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Introduction September 8, 2009

An important question to ask (and re-ask) when one is learning a new subject
is, “What does this subject do for me?” A complete answer to this question is
usually hard to give, especially because the answer almost certainly depends on the
interests of the person asking it. Here are a couple of motivating answers for the
(commutative) algebraist who is thinking about learning some homological algebra.

Let R be a commutative ring (with identity).

Ext and Tor. Given an R-module N and an exact sequence of R-modules

0O—-M —-M-—-M'—-0 (&)
the operators Hompg(—, —) and — ® g — give rise to three exact sequences
0 — Homp (N, M') — Hompg(N, M) — Hompg(N, M") (%)
0 — Homg(M",N) — Hompg(M, N) — Homg(M', N) (1)
M' @ N —M@r N - M"@r N — 0. (#)

One may be tempted to feel cheated by the loss of zeroes. When IV is projective,
we get to add “— 07 onto the first sequence, and we get to add “0 —” onto the
last sequence. And when N is injective, we get to add “— 0” onto the second
sequence. But why are the last maps in the first two sequences not surjective in
general? And why is the first map in the last sequence not injective? The answers
to these questions are given in terms of Ext and Tor.

There are two sequences of operators

{Extg(—,—) |n=1,2,...} and {Torf (-, =) |n=1,2,...}

that satisfy the following properties.

(a) An R-moduleN is projective if and only if Ext;(N,—) = 0 for all n > 1.
(b) Given an R-module N and an exact sequence of R-modules there is a “long
exact sequence”
0 — Hompg (N, M) — Hompg(N, M) — Hompg(N, M")
— Exth(N, M) — Extp(N, M) — Extgp(N,M") — ---
- — Ext}(N, M) — Ext}(N, M) — ExtB(N,M") — -

(¢) An R-module N is injective if and only if Exti(—, N) =0 for all n > 1.

v
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(d) Given an R-module N and an exact sequence of R-modules (&) there is a “long
exact sequence”

0 — Hompg(M",N) — Hompg(M, N) — Hompg(M', N)
— Extp(M",N) — Exty(M,N) — Extp(M',N) — -
- — Ext}(M",N) — Ext}(M,N) — Ext}{(M',N) — ---

(e) An R-module N is flat if and only if Tor®(—, N) =0 for all n > 1.
(f) Given an R-module N and an exact sequence of R-modules there is a “long
exact sequence”

- — Tor®(M',N) — Tor®(M, N) — Torf(M",N) — ---
. — Torf(M',N) — Torf(M, N) — Torf(M", N)
—>M/®RN—>M®RN—>MH®RN—>0.

The sequence in (]ED shows exactly what is missing from ‘ Furthermore,
when N is projective, item @ explains exactly why we can add “— 0” onto the
sequence . Similar comments hold for the sequence ([j)); also for once one
knows that every projective R-module is flat.

The constructions of Ext and Tor are homological in nature. So, the first answer
to the question of what homological algebra gives you is: it shows you what has
been missing and gives a full explanation for some special-case behaviors.

Another thing homological algebra gives you is invariants for studying rings
and modules. Consider the following example. How do you distinguish between
the vector spaces R? and R3? Answer: by looking at the dimensions. The first
one has dimension 2 and the second one has dimension 3. Therfore, they are not
isomorphic.

In the study of modules over a commutative ring, even when there is a rea-
sonable vector space dimension, it may not be enough to distinguish between
non-isomorphic R-modules. Take for example the ring R[X,Y] and the modules
R[X,Y]/(X,Y?) and R[X,Y]/(X2,Y). Each has vector space dimension 2 (over
R) but they are not isomorphic as R-modules.

Homological algebra gives you new invariants (numbers, functors, categories,
etc.) to attach to an R-module that give you the power to detect (sometimes)
when two modules are non-isomorphic. Of course, in the last example, one doesn’t
need to work very hard to see why the modules are not isomorphic. But in other
situations, these homological invariants can be extremely powerful tools for the
study of rings and modules. And these tools are so useful that many of them have
become indispensable, almost unavoidable, items for the ring theorists’ toolbox.

Regular sequences. Assume that R is noetherian and local with maximal
ideal m. A sequence z1,...,2, € mis R-regular if (1) the element z is a non-zero-
divisor on R, and (2) for ¢ = 1,...,n — 1 the element x;11 is a non-zero-divisor
on the quotient R/(z1,...,x;). The fact that R is noetherian implies that every
R-regular sequence can be extended to a maximal one, that is, to one that cannot
be further extended. It is not obvious, though, whether two maximal R-regular
sequences have the same length. The fact that this works is a consequence of the
following Ext-characterization: For each integer n > 1, the following conditions are
equivalent:
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(i) We have Ext’(R/m, M) = 0 for all i < n;
(ii) Every R-regular sequence in m of length < n can be extended to an R-regular
sequence in m of length n; and
(iii) There exists an R-regular sequence of length n in m.

The depth of a R is the length of a maximal R-regular sequence in m. It is the
subject of Chapter [V]

This is a handy invariant for induction arguments because when = € m is an
R-regular element, the rings R and R/xR are homologically very similar, but we
have depth(R/zR) = depth(R) — 1. Hence, if one is proving a result by induction
on depth(R), one can often apply the induction hypothesis to R/xzR and then show
that the desired conclusion for R/xR implies the desired conclusion for R. One
example of such an argument is found in the proof of the Auslander-Buchsbaum
formula; see Chapter [[X]

Regular local rings. Assume that R is noetherian and local with unique
maximal ideal m = (z1,...,z,)R. The Krull dimension of R, denoted d = dim(R),
is the supremum of the lengths of chains of prime ideals of R. A theorem of
Wolfgang Krull implies that d < n, and R is regular if m can be generated by a
sequence of length d. Geometrically, this corresponds to a smoothness condition.

The following question was open for several years: If R is regular and P C R
is a prime ideal, is the localization Rp also regular? It was solved by Maurice
Auslander, David Buchsbaum and Jean-Pierre Serre using homological algebra,
specifically, using the notion of the projective dimension: an R-module M has finite
projective dimension if there is an exact sequence of R-module homomorphisms

0P —-P 41— =P =P —-M-=0

such that each P; is projective. They gave the following characterization of regular
local rings: The following conditions are equivalent:

(i) The local ring R is regular;
(ii) Every R-module has finite projective dimension over R;
(iii) The residue field R/m has finite projective dimension over R.

From this, they were able to deduce an affirmative answer to the localization ques-
tion. This is an amazing result, not only because it answered an important open
question, but also because the proof is relatively accessible. See Chapter [X]

Format of these notes

When you buy a car, you don’t necessarily want to rip the engine out and
understand how every component works. You want to see how the car drives. Are
the seats comfortable? Will this car suit your needs? Will it make your life better
in some way? Once you buy the car and drive it for a while, you might then want
to understand some of its inner-workings, to rip out the guts and really understand
how the car works.

My approach to Homological Algebra is similar. These notes alternate between
applications and the “guts”. We begin with a certain amount of “guts” in Chap-
ters because they are necessary. (Many readers will be able to skip parts of
Chapters [IHIIT} though, since much of the material therein should be covered in
a first year graduate algebra course.) As soon as it is reasonable, we focus on an
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application. Specifically, the subject of Chapter[V]is depth. This chapter uses prop-
erties that are not proved until later chapters, if at all. These properties are clearly
specified at the beginning of the chapter. The idea is to provide enough information
in Chapters [[HI[V] about the guts so that the proofs in Chapter [V] are accessible. In
turn, the applications in Chapter m are supposed to motivate students to pursue a
deeper understanding of the guts.

The remainder of the text alternates between guts and applications. Chap-
ter explains more of the guts (how maps are induced on Ext and Tor), and
Chapter contains (sort of) an application (the description of homological di-
mensions in terms of vanishing of Ext and Tor). Chapter explains more of
the guts (how we build long exact sequences including mapping cones and Koszul
complexes), and Chapter contains an application (the Auslander-Buchsbaum
formula which connects projective dimension (a homological invariant) in terms of
depth (an elemental invariant)). Chapter [X| contains an application (Auslander,
Buchsbaum and Serre’s homological characterization of regular local rings and the
solution of the localization problem for regular local rings).
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son, Thomas Dunn, Stephen Gagola, Jr., Carl Hashbarger, Diana Kennedy, Darci
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Notation and conventions

Throughout these notes, the term “ring” means “ring with identity”, and “mod-
ule” means “unital (or unitary) module”. The term “ring homomorphism” means
“homomorphism of rings with identity” in the sense that we assume that our ring
homomorphisms respect the multiplicative identities. A ring is “local” if it has a
unique maximal ideal. (Note that local rings are not assumed to be noetherian.)
When we say that (R, m) is a local ring, we mean that R is a local ring with unique
maximal ideal m. When we say that (R, m, k) is a local ring, we mean that R is a
local ring with unique maximal ideal m and that k = R/m.

The symbol & designates isomorphisms of modules. We let 1,,: M — M
denote the identity function on a set M.
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I.1. Finitely Generated Free Modules

Finitely generated modules are build from finitely generated free modules, so
we start with the basic properties of these.

Definition I.1.1. Let R be a commutative ring. Let M be an R-module, and fix a
subset () 2 X C M. We say that X generates M if, for each m € M, there exist an
integer n and elements rq,...,r, € R and z1,...,2, € X such that m =, rz;.
When X generates M, we write M = RX. In addition, the empty set generates the
zero module. If M is generated by a finite set, we say that M is finitely generated.

The set X is linearly independent if, for each integer n > 1, for each se-
quence r1,...,7, € R and for each sequence of distinct elements x1,...,x, € X,
if >, mx; = 0, then 7, = 0 for each i = 1,...,n. A basis for M is a linearly
independent generating set for M.

The next example contains some of our favorite modules.

Example 1.1.2. Let R be a commutative ring. The ring R is an R-module. More
generally, the set

1
R" = i, ER
'n
is an R-module. For ¢ =1,...,n we set

01,
€; = :
57;,7;

the ith standard basis vector. Here, d; ; is the Kronecker delta. The set {e1,...,en}
is a basis for R™.

These modules satisfy our first universal mapping property which defines them
up to isomorphism. The proof of part (]ED highlights the importance of the universal

mapping property.

Proposition 1.1.3. Let R be a commutative ring, and let n be a positive integer.
Let M be an R-module, and let mq,...,m, € M.

(a) There exists a unique R-module homomorphism f: R™ — M such that f(e;) =

m; for eachi=1,...,n.
(b) Assume that M satisfies the following: for every R-module P and for ev-
ery sequence pi,...,pn € P, there exists a unique R-module homomorphism

f: M — P such that f(m;) =p; for eachi=1,...,n. Then M = R".

1
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PROOF. For the existence, let f: R" — M be given by Y, rie; — >, rym;.
The fact that {eq,...,e,} is a basis for R™ shows that f is well-defined. It is
straightforward to show that f is an R-module homomorphism such that f(e;) = m;
foreachi=1,...,n.

For the uniqueness, assume that g: R" — M is an R-module homomorphism

such that g(e;) = m; for each i = 1,... n. Since g is R-linear, we have
g(>iriei) =3 rigles) =32, rimi = f(32; ries).
Since {e1,...,e,} generates R", this shows g = f.

(b)) By assumption, there exists an R-module homomorphism f: M — R"
such that f(m;) = e; for each i = 1,...,n. By part @, there exists an R-module
homomorphism ¢g: R™ — M such that g(e;) = m; for each i =1,...,n.

We claim that gf = 15, and fg = 1gn. (Once this is shown, we will have
M = R™ via f.) The map gf: M — M is an R-module homomorphism such that

g9f(mi) = g(f(mi)) = g(e;) = m; fori=1,...,n.
The identity map 1p;: M — M is an R-module homomorphism such that
1ar(m;) =my fori=1,...,n.

Hence, the uniqueness condition in our assumption implies gf = 15;. The equality
fg = 1gn is verified similarly using the uniqueness from part @ (]

Here is a useful restatement of Proposition [[.1.3|(a) in terms of commutative
diagrams.

Remark I1.1.4. Let R be a commutative ring. Let j: {e,...,e,} — R" denote
the inclusion (of sets). For every function (map of sets) fo: {e1,...,en} — M
there exists a unique R-module homomorphism f: R™ — M making the following
diagram commute:

J
{e1,...,e,} —— R"
I
| 3
x Y d
M.
Here is some notation from linear algebra.

Remark I.1.5. Let R be a commutative ring. Fix integers n,k > 1 and let
h: R* — R™ be an R-module homomorphism. We can represent h by an n x k
matrix with entries in R as follows. Write elements of R¥ and R™ as column vectors
with entries in R. Let ey, ..., e, € R* be the standard basis. For j = 1, ..., k write

ay,j
h(ej) = | ais
an,j

Then h is represented by the n x k matrix

ai,1 v oarj - alk

An,1 *** Qn,j " Gnk
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in the following sense: For each vector

< : ) € RF
r.k
we have
r1 ai,j a1 a1k 71
h<f):h(erjej):erjh(ej)zzg‘rj< >:< )()
Tk An j QAn 1 *** An k Tk

In particular, the image of h is generated by the columns of the matrix (a; ;).
Exercises.

Exercise 1.1.6. Let R be a commutative ring, and let M be an R-module.
(a) Prove that M is finitely generated if and only if there exists an integer n > 1

and a surjective R-module homomorphism R" — M.
(b) Prove that M = R" for some integer n > 0 if and only if M has a finite basis.

Exercise 1.1.7. (Universal mapping property for R-module quotients) Let R be
a commutative ring. Let M be an R-module, and fix an R-submodule N C M.
Prove that, if ¢: M — P is an R-module homomorphism such that N C Ker(y),
then there exists a unique R-module homomorphism @: M/N — P making the
following diagram commute

I
| e
U
P
that is, such that p(m) = p(m) for all m € M.

Exercise 1.1.8. Let R be a commutative ring. Fix integers m,n,p > 1, and fix R-
module homomorphisms f: R™ — R™ and g: R"™ — RP. Prove that the matrix [gf]
representing the composition gf is the product [¢g][f] of the matrices representing
g and f.

I.2. Products of Modules
Products of modules will allow for constructions of more modules.

Remark/Definition I.2.1. Let R be a commutative ring. Let {My}rea be a set
of R-modules. The product [],., M is the Cartesian product of the modules in
this set, that is, the set of all sequences (my) with my € M) for each A € A. The set
[I, My has a well-defined R-module structure given by acting “coordinate-wise”:

(my) + (m}) = (ma +m)) r(my) = (rmy)

For each p € A, the function 7,: [[, M\ — M, given by (my) — m, is a well-
defined surjective R-module homomorphism.

For each R-module N, set N* =[], ., Nx, with Ny = N for each A € A. (This
is also written [[, N.) Note that N* can be identified with the set of functions
f:A— N.

Before giving the universal mapping property for products, we discuss module-
structures on Hom-sets.
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Remark/Definition 1.2.2. Let R be a commutative ring. Let M and N be
R-modules, and set

Homp (M, N) = { R-module homomorphisms M — N}.

The set Homp (M, N) is an R-module under the following operations: for every
fyg9 € Homg (M, N) and r € R, we have

f+g:M—N (f +9)(m) = f(m) + f(n)
rf:M— N (rf)(m) = r(f(m)) = rf(m) = f(rm).

The product of R-modules comes with a universal mapping property which
determines it up to isomorphism.

Proposition 1.2.3. Let R be a commutative ring. Let {My}ren be a set of R-
modules, and let N be an R-module.

(a) Let {thx: N — Myr}rea be a set of R-module homomorphisms. There exists a

unique R-module homomorphism V: N — []\.\ Mx making each of the fol-
lowing diagrams commute

N ELN 1, My

DN

M,

that is, such that m,V =, for each € A.

(b) Assume that N and {1} satisfy the following: for every R-module P and every
set of R-module homomorphisms {¢x: P — My}ren, there exists a unique
R-module homomorphism ®: P — N making each of the following diagrams

commute

P-*>nN

N

M,

that is, such that ¢, ® = ¢, for each p € A. Then N =[] .o Mx.

(¢) There exists an isomorphism of R-modules
6: Homp(N, ][, Mx) — [, Homg(N, M)

given by U — (m\U).

PROOF. (a) Existence: The rule ¥(n) = (¢x(n)) describes a well-defined ho-
momorphism of R-modules ¥: N — [], M, such that 7, ¥ = ¢, for each pu € A.

Uniqueness: Assume that U': N — [, M, is a second R-module homomor-
phism such that 7,0’ = 9, for each 4 € A. Fix an element n € N, and write
U'(n) = (m),). For each 1 € A, we have

my, = 7u(my) = (¥ (n) = Yu(n)
and hence
U'(n) = (m}y) = (¥a(n)) = ¥(n).

Since n was chosen arbitrarily, this shows ¥/ = ¥,
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(]ED By assumption, there exists an R-module homomorphism ®: [[, M\ — N
such that ,® = =, for each 4 € A. By part @, there exists an R-module
homomorphism ¥: N — [, My such that m, ¥ = ¢, for each p € A.

We claim that ®¥ = 1y and W = 1, a7,. (Then we have N = [, My via
U.) The map ®¥: N — N is an R-module homomorphism such that

Y,V =7, ¥ =1, for all u € A.
The identity map 1y: N — N is an R-module homomorphism such that
Y ln =Y, for all u € A.

Hence, the uniqueness condition in our assumption implies ®W¥ = 1. The equality
U = ]ll_h M, is verified similarly, using the uniqueness from part (@

It is straightforward so show that the map 6 is a well-defined abelian group
homomorphism. The existence statement in part @ shows that 6 is surjective, and
the uniqueness statement in part @ shows that 6 is injective. ([l

1.3. Coproducts of Modules

Coproducts give yet another way to build new R-modules out of old ones.

Remark/Definition I.3.1. Let R be a commutative ring. Let { M)} ea be a set
of R-modules. The coproduct [],., My is the subset of [],., Mx consisting of all
sequences (1) such that m,, = 0 for all but finitely many p € A. The set [], ., Mx
has a well-defined R-module structure given by acting “coordinate-wise”:
(ma) + (m}) = (mx +m}) r(ma) = (rmy)

This module structure makes [[,., My into an R-submodule of [] ., My. We
sometimes denote [ aer M using the “direct sum” notation @ycpMy. For each
p € A, the function e,: M;, — [[ycp Ma given by m,, +— (my), where my = 0 for
all A # pu, is a well-defined injective R-module homomorphism.

Note that, if each M, # 0, then [] ., Mx = [[1ca M» if and only if A is finite.

For each R-module N, set N = [Txca Na, with Ny = N for each A € A.
(This is commonly written [],., N.) Note that N (A) can be identified with the set
of functions f: A — N such that f()\) = 0 for all but finitely many A € A. When
A is a finite set with cardinality r, we often write N™ = N(A) = NA,

The free R-module on A is R . For each p € A we set e, = (0 ,) the uth
standard basis vector. Here, 0y, is the Kronecker delta. The set {ex} is a basis
for R™. An R-module M is free if there exists a set A such that M = R, Let
e: A — R™W be given by e(u) = e, for each p € A.

Here is some useful notation for the future.

Remark 1.3.2. Let R be a commutative ring, and let My, ..., M,, be a R-modules.
Given a sequence
(mlamQa s 7mn) € H?:l Mn
we can write
(mq,ma,...,my) = (mq,0,...,0) 4+ (0,ma,...,0) +---+(0,0,...,my).

The analogue of this formula for infinite coporoducts goes like this. Let {My}rca
be a set of R-modules. For each 1 € Alete,: M, — [],c, My denote the canonical
inclusion. Then we have

(my) = EueA eulmy)
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for each sequence (my) € [ o, M. Notice that this sum is finite.
Exercises.

Exercise 1.3.3. (Universal mapping property for coproducts.) Let R be a com-
mutative ring. Let {M)}rea be a set of R-modules.

(a) Let {¢n: My — N}xea be a set of R-module homomorphisms. Prove that
there is a unique R-module homomorphism ¥: [],_, My — N making each of
the following diagrams commute

Mu — H)\GA M
|

| 3w
y

N

that is, such that Ve, = 1), for each p € A.
(b) Assume that N and {u,} satisfy the following: for each grP and each set of

R-module homomorphisms {¢y: My — P}y, there is a unique left R-module
hom ®: N — P making each of the next diagrams commute

Y

MHAN

|
I
;“\x v

P

that is, such that ®1, = ¢,, for each u € A. Prove that N =[], _, M.
(¢) Prove that there exists an isomorphism of R-modules

w: Hompg([[, Mx,N) — [, Hompg(Mx, N)
given by W — (Pey).
Exercise 1.3.4. (Universal mapping property for free modules.) Let R be a com-
mutative ring. Fix an R-module N and a subset {n)}xca € N.

(a) Prove that there is a unique R-module homomorphism ¥: RY) — N such that
U(ey) = ny, for each A € A.

(b) Assume that N and {n,} satisfy the following: for every R-module P and
every subset {px}rea C P, there exists a unique R-module homomorphism
®: N — P such that ®(ny) = py, for each A € A. Prove that N = R,

(c) Prove that there exists an isomorphism of R-modules

w: Homg(RW, N) — NA
given by ¥ — (U(ey)).

Exercise 1.3.5. Let R be a commutative ring, and let M be an R-module.

(a) Prove that M is generated by a subset S C M if and only if it is a homomorphic
image of R(%).

(b) Prove that M is free if and only if it possesses a basis.

(c¢) Prove that M = R™ for some integer n > 0 if and only if it is finitely generated
and free.

Exercise 1.3.6. Let R be a commutative ring, and let {My}rea be a set of R-
modules. Fix subsets Sy C M) and set S = Uxex(Sy) C [[, Mx C ], Max.
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(a) Prove that the R-module [ [, M) is generated by S if and only if M) is generated
by Sy for each A € A.
(b) Assume My # 0 for all A € A. Prove that the module [, M) is generated by
S if and only if the set A is finite and M), is generated by Sy for each A € A.
(¢) Assume M) # 0 for all A € A. Prove that the following conditions are equiva-
lent:
(i) The R-module J], M) is finitely generated;
(ii) The R-module [T, M) is finitely generated;
(iii) The set A is finite and M) is finitely generated for each A € A.

I.4. Localization

In this section, we recall the definition and basic properties of localizations.

Definition 1.4.1. Let R be a commutative ring. A subset U C R is multiplicatively
closed if 1 € U and, for all u,v € U we have uv € U.

Example 1.4.2. Let R be a commutative ring. If p C R is a prime ideal, then
the set R \ p is multiplicatively closed. If s € R, then the set {1,s,s?,s>, ...} is
multiplicatively closed.

Definition I1.4.3. Let R be a commutative ring, and let U be a multiplicatively
closed subset of R. Define a relation on R x U as follows: (r,u) ~ (s,v) provided
that there is an element w € U such that wrv = wsu.

Fact 1.4.4. Let R be a commutative ring, and let U be a multiplicatively closed
subset of R. The relation from Definition [[4.3]is an equivalence relation.

Definition 1.4.5. Let R be a commutative ring, and let U be a multiplicatively
closed subset of R. Let U™'R denote the set of equivalence classes under the
relation from Definition with the equivalence class of (r,u) in U~!R denoted
r/uor L. Define Oy-1p = Og/lg € UT'R and 1y-1z = 1g/1g € UT'R. For all
r/u,s/v € UT'R, define

£+§:rv+su and ff:E,

u v uv uv  uw
Define ¢: R — U~'R by the formula ¥ (r) = r/1x. The set U~ R is the localization
of R at the set U.

Fact 1.4.6. Let R be a commutative ring, and let U be a multiplicatively closed
subset of R. The localization U~ R has the structure of a commutative ring (with
identity) under the operations from Definition m Furthermore, the map ¢¥: R —
U~'R given by r — r/1 is a well-defined ring homomorphism.

Example 1.4.7. Let R be a commutative ring. If R is an integral domain, then
the localization K = (R~ {0})!R is (isomorphic to) the field of fractions of R, and
every non-zero localization U1 R is (isomorphic to) a subring of K that contains
R; in particular, every non-zero localization of an integral domain is an integral
domain. If p C R is a prime ideal, then the localization (R~ p)~!' R is denoted Ry.

Here is the universal mapping property for localization.
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Fact 1.4.8. Let ¢: R — S be a homomorphism of commutative rings, and let U be
a multiplicatively closed subset of R. If ©(U) consists of units of S, then there is a
unique ring homomorphism ¢’: U~'R — S making the following diagram commute

R—Y>=U-1R

|
| 3’
%)
\ !

S.

Here, 1 is the natural map, and ¢’ (r/u) = @(r)e(u) " .

Definition 1.4.9. Let R be a commutative ring, and let U be a multiplicatively
closed subset of R. Let M be an R-module. Define a relation on M x U as follows:
(m,u) ~ (n,v) provided that there is an element w € U such that wvm = wun.

Fact 1.4.10. Let R be a commutative ring, and let U be a multiplicatively closed
subset of R. Let M be an R-module. The relation from Definition [[4.9] is an
equivalence relation.

Definition 1.4.11. Let R be a commutative ring, and let U be a multiplicatively
closed subset of R. Let M be an R-module. Let U ' M denote the set of equivalence
classes under the relation from Definition with the equivalence class of (m,u)
in U~*M denoted m/u or 2. Define Oy-1p = 0pr/1z € U™ R. For all m/u,n/v €
U~1'M, define

m n no_um +un rm _rm

— = and = —.
u v uv u v v

Define ¢ps: M — U~'M by the formula vy (m) = m/1g. The set U~*M is the
localization of M at the set U.

Fact 1.4.12. Let R be a commutative ring, and let U be a multiplicatively closed
subset of R. Let M be an R-module. Th set U~!M has the structure of an U1 R-
module under the operations from Definition In particular, UM is an
R-module by restriction of scalars along ¢, that is, by the scalar multiplication
r(m/u) = (rm)/u. Under this module structure, the map vy : M — U~'M given
by m +— m/1g is a well-defined R-module homomorphism.

Let f: M — M’ be an R-module homomorphism. It follows that the function
Ulf: UM — UM’ given by (U~1f)(m/u) = f(m)/uis a well-defined U ! R-

module homomorphism. Furthermore, there is a commutative diagram

M d M’

LPM\L \L‘PM’
Uty

UM ———U"'M
where the vertical maps are from the previous paragraph.

It is straightforward to show that localization is exact: Given an exact sequence
of R-module homomorphisms

) fite Ni+1 fit1 le_z>
the localized sequence

U~'fi _ U~'fi _ U='f
L LNy s 1Ni+1—”1>U 1Ni_ic;
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is exact. In particular, if N C M is a submodule, then the localization U~'N is
naturally identified with a submodule of U~'M; under this identification, there is
a U~! R-module isomorphism (U~*M)/(U~*N) =2 U~!(M, N).

Example 1.4.13. Let R be a commutative ring, and let M be an R-module. If
p C R is a prime ideal, then the localization (R \ p)~'M is denoted M.

Here is the prime correspondence for localization.

Fact 1.4.14. Let R be a commutative ring, and let U be a multiplicatively closed
subset of R. Let 10: R — U~ 'R denote the natural map. The following maps

{prime ideals P C U 'R} <—— {prime ideals q C R | qNU = 0}
Pl P(U'R)=U-'P
¥~ (a) L
are inverse bijections. For each prime ideal ¢ C R such that ¢ N U = ), we have

UR/Utq=UY(R/q).
In particular, when U = R \ p for some prime ideal p C R, the maps

{prime ideals P C Ry} <— {prime ideals ¢ C R |pNq C p}

P PR, = P,

v (a) 14
are inverse bijections. In particular, the ring R, is local with maximal ideal pR, =
pp. For each prime ideal g C R such that q C p, we have R, /q, = (R/q)p.

Exercises.
Exercise 1.4.15. Verify the statements from Example
Exercise 1.4.16. Verify the statements from Fact
Exercise 1.4.17. Verify the statements from Fact
Exercise 1.4.18. Verify the statements from Example
Exercise 1.4.19. Verify the statements from Fact
Exercise 1.4.20. Verify the statements from Fact [[4.10]
Exercise 1.4.21. Verify the statements from Fact [4.12
Exercise 1.4.22. Verify the statements from Example [.4.13]
Exercise 1.4.23. Verify the statements from Fact [[4.14]

Exercise 1.4.24. Let R be a commutative ring, and let {My}rca be a set of
R-modules. Prove that for each multiplicatively closed subset U C R, there is a
U~'R-module isomorphism U~ ([T cx M) = [Tycp U™ M.

Exercise 1.4.25. Let R be a commutative ring, and let M be an R-module. Prove
that the following conditions are equivalent:

(i) M =0;

(ii) U~'M = 0 for every multiplicatively closed subset U C R;
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(iif) M, = 0 for every prime ideal p C R; and
(iv) My = 0 for every maximal ideal m C R.

This says that being zero is a local property.

Exercise 1.4.26. Let R be a commutative ring, and let f: M — N be an R-module
homomorphism. Prove that the following conditions are equivalent:
(i) the map f is injective;
(i) the localization U~!f: U=*M — U~1N is injective for every multiplicatively
closed subset U C R;
(iii) the localization f,: M, — N, is injective for every prime ideal p C R; and
(iv) the localization fy: My — Ny, is injective for every maximal ideal m C R.

Exercise 1.4.27. Let R be a commutative ring, and let f: M — N be an R-module
homomorphism. Prove that the following conditions are equivalent:

(i) the map f is surjective;
(ii) the localization U=1f: U=1M — U~!N is surjective for every multiplicatively
closed subset U C R;
(iii) the localization f,: M, — N, is surjective for every prime ideal p C R; and
(iv) the localization fy: My — Ny is surjective for every maximal ideal m C R.

Exercise 1.4.28. Let R be a commutative ring, and let f: M — N be an R-module
homomorphism. Prove that the following conditions are equivalent:

(i) the map f is bijective;
(i) the localization U=!f: U=*M — U~1N is bijective for every multiplicatively
closed subset U C R;
(iii) the localization f,: M, — N, is bijective for every prime ideal p C R; and
(iv) the localization fy: My — Ny, is bijective for every maximal ideal m C R.

1.5. Hom: Functoriality and Localization

This section deals with the basic properties of Hom. The modules Homg(M, N)
are defined in [[2:2] We start this section with induced maps.

Definition I.5.1. Let R be a commutative ring, and consider R-module homo-
morphisms f: M — M’ and g: N — N’. Let

Hompg(M, g): Hompr(M,N) — Homp(M,N') given by ¢ — go
Hompg(f, N): Homg(M’', N) — Hompg(M, N) given by ¥ — 9 f.

Example 1.5.2. Let R be a commutative ring, and let M, N and N’ be R-modules.
Let 0%, : N — N’ be the zero map. Each of the following maps is the zero-map:

Homp(M,0X8,): Homg(M, N) — Hompg (M, N')
Hompz (08, M): Homp(N’, M) — Hompg(N, M).

Remark I.5.3. Let R be a commutative ring, and let N be an R-module. There
is an R-module isomorphism

¢: Homp(R,N) = N  given by ¢ +— ¢(1).
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The inverse of v is given by 9 ~(n) = ¢,,: R — N where ¢,,(r) = rn. If f: N — N’
is an R-module homomorphism, then there is a commutative diagram

Hompg (R,
Homg (R, N) — 1) Homp(R, N')
¢lu w/lu
N d N,

Example 1.5.4. Let R be a commutative ring, and let M and N be R-modules.
Let r € R, and let uYY: N — N be given by n + rn. Each of the following maps is
given by multiplication by r:

Homp (M, 1) : Hompg(M,N) — Homp(M, N)
Homp(uY, M): Homg(N, M) — Homp(N, M).
Indeed, for each ¢ € Hompg(M, N) and each m € M, we have
(Homp(M, 1) (6))(m) = (1Y 6)(m) = 1 (8(m)) = r(6(m)) = (r6) (m)
hence Homp (M, ul¥)(¢) = r¢. Similarly, for all ¢y € Hompg(N, M), we have
Homp (Y, M)() = rih.
Here is the “functoriality” of Hom.

Fact 1.5.5. Let R be a commutative ring. Let M be an R-module, and consider
R-module homomorphisms g: N — N’ and ¢’: N’ — N”. Then the following
diagrams commute

Hom p(M, N) 22D 1o (M, N7

p Hompg(M,g")
Homp(M,g'g)

Homp(M, N")

Hom (N, M) A g om (N7, M)

Hompg(g,M)
HOW\ l

Homp (N, M)
that is, we have
Homp(M, g'g) = Homp(M, g') Homg (M, g)
Hompg(g'g, M) = Hompg(g', M) Homg(g, M).
See Exercise [5.13

Here is the “left-exactness” of Hom.

Fact 1.5.6. Let R be a commutative ring. Let M be an R-module, and consider
an exact sequence of R-module homomorphisms:

0N LN LN
Then the induced sequence

Homp(M,g") Hompg (M,g)

0 — Hompg(M, N")

Hompg(M, N) Hompg(M, N")
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is also exact.
Let N be an R-module, and consider an exact sequence of R-module homo-
morphisms:

VRS VR V()
Then the induced sequence

0 — Homg(M", N) 222N o p (v, Ny HomeloN),

is also exact. See Exercise [[5.14]

Hompg(M, N')

The next fact explains some of the interplay between module structures over
different rings.

Fact 1.5.7. Let ¢: R — S be a homomorphism of commutative rings. Fix an R-
module homomorphism f: M — M’ and an S-module homomorphism g: N — N'.
(a) The R-module Hompg (N, M) is also an S-module via the following scalar mul-
tiplication: for all s € S and all ¢ € Hompg(N, M), define s¢ € Hompg (N, M)
by the formula (s¢)(n) = ¢(sn) for all n € N. The induced maps
Hompg (N, f): Homg(N, M) — Hompg(N, M")
Hompg (g, M): Homp(N', M) — Hompg(N, M)
are S-module homomorphisms.
(b) In particular, the R-module Hompg(S, M) is also an S-module via the following

action: for all s € S and all ¢ € Hompg(S, M), define s¢ € Hompg(S, M) by the
formula (s¢)(t) = ¢(st) for all ¢t € S. The induced map

Hompg(S, f): Hompg(S, M) — Hompg(S, M")
is an S-module homomorphism.

(¢) The R-module Homp(M, N) is also an S-module via the following scalar mul-
tiplication: for all s € S and all ¢ € Homg(M, N), define s¢ € Hompg(M, N)
by the formula (s¢)(m) = s¢(m) for all m € M. The induced maps

Hompg(M,g): Hompg(M,N) — Hompg(M,N")
Hompg(f, N): Homgr(M’', N) — Hompg(M, N)
are S-module homomorphisms.
The next result shows that Hom localizes, sometimes.

Proposition 1.5.8. Let R be a commutative ring. Let M and N be R-modules,

and let U C R be a multiplicatively closed subset.

(a) For each element ¢p/u € U~ Homp(M, N), the map ¢,: U *M — U~LN given
by ¢u(m/v) = ¢(m)/(uv) is a well-defined U~ R-module homomorphism.
(b) The rule of assignment

@U,M,N: U1 HomR(M, N) — HomelR(U_1M7 U_lN)

given by ¢/u v ¢y is a well-defined U=t R-module homomorphism.
(c) Assume that M is finitely presented, that is, that there is an exact sequence of
R-module homomorphisms

R L R % Mo (15.8.1)
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Then Oy, m,N 1S an isomorphism, so we have
U~ Hompg(M, N) = Homy -1 g(U"*M,ULN).
(d) If R is noetherian and M is finitely generated, then the map Oy y,n is an
isomorphism, so we have U~ Hompg(M, N) = Homy -1 (UM, U~IN).

PROOF. @ We first show that, given elements ¢ € Homg (M, N) and u € U,
the ¢, map ¢,: U *M — U~IN given by ¢,(m/v) = ¢(m)/(uv) is a well-defined

function. Let m//v’ = m/v in U~'M. By definition, there is an element v/ € U

such that vv”’m’ = v'v""m in M. Since ¢ is an R-module homomorphism, we have

v (m/) _ ¢(le/m/) _ qS(v’v”m) — " (m)
in N. It follows that, in U~'N, we have
p(m') _w"g(m’) _v"v"(m) _ ¢(m)

uv’

v un’ v'v"uv uv
as desired.

We next show that ¢, is independent of the choice of ¢ and u. Assume that
¢ /u' = ¢/u in U~ Homp (M, N). By definition, there is an element v € U such
that uu’¢" = v'u" ¢ in Homp(M, N), that is, for all m € M, we have uu’¢'(m) =
uw'u”¢(m). Thus, for all m/v € UM we have the following equalities in U1 N:

& (ﬁ) _¢m) _ w'¢'(m) _ wu¢(m)  ¢(m) _ o (m)

/ _
“\w

v

u'v wu u'v w'u" uv uUY
It follows that ¢, = ¢y, as desired.

The fact that ¢,, is an U ' R-module homomorphism is now straightforward to
verify. For instance, we have

s (m m’) — s (v’m+vm’> _p(Wm+ovm’)  v'o(m) 4+ vo(m’)

uvv’ uvv’

Vo(m) | won) _glm) | olm') _ (m>+¢,u(m’),

/ !/ = +
uvY UVY uv uw

v v’ v’

,U/

The equality ¢, (5%) = —u (%) is verified similarly. See Exercise

(]E[) The fact that Oy as,n is a well-defined function is established in part @
It remains to show that Oy a n is an U~!R-module homomorphism. We prove
that Oy ps v respects sums. The fact that ©y s v respects scalar multiplication is
verified similarly; see Exercise

Let ¢/u,¢'/u’ € U= Hompg(M, N). We need to show that the maps

/ /
Ou,m,N (¢ + ¢,> and Ou.m,N <¢> +OumN (qﬁ/)
u U u u

are the same maps U"'!M — U~!N. Using the equality % + % = %, this
means that we need to show that
(u/¢ + U¢/)uu’ and Gu + ¢LJ

are the same maps U"'!M — U~'N. Evaluating the first map at an arbitrary
element m/v € U~*M, we have

(' ¢+ ud )y (%) - Wetud)im) _ whlm) +ugm) :

uu'v uu'v
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Evaluating the second map at the same element, we have

(6 +6L) <%> e (%) L, g) _ ¢m) | ¢(m) _ wvp(m) +uwwe/(m)

_o(u'(m) + ug!(m) _ w'(m) + ug!(m)

uu/'vv uu'v

= (W' ¢+ ud')uu (%)

Since this is true for every element m /v € U~! M, we conclude that (v ¢+u¢' )y =
¢y + @, as desired.

We prove this in four steps.

Step 1: If M’ is another R-module, then Oy ponr, N is an isomorphism if and
only if Oy s, v and Oy, v are both isomorphisms. Indeed, there is a commutative
diagram of U ! R-module homomorphisms
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=
|
b'\
= 1 L
s 2%
= H‘b g
g A g A =
S = 9
L =
~ |
TE R
g 5=
/5 g |
= = S
=
5
g
o
jas
2 ;:
2 5
g ®
: @
O :
S
®
—~ =
= =
- =
- = =
= =
= E g
Y B g
P sy |
= a9 -
S —— 9
F 3 g
3 = .
CHE
\ =
b o
=) z
" an
) 7
-

Here, the unlabeled vertical isomorphisms are (induced by) the natural ones from
Exercises and It follows that ©y aprgar, N is an isomorphism if and
only if Oy a,n @ Ou, v/ N is an isomorphism, that is, if and only if Oy N and
Oy, mv, N are both isomorphisms.
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Step 2: If My, ..., M, are R-modules, then Oy [[» s, n is an isomorphism if
and only if Oy s, v is an isomorphism for ¢ = 1,...,n. Argue by induction on n,
using Step 1 as the base case.

Step 3. We show that Oy r» n is an isomorphism for n = 1,2,.... By Step 2,
we need only show that ©y g n is an isomorphism. Consider the Hom cancellation
isomorphisms

f: Homg(R,N) = N F: Homy— g(U'R,UT'N) S U'N

given by v + (1) in each case. There is a commutative diagram of U ! R-module
homomorphisms

€]
U~ Homp(R, N) —=5 Homy -1 g (U~ R, U~IN)

inli/
U-IN.

It follows that ©y g n is an isomorphism.

Step 4. We verify the general case. (For the sake of our margins, we use
the notation (—)y in place of U~!(—) in this case.) The operator Hompg(—, N) is
left-exact, so the following sequence is exact:

Hompg(g,N)=g" Hompg(f,N)=f"
_— _

0 — Hompg (M, N) Homp(R", N) Homp(R™, N).

Thus, the localized sequence is also exact:

0 — Homp(M, Ny % Homp (R, N)y Y% Homp(R™, N)y.

On the other hand, localizing the sequence ([.5.8.1)) yields the next exact sequence
of Ry-module homomorphisms

Ry 1% Ry 29 My — 0.
Apply the left-exact operator Hompg,, (—, Niy) = (—) to produce the following exact

sequence

(gu)T n (fu)T m
0 — Hompg, (My, Ny) —— Hompg,, (R};, Ny) —— Hompg,, (R{}, Nv).

This explains why the rows in the next diagram are exact:

(9")v (f v

OHHomR(M,N)U HOI’HR(R”,N)UHHOHIR(Rm,N)U

®U,1W,Nl"—v @U,R",Nig (“)U,Rm,z\flm

i i
0 — Homp, (My, No) 2> Homp, (Ry;, Nu) L% Homp,, (R, Nyy).
Check that this diagram commutes; see Exercise[[.5.16] Case 1 shows that Oy, gn
and Oy gm y are isomorphisms. Chase the diagram to show that this implies that
Oy, v, N is an isomorphism; see Exercise

@ Assume that R is noetherian and that M is finitely generated. Since M
is finitely generated, there is an integer n > 0 and an R-module epimorphism
g: R™ — M. The kernel Ker(g) is a submodule of the noetherian module R", so it
is finitely generated. Thus, there is an integer m > 0 and an R-module epimorphism
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fi: R™ — Ker(g). Let e: Ker(g) — R™ be the inclusion map, and check that the
following sequence is exact:

L RS V)
The desired conclusion now follows from part . O

The next result augments Proposition [.2:3]

Proposition 1.5.9. Let R be a commutative ring, and let {Mx}rea be a set of
R-modules. Let N be a finitely generated R-module. Let e: [],cp Mx — [[ycp Ma
denote the canonical inclusion. For each p € A, let w,: []\cp My — M, be the
canonical surjection.

(a) Let {tpx: N — Mx}ren be a set of R-module homomorphisms such that ¥y =0
for all but finitely many X\ € A. There exists a unique R-module homomorphism
U: N — [[yea Mx making each of the following diagrams commute

N LN 11, My

that is, such that m,V =, for each i € A.

(b) For each ¥ € Hompg(N,[], My), there is a subset A" C A such that A~ A" is
finite and, for alln € N and all A € A" one has m\(e(¥(n))) = 0.

(¢) There exists an isomorphism of R-modules

6: Homp(N, ][, Mx) — [], Homg(N, M)
given by U — (mreW).

PrOOF. @ For each n € N, the sequence (1x(n)) has only finitely many non-
zero terms since all but finitely many of the ) are non-zero. Hence, the sequence
(¥a(n)) is in [, M. Define ¥: N — ], ., My by the formula ¥(n) = (¢¥a(n)).
It is straightforward to verify that ¥ is an R-module homomorphism making the
desired diagram commute; hence, the existence.

For the uniqueness, one can argue as in the proof of Proposition . Alter-
nately, let : N — [],., M} be another R-module homomorphism making each
of the following diagrams commute

N2> LI\ M
/l/}M \Lﬂ'uﬁ
M,.

For each i € A, this yields two commutative diagrams
N =TI, My N~ 1, M

m T
wu wu
M, M,,.
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The uniqueness statement in Proposition implies that e¥ = ¢¥’, and the
fact that € is injective implies that ¥ = 0.

(]E[) Let U € Hompg(N, [[, M) be given. Let ny,...,n; € N be a generating
sequence for N. For i = 1,...,t there are only finitely many A € A such that the
A-coordinate of ¥(n;) is non-zero. That is, there are only finitely many A € A such
that 7y (e(¥(n;))) # 0. It follows that there is a subset A’ C A such that A~ A’ is
finite and, for ¢ = 1,...,¢ and all A € A’ one has m)(e(¥(n;))) = 0. Because each
element n € N is of the form 22:1 r;n;, it follows that, for allm € N and all A € A/
one has 7y (e(¥(n;))) = 0.

Part shows that, for each ¥ € Homg(N, ][, M), there are only finitely
many A € A such that mye¥ is non-zero. It follows that the map 6 is well-defined.
It is straightforward to show that 0 si an R-module homomorphism. The existence
statement in part @ shows that 6 is surjective, and the uniqueness statement in
part (a)) shows that 6 is injective. O

We close this section with a discussion of various module structures.

Remark I.5.10. Let R be a commutative ring, and let M be an R-module. Let
I C R be an ideal such that IM = 0. Then M has a well-defined R/I-module
structure defined by the formula 7m = rm. Furthermore, M is finitely generated
over R if and only if it is finitely generated over R/I.

Let N be a second R-module such that IN = 0. Then a function f: M — N
is an R/I-module homomorphism if and only if it is an R-module homomorphism.
In other words, there is an equality Homp,;(M, N) = Homg(M, N).

Remark 1.5.11. Let R be a commutative ring, and let M and N be R-modules.
Let I,J C R beideals such that IM = 0 and JN = 0. Then (I+J) Homg(M,N) =
0. To show this, it suffices to show that I Hompg(M, N) =0 and J Homgr (M, N) =
0. Let a € I and b € J and f € Homp(M, N). For each m € M, we have

(af)(m) = f(am) = f(0) =0
(bf)(m) = b(f(m)) =0

and it follows that af = 0 = bf. This gives the desired result.

Because of this, Remark implies that Homg (M, N) has the structure of
an R/(I+J)-module, the structure of an R/I-module, and the structure of an R/J-
module via the formula 7f = rf. Furthermore, Hompg (M, N) is finitely generated
over R if and only if it is finitely generated over R/I, and similarly over R/J and
R/(I+J).

Exercises.
Exercise 1.5.12. Complete the verification of the claims of Example [.5.4]
Exercise 1.5.13. Verify the claims of Fact
Exercise 1.5.14. Verify the claims of Fact
Exercise 1.5.15. Verify the claims of Fact

Exercise 1.5.16. Let R be a commutative ring, and let U C R be a multiplicatively
closed subset. Let g: M — M’ and h: N — N’ be R-module homomorphisms.
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(a) Prove that the following diagram commutes:

eU,M’,N

U~!'Hompr(M',N) — Homy -1z (U 1M, ULN)

vt HomR(g,N)l lHomUlR(Ulg,UlN)

Ou, MmN

U~'Homp(M,N) ——> Homy 1 z(U"'M,U~IN).

(b) Prove that the following diagram commutes:

S)
U~ Homp (M, N) —=% Homy—1 (U~ M,U~1N)
UlHomR(M,h)i lHomUlR(UlM,Ulh)
@U,I\/I,N’

U~!'Homp(M,N') —> Homy 1 g(U"'M,U"tN’).
(c) Complete the proof of Proposition [[.5.8

Exercise 1.5.17. Let R be a commutative ring. Let M be an R-module, and
let g: N — N’ be an R-module isomorphism. Prove that the following maps are
isomorphisms:

Hompg(g, M): Homp(N', M) — Hompg(N, M)
Hompg(M,g): Homg(M, N) — Homp(M, N').
Exercise 1.5.18. Let R be a commutative ring. Let F: M — M’ and g: N — N’
be R-module homomorphisms. Verify the following equalities
Hompg(g, M") Homg(N', F) = Homg(N, F) Homg(g, M)
Hompg(F, N')Homg(M', g) = Homg(M, g) Hompg(F, N)
and rewrite each one in terms of a commutative diagram.

Exercise 1.5.19. Complete the proof of Proposition [.5.9]

Exercise 1.5.20. Let R be a commutative ring, and let M and N be R-modules.
Prove that, if M is finitely presented and N is finitely generated, then Homp (M, N)
is finitely generated.

Exercise 1.5.21. Verify the statements in Remark
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Tensor Products September 8, 2009

I1.1. Existence and Uniqueness

This section is devoted to the basic properties of tensor products.

Remark I1.1.1. Let R be a commutative ring. The function u: R x R — R given
by wu(r,s) = rs is not as well-behaved as one might like. For instance, it is not an
R-module homomorphism:

p((1,0) +(0,1)) = (1,1) = 1 # 0 = p(1,0) + (0, 1)
In a sense, the tensor product fixes this problem.

Definition I1.1.2. Let R be a commutative ring. Let M, N, and G be R-modules.
A function f: M x N — G is R-bilinear if

f(m+m/7n):f(mvn)+f /’n)
fm,n+n') = f(m,n) + f(m,n')
f(rm,n) = rf(m7n) = f(m,rn)

for all m,m’ € M all n,n’ € N and all r € R.

(m
(m

Example I1.1.3. Let R be a commutative ring. The function p: R X R — R given
by u(r,s) = rs is the prototype of an R-bilinear function.

Definition I1.1.4. Let R be a commutative ring, and let M and N be R-modules.
A tensor product of M and N over R is an R-module M ®@ g N equipped with an R-
bilinear function h: M x N — M ®pr N satisfying the following universal mapping
property: For every R-module G and every R-bilinear function f: M x N — G,
there exists a unique R-module homomorphism F: M ®r N — G making the
following diagram commute

MxN—l>MeogN

I
| 3F
f v

G

that is, such that FFh = f. A simple tensor in M ®p N is an element of the form
m®n = h(m,n).

Here is the existence of the tensor product.

Theorem I1.1.5. Let R be a commutative ring. If M and N are R-modules, then
M ®gr N exists.

21
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ProOF. Consider RM*N) the free R-module with basis M x N. For m € M
and n € N, let (m,n) € RMXN) denote the corresponding basis vector. Set

li /
(m+m',n)— (m,n) — (m',n) mom' € M

— (manrn/) - (mvn) - (mvn/) n.n' (MxN)
H= < (rm,n) —r(m,n) ’r GGRN > CR '
(m,rn) —r(m,n)

Set M ®r N = RM*N) /[ and, for m € M and n € N write
m®n=|[m,n)]=(mmn)+HecRMN/H=MaegN.
Define h: M x N — M ®gr N to be the composition
M x N S RMXN) I, pIMXN) Jif — M @p N

that is, by the rule h(m,n) =m Q n.
It is straightforward to show that h is well-defined and R-bilinear. For example:

him+m/,n)=(m+m')@n
= [(m+m/,n)]
= [(m,n)] + [(m, n)]
=m@n+m @n
= h(m,n) + h(m',n).

In terms of tensors, the R-bilinearity of h reads as
(m+m)@n=m@n+m'®@n
m@n+n)=men+men

(rm)@n=r(m®n) =m®e (rn)

Note also that elements of M ®pr N are of the form

2 rilma,ng)] = 32, ril(ma, ng)] = 32 [(rima, ma)] = 32, ((rima) @ni) = 32, (m;@ny)

with 7, € R and m; € M and n; € N; here m} = rimiH

To see that M ® g N satisfies the desired universal mapping property, let G be an

R-module and let f: M x N — G be an R-bilinear function. Use Exercise

to see that there is a unique abelian group homomorphism Fy: RM*N) . @ such

that Fy(m,n) = f(m,n) for all m € M and all n € N, that is, such that the
following diagram commutes

Mx N —-= R(MxN)
I
| Ay
S
G.
From the proof of Exercise |[.3.4)|a), we have
Fr (3 ri(ma,ni)) = 32, mif (mi; ng).
Use this formula to check that each generator of H is in Ker(F}); this will use
the R-bilinearity of f. It follows that H C Ker(F}), so Exercise implies that

13We'll see later that, usually, there are elements of M ® g IV that cannot be written as simple
tensors, that is, are not of the form m ® n.
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there exists a unique R-module homomorphism F: RM*N) /[ — @ making the
right-hand triangle in the next diagram commute

M x N ——= R(MxN) — "5 RIMXN) /[l ——= M @p N
| -
\ =l /5';
f y -7
G.

Thus, we see that the desired homomorphism F' exists. To see that it is unique,
suppose that F': M ® g N — G is a second R-module homomorphism such that
F'h = f. Each element of M ®g N is of the form £ = ), m; ®@n, for some elements
m; € M and n; € N. It follows that

FI(§) = F'(32, mi @) = 30, F'(mi @ my) = 3, F'(h(mi,my))
=2 F(h(mi,ng)) =32, F(mi @ n;) = F(3_, m; @n;) = F(§)
as desired. [l

Example I1.1.6. Let R be a commutative ring, and let M and N be R-modules.
The computations in the proof of Theorem show that

Qo rimi) @n =3, (rim;) ®n =, m; ® (rin)
for all m; € M, all r; € R and all n € N. Other formulas hold similarly. In
particular, for r; € Z, we have

2iri(ms ®@ng) =32 ((rimg) @ ng) = 32, m; @y
where m/ = r;m;. In particular, M ®p N is generated as an R-module by the set
of simple tensors {m®@n |m € M,n € N}.
The additive identity in M ®r N is Oprgn = Opasr ® On. This can be written
several (seemingly) different ways. For instance, for each n € N, we have

O ®n = (OMOR) Rn=0y& (ORTL) =0 ®O0n.
Similarly, for all m € M, we have m ® Oy = 037 ® O .

Remark II1.1.7. Let R be a commutative ring, and let M and N be R-modules.
It should be reiterated that there are more elements in M ®pr N than the simple
tensors m ® n. General elements of M ®g N are of the form ) . m; ® n;, as was
shown in Example However, certain properties of M @z N are determined
by their restrictions to the simple tensors, as we see next.

Lemma II.1.8. Let R be a commutative ring. Let M, N and G be R-modules,
and let v,0: M ®g N — G be R-module homomorphisms.

(a) M@r N =0 if and only if m@mn =0 for allm € M and alln € N.

(b) v =146 if and only if y(m @ n) =d(m @n) for allm € M and alln € N.

(c) If G =M ®pg N, then v = Lygpn if and only if y(m @ n) = m @ n for all
mée M and alln € N.

(d) v=0if and only if y(m®@n) =0 for allm € M and alln € N.

PROOF. Part (@ follows from the fact that every element of M ®pg N is of the
form ). m; ® n;.

Part (]ED can be proved similarly, or by using the uniqueness statement in the
universal property.
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Part can be proved similarly, or by using the uniqueness statement in the
universal property, or as the special case § = 1);g,n of part (]ED

Part @ can be proved similarly, or by using the uniqueness statement in the
universal property, or as the special case § = 0 of part (]E[) [

When proving properties about tensor products, we very rarely use the con-
struction. Usually, we use the universal property, as in the following example. The
following properties are sometimes referred to as tensor cancellation.

Example I1.1.9. Let R be a commutative ring, and let M and N be R-modules.
There are R-module isomorphisms

F:M®zR=M and G:R@zN =N

such that F(m®7) = mr and G(r®@n) = rn. (The inverses are given by FF~1(m) =
m®1and G~!(n) = 1®n.) In particular, we have M @ g R = M and R®op N = N
and RQr R= R.

We will verify the claim for M ®g R. The map f: M x R — M given by
f(m,r) = mr is R-bilinear. Hence, the universal property yields a unique R-
module homomorphism F': M @ g R — M such that F(m®r) = rm for all m € M
and r € R. We will show that F' is bijective. The main point is the following
computation in M ®r R

doi(my@ry) =37 (m @ (ril)) =32, ((rimy) @ 1) = (32, rimi) @ 1

which shows that every element of M ®g R is of the form m ® 1.

The map F is surjective because m = F(m ® 1).

The map F' is injective because 0 = F(m®1) implies 0 = F(m®1) =m-1=m
implies 0 =0® 1=m® 1.

The map F': M — M ®pg R given by F'(m) = m ® 1 is well-defined because
it is the composition hf where f: M — M x R is given by m — (m,1) and
h: M x R — M ®pr R is the universal bilinear map. It is straightforward to show
that F’ is an R-module homomorphism. Also, for m € M we have

F(F'(m))=F(m®1)=m and F(Fim®1)=F(m)=m®1.
It follows that F' = F~1L.

Remark I1.1.10. Let R be a commutative ring. It should be noted that other
tensor products of R with itself, like R ®7 R are not usually so simple.

Proposition II.1.11. Let R be a commutative ring, and let M and N be R-
modules. Fiz subsets A C M and B C N, and set C = {a®b € M ®r N |
a€ A andbe B}.

(a) If RA= M and RB = N, then RC =M ®pr N.
(b) If M and N are finitely generated, then so is M ®pr N.

PRrOOF. @ Fix m € M and n € N. Since RB = N, we can write n = Zj r;b;
for some r; € R and b; € B. For each j, use the condition RA = M to write
rjm = Y. s;ja;; for some s;; € R and a;; € A. (Since all the sums are finite, we
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can take the same index set for i for each j.) This yields
men=mg (erjbj)
=>_;((rym) ®b;)
=2, ((32; si0i5) ® bj)
=225 22 sij(ai; ®b;)
Since each a;; ® b; € C, we have each simple tensor in RC, so M @ g N C RC. The
reverse containment is clear.

Part (]ED follows from part @: if A and B are finite generating sets for M and
N, then C' is a finite generating set for M @ N. O

Exercises.

Exercise I1.1.12. (Uniqueness of the tensor product.) Let R be a commutative
ring. If M and N are R-modules, then M ®g N is unique up to R-module isomor-
phism.

Exercise I1.1.13. Let R be a commutative ring. Let A be a set, and let M and
N be R-modules.

(a) Prove that there are unique R-module homomorphisms F: M ®@p RW) — MM
and G: MY — M @r R™ such that F(m ® (ry)) = (mry) and G(my) =
Y-y ma®ey. Prove that F' and G are inverse isomorphisms, and hence we have
M ®p RW = M4,

(b) Formulate and prove the analogous result for R™ @z N and NV,

I1.2. Functoriality and Base-Change

Here is the functoriality of tensor product.

Proposition I1.2.1. Let R be a commutative ring, and consider R-module homo-

morphisms a: M — M’ and o/ : M’ — M" and f: N — N’ and 3': N' — N".

(a) There exists a unique R-module homomorphism a@r: M @r N — M'®@r N’
such that (a @ B)(m @ n) = a(m) @ B(n) for allm € M and alln € N.

(b) The following diagram commutes

Mer N 228 M @p N
a/® ’
(a'am\ i "
M// ®R N//
that is, we have (¢! @r 3')(a®r B) = (¢’a) @r (3'5).

PROOF. (a)) Use the universal mapping property to show that o ®p [ exists.
Use Lemma [[L.1.8|(b) to show that o ®g 3 is unique.
(]E[) This follows from direct computation using Lemma [I1.1.8{(b]). d

Notation II.2.2. Continue with the notation of Proposition [[I.2.1] We write
M®Rﬂ:1M®Rﬂ:M®RN—>M®RN/
a®@r N=a®rly: M®RN—>M/®RN.
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In other words, we have
(MorAmen) =mefn) (aoxN)men)=am)en
for all m € M and all n € N. Part (]ED of the proposition then reads as
(o @p N)(a®@r N) = (d/a)®@pr N (M ®r3)(M®grB)=Maegr (80).

Example II.2.3. Continue with the notation of Proposition [[T.2.1] The following
diagram commutes

M®RNLRN>M’®RN

a®RrpB ,
M®RrS M'®rB
_— >

[eY N’
Mer N —2220 o M/ N'.
We verify the commutativity of the lower triangle:
a®rfB=(aly)®r (Inf) = (a@r In)(1y ®r B) = (a@r N')(M @ 3).

The lower triangle is dealt with similarly.

Using Lemma [II.1.8{(c)) we have 1y ®r Iny = Lygpn-

Using Example[II.1.6{and Lemma|II.1.8{|d)) we have a ® g0 = 0 and 0@z 8 = 0.

Fix an element r € R. Let u™: M — M be given by m +— rm. Such a
“multiplication-map” is a homothety. Using Example [II.1.6[ (or Lemma [II1.1.8([b]))
we have

prt @p pl = pki®* N M @g N — M ®g N
that is, the tensor product of homotheties is a homothety. In particular, we have
,in®RN:M®R,UiV :M7M®RN: M®r N — M ®grN.

Remark I1.2.4. Let R be a commutative ring, and let M and N be R-modules.
Let I,J C R be ideals such that IM =0 and JN = 0. Then (I +J)(M®r N) = 0.
To show this, it suffices to show that (M ®@rN) =0and J(M®rN) =0. Leta € I,
and let u: M — M denote the homothety m +— am. Our assumption implies that
pM =0 = pd!. Example implies that the induced map M g N — M ®r N
is given by multiplication by a, and by multiplication by 0. That is, multiplication
by a on M ®pg N is 0. This implies that a(M ®r N) = 0, and hence I(M ®p N) = 0.
The proof that J(M ®p N) = 0 is similar.

Because of this, Remark [.5.10] implies that M ®z N has the structure of an
R/(I + J)-module, the structure of an R/I-module, and the structure of an R/J-
module via the formula 7€ = r£. Furthermore, M ®g N is finitely generated over R
if and only if it is finitely generated over R/I, and similarly over R/.J and R/(I+.J).

Next we talk about base-change. First, we describe restriction of scalars.

Remark I1.2.5. Let ¢: R — S be a homomorphism of commutative rings. Every
S-module N has a natural R-module structure defined as rn = ¢(r)n. (We say that
this R-module structure is given by restriction of scalars along QD%D In particular,
the ring S is an R-module by the action rs = ¢(r)s.

2The terminology is explained as follows: If R is a subring of S and ¢ is the inclusion map,
then the R-module structure on N is obtained by restricting the S-module structure to the smaller
ring R. Since the elements of S are called scalars when they are multiplied against elements of
N, we are restricting the class of scalars from S to the smaller ring R.
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Under this operation, every S-module homomorphism a: N — N’ is also an
R-module homomorphism. Also, the map ¢ is an R-module homomorphism.

Base-change is a special case of the following; see Proposition [[1.277]

Proposition I1.2.6. Let p: R — S be a homomorphism of commutative rings.
Let M be an R-module, and let N be an S-module.

(a) The tensor product N @ g M has a well-defined S-module structure given by
s(D-,mi @my) =Y. (sn;) @ my.

(b) Furthermore, this S-module structure is compatible with the R-module structure
on N ®g M wvia restriction of scalars: for all ™ € R and allm € N and all
m € M, we have r(n @ m) = ¢(r)(n @ m).

(¢) Let f: M — M’ be an R-module homomorphism. Then the induced homomor-
phism N Qg f: NQr M — N @g M’ is an S-module homomorphism.

(d) Let g: N — N’ be an S-module homomorphism. Then the induced homomor-
phism g @r M: N g M — N' @r M 1is an S-module homomorphism.

Proor. (ED First, we use the universal property to show that the operation

s(Dim @my) =3, (sn;) ® my

is well-defined. Fix an element s € S. Let us: N — N be the homothety given by
ts(n) = sn. This is a well-defined S-module homomorphism. Considering N as an
R-module by restriction of scalars, the map pu is also an R-module homomorphism;
see Remark The map pus Qg M: N g M — N ®r M is a well-defined R-
module homomorphism by Proposition . It is given on simple tensors by

(ks @r M)(n @ m) = (us(n)) @ m = (sn) @ m
so the fact that this map is an R-module homomorphism implies that
(s @r M) (32, 8i @ mi) = 32 (s @r M) (ns @ mi) = 32, (sn;) @ m.

This shows that the desired action is well-defined.

The fact that pu;®z M is additive implies s(§+() = s€+sC forall{,( € N@r M.
The verification of the fact that this action satisfies the axioms for an S-module is
tedious. For instance, for s,s’ € S, we have

(s+5")> ;i @my

=3 .((s+ &)n;) @ m; (definition of the action on N ® p M)
=>".(sni + 8'n;) @m; (distributivity in N)
=Y l(smi) @ mi + (s'ni) @ my) (distributivity in N @ M)
= (sni) @m; + 3. (s'ni) @my (associativity in N @ g M)

)

=5y, ni®@m;+5 Y, n;@m; (definition of the action on N ® g M

so (s+8)=sE+sEforalls,s’ € Sandall £ € N®g M.
(]E[)Wehave

o(r)(n@m) = (e(r)n) @m (definition of the S-action on N ®p M)
(rn) @m (definition of the R-action on N)

r(n®m) (definition of the R-action on N ® p M)



28 II. TENSOR PRODUCTS September 8, 2009

We have
(N®g f)(s(n®@m)) = (N ®g f)((sn) @ m) (definition of S-action on N @ g M)
= (sn) ® f(m) (definition of N ®pg f)
=s(n® f(m)) (definition of S-action on N ®p M)
=s((N®g f)(n®m)) (definition of N ®g f)
@ Similar to part . (I

Base-change is, in a sense, reverse to the notion of restriction of scalars. This
is also known as extension of scalars.

Proposition I1.2.7. Let ¢: R — S be a homomorphism of commutative rings,
and let M be an R-module.

(a) The tensor product S @ g M has a well-defined S-module structure given by
s(D2, 8 @my) = ,(58) ®m;.

(b) Furthermore, this S-module structure is compatible with the R-module structure
on S®pr M wvia restriction of scalars: for allr € R and all s € S and allm € M,
we have (s @ m) = ¢(r)(s @ m).

(¢) The function opr: M — S @r M given by m — lg @ m is a well-defined
R-module homomorphism making the following diagram commute

o o

M R®r M M
S®r M

where the unspecified isomorphisms are from Ezample [IT.1.9

(d) Let f: M — M’ be an R-module homomorphism. Then the induced map on
tensor products S Qg f: SQr M — S ®r M’ is an S-module homomorphism
making the following diagram commute:

M ! M’

LPIM\L \L(,OIWI
S
S@RM%S(@RM/

We say that the S-module S@r M is obtained from the R-module M by base-change
or extension of scalars along cpE|

Proor. (ED This is the special case N = S in Proposition [I1.2.6f(al).
This is the special case N = S in Proposition [I1.2.6{[b]).
(

) The map H: M — R ®pr M given by m — 1 ® m is an isomorphism of
R-modules. It is routine to show that the composition (¢0@rM)oH: M — S®@r M
is given by m — 1g ® m. This is exactly the rule describing ;. Since the maps
¢ ®r M and H are well-defined R-module homomorphisms, it follows that the

3The terminology is explained as follows. Since M is an R-module, one sometimes refers to
R as the base for M. Since the tensored module S @ g M is a module over the different ring S,
we have changed the base of the module M; in other words, we have performed a base-change.
The terminology “extension of scalars” is explained similarly: the original module M has scalars
in the smaller ring R, while the new module S ® g M has scalars in the larger ring S, so we have
extended the range of scalars from the smaller ring to the larger ring.
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composition @ps is a well-defined R-module homomorphism making the left-most
triangle in the diagram commute. It is straightforward to show that the
right-most triangle in the diagram also commutes: If F: Rrp M — M
is the natural isomorphism, then

em(F(r@m)) =pm(rm) =1s® (rm) = (rls) @ m
= (p(r)ls) @ m = ¢(r) @ m = (p @r M)(r @ m)

as desired.

The fact that S@g f: SQr M — S®g M’ is an S-module homomorphism
follows from Proposition using N = S. The commutativity of the diagram
is a straightforward consequence of the definitions. O

Next we talk about the connection between tensor products and localization.
First a definition.

Definition II1.2.8. Let R be a commutative ring. A sequence of R-module homo-
morphism
N, — fi+1 fi fi—1
a= LN IS N I
is exact if Im(fi+1) = Ker(f;) for all i € Z.
An R-module M is flat if, for every exact sequence of R-module homomor-
phisms

N, =... I N S oy S
the tensored sequence
M i i M i—
M Q@p Ng = --- —>®Rf+1 M ®r N; —>M®Rf M ®pr N;_4 4>®Rf -
is exact.

We'll talk about flatness more once we have the right-exactness of tensor prod-
uct. For now, we show that every localization is a tensor product.

Proposition I1.2.9. Let R be a commutative ring. Let U C R be a multiplicatively
closed subset, and let M be an R-module.

(a) Every element of (U™'R) @z M s of the form % ® m for some u € U and
me M.

(b) There is an U~ R-module isomorphism F: (U 'R) @r M — U~LM given by
F(L@m) =" and such that F~*(2) = L @ m.

(¢) For each R-module homomorphism g: M — M', there is a commutative dia-
gram

U™'R
(UT'R)@r M R LN (UT'R) @p M’

&’lF ﬂlp’
U1y
UM UM’
where the vertical maps are the isomorphisms from part (]ED

(d) U™'R is a flat R-module.
(e) Q is a flat Z-module.




30 II. TENSOR PRODUCTS September 8, 2009
1 T . — . [— .
PROOF. (a)) Fix an element }_, 7t ® m;. Set u = [[,u; and wj = [];;u;.
Then u = w}u;, so
’
r; - UiTi - 1 lpom,) — L ey
Zi i X m; = Zi g ®m; = Zl 2 ® (ugrim;) = 2 ® (Zz UpTM;) ©

(]ED The universal mapping property for tensor products shows that the map
F: (U 'R)®@r M — U™*M given by F(L ®m) = " is a well-defined R-module
IL.2. 7

homomorphism. In fact, Proposition ) shows that (U7'R) ®z M is an
U~!R-module. Also, U='M is an U~ R-module, and it is straightforward to show
that the map F is an U ! R-module homomorphism.

The map F is surjective because 7+ = F(% ® m)‘

To see that F is injective, fix L @ m € Ker(F). (This uses part (a).) Then
0= F(% ®m) = % implies that there exists an element v’ € U such that u'm = 0.
Hence, we have

Lom=2om="L @ @Wm)=-"1 (0)=0.

u uu’

=U"Yg(F(; ®m))

Let N be an exact sequence of R-module homomorphisms as in Defini-
tion :II.2.8 Since localization is exact, we know that U-L1N, is exact. Parts (]ED
and () show U 'R®r Ny =U"'N,,s0o U"'R®gN, is exact. Since N, was chosen
arbitrarily, we conclude that U~!R is a flat R-module.

@ Since Q = Zq), this follows from part @ O

Exercises.

Exercise 11.2.10. Continue with the notation of Proposition Prove that,
if « and (3 are isomorphisms, then so is a ®g 8. In particular, if a and G are
isomorphisms, then so are « ®g N and M ®g .

Exercise I1.2.11. Let ¢: R — S be a homomorphism of commutative rings. Prove
that, if M is a finitely generated R-module, then S ® p M is finitely generated as
an S-module.

Exercise I1.2.12. Let ¢: R — S be a homomorphism of commutative rings. Let

M be an R-module, and let N be an S-module.

(a) Prove that the tensor product N ® g M has a well-defined S-module structure
given by (3, n; @ m;) = >, (sn;) @ m;.

(b) Prove that this S-module structure is compatible with the R-module structure
on N ®r M via restriction of scalars: for all » € R and all n € N and all
m € M, we have r(n @ m) = ¢(r)(n @ m).

Exercise I1.2.13. Let R be a commutative ring. Let M and N be R-modules, and
let U C R be a multiplicatively closed subset. Prove that there is an U~! R-module
isomorphism (U™*M) @py-1zr (UTIN) 2 U~ (M ®@g N). See also Corollary [[1.3.7
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Exercise I1.2.14. Let R be a commutative ring, and let U C R be a multiplica-
tively closed subset. Prove that every ideal a C U~!'R is isomorphic to U ~1b for
some ideal b C R.

Exercise I1.2.15. Let ¢: R — S be a homomorphism of commutative rings such
that S is flat as an R-module. Let M and N be R-modules such that M is finitely
presented. Prove that there is an S-module isomorphism

S Qr HOHIR(M, N) = HomS(S QrM,S g N)

(Hint: Follow the proof of Proposition [L.5.8])

I1.3. Commutativity and Associativity

The theme of this section is the following: the class of all R-modules behaves
like a commutative ring under the operations of direct sum and tensor product,
with additive identity 0 and multiplicative identity R; see Example We start
the section by proving the commutativity of tensor product.

Proposition I1.3.1. Let R be a commutative ring, and let M and N be R-modules.
Then there exists an R-module isomorphism F: M g N — N ®r M such that
F(m®n) =n®m for allm € M and alln € N. Thus, we have MRrN = NQr M.

PROOF. Use the universal mapping property to show that there exist R-module
homomorphisms F': M g N - N g M and G: N ®g M — M ®gr N such that
Fim®n) =n®m and G(n®m) = m®n for all m € M and all n € N. Use
Lemma to show that FG = Iyg,m and GF = 1pg,n so that F' and G

are inverse isomorphisms. O

Here is the distributive property for tensor products. Recall the notation from
Remark [[.3.2)

Theorem I1.3.2. Let R be a commutative ring. Let M be an R-module, and let
{Nx}xen be a set of R-modules. There is an R-module isomorphism

F: M &g ([Txen N2) = [Tiea(M @R Ny)
such that F(m ® (ny)) = (m ®@ny) for allm € M and all (ny) € [T cp Nx.

PROOF. As in Proposition use the universal mapping property to show
that there is a well-defined R-module homomorphism

F: M &g ([Tyen Na) — [rea(M ®@p Ny)

such that F(m ® (ny)) = (m ® ny) for all m € M and all (ny) € [[ycp Na. Note
that this implies that

F(m@e) (n,)) = el N (m@n,)
for all m € M and n, € N,; here
el t Ny — [Txea Na and eOrN: M ®@p Ny — [1yen(M ®r Ni)

are the natural inclusions.
‘We now construct an inverse for F'.
First, we set

gu=M®pre): M@r Ny — M ®g ([T en Na)
so that g,(m ®n,) =m®e) (n,) for all m € M and all n, € N,,.
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Second, Exercise [.3.3] yields a unique R-module homomorphism

G: [aen(M @r Ny) = M ®gr ([T5cp N2)
making each of the following diagrams commute:
M®RpN

M ®g N, 2> TT,ea(M &g Ny)
|

3G
\

M @g (ITxea Na)-

m

The commutativity of the diagram says
G(Efy@RN(m ®@ny)) =gu(medn,) =m® sg(nu)

for all m € M and all n, € N,. Hence, we have

G((my ®1y)) =G (Z%A eMORN (1, @ nu)>
= ZMGA G(E%Q@RN(mu ®ny))
= EueA my, & Eg(nu)

for all (my) € M and all (ny) € [[,c, Na. Notice that each of these sums is
finite.
It follows that we have

F(G((mr @) = F (S,enmu @ (1)
= uen F (mu @€l (n,))
=2 uen en @nN (my, @ ny)
= (mx ®@ny)
so F'G is the identity on [y, (M ®g N»). On the other hand, we have
G(F(m @ (n))) = G((m@mny))

=2 ueam @ (ny)

=m® (ZMGA Eg(nu))

=m® (n)
so Lemma [[I.1.8||c) implies that GF is the identity on M ®g HAGA Ny. Hence, F
and G are inverse isomorphisms. ([l

The next example shows that tensor product does not commute with non-finite
direct products.

Example I1.3.3. We show that
HnGN(Q ®Z Z/an) = O a‘nd Q ®Z HnEN Z/an 7& 0

and hence [[, .n(Q®z Z/p"Z) 2 Q @z [],,en Z/P™ L.
Fix a natural number n and consider the following computation in Q®yzZ/p"Z:

T = (5rqp") @T = (57q) @7 = (5wq) @0 =0.

pm

It follows that Q ®z Z/p"Z = 0 for each n and hence [, .y(Q ®z Z/p"Z) = 0.
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The function f:Z — [[,, Z/p"Z given by f(m) = (m,m,m,...) is a well-
defined Z-module monomorphism. The Z-module Q is flat by Proposition @,
so we have Q®z f: Q®zZ — Q®z]], ey Z/p"Z. The isomorphism Q®zZ = Q # 0
shows Q ®z [[,,enZ/p"Z # 0

Here is a consequence of the distributive properties in Theorem

Proposition I1.3.4. Let R be a commutative ring, and let M be an R-module.
For sets T and A, we have RY) @z M =~ M® and RT) @5 RN =~ RIXA) - For
integers m and n, we have R™ @pr M = M™ and R™ @r R" =2 R™". O

The next result contains a generalized version of the associativity property for
tensor products. See also Corollary

Theorem I1.3.5. Let ¢: R — S be a homomorphism of commutative rings. Let L
and M be S-modules, and let N be an R-module. There is an S-module isomorphism

U: L®s(M®rN) = (LosM)®z N
given by l @ (m®@n) — (l®@m) @ n.

ProOOF. We complete the proof in four steps.
Step 1. Proposition II.2.6@ implies that M ®g N is an S-module via the
following action
s(m®n) = (sm)Qn.
Hence, the tensor product L®g (M @ N) is a well-defined S-module via the action
S(18 (m @ n)) = (s1) @ (m @ n) =1 ((sm) @ n).

Also, since L&g M is an S-module, Proposition[I1.2.6|fa)) implies that (L&sM)®@r N
is an S-module via the action

s(lem)®@n)=((sl)@m)®@n=(1® (sm)) ®n.
Step 2. We show that, for each [ € L, the map
O: M®r N — (L®s M)®r N

given by m®n — (I ® m) ® n is a well-defined S-module homomorphism. To this
end, let [ € L. It is straightforward to show that the map

QZSZSMXNH(L@SM)@RN

given by (m,n) — (Il ® m) ® n is well-defined and R-bilinear. Thus, the universal
mapping property for M ® g N shows that ®; is a well-defined R-module homomor-
phism. The following computation shows (essentially) that ®; is also an S-module
homomorphism:

D;(s(m®n)) = ((sm)@n) =1 (sm))®@n=s(l®@m)®@n) =sP(men).

Step 1 explains the equalities in this sequence.
Step 3. We show that the map

U: LRs(M®rN)— (L®s M)®r N

given by | ®@ (m @ n) — (I ®m) ® n is a well-defined S-module homomorphism.
Step 2 shows that the map

@LX(M@RN)H(L®5M)®RN
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given by (I,m®n) — (I®@m)®@n is well-defined. Tt is straightforward to show that
it is S-bilinear, so the desired result follows directly from the universal mapping
property for L ®g (M ®g N).

Step 4. An argument similar to Steps 1-3 shows that the map

0: (LesM)@r N - L®s (M @ N)

given by (@ m) @ n — |l ® (m ®n) is a well-defined S-module homomorphism. Tt
is straightforward to check that ¥ and © are inverse isomorphisms. O

Corollary I1.3.6. Let R be a commutative ring. Let L, M and N be R-modules.
There is an R-module isomorphism

U: L®r(M®grN) i(L@)RM)@RN
given by L@ (m@n) — (l®@m) @n.
PROOF. This is the case of Theorem where ¢ = 1p: R — R. a

Corollary I1.3.7. Let ¢: R — S be a homomorphism of commutative rings. Let
M and N be R-modules. There is an S-module isomorphism

U: (S®r M) ®s (S®RN)E’S®R(M®RN)
given by (s@m) @ (t®@n) — (st) @ (m@n).

PrROOF. We have the following sequence of homomorphisms:

(S®r M) ®s (S®rN) (s@m)® (ten)
I J

(S®r M) ®s S)®@r N (s@m)®t)®@n
= I

(S®rM)®r N ((st)y@m)®@n
= ]

S®r(M®grN) (st) ® (m ®n).

The first one is the S-module isomorphism from Theorem[[T.3.5] The second one fol-
lows from the S-module isomorphism (S®rM)®gsS = S®r M from Example
check that the displayed isomorphism is also S-linear. The third isomorphism is
from Corollary check that this isomorphism is also S-linear. (]

Exercises.

Exercise I1.3.8. (Alternate proofs of Theorem[[I.3.2]) Continue with the notation

of Theorem [[I.3.21

(a) Show that M ®g (][, Na) satisfies the universal property for [, (M ®r Ny),
and conclude from this that M ®@g (][], Nx) = [[,(M &g Ni).

(b) Show that [], (M ®r Ny) satisfies the universal property for M ®g ([, Nx),
and conclude from this that M ®@pg ([, Nx) = [[,(M ®g Ny).

Exercise 11.3.9. Let R be a commutative ring, and let { Ny} ea be a set of R-
modules. Prove that [], Ny is flat if and only if each Ny is flat.

Exercise I1.3.10. Let R be a commutative ring.

(a) Prove that every free R-module is flat.
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(b) Prove that every projective R-module is flat.
(c) Show that the converses of parts @ and (ED fail by proving that Q is not a
projective Z-module

Exercise I1.3.11. Let R be a commutative ring, and let U C R be a multiplica-
tively closed subset. Prove that if M is a flat R-module, then U~'M is a flat
U~!'R-module and a flat R-module.

Exercise I1.3.12. Complete the proof of Theorem [I.3.5
Exercise I1.3.13. Complete the proof of Corollary

Exercise I1.3.14. (Alternate proof of Corollary [[1.3.6)) Let R be a commutative
ring, and let M, N, P, and G be R-modules.

A function f: M x N x P — G is R-trilinear if it satisfies the following:

f(erm,?n’p) = f(m7n7p) +f(m/7n7p)
f(mvn + n/ap) = f(m7nap) + f(ma n/7p)
f(m’n7p+p/) = f(m7n7p) + f(m7n7p/)
f(rm,n,p) =rf(m,n,p) = f(m,rn,p) = f(m,n,rp)
for all m,m’ € M alln,n’ € N all p,p’ € P and all r € R.

For example, the functions f: M x N x P — (M ®gr N) Qg P given by
fm,n,p) = (m®n)@p and g: M x N x P - M ®r (N @ P) given by
g(m,n,p) = m® (n ® p) are R-trilinear.

A tensor product of M, N and P over R is an R-module M ®r N ®gr P
equipped with an R-trilinear function h: M X N X P — M ®pr N ® g P satisfying the
following universal mapping property: For every R-module G and every R-trilinear
function f: M x N x P — (@, there exists a unique R-module homomorphism
F: M ®gr N ®g P — G making the following diagram commute

MxNxP—l>MosNegP

I
| 3AF
! A

G.

For eachm € M and n € N and p € P, set m®@n ® p = h(m,n,p).

(a) Show that M ®g N ®p P exists.
(b) Show that there are R-module isomorphisms

F:M®rN®pP — (M®rN)®rP
G:MrN®rP— Meg(N®grP)
given by Flm @n®p) = (m®n)®@pand G(m@®n®p) =m® (n®@p). In
particular, we have (M @ g N) @1 P =2 M ®r (N @1 P).
I1.4. Right-Exactness
Next, we go for exactness properties.

Proposition I1.4.1. Let R be a commutative ring. Let f: M — M' and g: N —
N’ be R-module epimorphisms.

(a) The map f ®rg: M ®r N — M’ @ N’ is surjective.
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(b) The module Ker(f ®p g) is generated as an R-module by the set
L={m@neMrN| f(m)=0orgn)=0} CMegrN.

Proor. (&) 3, mj @nj =3, f(m;) ® g(n:) = (f @r 9)(3,; mi @ ni).

(@ Let K denote the submodule of M ®p N generated by the set L. Each
generator of L is in Ker(f ®g ¢g), so L C Ker(f ®g g). Exercise provides
a well-defined R-module epimorphism ¢: (M ®g N)/K — M’ @ g N’ such that
p(m@n) = f(m) ® g(n). To show that K = Ker(f ®r g), it suffices to show that
¢ is injective.

Define amap h: M’ x N' - M ®g N/K as follows: for (m’,n’) € M' xg N’, fix
m € M and n € N such that f(m) =m' and g(n) = n’, and set h(m/,n') = m @ n.
We need to show this is a well-defined function. Assume f(m;) =m’ = f(m) and
g(n1) =n' = g(n). Then m; —m € Ker(f) and n; —n € Ker(g) soin M ®r N we
have

my @ny = (m1—m) @ (n —n)
=(mi—m)@n;—n)+(m —m)@n+mae(n,—n)+man.
€K

It follows that, in (M ®r N)/K, we have m; @ n1 = m ® n so h is well-defined.

We check that h is R-bilinear. For instance, we want h(m} + mb,n') =
h(mfy,n') + h(mh,n'). Fix miy,mg € M and n € N such that f(my) = m],
f(mg) =m} and g(n) =n'. Then f(m;i + ma) = mj + m} so

h(my +mb,n') = (m1 +m2) @®n =m1 @n+ma @n = h(m},n’) + h(mh,n').

The other parts of bilinearity are verified similarly.

Since h is R-bilinear, the universal property for tensor products yields a well-
defined R-module homomorphism H: M’ @ N’ — (M ®r N)/K satisfying the
following: for m' @ n’ € M’ @ N’, fix m € M and n € N such that f(m) = m’
and g(n) = n’; then H(m' ® n’) = m ® n). It follows readily that the composition
H¢p:  M®rN)/K — (M®grN)/K is the identity on (M ®r N)/K, so ¢ is injective
as desired. O

In general, the tensor product of injective maps is not injective:

Example I1.4.2. The maps ;%: Z — Z and 1797+ Z./27 — 7./27 are both injec-
tive. (Recall that the notation for the homothety maps u% are in Example [[1.2.3])
From Example [[T.2.3] we know that

1o @7 g0 = 1% ® )22 = 15" 2.0y 2,)27 — T ®7, 2/ 2.
Tensor cacellation [I1.1.9|implies that Z ®z Z /27 = 7./27, so 5 @z 1727 = 0. This
map is not injective.

Here is the right-exactness of the tensor product.

Proposition I1.4.3. Let R be a commutative ring, and let M be an R-module.

For each an ezact sequence of R-module homomorphisms N’ 2> N 2 N” — 0 the
associated sequence

Mo N X259, prop N MER9 A on N7 =0

15 exact.
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PROOF. Because g is surjective, Proposition [II.4.1{ja]) implies that M ®p g is
surjective. Proposition [[I.2.1|(b) shows that
(M®rg)(M@rg)=M®r(99)=M®r0=0

so Im(M ®g ¢') C Ker(M ®pr g). To show Im(M ®g ¢') 2 Ker(M ®p g), it
suffices to show that every generator of Ker(M ®p g) is in Im(M ®gr ¢'). By
Proposition [I1.4.1)[b)), Ker(M ®pg g) is generated by {m ® n | g(n) = 0}. For each
m®n € M ®g N such that g(n) = 0, there exists n’ € N’ such that ¢'(n’) = n, so
men=Merg)(men)ecInlMgrdg). O

Definition II.4.4. Let R be a commutative ring. Let rpM denote the class of
all R-modules and all R-module homomorphisms. This is the category of all R-
modules.

Definition II1.4.5. Let R and S be commutative rings. A (covariant) functor
F: gpM — gM is a rule that
(1) assigns to each R-module M an S-module F(M);
(2) assigns to each R-module homomorphism ¢: M — N an S-module homomor-
phism F(¢): F(M) — F(N) such that
(a) the rule F respects identities: for every R-module M we have F(1,) =
]]-F(M)a and
(b) the rule F respects compositions: for each pair of R-module homomor-
phisms ¢: M — N and ¥: N — P, we have F(v¥¢) = F(¢)F(¢) .
A functor should be thought of as a homomorphism from g M to g M. The property
F(¢y¢) = F()F(¢) is sometimes referred to as the “functoriality” of F'.

Example I1.4.6. Let R be a commutative ring. If M is an R-module, the operators
M ®pr — and Hompg(M, —) are covariant functors pM — pM. If p: R — Sis a
homomorphism of commutative rings, then the operators S ® g — and Hompg (S, —)
are covariant functors gpM — g M.

Definition I1.4.7. Let R and S be commutative rings, and let F': gM — g M be
a covariant functor.

(a) F is left-exact if, for every exact sequence 0 — M 2, N % P of R-module

homomorphisms, the resulting sequence 0 — F(M
S-module homomorphisms is exact;

(b) F is right-ezact if, for every exact sequence M 2, N % P — 0 of R-module
) 29 pvy 29 B(PY = 0 of

homomorphisms, the resulting sequence F'(M
S-module homomorphisms is exact;

(¢c) F is exact if, for every exact sequence M 2, N % P of R-module homomor-

phisms, the resulting sequence F(M) £, F(N) £, F(P) of S-module

homomorphisms is exact.

Example I1.4.8. Let R be a commutative ring. Given an R-module M, the functor
M ®pg — is right-exact, and the functor Hompg (M, —) is left-exact. If ¢: R — Sisa
homomorphism of commutative rings, then the functor S ® g — is right-exact, and
the functor Hompg/(S, —) is left-exact.

Definition I1.4.9. Let R and S be commutative rings. A contravariant functor
F: gpM — gM is a rule that
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(1) assigns to each R-module M an S-module F(M);
(2) assigns to each R-module homomorphism ¢: M — N an S-module homomor-
phism F(¢): F(N) — F(M) such that
(a) the rule F respects identities: for every R-module M we have F(1p) =
]lF(M)a and
(b) the rule F respects compositions: for each pair of R-module homomor-
phisms ¢: M — N and ¢: N — P, we have F(y¢) = F(¢)F(v).

Note that a contravariant functor reverses arrows. This is the reason for the name
“contravariant”: the prefix “contra” means “against”, signifying that F' goes against
the arrows. Contrast this with the term “covariant” which identifies functors that
go with the arrows.

Example 11.4.10. Let R be a commutative ring. Given an R-module M, the
operator Homp(—, M) is a contravariant functor pM — pM.

Definition I1.4.11. Let R and S be commutative rings, and let F: gpM — g M
be a contravariant functor.

(a) F is left-exact if, for every exact sequence M 2N % P = 0 of Rmodule

) 29 pvy 290 B of

homomorphisms, the resulting sequence 0 — F'(P
S-module homomorphisms is exact;
(b) F' is right-ezact if, for every exact sequence 0 — M 2, N % P of Rmodule

) 29 vy F9 pr) - 0 of

homomorphisms, the resulting sequence F(P
S-module homomorphisms is exact;

(¢) F is ezxact if, for every exact sequence M 2, N % P of R-module homomor-

phisms, the resulting sequence F(P) £, F(N) (2N F(M) of S-module

homomorphisms is exact.

Example I1.4.12. Let R be a commutative ring. Given an R-module M, the
functor Homp(—, M) is left-exact.

Exercises.

Exercise I1.4.13. Let R be a commutative ring, and consider two exact sequences
of R-module homomorphisms

VARG VeI VL N LN LN 0,
(a) Prove that there is a well-defined R-module homomorphism
h: (M'®@r N)® (M @r N') = M ®@r N

such that h(m’ @ n,men') = f/(m)@n+m® ¢ (n).
(b) Prove that the following sequence is exact

(M'@p N)& (M ®r N') % Moy N 125 M" oy N7 - 0.
Exercise I1.4.14. Let R be a commutative ring. Let M be an R-module, and let
I C R be an ideal. Prove that (R/I)®r M = M/IM. (Sketch of proof: Start with
the exact sequence 0 — I — R — R/I — 0. Apply the functor — ® g M to this
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sequence to obtain the top-most exact row in the following diagram

[@r M ——>Rog M —— (R/I)®r M —> 0

T

0 M M M/IM ——.

The vertical maps are given by f(i®m) = im and g(r®m) = rm and h(F®m) = Tm.
Show that these maps are well-defined and make the diagram commute. The map
f is an epimorphism, and g is an isomorphism. Show that this implies that A is an
isomorphism.)

Exercise I1.4.15. Let ¢p: R — S be a homomorphism of commutative rings. Let
M be an R-module, and let N be an S-module.

(a) Prove that if S is flat over R and N is flat over S, then N is flat over R. (Hint:
Use the isomorphism (A ®r S) ®s M 2 A®r M.)

(b) Prove that if M is flat over R, then S ®g M is flat over S. (Hint: Use the
isomorphism B ®¢ (S ®r M) 2 B®r M.)

Exercise I1.4.16. Let R and S be commutative rings, and let F': pM — g M be
a functor, either covariant or contravariant. Prove that the following conditions are
equivalent:

(i) The functor F' is exact and F(0) = 0;
(ii) The functor F' is left-exact and right-exact;
(iii) The functor F transforms every short exact sequence of R-module homomor-
phisms into a short exact sequence of S-module homomorphisms.

Exercise I1.4.17. Let R be a commutative ring. Let M be an R-module, and
prove that the following conditions are equivalent:

(i) The R-module M is a flat;

(ii) The functor M@g—: gRM — grM transforms every R-module monomorphism
into a monomorphism;

iii) The functor M ® g —: RM — rM is left-exact;

The functor M ®r —: gRM — rM is exact;

The functor M ®g —: gpM — rM transforms every short exact sequence of

R-module homomorphisms into a short exact sequence of R-module homo-

morphisms.

Exercise 11.4.18. Let R be a commutative ring, and let M be an R-module.
Recall that M is projective if, for every R-module homomorphism f: M — N’ and
every R-module epimorphism g: N — N’, there exists an R-module homomorphism
h: M — N such that f = gh. Prove that the following conditions are equivalent:

(i) The R-module M is projective;

(ii) The functor Homp(M, —): gpM — rM transforms every R-module epimor-
phism into an epimorphism;

(iii) The functor Homg(M, —): pM — rM is right-exact;

(iv) The functor Homg (M, —): gpM — grM is exact;

The functor Hompg (M, —) transforms every short exact sequence of R-module
homomorphisms into a short exact sequence of R-module homomorphisms.
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Exercise I1.4.19. Let R be a commutative ring, and let M be an R-module. Recall
that M is injective if, for every R-module homomorphism f: N’ — M and every
R-module monomorphism g: N’ — N, there exists an R-module homomorphism
h: N — M such that f = hg. Prove that the following conditions are equivalent:
(i) The R-module M is injective;
(ii) The functor Homg(—, M): pRM — pM transforms every R-module monomor-
phism into an epimorphism;
(iii) The functor Homp(—, M): gpM — rM is left-exact;
(iv) The functor Homp(—, M): pM — pM is exact;
(v) The functor Hompg(—, M) transforms every short exact sequence of R-module
homomorphisms into a short exact sequence of R-module homomorphisms.

I1.5. Hom-Tensor Adjointness

Next up: Hom-tensor adjointness and an alternative proof of right-exactness of
tensor products.

Proposition I1.5.1. Let R be a commutative ring, and let M, N and P be R-
modules. There are R-module isomorphisms

v
HomR(N,HomR(M,P)) HomR(M (9053 N,P)

<
P

[@: N — Homp(M, P)] —> { MerN = P

m®n— a(n)(m)

N — }IOIDR(]\47 P)

e ) | B M en N P

PROOF. It is straightforward to show that the map ® is well-defined. Use the
universal property for M ® g N to show that ¥ is well-defined. It is tedious (but
routine) to show that ¥ and ® are R-module homomorphisms and to show that
the compositions ®¥ and P are the appropriate identities. O

Remark II.5.2. The isomorphisms in Proposition [[I.5.1] are natural in all three
variables. For example, if f: M — M’ is an R-module homomorphism, then there
is a commutative diagram

Hom(M ® N, P) —2> Hom(N, Hom(M, P)) —~— Hom(M ® N, P)
Hom(f®N,P)T Hom(f@N,P)T Hom(f@N,P)T
Hom(M’ ® N, P) —2> Hom(N, Hom(M’, P)) —~> Hom(M’ @ N, P).
There are similar diagrams for homomorphisms N — N’ and P — P’.

We conclude with an alternate proof of right-exactness of tensor product [[T.4-3]

PROOF. Start with an exact sequence N’ LN L N” = 0 of Rmodule
homomorphisms and an R-module M. We want to show that the sequence

MoN M0 o N M2 pre N -0
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is exact. By Exercise it suffices to show that, for every R-module P, the
following sequence is exact:

Hom(M®g,P) Hom(M®f,P)
- 7 —_

0 — Hom(M®&N", P) Hom(M®N, P) Hom(M&N', P).

The left-exactness of Hom(—, P) implies that the following sequence is exact:

Hom(g,P) Hom(f,P)
— —

0 — Hom(N", P) Hom(N, P) Hom(N’, P).

The left-exactness of Hom(—, Hom(M, P)) implies that the bottom row of the fol-
lowing diagram is exact:

0 —— Hom(M ® N”,P) —— Hom(M ® N, P) —— Hom(M ® N’, P)

E\L(b// E\L(p Ei¢/

0 — Hom(N”,Hom(M, P)) — Hom(N, Hom(M, P)) — Hom(N’, Hom(M, P)).

Remark tell us that the diagram commutes, and Proposition says that
the vertical maps are isomorphisms. Hence, the top row is exact. (I

Exercises.
Exercise I1.5.3. Fill in the details for the proof of Proposition
Exercise I1.5.4. Show that all six diagrams in Remark commute.
Exercise I1.5.5. Let R be a commutative ring. Prove that a sequence
M —-M-—M'—0

of R-module homomorphisms is exact if and only if for all R-modules N the asso-
ciated sequence

0 — Hompg(M",N) — Homg(M,N) — Homg(M', N)
is exact.

Exercise I1.5.6. Let ¢: R — S be a homomorphism of commutative rings. Let N
be an R-module, and let M and P be S-modules. Prove that there are S-module
isomorphisms

v
Hompg(N,Homg (M, P)) Homg(M ®g N, P)
?

[a: N — Homg (M, P)| ——> { M@rN =P

m®n— a(n)(m)

N — Homg (M, P)

e B | I MR = 7L

Verify the version of Remark [[1.5.2] in this situation. [Note: Proposition [II.2.6|(a)
shows that M ®p N is an S-module.|

Exercise I1.5.7. Let ¢: R — S be a homomorphism of commutative rings. Let P
be an R-module, and let M and N be S-modules. Prove that there are S-module
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isomorphisms

v

Homg (N, Hompg(M, P)) Homp(M ®g N, P)
3

M®s N — P

[a: N — Homg(M, P)] ———> { m®n — aln)(m)

N — Hompg(M, P)

e B | I M8 7L

Verify the version of Remark [I1.5.2] in this situation. [Note: Fact shows that
Homp(M, P) is an S-module.]

Exercise 11.5.8. Let ¢: R — S be a homomorphism of commutative rings, and
let M and N be R-modules. Prove that there is an S-module isomorphism

©
HomR(S, HomR(M, N)) HomS(S QR ]\4,110111}:5(57 N))
r

[¢: S — Hompg(M,N)|————> { S ®s M — Hompg(S, N)

s @m = [t — y(st)(m)]

S — Hompg(M, N)
s = [m— ¢(1@m)(s)]

Verify the version of Remark [I1.5.2] in this situation. [Note: Fact shows that
Hompg (M, P) is an S-module.]

] <~—[¢: S®r M — Homg(S, N)].
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ITI.1. Injective and Projective Modules

The definition of “projective module” is given in Exercise We begin
with a reminder of some properties.

Remark ITI.1.1. Let R be a commutative ring. Every free R-module is projective.
More specifically, an R-module P is projective if and only if there is an R-module
Q@ such that P ® @ is free. Given a set of R-modules {M)}rca, the coproduct
[Ixca My is a projective R-module if and only if M) is a projective R-module
for each A € A. An R-module M is projective if and only if every short exact
sequence 0 — M’ — M"” — M — 0 splits. If M is a projective R-module and
0— M — M" — M — 0 is an exact sequence of R-module homomorphisms, then
M’ is projective as an R-module if and only if M" is projective as an R-module.
Given an R-module N, there exists a projective R-module P and an R-module
epimorphism P — N.

The definition of “injective module” is given in Exercise It is dual to
the definition of “projective module”. We begin with a reminder of some properties.

Remark IIT.1.2. Let R be a commutative ring. Given a set {My}rca of R-
modules, the product [],., M is an injective R-module if and only if M) is an
injective R-module for each A € A. If M is injective as an R-module, then every
short exact sequence 0 — M — M" — M’ — 0 splits. If M is an injective R-module
and 0 - M — M"” — M' — 0 is an exact sequence of R-module homomorphisms,
then M’ is injective as an R-module if and only if M" is injective as an R-module.

The following result is very useful in practice. Condition is summarized in
the following diagram:

0——a——R

l v
f Ve
%/ Elg
J.

In other words, to check whether a given R-module is injective, one need only verify
the definition for exact sequences of the form 0 — a — R.

Theorem II1.1.3 (Baer’s criterion). Let R be a commutative ring, and let J be
an R-module. The following conditions are equivalent:
(i) J is injective as an R-module;
(ii) for each ideal a C R and each R-module homomorphism f: a — J, there
exists an R-module homomorphism F: R — J such that F|q = f.

43
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ProOOF. The implication (jij) = follows by the definition in Exercise|l1.4.19
- . Assume that J satisfies condition , and consider a diagram of
R-module homomorphisms with exact top row

f

0O— M —M

\L /s
s
g
s
P 3h
J.

We need to find an R-module homomorphism h: M — J making the diagram
commute. For this, we use Zorn’s Lemma. Set

S = { R-module homomorphisms h: C — J | Im(f) CC C M and hf = g}.

Partially order S as follows: (h1: C1 — J) < (he: Co — J) if and only if C; C Cs
and hs|c, = hy. Check that this is a partial order on S.

Claim: S satisfies the hypotheses of Zorn’s Lemma. Let C be a non-empty
chain in S. Define D = U,. c—.j)ecC. Since C is a chain in S, it follows that D
is a submodule of M such that Im(f) C D. Define k: D — J as follows. For each
d € D, there exists (h: C' — J) € C such that d € C; set k(d) = h(d). Since C
is a chain, it follows that k(d) is independent of the choice of (h: C — J) € C.
Since C is a chain and each (h: C' — J) € C is an R-module homomorphism, it is
straightforward to show that k is an R-module homomorphism and that kf = g.
In other words, k: D — J is in S. By construction, (h: C' — J) < (k: D — J) for
each (h: C — J) €, so (k: D — J) is an upper bound for C in S.

Zorn’s Lemma implies that S has a maximal element (h: C — J). We will use
the maximality to show that C' = M. It will then follow that (h: M — J) € S, so
h: M — J makes the desired diagram commute.

Suppose that C' C M and let m € M ~ C. Set

a={reR|rmeC}.

Check that this is an ideal of R. Define ¢: a — J by the formula ¢(r) = h(rm).
Check that this is an R-module homomorphism. Condition yields an R-module
homomorphism ¥: R — J making the following diagram commute

0—>a—=>R

|

J.

Define C' = C' 4+ Rm which is a submodule of M such that Im(g) C C C C' C M.
We will construct an R-module homomorphism h': C* — J such that b’ f = g and
h|c = h; this will show that (h': C" — J) € S and (h: C — J) < (b: C" — J),
thus contradicting the maximality of (h: C — J) in S.

Define h': C' — J by the formula h'(c + rm) = h(c) + ¥(r). We need to
show that this is well-defined, so assume that ¢ + rm = ¢; + riym. It follows that
(r—ri)m=rm—rym=c; —c€ C, and hence r —r; € I. The next computation
follows directly

h(er) = h(c) = h(er — ¢) = h((r —r)m) = ¢(r —r1) = P(r —r1) = (1) — (1)
and hence h(cy) + ¢ (r1) = h(c) + ¥(r). Thus, I’ is well-defined.
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It is straightforward to show that h’ is an R-module homomorphism, because
h and ¢ are R-module homomorphisms. For m’ € M’ we have f(m') € Im(f) C C,
so (using ¢ = f(m’) and r = 0) we have

W(f(m)) = h(f(m)) = g(m')

because hf = g. It follows that h/f = g as well. A similar argument shows that
K|c = h, as desired. O

Corollary II1.1.4. Let R be a commutative noetherian ring, and let J be an R-
module. The following conditions are equivalent:
(i) J is injective as an R-module;
(ii) for each monomorphism a: M — N between finitely generated R-modules, the
induced map Hompg(«, J): Hompg(N,J) — Hompg(M, J) is an epimorphism.

PRrROOF. The implication == follows from FExercise For the
converse, assume that for each R-module monomorphism «: M — N, the induced
homomorphism Hompg(«, J): Hompg(N,JJ) — Hompg(M, J) is an epimorphism. We
use Baer’s criterion to show that J is injective. Let a be an ideal of R, and let
i: & — R denote the inclusion. Since R is noetherian, the ideal a is finitely gen-
erated. Since R is also finitely generated, our assumption implies that the map
Hompg(i,J): Hompg(R,J) — Hompg(a, J) is surjective. Hence, there is an element
F € Hompg(R, J) satisfying the first equality in the next sequence

f=Hompg(i,J)(F)=Foi=F|,.

The other equalities are by definition. Baer’s criterion implies that J is injective.
d

Injective modules are harder to construct than projective ones. Here are a few
examples.

Example II1.1.5. If R is a field, then every R-module is injective. (The con-
verse of this statement also holds when R is local or an integral domain.) See
Exercise IL11.1.24]

Proposition II1.1.6. If R is an integral domain with field of fractions K, then K
is injective as an R-module.

PROOF. Assume that R is an integral domain. We use Baer’s Criterion to
prove that the field of fractions K is an injective R-module. Let a C R be an ideal,
and let f: a — K be an R-module homomorphism.

Claim: There exists an element v € K such that f(a) = au for all a € a.
(Once this is shown we are done because we may define F': R — K by the formula
F(a) = au for all a € R.)

Proof of claim: This is easy if a = 0, so assume a # 0. Fix an element 0 # b € a.
Then, for all a € a we have

f(a) = 2f(a) = (ba) = £1(b) = a P
so the fraction u = f(b)/b has the desired property. O

We next prove that every R-module is isomorphic to a submodule of an injective
R-module. This requires some preparation, beginning with the case R = Z.
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Definition III.1.7. An abelian group D is divisible if, for each d € D and for each
0 # n € Z, there exists e € D such that ne = d.

Remark III.1.8. These groups are “divisible” because you can always solve the
division problem d +n in D.

Example IT1.1.9. The additive group Q is divisible.

Remark II1.1.10. If D is a divisible abelian group and D’ C D is a subgroup, then
the quotient D/D’ is divisible. Every direct sum and direct product of divisible
abelian groups is divisible.

Lemma II1.1.11. An abelian group G is divisible if and only if it is injective as a
Z-module.

PROOF. = : Assume that G is divisible. We use Baer’s criterion to prove
that G is injective as a Z-module. Let a C Z be an ideal, and let g: a — G be
a Z-module homomorphism. Then a = nZ for some n > 0. We need to find a
Z-module homomorphism h: Z — G making the following diagram commute

The case n = 0 is straightforward using h = 0, so assume that n > 0. Since G is
divisible, there exists a € G such that na = g(n). It follows that g(mn) = mg(n) =
mna for all m € Z. Define h: Z — G as h(m) = ma for all m € Z. This is a
well-defined Z-module homomorphism such that h|, = g, as desired.

<= Assume that G is injective as a Z-module. To show that G is divisible,
let 0 #n € Z and let b € G. We need to find an element ¢ € G such that nc = b.
Define g: nZ — G by the formula g(nm) = mb. This is a well-defined Z-module
homomorphism, so the fact that G is injective provides a Z-module homomorphism
h: Z — G making the following diagram commute

0——1—">Z

In particular, the element ¢ = h(1) satisfies

nc=nh(l) =h(n) =0
as desired. ]
Proposition I11.1.12. The Z-modules Q and Q/Z are injective.

PROOF. It is straightforward to show that Q and Q/Z are divisible, so they
are injective by Lemma [l
Proposition I11.1.13. Let G be a Z-module.

(a) For each non-zero element 0 # g € G, there is a Z-module homomorphisms

¢: G — Q/Z such that ¢(g) # 0.
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(b) The natural Z-module homomorphism 0g: G — Homy(Homy(G,Q/Z),Q/Z)
given by da(g) (V) = (g) is a monomorphism.

PRrROOF. @ Let Zg C G denote the Z-submodule of G generated by g, and set
Annz(g) = {n € Z | ng = 0}.

It is straightforward to show that Anngz(g) is an ideal of Z. In fact, Anny(g)
is the kernel of the natural epimorphism 7: Z — Zg given by 7(n) = ng. Let
T: 7/ Anng(g) — Zg be the induced isomorphism, which is given by 7(7) = ng.
Since g # 0, we have Anny(g) C Z. In particular, there is a prime number p € Z
such that Anng(g) C pZ. Let a: Z/pZ — Q/Z be the Z-module homomorphism

given by a(m) = n/p. It is straightforward to show that « is a monomorphism. Let
¢o: Zg — Q/Z be the composition of the following maps

Zg T— 7/ Anng(g) = Z/pZ 2 Q/Z

where 7 is the natural surjection. By definition, we have ¢o(g) = 1/p # 0.
Since Q/Z is an injective Z-module, there exists a Z-module homomorphism
¢: G — Q/Z making the following diagram commute

L

0 Zg M

v
%o 7

o
Q/Z

where ¢ is the natural inclusion. It follows that ¢(g) = ¢o(g) # 0, so ¢ has the
desired properties.

(]ED It is straightforward to show that dg is a Z-module homomorphism, so it
remains to show that it is injective. Let 0 # g € G, and let ¢ € Homz (G, Q/Z) be a
Z-module homomorphism such that ¢(g) # 0. It follows that da(g)(¢) = &(g) # 0,
and hence dg(g) # 0. That is, we have g ¢ Ker(dg). Since g was chosen as an
arbitrary non-zero element of G, it follows that g is injective. (]

Lemma II1.1.14. Let G be an abelian group. Then there is a divisible abelian
group D and an abelian group monomorphism f: G — D.

PROOF. Let 7: F — G be an epimorphism such that F' is a free abelian group.
Let K = Ker(7) so that we have G = F/K. Write F = Z) for some set A and
set D; = QM. Remark shows that D is divisible. It is straightforward to
construct an abelian group monomorphism i: Z(4) — QW ie., i: F < D;. Since
1 is a monomorphism, it follows that
G2 F/K 2i(F)/i(K) C D/i(K).

Since D is divisible, so is the quotient D;/i(K), by Remark [III.1.10[ Thus, we
have the desired monomorphism. |

Here is a way to construct injective R-modules.

Lemma IT1.1.15. Let R be a commutative ring. If D is a divisible abelian group,
then Homgz (R, D) is an injective R-module.

ProoF. This follows from Lemma [[II.1.11{ and Exercise [IT1.1.25((a)), using the

natural ring homomorphism Z — R. (]
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Theorem II1.1.16. Let R be a commutative ring, and let M be an R-module.
Then there exists an R-module monomorphism M — J where J is an injective
R-module.

PROOF. M is an additive abelian group, so Lemma yields an abelian
group monomorphism f: M < D where D is a divisible abelian group. The induced
map Homgz(R, f): Homgz(R, M) — Homgz(R, D) is an R-module homomorphism.
It is a monomorphism because Homyz(R, —) is left exact. This yields a sequence

M = Homp(R, M) C Homgz(R, M) — Homg(R, D)

where the inclusion is from the fact that every R-module homomorphism R — M
is a Z-module homomorphism. The composition of these maps is an R-module
monomorphism. The R-module J = Homy(R, D) is injective by Lemma
giving the desired result. O

Proposition I11.1.17. Let R be a commutative ring, and let I be an R-module.
The following conditions are equivalent:

(i) I is an injective R-module;

(ii) Fuvery exact sequence of the form 0 — I — M — M" — 0 splits.

PRrOOF. The implication (i) = (ii)) is contained in Remark

= () Theorem shows that there is an R-module monomorphism
f: I — J such that J is injective. Condition implies that the resulting short
exact sequence splits

01X - 1-0

and hence J = I @ J/I. The fact that J is injective implies that I and J/I are
injective by Remark O

Proposition IT1.1.18. If R is a commutative noetherian ring, then every coproduct
of injective R-modules is injective.

PROOF. Assume that R is noetherian, and let {1} ca be a set of injective R-
modules. Let e: [[ycp Mx — [ ca M denote the canonical inclusion. For each
pe A let w0 []ycp Ma — M, be the canonical surjection.

We use Baer’s Criterion to show that [[, I, is injective. Let a be a non-zero
ideal of R, and let i: a — R be the natural inclusion. Let f: a — [, Ix be an
R-module homomorphism. Since R is noetherian, the ideal a is finitely generated.
Proposition shows that there are isomorphism of R-modules

0o: Hompg(a, [T, In) — 1, Homg(a, I5)
Or: Hompg(R,[[, 1) = I, Homg(R, I)

given by ¥ — (mxeW). It is straightforward to show that the following diagram of
R-module homomorphisms commutes

Homp (i,]T5 1)

Hompg(R, [T, I»)

9ng

HA HOHIR(R, I,\)

HOI?ﬂR(CL7 H)\ I)\) — ()

eaig

Hompg (4,1
L1 Homg( A)HAHOHIR(G,IA)*)O.
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Since each I is injective, it follows that the bottom row of this diagram is exact.
A straightforward diagram chase shows that this implies that the top row is also
exact. It follows that there exists an R-module homomorphism F': R — [[, I such
that F|, = f. O

Compare the following result to Corollary VH.5.13.

Proposition I11.1.19. Let R be a commutative noetherian ring, and let I be an
R-module. The following conditions are equivalent:
(i) I is an injective R-module;
(ii) the localization U~'I is an injective U~ R-module for each multiplicatively
closed subset U C R;
(iii) the localization I, is an injective R,-module for each prime ideal p C R; and
(iv) the localization Iy, is an injective Ruy-module for each mazimal ideal m C R.

PRrROOF. The implications == == are routine.

== . Let I be an injective R-module. We use Baer’s Criterion to show
that U~'I is an injective U ! R-module. Let a be a non-zero ideal of U~'R, and
let i: a — U~ 'R be the natural inclusion. It suffices to show that the induced map

Homy —15(i,U™'1): Homy-15(U 'R, U ) — Homy-15(a, U~T)

is surjective.

The ideal a is isomorphic to U ~1p for some ideal b C R; see Exercise
Let j: b — R be the natural inclusion. Identify U~'b with its image in U~ 'R, and
identify the inclusion i: a — U 'R with the induced map U~ 'j: U~ 'b — U'R.
Then it suffices to show that the map

Homy 1 g(U™5, U ) : Homy-1z(U 'R, UT) — Homy 1 (U6, U™T)
is surjective.
Since [ is an injective R-module, the following sequence is exact:

Hompg (5,1)
-

Homg (R, I) Homp(b,I) — 0.

The exactness of localization implies that the induced sequence

U~ Homg(5,I)
_

U~!'Hompg(R,T) U~!'Hompg(b,I) — 0

is also exact, that is, the map U~! Hompg(j, I) is surjective.
Since R is noetherian, the ideal b is finitely presented. Proposition [[5.8] yields
the vertical isomorphisms in the following diagram:

U~* Hom(j4,I)

U~'Homg(R, 1) U~!Homg(b,I)

i Hom,, 1 o (U 5, U T i
HOInU—lR(UilR,Uill) e 1R( ! )HomelR(Uflb,Uflf).

It is straightforward to verify that this diagram commutes. Since U ! Hompg(j, I)
is surjective, we conclude that Homg—1z(U 14, U~11) is surjective, as desired.
= . Assume that I, is an injective Ry,-module for each maximal ideal
m C R. Let b C R be an ideal, and let €¢: b — R be the natural inclusion. We
need to show that the induced map Hompg(e,I): Homp(R,I) — Hompg(b,I) is



50 III. INJECTIVE, PROJECTIVE, AND FLAT MODULES September 8, 2009

surjective. Using Exercise it suffices to show that Hompg(e, I )y, is surjective
for each maximal ideal m C R.

Consider the exact sequence 0 — by s Rm. Since I, is an injective Rp-
module, the bottom row of the following diagram is exact:

Hompg(e,1)m

Homp(R, I)m Homp (b, I)m

QR\m,R,Ilu @R\m,b,llg

Homp,, (ém;/m)

Homp, (R, In)

Hompg (b, Im) — 0.

Exercise implies that the diagram commutes. A straightforward diagram-
chase shows that Homg(e, I)y, is surjective, as desired. O

Exercises.

Exercise I11.1.20. Verify the properties from Remark

Exercise I11.1.21. Let R be a commutative ring. Let M be an R-module, and let
@: R — S be a homomorphism of commutative rings.

(a) If M is projective as an R-module, then S ® g M is projective as an S-module.
(b) Show that the converse of part () fails in general.
(c) Prove that if M is a projective R-module, then the localization UM is a
projective U ! R-module for each multiplicatively closed subset U C R.
(d) Assume that M is finitely presented. Prove that the following conditions are
equivalent:
(i) M is a projective R-module;
ii) the localization U ~'M is a projective U ! R-module for each multiplica-
(i) proj p
tively closed subset U C R;
iii) the localization M, is a projective R,-module for each prime ideal p C R;
p p
and
(iv) the localization My, is a projective Ry-module for each maximal ideal
mC R.
Compare this to Corollaries [VII.3.11] and [VIT.4.3]

Exercise IT1.1.22. (Schanuel’s Lemma) Let R be a commutative ring. Consider
two exact sequences of R-module homomorphisms

7 £ f,—l 1 T
0 K p—tlap I Eop N op M 0

0 L —>Q —2 Qi Q1 —2>Qy—> M 0

where each P; and @) is projective.

(a) Provethat K Qi1 P11 ®--- X LA P, ®Qi—1D---. (Note that each direct
sum contains K and L and P;’s and @;’s. It does not contain M. For instance,
when ¢ = 0, the isomorphism is K & Qo = L ® P,.)

(b) Prove that K is projective if and only if L is projective.

(See also Lemma [VIII.4.10])
Exercise I11.1.23. Verify the properties from Remark

gt—1 g2

Exercise II1.1.24. Let R be a commutative ring that is either local or an integral
domain. Prove that the following conditions are equivalent:
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(i) The ring R is a field;
(ii) Every R-module is free;
(iii) Every R-module is projective;
(iv) Every R-module is injective.
Provide examples showing that this fails if R is neither local nor an integral domain.

Exercise II1.1.25. Let ¢: R — S be a homomorphism of commutative rings, and
let M be an R-module.

(a) If M is injective as an R-module, then Homp (S, M) is injective as an S-module.
(Make sure to specify the S-module structure on Hompg(S, M).)
(b) Show that the converse of part (@) fails in general.

Exercise II1.1.26. Finish the proof of Theorem
Exercise I11.1.27. Verify the fact in Remark
Exercise II1.1.28. Finish the proof of Proposition
Exercise I11.1.29. Finish the proof of Proposition [TI.1.13]

Exercise 111.1.30. State and prove the analogues of |[1I.1.7] for modules

over a principal ideal domain.

Exercise II1.1.31. Finish the proof of Theorem
Exercise II1.1.32. Finish the proof of Proposition
Exercise II1.1.33. Finish the proof of Proposition

Exercise IT1.1.34. (Schanuel’s Lemma) Let R be a commutative ring. Consider
two exact sequences of R-module homomorphisms

i I, fi I, fe—1 o F I f1 I ™

gt

C 0

0 M
! Jo——=D 0

0 M Ji

gt—1 g2 g1

Ji—1 J1

where each I; and J; is injective.

(a) Provethat C® Jo &1 &--- =D& Iy ® J1 &---. (Note that each direct sum
contains C' and D and I;’s and J;’s. It does not contain M. For instance, when
t = 0, the isomorphism is C & Jy = D & Ij.)

(b) Prove that C is injective if and only if D is injective.

II1.2. Flat Modules

The goal of this section is to prove that, over a noetherian ring, every product
of flat modules is flat. Much of this material is taken from Matsumura [3] and
Rotman [4].

Lemma II1.2.1. Let R be a commutative ring. A sequence of R-module homo-
morphisms

M/ i} M i} M/I (*)
is exact if and only if the induced sequence

) Homyz(g9,Q/7) ) Homgz(f,Q/Z)

Homgy(M",Q/Z

15 exact.

Homz (M, Q/Z Homz(M',Q/Z) (1)
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PROOF. First note that every R-module is an additive abelian group, that is,
a Z-module. Hence, the sequence is well-defined.

One implication is straightforward: If the sequence is exact, then the se-
quence is exact because Q/Z is an injective Z-module; see Proposition

For the converse, assume that the sequence (|f]) is exact.

To show that Im(f) C Ker(g), let m = f(m') € Im(f), and suppose that
m ¢ Ker(g). It follows that 0 # g(m) € M"”, so Proposition provides a
Z-module homomorphism ¢: M" — Q/Z such that

0 # ¢(g(m)) = ¢(g(f(m'))) = Homgz(f, Q/Z)(Homz(g,Q/Z)(¢))(m').

This implies that Homgz(f, Q/Z) o Homz(g, Q/Z) # 0, contradicting the exactness
of the sequence ({{]).

To show that Ker(g) C Im(f), let m € Ker(g), and suppose that m ¢ Im(f).
Then the element ™ € M/Im(f) is non-zero, so Proposition provides a
homomorphism t: M/Im(f) — Q/Z such that ¢(m) # 0. Let 7: M — M/Im(f)
denote the natural surjection. Then we have

Y(r(f(M"))) = P(r(Im(f))) = 4(0) =0
that is
0=4orof=Homy(f,Q/Z)( o).

This means that
w oT € Ker(HomZ(f, @/Z)) = Im(HomZ(97 @/Z))

where the last equality comes from the exactness of the sequence . This implies
that there is a homomorphism § € Homgz(M",Q/Z) such that

Y o7 =Homy(g,Q/Z)(8) = Bog.

From this, we have the second equality in the next sequence

0 # ¢(m) = P(r(m)) = B(g(m)) = (0) = 0.
The non-vanishing is from our choice of ¥. The first equality is by definition, and

the third equality is from the assumption m € Ker(g). The displayed sequence is
absurd, so we much have m € Im(f). O

Remark ITI.2.2. Let R be a commutative ring, and let M be an R-module. The
abelian group Homy (M, Q/Z) has the structure of an R-module by the following
action: for each ¢ € Homy(M,Q/Z) and each r € R, we let r¢: M — Q/Z be given

by (r¢)(m) = ¢(rm). (This is a special case of Fact [I.5.7|(a]) using the natural ring
homomorphism Z — R.) The R-module Homz(M,Q/Z) is sometimes called the
character module of M or the Pontryagin dual of M or the Pontrjagin dual of M.

Lemma II1.2.3. Let R be a commtuative ring. An R-module M is flat if and only
if its character module Homy (M, Q/Z) is injective.

PROOF. Assume first that M is flat. To show that Homyz (M, Q/Z) is injective,
consider an exact sequence
0—-LLN
It suffices to show that the induced sequence
Hompg(f,Homy(M,Q/Z))

Hom (N, Homyz (M, Q/7Z))

is exact.

Hompg (L, Homz(M,Q/Z)) — 0
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Since M is a flat R-module, the following sequence

is exact. Since Q/Z is an injective Z-module, the bottom row of the following
diagram is exact:

Hom JHomy(M,Q/Z
Hompg (N, Homy (M, Q7)) —nrHome MGy o o(L, Homz (M, Q/Z)) —— 0

:l :i

Homy (M .Q/z
Homz(M ®r N,Q/Z) AMERT QT Homgz (M ®r L,Q/Z) — 0.

The vertical isomorphisms are Hom-tensor adjointness It is straightforward
to show that the diagram commutes. (This is actually part of [L5.6]) A straight-
forward diagram chase shows that the top row is exact, as desired.

Conversely, assume that Homy (M, Q/Z) is injective. To show that M is flat,
it suffices to start with an exact sequence

o-LL N
and show that the induced sequence

0 MopL X2 MopN (IT1.2.3.1)

is exact. Since Homgz (M, Q/Z) is an injective R-module, the top row of the following
commutative diagram is exact

Homg (f,Homz(M,Q/Z))

Hompg (N, Homy (M, Q/Z)) Hompg (L, Homz(M,Q/Z)) —— 0

ml mi

Homgz(M @p N,Q/Z) — 22 MERIYE) g (M @5 L,Q/Z) —— 0.

where the vertical isomorphisms are Hom-tensor adjointness [[I.5.6] A straightfor-
ward diagram chase shows that the bottom row is exact. Lemma implies
that the sequence ([I1.2.3.1)) is exact, as desired. ([l

Lemma IIT.2.4 (Baer’s Criterion). Let R be a commtuative ring, and let M be an
R-module. The following conditions are equivalent:

(i) the R-module M is flat; and

(ii) for every ideal a C R, the sequence 0 — M Qg a MErt, pr ®pr R is exact,
where 1: a — R is the inclusion.

PRrROOF. The implication ({ij) = is by definition. For the converse, assume

that for every ideal a C R, the sequence 0 — M ®gr a MOri, pr ®gr R is exact,

where i: a — R is the inclusion. We use Baer’s criterion [[IL.1.3| to show that
Homgz (M, Q/Z) is injective. (Then Lemma [II1.2.3|implies that M is flat.)

Let a C Rbeanideal and let i: a — R be the inclusion. Our assumption implies
that the sequence 0 — M ®gr a Mort, pp ®pr R is exact, so the fact that Q/Z is
an injective Z-module implies that the bottom row of the following commutative
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diagram is exact

Hom g (i,Homyz(M,Q/Z))

Homp(R,Homyz(M,Q/Z)) Hompg(a, Homz(M,Q/Z)) — 0

] !

Homy (M 1,Q/Z
Homz(M ®r R,Q/Z) AMERYD | Homy (M ©p a,Q/Z) —— 0.

The vertical isomorphisms are Hom-tensor adjointness A straightforward
diagram chase shows that the top row is exact. Since a was chosen arbitrarily, it
follows that Homgz(M,Q/Z) is injective, as desired. O

The next result is proved like Corollary [[TT.1.4]

Corollary II1.2.5. Let R be a commutative noetherian ring, and let F' be an R-
module. The following conditions are equivalent:

(i) the R-module F is flat; and

(ii) for each monomorphism a: M — N between finitely generated R-modules, the

induced map FF @z M Mori, g ®gr N is a monomorphism. O

Lemma IT1.2.6. Let R be a commutative ring, let M be an R-module, and let

n be a positive integer. Consider the free R-module R™ with basis ey,...,e,. If
n

S mi®e; =Y mi®e; in M Qg R", thenm; =m/ fori=1,...,n.
PRrROOF. We employ the following isomorphism from Theorem [[I.3.2]

a: M®pR" — M" m®<§>m®(2?=17’i61)]H< : )

Tn TnMM

n

The equation Y . ,m; ®e; =, m;®e; in M @ R™ implies that

mi m/l
: =a(L mi®e) =a(l il mi®e) =
M m’,
in M™ and hence the desired equalities. ([

Theorem III.2.7. If R is a commutative noetherian ring, then every product of
flat R-modules is flat.

PROOF. Let {Fy}aeca be aset of flat R-modules. We use Baer’s criterion
to show that [], F) is flat.

Let a € R be an ideal and let i: a — R be the inclusion. Assume without loss
of generality that a # 0. Since R is noetherian, the ideal a is finitely generated,
say a = (a1,...,a,)R with n > 1. Let ey,...,e, € R™ be the standard basis,
and let g: R™ — a be the epimorphism given by e; — a;. Set K = Ker(7) and
let ©: K — R™ denote the inclusion. Since R is noetherian, the module K is
finitely generated, so there is an epimorphism 7: R™ — K for some integer m. Set
h=to7: R™ — R"™. It is straightforward to show that the following diagram has
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exact row and column:

Rr™ R”

Since each F) is flat, the next diagram has exact top row and column:

0

]
TN Ly DN Ry e p—

FA®R'5-\L

F\®r R %) F.
The map «, is the natural isomorphism given by z) ® r — rz). The right exactness
of tensor product implies that the next diagram has exact top row

[T\ FAl®rA [IT\ FAl®rg

[T\ FA]l ®r R™ [[I\ F\] @r R" I, F\|®ra———0

(ITx F)\]®Ril
(I, Fx) ®r R —=> (I1,, F»)

where the map « is the natural isomorphism given by (z)) ® r — r(z)). We need
to show that the vertical map [[[, Fi] ®g ¢ is injective, so let

¢ € Ker([[T\ ] ®@r 1) € ([T, FAl @R a.
Write ¢ as a finite sum of simple tensors in [[[, Fi] ® g a. Then use the assumption
a=(ay,...,an)R to rewrite ¢ as
C = Z?:l Cz ® a;
where each ¢; = ((i,x) € [[, Fa.
By assumption, we have

0= (I A®rid Q) =TI\ Al er i), @) =33, G ®a
in [T, FA] ®r R, and hence

0=a(([la B @r)(Q) = 201 @it = 20im; ailGin) = (3072 aiGin)
in [, F)\. Thus, for each A € A we have

0= Z?=1 a;Gix = O‘A(ZLl GiaA® a;) = OZA(F,\(ZLl Cia ®ay))

in Fy. Since ay and F) are both monomorphisms, it follows that >i" | ¢;x®a; =0
in F ®g a for each A € A. By construction, we have

0=>"1"1Ga®ai=(Fx®rg) (D Cix®e)
that is
Z?Zl Cia®e; € Ker(Fy®rg) =Im(F\ ®rh)
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for each \ € A, say that
S G @ e = (Fa @ h) () (II12.7.1)
where vy € F\ g R™.

Let €1,...,€, € R™ be the standard basis. Write each vy as a finite sum of
simple tensors in F\ ® g R™. Then use the fact that R™ is generated by €1,..., €
to rewrite v, as

VA =D000 ©€
where each vy ; € F\. Then equation (I11.2.7.1) reads

Y bin®@e = (FAx@rh) (XL v ®€) =35 va; @hle;).  (II1.2.7.2)
For j =1,...,m we write

h(ej) = oo Tji€i (111.2.7.3)
for some elements 7;; € R. Then equation (LI1.2.7.2)) reads
i1 Gia®@ei =30 v © (imy iei) = Doy (oim Tiivag) @ e
From Lemma [I[II.2.6{ we conclude that (; y = ZT:l TjiVx; in Fy for i =1,...,n,
and hence
G = (Ga) = iy mavag) (TI1.2.7.4)
in [T, F). Set
w= 27:1[(V/\,j) ® €] € I, Fr\] ®r R™. (111.2.7.5)
We show that
¢ = (ITx Fxl @& W) ((I T\ Fxl @& 9)(w))-
(Then the exactness of the sequence

[HA F)\]®Rh [H)\ F)\} ®R Rn [HA F)\]®R9

I\ Fx] ®r R™
implies that ¢ = 0, as desired.)
We compute directly:

(ITx B5] ©@r h)(w) = (TTx Frl @& W) (T2 [(va ) @ ¢5]) - (by (12.7.5))

I[,Fx]®ra—0

=21 l(vag) ® h(e))] (defn. of [[], Fa] ®r h)
=20 [(ag) ® (i ryiei)] (by (TIT.2.7.3))

- ZT=1 Z?:l riil(a,;) @ €]
= Do mii(vag) @ e
=2im1 [(Z;nzl TjiVx;) ® €]
=i Gi®e (by (T.2.7.4))
and thus
(T, 3] @ 9) (T ] @8 1) (@) = (TTy B3] @R 9) (S, G @ e0)
= Z?:1 G ®@g(ei)
=i G®a
=¢
as claimed. -

Proposition ITI1.2.8. Let ¢: R — S be a homomorphism of commutative rings.
Let P C S be a prime ideal and set p = p~*(P).
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(a) Theidealp C R is prime, and there is a well-defined homomorphism of commu-
tative rings ¢p: R, — Sp given by r/s — o(r)/¢(s) that makes the following
diagram commute

R—Y2-g

|,

Rp£>5p

where the unspecified vertical maps are the natural ones. The ring Ry is local
with mazimal ideal pRy,, and Sp is local with mazimal ideal PSp, and one has
ep(pRy) € PSp.

(b) If S is flat as an R-module, then Sp is flat as an R,-module.

PRroor. @ It is straightforward to show that p is prime. The existence of the
map @ p follows from the universal mapping property for localization; see Fact
It is straightforward to show that the diagram commutes. The fact that R, and
Sp are local with maximal ideals as described is a standard fact. The containment
@(p) C P implies that ¢p(pR,) C PSp by the definitions.

(]E[) Assume that S is flat as an R-module. To show that Sp is flat as an R,-

module, let L L M % N be an exact sequence of Ry-module homomorphisms.
We will be done once we show that the following sequence is exact

f®Rr, S ®Rr, S
L®g, Sp —2% M ®g, Sp —2" N @, Sp. (IT1.2.8.1)

Proposition implies that for every R-module A, there is an R,-module
isomorphism ¢4 : AQrR, = A, such that a®(r/s) — (ra)/s. It is straightforward
to show that, when A is an Rp-module, the natural map A — A, is an Rp-module
isomorphism; hence the map i4: A — A®gr Ry, given by a — a®1 is an Ry-module
isomorphism.

This yields the following commutative diagram with exact rows

L ! M J N

iLl: iNl: i]uiz
R R
L®RRP%M®RRP%N®RRP.

Applying the functor — ®g, Sp, we have the top half of the next commutative
diagram

f®r, SP 9®R, SP

L®Rp Sp

M®Rp Sp N®Rp Sp

1'L<§§>1~?,FSP\Lu iN®RFSP\L’—V iM®RpSP\L&’

fORRy®R, S QrRp®r, S
L®RRp ®Rp SPM)PM@}QRp ®Rp SPQ RITp O Ry PN®RRp ®RF SP

e b lf

®rS
L®grSp M ®gr Sp goner N ®pr Sp.

The bottom half comes from the cancellation isomorphism from Example[[T.1.9] Ex-
ercise [I11.2.11j(b)) implies that Sp is flat as an R-module, so the bottom row of this
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diagram is exact. Since the diagram commutes and each vertical map is an isomor-
phism, we conclude that the top row is also exact. That is, the sequence ([11.2.8.1))
is exact, as desired. [l

Exercises.

Exercise II1.2.9. Let R be a commutative noetherian ring. Prove that, for every
set A the R-module R" is flat.

Exercise II1.2.10. Let ¢: R — S be a homomorphism of commutative rings.
Prove that, if M is a flat R-module, then S ® zp M is a flat S-module.

Exercise II1.2.11. Let ¢: R — S be a homomorphism of commutative rings such

that S is flat as an R-module.

(a) Prove that, if N is a flat S-module, then N is flat as an R-module.

(b) Prove that the localization U~1S is flat as an R-module for every multiplica-
tively closed subset U C S.

(c) Prove that the polynomial ring R[X1,. .., X,] is flat as an R-module, and that
the localization U1 R[X7, ..., X,,] is flat as an R-module for each multiplica-
tively closed subset U C R[X7, ..., X,].

Exercise III1.2.12. Let R be a commutative ring, and let N be an R-module.
Prove that the following conditions are equivalent:

(i) N is a flat R-module;
(ii) the localization U"!N is a flat U ! R-module for each multiplicatively closed
subset U C R;
(iii) the localization N, is a flat R,-module for each prime ideal p C R; and
(iv) the localization Ny, is a flat Ryp-module for each maximal ideal m C R.

Compare this to Exercise and Corollary
Exercise I11.2.13. Prove Corollary [[T[.2.5]

Exercise I11.2.14. Complete the proof of Proposition [[TI.2.8|

Exercise II1.2.15. Let R be a commutative ring. Let F' be a flat R-module, and
let ¢: A — B be an R-module homomorphism.

(a) Prove that there are R-module isomorphisms F' @ Im(¢) = Im(F ®g ¢) and
(F'®r B)/Im(F ®r ¢) 2 F ®r (B/Im(e)).

(b) Prove that there are R-module isomorphisms F ® Ker(¢) = Ker(F ®g ¢) and
(F @r A)/ Ker(F ©r ) = F op (4/ Ker(9)).

(¢) Prove that, if A is a submodule of B, then F ®g A is naturally isomorphic to a
submodule of F' ®pr B in such a way that (F ®r B)/(F ®r A) 2 F ®r (B/A).

IT1.3. Faithfully Flat Modules

Much of the material for this section comes from [3].

Definition IT1.3.1. Let R be a commutative ring. An R-module M is faithfully
flat provided that, for every sequence A 2, B C of R-module homomorphisms,
the induced sequence M ®pr A MERS £y Rr B MERY, pp ®pr C is exact if and

only if the sequence A 2, B Y C s exact.
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Example ITI1.3.2. Let R be a commutative ring. Every nonzero free R-module is
faithfully flat.

Example IT1.3.3. The Z-module Q is flat but is not faithfully flat. To see this,
first recall that Q ®z (Z/2Z) = 0. Next, note that the sequence 0 — Z/2Z — 0 is
not exact, while the induced sequence Q ®z 0 — Q ®z (Z/2Z) — Q ®z 0 is exact
because it has the form 0 — 0 — 0.

The following is a useful characterization of faithfully flat modules.

Theorem 111.3.4. Let R be a commutative ring, and let M be an R-module. The
following conditions are equivalent:

(1) M is faithfully flat;

(ii) M is flat, and M ®r N # 0 for each nonzero R-module N; and

(iii) M is flat, and mM # M for each mazimal ideal m C R.

PRrROOF. = Assume that M is faithfully flat, and let N be an R-module
such that M ® g N = 0. Applying the functor M ® g — to the sequence

0—-N—=0

yields a second sequence
0—-M®®RrN —D0.

The condition M ® g N = 0 implies that the second sequence is exact. Since M is
faithfully flat, the first sequence is also exact, and we conclude that N = 0.

= Assume that M is flat, and that M ®g N # 0 for each nonzero
R-module N. For each maximal ideal m C R, this yields the non-vanishing in the
next sequence

M/mM>2M®rR/m#0

while the isomorphism is from Exercise[[[.4.174] It follows that mM # M, as desired.

= Assume that M is flat, and that mM # M for each maximal ideal
m C R. Let N be a nonzero R-module and fix a nonzero element n € N. The
following set is an ideal in R:

Anng(n) ={r € R|rn =0}
and the fact that n # 0 implies that Anng(n) € R. In particular, there is a

maximal ideal m C R such that Anng(n) C m. It follows that there is an R-module
epimorphism 7: R/ Anng(n) - R/m.

Let Rn C N denote the R-submodule of NV generated by n. It is straightforward
to show that Rn = R/ Anng(n), so we have the first isomorphism in the following
sequence

M ®pr (Rn) 2 M ®p (R/Anng(n)) » M ®r R/m # 0.
The epimorphism comes from the right-exactness of M ® p —, and the non-vanishing
is by assumption. It follows that M ®pg (Rn) # 0.

Let i: Rn — N denote the natural inclusion. Since M is flat, the induced map
M®gi: M ®g (Rn) — M ®r N is a monomorphism. It follows that M ®r N
contains the nonzero R-module M ®@r (Rn), so we have M ®r N # 0.

= Assume that M is flat, and that M @z N # 0 for each nonzero
R-module N. Consider a sequence

AL BY e (I11.3.4.1)
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of R-module homomorphisms such that the induced sequence

MorAXE M op B Y2 M @R C (I11.3.4.2)

is exact.
Since M is flat, Exercise [II1I.2.15|(a) explains the isomorphism in the next se-
quence

M @g (Im(¢¢)) = Im(M @ (¢¢)) = 0.
The vanishing follows from the exactness of ([I1.3.4.2). Our assumption implies
that Im(1¢) = 0, and hence )¢ = 0. That is, we have Im(¢) C Ker(¢)).

Since M is flat, Exercise [[11.2.15|c) explains the isomorphisms in the next
sequence

M ®p (Ker(¢)/Im(¢)) = (M ®r Ker(¢))/(M @r Im(¢))
>~ Ker(M ®g )/ Im(M ®r ¢) =0

and the vanishing is from the exactness of ([11.3.4.2)). Our assumption implies that
Ker(¢)/Im(¢) = 0, and hence Im(¢) = Ker(z)), as desired. O

Exercises.
Exercise II1.3.5. Justify the statement of Example [[IT.3.2]
Exercise I11.3.6. Complete the proof of Theorem

Exercise I11.3.7. Let R be a commutative ring. Prove that the polyonomial ring
R[X4,...,X,] is faithfully flat as an R-module.

Exercise IT1.3.8. Let R be a commutative ring, and let {My}rca be a set of
R-modules.

(a) Prove that if each module M) is faithfully flat, then the coproduct [], M) is
faithfully flat.

(b) Does the converse of part (a]) hold? Justify your answer.

(¢) Assume that R is noetherian. Prove that if each module M) is faithfully flat,
then the product [, M) is faithfully flat.

Exercise ITI1.3.9. Let ¢: R — S be a homomorphism of commutative rings. Let
M be an R-module, and let N be an S-module.

(a) Prove that if S is faithfully flat over R and N is faithfully flat over S, then N
is faithfully flat over R.

(b) Prove that if N is flat over R and N is faithfully flat over S, then S is faithfully
flat over R.

(c) Prove that if N is faithfully flat over R and N is faithfully flat over S, then S
is faithfully flat over R.

(d) Prove that if M is faithfully flat over R, then S ®pg M is faithfully flat over S.

(Hint: See Exercise [I1.4.15])

ITI1.4. Power Series Rings

The goal of this section is to familiarize the reader with the basic notions of
power series rings.
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Definition III.4.1. Let R be a commutative ring. The ring of formal power
series in one variable is the ring R[X] defined as follows. The elements of R[X]
are formal sums Z?io a; X" with each a; € R. The constant term of Zfio a; X" is
agp, and the coefficients of Zfio a; X" are the elements ag, ai, as,... € R. Addition
and multiplication in R[X] are defined as in the polynomial ring R[X]:

Do @iX Y2 bi X =30 (ai + b)) X
(Z?io aiXi)(Z;io biXi) = Zfio X!

where ¢; = E;‘:o ajb;—;. The additive and multiplicative identities are the same as
for the polynomial ring:

Orx] =O0r = 0r + 0pX + 0 X> + - --
lpix] =1lr =1p + 0gX + OgX>+--- .

The ring of formal power series in n variables is defined inductively by the formula
R[X1,..., Xn-1,X,] = R[ X1, ..., X01][Xx]-

Remark II1.4.2. Let R be a commutative ring. Our definition of R[X] is ad hoc
in the same sense that the usual definition of the polynomial ring R[X] is ad hoc.
One constructs R[X| as the coproduct R[X] = [];2, R of countably many copies of
R. (In particular, the ring R[X] is free as an R-module.) Similarly, one constructs
R[X] as the product R[X] = [[;2, R, of countably many copies of R.

Remark III.4.3. Let R be a commutative ring, and let n be a positive inte-
ger. Then R[Xy,...,X,] is a commutative ring with identity that contains the
polynomial ring R[X7,...,X,] as a subring. In particular, it contains R as the
subring of constant power series. Every element of R[Xy,...,X,] has a unique
expression as a formal sum } ; a; X ... Xin where i = {iy,...,i,}. For each
permutation o of the set {1,...,n}, there is an isomorphism of commutative rings
0o R[X1,..., X,] =N R[Xoq1ys .-+, Xo(m)] such that o, (r) = 7 for all » € R and
0o (X;)=X; fori=1,...,n.

Proposition II1.4.4. Let R be a commutative ring, and let n be a positive integer.

(a) The ring R is an integral domain if and only if R[X1,...,X] is an integral
domain for some (equivalently, for every) positive integer t.

(b) The variables X1, ...,X, are non-zero-divisors on R[X1,...,X,].

Proor. @ Every (non-zero) subring of an integral domain is an integral do-
main. Hence, if R[X7, ..., X,] is an integral domain, then sois R C R[ X}, ..., X,].

We prove the converse by induction on n.

Base case: m = 1. Assume that R is an integral domain, and let f and g
be non-zero elements of R[X]. Since f and g are non-zero, they have the form
f= Zfir a; X" and g = Z;’; ijj where a, and by are non-zero elements of R.
Since R is an integral domain, we have a,.bns; # 0. A direct computation yields

.fg = (arbs)XrJrs + (arbs+1 + ar+1bs)Xr+S+1 + -

Hence, the product fg has a non-zero coefficient, so fg # 0.

The induction step is a straightforward exercise.

(b) Fix a non-zero element h = 3 X X € R[Xy,...,X,]. A direct
computation yields

ieNn

_ LYl i5+1 Qn
Xjh = Y X0 - X0 X,
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Since h is non-zero, it has a non-zero coefficient. The displayed equality shows
that the non-zero coefficients of X;h are the same as the non-zero coefficients of h.
Hence, X;h has a non-zero coefficient, that is, X;h # 0. By definition, this means
that X; is a non-zero-divisor on R[X7,..., X,]. O

Proposition II1.4.5. Let R be a commutative ring, and let n be a positive integer.
(a) A power series Y ; nn a; X X s a unit in R[Xy,...,X,] if and only if
its constant term ag 1s a unit in R.

(b) The ring R[X1,...,X,] is not a field.

ProoF. @ We prove the case n = 1. The general case follows by induction
on n. Fix an element f = > ° a; X" € R[X].

Assume that f = 37770, X" is a unit in R[X] with f~' = 377%,b; X7, Tt
follows that

1= ff~' = (aobo) + (aoh1 + arbo) X +--- .

This implies that agby = 1, hence the constant term aq is a unit with inverse by.

For the converse, assume that ag is a unit in R. Set by = ag ! By induction
on m, we may solve the following infinite system of equations for by, b1, ba, .. .:

agbp =1
agby +a1bg =0
agbs + a1by + asbg =0

It follows readily that the series Z;io b; X7 is a multiplicative inverse for f.
(]ED The nonzero element X; € R[ X7, ..., X,] is not a unit because its constant
term is 0, which is not a unit in R. O

Proposition II1.4.6. Let R be a commutative ring, and let n be a positive integer.

(a) The ideal X = (X1,...,Xn)R[X1,...,X,] consists of all formal power series
in R[X1,...,Xn] with constant term 0.

(b) One has R[X1,...,X,]/%X = R.

PROOF. (ED Let I denote the set of all formal power series in R[X1,...,X,]
with constant term 0. The containment X C I is straightforward since each gener-
ator X; of X isin I.

For the containment X D I, let f = >
its constant term is 0, so we can rewrite

F=YaX] X+ > X Xt

ienn @i X1 -+ X € 1. Since fisin I,

=1 i1=0
ia>1
Ip— i i,
+ E aan’LfX;" -+ E aiX;"
i1 =ip=-=ip_5=0 i1=ig=-=ip,_1=0
in—121 in 21
i1 —1 s i2—1 ]
:Xl(E a X "'X;")-FXz(E a; X2 ...X;Ln)+...
=1 i1=0
in>1
in—1—1 vrg i—1
+ Xn_l( > a X! X:;) + Xn( ) i Xin )
i1 =tg=r=tp_o=0 i1 =ig=++=ip_1=0
ip—121 in>1

and this shows that f € X.
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(]ED Let ¢: R[X1,...,X,] — R be given by > . y» ainl co X s a,...,0)- In
other words, p(f) is the constant term of f. It is straightforward to show that ¢ is
a well-defined ring epimomorphism. By definition, the kernel of ¢ is the set of all
formal power series in R[X7,...,X,] with constant term 0, that is, Ker(¢) = X.
Hence, we have

R =TIm(p) & R[X,...,X,]/Ker(¢) = R[X1,...,X,]/%
as desired. O

Proposition II1.4.7. Let R be a commutative ring, and let n be a positive integer.
(a) For each ideal I C R, the set
X1, X = D iemn a; X Xin € R[X1,...,X,] | ai € I for alli € N*}
is an ideal in R[Xy,...,X,] such that
R[Xy,...., X, )/I[ X4, ..., Xn] =2 (R/D[X1, ..., Xn]

and I[Xq,..., X,] 2 (I)R[X1,. .., X,].

(b) If I is a finitely generated ideal of R, then I[X1,...,X,] = (I)R[X1,...,Xn]-
(¢) An ideal I of R is prime if and only if I[X1,...,X,] is a prime ideal of

R[X1,...,X,].

PROOF. (@) Let ¢: R[Xy,..., Xn] — (R/I)[ X4, ..., Xx] be given by the rule
of assignment Y ;. i X7" - Xin — >y @ X7 -+ Xi. In other words, ¢(f)
is the power series over R/I obtained by reducing the coefficients of f module
I. Tt is straightforward to show that ¢ is a well-defined ring epimomorphism. By
definition, the kernel of ¢ is the set of all formal power series in R[ X1, ..., X,] with
coeflicients in I, that is, Ker(y) = I[X1,...,X,]. Hence, the set I[Xq,...,X,] is
an ideal of R[X1,...,X,] such that

(R/D)[X1,. .., Xn] = R[X1,..., X,]/Ker(p) = R[X1, ..., X, ]/I[X1, ..., X.].

The generators of (I)R[X1,...,X,] are the elements of I, which are elements of
I[X1,...,X,] by definition. This implies that I[X,...,X,] 2 (I)R[X1, ..., X,].

([O) Let by, ..., by, be a generating sequence for I. Because of part (@), we need
only verify the containment I[Xy,...,X,] 2 (I)R[X1,...,X,]. Fix an element
f=ienn i X{' - X € I[Xy,..., X,]. Each a;isin I = (by,...,bn)R, so we
can write a; = Z;ﬂ:l ¢i,;b; with ¢; € R. It follows that

f=ienn Xy X
= Dienn (71 b)) X7t Xor
= Z;n:1 bi (X ienn i X1t - Xim).
In other words, we have f = Z;nzl b; f; for some f; € R[Xy,...,X,]. Since the b,
are in I, this implies that f € (I)R[X7,...,X,], as desired.
Proposition [I11.4.4{|a)) implies that the ring
R[Xy,.... X, )/I[X4,. .., Xn] =2 (R/D[X4, ..., Xn]

is an integral domain if and only if R/I is an integral domain. ]

Proposition I11.4.8. Let R be a commutative ring, and let n be a positive integer.
Set X = (X1,...,Xn)R[X1,...,X,], and let I be an ideal of R.
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(a) There is an equality X + I[X1,..., X,] = (X1,..., X0, )R[X1,..., X,], and
an isomorphism R[X1,..., X,]/(X+ I[X1,...,Xn]) =2 R/I.

(b) The ideal I is prime if and only if X + I[Xy,...,X,] is a prime ideal of
R[X1,.... X.].

(¢) The ideal I is mazimal if and only if X + I[X1,...,X,] is a mazimal ideal of
R[Xy,...,X,].

(d) If M C R[X4,...,X,] is a mazimal ideal, then m = M N R is a mazimal ideal
of R and M = X +m[X1,...,Xn] = (X1,..., Xn, m)R[X1, ..., X,].

(e) The set of mazimal ideals of R[ X1, ..., X,] is in bijection with the set of maz-
imal ideals of R. Thus, the ring R[X1,...,Xy] is local if and only if R is local.

PROOF. @ The containment
X+I[X,...,X] 2 (Xyq,. ., X, DR[ X, ..., X,]
follows from the conditions
X1, ., Xpn€XCX+I[Xy,...,X,]

and
ICI[Xy,.... X, ] CX+I[Xy,...,X,].

For the containment X4+ 1[X1,...,X,] C (X1,..., X,, [)R[X1, ..., X,], fix an ele-
ment f € X+ 1[X1,...,X,]. Then there exist g1,...,9n, € R[X1,...,Xp] and h €
I[X1,...,X,] such that f =h+ ) | X;g;. The condition h € I[Xq,...,X,] im-
plies that the constant term cq of h isin I. As in the proof of Proposition,
write h = ¢o + Y., X;h; for some hq, ..., h, € R[X1,...,X,]. Then we have

f=h+Y"  Xigi=co+ Y i Xihi + >0 Xigs
=co+ Z?:l Xz(hz + gi) € X+ I[[Xl, - ,Xn]]

as desired.
The desired isomorphism follows from the next sequence, which begins with
the third isomorphism theorem:

R[Xi,....X,] _ R[X1,..., X, ]/I[X1,..., X,]
X+1I[X1,...,X,] (X, X0)(R[ X, .., X0/ X, -, X))
~ (R/D)[X1,...,X,]

(X1, .. Xn)(R/D)[ X, ..., X,]
~ R/I.

The other isomorphisms are from Propositions @ and @I@

(B) The isomorphism R[X1,...,X,]/(X + I[Xi,...,X,]) = R/I shows that
R[X1,..., X,]/(X +I[X1,...,X,]) is an integral domain if and only if R/I is an
integral domain.

The isomorphism R[Xi,...,X,]/(X + I[X1,...,X,]) = R/I shows that
R[X1,..., Xn]/ (X 4+ I[X1,... ,Xn]]) is a field if and only it R/I is a field.

@ Let 9 C R[X,...,X,] be a maximal ideal, and set m = DM N R. We
first show that each variable X; is in 9. Suppose that X; ¢ 9. Then we have
(M, X;)R[X1,...,Xn] = R[X1,...,X,] so there are power series f € P and
g € R[X1,...,X,] such that 1 = f + X,g. It follows that the constant term of f is
1, so f is a unit by Proposition . This contradicts the assumption f € 9.
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The containment MM O (Xy,...,X,, m)R[X1,...,X,] follows from the in-
clusions Xi,..., X, € (X1,..., X, m)R[X1,...,X,] and from the containment
m C (Xl,. . .,Xn7m)R[[X1, RN ,Xn]]

To prove the containment 9 C (X1,..., X,, m)R[Xy,..., X,], let f € 9 and
write f = ¢+ Y., X;fi where ¢ € R and fi,...,f, € R[X1,...,X,]. Since
each X; is in 9, it follows that ¢ = f — Y 1" | X;fi € M N R = m, so we have
f=c+ X, Xifie(Xq,...,X,,m)R[Xq,...,X,], as desired.

The fact that m is a maximal ideal of R now follows from part (d).

(ED This follows from parts and@. (I

Here is the reason for including this material in this chapter.

Proposition I11.4.9. Let R be a commutative ring, and let n be a positive integer.
If R is noetherian, then R[X1,...,X,] is faithfully flat as an R-module.

PRrOOF. To show that R[Xi,...,X,] is flat, either argue by induction on

n, using Theorem and Exercise or apply Exercise directly
with the set A = N". To show that R[Xy,...,X,] is faithfully flat, observe

that Proposition IH.4.8 implies that, for every maximal ideal m C R, we have
mR[X1,...,X,] # R[X1,...,X,]; now, invoke Theorem [II1.3.4 O

Proposition IT11.4.10 (Hilbert Basis Theorem). Let R be a commutative ring, and
let n be a positive integer. If R is noetherian, then so is R[X1,..., X,].

PROOF. Argue by induction on n. The base case n = 1 is a reading exercise;
see Hungerford [2] (VIII.4.10)]. O

Exercises.
Exercise I11.4.11. Verify the facts from Remark
Exercise I11.4.12. Complete the proof of Proposition [[IT.4.4]
Exercise I11.4.13. Complete the proof of Proposition
Exercise II1.4.14. Complete the proof of Proposition
Exercise I11.4.15. Complete the proof of Proposition [[TT.4.7]
Exercise I11.4.16. Complete the proof of Proposition

II1.5. Flat Ring Homomorphisms

We have seen that, given a commutative ring R, the ring of polynomials
R[X1,...,X,] is a (faithfully) flat R-module. When R is noetherian, the same
is true of the power series ring R[X1,. .., X,]. In this section, we study the general
properties of flat ring extensions.

Definition ITI.5.1. A homomorphism of commutative rings ¢: R — S is flat if S
is flat as an R-module. It is faithfully flat if S is faithfully flat as an R-module.

Example IT1.5.2. Let R be a commutative ring. Then the natural inclusion
R — R[X4,...,X,] is faithfully flat by Exercise[lI1.2.11(c). If R is noetherian, then
the natural inclusion R — R[X3,..., X,] is faithfully flat by Proposition [II1.4.9

Proposition II1.5.3. Let ¢: R — S be a faithfully flat ring homomorphism.
(a) The map ¢ is a monomorphism.



66 III. INJECTIVE, PROJECTIVE, AND FLAT MODULES September 8, 2009

(b) For each prime ideal p C R, there is a prime ideal P C S such that ¢~ *(P) = p.

PROOF. @ Let r € R be a nonzero element. We need to show that o(r) # 0.
The submodule Rr C R is non-zero. Since S is faithfully flat as an R-module,
we have (Rr) ® g S # 0. As an S-module, this is generated by r ® 1, so we have
0#r®1le (Rr)®gS.

Let i: Rr — R denote the natural inclusion. Since S is flat, the first map in
the following sequence is a monomorphism

(Rr)®r S———>R®r S ——> §

r® 1t r® 1 o(r).

The second map is from Example [II1.1.9] Since 0 # r ® 1 € (Rr) ®g S, it follows
that 0 # o(r) € S.

(b) The R-module (R/p), is nonzero, so the faithful flatness of S implies the
non-vanishing in the next sequence

0#S®r (R/p)y = S®r (R/p®r Ry) = (S ®r R/p) ®r Ry
= (S/pS) @r Ry = (S/pS)y = U1 (S/pS)

where U = p(R \ p). In particular, it follows that S/pS # 0. The set U~ *(S/pS)
is a commutative ring, so there is a maximal ideal m C U~*(S/pS). The prime
correspondences for localizations and quotients imply that m = U~(P/pS) for

some prime ideal P C S such that P D pS and PN U = (. The condition P D pS
implies that

eTHP) 297 (1S) 297 (w(p)) 2 p.
The conditions PNU = () and U = @(R ~ p) imply that o~ (P)N (R~ p) =0, so
¢ '(P)Cy.
Combining the two displays, we have p~1(P) = p, as desired. O

We next discuss how to construct some faithfully flat ring homomorphisms.

Definition IT1.5.4. A homomorphism of commutative rings ¢: R — S is local if S
is local with maximal ideal n, and R is local with maximal ideal m where ¢(m) C n.

Example II1.5.5. Let (R,m) be a commutative local ring. Proposition
shows that the natural inclusion R — R[X7,...,X,] is local.

Letting 9 C R[X1,...,X,] denote the maximal ideal MM = (m, X4,..., X,,),
the composition of natural maps R — R[X;,...,X,] — R[X1,..., X,]om is local.

Example IT1.5.6. Let ¢: R — S be a homomorphism of commutative rings. Let
P C S be a prime ideal and set p = ¢~ 1(P). Proposition [[I1.2.8|fa]) shows that the
induced ring homomorpism ¢p: R, — Sp given by r/s — ¢(r)/¢(s) is local.

Proposition II1.5.7. Let p: R — S be a ring homomorphism such that S is local
with maximal ideal n, and R is local with mazimal ideal m. Then ¢ is local if and

only if ~t(n) = m.
PROOF. See Exercise [I1.5.15] O

Proposition IT11.5.8. Let ¢: (R,m) — (S,n) be a ring homomorphism. The fol-
lowing conditions are equivalent:
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(i) ¢ is faithfully flat;
(ii) @ is flat and local;
(iii) ¢ is flat and =1 (n) =m.

ProOOF. (i) <= (i) Theorem [I11.3.4] implies that S is faithfully flat as an R-
module if and only if S is flat as an R-module and mS # S. Since S is local with
maximal ideal n, we have mS # S if and only if mS C n, that is, if and only if ¢ is
local.

— This follows from Proposition [[11.5.7] O

Proposition IT1.5.9. Let ¢: R — S be a flat ring homomorphism. Let P C S be
a prime ideal, and set p = o~ (P). The induced map ¢p: Ry — Sp is flat and
local, i.e., faithfully flat.

PROOF. Proposition [I11.2.8(|b)) says that ¢p is flat. Proposition [III.2.8(la)) im-

plies that ¢ p is local, so Proposition [[I[.5.8 guarantees that pp is faithfully flat. O

The next result says that flat ring homomorphisms satisfy the going-down prop-
erty.

Theorem II11.5.10. Let ¢: R — S be a flat ring homomorphism. Let P C S be
a prime ideal, and set p = = (P). If there is a chain po Cp1 C -+ C p, = p of
prime ideals of R, then there is a chain Py C P, C --- C P, = P of prime ideals of
S such that o= (P;) =p; fori=1,...,n.

PRrROOF. By induction on n, it suffices to consider the case n = 1. The prime
correspondence for localization implies that the ideal (po), C R, is prime. The
induced map ¢p: R, — Sp is faithfully flat by Proposition so Proposi-

tion implies that there is a prime ideal @ C Sp such that (pp) 1 (Q) =

(Po)p- Set Py = B71(Q) where 3: S — Sp is the natural map. The prime corre-

spondence for localization implies that Py is a prime ideal of S such that Py C P.
Proposition (]ED says that the following diagram commutes

R—Y2-g

S

Rp Yp SP

where the vertical maps are the natural ones. The commutativity of the diagram
yields the second equality in the following sequence

¢~H(Po) =071 (B7HQ)) = o™ ((6p)TH(Q)) = a7 ((po)p) = Po-

The first equality is by the definition of Py, and the third equality is by the definition
of Q. The fourth equality is from the prime correspondence for localization. (Il

Corollary IT1.5.11. Let R be a commutative ring.

(a) Let P C R[X1,...,X,] be a prime ideal, and set p = P N R. If there is
a chain po C p1 C --- C p, = p of prime ideals of R, then there is a chain
Py C P, C---C P, =P of prime ideals of R[X1,...,X,] such that PN R = p;
fori=1,...,n.
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(b) Let P C R[Xy,...,X,] be a prime ideal, and set p = P N R. If there is
a chain pg C p1 C --- C p, = p of prime ideals of R, then there is a chain

PyC P, C---C P, =P of prime ideals of R[ X1, ..., X,] such that P,NR = p;

fori=1,...,n.
PrOOF. The natural inclusions R — R[X3,...,X,] and R — R[Xq,...,X,]
are flat, so the result follows from Theorem O

Lemma II1.5.12. Let ¢: (R,m, k) — (S,n,1) be a flat local ring homomorphism
between commutative noetherian rings, and let M be a finitely generated R-module.
There is an equality

dim; Homg(l, S @ g M) = dimy Homp(k, M) - dim; Homg (I, S/mS).
In particular, we have Homg(l,S ® g M) = 0 if and only if Hompg(k, M) = 0 or
Homg(l, S/mS) = 0.
PrROOF. The R-modules & and M are finitely generated, so Exercise
implies that Hompg(k, M) is finitely generated over R. Also, the definition k = R/m
implies that mk = 0. Remark|[[.5.11{implies that Hom g (k, M) has the structure of a

k-module that is compatible with its R-module structure via the natural surjection
R — k and that Hompg(k, M) is finitely generated over k. So, we have

Homp(k, M) = k* (I11.5.12.1)

for some integer a > 0. Similarly, since S/mS and S ® g M are finitely generated
S-modules, there are integers b, ¢ > 0 such that

Homg(l, S/mS) = 1° and Homg(l,S ®pr M) 2 1°. (I11.5.12.2)
The definition [ = S/n yields the first and last steps in the next sequence
S/mS S/mS
S/mS l=(S/mS S/n) = = = S/m=1] (II[.5.12.3
(5/mS) 51 = (S/mS) @s (S/n) = s = The = Sn=1 )

The second and fourth steps (both S-module isomorphisms) follow from Exer-
cise and the third isomorphism theorem. The third step is from the contain-
ment n D mS. The definition k¥ = R/m yields the equality in the next sequence

S/mS =~ S @ R/m=5®xk (I11.5.12.4)

and the isomorphism is from Exercise It is straightforward to show that
this is an S-module isomorphism.

The definitions in ([II.5.12.1) and (III.5.12.2)) explain steps (1), (6), and (10)
in the next sequence

1) (2)
I° 2 Homg(l,S ®g M) = Homg((S/mS) ®s 1,5 ®@r M)
(3) (4)
= Homg(l, Homg(S/mS,S ®r M)) = Homg(l,Homg(S ®r k, S ®p M))
(5) (6) (7)
=~ Homg(l, S @ Hompg(k, M)) = Homg(l,S ®r k%) = Homg(l, (S ®r k)%)

(8) (9) ) . oay
>~ Homg(l, S ®r k)* = Homg(l, S/mS)* = (i*)* = 1,

The sequence ([I1.5.12.3)) explains step (2), and (3) is Hom-tensor adjointness[[1.5.1]
Steps (4) and (9) are from (I11.5.12.4)). Step (5) is due to Exercise|l1.2.15, and (7) is
by Theorem [[1.3.2] Step (8) follows from Proposition [I.2.3||c)), and (11) is standard.
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The previous sequence explains the second equality in the next sequence
dim; Homg (1, S ® g M)c = ab = dimy, Hompg(k, M) - dim; Homg(l, S/mS)
and the others are from ([I1.5.12.1) and (I1I.5.12.2). This explains the desired

equality, and the final statement of the lemma follows immediately. O

Lemma II1.5.13. Let ¢: (R,m, k) — (S,n,l) be a flat local ring homomorphism
between commutative noetherian rings. There is an equality

dim; Homg (I, S) = dimy, Hompg(k, R) - dim; Homg(I, S/mS).

Thus, Homg (1, S) = 0 if and only if Hompg(k, R) = 0 or Homg(l, S/mS) = 0.
PROOF. This is the special case M = R in Lemma [[I[.5.12] O
Exercises.

Exercise I11.5.14. Complete the proof of Proposition [[TL.5.3]

Exercise I11.5.15. Prove Proposition [[I.5.7]

Exercise I11.5.16. Complete the proof of Theorem [[IT.5.10]

Exercise I11.5.17. Complete the proof of Lemma

ITI1.6. Completions: A Survey
Probably only want to discuss the properties of the completion of R here.
Exercises.

Exercise 1I1.6.1.

IT1.7. Completions: Some Details

How much can we reasonably do here? Can we prove flatness without inverse
limits?

Exercises.

Exercise II1.7.1.






CHAPTER IV

Homology, Resolutions, Ext and Tor September 8,
2009

Homological algebra is based on the notions of homology and cohomology. We
start with some general ideas about homology and then proceed to the specific
examples of Ext and Tor, which are defined in terms of resolutions.

IV.1. Chain Complexes and Homology
Here are the foundational notions for homological algebra.

Definition IV.1.1. Let R be a commutative ring. A sequence of R-module ho-
momorphisms

oM, oM M,
My = —5 M; Z My —5 o

is a chain complex or an R-complex if OM,0M = 0 for all i. We say that M; is the
module in degree i in the R-complex M,. The ith homology module of an R-complex
M, is the R-module

H;(M,) = Ker(9}")/ Im(0},).

Remark IV.1.2. Let R be a commutative ring. An R-complex M, is exact if and
only if H;(M,) = 0 for all i.

In the following example, and throughout these notes, we employ the linear
algebra protocols described in Remark

Example IV.1.3. Consider the following sequence of Z-modules
(%) 5 (23)
M= 0-Z-—57°-"57Z—0.
—~—
degree 0

To show that this is a chain complex, we need only show that the products of
the pairs of adjacent matrices are zero; see Exercise m (23) (%) = (0). We
compute the homology modules in each degree.

Ker(Z — 0 Z Z
Ho(M,) = erZ > 0) = =_=0

Im <Z2 (23) Z) (2,32 Z

. Ker (22 ﬂz) {

71
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Ker <Z E(S—L Z2> 0z

Hy(M,) = =—=0.
2(M.) Im (0 — Z) oz ="
The remaining homology modules are 0 because M; = 0 when i # 0,1,2; see
Exercise [V.T.111
Example IV.1.4. We work over the ring R = Z/127. Here is an R-complex:
M,=---27/122 572122 5 72/122 % -
S—— S—— S——
degree 2 degree 1 degree 0
We have

Ker(Z/127 % 7,/)127) = 37./12Z
Ker(Z/122 % 7,/127 = 27,/127.
So, one of the homology modules is
Ker(z/122 % 7,/122)  27/127Z _ 27 _ 7

Hyi(M,) = = ~ 20 2
Im(z/122 % z/122)  AZ/12Z AL 2L

and another one is

Ker(Z/12Z = 7/12Z) ~ 32/12Z _ 3L _, 7

m(z/122 % z/122z)  OZ/12Z  6Z 27’

The periodic nature of the complex M, implies that H,, (M,) = Z/27Z for all n € Z.

Ho(M,) =

Definition IV.1.5. Let R be a commutative ring. Given an R-complex M, and
an R-module N we define the following:

0;4,1®rN oM @rN ®rN
M,@rN=... M®RN—’M11®RN—’1
— —
degree ¢ degree i — 1
N®roM N®gd) N®roM
N@®rM,=--- —5 N@gr M, LN@@RMH TN
N— —_———
degree ¢ degree i — 1
Hompg (N, M,) =
HomR(Nﬁ%rﬂ Hompg (N,0M) HomR(N,aiI\{l)
- ——————— > Homg(N,M;) —————5 Homg(N,M; ) —— - -~
degree degree ¢ — 1
Homp(M,, N) =
Hompg(8M,N) HomR((’)lJrl N) HomR(6ZJr27 )

Homp(M;, N) Homp(M; 41, N)
| — [ —

degree —i degree —(i+ 1)

Proposition IV.1.6. Let R be a commutative ring. Let Mo be an R-complex, and
let N be an R-module. Then the following sequences are R-complexes: Mo @ N,
N ®pr Mo, Homg(N, M,), and Homg(M,, N).

PRrROOF. The functoriality of — @ g N from Proposition [[1.2.1)|b) provides the
first equality in the next sequence

0 @r N)(az+l ®@rN) = (8Maz+1) Q@rN=0®r N =0.



IV.1. CHAIN COMPLEXES AND HOMOLOGY 73

The second equality is from the fact that M, is a chain complex, and the third
equality is standard. The others are verified similarly; see Exercise ([

Example IV.1.7. Consider the following Z-complex from Example

(23)

9
A (%) 72 7 0

M, = 0

ar—s (%,)
() — (2a + 3b).
The complex M, ®z Z? has the following form:

: (f)ez (2 3)82?
M@Z2= 0—>ZeR——RPel?——— L7 —>0

a®(§)—(2%.) @ (3)
(3) ®(3) —— (2a+30)@ (3)-
Recall that there are isomorphisms
0:Z@pZ° =70 givenby  a®(§) e~ (5)
and

V: 72 @y 7% = Z*  given by (%)®(§)H<§§>.

It is straightforward to check that these isomorphisms make the following diagram
commute:

(36)@)22 (2 3)Q72
0——=7ZQR7:———7?x 7> 7R7%2—0
¢lg wig %g
0 7?2 VA 7?2 0

9 0 (2300)
(—6 0 ) 0023
0 9
0 —6
In other words, the complex is “isomorphic to” the bottom row of this diagram.

Definition IV.1.8. Let R be a commutative ring, and let {M}} ca be a set of
R-complexes. The product of these complexes is the sequence

[Lxea M = o lea M{\+1 > [Lxea Mz‘A -
A
(M) —— (M (m})).
The coproduct (or direct sum) of these complexes is the sequence

[Thea M2 = o [lhea M ——Ilea M —— -+

(m}) ——— (0™ (m})).

? K3
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Remark IV.1.9. Let R be a commutative ring, and let {M2} ca be a set of R-
complexes. It is straightforward to show that the product [[,c, M} and coproduct
Ixea M} are both R-complexes. Also, for each index i, there are isomorphisms

H; <H M.’\> ~ [] Hi(a2) H; (]_[ M.’\> = [T Hi().

A€A AEA A€A A€A

We sometimes write Gxea M in place of J[, o, M.
When A = {1,2} we sometimes write M} @ M2 in place of ]_[?Zl M. This
complex has the following form:

oM, 0
M, M}, ( 7‘0 81{;) M}
e = — D ",y ...
M M2, M}

This is the same as the product M} x M2 = H?Zl M¢. Similar comments hold
when A is any finite set.

Theorem IV.1.10. Let R be a commutative ring. Let Mo be an R-complex, and
let N be an R-module.

(a) If N is flat, then H;(Mo ®r N) 2 H;(M,) ®g N for alli € Z.
(b) If N is flat, then H;(N ® g My) = N ®g H;(M,) for all i € Z.
(¢) If N is projective, then H;(Hompg (N, M,)) = Homg (N, H;(M,)) for alli € Z.
(d) If N is injective, then H;(Homg(M,, N)) = Hompg(H;(M,), N) for all i € Z.

PROOF. Note that we have already shows that M, ® g N is an R-complex.
Fix an integer ¢ and consider the following exact sequence

0— Im(9},) = Ker(9}) 5 H;(M,) — 0

where € and 7 are, respectively, the inclusion and the natural surjection.
Plan: We show that there is a commutative diagram with exact rows

0 —=Im(M,) @r N 22 Ker(0M) @5 N 225 H;(M,) @ N —> 0

Flz Glz Hl )

0 ——Im(0M, ®r N) —>Ker(dM @p N) —— H;(Me ®z N) — 0
wherein the maps F and G are isomorphisms, and the maps « and 7 are, respec-
tively, the inclusion and the natural surjection. The Snake Lemma implies that H
is an isomorphism, completing the proof.
Step 1: We build F' using the universal mapping property for tensor products.
Let m = 0M,(m/) € Im(0},) € M;, and let n € N. In M; ® N, we have
m®@n =0, (m)®n= (0}, @r N)(m ®@n) € Im(0}, ®r N) C M; ®x N.

?

Hence, the map f: Im(aﬁl) x N — 1111(5'2»]‘1[1 ®pr N) given by f(m,n) = m®n
is well-defined. It is straightforward to show that f is R-bilinear, so it induces a
well-defined R-module homomorphism F: Im(8,) ®g N — Im(0}, ®g N) such

i
that F(ZJ m; @n;) = Zj m; Q@ n;.
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Step 2: The map F is surjective. Every element of Im(@f‘j{l ®g N) is of the
form ¢ = (0}, ®@r N)(32; m; ®@n;) for some } . m;j@n; € M;11 ®g N, so we have

(3

(= (0, ®r N)(XZ;mj @ny) =30, 0M,(my) @ ny = F(32,; 0, (my) @ ny)

as desired.

Step 3: The map F is injective. Let ~: Im(@%l) — M, denote the inclusion.
As N is flat and ~y is injective, the induced map Yy®pg N : Im(@%ﬂ@RN — M;®rN
is injective. This map is given by (y®r N)(3_; m; ®@n;) = >, m; @ n;. It follows
that there is a commutative diagram

Im(9},) ®r NC 1Enl M; g N

Tl

Im(0M, @ N)

K3

where the unlabeled map is the inclusion. Since v ® g N is injective, it follows that
F' is injective.

Step 4: We construct G using the universal mapping property for tensor prod-
ucts. Let m € Ker(9%,) C M;. For each n € N, we have

OM @r N)(m@n) =0M(m)@n=00n=0

som®n € Ker(0M @ N). Hence, the map g: Ker(9,)x N — Ker(0M @z N) given
by g(m,n) = m®n is well-defined. It is straightforward to show that g is R-bilinear,
so it induces an R-module homomorphism G: Ker(d%,;) @ N — Ker(dM @g N)
such that G(}_,; m; ®@n;) =32, m; ®@nj;.

Step 5: The map G is bijective. Consider the exact sequence

My § o
0— Ker(@i ) — Mz — Mi—l

wherein § is the inclusion. Apply the functor — ® g NV to obtain the top row of the
next diagram

S®rN oM ®rN
0 —> Ker(OM) @ N 222 My @ N ———"" > M; 1 @z N

A T

0 —Ker(0M @ N) —— M; @z N M; 1 ®r N

wherein o is the inclusion. It is straightforward to show that this diagram com-
mutes. The top row of this diagram is exact because N is flat, and the bottom row
is exact by construction. A straightforward diagram-chase now shows that G is an
isomorphism.

Step 6: The left-most square in diagram commutes. We check the commu-
tativity on simple tensors m @ n € Im(9 ) ® g N:

G(e@g N)im®n))=G(men)=men=a(men)=ca(F(man)).

The general commutativity follows directly.
Step 7: The existence of the map H now follows from Exercise
The proofs of parts @f@ are similar. O
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Exercises.

Exercise IV.1.11. Let R be a commutative ring, and let M, be an R-complex.
Prove that, if M; = 0, then H;(M,) = 0.

Exercise IV.1.12. Let R be a commutative noetherian ring, and let M, be an
R-complex. Prove that, if M; is finitely generated over R, then H;(M,) is finitely
generated over R.

Exercise IV.1.13. Complete the proof of Proposition

Exercise IV.1.14. Continue with the notation of Example and compute
the complexes Z2 ®z M,, Homgz(Z?, M,), and Homgz(M,, Z?).

Exercise IV.1.15. Verify the facts from Remark

Exercise IV.1.16. Let ¢: R — S be a homomorphism of commutative rings.

(a) Let N, be an R-complex, and let M be an S-module. Prove that the following
sequences are S-complexes: Ny ® g M and M ®pr N, and Hompg(N,, M) and
Homp(M, N,).

(b) Let No be an S-complex, and let M be an R-module. Prove that the following
sequences are S-complexes: Ny ®p M and M ®r N, and Hompg(N,, M) and
Hompg (M, N,).

Exercise IV.1.17. Let R be a commutative ring, and consider the following com-
mutative diagram of R-module homomorphisms with exact rows:

MLy L 0
|
N s N —Ls N 0.

Prove that there is a well-defined R-module homomorphism ¢”: M"” — N’ making
the following diagram commute

MLy L 0
N
N M 0.

Exercise IV.1.18. Complete the proof of Theorem

IV.2. Resolutions

Resolutions are special kinds of chain complexes. We use them to build Ext
and Tor.

Projective resolutions.

Definition IV.2.1. Let R be a commutative ring, and let M be an R-module. A
projective resolution of M over R or an R-projective resolution of M is an exact
sequence of R-module homomorphisms
+ oy o T
Pf=...—-P —FP—- M —0
~—~

degree —1
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such that each P; is a projective R-module. The resolution P} is a free resolution

of M over R or an R-free resolution of M if each P; is a free R-module. The
truncated projective (or free) resolution of M associated to P, is the R-complex

P P
po=-2,p %, p 0

Example IV.2.2. Let R be a commutative ring. If P is a projective R-module,
then projective and truncated projective resolutions of P over R are, respectively,

Pj‘:O—>P1—P>P—>O and P,:0— P —0.
~— ~—~ —~—
degree 0 degree —1 degree 0
Example IV.2.3. Fix an integer n > 2. Projective and truncated projective
resolutions of Z/nZ over Z are given by

n

Pf:0— 7 % 7 57Z/Z—-0 and Py:0— Z % Z —0
~— ~~ ~— ~~

degree 1 degree 0 degree —1 degree 1 degree 0

respectively. When r € R is not a zero divisor, resolutions of R/(r) over R are
produced similarly.

The Fundamental Theorem for Finitely Generated Abelian Groups shows the
following: If G is a finitely generated abelian group, then there are integers r, s > 0
and a Z-projective resolution

0—-272°—7"— G— 0.
Resolutions may never stop.

Example IV.2.4. Fix integers m,n > 2. Projective and truncated projective
resolutions of Z/nZ over Z/mnZ are given by

Pr = Z/mnZ 5 Z/mnZ = Z)mnZ 2 Z/mnZ 5 Z/nZ — 0
— —— S——— —— ~——
degree 3 degree 2 degree 1 degree 0 degree —1

P, =

- Z/mnZ S Z/mnZ s Z)mnZ 2 Z/mnZ — 0
—— ~—— S—— ~——
degree 3 degree 2 degree 1 degree 0

respectively. When 7, s € R are not zero divisors, resolutions of R/(s) over R/(rs)
are produced similarly.

Resolutions are not unique.

Example IV.2.5. Let R be a commutative ring. Let P; be a projective resolution
of an R-module M. Given any projective R-module ), and an integer ¢ > 0, the
following sequence

N oP (6312) (8%1 ]10 ) (87 0) oF
Pf=. 2P, 25 P eQ—5P6Q —— P, —

is also a projective resolution of M.

The existence of projective resolutions is given in Exercise [[V.2.9] This is
essentially a consequence of the last property in Remark
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Injective resolutions.

Definition IV.2.6. Let R be a commutative ring. Let M be an R-module. An
injective resolution of M over R or an R-injective resolution of M is an exact
sequence of R-module homomorphisms

I 81 81
+ € 0 —1 —1
le= 0 M -1y —I11—1 99— ---
~—

degree 1
such that each I; is an injective R-module. The truncated injective resolution of M
associated to T1, is the R-complex
ol or, oL,

I.: 0—>Io—0>.[,1—>.[,2—>°".

Example IV.2.7. Considering Z as a Z-module, we have the following injective
resolution

0-2—-Q—-Q/Z— 0.
The fact that Q/Z is injective follows from the fact that a Z-module is injective if
and only if it is divisible. The analogous result also holds over any principal ideal
domain R, which then has an injective resolution of the form

0—-R—-K—-K/R—0

where K is the field of fractions of R. In particular, this works when R is the
polynomial ring k[X] in one variable over a field k.

The existence of injective resolutions is given in Exercise This is es-
sentially a consequence of Theorem [TT.1.16]

Exercises.

Exercise IV.2.8. Let R be a commutative ring, and let P;” be a projective reso-
lution of an R-module M. Prove that the truncated resolution P, is an R-complex
and that the homology of P, is

Hy(P.) M ifi=0
YT o dfi#o.

Conversely, let Qo be a complex of projective R-modules such that H;(Q,.) = 0 for
all © > 1 and ; = 0 for all 7 < 0. Prove that @, is a projective resolution of

Ho(Q,)-

Exercise IV.2.9. Let R be a commutative ring, and let M be an R-module.

(a) Prove that M admits a free (hence projective) resolution over R.

(b) If R is noetherian and M is finitely generated as an R-module, then M admits
a free (hence projective) resolution P;” over R such that each P; is finitely
generated over R.

Exercise IV.2.10. Let R be a commutative ring, and let {M*},ca be a set of

R-modules. For each A € A, let P} be a projective resolution of M?.

(a) Prove that the coproduct complex [],c, P, is a projective resolution of the
coproduct [T, M*.

(b) Prove that, if each P;' be a free resolution of M?, then [[,., P, is a free
resolution of [T, ., M*.
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Exercise IV.2.11. Let R be a commutative ring. Let T1, be an injective resolution
of an R-module M. Prove that the truncated resolution I, is an R-complex and
that the homology of I, is

Hj(].) =

M ifj=0
0 ifj#0.

Conversely, let Jo be a complex of injective R-modules such that H;(J,) = 0 for all
i <0and J; =0 for all i > 0. Prove that J, is an injective resolution of Hy(.J,).

Exercise IV.2.12. Let R be a commutative ring, and let M be an R-module.
Prove that M admits an injective resolution over R.

Exercise IV.2.13. Let R be a commutative ring, and let {M*},ca be a set of
R-modules. For each A € A, let I} be an injective resolution of M?*.

a) Prove that the product complex I} is an injective resolution of M.
AeA e PYN
b) Prove that, if R is noetherian, then the coproduct complex I} is an
AEA "o
injective resolution of [, , M.

IV.3. Ext-Modules

Ext-modules via projective resolutions.

Definition IV.3.1. Let R be a commutative ring. Let M be an R-module, and
fix a projective resolution of M over R

o, b, oP af | aFr aF
P, =.-.. = i+1—>13i‘i_>Pi—1—’"“—2—>P1‘—1_>P0—>0~

For each R-module N the sequence

Hom(P,,N) =
om 6P, om 6P,
0 — Hom(P,, N) u} Hom(Py, N) u)
—_—— —_———
degree 0 degree —1

Hom(af,N) Hom(é)il,N)
] - =

- — Hom(P;_1, N) Hom(P;, N) Hom(P;11,N) — - --
N— —— ——— ~—_———

degree 1 — ¢ degree —i degree —1 — 1
is an R-complex by Proposition For each ¢ € Z set
Extly (M, N) = H_;(Homp(P., N)) = Ker(Homp(9/, |, N))/ Im(Homp (9], N))
which is an R-module.

To aid us in computations of examples, we recall some facts from Remark

and Example

Remark IV.3.2. Let R be a commutative ring, and let N be an R-module. There
is an R-module isomorphism

1: Hompg(R, N) =N given by ¢ — o(1).

The inverse of 1 is given by ¥ ~1(n) = ¢,: R — N where ¢, (r) = rn.

Let 7 € R, and let u®: R — R be the map given by s + 7s. Then the
map Hompg(u®, N): Homg(R, N) — Hompg (R, N) is given by ¢ — 7¢. Combining
this with the isomorphism from the previous paragraph, this map is equivalent to
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the map p: N — N given by n — rn; equivalent in the sense that there is a
commutative diagram

om R
Homp (R, N) —25 %) Homa(R, N)

- -
uN

N . N.

Here are some computations of Ext.

Example IV.3.3. Let m and n be integers such that m,n > 2. We compute
Exty(Z/mZ,Z/nZ) for all integers i. We start with the projective resolution of

Z/mZ over Z from Example [V.2.3

Pr:0— 7 ™ 7 57Z/mZ—0 and Po:0— Z % Z —0.
~—~ ~ - ~— ~—

degree 1 degree 0 degree —1 degree 1 degree 0

The complex Homgy(P,,Z/nZ) then has the following form

0 — Homgz(Z, Z/nZ) —"= Homg(Z, Z/nZ) — 0

degree 0 degree —1
0——>2Z/n7 —- "> 7/n7 —— .
It follows that
m l/m)Z Z 7
Ext(Z/mZ, Z/nZ) = Ker(Z/nZ ™ 7/nz) = LTIZ » o

nZz (mn/0Z — gZ
where [ = lem(m,n) and g = ged(m,n), and

Ext},(Z/mZ, 7./n7) = Z/nZ = Z/nZ o Z o z
Im(Z/nZ = Z/nz)  m(Z/nZ)  (m,n)Z gL
and Ext}(Z/mZ,7,/nZ) = 0 for all i # 0, 1.

(For the kernel K of the map Z/nZ % Z/nZ, argue as follows. Given an
integer a, the element @ € Z/nZ is in K if and only if am € nZ. If a € (I/m)Z,
then ma € I1Z C nZ. Conversely, if ma € nZ, then n | am. Since m | am also, it
follows that I | am. Hence, we have (I/m) | a, so a € (I/m)Z.)

Example IV.3.4. Fix integers m,n > 2. We compute Exté/mnz(Z/nZ,N) for
some modules N. Example gives a projective and truncated projective res-
olutions of Z/nZ over Z/mnZ as

Pf=--- 2 7/mnZ % Z/mnZ % Z)mnZ 2 Z)mnZ 5 Z/nZ — 0
—— —— —— —— ——
degree 3 degree 2 degree 1 degree 0 degree —1

Py = Z/mnZ 5 Z/mnZ = Z)mnZ = Z/mnZ — 0O
—— —— —— ——
degree 3 degree 2 degree 1 degree 0

respectively. The complex Homg/p,,,7(Pe, N) has the following form:

Hom P,N)= 0—- N5 N ™ N & N ...
Z/ng( . ) Ny ~ ~—~ ~—~
deg 0 deg —1 deg —2 deg —3
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(1) With N = Z/mnZ, we have
HomZ/ng(Ph Z/ng) =
0 — Z/mnZ % Z/mnZ = Z/mnZ = Z/mnZ > - - - .
—— —— —— ——
deg 0 deg —1 deg —2 deg —3

As in Example we see that this is exact in all degrees except degree 0. In
degree 0, we have

Ker(Z/mnZ 2 Z/mnZ) = mZ/mnZ = 7./nZ.
And so, we have
) 0 ifi#£0
Ext’, Z/nZ, 7 7) =
(2) With N = Z/mZ, we have
HomZ/ng(Poa Z/mZ) =
0—Z/mZ % Z2/mZ 2=% 72/mZ 2 7/mZ =2 . ..
N~ S~~~ e S~~~
deg 0 deg —1 deg —2 deg —3

The image and kernel of the zero-map are easy to compute. For the other map, let
g = ged(m,n) and note that m/g € Z. For the image, we have

Im(Z/mZ = 7./mZ) = (n)(Z/mZ) = (m,n)Z/mZ = gZ/mZ.
The kernel was computed in the previous example.
Ker(Z/mZ = Z./JmZ) = 7./ g7.
And so, we have

EXt),,z(Z/nZ, Z/mZ) = Ker(Z/mZ = Z/mZ) = 7/ g L.

Ker(Z/mZ % Z/mZ)  7/mZ
Im(Z/mZ % Z/mZ)  9Z/mL
Ext2unz(Z/nZ, Z/mZ) = TE((Z;ZZZ = ZZ//:;)) _ 9()0%/ ML & 7,47

Ext7,/ynnz(Z/nZ, Z/mZ) =

~7/g7.

And similarly, we have
EXt}, nz(Z/1Z, Z/mZ) = L/ g,

for all 7 > 0.
(3) With N = Z/nZ, we have

Homy jmnz(Pe, Z/nZ) = 0 — Z/nZ "= Z/nZ = 7/nZ = Z/nZ ™ ..
~—~— ~—— ~—~— ~—~—
deg 0 deg —1 deg —2 deg —3

This implies

Ext3,/yunz(Z/nZ, Z/nZ) = Z/nZ,
and the computation in part (2) shows

EXt}, iz (Z/nZ, Z/mZL) = L/ gZ
for all 7 > 0.
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When r,s € R are not zero divisors, the computations of the R-modules
Exth/psn(l2/sR, R/1rsR), Exth ), g(R/sR, R/TR), and Exty . .r(R/sR, R/sR) are

similar.

The following theorem contains a very important fact about Ext that we prove
later; see Theorem [VIIT.5.2]

Theorem IV.3.5. Let R be a commutative ring, and let M and N be R-modules.
The modules Exté,—i(M7 N) are independent of the choice of projective resolution of
M. In other words, if P;f and QF are projective resolutions of M, then there is an
R-module isomorphism H_;(Hompg(Ps, N)) 2 H_;(Hompg(Q., N)) for each index i.

Assuming this fact, we will prove some properties of Ext from the introduction.

Proposition IV.3.6. Let R be a commutative ring, and let M and N be R-
modules.
(a) We have Ext's(M, N) =0 for all i < 0.
(b) We have Ext's(M,0) = 0 for all i € Z.
(c) We have Ext'z(0, N) =0 for all i € Z.

PROOF. Let P, be a projective resolution of M.

(@) As we have seen in Definition we have Hompg(P,, N); = 0 for all
j > 0. For i < 0, we then have Extyh(M,N) = H_;(Homg(P., N)) = 0; see
Exercise [V.T.111

(b) For each index i, we have Hompg(P;,0) = 0. This implies that Hompg(P,, N
is the zero complex 0, so we have Ext’, (M, N) = H_;(Homg(P., N)) = H_;(0,) =
0 for each index .

The zero complex 0, is a projective resolution of 0, so we may take Py = Q,.
With this choice, we have Hompg(P,, N) = 0,, so for each index i € Z we have
Exto(M,N) = H_;(Homg(P,, N)) = H_;(0,) = 0. 0

Proposition IV.3.7. Let R be a commutative ring, and let M and N be R-
modules. There is an R-module isomorphism Ext%(M, N) = Homg (M, N).

PRroor. Let P} be a projective resolution of M. From Definition [[V.3.1] we
see that Ext% (M, N) is the kernel of the map

om P
Hom(Py, N) 22N gom( Py, N).

On the other hand, the following sequence is exact

of r
P1 — PO — M —0
so the left-exactness of Hompg(—, N) implies that the next sequence is also exact

m P
0 — Hompz(M, N) Homg(r,N), Homp(Py, N) Homr(91,N)|

It follows that
Hompg (M, N) = Im(Homg(7, N)) = Ker(Hompg(d{, N)) = Ext% (M, N)
as desired. O

Proposition IV.3.8. Let R be a commutative ring, and let M and N be R-
modules.

(a) If M is projective, then EthR(M, N) =0 for alli #0.

Hompg (P, N).
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(b) If N is injective, then Ext's(M, N) =0 for all i # 0.

ProoF. Assume that M is projective. From Example[[V.2.2] we know that
projective and truncated projective resolutions of M over R are, respectively,

Pf:OHMMMHO and Po:0— M —0.
~~ ~~ ~~

degree 0 degree —1 degree 0
Thus, we have
Homp(P.,N) = 0 — Hompr(M,N) — 0

Thus, for i # 0 we have Exth(M,N) = H_;(Homg(P,,N)) = 0; see Exer-
cise [V.1.111

(]E[) Assume that N is injective. Let PJ be a projective resolution of M. In
particular, P}’ is exact. Since N is injective, the sequence Hompg(P,F, N) is exact,

so for ¢ > 1, we have
Ext’ (M, N) = Ker(Homg (0] 1, N))/Im(Hompz(9{", N))
= Ker(Horn]:g(ailf17 N))/Im(HomR(aier,N)) =0
as desired. O

Proposition IV.3.9. Let R be a commutative noetherian ring, and let M and N
be finitely generated R-modules. For each index i, the R-module Ext(M,N) is
finitely generated.

PrROOF. Exercise [[V.2.9(b) shows that M has a free resolution F, such that
each Fj is finitely generated, say F; = RY. It follows that we have

Hompg(F;, N) 2 Hompg(R", N) = Homg(R, N)b = Nb
so each of the modules in Hompg(F,, N) is finitely generated. Exercise [[V.1.12

implies that each homology module Ext (M, N) = H_;(Homg(P,, N)) is finitely
generated. 0O

Ext-modules via injective resolutions. Here is another result that we do
not have the tools to prove yet. It says that Ext is “balanced”. See Theorem |[VIIL.5.4]
for part of the result.

Theorem IV.3.10. Let R be a commutative ring. Let M and N be R-modules, and
let 1, be an injective resolution of N. For each integer i, there is an isomorphism

H_,;(Homg (M, 1,)) = Ext’ (M, N).

In other words, the modules Ext'(M, N) can be computed using an injective reso-
lution of N, and this is independent of the choice of injective resolution of N.

Exercises.

Exercise IV.3.11. Compute Ext}, 197(%/67Z, Z,/3Z) and Ext} 4, (Z/37Z, 7./ 6Z) for
all 7 > 0.

Exercise IV.3.12. Let G be a finitely generated Z-module, and let H be a Z-
module. Prove that Exty, (G, H) =0 for all ¢ > 1.
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IV.4. Tor-Modules
Tor is to tensor product as Ext is to Hom.

Definition IV.4.1. Let R be a commutative ring. Let M be an R-module, and
fix a projective resolution of M over R

o, o5, aF af | or oF
P, =... = i+1—’Pi;>Pi—1—>"'L>P1;>PO_>O~

For each R-module N the sequence

0/} ,®N 01 ®N of oN o eN

Po@N=--- PN poN225p (@N ...

P P
LN b e N AEY b e N =0

is an R-complex by Proposition [[V.1.6] For each i € Z set
Tor?(M,N) = H;(P, ® N)
which is an R-module.
To aid us in computations, we recall some facts from Examples[[T.1.9 and [[T.2.3]

Remark IV.4.2. Let R be a commutative ring, and let N be an R-module. There
is an R-module isomorphism

1/):R®RN§—>N given by rmn — rn.

The inverse of 1 is given by ¥~ 1(n) = 1@ n.

Let r € R, and let uZ: R — R be the map given by s +— 7s. Then the map
PE@r N: R®r N — R®g N is given by s@n — r(s®@n) = (rs) ® n. Combining
this with the isomorphism from the previous paragraph, this map is equivalent to
the map p: N — N given by n ~— rn; equivalent in the sense that there is a
commutative diagram

E@rN
Ropg N —"2F L R@p N

- -
uN

N N.

Here are some computations of Tor.

Example IV.4.3. Let m and n be integers such that m,n > 2. We compute
Tor?(Z/mZ,Z/n7Z) for all integers i. We start with the projective resolution of

Z/mZ over Z from Example [[V.2.3

PFr:0— 7 ™ 7 57Z/mZ—-0 and Po:0— Z = 7 —0.
-~ =~ = ~ =~
degree 1 degree 0 degree —1 degree 1 degree 0
The complex P, ®z Z/nZ then has the following form
degree 1 degree 0

0 Z/nZ i Z/nZ 0.
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As in Example [V.3.3 it follows that
Z
TorX(Z/mZ,Z/nZ) = — = Tor?(Z/mZ, Z/nZ)
g

and Tor?(Z/mZ,7/nZ) = 0 for all i # 0, 1.

The following theorem contains a very important fact about Tor that we do
not have time to prove.

Theorem IV.4.4. Let R be a commutative ring, and let M and N be R-modules.
The modules Torf‘(M, N) are independent of the choice of projective resolution of
M. In other words, if P;" and QY are projective resolutions of M, then there is an
R-module isomorphism H;(Ps ® g N) 2 H;(Qe ®g N) for every integer i.

The next three results are proved like Propositions [[V.3.6H[V.3.8

Proposition IV.4.5. Let R be a commutative ring, and let M and N be R-
modules.

(a) We have Tor;'(M,N) =0 for all i < 0.
(b) We have Tor(0,N) =0 for all i.
(c) We have Torf(M,0) =0 for all i.

PROOF. Exercise V413 O

Proposition IV.4.6. Let R be a commutative ring, and let M and N be R-
modules. We have Torf(M,N) = M Q@ N.

ProOOF. Exercise [V.4.14] 0

Proposition IV.4.7. Let R be a commutative ring, and let M and N be R-
modules.

(a) If M is projective, then TorX (M, N) =0 for all i # 0.
(b) If N is flat, then Tor*(M,N) =0 for all i # 0.

PRrROOF. Exercise [V 4.15| O

Here is another result that we do not have the tools to prove yet. It says that
Tor is “balanced”. See Theorem for part of the result.

Theorem IV.4.8. Let R be a commutative ring. Let M and N be R-modules, and
let Qo be a projective resolution of N. For each integer i, there is an isomorphism

H;(M ®r Q,) = Tor (M, N).

In other words, the modules Torf‘(M7 N) can be computed using a projective reso-
lution of N, and this is independent of the choice of projective resolution of N.

Corollary IV.4.9. Let R be a commutative ring, and let M and N be R-modules.
If M is flat, then Tor™(M,N) =0 for all i # 0.

PRrROOF. Use Theorem [IV.4.8|as in the proof of Proposition [[V.4.7|(b]). (I
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Exercises.

Exercise IV.4.10. Let m,n be integers with m,n > 2. Compute the Z-modules
Tor™/ ™ (Z,/nZ., Z./mnZ), Tor™ ™ (Z,/nZ, Z/mZ), Tor™ ™ (Z/nZ,Z/nZ) for all
1> 0.

Exercise IV.4.11. Compute ToriZ/MZ(Z/GSZ, Z/3Z) and ToriZ/uZ(Z/SZ, Z/6Z) for
all 7 > 0.

Exercise IV.4.12. Let G be a finitely generated Z-module, and let H be a Z-
module. Prove that Tor?(G, H) = 0 for all i > 1.

Exercise IV.4.13. Prove Proposition
Exercise IV.4.14. Prove Proposition
Exercise IV.4.15. Prove Proposition [[V.4.7]
Exercise IV.4.16. Prove Corollary [[V.4.9]

Exercise IV.4.17. Let R be a commutative noetherian ring, and let M and N
be finitely generated R-modules. Prove that the R-module Tor? (M, N) is finitely
generated for each index 3.

IV.5. Epilogue

“Ext” is short for “extension”, and “Tor” is short for “torsion”. We give a brief
discussion of these connections, without proofs. This section is not needed for the
sequel.

Definition IV.5.1. Let R be a commutative ring, and let M and N be R-modules.
An extension of N by M is a short exact sequence

0—-N-—-T—-M-—D0.
Given two extensions of N by M

€= 0 Nt 2oy 0
¢ = 0 Nl Sy 0

we say that & and £ are equivalent if there exists an R-module homomorphism
h: T — T’ making the following diagram commute:

f g

0 N T M 0
A
0 Nl Ly 0.

Remark IV.5.2. Let R be a commutative ring, and let M and N be R-modules.
Let £ and & be equivalent extensions of N by M, with h: T — T’ as in Defini-
tion[[V.5.1] A straightforward diagram chase (or the Snake Lemma) shows that h is
an isomorphism. Similarly, the inverse h~1: T" — T shows that & and ¢ are equiv-
alent. Moreover, the relation “equivalence” is an equivalence relation on the class
of all extensions of N by M. The extension & is split (as a short exact sequence) if
and only if it is equivalent to the sequence

0NSLHNaMI M0
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where 7 and 7 are the canonical injection and surjection.

The following theorem provides the connection between Ext and extensions.
We will not be proving it here.

Theorem IV.5.3. Let R be a commutative ring, and let M and N be R-modules.
Let eg(M, N) denote the class of all equivalence classes of extensions of N by
M. Then there is a bijection ¢: Exth(M,N) = eg(M,N) such that ¢(0) is the
equivalence class of the split extension. In particular, the set er(M,N) has the
structure of an R-module.

In Lemma we give a proof of the following useful corollary that does
not use Theorem [V.5.31

Corollary IV.5.4. Let R be a commutative ring, and consider the following exact
sequence of R-module homomorphisms:

0—-N-—->T—-M—QO.
If Exth (M, N) = 0, then the displayed sequence splits.
PRrROOF. The displayed sequence is an extension of N by M. By assumption,

we have ep(M, N) =~ Exty(M, N) = 0. Hence, the given sequence is equivalent to
the split sequence; see Remark O

Next, we describe a connection between Tor and torsion.

Definition IV.5.5. Let R be an integral domain, and let M be an R-module. The
torsion submodule of M is

t(M) = {m € M | there exists 0 # r € R such that rm = 0}.
The module M is torsion-free if t(M) = 0. The module M is torsion if t(M) = M.

Remark IV.5.6. Let R be an integral domain with field of fractions K, and let
M be an R-module. Then t(M) is a submodule of M. Moreover, it is the unique
largest torsion R-submodule of M. The quotient M/t(M) is torsion free, that is
t(M/t(M)) = 0.

The following theorem provides the connection between Tor and torsion. See

Theorem [VIIL.7.2]

Theorem IV.5.7. Let R be an integral domain with field of fractions K, and let M
be an R-module. There is an R-module isomorphism tp: Tor®(K/R, M) — t(M).

Exercises.
Exercise IV.5.8. Verify the facts from Remark
Exercise IV.5.9. Verify the facts from Remark [V.5.6

Exercise IV.5.10. Let G be a finitely generated Z-module.
(a) Prove that G is torsion if and only if it is finite.

(b) Prove that G is torsion-free if and only if it is free.
(¢) Prove that G = t(G) @ Z™ for some integer n.






CHAPTER V

Depth September 8, 2009

Here we assume that Ext has the properties described in the introduction and
show how it yields non-homological information about rings and modules. We
begin by stating explicitly the as-of-yet unexplained facts we are assuming for this
chapter. These fact will be explained in later chapters.

V.1. Assumptions

Fact V.1.1. Let R be a commutative ring. Let f: M — M’ and f': M’ — M"
be R-module homomorphisms. Let g: N — N’ and ¢': N’ — N” be R-module
homomorphisms. For each i € Z, there are well-defined R-module homomorphisms

Extﬁ%(M, g): Extﬁé(M, N) — Extg%(M’ N')
Extis(f, N): Exth(M', N) — Exth (M, N).

Each of the operators Ext»(M, —) and Ext,(—, N) is functorial: For each i € Z,
there are commutative diagrams

i Exth(M,g) i ,
Ext (M, N) Extiy (M, N')

. Ext(M,g")
Ext’ (M,g’
Xtr 9 g

Ext% (M, N")

% " EXt;”(f/’N) 7 /
Ext%(M”, N) Ext% (M, N)

\ lExt}é(f,N)
Extp(f'f,N
Ext’ (M, N)
that is, we have
Exty(M, g'g) = Exty(M, g') Exty (M, g)
Exty(f'f, N) = Extp(f, N) Exti(f', N).
See Propositions [VI.5.4] and [VI.5.8]

Remark V.1.2. Let R be a commutative ring. Let M, N and N’ be R-modules,
and consider the zero-map 0%,: N — N’. We claim that the induced homomor-
phism Ext% (M, 0%,): Extlz(M, N) — Ext% (M, N’) is the corresponding zero-map

89
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Exth (M,N)

0.1 .
Exti,(M,N’)

Indeed, there is a commutative diagram

so Fact yields a second commutative diagram

. Ext% (M,0))=0 )
Extwy(M,N) ——— ExtR(M,0) =0

) Exth (M,0%,)=0
Bxtl, (M,0N,) l N

Ext% (M, N').
Similarly, if O%,: M — M’ is the zero-map, then the induced homomorphism

Exth(0M,, N): Exth(M’, N) — Exth (M, N) is the zero-map ngtﬁ%;\]]\;)

words, we have Ext% (0, N) = 0 and Ext’ (M, 0) = 0, regardless of whether the given
0 represents the zero-module or the zero-map. See Examples [VI.5.2] and [VI.5.6]

Fact V.1.3. Let R be a commutative ring. Let M and N be R-modules, and let
r € R. Let uM: M — M be given by m — rm, and let u¥: N — N be given by
n +— rn. For each ¢ € Z, the induced maps

Exté (M, u): Ext’ (M, N) — Ext% (M, N)
Ext% (1™, N): Exth(M,N) — Ext% (M, N)
are given by & — r¢. See Examples [VI.5.2] and [VI.5.6}

Remark V.1.4. Let R be a commutative ring. Let M and N be R-modules, and
consider the identity maps 1ny: N — N and 1,;,: M — M. Since 1y and 1, are
given by multiplication by 1, Fact implies that the induced maps

Ext'a(M,1y): Exti(M,N) — Extih(M,N)
Exth(Lar, N): Exth(M,N) — Extis(M,N)

are given by £ — 1& = £. That is, these maps are the respective identities; see

Examples [VI.5.2 and [VL.5.6]

Remark V.1.5. Let R be a commutative ring. Let f: M — M’ and g: N — N’
be R-module isomorphisms. We claim that the induced maps

Ext% (M, g): Exth(M,N) — Exth (M, N')
Ext%(f, N): Exty(M’, N) — Ext'(M, N)

In other

are isomorphisms. We will prove this for Ext’(f, N); the proof for Exts(M, g)

is similar. We have f~' o f = 1,, so Fact and Remark imply the
following:

Ext%(f, N)o Ext%(f*l,N) = Extﬁ,{(f*1 o f,N) = Exth (1, N) = Lgxii, (0, Ny

Similarly, we have Exth(f~!, N) o Exth(f, N) = Lgyei (a7, SO Ext%(f, N) is an
isomorphism with inverse Ext}é(f_l, N). See Examples [VL.5.2{ and [V1.5.6]
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Fact V.1.6. Let R be a commutative ring. Given an R-module N and an exact
sequence of R-modules

oM v dom o

there are two long exact sequences: the first one is for Ext’ (N, —)

0 — Homp(N, M") 222N pom p(V, M) 222D o p (N, M)

Extg(N,f') Extg(N,f)

— BExth(N, M) Extp(N, M) Extp(N,M") — ---

Exth (N, f) Ext (N, f)

- — BExth (N, M) Exts (N, M) Exto(N,M") — ---
the second one is for Extl(—, N)
0 — Homp(M", N) 200N pyomp(ar, Ny 20m N gom (017, N)

Exth(f,N) Exth(f,N)
_— —_—

— Extp(M",N) Exty (M, N) Extp(M/',N) — ---

Ext% (f,N) Exth (f/,N)

- — Exth (M N) Ext% (M, N)
See Theorems [VIIL.2.1] and [VIIT.2.2]

Exth(M/,N) — --- .

V.2. Associated Primes and Supports of Modules

Before getting to depth, we need some preliminaries from commutative ring
theory, namely, the notion of associated prime ideals.

Definition V.2.1. The prime spectrum of a commutative ring R is the set
Spec(R) = {prime ideals of R}.
For each ideal I C R, we set
V(I) ={P € Spec(R) | P D I}.
The radical of I is the set
rad(J) = {r € R|r™ € I for some integer n > 1}.

Example V.2.2. Consider distinct positive prime integers p; < --- < p, and
positive integers e1,...,e,. For the ideal pi* - - p&"Z C Z we have

Vpt P Z) ={pZ,...,pa}
rad(py* -+ pirZ) = p1 -+ P
Similar results hold for any non-zero ideal in a principal ideal domain.

Remark V.2.3. Let R be a commutative ring. Let I C R be an ideal. The radical
of I is an ideal of R such that I C rad(I) and rad(rad(I)) = rad([). If J is another
ideal of R such that J C I, then rad(J) C rad([). In general, we have

rad([) = mpev(I)P.
If I is finitely generated and I C rad(J), then I"™ C J for all n > 0.
Lemma V.2.4. Let R be a commutative ring. Let I and J be ideals in R such

that V(J) CV(I). Then I Crad(J). If I is finitely generated, then I™ C J for all
n > 0.
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PRrROOF. The ideal rad(J) is the intersection of the prime ideals of R that
contain J. The condition V(J) C V(I) implies that I C P for all P € V(J), so

1 - mpev(J)P = rad(J)
The final statement follows from Remark [V.2.3] O

Definition V.2.5. Let R be a commutative ring, and let M be an R-module. The
annihilator ideal of an element m € M is the set

Anmng(m) ={r € R|rm = 0}.

The annihilator ideal of M is the set

Anng(M)={r € R|rM =0} = Nyperm Anng(m).
The support of M is the set

Supp (M) = {P € Spec(R) | Mp # 0}.
Remark V.2.6. Let R be a commutative ring. Let M be an R-module, and let
m € M. The sets Anng(m) C R and Anng(M) C R are ideals of R. We have
Suppp(R) = Spec(R) and Suppr(0) = 0. If I C R is an ideal, then
Suppp(R/I) = V(I) = Suppg(R/rad(l)).

Similarly, one has Suppp(M) = V(Anng(M)).
Example V.2.7. Let k be a field, and set R = k[X,Y].
(a) If f € R is a non-zero non-unit, then

Suppr(R/fR) = {P € Spec(R) | f € P}.
(b) For m,n > 1, we have
Suppg(R/(X™,Y™)R) = {(X,Y)R} = Suppr(R/((X,Y)R)").
(c) For M = R/(X?, XY)R, we have
Suppg(R/(X? XY)R) = Suppr(R/(X)R) = {P € Spec(R) | X € P}.
Definition V.2.8. Let R be a commutative ring. Let M be an R-module. A prime

ideal P € Spec(R) is an associated prime ideal of M if there is an element m € M
such that P = Anng(m). The set of associated primes of M is denoted Assr(M).

Example V.2.9. Let R be a commutative ring. If P € Spec(R), then one has
Assp(R/P) = {P}. More examples are given in Example

Remark V.2.10. Let R be a commutative ring, and let M be an R-module. A
prime ideal P € Spec(R) is an associated prime of M if and only if there is an
injective R-module homomorphism R/P < M, that is, if and only if M has a
submodule N = R/P.

Proposition V.2.11. Let R be a commutative ring. Assume that R is noetherian,
and let M be a non-zero R-module.

(a) The set of ideals
AR(M) = {AnnR(m) | 0 7é m e M}

has maximal elements; each mazimal element in Ar(M) is an associated prime
ideal of M. In particular, the set Assg(M) is non-empty, and every ideal of the
form Anng(m) for some non-zero element m € M is contained in an associated
prime ideal of M.
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(b) The set of zero-divisors for M is the union of the associated prime ideals of M.
(¢) Ewvery associated prime of M is in the support of M, so there is a containment
Assg(M) C Suppp(M).

PROOF. (a) The set Ar(M) is non-empty because M # 0. Hence, Ag(M) has
maximal elements because R is noetherian. Let I be a maximal element of Ar (M),
say I = Anng(m). We show that I is prime. (Then I € Assgr(M).)

Fix a,b € R such that ab € I, and assume a &€ I. Then abm = 0 and am # 0.
Then I = Anng(m) C Anng(am) and Anng(am) € Ar(M), so the maximality of I
in Ar(M) implies I = Anngr(am). The fact that abm = 0 implies b € Anng(am) =
I, so I is prime.

The remaining conclusions follow from what we have just established.

(]ED By definition, the set Upcagssy(ar)P is contained in the set of zero-divisors
for M. One the other hand, if = is a zero-divisor for M, then there is a non-
zero m € M such that xm = 0; hence, x € Anng(m) which is contained in some
associated prime of M.

For each P € Assg(M), there is an exact sequence

0—R/P— M.
Localizing this sequence yields a second exact sequence
0— (R/P)p — Mp.
Since (R/P)p # 0, it follows that Mp # 0, that is, P € Suppg(M). O
The next example shows the necessity of the noetherian hypothesis in Propo-
sition V.2.111
Example V.2.12. Let k be a field. The cartesian product A = [[2, k is a
commutative ring with coordinatewise operations
(ar,a9,...)+ (bi,ba,...) = (a1 + b1,a2 + ba,...)
(a1,a2,...)(b1,be,...) = (a1b1,asbs,...)
and has the following additive and multiplicative identities:

04 = (0,04, ...) 1a =1k, 1g, .. .).

The direct sum -
1=@ic
i=1 i=1

is an ideal of A that is not finitely generated. Hence, the ring A is not noetherian.
We claim that the ring R = A/I does not have an associated prime ideal. (It
will then follow from Proposition that R not noetherian.) We need to show
that, for every non-zero element o € R, the ideal Anng(«) C R is not prime.
The element « € R is of the form o = a + I where a = (aj,as,...) € A. The
condition « # 0 implies that a ¢ I, that is, the set

lal ={i € Zy | a; # 0}
is an infinite set. Note that the ring R is not an integral domain. For instance,
the elements (1,0,1,0,...)+1,(0,1,0,1,...) + I are non-zero, and their product is
(0,0,...)+I=0g.
Case 1: |a| = Z,. In this case, a is a unit with inverse (a;*,a5",...) + 1, so
we have Anng(a) = 0. Since R is not an integral domain, this ideal is not prime.

k=A

8
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Case 2: the set Z, \ |a| is finite. For i =1,2,... set
bi:{ok if i € |al
1 ifi € |a]
and set b = (by,ba,...) € A. As the set Z \ |a| is finite, we have b € I, and hence
a=a+ (b+1)= (a1 +bi,a2+0bs,...)+1

in R. By construction, we have |(a1 + b1,a2 + ba,...)| = Z4. As in Case 1, the
element « is a unit, so we have Anng(a) = 0 which is not prime.
Case 3: the set Z; \ |a| is infinite. Write

= Ry= ——"F——.
®i€|a| k @iEZJr\\a\ k
It is straightforward to show that there is a ring isomorphism f: R =R Ry X Ry
such that f(a) = (a1,0g,) where oy is a unit in R;y. It follows that there are ring
isomorphisms
R ~ R1XR2 ~ Rl % R2 Q&X&gR
Anng(e)  Anng,xm,(a1,0g,)  Anng,(a1)  Anmng,(0p,) 0 Ry

Since |a| is infinite, the ring R; is not an integral domain, so the ideal Anng(a) is
not prime.

~

Proposition V.2.13. Let R be a commutative ring, and consider the following
ezact sequence of R-module homomorphisms 0 — M’ ENS VRS V)
(a) We have Suppr(M) = Suppr(M’) U Suppr(M").
(b) We have Assp(M') C Assp(M) C Assr(M') U Assp(M").
PRrOOF. Let P € Spec(R). If Mp = 0, then the exact sequence
0— Mp— Mp— Mp—0 (V.2.13.1)
shows M} = 0= M. In other words, we have
Spec(R) — Suppr(M) C (Spec(R) — Suppg(M’)) N (Spec(R) — Suppr(M"))

so DeMorgan’s Law implies Supp (M) D Suppg(M') U Suppg(M”).
Assume now Mp # 0. The exact sequence ([V.2.13.1)) shows that either M}, # 0
or M}, # 0: otherwise the sequence has the form

0—-0—-Mp—-0—0

which would imply Mp = 0. So, we have Suppg (M) C Suppr(M') U Suppgr(M").

(]E[) Let @ € Assg(M’). Then there is a monomorphism R/Q <— M’. Compos-
ing this with the monomorphism M’ < M, we find a monomorphism R/Q — M.
Hence, we have Q € Assgp(M), so Assr(M') C Assgr(M).

For the final containment, let P € Assr(M). Then there exists a submodule
R/P =2 N C M. Note that, because f is a monomorphism, for each 0 # m' € M’,
we have Anng(m’) = Anng(f(m')). Furthermore, if f(m') € N, then Exam-
ple implies Anng(f(m')) = P.

If f~1(N) # 0, fix an element 0 # m’ € f~(V). From the previous paragraph,
we have

Anng(m') = Anng(f(m')) = P
so P € Assgp(M').
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If f~1(NN) =0, then the exactness of the given sequence implies
M" 2> g(N)2N=R/P
so P € Assg(M"). O
Lemma V.2.14. Let R be a commutative Ting. Let M be an R-module, and assume
that there is a chain of submodules 0 = My C My C--- C M, =M.
(a) We have Suppr(M) = U, Suppr(M;/M;_1).
(b) We have Assp(M) C U, Assp(M;/M;_1).

ProOF. We prove part (]ED by induction on n and leave part @ as an exercise.
The base case n = 1 is straightforward.

For the induction step, assume that n > 1 and that the result holds for all R-
modules L such that there is a chain of submodules0 =Ly C Ly C---C L,,_1 = L.
Because of the exact sequence

0—-M, 1 —>M-—>M/M, 1 —0
Proposition |[V.2.13(|b) provides the first containment in the following sequence
Assp(M) C Assp(M,,—1) U Assp(M/M,,_1)
Q [ ?:1 ASSR(Mi/Mifl)] U ASSR(Mn/Mnfl)
= U?Zl ASSR(Mi/Mifl)
The second containment comes from our induction hypothesis because the module

M,,_1 has a chain of submodules 0 = My C M; C --- C M,,_1; this also uses the
assumption M = M,,. The equality is trivial. (I

Note the equality in part of the next result, contrasting with the contain-
ments in the previous two results.

Lemma V.2.15. Let R be a commutative ring. Let M, ..., M, be R-modules.
(a) We have Suppg (][, M;) = U, Suppz(M;).
(b) We have Assg([[_, M;) = U, Assr(M;).
PrROOF. The equality Suppp([[i—, M;) = U, Suppy(M;) and the contain-

ment Assg([["_, M;) C U, Assg(M;) follow from Lemma|V.2.14|via the filtration

2 n

ocmclmc - c[M.

i=1 i=1
For the containment Assg([[\_, M;) 2 U™, Assg(M;), let p € Assg(M;). Then
there is a monomorphism R/p — M;. Compose this with the natural inclu-
sion M; — [[’ M, to yield a monomorphism R/p < [[i, M;, and hence
pe ASSR(H?:I Mz) O

Exercises.
Exercise V.2.16. Verify the facts in Example
Exercise V.2.17. Verify the facts in Remark [V.2.3]

Exercise V.2.18. Let R be a commutative ring, and let M be an R-module. Let

U C R be a multiplicatively closed subset.

(a) Let m € M. Prove that m/1 = 0 in U~'M if and only if there exists an element
u € U such that um = 0 in M, i.e., if and only if U N Anng(m) # 0.
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(b) Assume that M is finitely generated. Prove that U~!M = 0 if and only if there
exists an element u € U such that uM = 0, i.e., if and only if UNAnng (M) # 0.

(¢) Provide an example showing that the finitely-generated assumption in part (]ED
is necessary.

(d) Verify the facts in Remark

Exercise V.2.19. Verify the facts in Example
Exercise V.2.20. Verify the facts in Example
Exercise V.2.21. Verify the conclusions of Remark

Exercise V.2.22. Let R be a commutative ring, and let M be an R-module.

(a) Prove that, if M is noetherian as an R-module, then the quotient R/ Anng (M)
is a noetherian ring.

(b) Verify the conclusions of Proposition when R is not necessarily noether-
ian but M is noetherian as an R-module.

Exercise V.2.23. Verify the facts in Example

Exercise V.2.24. Give examples of exact sequences as in Proposition such
that Assp(M) # Assg(M') U Assp(M") and Assgp(M') # Assr(M).

Exercise V.2.25. Let R be a commutative ring. Assume that R is noetherian,
and let 7 € R be an R-regular element, that is, a non-unit that is not a zero-divisor
on R. Prove that Assgr(R/r"R) = Assgr(R/rR) for all n > 1. [Hint: Verify that
the following sequence is exact:

0— R/rR 5 R/r"R — R/r" 'R — 0
and use induction on n.]

Exercise V.2.26. Complete the proof of Lemma [V.2.14]

V.3. Prime Filtrations

The following result is a fundamental tool for the study of finitely generated
modules over noetherian commutative rings. In applications, it allows one to reduce
problems about finitely generated modules to the case where M = R/P. The chain
of submodules in this result is called a prime filtration of M.

Theorem V.3.1. Let R be a commutative ring. Assume that R is noetherian, and
let M be a finitely generated R-module. There is a chain of submodules 0 = My C
My C - C M, = M such that, for i = 1,...,n there exists P; € Spec(R) such
that Mi/Mi—l = R/Pl

PrOOF. Let P; € Assg(M), and fix a submodule R/P; = My C M. If My =
M, then stop. If My # M, then repeat the process with M/M; to find a prime ideal
P, € Ass(M /M) and a submodule R/ Py 2 My /My C M/M;. Continue repeating.
Since M is a noetherian R-module, the process must terminate in a finite number
of steps. ([l

Theorem V.3.2. Let R be a commutative ring. Let M be an R-module, and
assume that there is a chain of submodules 0 = My C M; € --- C M,, = M such
that, fori=1,...,n there exists P; € Spec(R) such that M;/M;_1 = R/P;.

(a) We have Assp(M) C {P1,...,P,} C Suppr(M).
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(b) A prime ideal P € Spec(R) is in Suppg (M) if and only if P O P; for some i.
PRrROOF. @ The first containment is from Lemma [V.2.14] using the equality

Assr(R/P;) = {P;} for each index i; see Example For the second contain-
ment, note that we have

(Mi)p,/(Mi—1)p, = (Mi/Mi—1)p, = (R/P;)p, # 0.

Since (M;)p, surjects onto the non-zero module (M;)p,/(M;-1)p,, it follows that
(M;)p, # 0. Hence, 0 # (M;)p, € Mp, which implies that Mp, # 0, so P; €
Supp g (M).

@ Assume first that P O P;. The localization (P;)p C Rp is a prime ideal,
and we have (Mp)(p,), = Mp, # 0. It follows that Mp # 0, so P € Suppg(M).

Conversely, assume that P € Suppg(M). Localize the given filtration to find a
filtration of Mp

0= (My)p C(M)pC---C(My)p=Mp
such that, for ¢ = 1,...,n we have
(My)p/(M;—1)p = (M;/M;_1)p = (R/F;)p.

Since Mp # 0 by assumption, one of these quotients must be non-zero as well. In
other words, there is an index ¢ such that P € Suppy(R/P;). Remark implies
that P D P;. |

Corollary V.3.3. Let R be a commutative ring. Assume that R is noetherian,
and let M be a finitely generated R-module. Then the set Assgr(M) is finite.

PROOF. The module M has a prime filtration by Theorem[V.3.1] so the desired
conclusion follows from Proposition O

Remark V.3.4. The conclusion of Corollary [V.3.3]fails in general for modules that
are not finitely generated: if U = {P;, P»,...} is an infinite collection of distinct
prime ideals of R, then U C Assp(®;R/F;).

Example V.3.5. Let R be a unique factorization domain, and let 0 # r € R
be a non-unit. Write 7 = p; - - p, with each p; prime. We show Assg(R/rR) =

{p1R,...,pnR}.
First, check that the following is a prime filtration of R/rR

(0)=(p1-PnR)/TRC (p1---PnaR)/TRC --- T R/TRC R/TR

by showing that
(pr---pR)/TR _ pi---piR _ R

(p1---pis1R)/TR  p1 - pisy1R pipa R

The isomorphism R/p;4+1R — (p1---piR)/(p1 - - piy1R) is given by T — P71 - piT.
From Theorem [V.3.2] we have Assg(R/rR) C {p1R,...,pnR}.
For the reverse containment, set p, =[] i Di for each 7, and define a function

R/piR — R/rR given by 7 + plz. This is a well-defined monomorphism. Hence,
we have Assgp(R/rR) D {p1R,...,pnR}.

Example V.3.6. Let k be a field, and set R = k[X,Y].
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(a) For M = R/(X,Y)R and m,n > 1, we have
Assp(R/(X™,Y")R) = {(X,Y)R} = Assp(R/((X,Y)R)").
This follows from the fact that each of the quotient modules R/(X™, Y"™)R
and R/((X,Y)R)™ has a prime filtration such that each quotient M;/M;_; is
isomorphic to R/(X,Y)R.
(b) For M = R/(X?,XY)R, we have
Assp(R/(X?, XY)R) = {(X)R, (X,Y)R}.
This follows from the fact that there is a filtration of R/(X?, XY )R where the
quotients M;/M;_, are isomorphic to R/(X) and R/(X,Y).

Here is a version of the prime correspondence under localization for support
and associated primes.

Proposition V.3.7. Let R be a commutative ring, and let M be an R-module. Let
U C R be a multiplicatively closed subset.

(a) We have
Suppy-1zg(U*M)={U*PCU 'R | P € Suppr(M),PNU = 0}.

(b) We have

Assy- 1 g(U M) D{U'PCU'R| P c Assp(M),PNU = 0}.
(¢) If R is noetherian, then

Assy i g(U'M) ={U'PCU'R| P € Assg(M),PNU = }.

PROOF. Recall that
Spec(U'R) = {U'P CU'R| P € Spec(R),PNU = 0}

and furthermore, for U™ P € Spec(U ' R), we have (U"'M)y-1p = Mp.

@ This follows directly from the previous paragraph as (U~ 'M)y-1p = 0 if
and only if Mp = 0.

([b) Assume P € Assg(M) and PNU = 0. Then there exists a monomorphism
R/P — M, so the exactness of localization yields

U'R/U'P=UYR/P)— U'M.

Since U~ P € Spec(U~'R), this implies that U~1P € Assy-15(U"1M).

Assume that R is noetherian. By part (]E[), it suffices to verify the contain-
ment “C”. Let U7'P € Assy-1x(U1M), and fix an element m/u € U~'M such
that U='P = Anng-1z(m/u). Write P = (z1,...,2,)R. Then z;/1 € U71P, so
we have (x;/1)(m/u) = 0. Thus, there is an element u; € U such that u;z;m = 0.
Set ' =u; ---u,. It follows that

P=(z1,...,0,)R C Anng(u'm).

In particular, the map g: R/P — M given by T — ru’m is well-defined. Since u/1
and u//1 are units in U~ R, we conclude

U™'P = Anng -1 z(m/u) = Anng -1 z(u'm/1).

In particular, the map ¢’: U"*R/U~'P — U~'M given by r/u” — ru'm/u" is a
well-defined monomorphism.
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Let f: R/P — U 'R/U'P and f': M — U~!'M be the natural maps. Be-
cause R/P is an integral domain and U N P = (), we know that f is injective. The
following diagram commutes

g

R/P— >

LT
U-IR/U-' P> -1},

It follows that g is injective, so P € Assg(M). O

Corollary V.3.8. Let R be a commutative ring, and let M be an R-module. Let
Q € Spec(R).

(a) We have Suppg, (Mq) = {Pq & Rq | P € Suppg(M), P C Q}.

(b) We have ASSRQ (MQ) D) {PQ C Rg | P e ASSR(M),P - Q}

(c) If R is noetherian, then Assg,(Mq) ={Pqo € Rq | P € Assg(M), P C Q}.

PRrROOF. This is immediate from Proposition using U = R\ Q. O

Proposition V.3.9. Let R be a commutative noetherian ring, and let M be a
non-zero finitely generated R-module. Consider a prime filtration

0=MyGCM C-—-CM,=M

such that, for i =1,...,n we have M;/M;_1 = R/P;. Then the minimal elements
of Suppr(M) (with respect to inclusion) are the same as the minimal elements of
Assg(M), and these are the same as the minimal elements of the set {Py,..., P,}.

PROOF. Let P be a minimal element of Supp (M ); we show that P is minimal
in Assg(M). In particular, we have Mp # 0. Since Rp is noetherian, there exists
Qp € Assg,(Mp). By the previous result, we have @ € Assr(M) C Suppp(M)
and @ C P. The minimality of P in Suppg(M) implies that @ = P and thus
P =@ € Assp(M). Now, the containment Assg(M) C Suppr (M) implies P must
be minimal in Assy(M).

Next, let P; be minimal in {P,...,P,}; we show that P; is minimal in
Suppr(M). Theorem @ implies that P; € Suppp(M). To show that P;
is minimal in Suppy(M), we take an element @ € Suppp(M) such that Q C P;
and show @@ = P;. Theorem implies that Q O P; for some ¢, and hence
P; O P;. The minimality of P; implies that P; = P;, so Q = P;.

Finally, let P be a minimal element of Assgr(M); we show that P is minimal
in {Py,...,P,}. From Theorem we know that P = P; for some index i.
Since the set {P,..., P,} is finite, there is an index j such that P; is minimal in
{Pi,...,P,} and such that P; C P; = P. It suffices to show that P = P;. By the
previous paragraph, we know that P; is minimal in Suppz(M), so the paragraph
before that shows that P; is minimal in Assp(M). Since P; C P, the minimality
of P in Assg(M) implies that P = P;. O

Definition V.3.10. Let R be a commutative ring. Assume that R is noetherian,
and let M be a non-zero finitely generated R-module. The minimal elements of
Assp(M) are the minimal associated prime ideals of M, or simply the minimal
primes of M. We set

Ming (M) = {minimal primes of M}
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and Min(R) = Ming(R). The primes in Assgp(M) ~\ Ming(M) are the embedded
primes of M.

Corollary V.3.11. Let R be a commutative noetherian ring, and let M be a finitely
generated R-module.

(a) The set Min(R) is finite, and every element of Spec(R) contains an element of
Min(R).

(b) The set Ming(M) is finite, and every element of Suppg(M) contains an ele-
ment of Ming(M).

PRrooF. This is immediate from Proposition and Definition O
Exercises.

Exercise V.3.12. Verify the facts from Remark

Exercise V.3.13. Verify the facts from Example

Exercise V.3.14. Verify the facts from Example

Exercise V.3.15. Let k be a field. Set R = k[X,Y] and M = R/(X?,XY). For
each integer n > 1, show that there is a prime filtration of M over R such that
the prime ideal (X,Y") occurs exactly n times in the filtration. In particular, this
shows that the number of “links” in a prime filtration is dependent on the choice
of prime filtration. (Compare this to the Jordan-H6lder Theorem.)

V.4. Prime Avoidance and Nakayama’s Lemma
This section deals with two handy tools. Here is the first one.

Lemma V.4.1 (Prime Avoidance). Let R be a commutative ring, and fix ideals
Ii,....1I,,J C R. Assume that one of the following conditions holds:

(1) The ring R contains an infinite field k as a subring; or
(2) The ideals I,...,I,_o are prime.
If J C U 1, then J C I; for some j.

Proor. Assume first that the ring R contains an infinite field k as a subring,
and suppose that J ¢ I; for all j. Then JNI; C J for each j. Since J is contained
in U;1I;, we have J = J N (U;1;) = U;(J N I;). Each ideal J N I; and J is a vector
space over k. Because k is infinite and JNI; C J for each j we have U;(JNI;) C J,
a contradiction.

Assume now that the ideals Iy, ..., I,,_o are prime. We prove the result by
induction on n. The case n = 1 is straightforward.

Assume n > 2 and that the result holds for each list I7,..., I}, ;. If J C U4 1;
for some [, then we are done by induction. So, we assume that J € U, I; for each
l and fix x; € J — Uj»1;. In particular, z; € I; for each I. Notice that z; + 2 € J
and more generally 1 + z2---x, € J.

When n = 2, the element z; + x5 is not in I: if it were, then z; € I; would
imply o = (z1 + x2) — 21 € I1, a contraditcion. Similarly, we have z1 + z2 & Io,
so 21 + x9 € J — (I1 U 1), contradicting the fact that J C I U I.

When n > 2, we know that I is prime. It suffices to show z1 + zo-- -z, € I
for each . If x1 + x5 ---x, € Iy, then the fact that xy € I implies x5 ---x,, € Iy,
so x; € I; for some [ # 1; this contradicts the choice of x;. If 1 + 2o ---x, € I} for
some [ > 2, then the fact that x; € I; implies 1 € I;, another contradiction. O
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Here is a standard application of prime avoidance.

Corollary V.4.2. Let R be a commutative ring. Assume that R is noetherian, and
let M be a non-zero finitely generated R-module. If I is an ideal of R consisting of
zero-divisors on M, then I is contained in an associated prime of M.

PROOF. The set of associated primes Assg(M) is finite and non-empty, say
Assp(M) = {P1,...,P,}. Our assumption on I implies that I C U;P;, so prime
avoidance implies that I C P; for some j. [

Corollary V.4.3. Let R be a commutative ring. Assume that R is noetherian, and
let M be a non-zero finitely generated R-module. Let m C R be a mazimal ideal.
Then m contains a non-zero-divisor on M if and only if m ¢ Assp(M).

PROOF. The set of associated primes Assp(M) is finite and non-empty, say
Assp(M) ={P1,...,P,}. If m € Assp(M), then m = Anng(m) for some element
m # 0, so m consists of zero-divisors on M. Conversely, if m consists of zero-divisors
on M, then the previous corollary implies that m C P; for some j, and the fact
that m is maximal implies m = P; € Assg(M). O

Here is another really useful tool.

Lemma V.4.4 (Nakayama’s Lemma). Let R be a commutative ring. Assume that
R is local with unique mazximal ideal m C R. Let M be a finitely generated R-
module. If M/mM =0, then M = 0.

PROOF. Assume that M/mM = 0 and suppose that M # 0. Let mq,...,m, be
a generating sequence for M, and assume that this generating sequence is minimal,
in the sense that no sequence of elements from M with n—1 elements also generates
M. The assumption M/mM = 0 implies that M = mM. in particular, the element
mq € M = mM then has the form m; = Z:;l r;m; for some elements r; € m. This
implies that

(1 — rl)ml = Z;l:2 rimy;

where the sum is 0 when n = 1. Since m is the unique maximal ideal of R and
r1 € m, the element 1 — r; is a unit in R. Hence, the element

my = (1 — 7‘1)_1 2?22 My

is in the submodule M’ = R(ma,...,my) C M. Since the other generators of M
are also in M’, we have M C M’ C M. This implies that M = M’, which is
generated by n — 1 elements, a contradiction. (I

Here are some consequences of Nakayama’s Lemma, each of which may be
referred to as Nakayama’s Lemma.

Corollary V.4.5. Let R be a commutative ring. Assume that R is local with unique
mazximal ideal m C R, and let M be an R-module. Let N C M be an R-submodule
such that the quotient M /N is finitely generated. (For instance, this holds when M
is finitely generated.) If M = N +mM, then M = N.

Proor. If M = N +mM, then we have
m(M/N) = (mM + N)/N = M/N
so Nakayama’s Lemma implies that M/N = 0. O
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Definition V.4.6. Let R be a commutative ring, and let M be a finitely gener-
ated R-module. A generating sequence my,...,m, € M is minimal if no proper
subsequence generates M.

Example V.4.7. Let A be a commutative ring, and let R = A[X,Y] be a poly-
nomial ring in two variables. The sequence X,Y is a minimal generating sequence
for the ideal (X,Y)R.

Corollary V.4.8. Let R be a commutative local ring with unique maximal ideal
m C R, and set k = R/m. Let M be a finitely generated R-module, and let
mi,...,My € M.

(a) Then M/mM is a finite-dimensional vector space over the field k = R/m, via
the action T m = Tm.

(b) Then mq,...,M, € M/mM spans M/mM over k if and only if mq,...,my,
generates M over R.

(¢) The sequence my, ..., M, € M/mM is a basis of M/mM over k if and only if
mi,..., My is a minimal generating sequence for M over R.

In particular, every minimal generating sequence for M has the same number of
elements, namely dimy (M /mM).

PROOF. () See Exercise [V.4.13|(a).
(]E[) One implication is in Exercise[V.4.13(|b)). For the reverse implication assume

that my,...,m, € M/mM spans M /mM over k. It follows that
M = R(ml,...,mn)‘FmM

so the previous corollary implies that M = R(myq,...,my;), as desired.

Assume first that my, ..., M, € M/mM is a basis of M/mM over k. Part (]ED
implies that my,...,m, generates M over R. Suppose that this generating se-
quence is not minimal. Rearranging the sequence, if necessary, we assume that
my,...,my_1 generates M over R. It follows that my,...,m,—1 € M/mM spans
M/mM over k, contradicting the fact that dimy(M/mM) = n.

Conversely, assume that mq,...,m, is a minimal generating sequence for M
over R. Part (]E[) implies that Ty, ..., M, € M/mM spans M/mM over k. Suppose
that this spanning sequence is not linearly independent. Rearranging the sequence,
if necessary, we assume that my, ..., m,—1 € M/mM spans M /mM over k. Part (]ED
implies that mq,...,m,_1 generates M over R contradicting the minimality of the
original generating sequence. (I

Corollary V.4.9. Let R be a commutative local ring with unique maximal ideal
m C R, and set k = R/m. Let P be a finitely generated projective R-module. Then
P =~ R"™ where n = dimy (P/mP).

PRrROOF. The previous corollary implies that every minimal generating sequence
for P is of the form p1,...,p,. Such a sequence yields an R-module epimorphism
7: R™ — P such that 7(e;) =p; fori=1,...,n.

We claim that 7 is also a monomorphism. To prove this, let K = Ker(7). We
need to show that K = 0.

Since P is projective, the following exact sequence splits

0-KSR*"LP—0
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where € is the inclusion. Let f: P — R™ be a splitting homomorphism, that is,
an R-module homomorphism such that 7f = 1p. It follows that R” = K @& f(P),
specifically, that R = K + f(P) and K N f(P) = 0.

Splitting the displayed exact sequence on the left yields a surjection R” — K,
so K is finitely generated. Thus, to prove that K = 0, it suffices by Nakayama’s
Lemma to show that K = mK, that is, that K C mK. Let x € K, and write
T = Zl r;e; for some elements r € R. We first show that each r; € m. Since x € K,
we have

0=1(z) =2 riT(e:) = 32;Tips-
In P/mP we then have 0 = ) 7p;. The previous corollary implies that the
sequence D1, ...,D, is a basis for P/mP. It follows that each 77 = 0 in R/m,

so we have each r; € m, as desired.
Now write e; = k; + f(¢;) with k; € K and ¢; € P. We then have

x = Z'f'iei = (Z Tiki> + (Z mf(%))
and hence

T — <Zriki> = (Zﬁf(%)) eEKNf(P)=0.

i i

Thus, we have x = ). r;k; € mK, as desired. |
We close the section with some ideas that are useful for the next sections.

Lemma V.4.10. Let R be a commutative noetherian ring, and let M be a non-zero
finitely generated R-module. Let I C R be an ideal, and let N a finitely generated
R-module such that Suppr(N) = V(I). If I consists of zero-divisors on M, then
Homp(N, M) # 0.

PROOF. The ideal I consists of zero-divisors on M, so Corollary yields
an associated prime P € Assg(M) such that I C P. Hence, there is an injective
homomorphism f: R/P — M. Localizing at P yields fp: (R/P)p — Mp. Since
P € V(I) = Suppg(NN), we have Np # 0. The module N is finitely generated over
R, so Np is finitely generated over Rp. The ring Rp has a unique maximal ideal,
namely Pp, so Nakayama’s Lemma implies 0 # Np/PNp. That is, Np/PNp is
a non-zero vector space over the field Rp/PRp. In particular, there is a surjec-
tive R-module homomorphism g: Np/PNp — Rp/PRp. The natural surjection
h: Np - Np/PNp fits into the following composition

Np - Np/PNp - Rp/PRp — Mp.
This composition is non-zero, and hence
0 # Homp, (Np, Mp) =2 Homp(N,M)p
where the isomorphism is from Proposition. Tt follows that Hompg(N, M) #
0, as desired. 0

Corollary V.4.11. Let R be a commutative noetherian ring, and let M be a non-
zero finitely generated R-module. Let m C R be a mazimal ideal such that m ¢
Assp(M). Assume that m # m2. (For instance, this occurs when R is local and not
a field.) Then m ~ m? contains a non-zero-divisor on M.
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ProoOF. If R is local and not a field, then m # 0. Hence, Nakayama’s Lemma
implies that m? C m.

The set Assr(M) is finite and non-empty, say Assgr(M) = {Py,...,P,}. The
condition m ¢ Assr(M) implies that P; C m for each i. From prime avoidance, we

conclude that m? U [U?_; P;] € m. thus, there is an element in m ~ [m? U [U"_; Pi]];
any such element is a non-zero-divisor in m \ m?2. O

Lemma V.4.12. Let R be a commutative noetherian ring, and let M and N be
R-modules. If M 1is finitely generated, then
Assp(Homp(M, N)) = Suppp (M) N Assg(N).
PROOF. Since M is finitely generated, there is an integer ¢ > 0 and an R-

module epimorphism R — M. The left-exactness of Homp(—, N) yields the
monomorphism in the next sequence

Hompg(M, N) — Hompg(R", N) = N*.

The isomorphism is from Exercise ic). Using this, the containment in the next
display follows from Proposition [V.2.13((b)

Assgr(Hompg(M, N)) C Assgr(N') = Assp(N) (V.4.12.1)
and the equality is from Lemma @

Next, let p € Spec(R) \ Suppp(M). It follows that M, = 0, and hence the
second isomorphism in the next sequence

Homp(M, N), = Homp, (M, Np) = Homg, (0, N,) = 0.

The first isomorphism is from Proposition [[.5.8|(d]), and the equality is straightfor-
ward. From this, we deduce the second containment in the next sequence

Assp(Homp(M, N)) C Suppr(Hompg (M, N)) C Suppr(M) (V.4.12.2)

while the first containment is from Proposition V.2.11|..
Combining ([V.4.12.1) and (V.4.12.2), we have
Assp(Homp(M, N)) C Suppg (M) N Assg(N).

For the reverse containment, let p € Suppg (M) N Assg(N).

Claim 1: We have Homp (M, R/p) # 0. To see this, recall that Remark
implies that p € Suppr(M) = V(Anng(M)). Hence, we have Anng(M) C p, and
thus Anng(M)-R/p = 0. The desired non-vanishing now follows from Lemma[V.4.10}

Claim 2: For each non-zero element o € Hompg(M, R/p), we have Anng(a) = p.
To see this, argue as in the first paragraph of this proof to find a monomorphism

Homp (M, R/p) — (R/p)".

Since p is prime, the annihilator of any non-zero element of (R/p)! is p. Hence, the
annihilator of « is p.

Claim 3: We have p € Assg(Homp (M, R/p)). Indeed, Claim 1 yields a nonzero
element o € Hompg(M, R/p), and Claim 2 says that Anng(«) = p. Hence, the map
R/p — Homp(M, R/p) given by 7 — ra is a well-defined R-module monomorphism.
This implies the desired conclusion.

Claim 4: We have p € Assg(Hompg(M, N)). (Once we show this, the proof is
complete.) Since p € Assp(N), there is an R-module monomorphism R/p — N.
The induced map

Homp(M, R/p) — Homp(M, N)
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is a monomorphism. Claim 3 implies that p € Assg(Homg(M, R/p)), so we con-
clude from Proposition [V.2.13(]b]) that p € Assg(Hompg(M, N)). O

Exercises.

Exercise V.4.13. Let R be a commutative ring. Let M be an R-module, and let
I C R be an ideal.

(a) Prove that the quotient M/IM has a well-defined R/I-module structure given
by ¥ m = Tm.

(b) Prove that, if my,...,m, € M generates M as an R-module, then the sequence
M1, ...,y € M/IM generates M/IM over R and over R/I.

(¢) Prove that the isomoprhism (R/I) @ g M = M /IM from Exercise is an
R/I-module isomorphism.

Exercise V.4.14. Let k be a field.

(a) Set R=kxkandm=0xkC Rand M =k x 0. Prove that m is a maximal
ideal ideal of R such that mM = 0 and that M # 0. It follows that the local
assumption in Nakayama’s Lemma is essential. Prove also that M is projective
and not free, so the local assumption in Corollary is also essential.

(b) Let S be a local integral domain that is not a field, with maximal ideal m and
field of fractions of K. (For instance, we may take the localization S = k[X] x)
with field of fractions K = k(X), or the localization Z = Z,z with field of
fractions K = Q.) Prove that K # 0 and that K = mK. Conclude that
K is not finitely generated as an R-module and that M needs to be finitely
generated in Nakayama’s Lemma.

Exercise V.4.15. Let R be a commutative local ring. Let M and N be finitely
generated R-modules.

(a) Prove that, if M and N are non-zero, then so is M ®p N. [Hint: Use the
right-exactness of tensor product with Nakayama’s Lemma.]

(b) Provide an example showing that the statement in part (@ can be false if the
ring R has more than one maximal ideal.

(¢) Provide an example of a ring R with a unique maximal ideal and non-zero
finitely generated R-modules M and N such that Homg(N, M) = 0.

Exercise V.4.16. Let R be a commutative noetherian ring, and fix finitely gener-
ated R-modules M and N. Prove that Suppz(M ®@r N) = Suppr(M)NSuppr(N).

Exercise V.4.17. State and prove versions of Lemma [V.4.4] and Corollary
where R is not necessarily local and the ideal m is replaced by the Jacobson radical
of R.

V.5. Regular Sequences and Ext

Definition V.5.1. Let R be a commutative ring, and let M be an R-module. An
element a € R is M -regular if it is not a zero-divisor on M and M # aM.

A sequence aq,...,a, € Ris M-regular or is an M -sequence if a1 is M-regular,
and a;41 is regular on M/(a1,...,a;)M fori=1,...,n— 1.

Let I be an ideal, and assume that ay,...,a, € I. Then aq,...,a, is a mazimal
M -reqular sequence in I if aq,...,a, is an M-regular sequence and, for all b € I,
the sequence aq,...,a,,b is not M-regular.
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Remark V.5.2. Let R be a commutative noetherian ring, and let M be an R-
module. Proposition shows that a is not a zero-divisor for M if and only
if a € Upeassp(an) P.

If a1,...,a, € R is an M-regular sequence, then M # (ay,...,a,)M. In
particular, the zero-module does not admit a regular sequence.

Example V.5.3. Let k be a field.

In the polynomial ring P = k[Xq,...,X,], the sequence Xi,...,X, is P-
regular.

In Z if m,n are non-zero non-units, then m is Z-regular and m,n is not a
Z-regular sequence: If ged(m,n) = 1 then 7 is a unit in Z/mZ so 7 is not Z/mZ-
regular. If ged(m,n) > 1 then 7 is a zero-divisor in Z/mZ so 7 is not Z/mZ-regular.

The field £ does not have a regular element because every non-zero element is
a unit.

The ring R = k[X]/(X?) does not have a regular element: The only non-units
of R are the non-zero constant multiples of X, which are all zero-divisors since they
are annihilated by X.

The ring S = k[X,Y](x,y)/(XY) has a regular element X +Y: If (X+Y)f =0
then XY | (X +Y)f. Since X 1 X +Y, we have X | f, and similarly Y | f. So
XY | fand f = 0. Note that S/(X +Y) = k[X]/(X?); since this has no regular
elements, the S-sequence X + Y cannot be extended to an S-sequence X + Y, g.
We will see below that S does not have an S-sequence of length 2.

The ring T = k[X, Y] (X’y)/(XQ7 XY') does not have a regular element. To see
this, suppose that f € T were T-regular. Then fT # T implies that f is not a unit,
so f € (X,Y)T. Write f = gX +hY. Then X f = 0 so that f is a zero-divisor.

Remark V.5.4. Let R be a commutative ring. If R is noetherian and M is an
R-module, then, for each ideal I C R, there is a maximal M-regular sequence in I.
To see this, note that an M-sequence a,...,a, gives a strictly increasing chain of
submodules

(al)M C (al,ag)M c---C ((11, ey an)M

and hence a strictly increasing chain of ideals
(al)R C (ala a?)R -,C«- e C (ala e 7an)R'

Since R is noetherian, this chain must stabilize.
A similar argument shows that every M-regular sequence in I can be extended
to a maximal M-regular sequence in I.

Here is an algorithm for finding maximal regular sequences for finitely generated
modules over local rings.

Remark V.5.5. Let R be a commutative ring. Assume that R is noetherian
and local with maximal ideal m C R, and let M be a non-zero finitely generated
R-module.

Step 1. If m € Assg(M), then m consists of zero-divisors on M by Corol-
lary Hence, the empty sequence is a maximal M-regular sequence.

Step 2. Assume that m ¢ Assg(M). Corollary implies that m contains
an M-regular element z;. Moreover, by Remark we know that any element
rpeEm— UPeAssR(M)P is M-regular.

Step 3. If m € Assp(M/x1 M), then m consists of zero-divisors on M/z1M by
Corollary Hence, the sequence x; is a maximal M-regular sequence.
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Step 4. Assume that m ¢ Assgp(M/x1M). Corollary [V.4.3| implies that m
contains an M /x; M-regular element xo. Moreover, by Remark @ we know
that any element x5 € m — Upcagsp(M/ai vy P is M /21 M-regular.

Step 5. Repeat this process with M/(z1, z2) M, and so on. Remarkshows
that the process terminates in a finite number of steps.

The next lemma will be helpful for computing regular sequences in practice.

Lemma V.5.6. Let R be a commutative noetherian ring, and fix an ideal I C R.

(a) One has rad(I) = Npey(1)P = Npeassp(r/ 1P = NpeMing(r/1) P-

(b) If I is an intersection of a finite number of prime ideals then Assg(R/I) consists
of the minimal elements among those primes, and Assgr(R/I) = Ming(R/I).

(c) If I is an intersection of prime ideals, then it is an intersection of a finite
number of prime ideals.

Proor. @ Remark explains the equality in the next sequence
rad(I) = Npev (P € Npeassp(r/DP S NpeMing(r/1)P € Npev ) P
The first and second containments follow from the conditions
V(I) = Suppgr(R/I) 2 Assr(R/I) 2 Ming(R/I);
see Remark Proposition , and Deﬁnition The third contain-

ment follows from the fact that Ming(R/I) consists of all the minimal elements of
V(I), and that every element of V'(I) is contained in a minimal element.

([B) Let Pr1,..., P, € Spec(R) such that I = N, P;. Reorder the P; if necessary
to assume that Pi,..., P; are minimal and Pj44,..., P, are not minimal. It then
follows that I = n?_, P;.

We show that {Pi,...,P;} C Ming(R/I). Proposition implies that
Ming(R/I) is the set of minimal elements of Suppp(R/I), that is, the minimal
elements of V(I); see Remark So, we need to show that Pj is minimal in
V(I)for k=1,...,j. Assume that P € V(I) such that P C Pj; we need to show
that P, = P. The condition P € V(I) means that P is prime and P 2 I. The
condition P C Py implies that N}, P; = I C Py, hence the following sequence

N P=ICPCPhPCN_, P
and the desired equality P, = P.

We already know that Ming(R/I) C Assg(R/I) by definition.

We show that Assp(R/I) C {Pi,...,P;}. (Once this is done, the proof of
part (b)) is complete.) Let P € Assp(R/I). By definition, there is an element

x € R such that the coset T € R/I is non-zero and such that P = Anng(Z). That
is, we have x € R~ T and P = {r € R | ar € I'}. The first of these conditions yields

€ R~I=R~N_P=U_(R\P)
so there is an index k such that 1 < k < j and x € R ~\ P;. From the condition
P={reR|arec I} wehave
ePCI=n_PCP
so the condition x ¢ Py, implies that P C Py, since Py is prime.
Also, we have P € Assr(R/I) C Suppg(R/I) = V(I), which implies that
P DI =n]_,P,. Since P is prime, we have P D P, for some index [ with 1 <1 < j.



108 V. DEPTH September 8, 2009

In other words, we have P, C P C Pj. Since P, and P; are both minimal among
the P;, we have P, = P, and hence P = P, € {Pi,...,P;}, as desired.

Assume that A C Spec(R) and I = NpeaP. It is straightforward to show
that this implies that I = rad(I). Part @ implies that

I = rad(I) = mPEMinR(R/I)P
which is an intersection of finitely many prime ideals by Proposition [V.3.9] O

We use Remark and Lemma[V.5.6] to further analyze one of the examples
from .5.3

Example V.5.7. Let k be a field. Set R = k[X,Y]xy)and I = (XY)RC R
and S = R/I. Tt is straightforward to show that I = rad(I), in fact, we have
I = (X)RN(Y)R. This is an intersection of prime ideals because R/(X)R = k[Y ]y,
and R/(Y)R = k[X](x). Thus, we have

Assg(S) = {(X)R, (Y)R}.

To find an S-regular element in R, we need only find an element f € (X,Y)R such
that f ¢ (X)R and f ¢ (Y)R. The element f = X + Y satisfies these properties,
as does any element aX + bY where a, b are non-zero elements of k.

Now, we show that the length of a maximal M-regular sequence in I is inde-
pendent of the choice of such a sequence. This is where Ext comes into play.

Lemma V.5.8. Let R be a commutative ring, and let M and N be R-modules.
Then Anng(M) U Anng(N) C Anng(Extyz(M, N)) for all i.

PROOF. Let # € Anng(M) U Anng(N), and let pY: N — N by given by
n — xn. According to Fact the induced map

Ext’ (M, u2): Ext’ (M, N) — Ext’ (M, N)

is given by multiplication by x.

Assume now that € Anng(N) Then the map p2 is the zero map, so Re-
mark implies that the induced map Ext% (M, YY) is the zero-map. In other
words, multiplication by z on Ext}é(M ,N) is zero, as desired.

The case where 2 € Anng (M) is handled similarly, using the map . (Il

Example V.5.9. From Example we have
EXt} jynz(Z/nZ, Z/mZ) = 7./ gZ.

for all 7 > 0 where g = ged(m, n). In particular, we have

M EXty /7(Z/nZ, L/mZL) = 0 = nExt} .5 (Z/nZ, Z/mZ)
which agrees with the previous result.
Remark V.5.10. Let R be a commutative ring, and let M and N be R-modules.
Let I,J C R be ideals such that IM =0 and JN = 0. Lemma[V.5.8 implies that
(I + J)Extz (M, N) = 0. Because of this, Remark [[.5.10[ implies that Ext% (M, N)
has the structure of an R/(I +.J)-module, the structure of an R/I-module, and the
structure of an R/J-module via the formula 7z = rz. Furthermore, Ext% (M, N)

is finitely generated over R if and only if it is finitely generated over R/I, and
similarly over R/J and R/(I + J).
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The next result is the main point of this chapter. Note that the case n = 0 is
vacuous because Exty (M, N) = 0 for all n < 0.

Theorem V.5.11. Let R be a commutative ring, and assume that R is noetherian.
Let I C R be an ideal, and let M be a finitely generated R-module such that IM
M. For each integer n > 1, the following conditions are equivalent:

(i) We have Extﬁ{(N, M) =0 for all i < n and for each finitely generated R-
module N such that Suppr(N) C V(I);

(ii) We have Exty(R/I, M) =0 for all i < n;

(iii) We have Exty (N, M) = 0 for all i < n for some finitely generated R-module
N such that Suppr(N) =V (I);

(iv) Every M-sequence in I of length < n can be extended to an M-sequence in I
of length n;

(v) There exists an M -sequence of length n in I.

PROOF. The implications (i) = = follow from Remarkwhich
contains the equality Suppp(R/I) = V(I).

(i) = Assume that Ext's(N, M) = 0 for all i < n for some finitely
generated R-module N such that Suppr(N) = V(I). We prove that every M-
sequence in I of length < n can be extended to an M-sequence in I of length n, by
induction on n.

Note that I contains an M-regular element: If I consisted entirely of zero-
divisors for M, then we would have Ext%(N, M) = Hompg(N, M) # 0, a contra-
diction. Thus, I contains a non-zero-divisor a; € I for M. Note that ay M # M
because a1 € I and IM # M. (Similarly, we have I[M/a; M) # M/a;M.) In par-
ticular, this shows that the empty sequence can be extended to a sequence with at
least one element. Hence, we may assume that we are starting with an M sequence
ai,...,a € I such that 1 < k < n.

Now, if n = 1, we are done: the sequence a; is an M-sequence of length 1 in 1.
This is the base case for our induction.

Assume that n > 1 and that the result holds for all R-modules M’ such that
IM' # M’ and such that Ext%(N,M’) = 0 for all i < n — 1. We show that
Exto(N, M/a;M) = 0 for all i < n — 1; the induction hypothesis then yields a
regular sequence as, . . ., a, € I for M/a; M and it will then follow that the sequence
ay,-..,a, € Iis M-regular.

Consider the exact sequence

0— M2 M — M/a;M — 0.
The long exact sequence in Extr (N, —) has a piece of the following form
Ext’y (N, M) — Ext’ (N, M/a; M) — Ext’y (N, M)

for each ¢ > 0. When i < n — 1, we have Extiz(N, M) = 0 = Ext}' (N, M) by
hypothesis, so the exactness of the sequence implies that Ext%,/(N yM/a1 M) = 0.
== Condition implies that the empty sequence can be extended
to an M-sequence of length n.
= Assume that a1,...,a, € I is an M-regular sequence. Let N
be a finitely generated R-module such that Suppgp(N) C V(I). We prove that
Ext(N, M) = 0 for all i < n, by induction on n.
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Our assumptions on N imply that
V(Anng(N)) = Suppgr(N) C V(I).

Lemma implies I* C Anng(N) for t > 0, and hence a’N = 0 for t > 0.

Lemma [V.4.10| implies a} Ext% (N, M) = 0 for t > 0. Consider the exact sequence

0— M2 M — M/ayM — 0. (V.5.11.1)

This is exact because a; is M-regular.

Base case: n = 1. Applying Hompg(N, —) to the sequence (V.5.11.1) yields an
exact sequence

0 — Homp(N, M) *% Hompg (N, M).
In other words, the map Hompg(N, M) % Homp (N, M) is injective, so its t-fold

composition Homg (N, M) 4, Hompg (N, M) is also injective. For t > 0, we have
at Homp(N, M) = at Ext%(N, M) = 0. The injectivity of the multiplication map
by a! then implies Hompg(N, M) = 0, as desired.

Induction step. Assume n > 1 and assume the following: if M’ is a finitely
generated R-module such that TM' # M’ and I contains an M’-regular sequence of
length n—1, then Ext’s (N, M') = 0 for all i < n—1. Since I contains an M-sequence

of length n — 1, namely the sequence aq,...,a,—1, we know Ext%(N, M) =0
for all i < n — 1, and it remains to show Exty (N, M) = 0. Since I contains
an M/a; M-sequence of length n — 1, namely the sequence as,...,a,, we know

ExtE(N, M/a;M) = 0 for all ¢ < n — 1. Consider the following piece of the long
exact sequence in Extg (N, —) associated to (V.5.11.1)):

Extly 2(N, M/a; M) — Extly (N, M) 5% Extl ' (N, M).
=0

The argument of the base case now shows that Exty ' (N, M) = 0. O

Corollary V.5.12. Let R be a commutative noetherian ring, and let M be a finitely
generated R-module. If I is an ideal of R such that IM # M, then each mazimal
M -sequence in I has the same length, namely

inf{i > 0| ExthL(R/I, M) # 0}.
PRrOOF. Use Lemma [V.4.10 and Theorem [V.5.11] O

Definition V.5.13. Let R be a commutative noetherian ring, and let M be a
finitely generated R-module. If I is an ideal of R such that IM # M, then

depthy(I; M) = inf{i > 0 | Exth(R/I, M) # 0}.
If IM = M, then set depthp(I; M) = oo.
Here are some of the examples from

Example V.5.14. Let A be a commutative noetherian ring, and consider the

polynomial ring R = A[X,...,X,]. The sequence Xi,..., X, is R-regular. In

fact, this is a maximal R-regular sequence in (X7i,..., X, )R, so we have
Ext%(R/(X1,...,X,)R,R) =0 fori=0,...,n—1 and
Exth(R/(X1,...,Xn)R, R) # 0.
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(Theorem below shows that we have Ext}(R/(X1,...,X,)R,R) = A
and Exth(R/(X1,...,Xn)R, R) = 0 for all i # n.) In particular, this implies that
depthp((X1,...,Xn)R; R) = n. Similar computations hold for the power series
ring A[X1,...,X,] and the localized polynomial ring A[X1,..., Xn](x, ... .x,)-

Example V.5.15. Fix an integer n > 2. A maximal Z-sequence in (n) is n, so
Exty(Z/n,Z) = Homgy(Z/n,Z) = 0 and Ext,(Z/nZ,7) # 0.
In fact, using the projective resolution 0 — Z = Z — Z/(n) — 0 we see that
Ext},(Z/nZ,Z) = 7./nZ and Ext}(Z/nZ,Z) = 0
for all i # 1. In particular, we have depth,(nZ;Z) = 1.
Exercises.
Exercise V.5.16. Finish the proof of Lemma [V.5.6
Exercise V.5.17. Verify the facts from Example
Exercise V.5.18. Prove Corollary

Exercise V.5.19. Let R be a commutative noetherian ring, and let M be a finitely
generated R-module. Let I = (aq,...,a,)R be an ideal of R such that IM #
M. Prove that if ay,...,a, is M-regular, then aq,...,a, is a maximal M-regular
sequence in [.

Exercise V.5.20. Let A be a commutative noetherian ring.

(a) Verify the conclusion of Corollary [V.5.12| for the ring R = k[X]/(X?), the
module M = R, and the ideal I = X R by showing that the ideal I does not
contain an R-regular element, and

; _Rr/1 iti=0
ExtR(R/I,R):{O 040

(b) Verify the conclusion of Corollary [V.5.12| for the ring R = k[X,Y]/(XY), the
module M = R, and the ideal I = (X, Y)R by showing that the ideal I contains
a maximal R-regular sequence of length 1, and

R/I ifi=1
0 ifi#l
(c) Verify the conclusion of Corollary [V.5.12| for the ring R = k[X,Y]/(X?, XY),

the module M = R, and the ideal I = (X,Y)R by showing that the ideal I
does not contain an R-regular element, and

Hompg(R/I,R) = R/I.

Ext%(R/I, R) = {

Exercise V.5.21 (Depth Lemma). Let R be a commutative noetherian ring, and
let 0 = M’ — M — M" — 0 be an exact sequence of finitely generated R-modules.
Let I C R be an ideal, and prove the following inequalities:

depth(I; M) > inf{depth(I; M"),depthy(I; M")}
depth g (I; M') > inf{depth(I; M), depthz(I; M") + 1}
depthp(I; M") > inf{depthz(I; M) — 1,depthx(I; M)}.
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V.6. Four Lemmas

The results of this section are for use in Section We begin with a lemma
that compliments Theorem

Lemma V.6.1. Let R be a commutative noetherian ring, and let M and N be

non-zero finitely generated R-modules. If x = x1,...,x, is an M -reqular sequence
in Anng(N), then Extly (N, M) = Hompg(N, M /xM).

PrOOF. We proceed by induction on n. The base case n = 0 is straightforward.

Assume that n > 1 and that the result holds for sequences of length n — 1.
Since Anng(N) contains an M-regular sequence of length n, and Suppg(N) =
V(Anng(N)), Theorem implies that Ext (N, M) = 0.

Consider the exact sequence

0—-ME M — M/z;M — 0.
The vanishing Ext’f{l(N ,M) = 0 implies that a piece of the long exact sequence
in Extg(N, —) has the following form
0 — Ext? (N, M/z, M) 2 Ext7i(N, M) =Ly ExtRy (N, M),

The last map in this sequence is 0 because 1 N = 0; see Lemma[V.5.8, The exact-
ness of this sequence implies that d is an isomorphism, hence the first isomorphism
in the following sequence

Ext}(N, M) = Ext’y (N, M/z, M) = Homg(N, M/(zy,...,x,)M).
The second isomorphism follows from the inductive hypothesis, since xs, ..., x, is

an M /x1M-regular sequence in Anng (M) of length n — 1. O

Lemma V.6.2. Let p: R — S be a flat ring homomorphism between commutative
rings, and let M be a finitely generated non-zero R-module. If x = x1,...,2, € R
is an M -regular sequence such that x(S®@r M) # S®g M, then the sequences x and
o(x) =p(x1),...,0(xn) €S are both S ®r M -regular, and there are isomorphisms

(S@rM)/x(SQ@r M) 2 S®r (M/xM) = (S®rM)/o(x)(S®@r M).

PROOF. First, note that the action of x; on S®g M is the same as the action of
©(x;) because the action of x; on S is defined to be the same as the action of p(x;).
Thus, we need only show that x1,...,z, € R is S @r M-regular. We proceed by
induction on n.

Base case: n = 1. Start with the exact sequence

0—-MEM— M/x;M — 0.
Since S is flat over R, the induced sequence
0-S®rM S@rM — S@r (M/z,M) — 0
is also exact. This shows that x; is S ® g M-regular, and that
S@p (M/x1M) =2 (S®rM)/21(S ®r M).
The induction step is left as an exercise. ([

The next two results identify cases where the hypotheses of Lemma [V.6.2] are
satisfied. The definition of a local ring homomorphism is in [[T[.5.4]
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Lemma V.6.3. Let p: (R,m) — (S,n) be a local ring homomorphism between
commutative rings, and let M be a finitely generated non-zero R-module. If x =
Z1y..., Ty €m, then x(SQr M) #S Q@ M.

PROOF. The first and third isomorphisms in the following sequence are from

Exercise [L4.14]

ORI o (SrM)©R(R/XR) = S©r(MER(R/xR) = S©5(M/xM) £ 0.
x(S®r M)
The second isomorphism is associativity For the non-vanishing, note that
Nakayama’s Lemma implies that M/xM # 0, so the non-vanishing follows from
the fact that ¢ is faithfully flat; see Theorem [[IT.3.4] and Proposition O

Lemma V.6.4. Let p: R — S be a flat ring homomorphism between commutative
rings. If x = x1,...,2, € R is an R-regular sequence such that xS # S (e.g., if ¢
is a local homomorphism and x is in the maximal ideal of R), then the sequences
T1,.., Ty € R and o(x1),...,p(xn) € S are both S-regular.

PROOF. This is the special case of Lemma [V.6.2] with M = R. a
Exercises.

Exercise V.6.5. Complete the proof of Lemma






CHAPTER VI

Chain Maps and Induced Maps on Ext and Tor
September 8, 2009

Chain maps are essentially homomorphisms of chain complexes. In other words,
they are the morphisms in the category of chain complexes. We discuss the basic
properties of chain maps and show how they induce homomorphisms on Ext and
Tor-modules.

VI.1. Chain Maps

Definition VI.1.1. Let R be a commutative ring, and let M, and N, be R-
complexes. A chain map Fo: My — N, is a sequence {F;: M; — N,};cz making
the next “ladder-diagram” commute.

M M M
91 9; ;21

M, SNLGEN VALY VAL
F.\L \LE \LFil

ai]\il aiN 61‘]\]71
N, o ——> N, ——— N,y —— -

Chain maps are also called “morphisms of R-complexes”.
An isomorphism from M, to N, is a chain map F,: M, — N, such that each
map F;: M; — N; is an isomorphism.

Example VI.1.2. Here is a chain map over the ring R = Z/127Z.

6 4

M, 7122 2> 7127 7.)127
Fol lQ \L3 \LZ
N, 27122 5> 7/122 —2 > 7/127, —°

The next result states that a chain map induces maps on homology.

Proposition VI.1.3. Let R be a commutative ring, and let Fy: My — N, be a

chain map.

(a) For each i, we have F;(Ker(0M)) C Ker(d}V).

(b) For each i, we have F;(Im(d},)) C Im(87,,).

(c) For each i, the map H;(F,): H;(M,) — H;(N,) given by H;(Fo)(m) = F;(m)
is a well-defined R-module homomorphism.

PROOF. @ and (]ED: Chase the diagram in Definition [VI.1.1
The map H;(F,) is well-defined by parts (a) and (b). It is straightforward

to show that it is R-linear. O

-
c
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Example VI.1.4. Consider the chain map from Example [VL.1.2}

M, oSz —tsz27 —C>7/122 — 2 ...
F.l \L2 \LS \LQ
4 6 4 6
N, 7.)127. 7)127 —2 > 7/122 —% > ...

The homology modules are computed in Example [V.1.4}
Hy(M.) =2 Ho(N,) & 2Z/47 =2 7./27
Ho(M,) =2 Hy(N,) X 3Z/6Z = 7./27.
In degree 1, the map induced on homology is induced by multiplication by 3:

(2)Z (3)z _
Hi(Fy): —= — —— 2+—6=0.
) @z ez -
In degree 0, the map induced on homology is induced by multiplication by 2:
(3)z (2)Z _
Ho(Fy): ——= — —— 3—6=2+#0.

This example shows that you have to be careful. Just because H;(M,) = H;(N,) =
Z/(2) and F; is multiplication by 2, it does not follow that H;(F,) = 0, and similarly
for multiplication by 3. On the other hand, see Exercise

Exercises.
Exercise VI.1.5. Complete the proof of Proposition

Exercise VI.1.6. Let R be a commutative ring. Let M, be an R-complex, and
let r € R. Let ul!: My — M, be given by ul(m) = rm. Show that p is a chain
map and that the induced map H;(u2?): H;(M,) — H;(M,) is given by m — rm
for all i € Z.

Exercise VI.1.7. Let R be a commutative ring. Consider chain maps of R-

complexes Fo: Ly — My and Go: My — N,.

(a) Show that, if F, is an isomorphism, then so is H;(F,) for each i € Z.

(b) Show that, if F; = 0, then H;(F,) = 0.

(¢) Show that, H;(GeF.) = H;(G,) H;(F,) for each i.

Exercise VI.1.8. Let R be a commutative ring. Let M, and M, be chain com-

plexes, and let NV be an R-module.

(a) Prove that a chain map Fy: M, — M is an isomorphism if and only if it has
a two-sided inverse, that is, if and only if there is a chain map Ge: M, — M,
such that F,G, is the identity on M and G4 F, is the identity on M,.

(b) Prove that there is an isomorphism of R-complexes 04: N @ g My — My ®p N.

(¢) Prove that there are isomorphisms R ®p M, = My and M, @r R = M, and
Homp(R, M,) — M,.

Exercise VI.1.9. (Hom-tensor adjointness) Let ¢: R — S be a homomorphism

of commutative rings.

(a) Let N, be an R-complex, and let M and P be S-modules. Prove that there is
an isomorphism of S-complexes

Hompg(N,, Homg (M, P)) = Homg(M ®g N, P).
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(b) Let N be an R-module, let M be an S-complex, and let P be an S-module.
Prove that there is an isomorphism of S-complexes

Homp(N,Homg(M,, P)) = Homg (M, ®g N, P).

(¢) Let N be an R-module, let M be an S-module, and let P be an S-complex.
Prove that there is an isomorphism of S-complexes

HomR(N, HOms(M, P.)) = HOms(M ®r N, P.).

Exercise VI.1.10. (Hom-tensor adjointness) Let ¢: R — S be a homomorphism
of commutative rings.

(a) Let P be an R-complex, and let M and N be S-modules. Prove that there is
an isomorphism of S-complexes
HOIns(]V7 HOIHR(]\/[7 P.)) = HOHIR(M ®s N, P.).

(b) Let P be an R-module, let M be an S-complex, and let N be an S-module.
Prove that there is an isomorphism of S-complexes

Homg (N, Homp(M,, P)) =2 Homp (M, ®s N, P).

(¢) Let P be an R-module, let M be an S-module, and let N be an S-complex.
Prove that there is an isomorphism of S-complexes

Homg(Ne, Hompg(M, P)) = Homg(M ®g N,, P).

Exercise VI.1.11. Let ¢: R — S be a homomorphism of commutative rings.
(a) Let M, be an R-complex, and let N be an R-module. Prove that there is an
isomorphism of S-complexes
Homp (S, Homp(M,, P)) = Homg (S @r M., Hompg(S, N)).

(b) Let M be an R-module, and let N, be an R-complex. Prove that there is an
isomorphism of S-complexes

Homp(S, Hompg(M, N,)) = Homg (S ®r M,Hompg(S, N)).

VI1.2. Isomorphisms for Ext and Tor

In this section, we describe how Ext and Tor localize, and how they behave
with respect to some other natural operations. Most of the details are left as useful
exercises for the reader. The first result shows that Tor is commutative.

Lemma VI.2.1. Let R be a commutative ring, and let M and N be R-modules.
For each integer i, there is an isomorphism Tor’ (M, N) = Tor®(N, M).

PROOF. Let P, be a projective resolution of M. The first isomorphism in the
following sequence is by definition:

Torl (M, N) = Hy(P, ®r N) = H;(N @ P,) = Torl*(N, M).

The second isomorphism comes from Exercise |VI.1.§|(bf), which says that P, ®pg
N = N @g P,, and Exercise [VL.1.7(a)) which says that an isomorphism of com-
plexes induces an isomorphism on homology. The third isomorphism is from The-

orem [[V.4.8 O
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Definition VI.2.2. Let R be a commutative ring, let U C R be a multiplicatively
closed subset, and let M, be an R-complex. The localized complex U~ M, is the
sequence

U-toM U-toM u-toM
U 'My=- — S Uy, — 2 UM, ———5

There is an isomorphism of U~ R-complexes UM, = (U 'R) @ M,.
Let Fy: My — N4 be a chain map of R-complexes. Define
U 'Fe: UMy — U 'N,
to be the sequence of maps {U~'F;: U"'M; — U~!N;}.
Remark VI.2.3. Let R be a commutative ring, let U C R be a multiplicatively
closed subset, and let M, be an R-complex. The sequence UM, is a U 'R-
complex. The natural maps M; — U~'M; form a chain map M, — U~'M,. If
Fy: My — N, is a chain map of R-complexes, then the sequence
U 'Fy: UMy —U'N,
is a chain map of U ! R-complexes that makes the following diagram commute

M, —" N,

o

U-'F,
U-'M,—=U"!N,
where the unlabeled vertical maps are the natural ones.
The natural isomorphisms (U~ R)®r M; — U~ M; from Proposition H.Q.Q@
form an isomorphism of U_IR—complexes (U_lR) Rpr M, z UM, making the
next diagram commute

U 'R F.
(U-R) @r My L2 1Ry o N,
U-1M, v U-IN,.

Lemma VI1.2.4. Let R be a commutative ring, let U C R be a multiplicatively

closed subset, and let M be an R-module.

(a) If P} is a projective resolution of M over R, then U~Y(P}) = (U™1P,)T is a
projective resolution of U"'M over U"'R.

(b) Assume that R is noetherian. If TI, is an injective resolution of M over R,
then U=1(T1,) = H(U11,) is an injective resolution of UM over U™ R.

PROOF. @ The resolution P, is an exact sequence of R-module homomor-
phisms:
oy ar T
The exactness of localization implies that the localized sequence is exact:

v—tof v—tof
—_— —_—

—1
U NPy = U-'p vlp, LU M — 0.
Each U~'P; is a projective U ! R-module by Exercise [[I1.1.21{{[d). The desired

conclusion is immediate.

The proof of part (]ED is similar, using Proposition [[11.1.19 (]
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Lemma VI1.2.5. Let R be a commutative ring, let U C R be a multiplicatively
closed subset, and let M, be an R-complex. For each index i, there is an isomor-
phism H;(U~'M,) =2 U~ H;(U~'M,).

PROOF. The isomorphism U 1M, = (U!R)® g M, from Remark|VI.2.3|yields
the first isomorphism in the following sequence

H;(U™'M,) = H,(U'R) ®r M,) = (U™'R) @ Hi(M,) = U~ H; (U~ ' M.).

The second isomorphism is by Theorem|[[V.1.10{[b)) because U ! R is a flat R-module
by Proposition [I1.2.9{|d]). The third isomorphism is from Proposition [I[1.2.9{jb). O

For the next result, recall that an R-module N is finitely presented if there is
an exact sequence R™ — R™ — N — 0. For instance, a finitely generated module
over a noetherian ring is finitely presented.

Proposition VI1.2.6. Let R be a commutative ring, and let U C R be a multiplica-
tively closed subset. Let Mo be an R-complez, and let N be an R-module.

(a) If N is finitely presented, then there is an isomorphism of U~ R-complexes
Homy 1 g (U'N, U M,) = U~ Homp(N, M,).
(b) If each M; is finitely presented, there is an isomorphism of U~! R-complexes
Homy 1 (U M,, U™ N) = U~ Homg(M,, N).
(c) There is an isomorphism of U~'R-complezes
(UM,) @y-1p (UTIN) =2 U (M, ®g N).
(d) There is an isomorphism of U~ R-complezes
(U'N)@u-15 (U'M,) 2 U (N @r M,).
PRrROOF. (ED The natural isomorphisms
U~ Homp(N, M;) = Homy-—1z(U™'N, U~ M;)

from Proposition form a chain map, and hence the desired isomorphism.
The natural isomorphisms

(U M;) @y (UT'N) = U (M; @g N)

from Exercise form a chain map, and hence the desired isomorphism. See

also Corollary
The proofs of parts @ and @ are similar. O

Theorem VI1.2.7. Let R be a commutative ring, and let U C R be a multiplicatively
closed subset. Let M and N be R-modules.

(a) There are isomorphisms of U~ R-modules
Tor!  B(U'M,U~'N) = U~ Tork (M, N).

(b) If R is noetherian and N is finitely generated, then there are isomorphisms of
U~'R-modules

Exti 1 p(UTIN, U M) = UL Exth (N, M).
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PROOF. (]E[) The assumptions on R and N imply that N has a projective reso-
lution P, such that each P; is a finitely generated free R-module. Lemma
implies that the localization U ! P, is a projective resolution of UM over U~ 'R.
Hence, the first isomorphism in the following sequence is by definition:

Exti, 1 p(UIN, UIM) = H_;(Homy 1z (U P,, U M)
~H_(U ' Homp(P,, M)
~ U~ 'H_;(Homp(P,, M)
= U~ Extly (N, M).

The second isomorphism is by Proposition|VI.2.6{|b). The third isomorphism follows
from Lemma and the fourth isomorphism is by definition.
The proof of part @ is similar. ([

Exercises.
Exercise VI.2.8. Verify the facts from Remark [VI.2.3]
Exercise VI.2.9. Complete the proof of Lemma [VI.2.5]
Exercise VI1.2.10. Complete the proof of Proposition
Exercise VI.2.11. Complete the proof of Theorem

Exercise VI.2.12. Let R be a commutative ring, let M be an R-module, and let
{Nx}area be a set of R-modules.
(a) Prove that there are R-module isomorphisms
Ext (M, [T, Na) 2 [, Exti(M, Ny)
Ext% ([, Na, M) = ], Ext, (N, M)
Tor (][, Na, M) = [, Torf*(Ny, M).
(b) Prove that if R is noetherian and M is finitely generated, then there are R-
module isomorphisms
Exth (M, 1], Na) = [1, Exth (M, Ny).
Exercise VI.2.13. Let R be a commutative noetherian local ring.

(a) let My, ..., M, be non-zero finitely generated R-modules. Show that one has

depthp (@7 M;) = max{depthp(M;) | i =1,...,n}. [Hint: Exercise [VI.2.12]]
(b) Let M be a non-zero finitely generated projective R-module. Show that M is
free and that depthp (M) = depth(R). [Hint: Corollary [V.4.9}]

Exercise V1.2.14. Let ¢: R — S be a homomorphism of commutative rings such
that S is flat as an R-module. Let M and N be R-modules.

(a) Prove that there are isomorphisms of S-modules
Tor? (S @r M, S @g N) 2 S @5 Tork(M, N).

(b) Prove that, if R is noetherian and N is finitely generated, then there are iso-
morphisms of S-modules

Exts(S @g N,S @r M) = S ©p Exty (N, M).
(Hint: See Exercise [I1.2.15| and Corollary [I1.3.7})
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VI1.3. Liftings of Resolutions

Note that @ is not required to be projective in the following lemma.

Lemma VI1.3.1. Let R be a commutative ring, and consider the following diagram
of R-module homomorphisms with exact rows:

o v

0 M’ P M 0
lf
5 o
0 N Q N 0.

If P is projective, then there exist R-module homomorphisms F: P — @Q and
f'+ M’ — N' making the next diagram commute:

[} v

0 M P M 0
vl
0 N—sQ-—2-N 0.

PrOOF. Apply Hompg(P, —) to the bottom row of the given diagram. Since P
is projective, this yields an exact sequence

Hompg (P,§) Hompg (P,0)
5 5

0 — Hompg (P, N') Hompg (P, Q) Homg(P,N) — 0.

In particular, the map Hompg(P,0): Homg(P,Q) — Hompg(P, N) is surjective.
Since we have fy € Hompg(P, N), this implies that there exists F' € Hompg(P, Q)
such that Homp(P,0)(F) = f~, that is, such that o F = f+. In other words, we
have a commutative diagram

o v

0 M P M 0
Y
0 N—2sQ-—2-N 0.

In particular, we have
ocFa= fya=20
and therefore
Im(Fa) C Ker(o) = Im(d) = N.

Hence, the image of the restriction F|pr: M’ — @ is contained in N’ and thus F
induces a well-defined homomorphism f’: M’ — N’ making the desired diagram
commute. (]

The following lifting property is the basis for many of the properties of Ext.

Proposition VI.3.2. Let R be a commutative ring, and let M and N be R-
modules. Let P} be an R-projective resolution of M, and let QF be any “left
resolution” of N, that is, an exact sequence of the following form:

03, a2 o7, o n
= Qi = Qi —— - == Qg — N — 0.
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(For example, Q¥ may be a projective or flat resolution of N.) Given an R-module
homomorphism f: M — N, there exist R-module homomorphisms F;: P; — @Q;
making the following diagram commute

aP

41 5 -
P; P, Py—">M 0
I | |
| 3F; | 3F; 1 | 3F, lf
o, v 92 ¥V o2 o2 ¥
i4+1 i i—1 1 s
Qi Qi1 e Qo N 0.

PrOOF. For each i > 1, let M; = Im(9F) and N; = Im(@iQ). Set My = M and
Ny = N. Then, for i > 0 we have exact sequences

Q41 Yi

0 Mi+1 Pi
04
(*i) 0 Nip1 —=Q;
where ;41 and ;41 are the natural inclusions, and ~; and o; are induced by
the corresponding differential in P,” or QF. In particular, the following diagrams
commute for each ¢ > 0:

M; 0
N; 0

gq

Yi oq
Py —— M Qiv1 —> Nip1
Qi1 it
R
k\ l A i
P Q;-

Set fo = f: My — Np. By induction on i, given f;: M; — N;, Lemma [VI.31]
yields R-module homomorphisms F;: P; — @Q; and fi+1: M;11 — N;41 making the
following diagram commute:

Q41 Vi

0 M1 P; M; 0
| |
| 3fit1 | 3F; lfi
\ Oit1 v o

0 Nit1 Q; N; 0.

It is straightforward to show that the maps F; make the desired diagram commute.
(Note that the base case of our induction is the special case ¢ = 0 of our inductive
step.) O
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Remark VI.3.3. Here is a diagrammatic version of the proof of Proposition[VI.3.2]
(Work through the diagram from right to left, i.e., top to bottom.)

o

H’/% o R o
o T
/ :\ aem T X /
= S = 01 I
a _--"7 ¢
K / TN
L@N 705?1 <

e — \@

aP\

Example VI.3.4. We work over the ring R = Z/127Z. Consider the natural R-
module epimorphism f: Z/6Z — Z/3Z. From Example [[V.2.4 we know that
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projective resolutions of Z/(6) and Z/(3) over Z/(12) are given by

257122 —% 57122 —2 > 7.)122. —° > 7.)127 — > 7,/67 — ()

|1

27127 2> 7)127 — 2 > 7,)127 —2 > 7,127 — > 7,/37. — (.
One commutative diagram satisfying the conclusion of Proposition is

257122 %5 7)122 — 25 7.)122. —° > 7.)127 — > 7./67 — ()

ST PN S

17122 25 7)127 —2 > 7,)127 —2 > 7,127 — > 7,/37. — (.

Example VI.3.5. In the notation of Proposition the sequence of homo-
morphisms {F;: P, — Q;} gives chain maps Fo: Py — Qe and F,F: P}t — QF.

The next lifting property is proved like Proposition [VI.3.2} see Exercise [VI.3.11]

Proposition VI.3.6. Let R be a commutative ring, and let M and N be R-
modules. Let TJ, be an R-injective resolution of N, and Let Y1, be any “right
resolution” of M, that is, T1, is an exact sequence of the following form:

I I I
8'i+1 12) 8i71
—_—

€ a5 ;
0-M=1) % - L, —1I_ 1 ——- -

(For example, *1, may be an R-injective resolution of M.) Given an R-module
homomorphism f: M — N, there exist R-module homomorphisms G;: I, — J;
making the following diagram commute

L i a1 ol
€ 0 it1 i i—1
0 M I . I; ja
| | |
lf I 3Go I 3G; 13Gi1
\ 57 o7 Y 57 A 87
L 0 i+1 i i—1
0 N Jo o J; T

Example VI.3.7. In the notation of Proposition [VI.3.6] the sequence of homo-
morphisms {G;: I; — J;} gives chain maps Go: I, — J, and TGe: T1y — T J,.

Exercises.
Exercise VI.3.8. Complete the proof of Proposition [VI.3:2]

Exercise VI1.3.9. Let R be a commutative ring, and let M be an R-module with
projective resolution P;". Let r € R, and let u: M — M be given by m ~ rm.
Construct maps F;: P, — P; satisfying the conclusion of Proposition [VI.3.2] for
N =M, f=pM and Q, = P,. Repeat this exercise with an injective resolution of
M in Proposition [VI.3.6]

Exercise VI1.3.10. Let R be a commutative ring, and let f: M — N be an
R-module homomorphism. Let PJ- be an R-projective resolution of M, and let
QY be an R-projective resolution of N. Let {F;: P; — Q;} be as in the conclu-
sion of Proposition and let F,: P, — Q. be the corresponding chain map;
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see Example [VL.3.5| Prove that there are isomorphisms a: Ho(P,) — M and
B: Ho(Q.) =N making the following diagram commute:

HO(P.) % M

HD(Fo)l if

Ho(Qu) —>

o

State and prove the analogous result for Proposition
Exercise VI.3.11. Prove Proposition

VI.4. Induced Chain Maps

In this section, we show how functors induce chain maps.

Definition VI.4.1. Let R be a commutative ring. Let M, be an R-complex, and
let g: N — N’ be an R-module homomorphism.

(a) Recall from Definition [[V.1.5[ and Proposition [IV.1.6| that M, ® g N is the R-

complex
oM, ®rN oM@pN 91, ®rN
i+1 i R i—1
My ®@r N =--- M; ®@r N M;—1 @g N —— -+~
degree © degree ¢ — 1

For each i € Z, define (Mq ®g g)i: (Me @r N); — (Me ®g N'); by the formula
(Mo ®p g)i = M; ®r g: M; ®g N — M; @r N'.

This yields a sequence My ®p g: My @ N — M, ®r N’ as in the following

ladder diagram

3ﬁl®RN IMRpN oM ®@rN
> M; g N ————> M; 1 Qg N ——— - -~

Mi@Rg\L M¢1®R!J\L

/ . /
- M; @r N WM1—1 Qr N' ——

61‘]$1®RN 8i—1®RN/

(b) Recall from Definition [IV.1.5| and Proposition [IV.1.6| that N ® g M, is the R-
complex
N®grdM, N@roM N®pdM,
N@rMe=+-+——>NQrM; ——— NQrM; 1 ——— ---.
degree degree i — 1
For each i € Z, define (g @ Ma)i: (N @ M,.); — (N' ®g M,); by the formula
(9®r My)i = g®pr Mi: N @r M; — N' @ M;.

This yields a sequence g g My: N ®g My — N’ ®r M, as in the following
ladder diagram

N®roM, N®@poM N®roM,
e — > QrM; —— NQrp M;_ 1 —— -+

Q®RM11\L 9®RM7‘,—1\L

' or M; N' @ M;_
N ®RM1W ®r Mia

L M ISR
N'®Rr0;% 1 i ®rO;Z,
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Recall from Definition [[V.1.5|and Proposition [[V.1.6|that Hompg (N, M,) is the
R-complex

Hom (N,011,) Hom r(N,0M) Homp(N,0M,)
Y Homp (N, M) ——0% s Homp (N, M) —————2
S——— —
degree 1 degree ¢ — 1

Hompg(8M,N)
—_—

e —_— > B —
HomR((){u,N’) HomR(aﬁl,N') HomR(B%rz,N’)

For each i € Z, define Homg(g, M,);: Homg(N’, M,); — Hompg(N, M,); by
the formula

Hompg(g, M,); = Hompg(g, M;): Homg(N', M;) — Hompg(N, M;)

This yields a sequence Hompg(g, M,): Homg(N', M,) — Hompg(N, M,) as in
the following ladder diagram

Hompg (N',0.,) Homp (N',0M) Hompg(N’,0M )

T Homp (N, M;) — "~ Homp (N, M;_;) —— =5 ...

HomR(g,Mi)i HomR(g,Mil)i

HomR(N, Ml) S HOIIlR(]V7 Mi—l)

HomR(N,BfV_{_l) Hom g (N,0M) Hompg(N,0M )

Recall from Definition [IV.1.5(and Proposition [[V.1.6| that Hompg(M,, N) is the
R-complex

Hompg (0} ,,N) Hompg (9} 5, N)

HomR(Mi,N) HOIHR(MIH_l,N)
| —— —_—————
degree —i degree —(i + 1)
For each i € Z, define Homp(M,, g);: Homg(M,, N); — Homg(M,, N'); by
the formula
Hompg(M,, g); = Homg(M_;,g): Homg(M_;, N) — Homp(M_;, N")

This yields a sequence Hompg(M,, g): Homg(M,, N) — Homp(M,, N’) as in
the following ladder diagram

HomR(aiM,N) HomR(aiﬂipN) HomR(Bﬁ%N)
LT Homp(M;, N) ———— Homp(Miyq, N) ————2 L ..

HomR(Mug)l HomR(MH—l»g)i

HOHIR(Mi,N/) HomR(Mi_H,N’)

Proposition V1.4.2. Let R be a commutative ring. Let My be an R-complex, and
let g: N — N' be an R-module homomorphism. Then the following sequences are
chain maps: Mo ®r g, g ®r Mo, Homp(g, M,), and Hompg(M,,g).

PROOF. We need to check that the appropriate ladder diagrams from Def-

inition commute. In each case, this is a consequence of the appropriate
functoriality. For instance, for M, ® g g, we have

(Mi—1 ®R 9)(0} @r N) =0} @r g = (0} @r N')(M; ®r g)

by Example [I1.2.3] (One can also check this by hand using simple tensors.) The
other three sequences are checked similarly; see Exercise O
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Example VI.4.3. Consider the following Z-complex from Example [[V.1.7]

9
7 (76) 7 (23)

M, = 0 2 Z 0

at—> (%)
(3) — (2a + 3b).
and the R-module homomorphism
9=(3):Z—17"
The chain map M, Rz g: My Q7 7 — My ®7, 72 has the following form:

( %)z (2 3)9Z
M.®Z= 00— 207t e g2a7 2P o
M-@gi m(;)l m(;)i m(;)i
M, ® 7%= 0——2Q7° ——>7Q072 ——=7Z®7>* —0.
(o™ OF G

Recall from Example that there is an isomorphism

2 (%)ez? (2 3)02?
My @ Z° = 0— 7272 ——727*—— 77> ——0
a.lu ¢im wlm ¢ |
! 4
M, = 0 72 50 7 (2300) 72 0.
<_60> 0023
09
0 6

Also, Exercise [VI.1.8(d) shows that the following diagram is an isomorphism

(Z%)ez (23)®

Z
M, ®Z = 0——2ZQRZ 72 Q17 AW/ 0
ﬁ.l: l: l: \L:
M, = 2 .
0 Z ( 5 ) Z 23) Z 0
-6
Using these two isomorphisms, the chain map M,®g is “equivalent” to the following;:
(%) (23)
M, = 0 7 7.2 7 0
10
| w4 @
02
[
M, = 0 72 Z* 530 7 z? 0.
23

(These chain maps are equivalent in the sense that there is a three-dimensional
rectangular commutative diagram whose faces are the four previous commtuative
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diagrams. In other words, there is a commutative diagram of chain maps

M,
M, ®7 2% v, o 72

g.l: NE

M.$M£

The interested reader is encouraged to check this.)

Definition VI1.4.4. Let R be a commutative ring. Let N be an R-module, and let
Fy: My — M be a chain map of R-complexes.

(a) For each i € Z, define (Fe g N);: (My ®r N); — (M, ®g N); by the formula
(F.@RN)iZFi(@RN:Mi®RN—>MZ-I®RN.

This yields a sequence Fy Qg N: My @ g N — M, ®@r N as in the following
ladder diagram

oM, OrN oM@pN 0%, ®rN
i+1 i R i—1
e 5 i®RN%Mi71®RN%'“

Fi®RN\L Fil@RN\L

> M/ ®p N —— M ®@g N ——---.
6ﬁ1®RN oM @rN M @rN

(b) For each i € Z, define (N ®g Fo)i: (N ®g Ms); — (N ®g M]); by the formula
(N®grFo)i=N®grF;: NQp M; = N @p M.

This yields a sequence N @ Fo: N ®g My — N Qg M, as in the following
ladder diagram

N®RrOM, N@roM NogrdlM,
- ——> NQ®r M; NQrMi_y ——---

N®RF7‘,\L N®RFi1\L

..—>N®RM£—?N®RM1{71—>...

N@roM, N@roM NeroM|

(c) For each i € Z, define Hompg (N, F,);: Hompg(N, M,); — Homp(N, M]); by
the formula

Hompg (N, F,); = Homg (N, F;): Homg (N, M;) — Hompg(N, M)

This yields a sequence Hompg(N, F,): Hompg(N, M,) — Hompg(N, M]) as in
the following ladder diagram

Hompg(N,0M,) Hom g (N,0M Homp(N,0/1,)
) bHomR(N, M;) #Hompb(]\ﬂ M;_1) i
HomR(N,Fi)l HomR(N,Fil)i

/ /
~4M/>HomR(N,Mi) — HOHlR(N7Mi,1)4M,>'“ .
Homp(N,0;% ) Homg(N,0;" ) Hompg(N,0;~ 1)
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(d) For each i € Z, define Hompg(Fe, N);: Homgr(M,, N); — Homgr(M,, N); by
the formula
Hompg(F,, N); = Homg(F_;, N): Homg(M’,, N) — Homg(M_;, N)
This yields a sequence Hompg(F,, N): Homp(M,,N) — Homp(M,.,N) as in
the following ladder diagram

HOmR(aM ) HomR(8L+l7 )
_

y HomR(a1+27 )
2R ) Homp (MY, N) i A

HomR(Mz,Jrl? N)
HomR(FhN)\L HomR(FiJrhN)\L

R — Homp(M;,N) ————— Homp(M;41,N) ——— - -- .
Homp (9} ,N) Homp (9} ,,N) Homp (8} ,,N)

Proposition VI1.4.5. Let R be a commutative ring. Let N be an R-module, and
let Fo: My — M be a chain map of R-complexes. Then the following sequences
are chain maps: Foe g N, N ®g Fo, Homg(N, F,), and Homg(F,, N).

PROOF. We need to check that the appropriate ladder diagrams from Def-
inition [VI.4:4] commute. In each case, this is a consequence of the appropriate
functoriality, since F, is a chain map. For instance, for Fy ® g N, we have

(F1 ®r N)(OM @5 N) = (F,_10M) @g N = (0M'F) @x N
= (@M @r N)(F, ®r N)

by Proposition [II.2.1j(b). (One can also check this by hand using simple tensors.)
The other three sequences are checked similarly; see Exercise O

Example VI.4.6. We consider the chain map over Z/12Z from Example [VI.1.2

M, oSz —ts7122 > 7/122 — 2~ ...
F.\L lQ \L3 \L2
4 6 4 6
A 7.)127. 7)127 —2 > 7/127 —% > ...

We first tensor with the module N = (Z/12Z)/3(Z/12Z) = Z/3Z to obtain a chain
map which is equivalent to the following one:

M, ® Z/3LZ 5% 737 22 737 5% 7 /37 L
F.®Z/3Zi 2 3=0 2
N, ® Z/3Z 2% 7737 5% 737 = 7/37 =5

We next tensor with the module N’ = (Z/12Z)? to obtain a chain map which is
equivalent to the following one:

N , Gy (e} 48 (49
C® (2/122)2 - 200 (z/122)2 ~22 (2)122)% ~2Cs (2)122)? e
lm“/m” l@g) l<3g> l<a3>
YY) , (5) [e5) (59)
® (2/122)? - -2 (z/122)? ~25% (z/122)% ~OA (z)122)2 ~204 -
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Exercises.
Exercise V1.4.7. Complete the proof of Proposition

Exercise VI.4.8. Let R be a commutative ring. Let M, be an R-complex, and
let g: N — N’ be an R-module isomorphism. Prove that the following chain maps
are isomorphisms:
Mo ®Rg: Mo@RN_)M. ®RNI
g®RM.Z N@RM. —>N/®RM.
Hompg(g, My): Homg(N', My) — Hompg (N, M,)
Hompg(M,, g): Homg(M,, N) — Hompg(M,, N').
Exercise V1I.4.9. Let R be a commutative ring. Let M, be an R-complex, and let
g: N — N’ and ¢': N — N” be R-module homomorphisms. Verify the following
equalities
Me®r(9'9) = (Ms @r ¢')(Me ®r g)
('9) @r Me = (¢’ ®r Ma)(g @r M)
Hompg(g'g, M) = Hompg(g', M) Hompg(g, M)
Hompg(M,,g'g) = Homg(M,, g") Homg(M,, g)

and rewrite each one in terms of a commutative diagram.

Exercise VI.4.10. Continue with the notation of Example [VI.4.3| and compute
the following chain maps: g ® g Mo and Hompg(g, M,) and Hompg(M,, g).

Exercise V1I.4.11. Let R be a commutative ring. Let M, be an R-complex, and
let N be an R-module. Let » € R, and let u: N — N be given by n ~— rn. Prove
that each of the following maps is given by multiplication by 7:
M0®R,Uf7]«v: M.®RN4)M.®RN
py ©r Me: N ®p Mo — N @g M,
Homp(u, M,): Homg(N, M,) — Hompg (N, M,)
Homp(M,, uY): Homg(M,, N) — Homg(M,, N).

Exercise V1.4.12. Complete the proof of Proposition

Exercise V1.4.13. Let R be a commutative ring. Let M, and M| be R-complexes,
and let N be an R-module. Prove that, if Fy: M, — M, is an isomorphism, then
so are the following:
Fo@pr N: My ®g N — M, ®@r N
N®prFe: N Rr M, —>N®RM:
Hompg(N, F,): Homg(N, M,) — Hompg(N, M)
Hompg(F,, N): Homg(M,, N) — Homp(M,, N).
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Exercise VI.4.14. Let R be a commutative ring, and let NV be an R-module. Let
Fo: My — M, and F): M, — M/ be chain maps. Verify the following equalities

(FoFo) ®r N = (Fy @ N)(Fe ®@r N

N ®g (F.F,) = (N ®g F.)(N ®r F,

Hompg (N, F,F,) = Homg(N, F,) Hompg

Hompg(F,F,, N) = Homg(F,, N) Hompg

)
)
N,F,)
F/,N)

o)

and rewrite each one in terms of a commutative diagram.

Exercise V1.4.15. Continue with the notation of Example Compute the
following chain maps: N ®pg Fy and N’ ®g Fe and Homg(N, F,) and Hompg (N’ F,)
and Homp(F,, N) and Homp(F,, N').

Exercise V1.4.16. Let R be a commutative ring. Let M, be an R-complex, and
let N be an R-module. Let » € R, and let ﬂi\/[: My — M, be given by m +— rm.
Prove that each of the following maps is given by multiplication by r:
Mi\/I®RN: Mo ®RN_>M0 ®RN
N®ppd': N®r My — N ®@p M,
Hompz(N, u): Homg(N, M,) — Hompg (N, M,)
Homp(u}, N): Homg(M,, N) — Hompg(M,, N)
Exercise VI.4.17. Let R be a commutative ring. Let Fy: M, — M, be a chain
map, and let g: N — N’ be an R-module homomorphism. Verify the following
equalities
(M, @R g)(Fe ®
(g®r M,)(N ®@g F,
Hompg (g, M) Hompg(N', F,
Hompg(F,, N')Hompg (M, g) =

= (Fe®@r N') (M ®R 9)
(N'®pr Fo)(9 ®@r M,)
= Hompg(N, F.) Hompg(g, M,)
Hompg(M,, g) Hompg(F,, N)

\/\/\/\/

and rewrite each one in terms of a commutative diagram.

VI.5. Ext-maps via projective resolutions

If M is an R-module, then the operator Hompg(M, —) is a functor. In partic-
ular, this means that, not only does it transform modules to modules, but it also
transforms maps to maps. Similar comments hold for the operators Hompg(—, M)
and M ®g — and —®gr M. We have seen how the Ext and Tor operators transform
modules to modules. The point of the next three sections is to show how they
transform maps to maps.

Definition VI.5.1. Let R be a commutative ring. Let M be an R-module, and
let Pj- be an R-projective resolution of M. Let g: N — N’ be an R-module
homomorphism, and consider the chain map

Hompg(P,,g): Homg(P,, N) — Hompg(P,, N’)
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from Definition [VL.4.1|{d) and Proposition [VI.4.2] Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules

H_;(Homg(P,,g)): H_;(Homg(Ps, N)) — H_;(Homp(Ps, N'))

Ext% (M,N) Ext% (M,N’)
S0 we set
Extho(M,g) = H_;(Homp(P,, g)): Extis(M, N) — Ext’ (M, N').

In general, these maps are a pain to compute. However, the next example is
always a winner.

Example VI.5.2. Let R be a commutative ring. Let M and N be R-modules,
and let P} be an R-projective resolution of M. Let r € R, and let u: N — N be
given by n — rn. We claim that the induced map

Exta (M, u): Extly(M, N) — Extz (M, N)
is given by multiplication by r. Indeed, Exercise |VI.4.11|shows that the chain map
Homp(P., 1Y) : Homp(P., N)) — Hompg(P., N))
is given by multiplication by r, so Exercise shows that the induced map

H_;(Hompg(P,, u)): H_;(Homg(P,,N)) — H_;(Hompg(P,, N))

Exti, (M,N) Extt,(M,N)

is also given by multiplication by r, as claimed.
In particular, the special case r = 1 shows that

Ext (M, 1n) = Ty (v 0 Extip(M, N) — Extp(M, N)
for all ¢ € Z.
Here is a result that we do not have time to prove.

Theorem VI1.5.3. Let R be a commutative ring. Let M be an R-module, and let
g: N — N’ be an R-module homomorphism. For each integer i, the map

Ext% (M, g): Exth(M,N) — Exth (M, N')

is independent of the choice of projective resolution of M. In other words, if P}
and Q¥ are R-projective resolutions of M then there is a commutative diagram

H_;(Hompg(P,,9))

H_;(Homp(P,, N)) H_;(Hompg(P,,N"))

] ]

H_;(Hompg(Qe,9))
H_i(Homp(Qa, N)) ——————> H_(Homp(Q., N'))
where the unspecified vertical isomorphisms are from Theorem [[V.3.5

Here is the functoriality of this version of Ext.
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Proposition VI1.5.4. Let R be a commutative ring. Let M be an R-module, and
let g: N — N’ and g': N' — N be R-module homomorphisms. Then the following
diagram commutes

i Exth (M,g) i ,
Extiy (M, N) ———% Exti,(M, N')

E%\ iEXt%(M’g/)
xth(M,g'g

Ext% (M, N")
for each integer i, that is, we have Exths (M, g'g) = Ext's(M, ¢') Exts (M, g).

PRrROOF. Exercise implies that the following diagram commutes:

Hompg (P,,
Homp(Pa, N) 222 o0 2 (P, NY)

5 Homp (P- 79,)
Hompg (Pe,9'9)

Homp(P,, N").
Hence, Exercise implies that the next diagram commutes:

H_,(Homp(Po, N)) =20 g (Homp(Pa, N))

H_;(Hompg(Ps,q’
H_;(Hompg(Ps,g'9)) i ( r(Pe,q"))

H_;(Hompg(Ps, N")).
By definition, this is the desired diagram. O

Definition VI.5.5. Let R be a commutative ring. Let f: M — M’ be an R-
module homomorphism, and let N be an R-module. Let P~ be an R-projective
resolution of M, and let QT be an R-projective resolution of M’. Let Fy: Py — Q4
be a lifting of f, that is, a chain map as in Proposition [VI.3:2} see Example [VI.3.5]
Consider the chain map

Hompg(Fs, N): Hompg(Qe, N) — Hompg(P,, N)
from Definition [VL.4.4(d) and Proposition [VL.4.5| Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules

H_(Homp(Fy, N)): H_s(Homp(Qu, N)) — H_;(Homp(P,, N))

Exti, (M’,N) Ext% (M,N)
so we set
Ext%(f, N) = H_;(Hompg(F,,N)): Exth(M’, N) — Ext(M, N).

In general, these maps are a pain to compute. However, the next example is
always a winner.

Example VI.5.6. Let R be a commutative ring. Let M and N be R-modules,
and let P}* be an R-projective resolution of M. Let r € R, and let uM: M — M
be given by m +— rm. We claim that the induced map

Exti(uM N): Exth(M,N) — Extis(M,N)
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is given by multiplication by r. Indeed, Exercise [VI.3.9] shows that the multiplica-
tion map
ul P, — P, given by P TP
is a lifting of M. Exercise [VI.4.16{shows that the chain map
Homp(ul', N): Homg(P,, N)) — Hompg(P,, N))
is given by multiplication by 7, so Exercise shows that the induced map
H_;(Homg(ul', N)): H_;(Homp(P.,N)) — H_;(Homp (P, N))

Ext% (M,N) Ext’ (M,N)

is also given by multiplication by r, as claimed.

In particular, the special case r = 1 shows that
for all 7 € Z.

Here is a result that we do not have time to prove.
Theorem VI1.5.7. Let R be a commutative ring. Let f: M — M’ be an R-module
homomorphism, and let N be an R-module. For each integer i, the map

Ext%(f, N): Extlh(M’', N) — Exth(M, N)

is independent of (1) the choice of projective resolutions of M and M' and (2) the
choice of lifting of f. In other words, assume that P} and P} are R-projective

resolutions of M, that Q+ and Q+ are R-projective resolutions of M', and that
Fo: P, — Qo and Fy: P, — Q. are liftings of f; then there is a commutative
diagram where the unspecified vertical isomorphisms are from Theorem |[[V.3.5

Hfi(HOInR(F.,N))

H_Z'(HOI’HR<Q,,N)) H_i(HomR(P.,N))

”l ) ”l

~ H_;(Hompg(Fo,N)) ~
H_;(Homg(Qe, N)) — = H_,;(Hompg(P,, N)).

Here is the functoriality of this version of Ext.

Proposition VI.5.8. Let R be a commutative ring, and let N be an R-module. Let
f:M— M and f': M' — M" be R-module homomorphisms. Then the following
diagram commutes

7 " Extp (f',N) i 1
Extly (M", N) ———— Ext’, (M, N)

\ lEXt%(f,N)
Exty (f f,N

Ext’ (M, N)
for each integer i, that is, we have Ext’h (f'f, N) = Ext'(f, N) Ext%(f', N).
PROOF. Let P; be a projective resolution of M. Let P} be a projective
resolution of M’. Let PJr be a pI‘OJGCthG resolution of M. Let F,: Py — P, be

a lifting of f, and let F}: P, — P, be a lifting of f’. It is straightforward to show
that the chain map F.F,: Py — P, is a lifting of the composition f’f.
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Exercise [VI.4.14] implies that the following diagram commutes:

~ Hompg(F,,N) ~
Homp(P,, N) — Hompg(P,, N)

\ lHomR (Fo,N)
Homp (F,F,,N)

Homp(P,, N).
Hence, Exercise implies that the next diagram commutes:

~ Hfi(HOmR(F:,N)) ~
H_;(Hompg(Ps, N)) — > H_,;(Hompg(P., N))

\ lH_i(HomR(F.,N))
H_;(Hompg(F,F,,N)

H_;(Hompg(P., N)).
By definition, this is the desired diagram. O

Remark VI.5.9. Let R be a commutative ring. As a consequence of Proposi-
tions [VIL.5.4{ and [VI.5.8] we have Ext’ (0, N) = 0 and Ext’s(M,0) = 0, whenever 0
is a zero-map. See Remark

Exercises.

Exercise V1.5.10. Let R be a commutative ring. Let M be an R-module, and let

g: N — N’ be an R-module homomorphism.

(a) Without using Proposition [VL.5.4, prove that, if g = 0, then Ext’(M,g) = 0
for all i € Z. 4

(b) Prove that, if g is an isomorphism, then Ext% (M, g) is an isomorphism for all
i € Z.

Exercise VI.5.11. Let R be a commutative ring. Let f: M — M’ be an R-module

homomorphism, and let NV be an R-module.

(a) Without using Proposition prove that, if f = 0, then Ext%(f, N) = 0
for all indices i € Z.

(b) Prove that, if f is an isomorphism, then Extﬁ%( fyN) is an isomorphism for all
indices 7 € Z.

Exercise V1.5.12. Let R be a commutative ring. Let f: M — M’ and g: N — N’
be R-module homomorphisms. Prove that the following diagram commutes for each
index i € Z:

Exth (M',g)
_——

Extz(M', N) Extl (M, N')

Extg(f,N)l lExtg(f,N’)

Extj,%(M,g)

Ext% (M, N) Ext% (M, N').

VI.6. Ext-maps via injective resolutions

In this section, we show how the Ext-maps from Section [VI.5| can be computed
via injective resolutions.
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Remark VI.6.1. Let R be a commutative ring. Let N be an R-module, and
let TJ, be an R-injective resolution of N. Let f: M — M’ be an R-module
homomorphism, and consider the chain map

HomR(f, J.)Z HOIHR(M/J.) — 1—101111%(]\47 J.)

from Definition VI.4.1 and Proposition [VI.4.2] Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules

H_;(Homg(f, J,)): H_i(Homg(M"J,)) — H_;(Homp(M, J,)).

Exti, (M/,N) Exti (M,N)
Here is a result that we do not have time to prove.

Theorem VI.6.2. Let R be a commutative ring. Let N be an R-module, and
let f: M — M’ be an R-module homomorphism. For each integer i, the map
Ext%(M', N) — Ext% (M, N) from Remark is independent of the choice of
injective resolution of N, and it is equivalent to the map Ext’}é(f, N) from Def-
inition [V1.5.5, That is, if TI. is an R-injective resolution of N then there is a

commutative diagram

H_;(Homp(M', I.)) —= 1m0 Homp(M, 1))

:l :l

i , Exth(f,N) i

where the unspecified vertical isomorphisms are from Theorem [IV.3.10,

Remark VI.6.3. Let R be a commutative ring. Let g: N — N’ be an R-module
homomorphism, and let M be an R-module. Let *I, be an R-injective resolution
of N, and let TJ, be an R-injective resolution of N’. Let G,: I, — J, be a lifting

of g, that is, a chain map as in Proposition see Example Consider

the chain map
Homp(M,G,): Homp(M,I,) — Homp(M, J,)

from Definition VI.4.4 and Proposition [VI.4.5| Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules

H_,(Homg(M,G,)): H_;(Homg(M,I,)) — H_;(Hompg (M, J,)) .

Exti,(M,N) Exti,(M,N’)

Here is another result that we do not have time to prove.

Theorem V1.6.4. Let R be a commutative ring. Let g: N — N’ be an R-module
homomorphism, and let M be an R-module. For each integer i, the homomorphism
Ext% (M, N) — Exth(M,N') from Remark is independent of the choice of
ingective resolutions of N and N'; it is independent of the lifting of g; and it is
equivalent to the map Ext%(M, g) from Definition . That is, let 1, be an
R-injective resolution of N, and let *.J, be an R-injective resolution of N'. If
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Ge: Is — Jo is a lifting of g, then there is a commutative diagram

H_,(Homp(M, I,)) =02 0C) 1 Homp(M, )

:l :l

i EXtE(M,g) i ,

where the unspecified vertical isomorphisms are from Theorem [IV.3.10,
Exercises.

Exercise VI.6.5. Use the definitions of this section to give another verification of
Example [VI.5.2]

Exercise VI.6.6. Use the definitions of this section to give another proof of Propo-
sition [VL.5.41
Exercise VI.6.7. Use the definitions of this section to give another verification of

Example

Exercise VI.6.8. Use the definitions of this section to give another proof of Propo-
sition VLE5.8l

Exercise VI.6.9. Use the definitions of this section to give another solution to
Exercise V1.5, 10

Exercise V1I.6.10. Use the definitions of this section to give another solution to

Exercise [VL5.111

Exercise VI.6.11. Use the definitions of this section to give another solution to

Exercise VL5.12

VI1.7. Tor-maps

Definition VI.7.1. Let R be a commutative ring. Let M be an R-module, and
let P;” be an R-projective resolution of M. Let g: N — N’ be an R-module
homomorphism, and consider the chain map

P. ®Rgl P. ®RN—>P. ®RN/
from Definition [VI.4.1jla) and Proposition [VI.4.2] Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules

Hi(Ps ®r g): Hi(Ps @ N) — H;(Ps @ N')

Torf%(M,N) TorlR(M,N’)
so we set
Tor{{(M, g) = Hi(Ps ®r g): Tor{'(M, N) — Torj"(M, N').

In general, these maps are a pain to compute. However, the next example is
always a winner.

Example VI.7.2. Let R be a commutative ring. Let M and N be R-modules,
and let P}t be an R-projective resolution of M. Let r € R, and let u’: N — N be
given by n — rn. The induced map

Tor® (M, uN): Tor®(M, N) — Torf(M, N)
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is given by multiplication by r. In particular, the special case r = 1 shows that
TorZR(M, 1y) = lTorﬁ(M,N): TorlB(M, N) — TorZR(M, N)
for all i € Z.
Here is a result that we do not have time to prove.

Theorem VI.7.3. Let R be a commutative ring. Let M be an R-module, and let

g: N — N’ be an R-module homomorphism. For each integer i, the map
Torl*(M, g): Torl(M,N) — Tor®(M, N")

is independent of the choice of projective resolution of M. In other words, if P}

and QY are R-projective resolutions of M then there is a commutative diagram

H,L' (P. ®R N) H;(Pe®Rrg) HZ (P. ®R NI)
I |
Hi(Qu @ N) — 19929 y(Quon N')

where the unspecified vertical isomorphisms are from Theorem [IV.4.4]
Here is the functoriality of this version of Tor.

Proposition VI.7.4. Let R be a commutative ring. Let M be an R-module, and
let g: N — N’ and g¢': N’ — N" be R-module homomorphisms. Then the following
diagram commutes

Torf(M,g)
TorR (M, N) ———% Torf (M, N')

Torf(M,g")
Torf(M,g'g i ’

Torf (M, N"")
for each integer i, that is, we have Tor® (M, ¢'g) = Tor® (M, g') TorF (M, g).
Proor. Exercise [VL.7.17 (]

Definition VI.7.5. Let R be a commutative ring. Let f: M — M’ be an R-
module homomorphism, and let N be an R-module. Let P}t be an R-projective
resolution of M, and let QF be an R-projective resolution of M’. Let Fy: Py — Q,

be a lifting of f, that is, a chain map as in Proposition see Example

Consider the chain map
F0®RN: P.®RN_)Q.®RN
from Definition [VI.4.4{|a) and Proposition [VI.4.5| Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules
Hi(F. KRR N) HZ(P. XRr N) — HZ(Q. QR N))

Torf(M,N) Tor®(M',N)

So we set
Tor’(f,N) = Hy(Fy ®g N): Tor(M,N) — Tor®(M',N).

In general, these maps are a pain to compute. However, the next example is
always a winner.



VI.7. TOR-MAPS 139

Example VI.7.6. Let R be a commutative ring. Let M and N be R-modules,
and let P}* be an R-projective resolution of M. Let r € R, and let uM: M — M
be given by m +— rm. The induced map

Torf%(/ziw,]\f): Torf%(M,N) — TorZR(M, N)
is given by multiplication by r. In particular, the special case » = 1 shows that
Tor;*(Lar, N) = Lygurar,ny: Torj (M, N) — Torj"(M, N)
for all i € Z. See Exercise
Here is a result that we do not have time to prove.

Theorem VI1.7.7. Let R be a commutative ring. Let f: M — M’ be an R-module
homomorphism, and let N be an R-module. For each integer i, the map

Tor®(f,N): TorfF(M,N) — Torf(M, N)

is independent of (1) the choice of projective resolutions of M and M' and (2) the
choice of lifting of f. In other words, assume that P} and ﬁf are R-projective
resolutions of M, that QF and @f are R-projective resolutions of M', and that
Fo: P, — Qo and ﬁ.: ]5. — @. are liftings of f; then there is a commutative
diagram

H;(Fe®rN)

Hi(Pc ®RN) Hi(Qo ®RN)
ji H; (Fe®rN) jl
H;(Ps ®g N) H;(Qe ®r N)

where the unspecified vertical isomorphisms are from Theorem [IV.4.4]
Here is the functoriality of this version of Tor.

Proposition VI.7.8. Let R be a commutative ring, and let N be an R-module. Let
f:M— M and f': M' — M" be R-module homomorphisms. Then the following
diagram commutes

Tor}*(f.N)
Torl(M, N) ———— Tor(M’, N)

\ iTor?(f’,N)
Tor®(f' f,N
Tor(M", N)
for each, integer i, that is, we have TorZ(f'f, N) = Tor®(f’, N) Tor®(f, N).
Proor. Exercise [VL.7.20) ]

Remark VI.7.9. Let R be a commutative ring. As a consequence of Proposi-
tions [VI.7.4] and [VI.7.8] we have Tor (0, N) = 0 and Tor(M,0) = 0, whenever 0

is a zero-map. See Exercises [VI.7.18 and [VI.7.21]

Now, we show how the Tor-maps can be computed via projective resolutions
on the other side.
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Remark VI.7.10. Let R be a commutative ring. Let N be an R-module, and
let QF be an R-projective resolution of N. Let f: M — M’ be an R-module
homomorphism, and consider the chain map

JORQe: M Qr Qe — M' @ Q.

from Definition [VL4.|(b) and Proposition [VI.4.2] Since this is a chain map, it

induces R-module homomorphisms on corresponding homology modules

Hi(f @r Qe): Hi(M @ Qs) — H;(M' ®r Q).

Torf(M,N) Tor®(M',N)

Here is a result that we do not have time to prove.

Theorem VI.7.11. Let R be a commutative ring. Let N be an R-module, and

let f: M — M’ be an R-module homomorphism. For each integer i, the map
Torl(M, N) — Tor®(M',N) from Remark is independent of the choice
of projective resolution of N, and it is equivalent to the map Torf”(f, N) from
Definition [VI.7.5, That is, if Ps is an R-projective resolution of N then there is a
commutative diagram

Hi(M @p P) — 255 (M o P)

:l :l

Tor2(f,N
Tor (M, N) () Tor(M', N)

where the unspecified vertical isomorphisms are from Theorem [[V.].8

Remark VI1.7.12. Let R be a commutative ring. Let g: N — N’ be an R-module
homomorphism, and let M be an R-module. Let P;" be an R-projective resolution
of N, and let QT be an R-projective resolution of N’. Let Go: P, — Q. be a lifting

of g, that is, a chain map as in Proposition [VI.3.2} see Example Consider
the chain map

MRrGe: M @r Py — M Qr Qe

from Definition [VI.4.4{(b) and Proposition [VI.4.5| Since this is a chain map, it
induces R-module homomorphisms on corresponding homology modules

Hl(M QR G.): Hi(M XR Po) - HZ(M ®r QO)

Torf(M,N) TorF(M,N’)

Here is another result that we do not have time to prove.

Theorem VI1.7.13. Let R be a commutative ring. Let g: N — N’ be an R-
module homomorphism, and let M be an R-module. For each integer i, the map
Torl (M, N) — Tor®(M, N') from Remark|VI.7.12 is independent of the choice of

projective resolutions of N and N'; it is independent of the lifting of g; and it is
equivalent to the map TorzR(M, g) from Definition |\VL7.1. That is, let P be an

R-projective resolution of N, and let QF be an R-projective resolution of N'. If
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Ge: Py — Qo is a lifting of g, then there is a commutative diagram

Hi(M®RGo)

H;(M ®g P,) H;(M ®gr Q)
R l/ TOI“IR(M,g) R l/
Tor*(M, N) Tor/ (M, N')

where the unspecified vertical isomorphisms are from Theorem [[V.].8

Lemma VI1.7.14. Let R be a commutative ring, and let M and N be R-modules.
Then Anng(M) U Anng(N) € Anng(Tor® (M, N)) for all i.

PRrOOF. Exercise. O

Remark VI.7.15. Let R be a commutative ring, and let M and N be R-modules.
Let I,J C R be ideals such that IM = 0 and JN = 0. Lemma [V.5.§ implies that
(I +J) Tor (M, N) = 0. Because of this, Remark [[.5.10 implies that Tor(M, N)
has the structure of an R/(I + J)-module, the structure of an R/I-module, and the
structure of an R/J-module via the formula 7z = 72z. Furthermore, Tor!(M, N)
is finitely generated over R if and only if it is finitely generated over R/I, and
similarly over R/J and R/(I + J).

Exercises.
Exercise VI.7.16. Verify the facts in Example [VI.7.2
Exercise VI1.7.17. Prove Proposition

Exercise VI.7.18. Let R be a commutative ring. Let M be an R-module, and let

g: N — N’ be an R-module homomorphism.

(a) Without using Proposition prove that, if g = 0, then Tor’*(M, g) = 0
for all indices i € Z.

(b) Now, using Proposition prove that, if g = 0, then Tor®(M,g) = 0 for
all indices ¢ € Z.

(c) Prove that, if g is an isomorphism, then Tory (M, g) is an isomorphism for all
indices 7 € Z.

Exercise VI.7.19. Verify the facts in Example
Exercise VI.7.20. Prove Proposition [VI.7.8

Exercise VI.7.21. Let R be a commutative ring. Let f: M — M’ be an R-module

homomorphism, and let N be an R-module.

(a) Without using Proposition [VI.7.8) prove that, if f = 0, then Torf(f, N)=0
for all indices i € Z.

(b) Now, using Proposition [V1.7.8] prove that, if f = 0, then TorzR(f, N) =0 for
all indices ¢ € Z.

(¢) Prove that, if f is an isomorphism, then Tor?*(f, N) is an isomorphism for all
indices 7 € Z.

Exercise V1.7.22. Let R be a commutative ring. Let f: M — M’ and g: N — N’
be R-module homomorphisms. Prove that the following diagram commutes for each
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index i € Z:

Torf (M’ ,g)

Tor®(M!, N) ———% TorR (M, N")

Tor?(f,N)l lTorf(f,N/)
Torf (M.g)

TorR (M, N) ———% Tor® (M, N").

Exercise VI.7.23. Prove Lemma [VL.7.14]



CHAPTER VII

Ext, Tor, and Homological Dimensions September
8, 2009

The goal of this chapter is to show how Ext-vanishing and Tor-vanishing are
related to projective dimension, injective dimension, and flat dimension.

VII.1. Assumptions

Fact VII.1.1. Let R be a commutative ring. Given an R-module N and an exact
sequence of R-modules

([ VIRAN Y JER VA
there are three long exact sequences: the first one is for Ext’ (N, —)

Homg(N,f") Hompg (N, f)
_— _—

0 — Hompg (N, M") Homp(N, M) Hompg(N, M")

s Exth(N, M) 2N gt v, vy 2Dl (v vy
. < i . < 1 ]
- Extiy(N, M) 2D g v, vy 2D g (v M)

the second one is for Ext’(—, N)

Hompg(f,N) Homp (f',N)
(AL AN LN

0 — Hompg(M",N) Hompg (M, N) Hompg(M’', N)

— Bxth (M, N) 22200 et (v, Ny 2N g (M N - -

- Exthy (M, N) 20 gt v, Ny 2N gt (7 N

and the third one is for TorzR(—7 N)

I‘R ’ FR
.= Tor,}f(M’,N) o, (f.N) Torf”(M, N) o, (f:N) Torf(M”,N) SN

Torf'(#/,N) Torf (f,N)

- — Torf(M’', N) Torf (M, N) Torf'(M", N)

f'®rN f®rN

— M QRr N M ®r N
See Theorems [VIII.2.1] [VIIT.2.2] and [VIIT.2.3]

VII.2. Depth and Dimension

M”@RN—)O.

We start by recalling some facts from dimension theory.

Definition VII.2.1. Let R be a commutative ring, and let M be an R-module.
The Krull dimension of M is

dimp(M) = sup{n > 0| there is a chain po C p1 C --- C p,, in Suppr(M)}.

143
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The Krull dimension of R is the Krull dimension of R, considered as an R-module:
dim(R) = sup{n > 0 | there is a chain pg C p1 C -+ C pp, in Spec(R)}.
Fact VII.2.2. Let R be a commutative ring. If M is a non-zero R-module, then
0 < dimg(M) < dim(R).
If I C R is an ideal, then
dim(R/I) = dimg(R/I) < dim(R).
If U C R is a multiplicatively closed subset, then
dimy-1p(UT'M) < dimp(M)  dim(U~'R) < dim(R).
Proposition implies that, if R is noetherian and M is finitely generated, then
dimp (M) = sup{dim(R/p) | p € Suppg (M)}
— sup{dim(R/p) | p € Assp(M)}
= sup{dim(R/p) | p € Ming (M)}
dim(R) = sup{dim(R/p) | p € Spec(R)}
= sup{dim(R/p) | p € Assr(R)}
= sup{dim(R/p) | p € Ming(R)}.

Fact VII.2.3. If k is a field, then the polynomial ring k[X7, ..., X,,] has dimension
n, as do the localized polynomial ring k[X1,..., X,](x, ..., x,) and the power series
ring k[X1,...,X,]. Moreover, if R is a commutative noetherian ring, then

dim(A[X, ..., X,]) =dim(4) + n = dim(A[Xq, ..., X,])-
These equalities are non-trivial. See Example

In general, the quantity dim(R) need not be finite, even if R is noetherian.
However, we do have the following.

Fact VIL.2.4. If (R,m) is a commutative noetherian local ring, then
dim(R) < vg(m) < oo

where vr(m) is the minimal number of generators for m. See Remark for
more information.

The goal of this section is to establish the inequality depthy (M) < dimg(M).
See Theorem For this, we need the following two lemmas.

Lemma VII.2.5. Let R be a commutative ring, let M be an R-module, and let t
be an integer.

(a) Consider an exact sequence of R-module homomorphisms
0—-N —-N-—=N'"—0.

If Exty (N, M) = 0 = Extz(N', M), then Exty (N, M) = 0.
(b) Consider a chain of submodules N = Ng D Ny D Ny D --- D N, = 0. If
Ext%(N;/Njs1, M) =0 for j =0,...,n— 1, then Extiz(N, M) = 0.
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PROOF. () Part of the long exact sequence in Extr(—, M) associated to the
given exact sequence has the following form

Ext’y (N”, M) — Exthz (N, M) — Exth(N', M) .
—_——— —_———

=0 =0
It follows that Exth (N, M) = 0.
(]E[) We proceed by induction on n. In the first base case n = 1 we have

N = Ny = Ny/0 = Ny/Nq, so the conclusion is automatic from the assumptions.
Base case n = 2. In this case, the given filtration yields an exact sequence
0—- Ny — N— N/N; —0.

%Nl /N2 :No /N1
Using the assumption Exth(N;/No, M) = 0 = Extly(No/Ny, M), part @ implies
that Ext’ (N, M) = 0.
Induction step. Assume that n > 3 and that the result holds for modules with
filtrations of length n — 1. The module N7 has a filtration of length n — 1

Ny DNy D---DN,=0.

Our assumptions imply that Ext’(N;/Njy1, M) =0 for j = 1,...,n — 1, so our
induction hypothesis implies that Ext%(N;, M) = 0. Furthermore, we have

0= EXt%(No/Nl,M) = EXttR(N/Nl,M)

so the base case n = 2 applied to the filtration N = Ny D N7 D 0 yields the desired
conclusion Ext’ (N, M) = 0. O

The proof of the following shows how to use regular elements in an induction
argument. It also shows how to use prime filtrations to give you regular elements.

Lemma VII.2.6. Let (R, m) be a commutative noetherian local ring, and let M and
N be non-zero finitely generated R-modules. Setl = depthp(M) and r = dimg(N).
Then Extp (N, M) =0 for alli <l —r.

PRrROOF. Proceed by induction on 7.

Base case: r = 0. In this case, we have dimg(N) = 0 and so Suppg(N) = {m}.
Hence, the result follows from Theorem as discussed above.

For the induction step, assume that » > 1 and that, for every finitely generated
R-module N’ # 0 with dimg(N’) < r, we have Exth(N’, M) = 0 for all indices
i < 1 —dimp(N’). Tt follows that Exth(N', M) = 0 for all i < | —r + 1 since
Il —r<l—dimg(N').

First, consider the special case where N 2 R/p for some p € Spec(R). Since
dimp(N) =r > 1, we have p C m. Let z € m — p, and consider the exact sequence

0—-N5N— N/zN — 0.

Note that we have N/xN = R/(x,p). Since p is prime and z € m — p, it is
straightforward to show that dimpr(N/zN) < dimg(N). (Actually, we have equality
here, but that’s harder to show and we don’t need it here.) Hence, by our induction
hypothesis, we know that Ext(N/xN, M) = 0 for all i < [ —r+ 1. Hence, for each
1 < | —r, the portion of the long exact sequence in Ext%(—, M) associated to the
displayed sequence has the form

0 — Extiy (N, M) & Extb (N, M) — 0.
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It follows that Exth (N, M) = zExth (N, M). Since € m and Ext%(N, M) is
finitely generated, Nakayama’s Lemma implies Ext% (N, M) = 0.

For the general case, take a prime filtration N = Ng D Ny DNy D--- DN, =0
so that N;/N;41 = R/p; for some p; € Spec(R) for j =0,...,n—1. We have seen
previously that

dlm(R/pJ) = dimR(Nj/Nj+1) < dlmR(N]) < dlmR(N) =T

Hence, our induction hypothesis works with Case 1 to imply Ext%(N;/N;iq1, M) =

0 for all : < I —r and for j = 0,...,n — 1. Lemma VIL.2.5(|b) implies that
Ext®(N,M) =0 for all i <l —r, as desired. O

Theorem VII.2.7. Let (R,m) be a commutative noetherian local ring, and let M
be a non-zero finitely generated R-module.
(a) For each p € Assg(M) we have depthy (M) < dim(R/p)
(b) We have depthp(M) < dimp(M).

PROOF. (@) For each p € Assg(M) we have

Ext%(R/p, M) = Hompg(R/p, M) # 0

see Example Lemma [VIL2.6| implies that Ext%(R/p, M) = 0 for all indices
i < depthp (M) —dim(R/p). It follows that depthz (M) —dim(R/p) < 0 and hence
depthr (M) < dimpg(M).

(]E[) From Proposition one deduces the equality in the next sequence

dimp(M) = max{dim(R/p) | p € Assg(M)} > depthp (M)

and the inequality is from part @ (Il

Exercises.

Exercise VIIL.2.8. Verify the properties in Fact [VIL.2.2]

Exercise VII.2.9. Let R be a commutative ring.

(a) Given an exact sequence 0 - M’ — M — M"” — 0 of R-module homomor-
phisms, prove that dimg(M) = sup{dimg(M’),dimgr(M")}.

(b) Given an R-module M with a filtration M = My 2 M; 2 --- D M,, = 0, prove
that dlmR(M) = sup{dimR(Mo/Ml), N 7diHlR(]\4n,2/]\4n,1)7 dlmR(Mn,l)}

(c) Show that the versions of parts (a)) and (b) for depth fail.

Exercise VII.2.10. Let k be a field. Calculate the dimensions of the following
rings:

(a) k[X]/(X?)

(b) K[X,Y]/(XY)

(c) kX, Y]/(X?,Y?).

VII.3. Ext and Projective Dimension

The projective dimension of a module M is the length of the shortest projective
resolution of M. More technically, we have the following.

Definition VIIL.3.1. Let R be a commutative ring, and let M be an R-module.
The projective dimension of M is
. M has a projective resolution P,

pdp(M) = inf {n >0 such that P, =0 for all i > n. }
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In other words, we have pdr (M) < n if there is an exact sequence
0O—-P~P,—P,_1—>-—>P—>FPh—->M-—0

and we have pdz(M) = oo if M does not have a bounded projective resolution.

Remark VII.3.2. Let R be a commutative ring, and let M be an R-module. Then

pdr(M) > 0, and M is projective if and only if pdz(M) = 0.

Lemma VII.3.3. Let R be a commutative ring, and let M be an R-module. If

U C R is a multiplicatively closed subset, then pdy -1 z(U"1M) < pdg(M).

PROOF. Assume without loss of generality that n = pdz (M) < co. Then there
is an exact sequence
0—-P,—--—>FPp—->M-—0

such that each P; is a projective R-module.
Each localization U~!P; is a projective U ~! R-module; see Exercise III.1.21.
Also, the following localized sequence is exact

0—-U'P,— - 5U'Ph UM —0

and consists of U~! R-module homomorphisms. It follows that pdy -1 z(U "1 M)
n = pdgy(M).

(/AN

Here is a useful lemma:

Lemma VII1.3.4. Let R be a commutative ring, and consider an exact sequence of
R-module homomorphisms 0 — M’ ERS VEERS VN ) If Extyp(M", M') = 0, then
the given sequence splits.

PROOF. The long exact sequence in Ext%(—, M') associated to the given se-
quence begins as follows because Exth(M”, M') = 0:

Homp(g,M") Homp (f,M")
_— L N

0 — Hompg(M", M") Hompg (M, M") Hompg(M', M') — 0.

It follows that Hompg/(f, M) is surjective, so there is an element h € Hompg (M, M)
such that 1, = Hompg(f, M’)(h), that is, such that 15, = hf. The map h gives
the desired splitting of the sequence. ([l

The next lemma give a first connection between Ext and projective dimension.

Lemma VIIL.3.5. Let R be a commutative ring, and let M be an R-module. Then
M s projective if and only if Exty(M, —) = 0.

PROOF. If M is projective, then Ext% (M, N) = 0 for each R-module N and
for all ¢ > 1, by Proposition IV.3.8@.
Conversely, assume that Extp (M, —) = 0, and consider an exact sequence

0-M L P

where P is projective. Since Exty(M, M’) = 0, Lemma [VIL3.4] shows that the
sequence splits, and hence M @ M’ = P. Since P is projective, it follows that M
is projective. (I

The next two results are called “dimension-shifting” in the literature. It would
be more proper to call it “degree-shifting”.
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Lemma VII.3.6. Let R be a commutative ring, and let N be an R-module. Con-
sider an exact sequence of R-module homomorphisms

oML pPLm_o. (VIL3.6.1)

IfExtR(P N) =0 foralli > 1, for instance if P is projective, then ExtR(M’ N)
Ext™ (M, N) for all i > 1.

PROOF. Part of the long exact sequence in Extr(—, N) associated to the se-
quence ([VII.3.6.1)) has the following form:

Extiy (P, N) — Extly(M’, N) 25 Exti¥! (M, N) — Exti (P, N).
T ——_—— —
= =0

It follows that 0’ is an isomorphism. O

Lemma VII.3.7. Let R be a commutative ring, and let M and N be R-modules.
Let n > 1, and consider an exact sequence of R-module homomorphisms

0= K, p, , It Dy po koo,

If Extzé(Pj,N) =0foralli>1andallj=1,...,n—1, for instance if each P; is
projective, then Ext's (K, N) = Ext™"(M, N) for alli > 1.

PROOF. By induction on n. The base case n =1 is Lemma [VIL.3.6
Induction step: assume that n > 2 and that the result holds for sequences of
length n — 1. The given sequence yields two exact sequences

0K 2Pyl M —o0 (VIL3.7.1)

and
1

0K, p, I 2 p e . (VIL.3.7.2)

In the following sequence, the first isomorphism follows from the induction hypoth-

esis applied to (VII.3.7.2))
Ext%(K,, N) = Ext™™" 1 (K;, N) = Ext"™" (M, N)
and the second isomorphism follows from the base case applied to (VIL.3.7.1). O

The next result is a souped-up version of Lemma For its proof, recall
that the cokernel of an R-module homomorphism f: N — N’ is the quotient
Coker(f) = N’/Im(f).

Theorem VII.3.8. Let R be a commutative ring, and let M be an R-module. For
an integer n = 0, the following conditions are equivalent:
(i) pdg(M) < n;
(i) Exth(M,—) =0 for alli > n;
(iii) Ext?'l(M7 —-)=0;
(iv) For each projective resolution Ps of M, the module K, = Coker(d%, ;) is
projective; and
(v) For some projective resolution Py of M, the module K, = Coker(dF ) is
projective.

In particular, we have pdg(M) = sup{n > 0| Ext}(M, —) # 0}.
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PrOOF. (i) = ({i). Assume that pdr(M) < n, so that M has a projec-
tive resolution P, such that P; = 0 for all ¢« > n. It follows that, for each R-
module N and each i > n, we have Hompg(P., N)_; = 0 and hence Ext’ (M, N) =
I‘I,Z‘(I{OIIIR(P.7 N)) =0.

(i) = (iii)). This is logically trivial.

(i) = (iv). Let P, be a projective resolution of M. If n = 0, then
Lemma implies that M = Coker(df) is projective.

Now, assume that n > 1, and consider the exact sequence

0—K,—PFP,.1—-—FP—-M-—0.
For each R-module N, Lemma [VI[.3.7) implies
Exth(K,, N) = ExtL™(M,N) = 0.

Lemma [VIT.3.5 implies that K, is projective.
This follows because M has a projective resoltuion.
' ' Let P, be a projective resolution of M such that the module
K,, = Coker( 8 ) is projective. It follows that the next sequence

0—K,—PFP,.1—--—FP—-M-—0

is an augmented projective resolution of length < n and hence pdz(M) <n. O

Corollary VII.3.9. Let R be a commutative ring, and consider the following exact
sequence of R-module homomorphisms

0— M3 — My — M; — 0.
If two of the M; have finite projective dimension over R, then so does the third one.

PRrROOF. We will prove this in the case where pdy(M;), pdg(Ms) < co. The
other cases are similar. Assume that pdgp(M3),pdz(Mz) < n. Theorem [VIIL.3.8
implies that for every R-module N and every ¢ > n, we have

Exta(Ms, N) = 0 = Exth(My, N).

From the long exact sequence in Ext%(—, N), we conclude that Exth(M;, N) =0
for all i > n. Another application of Theorem [VII.3.8shows that pdz (M) < n. O

Corollary VII.3.10. Let R be a commutative ring, and let {My}rcn be a set of
R-modules. Then pdg(]], Mx) = sup{pdg(My) | A € A}.

PrOOF. By Exercise @, we have Ext’}é(]_[/\ My,N) =TI, Ext% (M, N)
for each R-module N and each index i. In particular, we have Ext’ (][, My, N) =0
for all N and all i > n if and only if Ext%(MA, N)=0for all N and all i > n. The
result now follows from Theorem O

Compare the next result to Exercise [[T1.1.21)(c)) and Corollary [VII.4.3

Corollary VII.3.11. Let R be a commutative noetherian ring, and let M be a
finitely generated R-module. Given in integer n > 1, the following conditions are
equivalent:

(i) pdp(M) <n;

(i) pdy-1xr(UTIM) < n for each multiplicatively closed subset U C R;

(iii) pdg, (My) < n for each prime ideal p C R; and

(iv) pdg, (Mn) <n for each mazimal ideal m C R.
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Hence, there are equalities
pdg(M) = sup{pdy-1zr(U M) | U C R is multiplicatively closed}
= sup{pdg, (M) | p is a prime ideal of R}
=sup{pdg_(Mn) | m is a mazimal ideal of R}.

ProoF. The implication (i) = follows from Lemma and the
implications (i) = = (jiv)) are routine.

= ({i). Assume that pdp_(Mn) < n for each maximal ideal m C R.
To prove that pdgp(M) < n, it suffices to show that Exty(M,N) = 0 for every
R-module N. For each maximal ideal m C R, the isomorphism in the following

sequence is from Theorem [VI.2.7{[b])
Extp(M,N)m =2 Exth, (Mp, Nm) =0
and the vanishing follows from the assumption pdp (Mn) < n. Exercise |[.4.25

implies that Ext (M, N) = 0, as desired.
The final equalities follow from the equivalence of —. O

We next show how Theorem [VIL.3.8] can be improved for finitely generated
modules over noetherian local rings; see Theorem First we need the

following two lemmas.

Lemma VIIL.3.12. Let (R,m,k) be a commutative noetherian local ring. Let M
be a finitely generated R-module with minimal generating sequence x1,...,x, € M.
Then Homp(M, k) 2 k" 2 M/mM =2 M Qg k.

PROOF. Let Z; denote the residue of z; in M /mM. Nakayama’s Lemma implies
that the sequence 77, . . . , T, is a basis for M/mM as a k-vector space. This explains
the last isomorphism in the next sequence:

M@rk>M®®rR/m=M/mM = k"

The first isomorphism is by definition, and the second is from Exercise
Let 7: M — M/mM denote the canonical surjection. The left-exactness of
Homp(—, k) implies that the induced map

Hompg(7, k): Hompg(M/mM, k) — Hompg(M, k)
is injective. We claim that it is also surjective. To see this, let £ € Hompg (M, k).
Observe that mM C Ker(€) because
E(mM) =m&(M) Cmk =0.
It follows (using the universal mapping property for quotients) that the function
& M/mM — k given by &(T) = £(z) is a well-defined R-module homomorphism
such that £ o 7 = £. In other words, we have ¢ = Hompg(7, k)(€), as desired.
The previous paragraph explains the first isomorphism in the next sequence:
Hompg(M, k) = Homg(M/mM, k) =2 Homg(k", k) = Hompg(k, k)" = k"

The second isomorphism is from the first paragraph, the third isomorphism is
from Exercise [[.3.3(c|), and the fourth isomorphism follows from the standard fact
Hompg(k, k) = k. O

Lemma VII.3.13. Let (R,m, k) be a commutative noetherian local ring, and let
M be a finitely generated R-module. If Ext}%(M, k) =0, then M is projective.
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ProOOF. Let z1,...,2, € M be a minimal generating sequence for M. The
map 7: R" — M given by the formula 7(3, rie;) = >, mix; is a well-defined R-
module epimorphism. Set K = Ker(7) and note that K is finitely generated since
R is noetherian. It suffices to show that K = 0.

Consider the exact sequence

0—K—R"L M—0.
Part of the associated long exact sequence in Ext’y(—.k) has the following form:

0 — Homp (M, k) A Homp(R™, k) — Hompg (K, k) — Exth(M,k) (VIL3.13.1)

sfn sfpn sfm =0

where m is the minimal number of generators for K.
Since 7* is a linear transformation between finite dimensional vector spaces of
the same rank, the fact that 7* is injective implies that it is an isomorphism. From

the exact sequence we conclude that

0=k" 2Hompg(K,k) 2 K/mK.
Hence, Nakayama’s Lemma implies that K = 0, as desired. (]
Theorem VII.3.14. Let (R, m, k) be a commutative noetherian local ring, and let

M be a finitely generated R-module. For an integer n > 0, the following conditions
are equivalent:

(i) pdp(M) < n;
(ii) Ext®r(M,k) =0 for alli > n;
(iif) Ext®™ (M, k) = 0.
It follows that there is an equality pdz(M) = sup{i > 0 | Ext’ (M, k) # 0}.
PROOF. The implication = follows from Theorem and the
implication (i) = is routine.
= (i) Let P, be a projective resolution of M such that each P; is finitely
generated. If n = 0, then Lemma [VIL.3.13|implies that M is projective, and hence
pdg (M) =0 as desired.
Now, assume that n > 1, and consider the exact sequence

0O—-K,—PFP,1— - —=F—-M-—=0
where K,, = Im(9%). Lemma implies that
Exth(K,, k) = Extp (M, k) = 0.

From Lemma we conclude that K, is projective, so Theorem im-
plies pdg(M) < n. O

Exercises.

Exercise VII.3.15. Prove that the inequality pd;—1z(U"'M) < pdg(M) from
Lemma [VIL.3.3] can be strict.

Exercise VII.3.16. Finish the proof of Corollary
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Exercise VII.3.17. Let R be a commutative ring, and let M be an R-module.
Let m: P — M be an R-module epimorphism wherein P is projective. Show that,
if pdp(M) < oo, then

pdgp(M) —1 if pdp(M) > 1

pdp(Ker(m)) = {0 if pd (M) = 0.

Exercise VII.3.18. Let (R, m) be a commutative noetherian local ring, and let M
and N be non-zero finitely generated R-modules. Show that, if r = pdz(M) < oo,
then Ext (M, N) # 0. [Hint: Use Theorem|VII.3.14]with the long exact sequence in
Ext (M, —) associated to the short exact sequence 0 —» mN — N — N/mN — 0.

Exercise VII.3.19. Let R be a commutative noetherian ring, and let M be a
finitely generated R-module. For an integer n > 0, prove that the following condi-
tions are equivalent:

() de_(M) S

(ii) Extkr (M, R/m) =0 for all i > n and for every maximal ideal m C R;

(iii) Ext®% (M, R/m) = 0 for every maximal ideal m C R.

Exercise VIIL.3.20. Finish the proof of Corollary [VIL.3.11}

VII.4. Tor and Projective Dimension

Lemma VII.4.1. Let (R,m, k) be a commutative local noetherian ring, and let M
be a finitely generated R-module. The following conditions are equivalent:
i) M is free;
(ii) M is projective;
(iii) M is flat;
(iv) Torf(M,—) =0 for alli >1; and
(v) Torf'(M, k) =0.

PROOF. The implications (i) = (ii) = have been covered. The impli-
cation (i) = is in Proposition [[V.4.7|(b]), and = is trivial. (Note
that none of these implications require R to be local or noetherian nor do they
require M to be finitely generated.)

== . Since M is finitely generated, there is an exact sequence

0—-KLR L M0
where b = pip(M). The associated long exact sequence in Tor(—, k) starts with

TorP(M, k) — K @ k 225 RV @p k 2225 M gk — 0.
—_——— —— ——
=0 =y L kb
As in the proof of Lemma [[X.1.1] Nakayama’s Lemma implies that g ®p k is an
isomorphism. From the second exact sequence we conclude that K ® g k = 0. Since

K is finitely generated, Nakayama’s Lemma implies that K = 0. Thus, the first
exact sequence implies M =2 RY. ([l

The next example shows that the module M needs to be finitely generated in
order for the implication = ({i) from Lemma [VII.4.1|to hold.
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Example VII.4.2. Let p be a prime number, and set R = Z(,). Then R is a
noetherian local domain with maximal ideal m = pR and residue field k = R/pR
Z/pZ. The quotient field of R is Q. It is straightforward to show that @Q is not a
free R-module. (Check that Q is not cyclic and that every pair of elements a,b € Q
is linearly dependent over R.)

We show that Tor?(Q, k) = 0 for every index i. The Koszul complex

Ke= 0—-R%5R—0
is a projective resolution of k. The complex Q ® g K, has the following form:
QerKe= 0-Q5Q—0.

This complex is exact, so its homology modules are all 0, that is Torf (Q,k) =
H;(Q®r Ko) = 0 for all i.

The next result compares to Exercise [[11.1.21f|c) and Corollary [VIL.3.11

Corollary VII.4.3. Let R be a commutative noetherian ring, and let M be a
finitely generated R-module. The following conditions are equivalent:

(i) M is projective as an R-module;

(ii) M, is free as an Ry-module for each prime ideal p C R; and

(ill) My is free as an Ry-module for each mazimal ideal m C R.

PROOF. — (). Assume that M is projective as an R-module, and fix
a prime ideal p C R. Exercise implies that M, is projective as an R,-
module. Since Ry, is noetherian and M, is finitely generated over R,,, Lemma[VIL4.]]
implies that M, is free as an R,-module.

(i) = (iii). This follows from the fact that every maximal ideal is prime.

:> This is a consequence of Corollary O

The next lemma is another “dimension-shifting” result, which is proved like

Lemma [VIL317

Lemma VII1.4.4. Let R be a commutative ring, and let M and N be R-modules.
Let n > 1, and consider the following exact sequence of R-module homomorphisms

0—K,—F,1—-—Fp—-M-—=0.

IfTorlR(Fj,N) =0foralli>1and all j =0,...,n— 1, for instance if each Fj is
flat, then Tor’(K,,N) = Torg_n(M, N) for alli > 1. O

The proof of the following result is almost identical to the proof of the Ext-
characterization of projective dimension in Theorem [VII.3.14

Theorem VIL.4.5. Let (R, m, k) be a commutative local noetherian ring, and let
M be a finitely generated R-module. Let n > 0. The following conditions are
equivalent:

(i) pdp(M) < n;

(ii) Torf(M,—) =0 for all i > n; and

(i) Tor), (M, k) = 0.

In particular, we have pd (M) = sup{n > 0 | Tor®(M, k) # 0}. O
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Exercises.
Exercise VII.4.6. Prove Lemma [VIL4.4]
Exercise VII.4.7. Prove Theorem [VI[.4.5]

VIL.5. Ext and Injective Dimension

Injective dimension behaves slightly differently from projective dimension be-
cause, in general, injective modules are not finitely generated. However, there is an
Ext-characterization that is similar.

The injective dimension of a module M is the length of the shortest injective
resolution of M. More technically, we have the following.

Definition VII.5.1. Let R be a commutative ring, and let M be an R-module.
The injective dimension of M is

idp(M) = inf {n >0

M has an injective resolution I,
such that /_; =0 forall j >n. [~

In other words, we have idg(M) < n if there is an exact sequence
O—-M-—-Iy—-141— ---—15L_,—1,—0
and we have idgr(M) = oo if M does not have a bounded injective resolution.

Remark VII.5.2. Let R be a commutative ring, and let M be an R-module. Then
idr(M) > 0, and M is injective if and only if idg(M) = 0.

The next result is proved like Lemma [VIL.3:3] using Proposition [[IT.1.19]

Lemma VII.5.3. Let R be a commutative noetherian ring. If M is an R-module
and U C R is a multiplicatively closed subset, then idy-15(U"*M) <idr(M). O

The next lemma give a first connection between Ext and injective dimension.

It is proved like Lemma [VIT.3.5]

Lemma VII.5.4. Let R be a commutative ring, and let M be an R-module. Then
M s injective if and only if Exth(—, M) = 0. O

The following “dimension-shifting” result is proved like Lemma [VIL.3.7]

Lemma VII.5.5. Let R be a commutative ring, and let M and N be R-modules.
Let n > 1, and consider an exact sequence of R-module homomorphisms

0-M—-IL+n—...~I,,—C,—0.

IfExté%(N7 Ij))=0foralli>1and all j =1,...,n—1, for instance if each I; is
injective, then Ext's(N,Cy) = Ext'™™ (N, M) for alli > 1. O

The next result is a souped-up version of Lemma It is proved like
Theorem [VIL.3.8

Theorem VII.5.6. Let R be a commutative ring, and let M be an R-module. For
an integer n = 0, the following conditions are equivalent:

(i) Exth(—, M) =0 for all i > n;
(iii) Exty™ (-, M) = 0;
(iv) For each injective resolution I, of M, the module C,, = Ker(dL,)) is injective;
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(v) For some injective resolution I of M, the module C,, = Ker(dL,)) is injective.
In particular, we have idgr(M) = sup{n > 0| Extk(—, M) # 0}. O

The next two results are proved like Corollaries [VIL.3.9] and [VIL.3.10]

Corollary VII.5.7. Let R be a commutative ring, and consider the following exact
sequence of R-module homomorphisms

0— M3 — My — M; — 0.
If two of the M; have finite injective dimension over R, then so does the third one.

Corollary VIL.5.8. Let R be a commutative ring, and let {My}rea be a set of
R-modules. Then idgr([], Mx) = sup{idr(My) | A € A}.

The version of Theorem for injective dimension is somewhat different.
We prove it in Theorem [VIL.5.T1] below. In preparation, we need the following
homological version of Baer’s criterion.

Lemma VII.5.9. Let R be a commutative ring, and let M be an R-module. Then
M s injective if and only if Exth(R/a, M) =0 for each ideal a C R.

PROOF. One implication follows from Theorem For the converse, as-
sume that Extk(R/a, M) = 0 for each ideal a C R. We show that M satisfies
Baer’s criterion; see Corollary [[I[.1.4] Fix an ideal a C R. Let ¢: a — R denote the
inclusion, and consider the exact sequence

0—>ai>R—>R/a—>0.

The long exact sequence in Ext’s(—, M) associated to this sequence begins as fol-
lows:

0 — Homp(R/a, M) — Homp(R, M) 222t

Hompg(a, M) — Exth(R/a, M) .
—_——
=0
It follows that Hompg (¢, M) is surjective, as desired. O

The next result is a souped-up version of Theorem

Theorem VII.5.10. Let R be a commtuative ring, and let M be an R-module.
For an integer n > 0, the following conditions are equivalent:
(i) ida(M) < n;
(i) Exth(—, M) =0 for all i > n;
(iii) Ext"“(N M) =0 for each finitely generated R-module N; and
(iv) Exts™(R/a, M) =0 for each ideal a C R.
In particular, we have idr(M) = sup{n 0| Extkr(R/a, M) # 0 for some a C R}.

PrROOF. The implication (i) = is in Theorem [VIL5.6| m The implication
— is trivial, and the implication — follows from the fact that
R/a is ﬁnitely generated.

= () Assume that Ext}y""(R/a, M) = 0 for each ideal a C R. Let I, be
an mJectlve resolution of M, and set C,, = Ker(9?). Lemma implies that

Exty(R/a,Cp) = Exty™ (R/a, M) =0

for each ideal a C R. Lemma [VIL.5.9|implies that C), is injective, so idg(M) < n
by Theorem O
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Here is the version of Theorem [VII.3.14] for injective dimension. Note that the
ring is not assumed to be local, and M is not assumed to be finitely generated.

Theorem VII.5.11. Let R be a commtuative noetherian ring, and let M be an
R-module. For an integer n > 0, the following conditions are equivalent:

(i) idr(M) < n;

(i) Exth(—, M) =0 for all i > n;

(iii) Ext®%™ (N, M) =0 for each finitely generated R-module N; and

(iv) Extt™ (R/p, M) = 0 for each prime ideal p C R.
In particular, idgr(M) = sup{n > 0 | Extx(R/p, M) # 0 for some p € Spec(R)}.

PROOF. In light of Theorem [VIL5.10] it suffices to prove that = ().
Assume that Ext’s™ (R/p, M) = 0 for each prime ideal p C R, and let N be a
finitely generated R-module. Since R is noetherian and N is finitely generated,
there is a filtration
N=NgDN{DNy;D---DN,=0

such that for ¢ = 0,...,n — 1 we have N;/N;;1 = R/p, for some prime ideal
p; € R. Our assumption implies that Ext’éH(R/pi,M) =0fori=0,...,n—1,

and Lemma [VIL.2.5([b) says that Ext’;t (N, M) = 0, as desired. O
Corollary VII.5.12. Let R be a commutative noetherian ring, and let {My}xrea
be a set of R-modules. Then idr (][, Mx) = sup{idr(Mx) | A € A}. O

The next result compares to Proposition |[11.1.19

Corollary VII.5.13. Let R be a commutative noetherian ring, and let M be an
R-module.

(a) Given in integer n = 1, the following conditions are equivalent:
(i) idn(M) < n;
(ii) idy-1zr(UTM) < n for each multiplicatively closed subset U C R;
(iii) idg,(My) < n for each prime ideal p C R; and
(iv) idg, (M) < n for each mazimal ideal m C R.
(b) There are equalities

idr(M) = sup{idy-1zg(U"'M) | U is a multiplicatively closed subset of R}
= sup{idg, (My) | p is a prime ideal of R}
= sup{idg, (Mw) | m is a mazimal ideal of R}.

(¢) The following conditions are equivalent:
(i) M is injective as an R-module;
(ii) the localization UM is injective as an U~'R-module for each multi-
plicatively closed subset U C R;
(iii) the localization M, is injective as an Ry-module for each prime ideal p C
R; and
(iv) the localization My, is injective as an Ry -module for each mazimal ideal
mC R.

PROOF. (&) The implication (i) = (ii) follows from Lemma [VIL5.3] and the
implications (i) = (iii) = (iv) are routine.

(iv) = (i). Assume that idg,, (My) < n for each maximal ideal m C R. To
prove that idr(M) < n, it suffices to show that Ext’s (N, M) = 0 for every finitely
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generated R-module N. For each maximal ideal m C R, the isomorphism in the

following sequence is from Theorem [VI.2.7|(b])
Extp(N, M)m = Exth (Nm, Mm) =0

and the vanishing follows from the assumption idgp, (My) < n. Exercise [[.4.25
implies that Ext} (N, M) = 0, as desired.

(b)) This follows from part @
(c) This is the special case n =1 of part (a). O

Exercises.
Exercise VII.5.14. Prove Lemma [VIL5.3l
Exercise VIIL.5.15. Prove Lemma [VIL5.4l
Exercise VII.5.16. Prove Lemma [VIL5.H
Exercise VII.5.17. Prove Theorem [VIL5.6l
Exercise VIIL.5.18. Prove Corollary
Exercise VIIL.5.19. Prove Corollary [VIL.5.

Exercise VII.5.20. Prove Corollary

Exercise VII.5.21. Let R be a principal ideal domain, and let M be an R-module.
Prove that idgr(M) < 1 and pdz(M) < 1.

Exercise VII.5.22. Complete the proof of Corollary

VII.6. Tor and Flat Dimension

The flat dimension of a module M is the length of the shortest flat resolution
of M. More technically, we have the following.

Definition VII.6.1. Let R be a commutative ring, and let M be an R-module.
A flat resolution of M over R or an R-flat resolution of M is an exact sequence of
R-module homomorphisms

+ oF of T
Fr=.. - —IIn—- M —0
~—

degree —1
such that each F; is a flat R-module. The truncated flat resolution of M associated
to F is the R-complex

8F F
F.:--~L)F1;)FOHO.

The flat dimension of M is

fdp(M) = inf {n >0

M has a flat resolution F,
such that F; =0 forall j >n.[ "~

In other words, we have fdg (M) < n if there is an exact sequence
0—F,— - —F —-F,—>M-—0
and we have fdr(M) = oo if M does not have a bounded flat resolution.

Remark VII.6.2. Let R be a commutative ring, and let M be an R-module. Then
fdr(M) > 0, and M is flat if and only if fdg(M) = 0.
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Lemma VII.6.3. Let R be a commutative ring, and let M be an R-module. Then
fdr(M) < pdg(M).

PROOF. Assume without loss of generality that n = pdz(M) < oo, and con-
sider an augmented projective resolution

0—-P,— - —P—-PF—=M-=0.

Exercise[I1.3.10)(b]) implies that each P; is flat, so this resolution shows that we have
fdr(M) < n = pdg(M). O

The next result is proved like Lemma using Exercise
Lemma VII.6.4. Let R be a commutative ring. If M is an R-module and U C R
is a multiplicatively closed subset, then fdy—1gp(U~1M) < fdr(M). O

The next lemma give a first connection between Tor and flat dimension. It is
proved like Lemma [VIL.35]

Lemma VII.6.5. Let R be a commutative ring, and let M be an R-module. Then

M s flat if and only if Tor®(—, M) = 0. O

Theorem VII.6.6. Let R be a commutative ring, and consider an exact sequence
0—-M —-M-—M'"—0

of R-module homomorphisms. Assume that M" is flat. Then M’ is flat if and only

if M is flat.

PROOF. Assume that M is flat. To show that M’ is flat, it suffices to show
that Tor®(N, M’) = 0 for every R-module N. Since M and M" are flat, Propo-
sition [IV.4.7([b) implies that Torf(N, M) = 0 = Tord (N, M"). Part of the long
exact sequence in TorR(N ,—) associated to the given sequence has the form

Tor% (N, M") — Torg(N, M') — Torg(N, M)
N———— N——————

=0 =0
and it follows that Torf(N, M') = 0. O
The next result is a souped-up version of Lemma It is proved like

Theorem using Lemma [VIT.4.4]

Theorem VIIL.6.7. Let R be a commutative ring, and let M be an R-module. For
an integer n > 0, the following conditions are equivalent:

(i) fdr(M) < n;
(ii) Torf(—, M) =0 for all i > n;
(ii) Tor®,, (-, M) = 0;
(iv) For each flat resolution Fy of M, the module K, = Coker(dL ) is flat;
(v) For some flat resolution Fy of M, the module K,, = Coker(0L ) is flat.
In particular, we have fdr(M) = sup{n > 0 | Tor’(—, M) # 0}. O
The next two results are proved like Corollaries [VIL.3.9] and [VIL.3.10]

Corollary VII.6.8. Let R be a commutative ring, and consider the following exact
sequence of R-module homomorphisms

0— M3 — My — M; — 0.
If two of the M; have finite flat dimension over R, then so does the third one. O
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Corollary VIL.6.9. Let R be a commutative ring, and let {My}ren be a set of
R-modules. Then fdr(]], Mx) = sup{fdr(My) | A € A}. O

Theorems [VIT.4.5] and [VIL.6.7] combine with Corollary to produce the
following. It compares with Exercise [[I.3.9]

Corollary VII.6.10. Let R be a commutative noetherian local ring, and let M be
a non-zero finitely generated R-module. Then fdr(M) = pdg(M). In particular,
M s flat if and only if it is projective if and only if it is free. ]

The next result are versions of [VIL5.9]- [VIL.5.12] for flat dimension, with similar
proofs.

Lemma VII.6.11. Let R be a commutative ring, and let M be an R-module. Then
M s flat if and only if Tor®(R/a, M) =0 for each ideal a C R. O
Theorem VII.6.12. Let R be a commtuative ring, and let M be an R-module.
For an integer n > 0, the following conditions are equivalent:

(1) de ) n;

(ii) Torf(—, M) =0 for all i > n;

(iii) TornH(N M) =0 for each finitely generated R-module N; and

(iv) Torf, (R/a,M) =0 for each ideal a C R.
Hence, we have fdp(M) = sup{n > 0 | Tor?(R/a, M) # 0 for some a C R}. O

Theorem VII.6.13. Let R be a commtuative noetherian ring, and let M be an
R-module. For an integer n = 0, the following conditions are equivalent:

( ) de(M) s n;

(ii) Torf(—, M) =0 for all i > n;

(iii) Toer(N, M) =0 for each finitely generated R-module N; and

(iv) Torf, (R/p, M) =0 for each prime ideal p C R.
Hence, fdr(M) = sup{n > 0 | TorZ(R/p, M) # 0 for some p € Spec(R)}. O
Corollary VII.6.14. Let R be a commutative noetherian ring, and let {My}xrea
be a set of R-modules. Then fdg([], Mx) = sup{fdr(My) | X € A}. O

The next result is proved like Corollary [VII.5.13| It compares to [[11.2.11)(b]).
Corollary VII.6.15. Let R be a commutative ring, and let M be an R-module.

(a) Given in integer n = 1, the following conditions are equivalent:
(i) fdp(M) < n;
(ii) fdy-1zy-1 (U~TM) < n for each multiplicatively closed subset U C R;
(iii) fdgr,(My) <n for each prime ideal p C R; and
(iv) fdg,, (Mw) < n for each mazimal ideal m C R.
(b) There are equalities

fdr(M) = sup{fdy—1 gy (U M) | U is a multiplicatively closed subset of R}
= sup{fdg, (M) | p is a prime ideal of R}
= sup{fdg,, (Mw) | m is a mazimal ideal of R}.

(¢) The following conditions are equivalent:
(i) M is flat as an R-module;
(i) UM is flat as a U~ R-module for each multiplcatively closed subset
UCR;
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(i) M, is flat as an Ry-module for each prime ideal p C R; and
(iv) My is flat as an Ryn-module for each mazimal ideal m C R.

Exercises.

Exercise VII.6.16.
Exercise VII.6.17.
Exercise VII.6.18.
Exercise VII.6.19.
Exercise VII.6.20.
Exercise VII.6.21.
Exercise VII.6.22.
Exercise VII.6.23.
Exercise VII.6.24.
Exercise VII.6.25.
Exercise VII.6.26.

Prove Lemma [VIL.6.4]
Prove Lemma [VI1].6.5
Prove Theorem [VIL6.7]

Prove Corollary
Prove Corollary
Prove Corollary [VIL6.10]
Prove Lemma [VIL6.11]
Prove Theorem [VIL.6.12]
Prove Theorem
Prove Corollary
Prove Corollary



CHAPTER VIII

Long Exact Sequences September 8, 2009

In this chapter, we construct the long exact sequences in Ext and Tor. We also
construct the mapping cone of a chain map and use it to build the Koszul complex.

VIII.1. General Long Exact Sequences

The long exact sequences in Ext and Tor are special cases of the long exact
sequence associated to a short exact sequence of chain maps.

Definition VIII.1.1. Let R be a commutative ring. A diagram of chain maps
0— M, % My E MY 0

is a short exact sequence of chain maps if it is exact in each degree, that is, if each
sequence
1 Fi Gi 7
0—-M, — M, — M, —0

is exact.

Remark VIIIL.1.2. Let R be a commutative ring. A short exact sequence of chain
maps is a diagram of R-module homomorphisms

oM, Che) oMYy

0 M g S 0
61]VI/ aiM alM”

00— M/, A VA it M/, 0
oM’ oM, oM

in which every square commutes, every column is a chain complex, and every row
is exact. We will construct examples below.

Remark VIII.1.3. There is a more general notion of an exact sequence of chain
maps (not only short exact sequences) but we will not need this notion here.

Here is the mother of all long exact sequences. The proof is quite long. The
reader may wish to use the diagram in Remark [VIII.1.2] to follow along with the
various steps.

161
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Theorem VIIL.1.4. Let R be a commutative ring, and fix a short exact sequence
of chain maps

Ge

0—>M:£>M.—>M£/—>O.

There is a sequence of R-module homomorphisms
{61‘2 HZ(M:/) — Hzfl(M:> | 1 E Z}
making the following sequence exact:

Hi(F-) Hi(G-) Hifl(FO)

2 (M) H, (M,) H,(MY) 25, (M])

PrOOF. We complete the proof in nine steps.
Step 1. We construct 9;. Let £ € H;(M]') be given. The definition
H; (M) = Ker(9}")/ 1m(9}7)

implies that there is an element o € Ker(dM") such that & = @. The map G, is
surjective, so there is an element 5 € M; such that G;(8) = «. Since G, is a chain
map, we have the first equality in the next sequence:

Gia(9](9) = 0} (Gi(8)) = 9" (e) = 0.
The second equality is from the definition of 3, and the third equality is from the

condition o € Ker(dM"). It follows that M (8) € Ker(G;_1) = Im(F;_1), so there
is an element v € M/_; such that F;_1(y) = 9M(3). We define

3:(6) =7 € Ker(9}))/Tm(dM") = H;_1(M)).

Step 2. We show that 0; is well-defined. The first thing we need to show is that
v € Ker(8M)). For this, we compute as follows:

Fia(0}) (7)) = 0M,(Fi1(7)) = 0, (8} (8))) = 0.

The first equality is from the fact that F, is a chain map. The second equality
is from the definition of «. The third equality is from the fact that M, is an R-
complex. Since the map F;_o is injective, we conclude that 8%/1 (v) = 0, that is,
that v € Ker(dM)), as desired.

The second thing to show is that ¥ € H,_;(M]) is independent of the choices
made in Step To this end, let a, o’ € Ker(dM") such that @ = ¢ = o/ in H;(MY).
Let 8,3 € M; such that G;(8) = a and G;(8') = /. And let 7,4 € M/_, such
that F;_;(y) = 0M(B) and F;_1(y') = 0M(B’). We need to show that ¥ = 7/ in
H,;_1 (M) = Ker(dM))/Im(dM"). That is, we need to show that y —~' € Im(dM").
That is, we need to find an element w € M/ such that M (w) =~ —+'.

By assumption, we have @ = o/ in H; (M) = Ker(dM")/Tm(d7). This implies
that a —a/ € Im(aﬂ_l) so there is an element 1 € M’ | such that a —a/ = (“)%/1/( ).
The map G;41 is surjective, so there is an element v € M; 11 such that G;41(v) = .
To continue, we compute:

Gi(B— 0 = 01 (v)) = Gi(B) = Gi(f') — Gi(0l,(v)) =a—a' — (a—a') =0

This computation shows that 8 — 8/ — 0M,(v) € Ker(G;) = Im(F;), so there is
an element w € M/ such that F;(w) = 3 — 3’ — 0M,(v). The fact that F; is an
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R-module homomorphism explains the first equality in the next sequence:
Fia (0 (@) = (v =) = Fia (0] @) = Fia () + Fia (7)

=0} (Fy(w)) — 0" (8) + 0 (8")

=0 (B~ 5 — 0l (v) — oM (B) + 0" (B)

=085 - 0}1(v) - B+ )

= -0/ (0X,(v))

=0
The second equality follows from the fact that F, is a chain map, with the defining
properties of v and /. The third equality is from the definition of w. The fourth
equality is from the linearity of 9. The fifth equality is routine, and the sixth
equality comes from the fact that M, is an R-complex. Since F;_1 is injective, we
conclude that M (w) — (y —4') = 0, that is, that M (w) = v —~/. This concludes
Step
Step 3. We show that 9; is an R-module homomorphism. Let &,& € H;(M])
and r € R. Let a,o/ € Ker(dM") such that @ = € and o/ = ¢ in H;(M/). Let
8,8 € M; such that G;(8) = a and G;(#') = /. And let v, € M/_, such that
Fi_1(y) = dM(3) and F;_1(y') = dM(3'). Notice that a + o’ € Ker(dM") and
that o« + o/ = € + & in H;(M]). Furthermore, we have § + 3’ € M; such that
Gi;(B+ ) =a+da'. Also, we have v+ +' € M/_; and

Fioi(y +7) = Fiea(y) + Ema () = 91 (8) + 0 (8) = oM (B + B').

This explains the first equality in the next sequence:

0i(6+&) =7+ =7+ =0;(¢) +0:(¢).

Similarly, we have ra € Ker(@M") and 7a = r¢ in H;(M/). Furthermore, we have
r( € M; such that G;(r3) = ra. Also, we have ry € M/_, and

Fioi(ry) = rFima(y) = r0}(8) = 0} ().
This explains the first equality in the next sequence:
0i(r§) =7y =ry =r0i(¢).
This concludes Step
Step 4. We show that Im(H;(F,)) C Ker(H;(G,.)). Let § € H;(M.), and let
I

p € Ker(oM ”) such that § = p. In the next sequence, the first two equalities are by
definition:

H;(Go)(H;(Fa)(9)) = H(Ga)(Fi(p)) = Gi(Fi(p)) =0 =0.
The third equality comes from the exactness of the original sequence of chain maps.
This completes Step (Here is a quicker proof: H;(Ge)H;(F,) = H;(GF,) =
H;(0) =0.)
Step 5. We show that Im(H;(F,)) 2 Ker(H;(G,)). Let
XS Ker(Hz(G.)) - Hz(Mo)

and let p € Ker(9M) such that § = 5. The condition p € Ker(H;(G,)) implies
that 0 = H;(G.)(p) = G(p) in Hy(M]) = Ker(afwu)/Im(aﬁ;). Hence, we have
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G(p) € Im(dM7), so there is an element p € M/, such that G(p) = O} (1). The
map (41 is surjective, so there is an element o € M; 1 such that G;11(0) = p,
and this explains the third equality in the next sequence:

Gi(p— 0}{1(0)) = Gi(p) — Gi(8},(0))
= Gi(p) — M (Gi1(0))
= Gi(p) = O ()
= Gi(p) — Gi(p)
=0.

It follows that p — 9, (o) € Ker(G;) = Im(F}) so there is an element 7 € M/ such
that F;(7) = p — M, (o).

Claim: 7 € Ker(dM"). Tt suffices to show that F;_1(8M (7)) = 0, since F;_; is
injective. So, we compute:

Fi1(07" (1) = 0} (Fi(r)) = 0" (p — 911 (0))
= 0" (p) — 0 (941 (0)) = 0.

The first equality comes from the fact that F, is a chain map. The second equality
follows from our choice of 7. The third equality is from the additivity of M. The
fourth equality comes from the conditions p € Ker(9) and M9}, = 0.

The elements p and 9 (o) are both in Ker(9}). Hence, they represent ele-

ments in H;(M,). Similarly, the element 7 represents an element in H;(M]). Hence,
each equality in the next sequence is by definition:

H;(F)(T) = Fi(7) = az-‘,—l( o) = az+1( o)=p=24.
It follows that ¢ € Im(H;(F,)), and Step ﬁ 5| is complete.

Step 6. We show that Im(H;(G,)) C Ker(9;). Let ¢ € H;(M,), and fix an element
B € Ker(0M) such that ¢ = 3 in H;(M,). We show that d;(H;(G.)(3)) = 0. With
a = G,(B), we have H;(G,.)(8) = G;(3) = @. To compute 3;(H;(G.)(3)) = d;(a),
we need to find an element y € Ker(dM}) such that F;_1(y) = dM(3). However,
we have 3 € Ker(9M) by assumption, so M (3) = 0 = F;_1(0). Thus, we may set
v =0 to find 8;(H;(G4)(B)) = 0;(@) =7 = 0 = 0 as desired.

Step 7. We show that Im(H;(G,)) 2 Ker(9;). Let £ € Ker(9;) C H;(M/), and
choose an element o € Ker(9M") such that £ = @. Fix an element 3 € M; such that
Gi(B) = a, and an element v € M/ _, such that F;_;(y) = 0M(3). We then have
0=0;(¢) =7 € Hy_1 (M) = Ker(dM)/Tm(dM"). Tt follows that v € Im(dM"), so
there is an element w € M/ such that M (w) = .

Observe that 3 — F;(w) € Ker(0M). Indeed, in the following sequence, each
step is by definition:

M(B — Fi(w)) = 0M(8) — 0M(Fy(w)) = 0M(8) — Fi_1(0M (w))
=M (B) — Fi_1(w) = 0M(B) — oM (B) = 0.

It follows that 8 — F;(w) represents an element of H;(M,). Furthermore, we have
the following sequence of equalities wherein the third equality is from the condition
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G,;F; = 0, and the other equalities are by definition:
Hi(Go)(B — Fi(w)) = Gi(B — Fi(w)) = Gi(B) — Gi(Fi(w)) = Gi(B) =a =&

It follows that & € Im(H;(G,)), and Step [7]is complete.

Step 8. We show that Im(9;) C Ker(H;—1(F,)). Let £ € H;(M]), and fix an
element o € Ker(9M") such that & = @. We need to show that H; 1 (F,)(d;(@)) = 0.
Choose an element § € M; such that G;(6) = «, and an element v € M/_; such
that F;_1(y) = 0M(3). We then have

H;_1(F,)(0:(@)) = Hi_1(Fo)(7) = Fi_1(y) = 0M(B) =0
as desired.

Step 9. We show that Im(9;) D Ker(H;_1(F,)). Let A € Ker(H;_1(F,)), and fix
an element y € Ker(9M)) such that A =7 in H;_;(M]). By assumption, we have

0=H;_1(Fo)(N\) = Hi_1(Fo)(7) = Fi—1(7)

in H;_;(M,). Tt follows that F;_;(y) € Im(0M) so there is an element 3 € M; such
that F;_;(y) = 0M(8). Set a = G;(B).
Observe that a € Ker(8M"). Indeed, by definition we have

01" () = M (Gi(B)) = Gi-1(9} (B)) = Gi-1(Fi-1(7)) = 0.
It follows that « represents an element of H; (M), and furthermore that
Oi(@)=7=2X
which implies that A € Im(9;), as desired.

This completes the proof of the theorem. (|

Corollary VIIL.1.5 (Snake Lemma). Let R be a commutative ring, and consider
the following commutative diagram of R-module homomorphisms with exact rows:

Fy (€

0 M My My 0
oM i 8{”l oM l
0 ML 2 gy~ My 0.

Then there is an exact sequence

0 — > Ker(9M') — > Ker(0M) — 2> Ker(9M") )
91

L) Coker(dM") o, Coker(0M) _Goy Coker(8M") — 0.
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PROOF. The given commutative diagram extends to the following short exact
sequence of chain maps:

F, (€

0 M, M, M 0
0 0 0
00— Mj > My~ My ——0
oM oM oM
0 ——= Mj—""= My —*> Myl —0
0 0 0

The desired exact sequence of kernels and cokernels is precisely the long exact se-
quence guaranteed by Theorem [VIIL.1.4l For instance, we have H; (M,) = Ker(9M)
and Ho(M,) = Coker(9) O

Exercises.

Exercise VIII.1.6. (Functoriality of long exact sequences) Let R be a commuta-
tive ring, and consider the following diagram of chain maps:

F, Gl

0 M, M, My 0
foi g-l h.i
0 N, e N, B N 0.

Assume that, for each integer i, the following diagram commutes:

F; G

0 M; M; M 0
fz‘l gf'i hii
0 N N B N 0.

Show that the following diagram of long exact sequences commutes:

a7t H;(F, H; (G oM Hi_1(F.

o) By ) Y () s, (M) 1)
Hi(fe) Hi(Q-)\L Hi(h-)l Hi—l(f-)i

o i(H, H, (K. oN H, 1 (He

vy U v B g vy 2 (v et
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Exercise VIIL.1.7. Let R be a commutative ring, and consider the following
commutative diagram of R-module homomorphisms with exact rows:

Fy G1

0 My My My 0
o’ i oy l " l
0 /LI AL Y /2 0.

Assume that M’ is surjective, and show that &M is surjective if and only if 9M"
is surjective.

Exercise VIII.1.8. Prove the following generalized Snake Lemma without using

Theorem [VIIT.T.4 or Corollary [VIIT.1.5} Let R be a commutative ring, and consider

the following commutative diagram of R-module homomorphisms with exact rows:

Y (LI Ay Y 0
a{”’l S{WJ/ a{””l
0 M2 gy S0 iy

Then there is an exact sequence

Ker(9M') — > Ker(0M) — 2> Ker(9M") )
01

<—> Coker(OM") s Coker(97) o Coker(9}1").

Exercise VIIL.1.9. Use Exercise to give an alternate proof of Theo-
rem [VITLT.4l

VIIIL.2. Long Exact Sequences in Ext and Tor
In this section, we derive the long exact sequences in Ext and Tor.

Theorem VIII.2.1. Let R be a commutative ring, and let N be an R-module.
Given an exact sequence of R-module homomorphisms

oKL ML oo

there is a long exact sequence (in Ext'y (N, —))

Hompg(N,g) Hompg (N, f)
- - 5

0 — Homp (N, K) Homp(N, M) Homp(N,C)

Extg(N,g) Extg(N,f)
_— _—

— Exth(N, K) Exth(N, M) Exth(N,C) — ---

Ext%(N,g) Ext (N, f)
_— _—

- — Extz (N, K) Extlz (N, M) Exth(N,C) — - - .

PROOF. Let P, be a projective resolution of N. Proposition implies
that the following sequences are chain maps
Hom(P,, g): Hom(P,, K) — Hom(P,, M)
Hom(P,, f): Hom(P,, M) — Hom(P,,C).
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Together, these chain maps form a short exact sequence

Hom(P,, Hom(P,,
0 —— Hom(Pa, K) —229 _ yom(pa, M) —22 0 Hom(p,, ) —— 0
Hom(dy ,K) Hom (9}, M) Hom(d},0)
Hom(P;, Hom(P;,
0 — Hom(P;, K) —229) _ Hom(py, M) —22) _ Hom(P,, ¢) ——0

Hom(aiil,K)
0 — Hom(P; 41,

Hom(aiiz,K)

K)

Hom(P;+1,9)
—_—

Hom(aﬁrl,M)
Hom(P; 1, M)

Hom(@fw,M)

Hom(alil,C)
Hom(P;41,f)
- >

Hom(aﬂz,C)

Hom(P;11,C) —=0

The exactness of each row follows from the assumption that each P; is projective.
Apply Theorem [VIII.1.4] to this short exact sequence to derive the desired long
exact sequence. O

Theorem VIIL.2.2. Let R be a commutative ring, and let N be an R-module.
Given an exact sequence of R-module homomorphisms

oKL ML oo

there is a long exact sequence (in Extly(—, N))

0 — Hompg(C, N)
— Extg(C, N)

- — Ext%(C, N)

Hompg(f,N)
RV,
Extg (f,N)
TRV

Exth (f,N)

Homp(M, N)
Exty (M, N)

Ext's (M, N)

Hompg(g,N)
LA CLEAEAN
Extg(g,N)
TRV

Ext%(g,N)
-

Hompg(K, N)
Exty(K,N) — -

Extin(K,N) — --- .

PrOOF. Let I, be an injective resolution of N. As in the proof of Theo-

rem we use Proposition to show that the following is a short exact
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sequence of chain maps:

0 — Hom(C, I,)

Hom(C,0] )
0 —— Hom(C, I;)
Hom(C,a;)

0—— HOIIl(C’7 Ij—l)

Hom(C78;71)

HOm(f,I]‘_l)
_—

Hom 1) Hom(M, 1)

Hom(M,87, ;)
Hom(f,I;
D) Hom(M, 1)
M, Hom(M,d])

HOHl(]\47 Ij—l)

M,Hom(M,d] ;)

Hom(g,1,)

Hom(K,87, ;)
Hom(g,1;)

Hom(K,a;)
Hom(g,I;-1)
R —

Hom(K76;71)

The desired long exact sequence comes from Theorem [VIII.1.4]
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Hom(K, I,) ——0

Hom(K,I;) ——0

Hom(K,I;,_1) —=0

O

The next two results are proved similarly, using a projective resolution and the

tensor product.

Theorem VIII.2.3. Let R be a commutative ring, and let N be an R-module.
Given an exact sequence of R-module homomorphisms

oKL ML oo

there is a long exact sequence (in Torl(—, N))

. — Tor® (K, N)
R
- — Tor;"(K, N)

— K®r N

OI‘R
T 9N, TorR (M, N)

R
Tori (9.N), Torf (M, N)

gORrRN M &g N

Torf(f,N)
_

Tor{' (f,N)
—_—

f®rN

Tor*(C,

Torl'(C,

N)— -

N) —

C®r N — 0.

Theorem VIII.2.4. Let R be a commutative ring, and let N be an R-module.
Given an exact sequence of R-module homomorphisms

0—>Ki>Mi>C—>O

there is a long exact sequence (in Torl(N,—))

. — Torf(N, K)
- — Torf(N, K)

— N®p K

Exercises.

OrR
T N9 ok (N, M)

—>T0r§(N’g) Torfi(N, M)

N®rg N&rM

Tor?(N,f)
-

Tor{*(N, f)
—_—

Torf (N
Torf (N

N®Rrf N ®g

Exercise VIII.2.5. Complete the proof of Theorem
Exercise VIIL.2.6. Prove Theorems [VIII.2.3 and [VIIT.2.4]

C) =
,C) —
Cc —0.
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Exercise VIIL.2.7. (Functoriality of long exact sequences) Let R be a commu-
tative ring, and let ¢: L — N be an R-module homomorphism. Given an exact

sequence of R-module homomorphisms
g f
0—-K=>=M-=C—0
show that there are commutative diagrams of long exact sequences:

-+ — Exth (N, K) — Exth (N, M) — Ext’s (N, C) — Exti ' (N, K) — - -

’ } ’ J

-+ — Ext’y (L, K) — Exth(L, M) — Ext’ (L, C) — ExtS (L, K) — - -

-+ —= Exth(C, L) — Ext’ (M, L) — BExt% (K, L) — Ext% ' (C, L) — - --

J : ) J

-+ — Exth(C, N) — Ext’ (M, N) — Ext% (K, N) — ExtZ ' (C,N) — - --

-+ — Tor(L, K) — Tor®(L, M) — Tor®(L,C) — Tor/* (L, K) —> - -

} ’ ’ J

-+ — Tor®(N, K) — Tor (N, M) — TorF(N, C) — Tor{.{ (N, K) — - --

-+ — Tor®(K, L) — Tor®(M, L) — Torf(C, L) — Tor" | (K,L) — -

J L i J

-+ — Torf(K, N) — Tor®(M, N) — Torf(C, N) — Tor}" | (K, N) — - --

where the vertical maps are induced by ¢.

VIII.3. Horseshoe Lemmas

Lemma VIII.3.1. Let R be a commutative ring, and consider a short exact se-
quence of R-module homomorphisms

0—M L —o.

Let7': PP — M’ and 7" : P" — M" be surjections where P’ and P" are projective.
There is a commutative diagram with exact rows and columns

04>P'46>PI@PN$P”*>O

ok

0 M’ M M 0
0 0 0

where € and w are the natural injection and surjection, respectively.
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PRroOOF. Use the fact that P is projective to find an R-module homomorphism
h: P” — M making the following diagram commute:

p
2
M—1= 7 ——o.
Define 7: P’ & P” — M by the formula
(', p") = (f(7'(P), h(p"))-
Check that 7 is an R-module homomorphism and that 7 makes the desired diagram

commute. Since 7/ and 7" are surjective, a diagram chase (or the Snake Lemma or
the Short Five Lemma) shows that 7 is also surjective. O

Lemma VIII.3.2 (Horseshoe Lemma). Let R be a commutative ring, and consider
a short exact sequence of R-module homomorphisms

0—M L L o

Let P) be a projective resolution of M', and let P} be a projective resolution of M" .
There is a commutative diagram with exact rows

85/ a; a;”

0 P p S pr 0
af/ af a]}‘3//

0 ——> Bj—> Py~ P ——>0
7_/ T 7_//

f g

0 M’ M M 0

0 0 0

such that the middle column is an augmented projective resolution of M.

Remark VIIIL.3.3. Note that each row of the diagram (except the bottom row)
is split since each P/’ is projective.
PROOF. Use Lemma [VITL.31] to construct a commutative diagram with exact

rows and columns

Oﬂpéﬁpé@]%/&Pé/*)O

SV AN 4
T

0
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where Fj and Gy are the natural injection and surjection, respectively. Set M| =
Ker(7’) and M; = Ker(7) and M{ = Ker(7"). The Snake Lemma shows that the

following commutative diagram has exact rows and exact columns

0 0 0
0 M} f1 M, g1 My 0
0 P S0 py 0
al};,/ aOP aOP//
0 M —L s v —L s g 0
0 0 0

where the unlabeled vertical maps are the inclusions, and the maps f; and g; are
induced by Fj and Gy, respectively.

Repeat this process using the new sequence 0 — Mj ELN M, L M{" — 0 to
obtain a commutative diagram with exact rows and exact columns

0 0 0
L g2 I
0 Mj M My 0
0 P p s py 0
afl af af//
0 M{ f1 M, g1 M{/ 0
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and splice these two diagrams together to obtain the next commutative diagram
with exact rows and exact columns

0 0 0
;[ g2 I
0 Mj M My 0
F G
0 P — =P ——= P/ 0
afl alP 81P//
G
0 p s p S py 0
7_/ T 7_//
/ f g 1
0 M M M 0
0 0 0
Continue this process inductively to construct the desired diagram. ([
The next result is an injective version of Lemma, with a similar proof.

Lemma VTIII.3.4 (Horseshoe Lemma). Let R be a commutative ring, and consider
a short exact sequence of R-module homomorphisms

0—M L mE o

Let I., be an injective resolution of M', and let I be an injective resolution of M" .
There is a commutative diagram with exact rows

0 0 0
0 ML 0
0 IS 0
0 LIy S N 0
ar, oL, o',

such that the middle column is an augmented injective resolution of M. (I



174 VIII. LONG EXACT SEQUENCES September 8, 2009

Exercises.
Exercise VIIL.3.5. Complete the proof of Lemma [VIII.3.2]
Exercise VIII.3.6. Prove Lemma [VIIT.3.4]
Exercise VIIL.3.7. Use Lemma to reprove Theorem
Exercise VIII.3.8. Use Lemma to reprove Theorem
Exercise VIII.3.9. Use Lemma|VIIL.3.2|to prove Theorems[VIII.2.3|and [VIIT.2.4]

VIII.4. Mapping Cones

In this section, we discuss the mapping cone of a chain map, which gives another
important short exact sequence of chain maps. We begin with a definition.

Definition VIII.4.1. Let R be a commutative ring, and let X, be an R-complex.
The suspension or shift of X, is the sequence XX, defined as (X X); = X;_1 and
O =0,

Remark VIII.4.2. Let R be a commutative ring, and let X, be an R-complex.
Diagramatically, we see that ¥ X, is essentially obtained by shifting X, one degree
to the left:

o 8x X
Xg=-- —15 X, : X, g — s
-a) -0, -07%,
YXg=--- X; 1 X; g ——2 ...

It follows readily that ¥ X, is an R-complex and that there is an isomorphism
H,(XX,) =H,_1(X,) for each n.

Definition VIII.4.3. Let R be a commutative ring, and let fo: X, — Y, be a
chain map. The mapping cone of fo is the sequence Cone(f,) defined as follows:

E)iY i— 63/_ fiz
Y, (0 fai{l) Y ( 01,6_{2) Yis
Cone(fo)=— & — 5 & —— &P
Xio1 Xi2 Xi-3

In other words, we have
Cone(f); =Y;® X;_1
@-COHE(f)I Y0Xi 1 —Y 10X 2
glomel (v ) _ (62“ B ) () = (af(yiwiil(wifl))

0 -9, -0 (zi-1)
_ (@-Y(yz‘)Jrfi—l(mi—l) )
- -0 (zi—1)

Proposition VIII.4.4. Let R be a commutative Ting, and let fo: Xo — Y, be a
chain map. The sequence Cone(f,) is an R-complez.

PROOF. It is straightforward to show that each map 0, """ is an R-module

homomorphism. Since X, and Y, are R-complexs, we have 9% ,0;X; = 0 and
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9Y 10Y = 0 for each i. Since f, is a chain map, we have 0} | f;_1 = fi_205, for
each i. These facts give the last equality in the following computation:

8Cone(f)600ne(f) o <3l~y1 fi—2 > (OIY fi—1 )
i—1 i -

0 -0, 0 -8,
_ (8 0F 9 fica—fi28C | _ (99)
B 0 07507, S oo
This shows that 8ic_0 ! o )8ic ore(f) — 0 and hence the desired result. O

Proposition VIII.4.5. Let R be a commutative ring, and let fo: Xo — Yo be a
chain map.

(a) For each i, let €;: Y; — Cone(f); be given by
cily) = ("5) (v) =(%).
Then the sequence €4: Yy — Cone(f,) is a chain map.
(b) For each i, let 7;: Cone(f); — (XX); be given by
Ti (ot ) = (0 1xica) (2f2,) = @1
Then the sequence To: Cone(fs) — LXq is a chain map.
(c) The following sequence is ezxact:
0—Y, = Cone(f,) Iy X, — 0.
(d) In the long exact sequence on homology associated to the exact sequence in
part , the connecting map 0;: H;(XX,) — H;_1(Y,) is the same as the map
Hi—1(fe): Hi—1(Xe) — Hi1(Ys).

Proor. (]ED It is straightforward to show that each map 7; is an R-module

homomorphism. We need to show that 7;_1 o 8? one(f) _ [“)ZZX o 1; for each 7. We

use the matrix notation:

Cone 3?/ fie
Ti—1 Oai ) — (o ]lXi—l)( 0 _axll)

000 +1x,_ ;00 Oofi1—1x, 0%, )
O or = (-0X, ) (0 txiy)

=9 100 =8 jolx, ;)

= (0 *aix_l)

Note that this computation explains the need for the sign in 9FX.

Similar to (and easier than) part (b]).
(

) By definition, we need to show that, for each i, the sequence
0 —Y; <% Cone(f); = (£X); — 0.
From the definitions, this sequence is the same as
Ly; Y; 01y,
ony o) g Oy
Xi1

and hence is exact.
@ Recall the steps for evaluating 0;:
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. Let x € Ker(9FY).
. Find an element a € Cone(f); such that 7;(a) = z.
. Find an element b € Y;_; such that ¢;,_1(b) = (’9icone(f) (a).
. Set 3;(T) = b € H;_1(Ys).
We work through these steps to verify the desired equality:
1. Let x € Ker(0FX) = Ker(9;* ;).
2. The element a = (9) satisfies
Yi
a=(0)eCone(fi= &  and  mla)=(01xi)(0) =2
Xio1
3. The element b = f;_1(z) satisfies

g (q) = (BOY 7f5}_11) (0) = (F1@) = (5) = (") (b) = €i-1(b).

= W N =

4. We have 0,(%) = b = fi_1(x) = H;_1(fs)(Z), as desired. O

Definition VIII.4.6. Let R be a commutative ring, and let f,: X4 — Y, be a
chain map. The chain map f, is a quasiisomorphism if, for each index ¢, the induced
map H;(fe): H;(Xo) — H;(Y,) is an isomorphism.

Example VIII.4.7. Let R be a commutative ring, and let fo: Xo — Y, be a chain
map. If f, is an isomorphism, then it is a quasiisomorphism; see Exercise [VI.1.7|al).
The converse fails in general; see, e.g., Exercise

Here is one of the useful properties of the mapping cone.

Proposition VII1.4.8. Let R be a commutative ring. A chain map fo: Xo — Yo
is a quasiisomorphism if and only if its mapping cone Cone(f,) is ezact.

PROOF. For the first implication, assume that Cone(f,) is exact, that is, that

H;(Cone(fs)) = 0 for each integer i. Using Proposition [VIII.4.5 @, a piece of the
long exact sequence associated to the mapping cone has the following form

H, 1 (Cone(f.)) — Hi(Xa) “0*L H,(X,) — Hy(Cone(f.))
=0 =0

and it follows readily that the map H;(f,) is an isomorphism for each 4, that is,
that f, is a quasiisomorphism.

For the converse, assume that f, is a quasiisomorphism. Another piece of the
long exact sequence associated to the mapping cone has the following form

H,(Xa) 2020 1, () — Hy(Cone(f)) — Hiy(Xa) 2L 1, (X,

and it is straightforward to show that this implies that H;(Cone(f,)) for each i,
that is, that Cone(f,) is exact. O

We obtain Schanuel’s Lemma as a consequence of the mapping cone construc-
tion, after the following lemma.

Lemma VIII.4.9. Let R be a commutative ring, and consider the following exact
sequence of R-module homomorphisms:

fn—l fn72 .

0—K, I p _, P, 5 P o
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If the modules Py, ..., P,_1 are projective, then so is K.

PrOOF. We proceed by induction on n. If n = 1, then the given exact sequence
has the form
0—K, I p—o0
so K1 = Py, which is projective.
If n = 2, then this sequence has the form

0— Ky — P — Py—0.

Since P, is projective, this exact sequence splits, so Ko & Py = P;. Since P is
projective, we conclude that K5 is projective. This completes the base case.
Inductive step. Assume that n > 3, and that the result holds for sequences of
length n — 1. Since P, is projective, the given exact sequence splits into two exact
sequences
0—>K2—>P1—>P0—>0

and

frn—1 frn—2

R e L Lp k=0
with K5 = Im(f2) = Ker(f1). By the base case, we conclude that K5 is projective
and our inductive hypothesis implies that K, is projective. O

Lemma VIII.4.10 (Schanuel’s Lemma). Let R be a commutative ring, and let M
be an R-module. Consider two exact sequences

0O—-K—-P,1—-—F—M-—0
and

0—-L—-Qun1— " —Q—M-—0
such that each P; and Q; is projective. Then K is projective if and only if L is
projective.

PROOF. If n = 0, then the result is trivial since L & M = K. So assume that
n = 1. By symmetry, it suffices to assume that K is projective and show that L is
projective. Proposition [VI.3.2] provides a commutative diagram

0 K P, Py M 0
J{Fn J{Fnl \LFO l—
0 L Qn-1 Qo M 0.

(Note that Proposition [VI.3.2| also assumes that L is projective, but this is not
needed in the proof.) Truncating these complexes yields a chain map

P, = 0——=K—P1 Py 0
lF. an \LFn—l lFO
Q. = 0—=L—>Qn1 Qo 0.

Since each of the original complexes is exact, the chain map F, is a quasiisomor-
phism. Thus, Proposition [VIII.4.8| implies that Cone(F,) is exact.

Cone(Fo)= 0—-K—>L®P, 1—>Qn1®Pr2— - —Q1P®P—Qy—0

Since the modules L & P,_1, @n_1 @ Pp—2,..., @1 & Fy, and Qg are projective,
Lemma [VIT[.4.9] implies that L is projective. O
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Exercises.

Exercise VIII.4.11. Let R be a commutative ring, and let z € R. Prove that the
following chain map

M, 0 R! R3 R? 0
F.\L l (110)l (11)i

(z)
N, 0 0 R R 0

is a quasiisomorphism. (Be sure to verify that M, and N, are R-complexes and
that F, is a chain map.)

Exercise VIII.4.12. Let R be a commutative ring, and let X, be an R-complex.
Show that the following conditions are equivalent:

(i) The natural chain map 0 — X, is a quasiisomorphism;
(ii) The complex X, is exact; and
(iii) the natural chain map X, — 0 is a quasiisomorphism.

Exercise VIII.4.13. Let R be a commutative ring, and let
0— M, T m, Eo Ml — o0

be a short exact sequence of chain maps.

(i) Prove that M is exact if and only if G, is a quasiisomorphism.
(ii) Prove that M is exact if and only if F, is a quasiisomorphism.

Exercise VII1.4.14. Let R be a commutative ring. Given a commutative diagram
of chain maps

X. L> Yo
e l ih-
! f: !/
X, —Y,
show that there is an induced chain map Cone(f,) — Cone(f}).

Exercise VIII.4.15. Prove that, in the proof of Lemma the chain map
F, is a quasiisomorphism.

Exercise VIII.4.16. Let R be a commutative ring, and consider the following
exact sequence of R-module homomorphisms:

0— 1, Lo I B I g o,
If the modules Iy, ..., I, are injective, then so is Cj.

Exercise VIII.4.17. (Schanuel’s Lemma) Let R be a commutative ring, and let
M be an R-module. Consider two exact sequences of R-module homomorphisms

i fi fr—1 f: f1 ™
0 M I —>1I s Iy

C 0
0 Mg, 20 J 2> Jo—>D 0

where each I; and J; is injective. Prove that C is injective if and only if D is
injective.

gt—1 g2
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Exercise VII1.4.18. Let R be a commtuative ring, and let Fy: X, — Y, be a
chain map. Prove that there are isomorphisms
Cone(Fy @r M) = Cone(F,) @ g M
Cone(M ®@g Fo) = M ®@pr Cone(F,)
Cone(Homp (M, F,)) = Homp(M, Cone(F,))
Cone(Hompg(F,, M)) = ¥ Hompg(Cone(F,), M).

VIII.5. Ext, Tor, and Resolutions

In this section, we prove that Ext and Tor are independent of the choice of pro-
jective resolutions. We also prove that Tor can be computed using flat resolutions.

Lemma VIIL.5.1. Let R be a commutative ring, and let Py be an exact sequence
of projective R-modules such that P; = 0 for all i < ig. For each R-module N, the
sequence Hompg (P,, N) is exact.

PROOF. For each integer i, set M; = Ker(9}”) = Im(9/7 ;). This yields an exact
sequence

0— M L5 P 25 My — 0 (VIIL5.1.1)

for each i such that f;_;g; = OF. Here f; is the inclusion map, and g; is induced by

OF. Since P;,_1 = 0, it is straightforward to show that M;, = P, . In particular,

the module M;, is projective. Since P; is also projective, an induction argument

using the sequences (VIIL5.1.1)) implies that M; is projective for all i > 4g. It

follows that each sequence (VIII.5.1.1)) splits. From this, it is straightforward to
conclude that the induced sequence

Hompg(g:,N) Hompg(fi,N)
- - -

0 — Hompg(M;_1,N) Hompg(P;, N) Hompg(M;,N) — 0

is exact. Since the following diagram commutes and has exact diagonals

/0
R
P

P P
911

0 \
M;_y
v
0;
P.

Py

gx
M,

fi
0 0

it follows that the induced diagram commutes and has exact diagonals
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0
Hompg(Piy1,N)

HomR(gH_l,N)

Hompg(M;, N)

HomR(aﬁ_l,N)

=
S —
B \Z
8 Qs
o = - =)
~
g
S
o=
. Z
z =
B X
E 2
ot
[e]
1
=
z
— i)
z/ =
- &
N g
S ]
S >
o
g
3
s
A diagram chase shows that center row in this diagram is also exact. O

Here is Theorem [V.3.51

Theorem VIIL.5.2. Let R be a commutative ring, and let M and N be R-modules.
The modules EXt%(M7 N) are independent of the choice of projective resolution of
M. In other words, if P;7 and QY are projective resolutions of M, then there is an
R-module isomorphism H_;(Hompg(Ps, N)) =2 H_;(Hompg(Qe., N)) for each index i.

PROOF. Let Fy: P, — @, be a lifting of the identity map 1;,: M — M as in
Proposition[VL.3.2] Using Exercise it is straightforward to show that F, is a
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quasiisomorphism. Proposition |[VIIL4.8/implies that the mapping cone Cone(F,) is
exact. Furthermore, the complex Cone(F,) consists of projective R-modules (since
P, and Q. do) and satisfies Cone(F,); = 0 for all i < —1. Thus, Lemma
implies that the complex Hompg(Cone(F,), N) is exact. It follows readily that the
next complex is also exact

¥ Homp(Cone(F,), N) = Cone(Hompg(F,, N)).

The isomorphism comes from Exercise [VIIT.4.18] From this, we conclude that the
following chain map is a quasiisomorphism

Homp(F,s, N): Homp(Qs, N) — Hompg(P,, N).
By definition, this says that each induced map
H_,;(Hompg(F,,N)): H_;(Homp(Q., N)) — H_;(Homp(P,, N))

is an isomorphism, as desired. O

The next five results are proved similarly.

Lemma VIIL.5.3. Let R be a commutative ring, and let I4 be an exact sequence
of injective R-modules such that I; = 0 for all j > jo. For each R-module M, the
sequence Hompg (M, I,) is exact. O

Here is part of Theorem [[V.3.10]

Theorem VIIL.5.4. Let R be a commutative ring, and let M and N be R-modules.
IfIf and J} are injective resolutions of N, then there is an R-module isomorphism

H_;,(Homp(M,I,)) 2 H_;(Hompr(M, Jo)) for each index i. O

Lemma VIIL.5.5. Let R be a commutative ring, and let P, be an exact sequence
of projective R-modules such that P; =0 for all i < ig. For each R-module N, the
sequences Py @p N and N Qg P, are exact. O

Here is Theorem [V.4.4

Theorem VIIL.5.6. Let R be a commutative ring, and let M and N be R-modules.
The modules TorZR(M, N) are independent of the choice of projective resolution of
M. In other words, if P;" and QY are projective resolutions of M, then there is an
R-module isomorphism H;(Ps @ N) =2 H;(Qe @ N) for each index i. O

Here is part of Theorem

Theorem VIIL.5.7. Let R be a commutative ring, and let M and N be R-modules.
If P and QF are projective resolutions of N, then there is an R-module isomor-
phism H;(M ®r Ps) 2 H;(M ®gr Q.) for each index i. O

We end this section by showing that Tor can be computed using flat resolu-
tions. Note that the proof uses Corollary [V.4.9} this uses the fact that Tor is
balanced which we have not proved yet.

Lemma VIIIL.5.8. Let R be a commutative ring, and let Fy be an exact sequence of
flat R-modules such that F; = 0 for all i < ig. For each R-module N, the sequences
Fo®r N and N ®gr F, are exact.
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PROOF. Since there is an isomorphism Fy ®r N = N ®g F,, it suffices to show
that Iy ® N is exact.
For each integer 4, set M; = Ker(9}") = Im(d/, ;). This yields an exact sequence

0— M L5 B 25 My —0 (VIIL5.8.1)

for each i such that fi_1g; = 0F. Here f; is the inclusion map, and g; is induced by
oF. Since F;,_1 = 0, it is straightforward to show that M,, = F;,. In particular,
the module M;, is flat. Since F; is also flat, an induction argument (using Theo-
rem and the sequences (VIIL5.8.1)) implies that M; is flat for all i > dg. It
follows that Tor'(M;_1,—) = 0, so the long exact sequence in Tor™(—, N') associ-
ated to (VIIL5.8.1)) starts as follows:

0— M;@p N 222, poop N 222N Ar  @r N — 0.

The proof concludes like the proof of Lemma O

Theorem VIIL.5.9. Let R be a commutative ring, and let M and N be R-modules.
The modules TorzR(M, N) can be computed using a flat resolution of M. In other
words, if F;" is a flat resolution of M, then there is an R-module isomorphism
H;(F, ®g N) = Torl*(M, N) for each indez i.

PRrOOF. Argue as in the proof of Theorem using the fact that Propo-
sition [VI.3.2] allows for a lift Ge: Py — Fi. O

The last result of this section is proved like Theorem

Theorem VIIL.5.10. Let R be a commutative ring, and let M and N be R-
modules. If P is a projective resolution of N and FJ is a flat resolution of N,
then there is an R-module isomorphism H;(M ®r P,) = H;(M ®g F,) for each
index i. ]

Exercises.
Exercise VIII.5.11. Complete the proof of Lemma
Exercise VIII.5.12. Complete the proof of Theorem
Exercise VIIL.5.13. Prove Lemma [VIIL5.3l
Exercise VIIL.5.14. Prove Theorem [VIIL5.4l
Exercise VIIL.5.15. Prove Lemma [VIIL5.5
Exercise VIIL.5.16. Prove Theorem [VIIL5.6l
Exercise VIIL.5.17. Prove Theorem VIIL5.7
Exercise VIII.5.18. Complete the proof of Lemma
Exercise VIII.5.19. Prove Theorem [VIIL5.9
Exercise VIIIL.5.20. Prove Theorem [VIIL5.10
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VIII.6. Koszul Complexes
We begin the section with a motivating example.

Example VIIIL.6.1. Let R be a commutative ring, and let M be an R-module.
Consider M as an R-complex concentrated in degree 0:

M= 0— M —0.

For each r € R, the map ul: M, — M, given by uf(m) = rm is an R-module
homomorphism and a chain map. The associated mapping cone is isomorphic to
the R-complex

Cone(uy) = 0—-MZ M—0.

It follows that r is M-regular if and only if H;(Cone(u})) = 0 for all ¢ # 0 and

Ho(Cone(yi5)) # 0.

The complex Cone(u}) is a Koszul complex on one element. We will now
construct more general Koszul complexes and show that they have the ability to
detect regular sequences of longer length.

Definition VIII.6.2. Let R be a commutative ring, and let M be an R-module.
For each r € R, set (0:p; ) ={m € M | rm = 0}.

Remark VIIIL.6.3. Let R be a commutative ring, and let M be an R-module. For
each 7 € R, the set (0 :p; r) is an R-submodule of M. In fact, it is the largest
R-submodule M’ C M such that »M’ = 0.

Proposition VIIIL.6.4. Let R be a commutative ring, and X4 an R-complex. Let
r € R, and let ul: Xo — X, be the homothety p;(x;) = rx;. Consider the short
exact sequence

0 — X¢ == Cone(ie) = X Xq — 0 (VIIL.6.4.1)

from Proposition [VIIT.].5

(a) For each i, the connecting map 0;: H;(XX,) — H;_1(X,) in the long exact

sequence associated to (VIIL6.4.1) is the homothety H;_1(Xq) — H;_1(X,).
(b) For each i, there is an exact sequence

0 — H;(X,)/rH;(Xe) — H;(Cone(py)) — (0 iy (X) r) — 0.

PROOF. (@) Proposition [VIIL.4.5(d) implies that 3;(Z) = pf_, (z) =72 = rZ.
(]E[) By part @ the long exact sequence for (VIII.6.4.1)) has the form

H;(eo) Hi(7e)
—

c— Hi(Xe) & Hi(X,) H;(Cone(je)) ——> H;_1(Xe) = Hi1(Xe) - .
This induces an exact sequence

0 — Im(H;(eq)) — H;(Cone(pe)) — Im(H;(7e)) — 0. (VIII.6.4.2)
The exactness of the long exact sequence provides isomorphisms

Im(H;(el)) = Hi(Xe)/r Hi(Xe)

and
Im(H;(ra)) = Ker(H;—1 (Xo) = Hio1 (X)) = (0151, (x,) 7)-
Substituting into the sequence (VIII1.6.4.2)) yields the desired exact sequence.  [J
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Definition VIII.6.5. Let R be a commutative ring, and let M be an R-module.
Let x = 1,...,2, € R. We build the Koszul complex Ko(x; M) by induction on
n.

Base case: n = 1. In this case K4 (z1; M) is the complex from Example|[VIIL.6.1
Ko(z1; M) = (0 - M 25 M — 0) = Cone(pug, : M — M).

Inductive step: Assume that n > 2 and that Ke(z1, ..., 2,—1; M) has been con-
structed. Let pfn: Ko(z1,...,2n—1; M) — K¢(x1,...,2,—-1; M) be the homothety
given by u;" (k;) = xnk;, and set

KO(X7 M) = K.(l‘l, e )$n717:1;’ﬂ; M) = Cone(ﬂfn)-

For each i, we write H;(x; M) = H;(Ko(x; M)). When M = R, we write
Ko(x) = Ko(x; R) and H;(x) = H; (K. (x)).

Example VIII.6.6. Let R be a commutative ring, and let M be an R-module.
Let z,y,z € R. It is straightforward to show the following
Ko(o; M) = 0—-M5M—0

and

Yy
Ko(zy; M) 0— M () e 9, 0 g

and

—x 0 =z

. y z 0
(1‘1’) (0 —m—y) (v 2)
Ko(z,y, 2, M) = 0— M M3 M3 M
using the definition of the Koszul complex.

See Corollary for more general versions of the next two examples.

—0

Example VIIL.6.7. Let A be a commutative ring, and consider the polynomial
ring R = A[X] in one variable. Using the description of K(X) from Exam-
ple we conclude that Ho(X) =2 R/(X)R = A and that H;(X) = 0 when
i #0.

Example VIIL.6.8. Let A be a commutative ring, and consider the polynomial
ring R = A[X,Y] in two variables. Example shows the following:

(%)

(xXY)

Ko(X,Y; M) = 0—R R?

We compute the homologies here.

It is straightforward to show that Ho(X,Y) = R/(X,Y)R = A and that
H;(X,Y) = 0 when ¢ > 3 or i« < —1. It is also straightforward to verify the
steps in the next sequence:

Hy(X,Y)={reR|Xr=0=Yr}=0.
‘We claim that I‘IQ(}(7 Y) = 0. To this end7 let (5) c Ker(af(xxy)
(5) € Im(@f((X"Y)). Our assumption on (g) says that

R —0.

). We show that

0=(X Y) <£> —Xf+Yg

It follows that X f = —Yg. Using the fact that the ring R is a free A-module with
basis {X®Y7 | 4,7 > 0}, it is straightforward to show that this implies that f € YR
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and ¢ € XR. Hence, there are polynomials f/,¢’ € R such that f = Y f’ and
g = Xg'. Thus, we have

XYf =Xf=-Yg=XY(—g).

Since XY is not a zero-divisor on R we have f/ = —g’, and hence

()= () - () () 1w

This is the desired conclusion.

Example VIIIL.6.9. Let k be a field, and set R = k[x,y]/(zy). Recall that every
element r € R has a unique representation of the form

r=ata ¥ bt Y, ep

with a, b;, ¢ € k.
We show that

H, (1, y) = R/(z,y) ifi=0,1
Y= if i #0,1.

From Example we have
~ (—yw) 9 ()
Ke(z,y)) 2|0 R—>R*—> R—0].

This implies
H(](xvy) = R/(.’E, y)

It remains to check the cases i =1, 2.
For Hy(z,y) we compute

Ker<R2MR> ={(D) e R*|0=(vv)(}) =ar+ys}.

We claim that this kernel is generated by the columns (§) and (2). One checks
readily that these columns are in the kernel. To see that everything in the kernel
can be written in terms of these columns, let (%) be in the kernel, and write

r=a+xd bixt +yd; iy
and
s=d+x) e’ +yy; fiy
The equation xr + ys = 0 translates to
0=$<G+$Eibiwi+yzjcjyj) +y(d+wziei$i+yzjijj)
:ﬂf(a+x2ibiﬂ)+y(d+ijijj>
so a =0=0b; =d = f;. This yields
()= (12) =0 (B) + e ().

This establishes the claim.
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It follows that

Ker R2MR y 0 y
Hi(z,y) = ( >:<(o);(z)>_<( )7(;‘2)>

- (R (%) R2> ((Z2)) (%)

This quotient is cyclic, generated by the coset (). Hence, there is a surjection
7: R — Hy(z,y) given by r +— r(2). To complete the computation of Hy(z,y) we
need only show that Ker(7) = (x,y).

To see that Ker(7) D (x,y), we check the generators of (z,y):

) =y(2)=(2)=(3)=0.
() =$@= _xm: —x0=0.

It is straightforward to show that 0 # (9) = 1(9), so 1 ¢ Ker(7). It follows that
R 2 Ker(7) D (z,y). Since (z,y) is a maximal ideal, we have Ker(7) = (z,y), as
desired.

An easier computation shows that

y
Hy(z,y) = Ker (Rﬁ»}?) ={reR|aer=0=yr} =0.
Note that similar arguments can be used to compute H; (x, y) when R = k[z, y]/(xy)

or R = k[z,y](z,)/(7y).
Here are some basic properties of the Koszul complex.

Proposition VIIL.6.10. Let R be a commutative ring, and let M be an R-module.
Let x =x1,...,2, € R. Show that, for each integer i, we have

K;(x; M) = M),
Note that this implies that K;(x; M) = 0 = H;(x; M) when either i > n or i < 0.

Proor. We argue by induction on n. The base case n = 1 is contained in

Example
Assume that n > 2 and that the result holds for sequences of length n — 1. Set

Le = Ko(21,--.y@n—1; M). The induction hypothesis implies that L; = M for
every integer i. The definition of K(x; M) as a mapping cone explains the first
isomorphism in the next sequence

Ki(x; M) = L@ Li_y = M) @ m(=) = pr()+(07) 2 g (0),

The second isomorphism is from the induction hypothesis, the third isomorphism
is standard, and the fourth isomorphism is from the standard ”Pascal’s triangle”
recurrence relation for binomial coefficients. ]

Proposition VIIL.6.11. Let R be a commutative ring, and let M be an R-module.
Letx=x1,...,2, € R.
(a) Under the identifications Ko(x;M)g = M and Ke(x; M), = M™, one has
K (x;M)
0; =(x1 22 -+ Ty).
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(b) Under the identifications Ko(x; M), = M and Ko(x;M),,—1 = M™, one has
Ty,

. —ZTn-1
aﬁ((fo) —

(_1)n—1x1
(c) There is an isomorphism Ho(x; M) = M /xM.
(d) There is an isomorphism Hy, (x; M) = N1 (0 :pr 24).

PROOF. (@) and (b)) The identifications Ko (x; M)o = M and Ko(x; M); = M"™
and K¢(x; M), & M and K¢(x; M),—1 = M™ come from Proposition
We argue by induction on n. The base case n = 1 follows from the description of
Ko(x1; M) in Example Assume that n > 2 and that the result holds for
sequences of length n — 1. In particular, we have

K(z1,...,xn—1;M —
oIt M) () g o ) MY S M
Tn—1
—Tp—2
37{((931"“’1"71’1\/[) = . ‘M — M
(_1)n—2x1

Let p?n: Ko(x1,...,xn_1; M) — Ko(x1,...,2n—1; M) denote the homothety de-
fined by multiplication by x,. Under the given identifications, this chain map has
the following form:

Tn-1
—Tn-—2

(=) 2z (t1 @2 -+ wn1)
04>M4>Mn—14>...%Mn—1 M 0

The definition of the Koszul complex as a mapping cone implies that the terms of
Ko(x; M), in degrees —1 to 1 are given in the top row of the following diagram:

oy (i@ @) g
M O 0 -~ 0 0 M

D @

M (91K(X;M) 0 0
ln (331 Xro e Tp—1 .I‘n) -
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The vertical isomorphism are the natural ones. It is straightforward to check that
this diagram commutes. Hence, the map BIK M) as the desired form, and part @
is established.

The terms of K(x; M), in degrees n — 1 to n + 1 are given in the top row of
the next diagram:

0 Ty
0 Tn—1
0 )
0\ \o (-2, ) ) M
0 S ¥
M o oD M1
0 M M™
In
—Tp—1
(71)71711.1

The vertical isomorphism are the natural ones. It is straightforward to check that
this diagram commutes. Hence, the map ﬁff (M) has the desired form, and part (]ED

is established.
The first and third isomorphisms in the following sequence are by definition:

Hy(x; M) = Coker(@lK(X;M)) ~M/Im(z1 x2 -+ xp)=M/(x)M.

Part (a) explains the second isomorphism.
(d)) The first and third isomorphisms in the following sequence are by definition:

H, (x; M) = Ker(dK MY 2 fm e M | am = 0fori=1,...,n} = N7, (0 s ;).
Part (]ED explains the second isomorphism. O

Proposition VIIL.6.12. Let R be a commutative ring, and let M be an R-module.
Letx =xy,...,x, € R. For each 1, there is an exact sequence

Hi($1,...,$n_1;M)

O - In H’i(mla ey n—1; M) - H,L(X’ M) - (0 :Hifl(ilv“ﬂmn*l;M) :Cn) - 0
PROOF. This is Proposition [VITL6.4 with Xe = Ko (21, ..., @n_1; M). 0

Proposition VIIL.6.13. Let R be a commutative ring, and let M be an R-module.
Let x = x1,...,2, € R. For each i and j, there exists an integer m; ; such that
z" Hi(x; M) = 0. (In fact m; ; = 21 satisfies this condition.)

PROOF. We proceed by induction on n.
Base case n = 1. The Koszul complex K,o(z1; M) has the following form by
definition:

Ko(1; M) = 0— M= M—0.
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It follows that the only non-zero homology modules are the following:
Ho(.’El;M)%M/(ElM Ho(xl,M)%(O M 371)

Each of these modules is annihilated by x1, so m; ; = 1 works in this case.
Inductive step. Assume that n > 2 and that the result holds for the homol-
ogy modules H;(x1,...,2n—1; M), that is, that there are integers p; ; such that
2/ Hy(21,. ., 013 M) =0fori=1,...,n—1and j =0,...,n — 1. It follows
that 2!’ annihilates the submodule (0 1, ,(zy, .2, 1;0) Tn) and the quotient
module H;(z1,...,2p—1; M) /x, Hi(z1,...,2n—1; M). By definition, the element

Zp also annihilates these modules. Set p, ; =1for j =0,...,n—1. Set p;; = 1
fori=1,...,nand j = —1,n.
For i = 0,...,n Proposition yields an exact sequence

Hj(iEl, e ,.’Enfl;M)
o Hj(z1,. .., xpn_1; M)

For i = 1,...,n, we have 27" H;(21,...,2pn_1; M)/zy Hj(z1,...,20-1; M) = 0
and /77" (0 “H 1 (1,en_13M) Tn) = 0. Hence, Exercise [VIII.6.21 implies that

0— - Hj(X; M) - (O ‘Hj—1 (21,0 Tn—1;M) .%‘n) — 0.

%

xfi,j"rpi,j—l Hj(x; M) =0, as desired. =

Remark VIII.6.14. Let R be a commutative ring, and let M be an R-module.
Let x = x1,...,z, € R. It is less straightforward to show that, for each i and 7,
one has z; Hj(x; M) = 0. That is, in Proposition the integer m; ; =1
has the given properties.

Theorem VIIL.6.15. Let R be a commutative ring, and let M be an R-module.
Ifx=ux,...,2, € R is an M-reqular sequence, then H;(x; M) =0 for alli # 0.

PRrROOF. We proceed by induction on n. The base case n = 1 follows from

Example [VIII.6.1
For the induction step, assume that n > 2 and that the result holds for reg-
ular sequences of length n — 1. In particular, since the sequence x1,...,Z,_1 is

M-regular, we have H;(x1,...,2,-1; M) = 0 for all ¢ # 0. Also, from Proposi-

tion [VIIL.6.10 we know that H;(x; M) = 0 for i < 0.

We claim that (0 :y,_, (a,,....0,_1:M) Tn) = 0 for all i > 1. Since x is M-regular,
we know that ,, is M/(x1,...,2,—1)M-regular. By Proposition [VIII.6.11} we have

Ho(xh N ,xn,l;M) = M/((El, . ,.fn,l)M

80 xy, is Ho(21,...,2n_1; M)-regular. Hence, we have (0 :Hy(a,,....0_1;M) Tn) = 0.
(This is the case ¢ = 1.) When ¢ > 2, we have H;_q(z1,...,2,-1; M) = 0, so
(0 :H,_y(21,...,wn_1;M) Tn) = 0. this establishes the claim.

Now we use the exact sequence from Proposition [VIIT.6.12}

Hi(21, .. 2013 M)
ani(fEl,...,itn,l;M)
When i > 1, we have H;(z1,...,2,-1; M) =0, so
Hi(z1,...,2n—1; M) /x, Hi(z1,...,2n_1; M) = 0.

0—

- HZ(X;M) - (O :Hi,l(xl,...,wn,lgM) x'ﬂ) - O'

The claim implies that (0 g, | (4,,....0,_,;M) Tn) = 0 for each i > 1, and we conclude
from the displayed exact sequence that H;(z1,...,2p—1,2,; M) =0 for i > 1, as
desired. [
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Theorem VIIIL.6.16. Let R be a commutative ring, and let x = x1,...,x, € R
be an R-regqular sequence.

(a) The Koszul complex Ko(x) is an R-free resolution of R/(x).
(b) We have Exths(R/(x), R/(x)) [R/(x)](?) for each index i.
(¢c) We have pdr(R/(x)) = n.

PRrOOF. (&) By Theorem [VIIL.6.15| we know that H;(K4(x)) = 0 for all i # 0.
Pr0p051t10n [VIIT.6.11|shows that Ho (K, (x)) = R/(x). Proposition [VIIL6.10|shows
that K;(x) is a (finitely generated) free R-module for each i, and that K;(x) = 0
when ¢ < O It follows that K,(x) is an R-free resolution of R/ (x).

(b) We use the projective resolution K,(x). Proposition [VIIL6.11{(b) shows

that this resolution has the following shape:

9K K0 HK 00 KGO

i+2 R(z+l) i+l R(?) ’—> R('L—l) l)
Exercise shows that the matrices representing the differentials in this

complex have only 0 and +x; entries. It follows that the relevant piece of the
complex Homp (K, (x), R/(x)) has the following form.

( K(x))* (ak(x>)*

i+1

Hompz (R, R/(x)) Hompz(R(), R/(x)) Hompz (R4, R/(x))

Under the isomorphisms Hompg(R?, R/(x)) = (R/(x))?, the relevant piece of the
complex Homp(K,.(x), R/(x)) has the following form:

<afi<;‘>>

[R/(x)) (" [R/(x))(7) [R/ ()] ™).
The displayed differential is 0 because each z; € (x). Taking homology, we have

Extyy(R/(x), R/(x)) = [R/(x)]() / Im(0) = [R/(x)](*)

(,m) @)
1) —~
=0

as desired.
The fact that that K;(x) = 0 when i > n implies pdz(R/(x)) < n. Part (b)
yields the isomorphism in the next display

Extp(R/(x), R/(x)) = R/(x) # 0

and the non-vanishing holds because x is R-regular. Theorem [VIL.3.8| implies that
pdr(R/(x)) = n, and hence the desired equality. O

Corollary VIIL.6.17. Let A be a commutative ring, and let X1,..., X, be a list
of independent variables. Set R = A[Xy,...,X,] or A[Xy,..., Xpn](x,,...x,) or
A[X1,...,X,]. Then R/(X1,...,X,) = A and pdi(A4) = n.

PRrROOF. In each case, the isomorphism R/(X1,...,X,) = A is standard, and
the sequence Xi, ..., X, is R-regular. Hence, the computation pdz(A) = n follows

from Theorem |[VIII.6.16f|c). O

Lemma VIIL.6.18. Let R be a commutative noetherian ring, and let M be a
finitely generated mon-zero R-module. Let x = x1,...,x, € R be an R-regular
sequence.

(a) One has Tor®(R/(x), M) = H;(x; M) for all i.

(b) If x is also M regular, then Tor®(R/(x), M) =0 for alli > 1
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PROOF. (a)) Theoerem [VIIL.6.16{|VIIL.6.16]) implies that the Koszul complex
K,.(x) is a free resolution of R/(x) over R. Hence, we have the first isomorphism
in the following sequence

Torl(R/(x), M) = H;(K.(x) @ M) = H;(x; M).

The second isomorphism is by definition
(b) When x is M-regular, the vanishing H;(x; M) = 0 for ¢ > 1 is from Theo-
rem [VITL6.15 O

Exercises.
Exercise VIII.6.19. Verify the claims of Example

Exercise VIII.6.20. Let R be a commutative ring, and let M be an R-module. Let
X =21,...,Z, € R. Show that, for each i, the differential af("*m () o)
can be represented by a matrix whose entries are 0, +x;.

Exercise VIII.6.21. Let R be a commutative ring, and let z,y € R. Consider an
exact sequence of R-module homomorphisms

0—-A—-B—->C—0.
Show that, if A =0 = yC, then zyB = 0.

Exercise VIII.6.22. Let R be a commutative ring, and let M be an R-module.
Let x = x1,...,2, € R. Show that there is an isomorphism of R-complexes

Ko(x) @p M = Ko (x; M).

Exercise VIII.6.23. Let R be a commutative ring, and let M be an R-module.
Let x € R be an R-regular sequence. Prove that Tory*(R/(x), M) = H,,(x; M) for
each index 1.

Exercise VIII.6.24. Let R be a commutative ring, and let M be an R-module.

Let x=21,...,2, € R.

(a) If F'is a flat R-module, show that there is an isomorphism H;(x; M ®p F') =
H;(x; M) ®p F for each index 1.

(b) Let U C R be a multiplicatively closed set. Show that there is an isomorphism
H;(x;U'M) =2 U1 H;(x; M) for each index i. Conclude that, if z; € U for
some 7, then H;(x;U~*M) = 0 for all i.

Exercise VIII.6.25. (Challenge exercise: Koszul complexes are exterior algebras)
Let R be a commutative ring, and let x = x1,...,2, € R.

Set Ly = R with basis 1. Set Ly = R™ with basis e1,...,e,. Fort =2,...,n
let L; denote the free R-module whose basis is the following set of formal symbols:

{ejl/\ejz/\-~-/\eji\1<j1 <j2<"'<ji<n}.
Let Lo be the sequence

oy 97 oy
L= 0—-L,—— L, y—— - —Lyj—0
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with maps defined on bases as follows:

i=1: oF:R" - R
€5 — Ty
1>1: 8{’L2—>L1,1

j
ey Neg Ao Aejm (1) M ages A Nej oy Nejyy A Ay,
=1

(a) Write out the sequence L, in the cases n = 1,2,3 writing the maps 91 as
matrices. Compare your answer to the complexes in Example

) Prove that Lo is an R-complex.

(c¢) Prove that L; = R(Y) for each index i.

(d) Prove that L, is isomorphic to the Koszul complex K,q(x).

(e) Prove that L, is independent of the order of the sequence x: if x’' is a re-
arrangement of the sequence x and L is constructed using the sequence x’,
then L, = L,.

(f) Prove that Ko(x) is independent of the order of the sequence x: if x' is a

~

rearrangement of the sequence x then K,(x') & K,(x).

VIIIL.7. Epilogue: Tor and Torsion

Here we describe the connection between Tor and torsion. This material is not
needed for the sequel. See Section for definitions. (This material is taken from
Rotman [4].)

Lemma VIIIL.7.1. Let R be an integral domain with field of fractions K, and let
M be an R-module.
(a) If M is torsion, then (K/R) ®@r M =0 =K ®r M and Tor®(K/R, M) = M.
(b) We have Tor®(K/R,M) =0 for all i > 2.
(¢) If M is torsion-free, then the natural map M — K @p M is a monomorphism,

and Tor®(K/R, M) = 0.

Proor. We use the exacts sequence

0-R—K—->K/R—0 (VIIL.7.1.1)

throughout the proof.

(a)) The vanishing (K/R)®r M =0 = K ®g M follows from the fact that K/R
and K divisible, because M is torsion.

For the isomorphism, consider the following piece of the long exact sequence in

Tor(—, M) associated to the short exact sequence (VIIL7.1.1):
Torf (K, M) — Tori'(K/R,M) - Ror M — K @ M .
—_—— ———— ———
=0 =M =0
The vanishing Tor® (K, M) = 0 is due to the fact that K is flat; see Lemma [VI.2.1
and Propositions |H.2.9@ and |IV.4.7|(]ED. The desired isomorphism now follows.
(]E[) Again, we consult part of the long exact sequence in TorlR (=, M) associated

to the short exact sequence (VIIL.7.1.1)):
Tor? (K, M) — Tor®(K/R, M) — Torl | (R, M).
—_—— N————

=0 =0
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The vanishing follows from the fact that K and R are flat, since ¢ > 2. The desired
vanishing now follows.

Let m € M be an element of the kernel of the map M — K ®pr M.
Let P = (0)R, which is prime and satisfies Mp = K ®p M. It follows that m
is in the kernel of the natural map M — Mp, that is, that there is an element
s € R~ P = R~ {0} such that sm = 0. Since M is torsion-free, we conclude that
m =0, so the map M — K ®r M has trivial kernel.

The module K®p M is a K-module. Since K is a field, we have K@z M = K
for some set A. Since K is a flat R-module, Exercise implies that KM is flat,
that is, that K ® g M is flat.

There is an exact sequence

0—-M—->KpM — (K®rM)/M —0
and we consider the associated long exact sequence in Tor! (K /R, —):
TorY(K/R, (K ®r M)/M) — Tor®(K/R, M) — Torl(K/R, K @ M) .
=0 =0

The vanishing Tory(K/R, (K ®z M)/M) = 0 is from part (b)), and the fact that
K ®pg M is flat implies that Tor{"(K/R, K ®g M) = 0. The desired vanishing now
follows. .

Theorem VIIL.7.2. Let R be an integral domain with field of fractions K, and

let M be an R-module. There is an R-module isomorphism : Torf'(K/R, M) =
t(M).

PRrROOF. Set M’ = M/t(M), and recall that Remark implies that t(M)
is torsion, and M’ is torsion-free. Consider the exact sequence
0—t(M)—>M— M —0
and the associated long exact sequence in Tor! (K /R, —):
Torf(K/R, M") — Tori(K/R,t(M)) — Torf(K/R, M) — Tor{"(K/R, M").
=0 ~t(M) T

The vanishings are from Lemma [VIIL7.1] parts (b) and (). Lemma [VIIL7.1]fal)

yields the isomorphism Torf(K/R,t(M)) = t(M). This exact sequence provides
the desired isomorphism. O

Exercises.

Exercise VIII.7.3. Let R be an integral domain with field of fractions K, and let
M be an R-module.
(a) Prove that there is an exact sequence

0—-t(M) > M—->K®rM— (K/R)®@r M — 0.
(b) Prove that M is torsion if and only if K ® g M = 0.
Exercise VIII.7.4. Let R be an integral domain with field of fractions K, and let
M and N be R-modules.

(a) Prove that, if N is torsion, then Tor!*(M, N) is torsion for all i > 0. (Hint:
proceed by induction on ¢, using dimension-shifting.)
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(b) Prove that Tor®(M,N) is torsion for all 4 > 1. (Hint: First prove the case
where N is torsion-free, using the exact sequence

0—-N—->K®rN— (K®rN)/N— 0.
For the general case, use the exact sequence 0 — t(M) - M — M/t(M) — 0.)



CHAPTER IX

Depth and Homological Dimensions September 8,
2009

One goal of this chapter is to prove the Auslander-Buchsbaum formula: If R is
a local noetherian ring and M is a non-zero finitely generated R-module of finite
projective dimension, then pd (M) = depth(R)—depthz(M). See Theorem [[X.2.3

IX.1. Projective Dimension and Regular Sequences

This section contains preparatory lemmas for use in the proof of the Auslander-
Buchsbaum formula. We begin with a useful consequence of Nakayama’s Lemma.

Lemma IX.1.1. Let (R,m, k) be a commutative local ring, and let M be a non-
zero finitely generated R-module. Let mq,...,m, € M be a minimal generating
sequence for M, and let f: R* — M be given by f(>_,rie;) = > ,rim;. Then
Ker(f) C mR™.

ProOF. Note that Nakayama’s Lemma implies that the residues
ML,y € M/mM = M Qg k

form a basis for M/mM as a k-vector space. The map f is surjective by definition.
Furthermore, tensoring with & yields an isomorphism f: k" — M ®p k, because
the my,..., My, € M/mM = M ®gr k form a k-basis for M/mM. Consider the
following commutative diagram:

R" M

k"? ®Rk

where the vertical maps are the natural surjections. Chase the diagram to see that

m(Ker(f)) C Ker(f) =0. It follows that
Ker(f) € 7 (n(Ker(f)) € 771(0) = mR"
as desired. O
Here is a useful application of the long exact sequence from Theorem

Lemma IX.1.2. Let R be a commutative ring, and let M be a non-zero finitely
generated R-module. Letx = x1,...,x, € R be a sequence that is R-regular and M -
reqular, and let Py be a free resolution of M over R. Then the complex Py®p R/(X)
is a free resolution of M/(x)M over R/(x).

195
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ProOOF. Note that each module P; is of the form R®%) for some set A;. It
follows that

(P ®r R/(x))i = P @r R/(x) = R ©g R/(x) = (R/(x))").

In particular, each module (P, ® gz R/(x)); is a free R/(x)-module, and we have
(Py ®r R/(x)); = 0 when i < 0. Furthermore, since each map 9} is an R-module
homomorphism, we conclude that the induced map

aiP®RlL3/(") — 82-13 ®r R/(x)

is an R/(x)-module homomorphism.
To complete the proof, it suffices to show that

H;(P, ®r R/(x)) = {éW(X)M 1: : 8.

We proceed by induction on n.
Base case: n = 1. Consider the sequence

0—-R*™ R— R/(z1) =0

which is exact because x is R-regular. Tensoring with P, yields the next sequence
of chain complexes:

0— P, ®pr R Py®@r R — Py ®r R/(x1) — 0.
This is isomorphic to the following sequence
0— Py P, — Py ®gr R/(x1) — 0. (IX.1.2.1)

Because x; is R-regular, it is P;-regular for each i. Hence, the sequence ([X.1.2.1))
is exact. In small degrees, the associated long exact sequence looks like

0 — Hy (P, ®g R/(21)) — Ho(Py) 25 Ho(P,) — Ho(Ps ®g R/(21)) — 0.
Because P, is a resolution of M, this has the form
0— Hl(P. Rpr R/(:El)) — M o, M — H()(P. Xnr R/(xl)) — 0.

Since z is M-regular, it follows that Hy(Ps ®g R/(x1)) = 0. This sequence also
shows that Ho(Ps ®r R/(z1)) = M/x1M. For ¢ > 2, the long exact sequence

associated to ([X.1.2.1)) has the form
0— H;(Ps®r R/(x1)) — 0
so H;(Ps ® g R/(x1)) = 0. This completes the base case.
The induction step is straightforward. O

Lemma IX.1.3. Let R be a commutative ring, and let M be a non-zero R-module.
Let x =x1,...,x, € R be a sequence that is R-regular and M -reqular.

(a) For each R/xR-module N and each i > 0, there is an isomorphism
Exth /xq(M/xM, N) = Exty(M, N).

(b) Assume that R is noetherian and local and that M is finitely generated. Then
pdg/xr(M/xM) = pdp(M). In particular M/xM is free over R/xR if and
only if M is free over R.
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PROOF. Let P, be a free resolution of M over R. Lemma[[X.1.2]implies that
the complex P, ® g R/XR is a free resolution of M/xM = M ®r R/xR over R/xR.
In the following sequence, the first isomorphism is Hom-tensor adjointness
and the second isomorphism is from Remark and Exercise [V1.4.§

Homp/xr(Ps ®r R/xR, N) = Hompg(P,,Homp /xz(R/xR, N)) = Hompg(P,, N).

Since P, ® g R/XR is a free resolution of M/xM over R/xR and P, a free resolution
of M over R, we have
Exti/xg(M/xM,N) = H_;(Hompg xz(Ps/xPs, N))
~ H_;(Homg(P,, N)) = Ext’ (M, N)
as desired.
(b)) Let k denote the residue field of R, which is also the residue field of R/(x).
Part (a)) explains the second equality in the next sequence
de/xR(M/XM) = Sup{i 20 | Ethé/xR(M/XMa k) 7& O}
= sup{i > 0 | Exty(M, k) # 0}
= pdg(M)
while the other equalities are from Theorem [VIL.3:14] Corollary [V.4.9] shows that

M is free if and only if it has projective dimension 0, so we conclude that M /xM
is free over R/xR if and only if M is free over R. g

The special case M7 = R and M = M in the next result shows how you can
determine when sequences that are M-regular and R-regular exist.

Lemma IX.1.4. Let (R,m, k) be a commutative noetherian local ring, and let
My, ..., M, be non-zero finitely generated R-modules. If depth(M;) > d for each i,
then there is a sequence X = 1,...,xq € m that is M;-regular for each i.

PRrOOF. Set M = M; & --- @ M,. Our hypotheses on depth imply that
Ext}(k, M;) = 0 for each ¢ and each j < d. Hence, Exercise [VL.2.12] implies

Ext?,(k, M) = 0 for each j < d, that is, depthy(M) > d. Thus, there is an M-

regular sequence x = x1,...,xqy € m, and one checks readily that this sequence is
M;-regular for each i. O
Exercises.

Exercise IX.1.5. Complete the proof of Lemma

Exercise IX.1.6. Construct examples showing that the sequence x must be both
R-regular and M-regular in Lemmas [[X.1.2| and IX.l.B(@.

I1X.2. The Auslander-Buchsbaum Formula
We begin with the base case of our proof of the Auslander-Buchsbaum Formula.

Lemma IX.2.1. Let (R,m, k) be a commutative noetherian local ring, and let M
be a non-zero finitely generated R-module. If depth(R) = 0 and pdgp(M) < oo,
then M is free.
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PROOF. Let n > 0, and assume that pdz (M) < n. We show by induction on
n that M is free. The case n = 0 is Corollary

Base case: n = 1. Let mq,...,m, € M be a minimal generating sequence for
M. Let f: R™ — M be given by f(>,rie;) =Y, rim;. Lemmaimplies that
K =Ker(f) C mR". Since pdr(M) < oo, the sequence

0-K—-RrR"L M—0

shows that K is projective by Exercise Corollary implies that there
is an isomorphism R™ = K for some m > 0. Combine this with the inclusion
K C R™ to find an R-module monomorphism g: R™ — R"™ such that Im(g) = K C
mR"™. Let ey,...,e, € R™ be a basis.

Suppose that m # 0. Then g is represented by an n x m matrix (a; ;). The
columns of this matrix are elements of KX C mR". Hence, each a;; € m. Since
depth(R) = 0, there is an element 0 # r € R such that mr = 0. It follows that
a; ;v = 0 for all 4,5. Hence, we have 0 # re; € Ker(g) = 0, a contradiction. It
follows that m = 0, and thus Ker(f) 2 R™ = 0. Hence, f is an isomorphism and
M is free. This completes the base case.

Induction step. Assume that n > 1 and that, whenever N is a finitely generated
R-module such that pdz(N) < n, we know that N is free. Suppose that M is not
free. Then pdgp(M) > 1. Let f: R™ — M be an R-module epimorphism, and set
K = Ker(f) € R™. Since pdp(M) < oo, the sequence

0—>K—>R"LM—>O

shows that pdp(K) = pdr(M) — 1 < n by Exercise Hence, our induc-
tion hypothesis implies that K is free. Thus, the displayed sequence implies that
pdg(M) < 1. The case n = 1 implies that M is free, a contradiction. Thus, M is
free, as desired. O

Example I1X.2.2. Let k be a field, and let R = k[z,y]/(2?,xy). If M is an R-
module of finite projective dimension, then M is free. The same conclusion holds
if R is replaced by any local artinian ring, e.g., k[z1,...,z,]/I where I is a proper
ideal containing a power of each of the variables.

Theorem IX.2.3 (Auslander-Buchsbaum Formula). Let (R, m, k) be a commuta-
tive noetherian local ring, and let M be a non-zero finitely generated R-module. If
pdr(M) < oo, then pdr(M) = depth(R) — depthp(M).

Proor. By induction on d = depth(R). The base case depth(R) = 0 is con-
tained in Lemma If depth(R) = 0, then M is free, so pdgp(M) = 0 and
depth (M) = depth(R) = 0.

Inductively, assume that d > 1 and that the result holds for all finitely generated
modules over all commutative noetherian local rings of depth < d.

Case 1: depthy(M) > 1. Since depth(R) > 1, Lemma[[X.1.4implies that there
is an element z € m that is R-regular and M-regular. In the following sequence,

the first equality is from Lemma [IX.1.3|(b])
pdr(M) = pdg/pr(M/xM)
= depth(R/xR) — depthg ), g (M/xM)
= [depth(R) — 1] — [depthp(M) — 1]
= depth(R) — depthy(M).
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The second equality is by induction, because the fact that x is R-regular implies
depth(R/xR) = depth(R) — 1. The third equality is a basic property of depth,
using the fact that x is R-regular and M-regular.

Case 2. depthg(M) = 0. Since depth(R) > 1, in this case we know that M
is not free. (If it were, it would have 0 = depthp(M) = depth(R) > 1.) Let
f: R" — M Dbe a surjection, and set K = Ker(f) C R". Since pdz(M) < oo, the
exact sequence

0-K—R"Lm—0
shows that pd(K) = pdr(M) — 1 < n by Exercise Since depth(R) > 1,
we have depthz(R™) > 1. In particular, we have Homp(k, R") = Ext% (k, R") = 0.
Thus, the long exact sequence in Ext%(k, —) associated to the displayed sequence
starts as

0 — Hompg(k, K) — 0 — Homg(k, M) — Extg(k, K).

By assumption, we have depthz(M) = 0 and hence Hompg(k, M) # 0. The dis-
played sequence implies Ext}%(k, K) # 0 = Hompg(k, K), and it follows that

depthp(K) =1 = depthp (M) + 1.
This explains the third equality in the next sequence:
pdp(M) =pdr(K) + 1 = depth(R) — depthp(K) + 1 = depth(R) — depthy(M).
the second equality is from Case 1. (]

Corollary IX.2.4. Let R be a commutative noetherian local ring, and let M be a
non-zero finitely generated R-module. If pdg(M) < oo, then there is an inequality
depthr (M) < depth(R).

PROOF. The Auslander-Buchsbaum formula implies
0 < pdg(M) = depth(R) — depth (M)
and the desired conclusion follows directly. (I

Example IX.2.5. Let k be a field, and let R = k[z,y, z]/(xz,yz). The element
x—zis Rregular and R/(x —z) 2 k[z,y]/(22, zy). Since depth(R/(xz—z)) = 0, we
conclude that x—z is a maximal R-sequence in m = (z, y, z) R. Thus, depth(R) = 1.

The R-module M = R/z = k[x,y] has depth 2, so Corollary that
pdp(M) = cc.

Corollary IX.2.6. Let (R,m, k) be a commutative noetherian local ring, and let
M be a non-zero finitely generated R-module. If pdp(M) < oo, then there are
inequalities pdr(M) < depth(R) < dim(R).

PrROOF. The Auslander-Buchsbaum formula implies
pdr(M) = depth(R) — depthr (M) < depth(R)
because depthr (M) > 0. The inequality depth(R) < dim(R) is contained in The-

orem (]E[) O

Exercises.

Exercise IX.2.7. Verify the facts from Example



200 IX. DEPTH AND HOMOLOGICAL DIMENSIONS September 8, 2009

I1X.3. Depth and Flat Ring Homomorphisms

The goal of this section is to prove Theorem which explains the relation
between depth(R) and depth(S) when ¢: R — S is a flat local ring homomor-
phism between commutative local noetherian rings. (The definition of a local ring
homomorphism is in [[I.5.4]) Much of the material for this section comes from [1].

We require the following result, called Krull’s intersection theorem, which we
do not have time to prove; see [3] (8.10)].

Theorem IX.3.1 (Krull). Let (S,n) be a commutative noetherian local ring. If N
is a finitely generated S-module, then N a’N = 0 for each ideal a C n.

Lemma IX.3.2. Let ¢: (R,m,k) — (S,n,1) be a flat local ring homomorphism
between commutative noetherian rings, and let M be a finitely generated non-zero
R-module. If y = y1,...,yn € n is an S/mS-reqular sequence, then'y is S @p M-
regular and S-regular, and the composition R — S — S/yS is flat and local.

PRrROOF. Claim 1: For each integer j > 0, there is an S-module isomorphism
aj: S@p (mi M) = m (S ®@r M) such that a;(s® (zm)) = z(s®@m) for all s € S,
all z € m?, and all m € M. Let ¢;: m/ M — M be the inclusion. Since S is flat,
the induced map

S®Rre;: S®R(ij) —S®r M
is an S-module monomorphism. By definition, we have
(S8R ej)(s® (am)) = s © (am) = a(s © m)

for all s € S, all x € m7, and all m € M. From this, it follows readily that
Im(S ®pr €j) =mI (S ®r M), so the map S ®p €; induces an isomorphism with the
desired properties.

Claim 2: For each integer j > 0, there is an R-module isomorphism

(m? M)/ (m?*0) = kY

for some integer k; > 0. The R-module m7 M is finitely generated, so Exercise[V.4.13
implies that the R/m-module

(m? M)/ (m? M) = (w? M)/ [m(m? M)]

is finitely generated. Since R/m = k is a field, this module has the form k', as
claimed.
Claim 3: For each integer j > 0, there is an S-module isomorphism

[m? (S @r M)]/[m/ (S @ M)] = (S/mS)"
where ¢; = dimy,((m7 M) /(mT1M)). Consider the exact sequence
0—m"M —-miM — (m!M)/(m T M) — 0.

Since S is flat over R, the top row of the following diagram is exact

, , m/ M
00— S®r (mj+1M)*>S®R (mJM)*>5®R (mj'HM) —0

> Qi =~ | aj | 3p;

Oﬂmj+1(5®RM)*>mj(S®RM)



IX.3. DEPTH AND FLAT RING HOMOMORPHISMS 201

is exact. The bottom row is the natural exact sequence induced by the inclusion
mIt (S ®@p M) C m/(S ®p M). It is straightforward to show that the left-most
square in this diagram commutes, where ;41 and «; are the isomorphisms from
Claim 1. It follows that there is an S-module isomorphism ; making the right-most
square commute. This explains the first isomorphism in the next sequence

mj(S ®r M) ~ 50 m/ M
mit1(S @r M) B\ miti M

The second isomorphism is from Claim 2, and the other isomorphisms are justified

as in the proof of Lemma

We now prove the result by induction on n.

Base case: n = 1. Since M is finitely generated over R, the base-changed
module S ®g M is finitely generated over S. Let £ € S ®r M such that £ # 0, and
suppose that y1£ = 0. Krull’s intersection theorem implies that

0= N (mS) (S @r M) =NZgm' (S @r M)

SO the_ condition 0 # f € S ®r M implies that there is an integer ¢ > 0 such that
Eem(S®pr M)\ m*(S®r M). The element

fem(S®r M)/m™H(S®@r M) = (S/mS)

) ~ S®p (k) = (S®r k)Y = (S/mS)H

is nonzero and is annihilated by y;. However, since y; is S/mS-regular, it is also
(S/mS)%-regular, and this is a contradiction. Thus, y; is S ®g M-regular.

Note that the special case M = R implies that y; is S-regular.

Set S = S/y1S. To prove that the composition R — S — S is flat and local,
it suffices to show that S is flat as an R-module. Corollary m shows that it
suffices to consider an arbitrary short exact sequence

0— M, L My & My — 0

of finitely generated R-modules and show that the induced sequence

0—S®r M —=E5 S&nf S ®@p My =22 S@ny S®r M —0

is exact. Since S is flat over R, the sequence
0—S®r M; — SOnt SQr My —= S®rg S®r M;—0

is exact. Since ¥ is S-regular and S @ g M3 regular, Lemmalmphes that
Tor1 (S, S ®pg Ms) = 0. Hence, the long exact sequence in Tor” (S, —) associated to
the previous sequence shows that the top row of the following diagram is exact

SO(S®f)— S®(S®g)—
0——>S®s (S®r M) —='S @5 (S Op Ma) ——= 8 @5 (S @ My) —> 0

I

— Qrf — S®rg —
0——= S My —————SQRr My ———S®gr M3 —>0
where the vertical isomorphisms are a combination of associativity and can-
cellation [I.T.9] Tt is straightforward to show that this diagram commutes. Hence,
the bottom row is also exact, as desired. This completes the base case.
The induction step is routine, using the isomorphism (S/y1.5)/m(S/y1S) =
(S/mS) /y1(S/mS). O
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Definition IX.3.3. Let (R, m, k) be a commutative noetherian local ring, and let
M be a non-zero finitely generated R-module of depth d. The type of M is the
positive integer

typer(M) = dimy (Ext&(k, M)).
The type of R is type(R) = typeg(R).

Remark IX.3.4. Let (R, m, k) be a commutative noetherian local ring, and let M

be a finitely generated R-module. Proposition [[V.3.9] implies that Extk(k, M) is
V.5.10) !

a finitely generated R-module, so Remark [V.5.10| guarantees that Ext%(k, M) is a
finite-dimensional vector space over k. If d = depthy (M), then Ext%(k, M) # 0,
so typer(M) is a positive integer.

Example IX.3.5. Let k£ be a field. There are equalities
type(k[[Xl, e 7Xn]]) =1= type(k[Xl, . 7Xn](X1 ____ Xn))

Indeed, let R denote one of these rings. Exampleimplies that depth(R) = n,
so we need to show that Ext(k, R) = k.

The sequence of variables X = X;,..., X, is an R-regular sequence such that
R/(X) = k. Hence Theorem [VIIL6.16|fa)) implies that the Koszul complex K, =
K,(X) is a free resolution of k over R. Proposition implies that K,
has the following form

Xn
—An—1
-1 77:le
Ki— 0o g CUTX/ .
~~ ~~
deg. n deg. n — 1
and it follows that we have
(X —Xng (—1)"71Xy)
Homp(Ke,R)=---— R" — 0
~~ —~
deg. 1 —n deg. —n

Hence, we have
Exth(k,R) 2 H_,(Homg(K,., R)) 2 R/(X) 2k
as claimed.
Theorem IX.3.6. Let p: (R,m) — (S,n) be a flat local ring homomorphism be-

tween commutative local noetherian rings. If M is a non-zero finitely generated
R-module, then

depthg(S ®p M) = depthg (M) + depth(S/mS)
typeg(S ®@r M) = typeg(M) type(S/mS).
PROOF. Set a = depthp(M) and b = depth(S/mS). We first prove the in-
equality depthg(S®r M) < a+b. Let x = z1,...,2, € m be a maximal M-regular
sequence, and let 71, ...,7p € n/mS be a maximal S/mS-sequence. It follows that

Y = ¥y1,...,Yp € nis a maximal S/mS-sequence. Lemma implies that the
sequence ¢(x) = @(z1),...,p(zq) € nis S ®r M-regular and that

(S@rM)/px)(S®r M) =S ®r (M/xM).
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Lemma[[X.3.2)implies that y is S®@g (M /xM)-regular. It follows that the sequence
o(x1), .., 0(xa),y1,- .-,y is an S @ M-regular sequence of length a + b, and we
conclude that a + b > depthg(S ® g M). Furthermore, the previous display yields
the second isomorphism in the next sequence

S®rM ~ (S®rM)/p(x)(S®r M)
(p(x),y)(S®r M) (y)[(S®r M)/p(x)(S @r M)]
. S®gr(M/xM)

(¥)[S ®r (M/xM)]
>~ (S/(y)S) ®s [S @r (M/xM)]
= (S/(y)S) ®r (M/xM).

The first isomorphism is standard. The third isomorphism follows from Exer-

cise and the last isomorphism is from associativity and cancella-
tion IL.T.9

Set t = typer(M) and u = type(S/mS). We prove that dim;(Ext%™(l, S ®g
M)) = tu. With the previous paragraph, this shows that a + b = depthg(S ®@r M)
by Corollary because t,u > 1 implies that tu > 1. Also, this proves that
typeg(S ®g M) = tu, so this will complete the proof.

As x is a maximal M-sequence in m, we have

Homp(k, M/xM) = Ext%(k, M) = k'
by Lemma Similarly, we have
Homg(1, (S/yS)/m(S/yS)) = Homg(l, (S/mS)/y(S/mS)) = Ext’ (1, S/mS) == I“.
Lemma justifies the first isomorphism in the next sequence
Extg™ (1, S ®r M) = Homg (1, (S ®@r M)/(¢(x),y)(S @r M))
= Homg(l, (5/y5S) @r (M/xM))

and the second isomorphism is from the sequence at the end of the previous para-
graph. This explains the second equality in the next sequence

typeg(S ®r M) = dimy(Ext&™(1, S @ p M))
= dim;(Homg (I, (S/yS) ®g (M/xM)))
= dimy (Hompg (k, M /xM)) dim;(Homg(I, (S/yS)/m(S/yS)))

= tu.

The first equality is by definition, and Lemma implies the third equality.
The fourth equality is from the first two displays in this paragraph. O

Corollary IX.3.7. Let ¢: (R,m) — (S,n) be a flat local ring homomorphism
between commutative local noetherian rings. There are equalities

depth(S) = depth(R) 4+ depth(S/mS)
type(S) = type(R) type(S/msS).
PRrROOF. This is the special case M = R of Theorem ([
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Corollary IX.3.8. Let (R,m) be a commutative local noetherian ring with com-
pletion R. There are equalities

depth(R[X1, ..., Xp](m,x,,....x,)) = depth(R) 4+ n = depth(R[X},. .., X,])
type(R[X1, ..., Xul(m,x1,...x,)) = type(R) +n = type(R[Xq,..., X,])
depth(R) = depth(R) type(R) = type(R).

PRrOOF. Set S = R[X1,..., Xu](m, x;,...,x,)- The natural map R — S is flat
and local by Exercise and Example It is routine to show that
S/mS = (R/m)[Xl, e aXn](Xl,...,Xn)'
This explains the second equality in the next sequence
depth(S) = depth(R) 4 depth(S/mS)
= depth(R) + depth((R/m)[X1, ..., Xa](x,,.. X))
= depth(R) + n.
The first equality is from Corollary [X:3.7 and the third one is from Exam-
ple This explains the first of our desired equalities.
The third of our desired equalities follows from the next sequence
type(S) = type(R) type(S/mS)
= type(R) type((R/m)[X1,.... Xu](x, ... x,))
= type(R).

The first equality is from Corollary[[X.3.7] and the third one is from Example[[X:3.5]
The other desired equalities follow similarly using the next isomorphisms

R[X1,..., X,]/mR[X1,..., X,] =2 (R/m)[ X4, ..., X,]
ﬁ/mﬁ ~ R/m
from Proposition [[I.4.7] and Section O

Remark IX.3.9. Let ¢: (R,m) — (5,n) be a flat local ring homomorphism be-
tween commutative local noetherian rings. The equalities from Corollary
form the proverbial tip of the iceberg. The next formal power series with nonneg-
ative integer coeflicients are called the Bass series of the respective rings:

Ig(t) = i dimy, (Ext’ (k, R))

=0
Is(t) = dim(Exts(l, 9))
=0
Is/ms(t) =Y dimy(Bxtly/ g (1, S/mS)).
1=0

A theorem that we do not have time to prove says that there is an equality of formal
power series

Is(t) = Ir(t)Is/ms (1)
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Coeflicient-wise, this say that

dimy (Bxtl (1, S/mS)) = dimg (Ext} (k, R)) dimy (Ext 7 (1, 5))
=0
for each i > 0. Corollary establishes this equality of coefficients when i <
depth(R) + depth(S/mS).
Exercises.

Exercise IX.3.10. Complete the proof of Lemma
Exercise IX.3.11. Complete the proof of Corollary

IX.4. Injective Dimension and Regular Sequences

Theorem IX.4.1 (Bass’ Formula). Let (R, m, k) be a commutative noetherian local
ring, and let M be a non-zero finitely generated R-module. If idr(M) < oo, then
idg(M) = depth(R).

PROOF. Setr = idp(M) < oo and t = depth(R). Tt follows that Ext’(—, M) =
0 for all ¢ > 7.

Claim: For each prime ideal p # m, we have Ext,(R/p, M) = 0. To see this,
fix a prime ideal p # m, and let z € m \ p. The exact sequence

0— R/p = R/p— R/(p,2)R — 0
induces a long exact sequence in Exty(—, M):
Exty(R/p, M) = Extp(R/p, M) — Extp™ (R/(p,x), M) .
=0
Proposition [[V.3.9] implies that Extz(R/p, M) is finitely generated, so we have
Extm(R/p, M) = 0 by Nakayama’s Lemma.

Theorem [VIIL.5.11| implies that Exts (R/m, M) # 0.

Let x = x1,...,x; € m be a maximal R-regular sequence. Theorem [VIII.6.16((c)
implies that pdz(R/(x)) = t, so Exercise [VIL.3.18|implies that Ext%(R/(x), M) #
0. The first paragraph of this proof implies that depth(R) =t < r = idg(M).

On the other hand, we have depthp(R/(x)) = 0, so there is an R-module
monomorphism k£ — R/(x). The exact sequence

0—k—R/(x)—C—0

induces a long exact sequence in Ext%(—, M):
Extlh(R/(x), M) — Extp(k, M) — Ext};™ (C, M) .
—_———
=0

Since Extr(k, M) is non-zero and a homomorphic image of Exth(R/(x), M), we
have Ext (R/(x), M) # 0. This implies the second inequality in the next sequence

idp(M) =r < pdr(R/(x)) =t = depth(R).
With the previous paragraph, this completes the proof. O

Corollary IX.4.2. Let R be a commutative noetherian ring, and let M be a finitely
generated R-module. If idg(M) is finite, then idg(M) < dim(R).
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PrROOF. For each maximal ideal m C R, we have
idRm (Mm) < idR(M) < o0
by Lemma Hence, Theorem provides the equality in the next se-
quence:
idg,, (My) = depth(Ry) < dim(Ry,) < dim(R).
The inequalities are from Theorem VII.2.7(]E[) and Fact [VIL.2.2] respectively. This

explains the inequality in the next display
idp(M) = sup{idg,, (Mn) | m is a maximal ideal of R} < dim(R)
while the equality is from Corollary [VII.5.13((b)). O

Exercises.

Exercise IX.4.3. Let R be a commutative noetherian ring, and let M be a finitely
generated R-module. Assume that dim(R) is finite. Prove that the following con-
ditions are equivalent:
(i) idr(M) < oc;
(ii) idy-1g(U"*M) < oo for each multiplicatively closed subset U C R;
iii) idg, (M,) < oo for each prime ideal p C R; and

) idg,, (Mm) < oo for each maximal ideal m C R.

v
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(



CHAPTER X

Regular Local Rings September 8, 2009

In this chapter, we prove Auslander, Buchsbaum and Serre’s homological char-
acterization of regular local rings, and give the corresponding solution to the local-
ization problem for regular local rings.

X.1. Background from Dimension Theory

Remark X.1.1. Let (R,m) be a commutative noetherian local ring, and set d =
dim(R). A theorem from dimension theory states that

d=min{n > 0| 3z1,...,2, € m such that rad(z1,...,2,) = m}.
In other words, if rad(z1,...,2,) = m, then n > d = dim(R); and there exists a
sequence Z1,...,xq € m such that rad(zy,...,24) = m. In particular, there are

inequalities dim(R) < pg(m) < oco.
Note that, given an ideal I C m, the following conditions are equivalent:
(i) One has rad(I) = m;
(ii) The only prime ideal containing I is m;
(iii) The quotient ring R/I has a unique prime ideal m/I; and
(iv) The quotient ring R/I is artinain.

Definition X.1.2. Let (R,m) be a commutative noetherian local ring, and set
d = dim(R). A system of parameters for R is a sequence x1,...,xq € m such that
rad(z1,...,2q) = m.

Example X.1.3. Let (R, m) be a 1-dimensional local noetherian integral domain,
that is, a noetherian ring with precisely two prime ideals (0) € m. For example,
the localization Z,) satisfies these conditions, as does the localized polynomial ring
k[X](x) or power series ring k[X] in one variable over a field. Then any element
0 # = € m forms a system of parameters for R.

Example X.1.4. Let k be a field. There are equalities
dim(k[Xq,..., X,]) =1 = dim(k[X1,..., Xa](x,,... . x.))-

Indeed, let R denote one of these rings. The maximal ideal of R is generated by
the sequence X7, ..., X,, so we have dim(R) < n. On the other hand, the chain of
prime ideals

(0) - (Xl) G- C (Xlw"vXn)
shows that dim(R) > n. In particular, the list of variables Xi,...,X, forms a
system of parameters for R.

Proposition X.1.5. Let (R,m) be a commutative noetherian local ring, and set
d =dim(R). Let x1,...,xq € m be a system of parameters for R.

(a) Then dim(R/(x1,...,2;)) =dim(R) —i=d —i.

207
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(b) Fori = 1,...,d the residues Tiy1,...,Tq in m/(x1,...,2;) T R/(x1,...,z;)
form a system of parameters for R/(x1,...,x;).

(¢) If i, ..., Ya—i € m/(x1,...,2;) is a system of parameters for R/(x1,...,x;),
then the sequence x1,...,T;,Y1,-..,Yd—i € M is a system of parameters for R.

PROOF. Set R = R/(x1,...,7;) and m = m/(z1,...,7;).

We have dim(R) < d — ¢, because the quotient ring

R/(x1,...,24) = R/(Tit1, - -, Td)

is artinian by assumption, and the sequence T;17,...,Z4 has d — ¢ elements.
Set r = dim(R) and let 71,...,7, € M be a system of parameters. It follows
that R/(x1,..., 2 91,--.,Yr) = R/(Y1,...,7r) is artinian, and hence ¢ + r > d,

that is dim(R) > d — i.

Finally, since dim(R) = d —i and Z;571, . . ., T4 € W is a sequence of length d — i
such that R/(Z;y1,...,Tq) is artinian, it follows by definition that Z;171,...,T4 is a
system of parameters for R. (]

Proposition X.1.6. Let (R,m) be a commutative noetherian local ring, and let
{p1,...,bn} be the set of minimal prime ideals p of R such that dim(R/p) = dim(R).
An element x € m is part of a system of parameters for R if and only if © ¢ U;p;.

PROOF. Set d = dim(R) and R = R/(z) with maximal ideal m = m/(x).

For the first implication, assume that z,zo,...,z4 is a system of parameters
for R. Proposition implies that dim(R) = d — 1. Suppose that = € p; for
some index i. Since dim(R/p;) = d, there is a chain p; = q0 € q1 C -+ € qq of
prime ideals of R. Since x € p;, the following is a chain of prime ideals in R:

pi/(x) =qo/(x) S a1/(x) -+ € aa/ ().

It follows that dim(R) > d, contradicting the fact that dim(R) = d — 1. Thus, we
have z ¢ p; for each index i, and hence x ¢ U;p;.

For the converse, assume that z ¢ U;p;.

Claim: dim(R) < d — 1. Consider a chain of prime ideals in R:

v/(x) Cu/(z) G- G /().

It follows that the chain tg C vy C -+ C ¢, is a chain of prime ideals of R, and that
each t; contains z. Since x ¢ p; for each j, it follows that v; # p; for each 7,j. In
particular, we have d > dim(R/tg) > r, that is d — 1 > r. Since the displayed chain

was chosen arbitrarily we have d — 1 > dim(R).

Set r = dim(R) < d — 1 and let ¥7,...,7, € m be a system of parameters for
R. Tt follows that the ring

R/(xaylw-',yr)%E/(ﬁa"wm)

is artinian, and hence d = dim(R) < 1+ r. That is, we have

d—1>dm(R)=r>d—1.
It follows that 7 = dim(R) = d — 1. Since the sequence z,y1,...,y, € m has length
d = dim(R) and the quotient ring R/(x,y1,...,¥,) is artinian, we conclude that
Z,Y1,---,Yr is a system of parameters for R. (]
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Remark X.1.7. Let (R,m) be a commutative noetherian local ring. Proposi-
tion gives the following algorithm for finding a system of parameters for R.

Step 1. If dim(R) = 0, then ) is a system of parameters for R.

Step 2. Assume that dim(R) > 1. Let {p1,...,p,} be the set of minimal prime
ideals p of R such that dim(R/p) = dim(R). Since dim(R/m) = 0 < dim(R/p;)
for each index i, we have p; C m. In particular, we have m Z p; for each i, so
prime avoidance implies that m ¢ U ;p;. Choose an element z; € m \ Ul p;.
Proposition implies that x; is part of a system of parameters for R.

Step 3: Repeat Steps 1 and 2 for the ring R/(x1). Inductively, we construct

a system of parameters Tz, ...,ZTq € m/(z1) for R/(x1), and Proposition
shows that z1,...,24 € m is a system of parameters for R.

Exercises.

Exercise X.1.8. Let k be a field. Find systems of parameters for each of the
following rings:

(a) R=Fk[X,Y]/(XY)

(b) S =k[X,Y]/(X? XY)

(c) T = KX, Y, Z]/(XY, X Z)

Exercise X.1.9. Let (R, m) be a commutative noetherian local ring, and let x =
T1,...,T; € m. Prove that, if the sequence x is R-regular, then it is part of a system

of parameters for R. [Hint: Compare Remarks and

X.2. Definitions and Basic Properties

Definition X.2.1. Let (R,m) be a commutative noetherian local ring, and set
d = dim(R). The ring R is regular if d = dim(R) = pr(m), that is, if there exists a
sequence I1,...,xq € m such that m = (z1,...,24)R. If R is a regular local ring,
then a regular system of parameters for R is a minimal generating sequence for m,
necessarily containing exactly d = dim(R) elements.

Remark X.2.2. A regular system of parameters for a regular local ring R is
necessarily a system of parameters for R, so dim(R/(x1,...,z;)) = dim(R) — i for
eachi=1,...,d.

Example X.2.3. Every field & is a regular local ring with empty regular system
of parameters. The ring Z,) is a regular local ring with regular system of param-
eters p. Every discrete valuation ring is a regular local ring. The localized poly-

nomial rings k[z1,...,Tn](ay, .. 2,) a0d Zepy[21, ..., Tn](pay,... z,) are regular local
rings with regular systems of parameters z1,...,z, and p,z1,..., T, respectively.
The power series rings k[z1, ..., 2,] and Z)[1, ..., z,] are regular local ring with
regular systems of parameters z1,...,z, and p,z1,...,x, respectively.

The rings Z/(p?) and k[x]/(2?) are local, but are not regular because each one
has dimension 0 and pr(m) = 1.

Theorem X.2.4. Let (R, m) be a d-dimensional commutative noetherian local ring,
and consider a sequence X = x1,...,x; € m. If the quotient R/(x) is a d — i-
dimensional reqular local ring, then R is reqular and x is part of a reqular system
of parameters for R.

PROOF. If the images in R/(x1,...,x;) of T;y1,...,2q € m generate the max-
imal ideal m/(x1,...,x;), then the sequence x1,...,x;, Tit1,...,Tq generates m.
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Hence, pugr(m) < d. The inequality pgr(m) > d is by Remark so R is regular.
The sequence z1,...,%;, Zi+1,...,Zq has d elements and generates the maximal
ideal m, so it is a regular system of parameters for R. (]

Corollary X.2.5. Let (R, m) be a commutative noetherian local ring, and consider
an R-regular sequence x = x1,...,x; € m. If the quotient R/(x) is reqular then R
is reqular and x is part of a reqular system of parameters for R.

PROOF. The sequence x is part of a system of parameters for R by Exer-

cise Hence, Proposition [X.1.5(fa)) implies that dim(R/(x)) = dim(R) — i.

The desired conclusions now follow from Theorem [X.2.4l O
Theorem X.2.6. Let (R,m) be a d-dimensional regular local ring, and consider a
sequence x1,...,x; € m. The following conditions are equivalent.

(i) The sequence x1,...,x; is part of a reqular system of parameters for R;

(ii) The sequence x1,...,x; is part of a minimal generating sequence for m;

(ili) The residues Z1,...,T; € m/m? are linearly independent over R/m;

(iv) The quotient R/(x1,...,x;) is a d — i-dimensional regular local ring.

PRrROOF. The equivalence (i) = is straightforward because every minimal
generating set for m is a regular system of parameters for R.

(i) = and - . Assume that zq,..., 2, Zi41,...,24 is a regular
system of parameters for R. Nakayama’s Lemma implies that the residues in m/m?
of £1,...,24,Tis1,...,xq form a basis for m/m? over R/m. Hence, each shorter list
of these residues is linearly independent. Also, the sequence x1,...,z; is part of a
system of parameters for R, so Proposition [X.1.5|(a)) explains the first step in the
next sequence:

dim(R/(x1,...,2;)) =d—1i > p(m/(z1,...,2;)) = dim(R/(x1,...,2;)).

For the second step, note that the images of x;41,...,24 in R/(x1,...,2;) generate
the maximal ideal m/(x1, ..., z;); this list has d — i elements, and hence the second
step. The third step is in Remark [X.1.1]

== Extend the linearly independent list Z7,...,7Z; € m/m? to a basis

Tl T, Tigls - - -, Zd € m/m?. Nakayama’s Lemma implies that the sequence
T1y.eeyTiy Tigl, .-+, Tq 1S @ minimal generating sequence for m.
= ({i) This is contained in Theorem O

Theorem X.2.7. FEvery reqular local ring is an integral domain.

PRrOOF. Let (R, m) be a regular local ring. We prove this result by induction
on d = dim(R) = pr(m). If d =0, then m = (0), so R is a field.

Assume d > 1. Let Min(R) = {p1,...,pn}. Since d > 1, we have m ¢ p; for
each i, and m € m?. Thus, prime avoidance provides an element z € m such
that z € py U---Up, Um2. Since x € m —m?, the image T € m/m? is non-zero, and
thus linearly independent. Thus, Theorem implies that R/(x) is a regular
local ring of dimension d — 1. The induction hypothesis implies that R/(x) is an
integral domain, so (z) C R is a prime ideal. It follows that p; C (x) for some 3.
Furthermore, since x ¢ p;, we have p; C ().

We claim that p; = xp,;. The containment O is straightforward. For the reverse
containment, let y € p; C (x) and write y = za with a € R. Since x & p; and p; is
prime and xa = y € p;, we conclude that a € p;. This establishes the claim.
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Since p; = zp;, Nakayama’s Lemma implies p; = 0. Hence, (0) is prime, so R
is an integral domain. ([

Theorem X.2.8. Let (R, m) be a regular local ring, and let X = x1,...,24 € m be a
reqular system of parameters. Then x is a regular sequence, so depth(R) = dim(R).

PRrROOF. The inequality depth(R) > dim(R) is from Theorem We prove
the reverse inequality depth(R) < dim(R) by induction on d = dim(R).

Base case: d = 0. A 0-dimensional integral domain is necessarily a field, so the
conclusions are straightforward.

Induction step. Assume that d > 1 and that the result holds for regular lo-
cal rings of dimension d — 1. Since R is an integral domain by Theorem
the element x; is R-regular. Furthermore, the quotient R = R/(x1) is a regular
local ring of dimension d — 1 by Theorem Also, the sequence of residues

T2,...,T4 € R is a regular system of parameters for R. Our induction hypothe-
sis implies that the sequence T3,...,Tq is R-regular. It follows that the original
sequence x is R-regular. (]

Definition X.2.9. A commutative noetherian local ring R is Cohen-Macaulay if
depth(R) = dim(R).

Corollary X.2.10. Every reqular local ring is Cohen-Macaulay.
PRrOOF. This is immediate by Theorem [VIL.2.7|(b]). O

Remark X.2.11. For several years, one of the major open questions in this are was
the following: If R is a regular local ring and p € Spec(R), must the localization R,
be regular? This is the so-called localization question for regular local rings. It was
solved by Auslander, Buchsbaum and Serre using a homological characterization of
regular local rings. This solution was one of the first major displays of the power
of homological techniques. We present it in the next section.

Exercises.

Exercise X.2.12. Let R be a commutative local artinian ring.

(a) Prove that R is Cohen-Macaulay.

(b) Prove that R is regular if and only if it is a field.

(¢) Use parts @ and (]ED to find an example of a local Cohen-Macaulay ring that
is not regular.

Exercise X.2.13. Let R be a local 1-dimensional noetherian integral domain.

(a) Prove that R is Cohen-Macaulay.

(b) Prove that R is regular if and only if it is a discrete valuation ring.

(c) Use parts (a)) and (b)) to find an example of a local Cohen-Macaulay integral
domain that is not regular.

Exercise X.2.14. Let R be a commutative noetherian local ring, and let x € R
be an R-regular sequence.

(a) Prove that R is Cohen-Macaulay if and only if R/(x) is Cohen-Macaulay.

(b) Prove that, if R/(x) is regular, then R is regular.

(¢) Find an example such that R is regular and R/(x) is not regular.

(This shows that the Cohen-Macaulay property is more stable than the property
of being regular.)
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X.3. Theorems of Auslander, Buchsbaum and Serre

In this section, we answer the localization question for regular local rings. See

Corollary

Theorem X.3.1 (Auslander, Buchsbaum and Serre). Let (R, m, k) be a commuta-
tive local noetherian ring with d = dim(R). The following conditions are equivalent:

(i) R is a regular local ring;
(i) pdp(k) = d
(i) pdyg(k) < o0;
(iv) pdg(M) < d for each finitely generated R-module M ;
(v) pdgp(M) < oo for each finitely generated R-module M ;
(vi) pdg(M) < d for each R-module M ;
(vii) pdr(M) < oo for each R-module M.
(viii) idg(k) =d
(X) ldR(k) < 00y
(x) idgr(M) < d for each finitely generated R-module M;
(xi) idr(M) < 0o for each finitely generated R-module M ;
(xii) idr(M) < d for each R-module M; and
(xiii) idr(M) < oo for each R-module M.

PRrROOF. The following implication are logically trivial: - -

and@ xiil)) — i:and:@:andz
E:@and:

i) = . ) Assume that R is a regular local ring with regular system of pa-
rameters X = z1,...,xq € m. This sequence is R-regular by Theorem [X.2.8] The-
orem then implies that pdg(k) = pdg(R/(x)) = d.

(i) = (1) This follows from the fact that the Krull dimension of a local
noetherian ring is finite.

== . Assume that pd (k) < co. We prove that R is regular by induction
on n = pr(m). In the base case n = 0, we have m = (0), so R is a field, hence a
regular local ring. For the induction step, assume that n > 1 and that the result
holds for rings (S, n) with ps(n) < n.

Claim 1: m ¢ Ass(R). Suppose that m € Ass(R). Then there exists 0 # r € R
such that mr = 0. Lemma |VI]] shows that there is a surjection 7y : R - m
such that Ker(r;) € mR™. Similarly, there is a surjection 72: R"* — Ker(71) such
that Ker(mz) € mR™. Continue to construct a surjection 7;: R™ — Ker(7;_1)
such that Ker(7;) C mR™ . Notice that we are building a projective resolution of m.
Since pd (k) < 0o, we have pd(m) < oo by Exercise [VIL3.17 or Corollary [VIL.3.9]
Theorem implies that Im(7;) = Ker(r;_1) € mR"™ is free for some j > 1,
say R™ = Im(7;) C mR™ . However, we have rm = 0, so

0#rR™ CrmR™ =0

a contradiction.

Claim 2: There exists # € m —m? such that z is not in any associated prime of
R. Set Ass(R) = {p1,...,pn}. Since m # p; for each i, we have m Z p;. Also, as m
is not annihilated by any non-zero element of R, we have 0 # m?, so Nakayama’s
Lemma implies that m ¢ m?. Prime avoidance[V.4.1]implies that m Z (m2U(U;p;)).
Any element of m ~ (m? U (U;p;)) has the desired properties.
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Set S = R/(z) and n = mS. Since z is not in any associated prime of R,
Proposition implies that x is part of a system of parameters for R. Thus,
Proposition guarantees that dim(S) = dim(R) — 1. Furthermore, since x is
in m\ m?, it is a minimal generator for m, so we have pg(n) = n— 1. We will show
that S is a regular local ring. Then we will have

dim(R) = dim(S) + 1 = ps(n) + 1 = pr(m)

and thus R is regular.

Claim 3: pdg(m/azm) < oco. Since z is not in any associated prime of R, it is
R-regular. Since m C R, the element z is also m-regular. Hence, Lemma [IX.1.3{[b])
implies that pdg(m/zm) = pdz(m) < oo.

Claim 4: There is an S-module N such that m/zm =2 N @ m/xR. We have
am C xR, so we consider the natural surjection 7: m/zm — m/zR. It suffices to
show that this is a split surjection. The element x is part of a minimal generating
sequence &, Ta,...,T, for m. Let v = (z2,...,2,) € R. Since z,x9,...,2, is a
minimal generating sequence for m, Nakayama’s Lemma implies that tNzR C zm.
(Indeed, since x,xs,...,x, is a minimal generating sequence for m, the sequence
Z,T3,...,T, € m/m? is a basis for m/m? over k. If n = >""" ,riz; = roz € tNaR,
then the relation rz — >, r;z; = 0 in m yields a relation 7z — > , 72; = 0 in
m/m?. The linear independence of the sequence T, @3, . .., T, € m/m? implies that
7 =0. That is r € m and 1 = rz € xm.) We have a sequence of natural maps

m/zR = (t+ zR)/zR = t/(tNaR) — (v + 2m)/zmm — m/zm = m/zR.

Check that the composition of these maps is the identity on m/zR. Hence, the map
T splits.

Claim 5: pdg(m/zR) < oco. Claims 3 and 4 show that m/am & N @ m/xR
has finite projective dimension over S. Hence, Corollary [VIL.3.10] implies that
pdg(m/zR) is finite.

Claim 6: S is regular. We have S = R/zR and n = m/xR. Claim 5 says that
pdg(n) < co. Since pdg(S) < oo also, Corollary implies pdg(S/n) < oo
because of the exact sequence

0—-n—S—5mn—0.

Thus, our induction hypothesis implies that S is regular, as desired.

= (jiv) Since pdzr(k) < oo, we have pdp(k) < d by Corollary [IX.2.6
Theorem [VIL4.5(implies that Tor,; (k,—) = 0, so

Torl, (M, k) = Tor} , (k, M) = 0.

Theorem implies that pdz(M) < d < 0.

Summary. At this point of the proof, we have shown the equivalence of the
conditions Mi

= (xii) Assume that pdz(M) < d for each finitely generated R-module
M. Let N be an R-module. Theorem [VII.3.8| implies that Ext;l;'l(M, N) =0 for
each finitely generated R-module M, so Theorem [VIL.5.10|says that idr (V) < d.

(ix) = Assume that ¢t = idg(k) < oo. Theorem implies that
Ext' " (k, k) =0, so Theoremsays that pdg (k) <t < o0.

Summary. At this point of the proof, we have demonstrated that the condi-

tions f and 7 are all equivalent.
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= Assume that idg(M) < d for each R-module M. Let N be an
R-module. Theorem implies that Ext%™ (N, M) = 0 for each R-module
M, so Theorem says that pdg(N) < d.

Summary At this point of the proof, we have shown the equivalence of the
conditions | . vii)) and (ix . m
[vi) = (viii) Assume that pdz(M) < d for each R-module M. Theo-
rem [VII.3.8 implies that Extjl;rl(M, k) = 0 for each R-module M, so we have
idg (k) < d by Theorem

On the other hand, our assumption implies that pd (k) < oo, so the Auslander-
Buchsbaum formula implies the first equality in the next sequence:

pdg(k) = depth(R) — depthp (k) = depth(R) = dim(R).

The second equality is from the condition depthy(k) = 0, and the third equality
is from Corollary (Note that this uses the implication (vi iii) which
we have already established.) Theorem implies that Ext &( k k) 7é 0, so we
have idg(k) > d. Combined with the previous paragraph, we have idr(k) = d, as
desired. This completes the proof of the equivalence of the conditions 7. O

Here is the solution of the localization question for regular local rings. This is
the only known proof.

Corollary X.3.2. If R is a regular local ring and p C R is a prime ideal, then R,
is regular.

PROOF. The ring R, is local with residue field R, /pR, = (R/p)y. The finite-
ness in the following sequence is from Theorem

pdg, (Rp/pRy) = pdg, (R/p)p) < pdp(R/p) < oo.
The other inequality is in Lemma So Ry, is regular by Theorem

Definition X.3.3. A commutative local noetherian ring is Gorenstein provided
that idg(R) < oo.

Corollary X.3.4. Every regular local ring is Gorenstein.

PrOOF. If R is a regular local ring, then idr(R) < oo by Theorem O

Remark X.3.5. A theorem of Auslander and Buchsbaum states that every regular
local ring is a unique factorization domain. This is straightforward to see for rings
of small dimension. Indeed, if R is a regular local ring of dimension 0, then it
is a field because the maximal ideal is generated by a sequence of length 0. For
dimension 1, this follows from the next result.

In the next iteration of these notes, we will prove this fact in general.

Theorem X.3.6. Let R be a reqular local ring of dimension 1 with reqular system
of parameters x.

(a) Fuvery non-zero element of R has the form x™u for a unique integer n > 0 and
a unique unit u € R.

(b) Every non-zero ideal of R is of the form (z™)R for a unique integer n = 0.

(¢) The ring R is a principal ideal domain, hence a unique factorization domain.
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PROOF. Let r be a non-zero element of R.

We first prove the existence of an integer n and a unit u such that r = z™u.

If r is a unit, then u = r and n = 0 satisfy the desired conclusions.

Assume that r is not a unit. The maximal ideal of R is m = zR. Since r is not
a unit, we have r € m = xR, and hence r = xry for some r; € R. If r; is a unit,
then w = r; and n = 1 satisfy the desired conclusions. If 71 is not a unit, there
is an element 7o € R such that r = xrs, and hence » = z?ry. Continue in this
manner to find elements r; € R such that r;_; = zr; and hence r = z'r;.

Note that, for each i, we have r;_1R = xr; R C r;R. Furthermore, we have
ri-1R=axr;R C r;R: if xr; R = r; R, then Nakayama’s Lemma implies that ;R = 0,
and hence r € r; R = 0 contradicts the assumption r # 0.

It follows from the ascending chain condition that this procedure cannot con-
tinue ad infinitum. Thus, at some stage, we must have r = z"r,, with r,, ¢ zR,
that is r,, a unit, as desired.

We next prove the uniqueness. Assume that v and v are units in R and that
m and n are non-negative integers such that z"u = r = x"v.

Claim: m = n. Suppose not. Then we may assume without loss of generality
that m < n. It follows that

O=r—r=z"u—2"v=a"(u—2a"" ™).

Since n —m > 0, we have 2"~ ™v € £ R = m. Since u is a unit, it follows that v ¢ m
and hence v —z™ ™v ¢ m. Thus u—z™ ™wv is a unit in R, and the previous display
implies that 2™ = (u — 2" ™) lu — x vz™ = 0, a contradiction.

Claim: v = v. By the previous claim, we have z"u = r = z™v, and hence
2™ (u —v) = 0. Since z is a non-zero element of the integral domain R, we have
u —v = 0, that is u = v.

(]ED Let I be a non-zero ideal in R.

Claim: There is an integer n > 0 such that ™ € I. Let r be a non-zero element
of I. By part @, there is an integer n > 0 and a unit u € R such that z"u =r € I.
Since w is a unit, we have 2™ = v~ 'z"u € I.

Now set n = min{m > 0| 2™ € I}.

Claim: I = 2" R. The containment I O 2™ R follows from the fact that z™ € I.
For the containment I C "R, let r € I. If r = 0, then r € ™ R, so we may assume
that » # 0. By part @, there is an integer m > 0 and a unit u € R such that
2™y =1 € I. Since u is a unit, we have 2™ = u~'2™u € I. The definition of n
then implies that m > n, and hence

n—m

r=a"u=2"(x"" "u) € "R

as desired.
The ring R is an integral domain by Theorem so part @ implies
that R is a principal ideal domain. O

Corollary X.3.7. Let (R,m) be a local ring. Then R is a principal ideal domain
that is not a field if and only if R is a reqular local ring of dimension 1.

PROOF. For the forward implication, assume that R is a regular local ring of
dimension 1. Since dim(R) = 1, we know that R is not a field. The fact that R is
a principal ideal domain follows from Theorem [X:3.6]

For the converse, assume that R is a principal ideal domain that is not a field.
Since R is a local integral domain, it at least two distinct prime ideals, namely
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0 € m. In particular, we have dim(R) > 1. Since R is a principal ideal domain, we
have m = xR for some non-zero element x € m. Thus, we have

1 < dim(R) < pr(m) = 1.
It follows that dim(R) = pr(m) = 1, so R is a regular local ring of dimension 1. O

Exercises.

Exercise X.3.8. Let (R, m) be a regular local ring, and let X7, ..., X,, be indepen-
dent variables. Show that the localized polynomial ring R[X1,..., Xu]m, x,,....x,)
and the power series ring R[X1,...,X,] are both regular local rings.

Exercise X.3.9. Find an example of a regular local ring that is not a principal
ideal domain.

X.4. Regularity and Flat Local Homomorphisms

Here we discuss relations between rings R and S that are connected by a flat
local ring homomorphism. We begin with the behavior of dimension.

Theorem X.4.1. If p: (R,m) — (S,n) is a local ring homomorphism between
commutative local noetherian rings, then

dim(S) < dim(R) + dim(S/mS).

PRrROOF. Set d = dim(R) and e = dim(S/mS). Let x = 21,...,24 € m be a
system of parameters for R, and let y = y1, ...,y € n be a sequence whose residues
in S/mS form a system of parameters for S/mS. Set I = (¢(x),y)S C n. To show
that dim(S) < d+e, it suffices to show that VT = n, that is, that there is an integer
i > 1 such that n* C I.

Since x is a system of parameters for R, there is an integer j > 1 such that
mJ C (x)R. Tt follows that (mS)7 C (x)S = (p(x))S. Since y forms a system of
parameters for S/mS, there is an integer ¢t > 1 such that n* C (y)S + mS. Hence,
we have
t

ntJ J

nt)’

(y)S 4+ mS)J

(¥)SY +[(y)SPH mS] + - - + [(v)S][mS} " + [mS)?
(¥)S + [mS)’
(¥)S + (p(x))S

I

as desired. O

N

(
(
[

N 1N

Theorem X.4.2. If p: (R,m) — (S,n) is a flat local ring homomorphism between
commutative local noetherian rings, then

PROOF. Set d = dim(R) and e = dim(S/mS). Because of Theorem it
suffices to prove that dim(S) > d + e. For this, it suffices to construct a chain of
prime ideals in S of length d + e.

Since dim(S/mS) = e, there is a chain of prime ideals

Py/mSC P /mSC---CP./mS
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in S/mS. It follows that the chain
PBCh G- CF

is a chain of prime ideals in S of length e such that P, D mS for ¢ =0,...,e. From
this, we conclude that

mC gfl(mS) - gfl(H) Cm.

The last containment follows from the fact that ¢~1(P;) is prime, which implies
that it is a proper ideal, that is, it is contained in the unique maximal ideal of R.
Since dim(R) = d, there is a chain of prime ideals

PoGP1L G- Gpa=m
. . _1 _ . . . .
in R. Since ¢~ (FPy) = m, Theorem [[I1.5.10| yields a chain of prime ideals

QoG S CQu=F

in S such that ¢=1(Q;) = p; for i = 0,...,d. Note that we have Q; C Qi1 for
each i because p; C p;11. It follows that the chain

QoSS CQ=PCPC---CF,
is a chain of prime ideals in S of length d + e, as desired. 0

Corollary X.4.3. Let (R,m) be a commutative local noetherian ring with comple-
tion R. There are equalities

dim(R[X1, ..., Xn](m,x1,....x,)) = dim(R) +n = dim(R[ X1, ..., X,])

dim(R) = dim(R).
PrOOF. Set S = R[X1,..., Xu](m x,,....x,)- The natural map R — S is flat

and local by Exercise and Example It is routine to show that

S/mS = (R/m)[X1,..., Xu](x,,....x,)-
This explains the second equality in the next sequence

dim(S) = dim(R) + dim(S/mS)

= dim(R) + dim((R/m)[X1,..., Xu](x,,....x.))

= dim(R) + n.
The first equality is from Theorem and the third one is from Example [X.1.4]

This explains the first of our desired equalities.
The other desired equalities follow similarly using the next isomorphisms

R[X1s. ., Xol /mR[X1, ., Xn] = (R/m)[ X1, Xo]
R/mR = R/m
from Proposition and Section O

Theorem X.4.4. Let ¢: (R,m) — (S,n) be a flat local ring homomorphism be-
tween commutative local noetherian rings.

(a) If S is regular, then R is reqular.
(b) If R and S/mS are both reqular, then S is regular.
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PROOF. (a) Assume that S is regular, and set d = dim(S). Theorem
implies that pdg(/N) < d for every S-module N. In particular, we have

fds(S/mS) < pds(S/mS) < d

by Lemma [VII.6.3] Theorem|VII.6.7/implies that Torgﬂ(—, S/mS) =0, so we have

the vanishing in the next sequence
0 = Tor,;(S/mS, S/mS) = Tory (S @r k,S @r k) = S @5 Tor (k, k).

The first isomorphism follows from Exercise @L using the definition &k = R/m.
The second isomorphism is due to Exercise |VI.2.14

Since S is faithfully flat over R by Proposition[[I1.5.8] we have Torff_&_1 (k,k)=0.
Theoremimplies that pdz(k) < d < 00, so we conclude from Theorem
that R is regular.

Assume that R and S/mS are both regular, and set a = dim(R) and

b = dim(S/mS). Theorem implies that dim(S) = a + b.

By definition, there are sequences y1,...,y, € n and z1,...,x, € m such that

n/mS = (y1,...,y)S/mS m=(x1,...,24)R.

These equalities imply (in succession) the first two equalities in the next sequence
n=(y1,...,9)S + mS
=W m)S + (e(x1), - (2a))S
= WY1y Ypy 0(T1)y -, 0(T40))S.

Thus, the maximal ideal of S can be generated by a sequence of length dim(.S). By
definition, this means that S is regular. O

The following example shows that, if S is regular in Theorem then S/mS
may not be regular.

Example X.4.5. Let k be a field, and set S = k[X]. The ring R = k[X?] is a
subring of S, and we let ¢: k[X] — k[X?] denote the natural inclusion.

We claim that ¢ is flat. It suffices to show that k[X] is free as a module over
E[X?]. Set

P={a;X +a3X®+asX° +--- € k[X]}.

It is straightforward to show that P is a k[X?]-submodule of k[ X]. In fact, the map
v: k[X?] — P given by f +— X f is a k[X?]-module isomorphism. Furthermore,
it is straightforward to show that every element of k[X] has the form f + g for
unique elements f € k[X?] and g € P. This explains the first isomorphism in the
following sequence

E[X] = k[X?] @ P = k[X?] @ k[ X?] = k[X?]?
This implies that k[X] is free as a module over k[X?].
Now, the ring k[X] is regular, but the ring S/mS = k[X]/(X?) is not regular,

by Example [X:2:3]
Corollary X.4.6. Let (R, m) be a commutative local noetherian ring. The following
conditions are equivalent:

(i) the ring R is regular;

(ii) the completion R is reqular;
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(i) the power series ring R[X1,...,X,] is regular for every (equivalently, for
some) integer n = 1; and
(iv) the localized polynomial ring R[X1,..., Xn](m, x;,...,x,,) 5 regular for every

(equivalently, for some) integer n > 1.
PROOF. Each of the natural maps
R — R[X1,. ., Xn](m X1, X0)
R — R[Xy,...,X,]
R— R
is flat and local. Furthermore, the following rings are regular:
R[X1, .., Xl (m, X, x) /MR[X 1 X xy o x) ZEX G X xx0)
R[X1, ..., Xp]/mR[X1, ..., Xn] 2 E[X1,..., X0]
R/mR = k.
From this, it is routine to show that the result follows from Theorem [X.4.4] O

Theorem X.4.7. If p: (R,m) — (S,n) is a flat local ring homomorphism between
commutative local noetherian rings, then S is Cohen-Macaulay if and only if R and
S/mS are both Cohen-Macaulay.

Proo¥F. Corollary and Theorem imply that
depth(S) = depth(R) + depth(S/mS)
dim(S) = dim(R) + dim(S/mS)
So the result follows easily from the definition of Cohen-Macaulayness. O

Corollary X.4.8. Let (R, m) be a commutative local noetherian ring. The following
conditions are equivalent:
(i) the ring R is Cohen-Macaulay;
(i) the completion R is Cohen-Macaulay;
(iii) the power series ring R[X1,...,X,] is Cohen-Macaulay for every (equiva-
lently, for some) integer n > 1; and
(iv) the localized polynomial ring R[X1, ..., Xu](m, x,,...,x,,) 5 Cohen-Macaulay for
every (equivalently, for some) integer n > 1.

PROOF. This follows from Theorem[X.4.7]as in the proof of Corollary[X.4.6] O
Exercises.

Exercise X.4.9. Complete the proof of Corollary

Exercise X.4.10. Complete the proof of Corollary

Exercise X.4.11. Complete the proof of Theorem [X4.7]

Exercise X.4.12. Complete the proof of Corollary
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