to confirm the log out if a game is in progress and if the session manager allows
us to interact with the user. If the user clicks Yes, we call release() to tell the session
manager to continue logging out; if the user clicks No, we call cancel() to cancel the log out.

Figure 18.8. "Do you really want to quit?"

Now let's look at the TicTacToe class:

class TicTacToe : public QWidget
{
 Q_OBJECT
public:
 TicTacToe(QWidget *parent = 0, const char *name = 0);

 QSize sizeHint() const;
 bool gameInProgress() const;
 QString saveState() const;

protected:
 void paintEvent(QPaintEvent *event);
 void mousePressEvent(QMouseEvent *event);

private:
 enum { Empty ='-', Cross = 'X', Nought = 'O' };

 void clearBoard();
 void restoreState();
 QString sessionFileName() const;
 QRect cellRect(int row, int col) const;
 int cellWidth() const { return width() / 3;}
 int cellHeight() const { return height() / 3;}

 char board[3][3];
 int turnNumber;
};

The TicTacToe class inherits from QWidget and reimplements sizeHint(), paintEvent(), and
mousePressEvent(). It also provides the gameInProgress() and saveState() functions that
we used in Application.

TicTacToe::TicTacToe(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 setCaption(tr("Tic-Tac-Toe"));
 clearBoard();
 if (qApp->isSessionRestored())
 restoreState();
}

In the constructor, we clear the board, and if the application was invoked with the -session
option, we call the private function restoreState() to reload the old session.

void TicTacToe::clearBoard()
{
 for (int row = 0; row < 3; ++row) {
 for (int col = 0; col < 3; ++col) {
 board[row] [col] = Empty;
 }
 }
 turnNumber = 0;
}

In clearBoard(), we clear all the cells and set turnNumber to 0.

QString TicTacToe::saveState() const
{
 QFile file(sessionFileName());

 if (file.open(IO_WriteOnly)) {
 QTextStream out(&file);
 for (int row = 0; row < 3; ++row) {
 for (int col = 0; col < 3; ++col) {
 out << board[row] [col];
 }
 }
 }
 return file.name();
}

In saveState(), we write the state of the board to disk. The format is straighforward, with
'X'for crosses, 'O' for noughts, and '-' for empty cells.

QString TicTacToe::sessionFileName() const
{
 return QDir::homeDirPath() + "/.tictactoe_"
 + qApp->sessionId() +"_" + qApp->sessionKey();
}

The sessionFileName() private function returns the file name for the current session ID and
session key. This function is used for both saveState() and restoreState(). The file name is
derived from the session ID and session key.

void TicTacToe::restoreState()
{
 QFile file(sessionFileName());
 if (file.open(IO_ReadOnly)) {
 QTextStream in(&file);
 for (int row = 0; row < 3; ++row) {
 for (int col = 0; col < 3; ++col) {
 in >> board[row][col];
 if (board[row][col] != Empty)
 ++turnNumber;
 }
 }
 }
 repaint();
}

In restoreState(), we load the file that corresponds to the restored session and fill the board
with that information. We deduce the value of turnNumber from the number of X's and O's the
board.

In the TicTacToe constructor, we called restoreState() if
QApplication::isSessionRestored() returned true. In that case, sessionId() and
sessionKey() return the same values as when the application's state was saved, and so
sessionFileName() returns the file name for that session.

Testing and debugging session management can be frustrating, because we need to log in and
out all the time. One way to avoid this is to use the standard xsm utility provided with X11. The
first time we invoke xsm, it pops up a session manager window and a terminal. The applications
we start from that terminal will all use xsm as their session manager instead of the usual,
system-wide session manager. We can then use xsm's window to end, restart, or discard a
session, and see if our application behaves as it should. For details about how to do this, see
http://doc.trolltech.com/3.2/session.html.

[Team LiB]

[Team LiB]

Appendix A. Installing Qt
A Note on Licensing

Installing Qt/Windows

Installing Qt/Mac

Installing Qt/X11

This appendix explains how to install Qt from the CD onto your system. The CD has editions of
Qt 3.2.1 for Windows, Mac OS X, and X11 (for Linux and most versions of Unix). They all
include SQLite, a public domain in-process database, together with an experimental driver. The
editions of Qt on the CD are provided for your convenience. For serious software development,
it is best to download the latest version of Qt from http://www.trolltech.com/download/ or to
buy a commercial version.

Trolltech also provides Qt/Embedded for building applications for Linuxbased embedded devices
such as PDAs and mobile phones. If you are interested in creating embedded applications, you
can obtain Qt/Embedded from Trolltech's download web page.

The example applications used in the book are on the CD in the examples directory. In addition,
Qt provides many small example applications located in the examples,
tools\designer\examples, and extensions\activeqt\examples subdirectories.
[Team LiB]
[Team LiB]

A Note on Licensing
Qt is produced in three forms: free, non-commercial, and commercial. The free and non-
commercial editions are available free of charge; the commercial editions must be paid for.

The software on the CD is suitable for creating applications for your own educational and
personal use.

If you want to distribute the applications that you create with a free or non-commercial edition
of Qt, you must comply with the specific terms and conditions laid down in the licenses for the
software you use to create the applications. For free editions, the terms and conditions include
the requirement to use an open license—for example, the GNU General Public License (GPL).
Open licenses like the GPL give the applications' users certain rights, including the right to view
and modify the source and to distribute the applications (on the same terms).The non-
commercial license has similar provisions. If you want to distribute your applications without
source code (to keep your code private) or if you want to apply your own commercial license
conditions to your applications, you must buy commercial editions of the software you use to
create the applications. The commercial editions of the software allow you to sell and distribute
your applications on your own terms.

The CD contains a non-commercial version of Qt/Windows, a free edition of Qt/Mac, and a free
edition of Qt/X11. It also contains some other non-commercial software, including Borland C++
Builder 5 and a trial version of Borland C++ Builder 6. Each product on the CD has its own
specific license conditions; for example, the non-commercial Qt/Windows edition may not be
redistributed, and its license isn't compatible with the GPL. The full legal texts of the licenses
are included with the packages on the CD, along with information on how to obtain commercial

versions.
[Team LiB]
[Team LiB]

Installing Qt/Windows
When you insert the CD on a Windows machine, a setup program should start automatically. If
this doesn't occur, run setup.exe located in the CD's root directory.

Figure A.1. Qt/Windows Non-Commercial installer

The setup program will ask you which compiler you want to use for Qt development. If you
have chosen a Borland compiler, check the Install Appropriate Compiler option if you also want
to install the compiler. If you check the Install Book Examples option, the example applications
shown in this book will be installed in C:\Qt\3.2.1\book (assuming C:\Qt\3.2.1 is the location
where you installed Qt).

If you choose to install a Borland compiler, note that there may be a delay between the
completion of the Borland installation and the start of the Qt installation.

In the Qt installer, check the Set QTDIR option. If you are using Microsoft Visual C++, you must
specify Visual Studio's path so that Qt can integrate itself with the development environment.

If you are installing on a Windows 95, 98, or ME system, the compilation step is skipped due to
technical limitations in the operating system. The setup program writes the steps needed to
build Qt into a batch file and puts a shortcut to the batch file in the Start menu. To build Qt,
simply click this shortcut.

Some Windows versions may require a reboot to set the environment variables. If you installed
Borland C++ Builder 5, you must update your PATH environment variable to include the Borland
executable directory (for example, C:\Borland\Bcc55\bin). You must also create two
configuration files in the Borland executable directory. The first file must be called bcc32.cfg
and contain the lines

-I"C:\Borland\Bcc55\include"
-L"C:\Borland\Bcc55\lib"

The second file must be called ilink32.cfg and contain the line

-L"C:\Borland\Bcc55\lib"

If you installed the Borland compiler in a non-default location, you must replace
C:\Borland\Bcc55 with the appropriate path.

[Team LiB]
[Team LiB]

Installing Qt/Mac
The Mac OS X installation is done from a terminal. To launch a terminal, look in
Applications/Utilities with Finder.

If your system does not have a C++ compiler installed, you must install one yourself before
installing Qt. An easy option is to install GCC from Apple's Developer Tools CD.

1. Unpack the archive file from the CD:

cd /Developer
tar zxf /Volumes/Qt\ 3\ Programming/mac/qt-mac-free-3.2.1.tar.gz

The archive is unpacked into /Developer/qt-mac-free-3.2.1.

2. Create a symlink from this directory to /Developer/qt:

ln -sf qt-mac-free-3.2.1 qt

3. Set up certain environment variables for Qt.

The variables are set differently depending on which shell you are using. For example, if
your user name is kelly, you can find out which shell you are using with the finger
command:

finger kelly

If your shell is bash, ksh, zsh, or sh, add the following lines to the .profile file in your
home directory:

QTDIR=/Developer/qt
PATH=$QTDIR/bin:$PATH
MANPATH=$QTDIR/doc/man:$MANPATH
DYLD_LIBRARY_PATH=$QTDIR/lib:$DYLD_LIBRARY_PATH
export QTDIR PATH MANPATH DYLD_LIBRARY_PATH

If your shell is csh or tcsh, add the following lines to your .login file:

setenv QTDIR /Developer/qt
setenv PATH $QTDIR/bin:$PATH
setenv MANPATH $QTDIR/doc/man:$MANPATH
setenv DYLD_LIBRARY_PATH $QTDIR/lib:$DYLD_LIBRARY_PATH

If you encounter "undefined variable" problems, change the last two lines above to these:

setenv MANPATH $QTDIR/doc/man
setenv DYLD_LIBRARY_PATH $QTDIR/lib

After you have done this, the settings must be activated. The easiest way to do this is to

close the terminal window and then open a new terminal window.

4. Execute the configure tool in the new terminal with your preferred options to build the
Qt library and the tools supplied with it:

cd $QTDIR
./configure

You can run ./configure -help to get a list of configuration options. For example, you
can use the -thread option to create a threaded version of the library.

5. Type make.

6. Make your applications launchable from Finder.

If you built Qt using the -static option, your executables will contain the Qt library and
can be run from Finder automatically. Otherwise, your executables will need to use the Qt
library on your system. This is achieved by creating two symlinks:

ln -sf $QTDIR/lib/libqt.3.dylib /usr/lib
ln -sf $QTDIR/lib/libqui.1.dylib /usr/lib

If you built a multithreaded version of Qt, replace libqt.3.dylib with libqt-mt.3.dylib
in the first ln command above.

Creating these links may require administrator access; if this is the case, run the
commands preceded by sudo:

sudo ln -sf $QTDIR/lib/libqt.3.dylib /usr/lib
sudo ln -sf $QTDIR/lib/libqui.1.dylib /usr/lib

If you don't have administrator access or just want to install Qt locally, use these links
instead:

ln -sf $QTDIR/lib/libqt.3.dylib $HOME/lib
ln -sf $QTDIR/lib/libqui.1.dylib $HOME/lib

As mentioned above, if you built a multithreaded version of Qt, replace libqt.3.dylib
with libqt-mt.3.dylib.

If you want to customize how you install Qt or if you encounter problems with installing Qt,
refer to the INSTALL file in $QTDIR for more information.

[Team LiB]
[Team LiB]

Installing Qt/X11
To install Qt on X11, you may need to be root, depending on the permissions of the directory
where you choose to install Qt.

1. Change directory to where you want to install Qt. For example:

cd /usr/local

2. Unpack the archive file from the CD:

cp /cdrom/x11/qt-x11-free3.2.1.tar.gz.
gunzip qt-x11-free-3.2.1.tar.gz
tar xf qt-x11-free-3.2.1.tar

This will create the directory qt-x11-free-3.2.1, assuming that your CD-ROM is
mounted at /cdrom.

3. Set up certain environment variables for Qt.

The variables are set differently depending on which shell you are using. For example, if
your user name is gregory, you can find out which shell you are using with the finger
command:

finger gregory

If your shell is bash, ksh, zsh, or sh, add the following lines to the .profile file in your
home directory:

QTDIR=/usr/local/qt-x11-free-3.2.1
PATH=$QTDIR/bin:$PATH
MANPATH=$QTDIR/doc/man:$MANPATH
LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH
export QTDIR PATH MANPATH LD_LIBRARY_PATH

If your shell is csh or tcsh, add the following lines to your .login file:

setenv QTDIR /usr/local/qt-x11-free-3.2.1
setenv PATH $QTDIR/bin:$PATH
setenv MANPATH $QTDIR/doc/man:$MANPATH
setenv LD_LIBRARY_PATH $QTDIR/lib:$LD_LIBRARY_PATH

If you encounter "undefined variable" problems, change the last two lines above to these:

setenv MANPATH $QTDIR/doc/man
setenv LD_LIBRARY_PATH $QTDIR/lib

Irrespective of which shell you use, if you install Qt on AIX, replace all occurrences of
LD_LIBRARY_PATH with LIBPATH. And if you install Qt on HP-UX, replace LD_LIBRARY_PATH
with SHLIB_PATH.

After you have done this, you must either login again or re-source the .profile
or .login file before continuing.

4. Execute the configure tool with your preferred options to build the Qt library and the
tools supplied with it:

cd $QTDIR
./configure

You can run ./configure -help to get a list of configuration options. For example, you
can use the -thread option to create a threaded version of the library.

5. Type make.

If you want to customize how you install Qt or if you encounter problems with installing Qt,

refer to the INSTALL file in $QTDIR for more information.

[Team LiB]

[Team LiB]

Appendix B. Qt's Class Hierarchy
Qt 3.2 provides more than 400 public classes. The class hierarchy depicted on the following
pages presents the majority of them, but omits those that are more specialized and those that
are infrequently used.

[Team LiB]

