
Finite Difference Methods Basics

Zhilin Li

Center for Research in Scientific Computation & Department of Mathematics

North Carolina State University

Raleigh, NC 27695, e-mail: zhilin@math.ncsu.edu

1 Examples of differential equations in one space dimension

• Newton cooling model:

du

dt
= c(usur − u), t > 0 u(0) = u0 is given (1)

This is an ordinary differential equation (ODE) with an initial value u(0) is given. It is

also called an initial value problem (IVP).

• Heat diffusion and heat equations.

∂u

∂t
=

∂

∂x

(
β

∂u

∂x

)
, a < x < b, t > 0, (2)

= β
∂2u

∂x2
, if β is a constant, (3)

u(a, t) = g1(t), u(b, t) = g2(t), the boundary condition, (4)

u(x, 0) = u0(x), the initial condition. (5)

The equation is a partial differential equation (PDE) with initial and boundary condi-

tions. It is also called an initial and boundary value problem (IBVP).

The following equation is called one dimensional linear parabolic equation with a source;

∂u

∂t
=

∂

∂x

(
β

∂u

∂x

)
+ α(x, t)

∂u

∂t
+ γ(x, t)u + f(x, t), a < x < b, t > 0, (6)

with a boundary condition at two ends and an initial condition.

• The one way wave equation (first order PDE)

∂u

∂t
+ c

∂u

∂x
= 0, a < x < b, t > 0, (7)

u(a, t) = g1(t), if c > 0, the boundary condition, (8)

u(x, 0) = u0(x), the initial condition, (9)

1

Finite Difference Method 2

where c is called the wave speed. Note that there is only one boundary condition.

The following equation is called one dimensional first order linear PDE

∂u

∂t
= c

∂u

∂x
+ α(x, t)u + f(x, t), a < x < b, t > 0, (10)

with a boundary condition at one end and an initial condition.

• One-dimensional elliptic equations (steady state solution of the parabolic differential

equation).

∂

∂x

(
β

∂u

∂x

)
+ α(x)

∂u

∂x
+ γ(x)u = f(x), a < x < b, (11)

u(a) = ua, u(b) = ub, the boundary condition (12)

It is an ODE and is called a two-point boundary value problem (BVP). It is an elliptic

type differential equation.

1.1 General linear second order partial differential equations:

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + g(x, y)u = f(x, y), (13)

where (x, y) ∈ Ω is a domain in x-y coordinates. The PDE above can be classified as one of

the following:

• Elliptic equation if b2−ac < 0 for all (x, y) ∈ Ω. Examples include the Laplace equation

uxx + uyy = 0, (14)

and the Poisson equation

uxx + uyy = f(x, y). (15)

• Parabolic equation if b2 − ac = 0 for all (x, y) ∈ Ω. One example is the heat equation

with/without a source

ut = βuxx + f(x, t). (16)

An example in two space dimensions is

ut = β(uxx + uyy) + f(x, y, t). (17)

• Hyperbolic equation if b2 − ac > 0 for all (x, y) ∈ Ω. Example includes the two way

wave equation

utt = c2uxx. (18)

• Mixed type if b2 − ac changes sign in Ω.

Finite Difference Method 3

2 Finite difference approximations

A finite difference method typically involves the following steps:

1. Generate a grid, for example (xi, t
(k)), where we want to find an approximate solution.

2. Substitute the derivatives in an ODE/PDE or an ODE/PDE system of equations with

finite difference schemes. The ODE/PDE then become a linear/non-linear system of

algebraic equations.

3. Solve the system of algebraic equations.

4. Implement and debug the computer code.

5. Do the error analysis, both analytically and numerically.

Note that besides Finite Difference methods, there are other methods that can be used

to solve ODE/PDEs such as Finite element methods, spectral methods etc. Generally finite

difference are simple to use for problems defined on regular geometries, such as an interval in

1D, a rectangular domain in two space dimensions, and a cubic in three space dimensions.

3 Some commonly used finite difference formulas

Below we list three commonly used finite difference formulas to approximate the first order

derivative of a function u(x) using the function values only.

• The forward finite difference

D+u(x) =
u(x + h)− u(x)

h
= u′(x) +

1
2
u′′(ξ)h. (19)

Therefore the error (absolute error) of the forward finite difference is proportional to h

and the approximation is referred as a first order approximation.

• The backward finite difference

D−u(x) =
u(x)− u(x− h)

h
= u′(x)− 1

2
u′′(ξ)h. (20)

The approximation again is a first order approximation.

• The central finite difference

D0u(x) =
u(x + h)− u(x− h)

2h
= u′(x) +

h2

6
u′′′(ξ). (21)

Finite Difference Method 4

The error is proportional to h2 and the approximation is referred as a second order

approximation. Note that

D0u(x) =
1
2

(D+u(x) + D+u(x)) (22)

3.1 Approximation to high order derivatives

Usually finite difference schemes for high order derivatives can be obtained from the formulas

for lower order derivatives. The central finite difference scheme for the second order derivative

uxx is

D2
0u(x) = D+D− u(x) = D+

u(x)− u(x− h)
h

=
u(x− h)− 2u(x) + u(x + h)

h2
= uxx(x) +

h2

12
u(4)(ξ).

(23)

So it is a second order approximation. The third order derivative uxxx can be approximated,

for example

D3u(x) = D+D2
0u(x) =

u(x + 2h)− 3u(x + h) + 3u(x)− u(x− h)
h3

= uxxx(x) +
h

2
u(4)(ξ).

(24)

There are other approaches to construct finite difference schemes, for example, the method of

un-determined coefficients, polynomial interpolations and others.

4 Finite difference approximations for model problems

4.1 Newton cooling model

The differential equation is:

du

dt
= c(usur − u), t > 0 u(0) = u0 is given

The finite difference equation is

uk+1 − uk

∆t
= c(usur − uk), u0 = u0 (25)

where uk is an approximation to the solution u(tk) = u(k∆t). The forward finite difference

approximation to ut is called the forward Euler method.

4.2 General 1D parabolic equation

Consider the differential equation:

∂u

∂t
= β

∂2u

∂x2
+ f(x, t), a < x < b, t > 0.

Finite Difference Method 5

In order to derive a finite difference scheme, we need to generate a grid

xi = a + ih, i = 0, 1, · · · , m, h =
b− a

m
,

tk = k ∆t, k = 0, 1, · · · .

The ∆t should satisfy the time step restriction (to guarantee the stability)

0 < ∆t ≤ h2

2β
. (26)

The finite difference scheme is

uk+1
i − uk

i

∆t
= β

uk
i−1 − 2uk

i + uk
i+1

h2
+ fk

i ,

k = 0, 1, · · · , i = 1, 2, · · · , m− 1, if u(a, t) and u(b, t) are given,

(27)

where uk
i is an approximation to u(x, t), and fk

i = f(xi, t
k). One of finite difference schemes

for 1D general parabolic equation

∂u

∂t
= β

∂2u

∂x2
+ α(x, t)

∂u

∂t
+ γ(x, t)u + f(x, t),

is

uk+1
i − uk

i

∆t
= β

uk
i−1 − 2uk

i + uk
i+1

h2
+ αk

i

uk
i+1 − uk

i−1

2h
+ γk

i uk
i + fk

i . (28)

However, the time step restriction is different.

4.3 The one way wave equation

The differential equation is:

∂u

∂t
+ c

∂u

∂x
= f(x, t), a < x < b, t > 0.

A simple finite difference scheme is

uk+1
i − uk

i

∆t
+ c

uk
i − uk

i−1

h
= fk

i , i = 0, 1, · · · , if c > 0. (29)

Question: Can we use the central finite difference approximation for ux?

4.4 One dimensional elliptic equations.

The differential equation is:

β
∂2u

∂x2
+ α(x)

∂u

∂x
+ γ(x)u = f(x), a < x < b,

u(a) = ua, u(b) = ub, the boundary condition.

Finite Difference Method 6

The second order finite difference approximation is

β
ui−1 − 2ui + ui+1

h2
+ αi

ui+1 − ui−1

2h
+ γiui = fi, i = 1, 2, · · ·m− 1. (30)

Note we need to solve a linear system of equations to get the approximate solution to the

differential equation. Question: Can you write down the system of equations in matrix-

vector form?

In order to have a finite difference scheme work, two conditions need to be satisfied: the

consistence and the stability.

5 The local truncation error and consistence of a finite differ-

ence scheme

The local truncation error is defined as the difference of the differential equation and the finite

difference scheme. The finite difference scheme is called consistent if the limit of the local

truncation error is zero as h and/or ∆t approach zero.

The local truncation errors for the forward, backward, and central finite difference are

Th(D+) = f ′(x)− f(x + h)− f(x)
h

=
h

2
f ′′(ξ)

Th(D−) = f ′(x)− f(x)− f(x− h)
h

= −h

2
f ′′(ξ)

Th(D0) = f ′(x)− f(x + h)− f(x− h)
2h

=
h2

6
f (4)(ξ).

In all three cases, we have lim
h→0

Th = 0. Therefore they are all consistent.

5.1 The truncation error of the finite difference method for the Newton

cooling model (25)

Th =
u(t + h)− u(t)

∆t
− c(usur − u(t)). (31)

Therefore, the local truncation error is simply the result of the finite difference equation with

exact solution plugged in. Using the extended mean value theorem, we can get

Th =
∆t

2
u′′(ξ), and lim

∆t→0
Th = 0. (32)

So the finite difference equation is consistent.

A Remark: In the literature, there is another definition of the truncation which is

T̄h = u(t + h)− u(t)− c ∆t (usur − u(t)). (33)

Finite Difference Method 7

We can see that

T̄h = ∆t Th. (34)

5.2 The truncation error of the finite difference method for the 1D parabolic

equation (27)

Th =
u(x, t + h)− u(x, t)

∆t
− β

u(x + h, t)− 2u(x, t) + u(x− h, t)
h2

− f(x, t). (35)

Again the local truncation error is simply the result of the finite difference equation with exact

solution plugged in. Using the extended mean value theorem, we can get

Th = ut(x, t) +
∆t

2
utt(x, η)− β

(
uxx(x, t) +

h2

6
uxxxx(ξ, t)

)
− f(x, t) (36)

=
∆t

2
utt(x, η)− β

h2

6
uxxxx(ξ, t) (37)

= O(∆t, h2). (38)

The method therefore is called first order in time and second order in space. Since

lim
∆t→0, h→0

Th = 0, (39)

the finite difference scheme is consistent.

5.3 The truncation error of the finite difference method for the 1D one-way

wave equation (29)

Th =
u(x, t + h)− u(x, t)

∆t
+ c

u(x + h, t)− u(x, t)
h

− f(x, t), c > 0 (40)

= ut(x, t) +
∆t

2
utt(x, η)− cux(x, t)− c

h2

2
uxx(ξ, t) (41)

= O(∆t, h), lim
∆t→0, h→0

Th = 0. (42)

Therefore the finite difference scheme is consistent and is first order in time and first order in

space.

6 The stability of a finite difference scheme

As we see from the numerical test, whether a finite difference scheme can work depend on

the choice of ∆t even if the finite difference scheme is consistent. The stability condition is

Finite Difference Method 8

a requirement that the error in the computed solution would be amplified in the subsequent

computations. An intuitive definition is that

|uk+1
1 |+ |uk+1

2 |+ |uk+1
3 |+ · · ·+ |uk+1

m−2|+ |uk+1
m−1|+ |uk+1

m | ≤
|uk

1|+ |uk
2|+ |uk

3|+ · · ·+ |uk
m−2|+ |uk

m−1|+ |uk
m|

(43)

The stability condition of the finite difference (25) for Newton cooling model is

0 < ∆t ≤ 2
c
. (44)

This can be proved through the von Neumann analysis by setting

uk+1 = g uk (45)

Then the scheme is stable if and only if |g| ≤ 1.

The stability condition of the finite difference scheme (27) for the heat equation with a

source term is

0 < ∆t ≤ h2

2β
. (46)

This can be proved using the von Neumann analysis by setting

uk
j = eijhξ, uk+1

j = g(ξ)eijhξ, (47)

where i =
√−1. Then the finite difference scheme (27) is stable if |g| ≤ 1.

The stability condition of the finite difference scheme (29) for the one way wave equation

is

0 < ∆t ≤ h

c
. (48)

using the von Neumann analysis.

The global error (overall error) of a finite difference scheme is the absolute error of the

computed solution. For the solution of the finite difference scheme for the Newton cooling

model, it is

E = ukfinal − u(kfinal∆t) (49)

For one dimensional heat equation and one way wave equation, the global error is

Ei = u
kfinal

i − u(xi, tfinal), i = 1, 2, · · · , m (50)

Usually we use one measurement called the infinity normal of the error

||E||∞ = max{ |E1|, |E2|, · · · , |Em−1|, |Em| } (51)

A finite difference method is convergent to the true solution if the global error approaches

to zero as ∆ and h approach to zero.

Theorem 1 A consistent and stable finite difference method is convergent.

Finite Difference Method 9

7 Implicit Discretization

7.1 Backward Euler for IVP of an ODE system.

Given an initial value problem of the following form
dy
dt

= f(y, t), y(0) = y0.

the forward Euler method is
yk+1 − yk

∆t
= f(yk, tk), k = 0, 1, · · ·

Usually there is a time step constraint on ∆t. For example, for the Newton’s cooling law

y′ = c (ysur − y), c > 0.

The forward finite difference method is
yk+1 − yk

∆t
= c (ysur − yk).

We need to choose 0 < ∆t ≤ 1
c

to get a stable algorithm so that the computed solution is a

reasonable approximation to the true solution of the ODE.

If we use the backward finite difference, often called the backward Euler method, for y′(t)

at tk+1, then we get the backward Euler method

yk+1 − yk

∆t
= f(yk+1, tk+1), k = 0, 1, · · · (52)

The method works for much larger ∆t that that of implicit method. For example, for the

Newton’s cooling law, the backward Euler method is

yk+1 − yk

∆t
= c (ysur − yk+1).

We can choose any ∆t and the solution will not blow-up. However, to get reasonable accuracy,

we still need to choose ∆t small because the global error is proportional to ∆t. We do not

need to worry about the stability anymore.

If we use the central finite difference scheme for y′(t),

yk+1 − yk−1

∆t
= f(yk, tk), k = 0, 1, · · · (53)

the scheme may or may not be stable, however, we need to use a different method to compute

y1 before we can get started.

Quite often, the Crank-Nicolson method is an ideal method because it has second order

accuracy and it is implicit. The Crank-Nicolson method for the IVP-ODE is

yk+1 − yk−1

∆t
=

1
2

(
f(yk, tk) + f(yk+1, tk+1)

)
. (54)

The global error is O((∆t)2).

Finite Difference Method 10

7.2 The 1D heat equations

For the heat diffusion equation

ut = βuxx + f(x, t), β > 0,

the forward Euler method (FW-CT, meaning forward in time, central in space) is

uk+1
i − uk

i

∆t
= β

uk
i−1 − 2uk

i + uk
i+1

h2
+ fk

i .

It is first order in time and second order in space (O(∆t + h2)). There is a severe time step

size constraint 0 < ∆t ≤ h2/(2β) which potentially makes the method very slow.

Usually we prefer to use ∆t ∼ h so that we can advance quickly. The backward Euler

method (BW-CT) scheme is

uk+1
i − uk

i

∆t
= β

uk+1
i−1 − 2uk+1

i + uk+1
i+1

h2
+ fk+1

i . (55)

The truncation error is O(∆t + h2). It is unconditionally stable meaning that we can take any

∆t.

However, we need to solve a linear system of equations below


1
∆t + 2β

h2 − β
h2 0 · · · 0

− β
h2

1
∆t + 2β

h2 − β
h2 · · · 0

...
...

...
...

...

0 · · · − β
h2

1
∆t + 2β

h2 − β
h2

0 · · · 0 − β
h2

1
∆t + 2β

h2







uk+1
1

uk+1
2

...

uk+1
m−2

uk+1
m−1




=




fk+1
1 + β

h2 u(0, tk+1)

fk+1
2

...

fk+1
m−2

fk+1
m−1 + β

h2 u(L, tk+1)




to get an approximate solution of the differential equation at t = tk+1 The system of equations

is a tridiagonal and it is very to solve, in Matlab, we can simply use the command u = A\b,

see heat im.m for example.

7.3 Central discretization for ut?

The central finite difference of ut for heat diffusion equations is unconditionally unstable (no

matter what ∆t we choose).

Finite Difference Method 11

7.4 The Crank-Nicolson scheme for 1D heat equation.

If we want to take ∆t ∼ h and keep second order accuracy, then we can use the Crank-Nicolson

scheme

uk+1
i − uk

i

∆t
=

β

2

(
uk+1

i−1 − 2uk+1
i + uk+1

i+1

h2
+

uk
i−1 − 2uk

i + uk
i+1

h2

)
+ f

k+ 1
2

i (56)

The local truncation error is O((∆t)2 +h2) and it is unconditionally unstable (no matter what

∆t we choose). We usually take ∆t = h. The global error is O(h2+∆t)2). However, we need to

solve the system of equations Auk+1 = Buk +bk to get the solution at time tk+1 = (k + 1)∆t,

where A, B, and bk are given below:

A =




1
∆t + β

h2 − β
2h2 0 · · · 0

− β
2h2

1
∆t + β

h2 − β
2h2 · · · 0

...
...

...
...

...

0 · · · − β
2h2

1
∆t + β

h2 − β
2h2

0 · · · 0 − β
2h2

1
∆t + β

h2




, bk =




f
k+ 1

2
1 + β

h2 u(0, tk+ 1
2)

f
k+ 1

2
2

...

f
k+ 1

2
m−2

f
k+ 1

2
m−1 + β

h2 u(L, tk+ 1
2)




,

B =




1
∆t − β

h2
β

2h2 0 · · · 0

β
2h2

1
∆t − β

h2
β

2h2 · · · 0

...
...

...
...

...

0 · · · β
2h2

1
∆t − β

h2
β

2h2

0 · · · 0 β
2h2

1
∆t − β

h2




.

If we denote Fk = Buk +bk, then the approximate solution the differential equation at tk+1 is

the solution of Auk+1 = Fk which can be solved easily, for example, in Matlab, by u = A\F,

see heat im.m.

7.5 Implicit method for the 1D one-way wave equations

The 1D one-way wave equation

ut + cux = f(x, t), 0 < x < L, u(0, t) = g(t), u(x, 0) = u0(x),

is a hyperbolic type equation. The FW-BW (forward in time and backward in space) finite

difference scheme is

uk+1
i − uk

i

∆t
+ c

uk
i − uk

i−1

h
= fk

i , i = 0, 1, · · · , if c > 0,

Finite Difference Method 12

whose truncation error is O(∆t + h) (first order in time and first order in space). The time

step restriction ∆t ≤ h/c is often acceptable (not like the explicit finite difference method for

the heat equation where ∆t ≤ h2/(2β)).

The implicit finite difference scheme is

uk+1
i − uk

i

∆t
+ c

uk+1
i − uk+1

i−1

h
= fk+1

i , i = 0, 1, · · · , if c > 0,

We can write the scheme as a matrix-vector form Auk+1 = Buk + bk,

A =




d 0 0 · · · 0

α d 0 · · · 0

...
...

...
...

...

0 · · · α d 0

0 · · · 0 α d




, B = I, bk =




∆t fk+1
1 − α u(0, tk+1)

∆t fk+1
2

...

0

∆t fk+1
n




,

where d = 1 +
c ∆t

h
, α = −c ∆t

h
. The system can be easily solved using a forward substitution

uk+1
1 =

uk
1 + ∆t fk+1

1 − α u(0, tk+1)
d

uk+1
2 =

uk
2 + ∆t fk+1

2 − α uk+1
1

d
· · · = · · ·

uk+1
i =

uk
i + ∆t fk+1

i − α uk+1
i−1

d
· · · = · · ·

uk+1
n =

uk
n + ∆t fk+1

n − α uk+1
n−1

d
.

