YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security

Handout #6 October 5, 2006

Professor M. J. Fischer

The Legendre and Jacobi Symbols

Let $a \ge 0$, $n \in \mathbf{Z}^+$. Let $\mathrm{QR}(a,n)$ hold if (a,n)=1 and a is a quadratic residue modulo n. Let $\mathrm{QNR}(a,n)$ hold if (a,n)=1 and a is a quadratic non-residue modulo n (i.e., there is no $y \in \mathbf{Z}_n^*$ such that $a \equiv y^2 \pmod n$).

For a prime p, the structure of quadratic residues can be fairly easily explained. Let g be a primitive root of \mathbf{Z}_p^* . Then every element of \mathbf{Z}_p^* is uniquely expressible as g^k for some $k \in \{0, \dots, p-2\}$.

Theorem 1 Let p be a prime, g a primitive root of p, $a \equiv g^k \pmod{p}$. Then a is a quadratic residue iff k is even.

Proof: If k is even, then $g^{k/2}$ is easily seen to be a square root of a modulo p.

Conversely, suppose $a \equiv y^2 \pmod{p}$. Write $y \equiv g^{\ell} \pmod{p}$. Then $g^k \equiv g^{2\ell} \pmod{p}$. Multiplying both sides by g^{-k} , we have $1 \equiv g^0 \equiv g^{2\ell-k} \pmod{p}$. But then $\phi(p) \mid 2\ell - k$. Since $2 \mid \phi(p) = p - 1$, it follows that $2 \mid k$, as desired.

The following theorem, due to Euler, is now easily proved:

Theorem 2 (Euler) Let p be an odd prime, and let $a \ge 0$, (a, p) = 1. Then

$$a^{(p-1)/2} \equiv \begin{cases} 1 \pmod{p} & \textit{if } \mathrm{QR}(a,p) \textit{ holds}; \\ -1 \pmod{p} & \textit{if } \mathrm{QNR}(a,p) \textit{ holds}. \end{cases}$$

Proof: Write $a \equiv g^k \pmod{p}$.

If QR(a,p) holds, then a is a quadratic residue modulo p, so k is even by Theorem 1. Write k=2r for some r. Then $a^{(p-1)/2}\equiv q^{2r(p-1)/2}\equiv (q^r)^{p-1}\equiv 1\pmod{p}$ by Fermat's theorem.

If $\mathrm{QNR}(a,p)$ holds, then a is a quadratic non-residue modulo p, so k is odd by Theorem 1. Write k=2r+1 for some r. Then $a^{(p-1)/2}\equiv g^{(2r+1)(p-1)/2}\equiv g^{r(p-1)}g^{(p-1)/2}\equiv g^{(p-1)/2}\pmod{p}$. Let $b=g^{(p-1)/2}$. Clearly $b^2\equiv 1\pmod{p}$, so $b\equiv \pm 1\pmod{p}$. Since g is a primitive root modulo p and (p-1)/2< p-1, $b=g^{(p-1)/2}\not\equiv 1\pmod{p}$. Hence, $b\equiv -1\pmod{p}$.

Definition: The Legendre symbol is a function of two integers a and p, written $\left(\frac{a}{p}\right)$. It is defined for $a \ge 0$ and p an odd prime as follows:

A multiplicative property of the Legendre symbols follows immediately from Theorem 1.

Observation 3 Let $a, b \ge 0$, p an odd prime. Then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right).$$

¹This follows from the fact that $p|(b^2-1)=(b-1)(b+1)$, so either p|(b-1), in which case $b\equiv 1\pmod p$, or p|(b+1), in which case $b\equiv -1\pmod p$.

As an easy corollary of Theorem 2, we have:

Corollary 4 Let $a \ge 0$ and let p be an odd prime. Then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

The Jacobi symbol extends the domain of the Legendre symbol.

Definition: The Jacobi symbol is a function of two integers a and n, written $\left(\frac{a}{n}\right)$, that is defined for all $a \geq 0$ and all odd positive integers n. Let $\prod_{i=1}^k p_i^{e_i}$ be the prime factorization of n. Then

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}.$$

Here $\left(\frac{a}{p_i}\right)$ denotes the previously-defined Legendre symbol. (Note that by this definition, $\left(\frac{0}{1}\right)=1$, and $\left(\frac{0}{n}\right)=0$ for odd $n\geq 3$.)

We have seen that if (a,p)=1 and p is prime, then the Legendre symbol $\left(\frac{a}{p}\right)=1$ iff a is a quadratic residue modulo p. It is *not* true for the Jacobi symbol that $\left(\frac{a}{n}\right)\equiv 1\pmod{n}$ implies that a is a quadratic residue modulo n. For example, $\left(\frac{8}{15}\right)=1$, but 8 is not a quadratic residue modulo 15. However, the converse does hold:

Observation 5 If $(\frac{a}{n}) \not\equiv 1 \pmod{n}$, then a is not a quadratic residue modulo n.

The usefulness of the Jacobi symbol $\left(\frac{a}{n}\right)$ stems from its ability to be computed efficiently, even without knowning the factorization of either a or n. The algorithm is based on the following theorem, which is stated without proof.

Theorem 6 Let n be an odd positive integer, $a, b \ge 0$. Then the following identities hold:

(a)
$$\left(\frac{0}{n}\right) = \begin{cases} 1 & \text{if } n = 1; \\ 0 & \text{if } n > 1 \end{cases}$$

(b)
$$\left(\frac{2}{n}\right) = \begin{cases} 1 & \text{if } n \equiv \pm 1 \pmod{8}; \\ -1 & \text{if } n \equiv \pm 3 \pmod{8} \end{cases}$$

(c)
$$\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$$
 if $a \equiv b \pmod{n}$.

$$(d) \ \left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \cdot \left(\frac{b}{n}\right)$$

(e) (Quadratic reciprocity). If a is odd, then $\binom{n}{2} = \binom{n}{2} = \binom{n}{2} = \binom{n}{2}$

$$\left(\frac{a}{n}\right) = \begin{cases} -\left(\frac{n}{a}\right) & \text{if } a \equiv n \equiv 3 \pmod{4}; \\ \left(\frac{n}{a}\right) & \text{otherwise.} \end{cases}$$

Theorem 6 leads directly to a recursive algorithm for computing $(\frac{a}{n})$:

```
int jacobi(int a, int n)
/* Precondition: a, n >= 0; n is odd */
 int ans;
 if (a == 0)
   ans = (n==1) ? 1 : 0;
 else if (a == 2) {
   switch (n%8) {
   case 1:
   case 7:
     ans = 1;
     break;
   case 3:
   case 5:
    ans = -1;
     break;
   }
 else if (a \ge n)
   ans = jacobi(a%n, n);
 else if (a\%2 == 0)
   ans = jacobi(2,n)*jacobi(a/2, n);
   ans = (a%4 == 3 \&\& n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);
 return ans;
}
```