

2

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03 **One-Way Hash Functions** • Divide M into blocks, generate hash value iteratively $M_i - H_i - h_i$ • Hash value of the whole message is obtained in the last step

- > Signature is unforgeable
- > Signature is not reusable
- > Signed document in unalterable
- > Signature cannot be repudiated

10

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

9

Arbitrated Signatures

- > Alice wants to sign a message and send it to Bob
 - > Alice and Trent share K_A , Bob and Trent share K_B
 - \succ Alice encrypts the message with $K_{\rm A}$ and sends it to Trent
 - > He decrypts it, adds a statement that he has received this from Alice, encrypts it with K_B and sends it to Bob
 - > Bob can also prove to Carol that he received the message from Alice but he needs to involve Trent again

11

CIS 659 – Introduction to Network Security – Fall 2003 – Class 5 – 9/23/03

Public-Key Signatures

- > Alice encrypts the document with her private key
- Sends the signed document to Bob who decrypts it with her public key
 - > This signature is reusable, Bob can take the same message and claim he received it multiple times \rightarrow add timestamps
 - ➤ Signing the whole document with public key is slow → sign a hash of the document produced by one-way hash function

12

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Digital Signatures with Encryption

- > Only Bob can decrypt the message (security) and he knows that Alice has sent the message (authenticity)
- If Alice encrypted message digest he can also verify that the message has not been changed
- > If Alice added timestamps he can also verify that the message has not been replayed

19

CIS 659 – Introduction to Network Security – Fall 2003 – Class 5 – 9/23/03 Revisiting Cryptography Threats

- > Ciphertext-only attack
- > Known plaintext attack
- > Chosen plaintext attack
- > Adaptive chosen plaintext attack
- > Man-in-the-middle attack
- > Substitute, modify, drop, replay messages

21

CIS 659 – Introduction to Network Security – Fall 2003 – Class 5 – 9/23/03 Man-in-the-Middle Attack on Key Exchange

- > Alice to Bob her public key Pub(A)
- > Mallory captures this and sends to Bob Pub(M)
- > Bob sends to Alice his public key Pub(B)
- > Mallory captures this and sends to Alice Pub(M)
- Now Alice and Bob correspond through Mallory who can read all their messages

$CIS\ 659-Introduction\ to\ Network\ Security-Fall\ 2003-Class\ 5-9/23/03$

Key Exchange with Interlock Protocol

- > First four steps are the same
 - ▹ Alice to Bob her public key Pub(A)
 - \succ Mallory captures this and sends to Bob Pub(M)
 - > Bob sends to Alice his public key Pub(B)
 - \succ Mallory captures this and sends to Alice Pub(M)
- Alice encrypts a message in Pub(M) but sends half to Bob – Mallory cannot recover this message and duplicate it
- This works if Mallory cannot mimic Alice's and Bob's messages 24

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03 Authentication > How does Alice prove her identity? > When she logs on > When she sends messages to Bob

CIS 659 – Introduction to Network Security – Fall 2003 – Class 5 – 9/23/03

Authentication on Log-on

- > Alice inputs her password, computer verifies this against list of passwords
- > If computer is broken into, hackers can learn everybody's passwords
 - > Use one-way functions, store the result for every valid password
 - Perform one-way function on input, compare result against the list

27

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Authentication on Log-on

- Hackers can compile a list of frequently used passwords, apply one-way function to each and store them in a table – dictionary attack
- Host adds random salt to password, applies one-way function to that and stores result and salt value

28

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Authentication on Log-on

- > SKEY Alice will have different password each time she logs on
 - > To set-up the system, Alice enters random number R
 - > Host calculates $x_{0=f(R)}$, $x_{1=f(f(R))}$, $x_{2=f(f(f(R)))}$,..., x_{100}
 - > Alice keeps this list, host sets her password to x_{101}
 - > Alice logs on with x_{100} , host verifies $f(x_{100})=x_{101}$, resets password to x_{100}
 - > Next time Alice logs on with x₉₉

29

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Authentication on Log-on

- Someone sniffing on the network can learn the password
 - > Host keeps a file of every user's public key
 - > Users keep their private keys
 - \triangleright When Alice attempts to log on, host sends her a random number R
 - > Alice encrypts R with her private key and sends to host
 - Host can now verify her identity by decrypting the message and retrieving R

30

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Key Exchange with Digital Signatures

- > Trent signs both Alice's and Bob's public keys he generates public-key certificate
- When they receive keys they verify the signature
 Everyone has Trent's public key
- > Mallory cannot impersonate Alice or Bob because his key is signed as Mallory's
- Certificate usually contains more than the public key
 Name, network address, organization
- > Trent is known as Certificate Authority (CA)

33

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Needham-Schroeder Key Exchange

- > Alice sends message to Trent with her name, Bob's name and a random number *A*, *B*, *R*_A
- Trent generates session key K, encrypts K, A with key he shares with Bob E_{TB}(K, A), he then encrypts this message, K, B and R_A with key he shares with Alice E_{TA}(K, B, R_A, E_{TB}(K, A))
- > Alice decrypts the message, verifies R_A and sends $E_{TB}(K, A)$ to Bob
- > Bob decrypts the message, generates a random number R_B and sends to Alice $E_K(R_B)$
- > Alice decrypts the message, sends to Bob $E_K(R_B-1)$ 34

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Kerberos Authentication Service

- Kerberos is trusted authority with whom everyone shares keys
- When a client on a network wants to talk to a server, he issues a request for a *ticket* to Kerberos' Ticket Granting Server (TGS)
- Client uses this ticket always when he talks to the server, sometimes he also sends *authenticators*
- > Clients and servers do not trust each other

35

CIS 659 – Introduction to Network Security – Fall 2003 – Class 5 – 9/23/03

Kerberos Authentication Service

- > A ticket is used to pass securely to the server the identity of the client
 - > It is good for a single client and single server for some period of time
 - > It contains client's name and network address, server's name, timestamp and a session key, all encrypted with a key server shares with Kerberos
- > An authenticator is generated whenever a client requests some service from the server
 - It is good only for one request
 - > It is good only for one request
 - It contains client's name, a timestamp and an optional additional key, all encrypted with session key 36

CIS 659 - Introduction to Network Security - Fall 2003 - Class 5 - 9/23/03

Kerberos Authentication Service

- > To get ticket for specific server
 - > Alice sends a request with her name and server's name to TGS, encrypted with K_{ATGS} , accompanied with TGT and authenticator
 - > TGS decrypts TGT with his secret key and retrieves K_{ATGS}
 - > TGS uses *K*_{ATGS} to decrypt authenticator and compare Alice's information in authenticator with information in TGT, and compare timestamps
 - > If everything matches he generates a session key K_{AS} to be used between her and server and a valid ticket T_{AS}
 - > TGS encrypts K_{AS} with K_{ATGS} and encrypts T_{AS} with server's secret key, sends both to Alice

38

CIS 659 – Introduction to Network Security – Fall 2003 – Class 5 – 9/23/03 Kerberos Authentication Service

- > To request service
 - > Alice sends a valid ticket T_{AS} and authenticator
 - > Server decrypts T_{AS} with his secret key and retrieves K_{AS}
 - > Server uses K_{AS} to decrypt authenticator and compare Alice's information in authenticator with information in T_{AS} , and compare timestamps
 - > If everything matches he grants the request
 - > For applications that require mutual authentication server will send to Alice a timestamp encrypted with K_{AS}

39