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PREFACE

This book is designed in the light of the new guidelines and syllabi —
2003 for the Higher Secondary Mathematics, prescribed for the Second Year,
by the Government of Tamil Nadu.

The 21% century is an era of Globalisation, and technology occupies the
prime position. In this context, writing a text book on Mathematics assumes
special significance because of its importance and relevance to Science and
Technology.

As such this book is written in tune with the existing international
standard and in order to achieve this, the team has exhaustively examined
internationally accepted text books which are at present followed in the reputed
institutions of academic excellence and hence can be relevant to secondary
level students in and around the country.

This text book is presented in two volumes to facilitate the students for
easy approach. Volume | consists of Applications of Matrices and
Determinants, Vector Algebra, Complex numbers and Analytical Geometry
which is dealt with a novel approach. Solving a system of linear equations and
the concept of skew lines are new ventures. Volume Il includes Differential
Calculus — Applications, Integral Calculus and its Applications, Differential
Equations, Discrete Mathematics (a new venture) and Probability Distributions.

The chapters dealt with provide a clear understanding, emphasizes an
investigative and exploratory approach to teaching and the students to explore
and understand for themselves the basic concepts introduced.

Wherever necessary theory is presented precisely in a style tailored to
act as a tool for teachers and students.

Applications play a central role and are woven into the development of
the subject matter. Practical problems are investigated to act as a catalyst to
motivate, to maintain interest and as a basis for developing definitions and

procedures.



The solved problems have been very carefully selected to bridge the gap
between the exposition in the chapter and the regular exercise set. By doing
these exercises and checking the complete solutions provided, students will be
able to test or check their comprehension of the material.

Fully in accordance with the current goals in teaching and learning
Mathematics, every section in the text book includes worked out and exercise
(assignment) problems that encourage geometrical visualisation, investigation,
critical thinking, assimilation, writing and verbalization.

We are fully convinced that the exercises give a chance for the students
to strengthen various concepts introduced and the theory explained enabling
them to think creatively, analyse effectively so that they can face any situation
with conviction and courage. In this respect the exercise problems are meant
only to students and we hope that this will be an effective tool to develop their
talents for greater achievements. Such an effort need to be appreciated by the
parents and the well-wishers for the larger interest of the students.

Learned suggestions and constructive criticisms for effective refinement

of the book will be appreciated.

K.SRINIVASAN
Chairperson
Writing Team.
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SYLLABUS

APPLICATIONS OF MATRICES AND DETERMINANTS : Adjoint, Inverse —
Properties, Computation of inverses, solution of system of linear equations by
matrix inversion method. Rank of a Matrix — Elementary transformation on a
matrix, consistency of a system of linear equations, Cramer's rule,
Non-homogeneous equations, homogeneous linear system, rank method.

(20 periods)

VECTOR ALGEBRA : Scalar Product — Angle between two vectors, properties
of scalar product, applications of dot products. Vector Product — Right handed
and left handed systems, properties of vector product, applications of cross
product. Product of three vectors — Scalar triple product, properties of scalar
triple product, vector triple product, vector product of four vectors, scalar product
of four vectors. Lines — Equation of a straight line passing through a given point
and parallel to a given vector, passing through two given points (derivations are
not required). angle between two lines. Skew lines — Shortest distance between
two lines, condition for two lines to intersect, point of intersection, collinearity of
three points. Planes — Equation of a plane (derivations are not required), passing
through a given point and perpendicular to a vector, given the distance from the
origin and unit normal, passing through a given point and parallel to two given
vectors, passing through two given points and parallel to a given vector, passing
through three given non-collinear points, passing through the line of intersection
of two given planes, the distance between a point and a plane, the plane which
contains two given lines, angle between two given planes, angle between a line
and a plane. Sphere — Equation of the sphere (derivations are not required)
whose centre and radius are given, equation of a sphere when the extremities of the
diameter are given. (28 periods)

COMPLEX NUMBERS : Complex number system, Conjugate — properties,
ordered pair representation. Modulus — properties, geometrical representation,
meaning, polar form, principal value, conjugate, sum, difference, product,
guotient, vector interpretation, solutions of polynomial equations, De Moivre’s
theorem and its applications. Roots of a complex number — nth roots, cube
roots, fourth roots. (20 periods)

ANALYTICAL GEOMETRY : Definition of a Conic — General equation of a
conic, classification with respect to the general equation of a conic, classification
of conics with respect to eccentricity. Parabola — Standard equation of a parabola
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(derivation and tracing the parabola are not required), other standard parabolas,
the process of shifting the origin, general form of the standard equation, some
practical problems. Ellipse — Standard equation of the ellipse (derivation and
tracing the ellipse are not required), x2/a2 + y2/b2 =1, (a > b), Other standard
form of the ellipse, general forms, some practical problems, Hyperbola -
standard equation (derivation and tracing the hyperbola are not required), x2/a2 -
y2/b2=1, Other form of the hyperbola, parametric form of conics, chords.
Tangents and Normals — Cartesian form and Parametric form, equation of
chord of contact of tangents from a point (xq, y1), Asymptotes, Rectangular
hyperbola — standard equation of a rectangular hyperbola.

(30 periods)
DIFFERENTIAL CALCULUS - APPLICATIONS | : Derivative as a rate
measure — rate of change — velocity — acceleration — related rates — Derivative as
a measure of slope — tangent, normal and angle between curves. Maxima and
Minima. Mean value theorem - Rolle’s Theorem — Lagrange Mean Value
Thorem — Taylor's and Maclaurin’s series, I' Hopital's Rule, stationary points —
increasing, decreasing, maxima, minima, concavity convexity, points of inflexion.

(28 periods)
DIFFERENTIAL CALCULUS — APPLICATIONS Il : Errors and approximations
— absolute, relative, percentage errors, curve tracing, partial derivatives — Euler’s
theorem. (10 periods)
INTEGRAL CALCULUS AND ITS APPLICATIONS : Properties of definite

integrals, reduction formulae for sin"x and cos"x (only results), Area, length,

volume and surface area (22 periods)
DIFFERENTIAL EQUATIONS : Formation of differential equations, order and
degree, solving differential equations (1% order) — variable separable

homogeneous, linear equations. Second order linear equations with constant co-
efficients f(x) = emx’ sin mx, cos mx, X, x2. (18 periods)
DISCRETE MATHEMATICS : Mathematical Logic — Logical statements,
connectives, truth tables, Tautologies.
GROUPS : Binary Operations — Semi groups — monoids, groups (Problems and
simple properties only), order of a group, order of an element. (18 periods)
PROBABILITY DISTRIBUTIONS : Random Variable, Probability density function,
distribution function, mathematical expectation, variance, Discrete Distributions —
Binomial, Poisson, Continuous Distribution — Normal distribution
(16 periods)
Total : 210 Periods
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1. APPLICATIONS OF MATRICES
AND DETERMINANTS

1.1. Introduction :

The students are aready familiar with the basic definitions, the elementary
operations and some basic properties of matrices. The concept of division is not
defined for matrices. In its place and to serve similar purposes, the notion of the
inverse of a matrix isintroduced. In this section, we are going to study about the
inverse of a matrix. To define the inverse of a matrix, we need the concept of
adjoint of a matrix.

1.2 Adjoint :
Let A = [&;] be a square matrix of order n. Let A;; be the cofactor of a;.

Then the nth order matrix [Aij]T is called the adjoint of A. It is denoted by adjA.
Thus the adjA is nothing but the transpose of the cofactor matrix [A j] of A.
Result : If Aisasquare matrix of order n, then A (adjA) = [ A |1, = (adj A) A,
where |, is the identity matrix of order n.

Proof : Let us prove this result for a square matrix A of order 3.

(a1 a;p A3

LetA=| @1 ax»n a3

[ 831 a3 a33

[A11 A1 Agp

Thenadj A =| A Axn Az

The (i, j)™ o
eIementofA(e(‘djj?g‘)}:ailAjl"'ai2Aj2+ai3Aj3:A:|A||f|:J

=0 ifi#]
|[A] O O 100
~A@jA) = 0 [A] O |=|A||0 1 0|=]|A]l;
0 0 |A| 001
Similarly we can prove that (adj A)A=|A| I3



A A)=|Allz=(ad] A) A
In general we can provethat A (adj A) = | A|l, = (adj A) A.
ab
Example 1.1 : Find the adjoint of the matrix A = [c d}

Solution: The cofactor of a is d, the cofactor of b is— c, the cofactor of cis— b
and the cofactor of d is a. The matrix formed by the cofactors taken in order is
the cofactor matrix of A.

d -c
.. The cofactor matrix of Ais = .
l-b a
Taking transpose of the cofactor matrix, we get the adjoint of A.
o [d -Db]
.. Theadjoint of A =
l-c a
1 1 1
Example 1.2 : Find the adjoint of thematrix A=| 1 2 -3
2 -1 3
Solution: The cofactors are given by
2 -3
Cofactorof 1 = Aqq = =
-1 3
1 -3
COfBCtOF Of 1= A12 = - = -
2 3
1 2
Cofactorof 1 = A3 = =-5
2 -1
11
Cofactorof 1 = Ay = — =-4
-13
S
t = = =
ofactor 0 2= |5 4
-
Cofactor of —3 = A,y = — =3
23 5 _1
1 1
Cofactor of 2 = Agy = =-5
2 -3



1 1
Az = -

Cofactor of —1 = ):4
1 -3
11
Cofactorof?;:Aggz‘1 2‘:1
3 -9 -5]
The Cofactor matrix of Ais [A;] =| -4 1 3
-5 4 1.
3 -4 -5]
cadiA = (A)T=[-9 1 4
-5 3 1.
-1 2]
Example 1.3 : IfA:[ 1 , verify theresult A (adj A) = (adj A) A= A[l,
_ -1 2] ‘—1 2)
Solution: A= , A= =2
L1 -4 1 -4
4 o]
adj A =
-1 -1}
_ -1 21[-4 -2] [2 0 10
ARA =] —4_[—1 -J:[o 2}:2[0 1}2'2 - (@)
) -4 -2][-1 2 20 10
(adJA)Az__l _1[1 _4}=[0 2}=2[0 1]=2I2 ... (2
From (1) and (2) we get
S A(d A) = (adf A) A=A L.
11 1
Examplel.4:1f A=[1 2 -3 verifyA(adjA) =(adj A A=|A]|l3
2 -1 3
Solution: In example 1.2, we have found
3 -4 -5
adjA=|-9 1 4
-5 3 1



11 1
|IAl= |1 2 -3|=16-3)-1(3+6)+1(-1-4)=-11
2 -1 3
11 1773 -4 -5 -1 0 O
A@dA)=[1 2 -3||-9 1 4 =l 0 -11 O
2 -1 31L-5 3 1 0 0 -11
100
=-11|0 1 0|=-1113=|A]|l5 (1)
001
3 -4 -5|T1 1 1 -11 0 0
adAA=[-9 1 4 1 2 -3|=f 0 -11 O
-5 3 1JL2 -1 3 0 0 -11
100
=-11|0 1 0| =-1113=|A]|l5 (2
001

From (1) and (2) we get
Aladi A) = (adj A) A=|A]l3
13Inverse:
Let A be a square matrix of order n. Then a matrix B, if it exists, such that
AB = BA = |,,is called inverse of the matrix A. In this case, we say that A is an
invertible matrix. If amatrix A possesses an inverse, then it must be unique. To
see this, assume that B and C are two inverses of A, then

AB =BA = I, (D)
AC=CA = I, .. (2
Now AB = |,
= C(AB) = Cl,, = (CAB =C (" associative property)
= I.B=C= B=C

i.e, The inverse of a matrix is unique. Next, let us find a formula for
computing the inverse of a matrix.

We have aready seen that, if A isasguare matrix of order n, then
Aladj A) = (adj AA=| A,



If we assume that A isnon-singular, then | A | = 0.
Dividing the above equation by | A |, we get
S } _ {A - } _
A{lAl(adJA) = |A|(adJA) A=,

From this equation it is clear that the inverse of A is nothing but
|T1| (adj A). We denote this by A%,

Thus we have the following formula for computing the inverse of a matrix
through its adjoint.

If A is a non-singular matrix, there exists an inverse which is given by

o I S

A= TA] (adj A).

1.3.1 Properties:
1. Reversal Law for Inverses:

If A, B are any two non-singular matrices of the same order, then AB isaso
non-singular and

ABt=p1ta"l
i.e., the inverse of a product is the product of the inverses taken in the
reverse order.
Proof : Since Aand B arenon-singular, |A|=0and |B|=0.
Weknow that | AB|=|A| |B|
|A[#0, |[B|]#0 = |A||B|#0 = |AB|#0
Hence AB isaso non-singular. So AB isinvertible.
AB) B~1a ) = AB HA
=AIAl=pA 1=
Similarly we can show that (B™*A™Y) (AB) = |
- (AB)(B7tA Y = (B71A Y (AB) =1
- Bt Alistheinverse of AB.
. (AR l=ptal
2. Reversal Law for Transposes (without proof) :
If A and B are matrices conformable to multiplication, then (AB)T =B'A".



i.e., the transpose of the product is the product of the transposes taken in
the reverse order.

1
3. For any non-singular matrix A, (A1) = (A"}
Proof : Weknow that AA1=1 = A1A

T
Taking transpose on both sides of AA L= wehave (AA’l) =7
By reversal law for transposes we get

T
A AT = .. (D)
Similarly, by taking transposes on both sides of AlA=1, wehave
T
ATAY =1 -2

From (1) & (2)
T T
AYH AT=AT(A Y =)

~1 T . T

(A istheinverse of A
-1 T
e, (A =D
1.3.2 Computation of Inverses

The following examples illustrate the method of computing the inverses of
the given matrices.
Example 1.5 : Find the inverses of the following matrices:

) 3 1 -1
_{—1 2} __{2 —} ___|:COSOL Slnoc} N
i ii iii iv -
()1— ()—42()—sinoccos(x()
1 2 -1
Solution:
. -1 2 - 2
(i) LetA= , Then|A|= =2=0
1 -4 1 -4
Aisanon-singular matrix. Hence it is invertible. The matrix formed by the
cofactorsis
2l
Al=| , 4
adj A= ]T—[_L‘ _2}
| A=Al = _1 -1



A—l_i(aj'A)_;[_él _2:|_ -2

TTATEA =2 4] T
2
2 - 2 -1

(i) LetA= . then|A|= =
4 2 —4 2

Aissingular. Hence AL does not exist.

[ cosa sina
(iii) Let A= . . Then|A|=
[—sina cosa

cosa  Snao

—sina cosa
= cos?o + SN =1#0
.. Alisnon singular and henceit isinvertible

) cosa —Sina
AdA=| .
sino.  cosa
41 . 1/ cosa —sina cosa —Sna
A =T(AdJA)=1 . = .
|A] Sno cosa Sno cosa
31 -1 31 -1
(iv) LeeA=[2 -2 O |. Then|A|=]|2 -2 0| =2=0
1 2 -1 1 2 -1
Aisnon-singular and hence A~ Lexists
-2 0
Cofactor of 3 = Aqq = =
2 -1
2 0
Cofactorof 1 = Ajp = — =2
1 -1
2 -2
Cofactor of -1 = A3 = =
1 2
1 -1
Cofactor of 2 = Ay = — =-1
2 -1
Cofactor of — 2 ‘3 _1‘
ofactor of -2 = = = _
2= 4
31
Cofactorof 0 = Agg 127 5



1 -1

Cofactorof 1 = Agy = ‘ ) =-2
-2 0
3 -1
Cofactoron:Agz——¢ )
1
Cofactor of — 1 = A33— 2 =-8
2 2 2—1 -2
[A=|-1-2 -5|;adjA=]|2 -2 -2
-2 -2 -8 6 -5 -8
2 -1 -2
o SRR
A —|A|(adJA)_2 2 -2 -2
6 -5 -8
1
1-5-1
=11-1-1
5
3 -5 -4

12 0 -1 _ 1]
Example1.6: If A= 11 and B = 1 2 verify that (AB) " =B~ A .

Solution:
|Al]=-120and|B|=1=0
So A and B areinvertible.

o=l s 2]

2

|AB| = ‘1 1‘ =—1+0.So ABisinvertible.
1 -2

adj A=
-1 1

-1 2
o N S
AT Tag (BdA _[1 —J



2 1
adj B =
-1 0

2 1
a1
B =18] (adJB)_[—l o}
1 _
a7
~1 2

-1 3
(AB)_1=|A—1B|(adeB)=[1 _2} ..

B‘lA‘l—[z 1H—1 2}_{—1 3} ,
l-10l1 -1 L1 -2 - (2)

From (1) and (2) we have (AB)‘1 =B 1Al

EXERCISE 1.1
(1) Find the adjoint of the following matrices :
123 253
. 3 _1 - e
® > 2 (ii)]0 5 O @iiy|3 1 2
- 2 4 3 121
(1 2
(2) Find the adjoint of the matrix A= 3 _5 and verify the result
Aadi A) = (adj AA=|A]. 1
[3 -3 4
(3) Find the adjoint of thematrix A=| 2 —3 4 |and verify the result
L0 -1 1

Aadi A) = (adj AA=|A]. 1
(4) Find theinverse of each of the following matrices:

10 3 13 7] 1 2 -2
M2 1 -1 (i)|4 2 3 (i)l -1 3 0
1-11 (12 1] 0 -2 1
8 -1 -3 2 2 1]
(v)| -5 1 2 w[131
10 -1 -4 1 2 2




5 IfA [5 2} d B {2 } ify that
= an = verl
©®) 3 1 1 y

7 _
M @B t=B1At  (i)AB)=B'AT
3-34
(6) Findtheinverseof thematrix A=| 2 -3 4 andverifythatA3’=A_1
0-11
—1 -2 -2
(7) Show that theadjointof A=| 2 1 -2 |is3Al.
L2 -2 1
—4 -3 -3
(8) Show that theadjointof A=| 1 0 1 |isAitsdf.
L4 4 3
2 21
9 IfA:% -2 1 2| provethat At=AT
1 -2 2
-1 2 -2
(10) ForA=| 4 -3 4 |showthaa A=A
4 -4 5

1.3.3 Solution of a system of linear equations by Matrix
Inversion method :

Consider a system of n linear non-homogeneous equations in n unknowns

a1 X1 + aqo Xo F o + Aqn Xn = bl
ay1 X1 + gy Xo F o + dop Xp = b2
an1X1+ an2X2+ ............... +anan— bn

10



a1 a;p ... A | X7 [ b7
a21 322 a2n XZ bz
Thisis of theform .o l=
[ an; an, ... apd LXd L by
Thus we get the matrix equation AX=B ... (1) where
_all 3.12 aln_ _Xl_ _bl_
3.21 322 aZn X2 bz
A= L X= B=
L 3y 8n2 - Ann L Xn L B

If the coefficients matrix A is non-singular, then AL exists. Pre-mullti ply
both sides of (1) by A% we get

A1) = AB
(A tAx =A1B
IX =A'B

X = A"1B is the solution of (D)

Thus to determine the solution vector X we must compute AL Note that
this solution is unique.

Example 1.7 : Solve by matrix inversion method x+y =3, 2x+ 3y =8
Solution:

The given system of equations can be written in the form of
1 1][x 3
[2 3} [y}:[zj
AX=B
11
Here |A|=’2 3’=1¢0

11



Since A is non-singular, A lexists.

Al=

-0
5k

Example 1.8 : Solve by matrix inversion method 2x -y + 3z=9, x+y+z=6,
X—y+z=2

Solution : The matrix equation is

The solutionis X = A 1B

2 -1 37[x 9
11 1(|yl=|6®6
1 -1 1dlz L2
2 -1 3] 9
AX=B,whee A=|1 1 1| X=|y|andB=| 6
1 -1 1l z 2
2 -1 3
IAl= |1 1 1| =-2z0
1-11

Alisanon-singular matrix and hence Al exists.
The cofactorsare Aj; =2, Ajp =0, Aj3=-2

A1==2 Ap=-1 Ap=1 Ay =-4Ap=+1 Ag=3
The matrix formed by the cofactorsis

2 0 -2
(Al =] -2 -1 1
-4 1 3

12



2 -2 -4
Theadjointof A= 0 -1 1 |=adjA

-2 1 3
InverseofAle}l(ade)
2 -2 —4]
At=_210o -1 1
=-5 -
| -2 1 3.

The solutionisgivenby X = AlB
2 -2 4779

X
y:-% 0 -1 1
z

-2 1 3.
[ -2 1
1
=-5| -4 |= 2
| -6 3
LXx=1,y=2,2=3
EXERCISE 1.2

Solve by matrix inversion method each of the following system of linear
equations:

(1) 2x-y=1, X-2y=11

(2) 7x+3y=-1, 2x+y=0

(3) x+y+z=9, 2Xx+5y+7z=52, 2x+y-2z=0
(4 2x-y+z=1, 3X+y-5z2=13, x+y+z=5

(5) x—-3y—-8z+10=0, 3x+y=4, 2x+5y+6z=13

1.4 Rank of aMatrix :

With each matrix, we can associate a non-negative integer, called its rank.
The concept of rank plays an important role in solving a system of
homogeneous and non-homogeneous equations.

To define rank, we require the notions of submatrix and minor of a matrix.
A matrix obtained by leaving some rows and columns from the matrix A is
called a submatrix of A. In particular A itself is a submatrix of A, becauseit is
obtained from A by leaving no rows or columns. The determinant of any square
submatrix of the given matrix A is called a minor of A. If the square submatrix
is of order r, then the minor is also said to be of order r.

13



Definition :

The matrix A is said to be of rank r, if

(i) Ahasatleast one minor of order r which does not vanish.

(ii) Every minor of A of order (r + 1) and higher order vanishes.

In other words, the rank of a matrix is the order of any highest order non
vanishing minor of the matrix.

The rank of A is denoted by the symbol p(A). The rank of a null matrix is
defined to be zero.

The rank of the unit matrix of order nisn. The rank of an m x n matrix A
cannot exceed the minimum of mand n. i.e., p(A) <min{m, n}.

7 -1
Example 1.9 : Find the rank of the matrix [2 1 }

7
Solution : LetAz[2 1 } . Thisis asecond order matrix.

.. The highest order of minor of Aisaso 2.

L 7 -1
The minor is given by ‘2

=9=0
.. The highest order of non-vanishing minor of Ais2. Hence p(A) = 2.

2 -
Example 1.10 : Find the rank of the matrix [ 1 2 }

2 _
Solution : LetA=[ }
-1 2

2
The highest order minor of A is given by ‘ 1 ‘ = 0. Since the second

order minor vanishes p(A) # 2. We have to try for atleast one non-zero first
order minor, i.e., atleast one non-zero element of A. This is possible because A

has non-zero elements .. p(A) = 1.

1 -2 3
Example 1.11 : Find therank of thematrix | -2 4 -6
5 1 -1
1 -2 3
Solution: LetA=| -2 4 -6
5 1 -1
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The highest order minor of Ais

1 -2 3 1 -2 3
-2 4 -6 =-21]1-2 3]=0
5 1 -1 5 1 -1
Since the third order minor vanishes, p(A) = 3
-2 4
=-22+0
5 1
. Ahas atleast one non-zero minor of order 2. ... p(A) =2
1 1 1 3
Example 1.12 : Find therank of thematrix [ 2 -1 3 4
5 -17 11
1 1 1 3
Solution: LetA=|2 -1 3 4
5 -17 11

Thisisamatrix of order 3x 4
.. A'has minors of highest order 3. They are given by

11 1 11 3
2 -13l=0:1(2-14]|=0;:
5-17 5 -1 11
11 3 1 1 3
23 4|=0:]|-13 4| =0
57 11 171

All the third order minorsvanish. .. p(A) =3

Next, we have to try for atleast one non-zero minor of order 2. This is

11
1 =-3#0 .. pA)=2

possible, because A hasa 2" order minor

Note: In the above examples, we have seen that the determination of the rank
of a matrix involves the computation of determinants. The computation of
determinants may be greatly reduced by means of certain elementary
transformations of its rows and columns. These transformations will greatly
facilitate our dealings with the problem of the determination of the rank and
other alied problems.
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1.4.1. Elementary transformations on a Matrix:
(i) Interchange of any two rows (or columns)

(ii) Multiplication of each element of a row (or column) by any non-zero
scalar.

(iii) Addition to the elements of any row (or column) the same scalar
multiples of corresponding elements of any other row (or column)

the above elementary transformations taken inorder can be represented by
means of symbols asfollows:

0 RoR (Co0); (i) R > kR (G > kC))

(i) R>R+kR (C — G +kC)

Two matrices A and B of the same order are said to be equivaent if one
can be obtained from the other by the applications of a finite sequence of
elementary transformation “The matrix A is equivaent to the matrix B” is
symbolicaly denoted by A ~ B.

Result (without proof) :
“Equivalent matrices have the same rank”
Echelon form of amatrix :
A matrix A (of order m x n) is said to bein echelon form (triangular form) if

(i) Every row of A which has al its entries O occurs below every row
which has anon-zero entry.

(ii) Thefirst non-zero entry in each non-zero row is 1.
(iii) The number of zeros before the first non-zero element in arow isless
than the number of such zeros in the next row.
By elementary operations one can easily bring the given matrix to the
echelon form.
Result (without proof) :
The rank of a matrix in echelon form is equal to the number of non-zero
rows of the matrix.
Note:
(1) The above result will not be affected even if condition (ii) given in the
echelon form is omitted. (i.e.) the result holds even if the non-zero
entry in each non-zero row is other than 1.
(2) The main advantage of echelon form is that the rank of the given
matrix can be found easily. In this method we don’t have to compute
determinants. It is enough, if we find the number of non-zero rows.

16



In the following examples we illustrate the method of finding the rank of
matrices by reducing them to the echelon form.

1 1 -1
Example 1.13: Find therank of thematrix | 2 —=3 4
3 -2 3
1 1 -1
Solution: LetA=| 2 -3 4
3 -2 3
Ll e SR -
~|0 -3 Ri—)Rz—BRll
0 -5 6
1 1 -1
~ [0 -5 6 RRo>R3-R,
0 0 O

The last equivalent matrix is in echelon form. The number of non-zero
rowsis2. .. p(A)=2

123 -1
Example 1.14 : Find the rank of thematrix [ 2 4 6 -2
369 -3

123 -1

Solution: LetA=|2 4 6 -2

369 -3
123_1R2—>R2—2R1
~ 0000 R; > Ry - 3R,

000 O

This equivalent matrix is in the echelon form. Since the number of

non-zero rows of the matrix in this echelon formis 1, p(A) = 1.
4213

Example 1.15 : Find the rank of thematrix |6 3 4 7
2101
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4
Solution : Let A=| 6
2

1
O O RO B F . w N
N OO N W
Ap N oW

NPk W NO AR

T
O O PO O Bk

1
B NR R NR
N RN NN

00
The last equivalent matrix

T

The number of non-zero rowsin this matrix istwo. ..

Cl(—) C3

3

-5 -10 -5 R2_>R2_4Rl

1

ooll\)

1
Rz—)—g Rz

e

R3—) R3—R2

0]
isin the echelon form.

3 1 -5-1

Example 1.16 : Find therank of thematrix | 1 -2 1 -5

1 5 -7 2

3 1 -5-1 1 -2 1 -5

Solution: LetA=|1 -2 1

5| ~|3 1 -5 -1|R

1 5 -7 2 15 -7 2

1 -2
~|0 7
o 7
1-2
~ |0 7

0 0
The last equivalent matrix
It has three non-zero rows.

1 -5

-8 14

-8 7

1 -5

-8 14 IRg>R3 - Ry
0 -7

isin the echelon form.
S p(A)=3

R2 —> RZ —3R1
R3 - R3 - Rl

18
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EXERCISE 1.3
Find the rank of the following matrices :

101 -1 6 12 6 31 2 0
@|3-2 3 @1 21 @l10-10
(2 -3 4 4 8 4 21 3 0
0 1 2 1 12-1 3 1 -2 3 4
@l|2-30 -1{(|24 1 -2| (@®|-2 4 -1-3
11 -1 0 36 3 -7 -1 2 7 6

1.5 Consistency of a system of linear equations:

The system of linear equations arises naturally in many areas of Science,
Engineering, Economics and Commerce. The analysis of electronic circuits,
determination of the output of a chemical plant, finding the cost of chemical
reaction are some of the problems which depend on the solutions of
simultaneous linear equations. So, finding methods of solving such equations
acquire considerable importance. In this connection methods using matrices and
determinants play an important role.

We have aready seen the idea of solving a system of linear equations by
the matrix inversion method. This method is applicable provided the number of
equations is equal to the number of unknowns, and the coefficient matrix is
non-singular. Also the solution obtained under this method is unique. But thisis
not so in al cases. For many of the problems the number of equations need not
be equal to the number of unknowns. In such cases, we see that any one of the
following three possibilities can occur. The system has (1) unique solution (2)
more than one solution (3) no solution at all.

Cases (1) and (3) have no significant role to play in higher studies.
Although there exist many solutions, in some cases all the points in the solution
are not attractive. Some provide greater significance than others. We have to
select the best point among them. In this section we are going to discuss the
following two methods.

(1) Cramer’ s rule method (or Determinant method)
(2) Rank method

These methods not only decide the existence of a solution but also help us
to find the solution (if it exists) of the given system.
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1.5.1 The Geometry of Solution sets:

The solution set of a system of linear equations is the intersection of the
solution sets of the individual equations. That is, any solution of a system must
be a solution of each of the equationsin that system.

The equation ax = b (a # 0) has only one solution, namely x = b/a and it
represents a point on the line. Similarly, a single linear equation in two
unknowns has a line in the plane as its solution set and a single linear equation
in three unknowns has a plane in space as its solution set.

[Hllustration | : (No. of unknowns > No. of equations)

Consider the solution of the following three different problems.

(i)2x=10 (ii)2x+y=10 (iii)2x+y-z=10
Solution (i) 2x=10 = x=5
Solution (ii) 2x+y =10

We have to determine the values
of two unknown from a single
equation. To find the solution we can
assign arbitrary value to x and solve
fory, or, choose an arbitrary valueto y
and solve for x.

Suppose we assign X an arbitrary
value k, we obtain

x=kandy=(10- 2Kk)

These formulae give the solution set
interms of the parameter ‘K . Particular
numerical solution can be obtained by
substituting values for ‘K. For

Fig. 1.1

examplewhen k=1, 2, 5, — 3, % we

get (4, 8), (2 6), (5 0), (-3, 16)
1 . .

and (E’ 9) as the respective solutions.

Solution (jii) 2x +y — z= 10 Fig.1.3

In this case, we have to determine three unknowns x, y and z from a single
equation. We can assign arbitrary values to any two variables and solve for the
third variable. We assign arbitrary values ‘s’ and ‘t’ to x and y respectively, and
solvefor z

Wegetx=s,y=tand z=2s+t - 10isthe solution set.

For different values of sand t we get different solutions.
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1.5.2 Cramer’sRule Method : (Deter minant M ethod)

Gabriel Cramer (1704 — 1752), a Swiss mathematician wrote on
philosophy of law and government, and history of mathematics. He served in a
public office, participated in artillery and fortifications activity for the
government instructed workers on techniques of cathedral repair and undertook
excavations of cathedral archives. Cramer, a bachelor, received numerous
honours for his achievements.

His theorem provides a useful formula for the solution of certain linear
system of n equations in n unknowns. This formula, known as Cramer’s Rule, is
of marginal interest for computational purposes, but it is useful for studying the
mathematical properties of a solution without actually solving the system.

Theorem 1.1 (without proof) : Cramer’s Rule : If AX = B is a system of
n linear equations in n unknowns such that det(A) = 0, then the system has a
unique solution. Thissolutionis

det (Aq) det (Ay) det (Ay)
X1=7detA * 2T det (A - *nT det (A)
Where A is the matrix obtained by replacing the entries in the jth column
by
by

of A by the entriesin the matrix. B =
bn
Cramer’s Rulefor Non homogeneous equations of 2 unknowns:

Let us start with the system of two linear equations in two unknowns
‘X and'y'.

a X +agy = by 0
Ay X+ agy = b2 ... (i)
a1 a1
Let A=
A axp
a1 app a11X agp
XA =X =
a1 axp X ax»

bi—apy ap

by —axy ax

(by equation (i) and (ii))
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by app ajp ap o s of determinants)
= —y y properties of determinants
by ap ayp axp
by app _ _
= —vy.0 (by properties of determinants)
by ap
A b; ap, A ()
X.A= = A, (say
by ap X
o ay; by
Similarly Y. A= 2 by = Ay (say)

Ay, Ay are the determinants which can also be obtained by replacing 1% and
2" column respectively by the column of constants containing b, and b, i.e. by

by Ay
b Thus, we have, XA = Ay, = X= A

A
YA=A, = y= A provided A = 0
Since A, A,, Ay are unique, there exists a unique solution for the above

system of equations. i.e., the system is consistent and has a unique solution.

The method stated above to solve the system of equation is known as
Cramer’sRule.

Cramer’sruleis applicable when A = 0.
If A =0, then the given system may be consistent or inconsistent.

Case1:If A=0and A, =0, Ay = 0 and atleast one of the coefficients
a1, aqp, Ay, 8y IS NON-z€ro, then the system is consistent and has infinitely
many solutions.

Case 2 : If A =0 and atleast one of the values A,, Ay is non-zero, then the
systemisinconsistent i.e. it has no solution.

To illustrate the possibilities that can occur in solving systems of linear
equations with two unknowns, consider the following three examples. Solve:

(1) x+2y=3 (20 x+2y=3 (3) x+2y=3
X+y=2 2X+4y=6 2Xx+4y=8
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Solution (1) : Unique solution

Weh L2 1 Y
A= = —
e have 11 \
32
A)( = =-1 \
21
13 9 X
A = = — 1 \\x‘zva
y l 2 X+Y=2
Fig. 1.4
Since A = 0, the system has unique solution. By Cramer’s rule
Ay Ay
X_A _11 y_A =1 (va)_(lvl)
Solution (2) : Infinitely many solution
12 v
Weh A= =0
e have 2 4
32 0
AX = =
6 4 © X
13 o~
Ay - 2 6 - K+4v=6

Fig. 1.5
Since A = 0and A, =0, A, = 0 and atleast one of a;1, a5, 81, &y, iSNON Z€ro,
it has infinitely (case 1) many solutions. The above system is reduced to a
single equation x + 2y = 3. To solve this equation, assign y = k
SoX=3-2y=3-2k
Thesolutionisx=3-2k,y=k ; keR
For different value of k we get different solution. In particular (1, 1), (- 1, 2),
(5-1) and (8, — 2.5) are some solutionsfor k=1, 2, — 1 and — 2.5 respectively
Solution (3) : No Solution
1 2‘ L v
2 4] T 0 g
32 13
8 4"‘4’Ay‘ 2 8‘_2 \k
Since A = 0 and Ay # 0, Ay # 0 3 ~
(case 2 : atleast one of the value of X+2/=3
Ay Ay, non-zero), the system is _
inconsistent. Fig. 1.6
i.e. it has no solution.

a=|

A |
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1.5.3 Non homogeneous equations of three unknowns:
Consider the system of linear equations
ap1X+ a9y + a3z = by ; @y X + Ay + 83z = by ; @z X + agyy + agaz = ba

Let usdefine A, Ay, Ay and A, as already defined for two unknowns.

a1 app a3 by a;p a3
A= |81 8»p 3|, A= |by ap ax
ag] azp ag3 by az ags
a1 by a3 a1 app by
Ay= |31 P2 am| ., A= |32 32 b
ag; by ags ag; agp b3

As we discussed earlier for two variables, we give the following rule for
testing the consistency of the above system.

Casel: If A =0, then the system is consistent, and has a unique solution. Using
Cramer’s Rule can solve this system.

Case2: If A =0, we have three important possibilities.

Subcase 2(a) : If A =0 and atleast one of the values of A, Ay and A, is
non-zero, then the system has no solution i.e. Equations are inconsistent.

Subcase 2(b) : If A =0and A, = Ay = A, = 0 and atleast one of the 2 x 2
minor of A is non zero, then the system is consistent and has infinitely many
solution. In this case, the system of three equations is reduced to two equations.
It can be solved by taking two suitable equations and assigning an arbitrary
value to one of the three unknowns and then solve for the other two unknowns.

Subcase 2(c) : If A=0and Ay = Ay=4A,=0 and all their (2 x 2) minors
are zero but atleast one of the elements of A is non zero (= 0) then the system

is consistent and it has infinitely many solution. In this case, system is reduced
to a single eguation. To solve we can assign arbitrary values to any two
variables and can determine the value of third variable.

Subcase 2(d) : If A=0, Ay =Ay=A,=0,al 2x2minors of A=0and
atleast one 2 x 2 minor of A, or Ay or A, is non zero then the system is
inconsistent.
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Theorem 1.2 (without proof) :

If a non-homogeneous system of linear equations with more number of
unknowns than the number of eguations is consistent, then it has infinitely
many solutions.

To illustrate the different possibilities when we solve the above type of
system of equations, consider the following examples.

(D2x+y+z=5 (2)x+2y+32=6
X+y+z=4 X+y+z=3
X—y+2z=1 2X+3y+4z=9

(x+2y+3z=6 (x+2y+3z=6
2X+4y+6z=12 X+y+z=3
3x+6y+9z=18 2x+3y+4z=10

(B5)x+2y+3z=6
2X+4y+6z2=12
3X+6y+9z=24
Solution (1) :
2X+y+z=5; x+y+z=4; x-y+2z=1

We have
2 1 1
A=1(1 1 1| =3
1 -12
5 1 1
A= 4 1 1| =3
1 -12
251 2
Ay: 141 =6 ; A, = 1
112 1

A=3,A=3A,=6,A,=3
A =0, The system has unique solution. By Cramer’srule.

Ay 3 Ay 6 Az
.. Thesolutionisx=1, y=2, z=1
xv.2=(01,21)
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Solution (2) :
X+2y+3z=6; XxX+y+z=3; 2x+3y+4z=9

123 6 2 3
A=1111 =0 ; sz 311 =0
2 34 9 314
163 126
Ay: 131 =0 ; A, = 113 =0
2914 239

Since A =0 and Ay = Ay, = A, = 0 but atleast one of the 2 x 2 minors of A is

non-zero ( ‘ i i # 0), the system is consistent (by case 2(b)) and has
infinitely many solution.

The system is reduced to 2 equations. .. Assigning an arbitrary value to

one of unknowns, say z =k, and taking first two equations.
Weget x+2y+3k =16
Xx+y+k=3
i.e, X+2y=6-3k
X+y=3-Kk

I nfinitely many solution

The solution is x=ky=3-2kandz=k
i.e xv,2 =(k3-2kK. keR
Particularly, for k=1, 2, 3, 4 we get
(1,1,12),(2,-1,2),(3,—-3,3), (4,-5, 4) respectively as solution.
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Solution (3) :
X+2y+3z2=6; 2X+4y+6z=12 ; 3x+6y+9z=18

123 6 2 3
A=12 4 6| =0 : AX: 12 4 6| =0
3609 18 6 9
1 6 3 126
Ay: 2 12 6| =0 ; AZ: 2 4 12| =0
3 18 9 3 6 18

HereA=0and A, = A, =A,=0.

Also all their 2 x 2 minors are zero, but atleast one of aij of A is non- zero.

. It has infinitely many solution (by Infinitely many solution
case 2(c)). The system given above is
reduced to one equationi.e. X + 2y + 3z=6

Assigning arbitrary values to two of the
three unknownssay y=s, z=t

Wegetx=6-2y—-3z = 6-2s— 3t

.. Thesolutionisx=6-2s-3t, y=s, z=t
iee Xy,2=(6-2s-3st) steR

For different value s, t we get different solution.

Solution (4) :
X+2y+3z2=6; x+y+z=3; 2X+3y+4z=10

123 No Solution

A=111 1| =0 ]
2 314
6 2 3

Ay = 311 =-1
10 3 4

Fig. 1.10
Since A =0, Ay # O (atleast one of the values of A,, Ay, A, non-zero) The
system isinconsistent (by case 2(a)).

.. It has no solution.
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Solution (5) :
X+2y+32=6 ; 2X+4y+6z=12 ; 3x+6y+9z=24

123 6 2 3
A=1|2 4 6| =0 ; A=112 4 6] =0
3609 24 6 9
1 6 3 12 6
Ay: 2 12 6| =0 ; Azz 2 4 12| =0
3249 36 24
HereA=0and Ay = Ay =A,=0.
All the 2 x 2 minors of A are No solution

zero, but we see that atleast one of
the 2 x 2 minors of A, or Ay or A, is

non zero. i.e.

U;ﬁ g #0 minorof3inAXj %//%

. by case 2(d), the system is
inconsistent and it has no solution. Fig. 1.11

Example 1.17 : Solve the following system of linear equations by determinant
method.

1) X+y=3, (2) 2x+3y=8, (3) x-y=2,
2X+3y=7 4x + 6y =16 3y=3x-7
SOlUtion(l):X+y:3; 2X+3y:7
11
A=1, 3‘:3—221,; -+ A#0 It has unique solution
‘31‘972 ‘13‘761
M=y g TITTE2 AT, 4 T
A=1 A =2 Ay=l

.. By Cramer’srule
Ay 2 Ay
X = AC 1—2 ;Y = A

solutionis(x,y) =(2, 1)



Solution (2) : 2x+3y=8; 4x+6y=16

‘ 12-12=0
A= -12_12=
‘ 48-48=0
Ay = =48 -48=
2 8‘
Ay = =32_-32=0

Since A =0, and A, = Ay = 0 and atleast one of the coefficients a; of A=0,
the system is consistent and has infinitely many solutions.
All 2 x 2 minor are zero and atleast (1 x 1) minor is non zero. The system

is reduced to a single equation. We assign arbitrary value to x (or y) and solve
fory (or x).

Suppose we assign x = t, from equation (1)
Wegety=%(8— 2t).

.. The solution set is xy) = (t, %} teR

In particular xy)=(@1,2 fort=1
xy) =(-24 fort=-2

_(_1 _ 1
Solution (3): x—y=2;3y=3x-7

1 -1
A= :O,
3 -3
‘2 -1
A, = —
X 7 _3 =1

Since A = 0 and A, = O (atleast one of the values A, or A = 0)

the system isinconsistent. .. It has no solution.

Example 1.18 : Solve the following non-homogeneous equations of three
unknowns.

(1 x+2y+z=7 (2) x+y+2z=6 B 2x+2y+z=5
2X—y+2z=4 X+y-z=2 X-y+z=1
X+y-2z=-1 Ix+2y+z=8 X+y+2z=4
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;A

22=4
47=8

=4, X+y-2z=-1

. A= 0it has unigue solution.

(4 x+y+2z=4 (5) x+y+
2X+2y+4z=8 2X+ 2y +
3xX+3y+6z=12 3x+3y+6z=10

Solution (1): x+2y+z=7, 2X-y+2z

1 2 1

A=|2 -1 2| =15
1 1 -2
7 2 1

Ay=1 4 -1 2| =15
-1 1 -2
1 2 7

A,= 2 -1 4| =30
1 1 -1

A=15 A,=15 A,=30, A,=30
By Cramer’srule

Ay A A
X _ i —_—Z_
X—A—l, y—A—Z, z—A—Z

Solutionis(x,y, 2 = (1, 2, 2)

Solution (2) : x+y+2z=6, 3x+y-z=

1 2 6

A=13 1 -1=0 A=|2

4 2 1 8

16 2 1

Ay= 32 -1=0 A,=|3

48 1 4

SinceA=0and Ay =Ay=A,=0, aso

17 1

y: 24 2|=30
1-1 -2

2, Ix+2y+z2=8

1 2

1 -1 =0,

2 1

16

1 2/=0

2 8

atleast one of the (2 x 2) minors of

A isnot zero, the system is consistent and has infinitely many solution.
Take two suitable equations and assign arbitrary value to one of the three
unknowns. We solve for the other two unknowns.

Letz=keR
.. equation (1) and (2) becomes
X+y=6-2k
X+y=2+Kk
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L 1‘ 1-3=-2

A= |g q|7173=-
6-2k 1

Ay = =6-2k—2-k=4-3k
2+k 1
1 6-2k

A, = =2+k-18+6k=7k-16

Y 13 2+k

.. By Cramer’srule

A" -2 —20B-9
Ay  7k-16 1
y=31 =", =3 (16-7

.. The solution set is

k-4 16-7K
(X!y!z)z( 2 B 2 s k)

Particular Numerical solutionsfor k=—2 and 2 are
(-5,15,-2) and (1, 1, 2) respectively
Solution (3) : 2x+ 2y + z=5, X—y+z=1, X+y+2z=4

keR

2 2 1 5 2 1
A=1[1-11] =0 ; A=]1 -1 1| 20
31 2 4 1 2

Since A = 0 and A, # O (atleast one of the values of A,, Ay, A, non zero) the
system isinconsistent. i.e. it has no solution.

Solution (4) : x+y+2z=4, 2x+2y+4z=8, 3x+3y+62=12

112 4 1 2
A=12 24 =0 A=|8 24=0
336 12 3 6
1 4 2 11 4
Ay = 2 8 4=0, A,=]22 8|=0
312 6 3 3 12
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Since A =0and Ay = Ay =A,=0asoal 2x2minorsof A, Ay, Ayand A,
are zero, by case 2(c), it is consistent and has infinitely many solutions. (- all
2 x 2 minors zero and atleast one of &; of A = 0, the system is reduced to single
equation).

Let ustake x =sand y = t, we get from eguation (1)

1 . .
z=5 (4-s—-1) .. thesolutionsetis

(X,y,Z)z(S, ts 4 Zs_t), S,tER

Particular numerical solution for

xy,2=(1,11) whens=t=1
(x,y,z)=(—1, 2, % whens=-1,t=2
Solution (5) : x+y+2z=4, 2X+2y+4z=8, 3x+3y+62=10
112 1 4 2
A=12 24| =0 Ayz 2 8 4| =0
336 310 6
4 12 11 4
Ay = 8 2 4| =0, A, = 22 8|=0
10 3 6 3310

A=0and A, =Ay=A,=0.Alsoall 2x2minors of A =0, but not all the
minors of A, Ay and A, are zero.

Therefore the system isinconsistent. i.e. it has no solution.

Example 1.19 : A bag contains 3 types of coins namely Re. 1, Rs. 2 and Rs. 5.
There are 30 coins amounting to Rs. 100 in total. Find the number of coinsin
each category.

Solution :

Let X, y and z be the number of coins respectively in each category Re. 1,
Rs. 2 and Rs. 5. From the given information
x+y+z=30 Q)
X+2y+5z=100 (i)
Here we have 3 unknowns but 2 equations. We assign arbitrary valuek to z
and solvefor xand y.
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(i) and (ii) become

x+y=30-k
X + 2y = 100 — 5k keR
11 30-k 1 1 30-k
A= =1, A= =3k-40, Ay= =70-4k
12 100-5k 2 1 100- 5k

By Cramer’sRule
Ay A
- X_ —_y_
X = A_3k_40’ y—A—70—4k

Thesolutionis(x,y,2 = (3k—40,70-4k, k) ke R
Since the number of coinsisanon-negative integer, k=0,1,2 ...
Morever 3k—40>0, and70-4k>0 = 14<k<17
.. The possible solutions are (2, 14, 14), (5, 10, 15), (8, 6, 16) and (11, 2, 17)
1.5.4 Homogeneous linear system :

A system of linear equations is said to be homogeneous if the constant
terms are all zero; that is, the system has the form

a11X1+a12X2+ ............ +a1an=0

321X1+3.22X2+ ............ +3.2an—0

X1t A Xo .o tamX,=0

Every homogeneous system of linear equations is always consistent, since
al such systemshave x; =0, X, =0 ...... Xn = 0 as a solution. This solution is

called trivial solution. If there are other solution they are called non trivial
solutions. Because a homogeneous linear system always has the trivial solution,
there are only two possibilities.

(i) (Thesystem hasonly) thetrivial solution

(i) (The system has) infinitely many solutions in addition to the trivial
solution.
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As an illustration, consider a Y
homogeneous linear system of two v
eguations in two unknowns.

x+y=0
X-y=0 X
the graph of these equations are lines
through the origin and the trivial solution X+Y =0
corresponding to the point of intersection
at the origin. Fig.1.12

For the following system !

X — y =0 557520
2x-2y=0

x

the graph shows, that the system has
infinitely many solutions.

There is one case in which a
homogeneous system is assured of having
non-trivial solutions, namely, whenever

the system involves more number of unknowns than the number of equations.
Theorem 1.3 : (without proof)

A homogeneous system of linear equations with more number of
unknowns than the number of equations hasinfinitely many solutions.

Fig. 1.13

Example 1.20:

Solve: X+y+2z2=0
2X+y—-z=0
2X+2y+z=0

Solution :

11 2
A=|2 1 -1|=3
221

-~ A # 0, the system has unique solution.

.. The above system of homogeneous equation has only trivia solution.
i.e, (xy,2=(0,0,0).



Example 1.21 :

Solve: X+y+2z=0
3X+2y+z=0
2X+y-z=0

Solution :

11 2
A=13 2 1|=0
21 -1

Since A = 0, it has infinitely many solutions. Also atleast one 2 x 2 minors
of A =0, the system is reduced to 2 equations.

.. Assigning arbitrary value to one of the unknowns, say z = k and taking
first and last equations. (Here we can take any two equations)

we get Xx+y=-2k
2xX+y =k
11 -2k 1 1 -2k
"‘A:‘z 1‘:_1’ AX:‘ k 1‘:_3k’ Ay:‘z k):5k
By Cramer’sRule
x=3k, y=-5k

- Solutionis (%, Y, 2) = (3k, — 5k, k)

EXERCISE 1.4
Solve the following non-homogeneous system of linear equations by
determinant method :

(D)} X+2y=5 2 2X+3y=5
X+3y=4 Ix+6y=12

3 Ix+5y=9 4 X+y+z=4
8x+ 10y =18 X—y+z=2
2X+y—-z=1

B) 2x+y-z=4 (6) X+y-z=2
X+y—-2z=0 2X-y+22=6
3X+2y-3z=4 2X+y—-2z=-2
(7) x+2y+z=6 (8 2X-y+z=2
3X+3y-z=3 6x—-3y+3z=6
2X+y—2z=-3 4x-2y+2z=4
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1 21
© x*y-7

2 4 1
=1; X+y+z—5,

3 2 2

x "y 270

(10) A small seminar hall can hold 100 chairs. Three different colours
(red, blue and green) of chairs are available. The cost of ared chair
is Rs.240, cost of a blue chair is Rs.260 and the cost of a green chair
is Rs.300. The tota cost of chair is Rs.25,000. Find atleast 3
different solution of the number of chairs in each colour to be

purchased.

1.5.5 Rank method :

Let us consider asystem of “m” linear algebraic equation, in “n” unknowns
X1, X9, X3, ... X 8Sin section 1.2.

The equations can be written in the form of matrix equation as AX =B

Where the m x n matrix A is called the coefficient matrix.

A set of values xq, X, X3 ... X, Which setisfy the above system of equations
is called a solution of the system.

The system of equations is said to be consistent, if it has atleast one
solution. A consistent system may have one or infinite number of solutions,
when the system possesses only one solution then it is called a unique solution.
The system of equations is said to be inconsistent if it has no solution.

Themx (n + 1) matrix.

a1 A a3 .. A by
A Ay A3 ... dy b
az dz a3 ... 33, bz |is caled the augmented matrix of the

[ 8 8 a3 - 8m by
system and it is denoted by [A, B]. The condition for the consistency of a
system of simultaneous linear equations can be given interms of the coefficient
and augmented matrices.

The system of simultaneous linear equations AX = B is consistent if and
only if the matrices A and [A, B] are of the same rank.
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The solution of a given system of linear equations is not altered by
interchanging any two equations or by multiplying any equation by a hon-zero
scalar or by adding a multiple of one eguation to another equation. By applying
elementary row operations to the augmented matrix the given system of
equations can be reduced to an equivalent system and this reduced form is used
to test for consistency and to find the solutions.

Stepsto be followed for testing consistency :

(i) Write down the given system of equations in the form of a matrix

equation AX = B.

(ii) Find the augmented matrix [A, B] of the system of equations.

(i) Find the rank of A and rank of [A, B] by applying only elementary row

operations. Column operations should not be applied.

(iv) (@ |If therank of A = rank of [A, B] then the system is inconsistent

and has no solution.

(b) If the rank of A = rank of [A, B] = n, where n is the number of
unknowns in the system then A is a hon-singular matrix and the
system is consistent and it has a unique solution.

(c) If the rank of A = rank of [A, B] < n, then also the system is
consistent but has an infinite number of solutions.

Example 1.22 : Verify whether the given system of equationsis consistent. If it
is consistent, solve them.

2X+ 5y + 72=52, X+y+2z=09, 2X+y—-z=0
Solution : The given system of equations is equivalent to the single matrix
equation.

25 7 X 52
111 yl=| 9
21 -1]Lz 0
AX=B
The augmented matrix is
25 7 52
[AB={111 9
21-10
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11 1 9
2

1-10
1 1 1 9
s R RR
0-1-3 -18
1 1 1 9
N{o -1 -3 18| R, &Ry
0 3 5 34
1 1 1 9
~|0 -1 -3 -18| Ry—>Ry+3R,
0 0 -4 -20

The last equivalent matrix is in the echelon form. It has three non-zero
rows.

- p(AB)=3
11 1
AlsoA~— |0 -1 -3
0 0 -4

Since there are three non-zero rows, p(A) =3
P(A) = p[A, B] =3 =number of unknowns.
.. The given system is consistent and has a unique solution.

To find the solution, we see that the given system of equations is
equivalent to the matrix equation.

1 1 1 X 9

0-1-3||y|=| -18

0 0 -4 z -20
X+y+z=9 .. (Y
-y-3z=-18 2
-4z=-20 ...(3)
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RB)=z=5;2=>y=18-32=3 ;(}) >x=9-y-z =>x=9-3-5=1
.o Solutionisx=1, y=3, z=5

Example 1.23:

Examine the consistency of the equations

2X—3y+7z2=5, 3X+y—-3z=13, 2xX+ 19y - 472=32
Solution :

The given system of equations can be written in the form of a matrix
equation as

2 -3 7 X 5
3 1 -3||yl=] 13
2 19 -47 z 32
AX=B
The augmented matrix is
3 7 5
2 -3 7 5 1 -2 2 3 L
2 19 -41 32 2 19 -47 32
3 7 5
22 2 R R 3R
_> -
- 1 o271 2 2 1
0 2 - 2 2 R3 —> R3 — 2R1
0 22 -54 27
3 7 5
1-2 2 2
—~ 0 Q _z Q R3—)R3—4R2
2 2 2
0 O 0 5

The last equivalent matrix is in the echelon form. It has three non-zero
rows. .. p[A, Bl =3and p(A) =2

PA) = oA B]

.. The given system isinconsistent and hence has no solution.
Note: This problem can be solved by not dividing R; by 2 dso.i.e, Ry > 2R, - 3R;
Example 1.24 :

Show that the equationsx +y + z=6, x + 2y + 3z = 14,

X + 4y + 7z = 30 are consistent and solve them.
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Solution : The matrix equation corresponding to the given system is
11 17[x 6

12 3|y 14

14 7]Lz 30
AX=B

The augmented matrix is
1116

[AB]=|1 2 3 14
147 30
1116 R R R
9 p—
~|0 12 RZ N R2 Rl
036 24] ° 8t
1116
00O00O
In the last equivalent matrix, there are two non-zero rows.
2o p(AB)y=2and p(A) =2
PAA) = p(A B)
.. The given system is consistent. But the value of the common rank isless
than the number of unknowns. The given system has an infinite number of
solutions.

The given system is equivalent to the matrix equation
11 1][x 6

012|y|=| 8
00O0]Lz 0
X+y+z=6 .. (D
y+2z=8 ...(2
(2= y=8-27;(1) >x=6-y-2=6 - (8-29 -z=2-2
Takingz=k weget x=k-2, y=8-2k; keR
Putting k = 1, we have one solutionasx = -1, y =6, z= 1. Thus by giving
different values for k we get different solutions. Hence the given system has
infinite number of solutions.
Example 1.25:
Verify whether the given system of eguations is consistent. If it is
consistent, solve them :
X-y+z=5 —x+y-z=-5 2Xx-2y+2z=10
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Solution : The matrix equation corresponding to the given systemis

1 -1 1 X 5
-1 1 -1||y|=]| -5
2 -2 2 z 10
AX =
The augmented matrix is
1 -1 1 5
[AB=|-1 1 -1 -5
2 -2 2 10
1_115R2—>R2+R1
NOOOOR3—>R3—2R1
0 0 0O

In the last equivalent matrix, there is only one non-zero row

SLp[A Bl =1and p(A) =1

Thus p(A) = p[A, B] = 1. .. the given system is consistent. Since the
common vaue of the rank is less than the number of unknowns, there are
infinitely many solutions. The given system is equivalent to the matrix
equation.

1-11 X 5
0 0 Of|y|=|0
0 0 OolLz 0
X—-y+z=5;Takingy =Kky, z=ky, we have x =5 + k; — ky. for various
values of k; and k, we have infinitely many solutions. ky, k, € R

Example 1.26 : Investigate for what values of A, u the simultaneous equations x
+y+z=6, x+2y+3z=10, x+ 2y + Az=p have (i) no solution (ii) aunique
solution and (iii) an infinite number of solutions.
Solution :
The matrix equations corresponding to the given systemis
111)7x 6

12 3||y|=]10

12 2alLz n
AX=B
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The augmented matrix is
1116

[AB=|12 310
12X p
11 1 6
~01 2 4
0 0 A3 p-10
Case(i): A—-3=0andpu-10+#0 i.e.A=3and p=10.
Inthiscase  p(A) = 2while p[A, B] =3 .. p(A) = p[A, B]
.. The given system isinconsistent and has no solution.
Case(ii): A—3#0 i.e, A= 3andpcantakeany vauein R
Inthiscase p(A) = 3 and p[A, B] =3
P(A) = p[A, B] =3 =number of unknowns.
.. The given system is consistent and has a unigue solution.
Case (iii) :
A-3=0andu-10=0i.e, A=3andu=10
Inthiscase p(A) = g[A, B] =2 < humber of unknowns.
*. The given system is consistent but has an infinite number of solutions.

1.5.6 Homogeneous linear Equations:
A system of homogeneous linear equationsis given by

R2—> RZ_Rl
R3—) R3—R2

X tapXotagXgt ... +a;n X, =0
Ay XptapXotanXgt e, +ay X, =0
Xt apXotagXgt .o tamX,=0
and the corresponding augmented matrix is

[Cay; a;p ... a;y 07

A ay ... ay, 0O
AB=] ... ... .. ... ..|=[AQ

L 8m 8 - m 0
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Since rank of A = rank of [A, Q] is always true, we see that the system of
homogeneous equations is always consi stent.

Notethat x; =0, x, =0, X3 =0 ... X, = Oisalways a solution of the system.
This solution is called a trivia solution. If the rank of A = rank of
[A, B] < n then the system has non trivial solutions including trivial solution. If
P(A) = nthen the system has only trivial solution.

Example 1.27 : Solve the following homogeneous linear equations.
X+2y-52=0, 3x+4y+6z=0, x+y+z=0
Solution : The given system of equations can be written in the form of matrix equation
12 -5|[X 0
34 6 yl=| 0
11 1 z 0
AX=B
The augmented matrix is

1 2 -50
[AB|=|3 4 6 0
11 1 O
(12 -5 00, R, —3R
% —
~|0 -2 21 z 2
R3 - R3 - Rl
L0 -1 6 0
— 2 _5 _
L0 -2 21 O
— 2 _5 -
~|0 -1 6 0 R3—)R3— 2R2
LO O 9 0

Thisisin the echelon form.
Clearly pg[A, B] = 3. and. p(A) =3
2 p(A) = p[A, B] =3 =number of unknowns.
.. The given system of equations is consistent and has a unique solution.
i.e, trivial solution.
© X=0, y=0andz=0
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Note: Since p(A) =3,|A|#0 i.e. Aisnon-singular ;
.. The given system has only trivial solutionx=0,y=0,z=0
Example 1.28 : For what value of u the equations
X+y+3z2=0, 4x+3y+uz=0, 2x+y+2z=0 haveafi) trivia
solution, (ii) non-trivial solution.
Solution : The system of equations can be written asAX =B
11 3][x 0

4 3 ully|=|0
21 2 z 0
1 130
[AB=[4 3 uo
21 2020
1 3 O_R R 4R
2 ™ Ry =4y
~|0 -1 p-12 O
H Rs > Ry - 2R
L0-1 -4 0O
1 1 3 07
—~ O -1 M—lz 0 R3—)R3— R2
0 0 8 O

Case (i) : If u#8then 8- p = 0 and hence there are three non-zero rows.
- plA] = p[A, B] =3 =the number of unknowns.
.. The system has thetrivial solutionx=0, y=0, z=0
Case (ii) :
If u=28 then.
AA Bl =2and p(A) =2
- p(A) = p[A, B] =2 < number of unknowns.
The given system is equivaent to
X+y+3z=0; y+4z=0
Ly=-4z; X=z
Taking z=k wegetx=k y=-4k z=k [k e R-{0}]
which are non-trivial solutions.
Thus the system is consistent and has infinitely many non-trivial solutions.
Note : In case (ii) the system aso has trivial solution. For only non-trivia
solutions we removed k = 0.



)

)

EXERCISE 1.5

Examine the consistency of the following system of equations. If it is
consistent then solve the same.

(i) 4x+3y+6z2=25 X+5y+7z=13 2X+9y+z=1

(i) x-3y-8z=-10 3x+y-4z=0 2Xx+5y+6z-13=0
(iii) x+y+z=7 X+2y+3z=18 y+22=6

(iv) x-4y+7z=14 3x+8y—-2z=13 7X—8y+26z=5
(v) x+y-z=1 2X+2y—-22=2 -3x-3y+3z=-3
Discuss the solutions of the system of equations for all values of A.
X+y+z=2, 2X+y-2z2=2, AX+y+4z=2
For what values of k, the system of equations

kx+y+z=1, X+ky+z=1, x+y+kz=1have

() unique solution  (ii) more than one solution (iii) no solution
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2.VECTOR ALGEBRA

2.1 Introduction :

We have dready studied two operations ‘addition’ and ‘subtraction’ on
vectorsin class X1. In this chapter we will study the notion of another operation,
namely product of two vectors. The product of two vectors results in two
different ways, viz., ascalar product and a vector product. Before defining these
products we shall define the angle between two vectors.

2.2 Angle between two vectors:
- - — — ]
Let two vectors a and b be represented by OA and OB respectively. Then

the angle between aand b isthe angle between their directions when these
directions both converge or both diverge from their point of intersection.

2

Fig. 2.1

Fig. 2.2
It is evident that if © is the numerical measure of the angle between two
vectors, then0< 0 < x.

2.3 The Scalar product or Dot product

Let & and B be two non zero vectors inclined at an angle 6. Then the
scalar product of a and B is denoted by a . b and is defined as the scalar
12| [Bcoso.

Thusa . B = |2| |B)| cos 6 =abcos6
Note: Clearly the scalar product of two vectors is a scalar quantity. Therefore
the product is called scalar product. Since we are putting dot between a and

B, itisalso called dot product.
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Geometrical Interpretation of Scalar Product
—> —
LetOA= @&, OB=b

Let 6 be the angle between 2and b

From B draw BL 1r to OA. v
. _ = o
OL iscalled the projectionof b on a.
0
From AOLB, cose=% o % FL A
a
Fig. 2.3
= OL = (OB) (cos 6)
—oL=|p (cos 0) .. (D)
Now by definition 2.1 =|2]||5]coso
= [3] o) [ using (1)]
. a.B=|a _projectionof_b)ong]
2.6 &
ProjectionofT3>0n3>= = -2 B=2.1
- -
E(RRE(
5> > 3a.B > B o
Projectionof a on b = —— —a.—=a.b
- -
1
2.3.1 Properties of Scalar Product :
Property 1:
The scalar product of two vectorsis commutative
(i.e,) E).B):_b).gforanytwovectors dand b
Proof :
- -
Let a and b betwo vectors and 6 the angle between them.

= |_a)||_b>|cose .. (1)

- =
a.b
> > >l l-

L b.a = Ib”alcose
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= |_a)||_b>|cose .. (2
From (1) and (2)
2.5=0.3
Thus dot product is commutative.
Property 2 : Scalar Product of Collinear Vectors:

(i) When the vectors & and B are collinear and are in the same
direction, then6 =0

ThusE)._b)=|E)||_b>|cose=|§>| |_b>|(1) =ab (D)

(ii) When the vectors 2 and
direction, then6 ==
Thus

are collinear and are in the opposite

| ”blcose | ” |(005n) .. (D
- [2][Bl -
Property 3: Sign of Dot Product

The dot product 2.5 may be positive or negative or zero.

(i) If the angle between the two vectors is acute (i.e.,, 0 < 6 < 90°) then
cos 0 is positive. In this case dot product is positive.

(ii) If the angle between the two vectorsis obtuse (i.e., 90 < 6 < 180) then
cos 0 is negative. In this case dot product is negative.

(iii) If the angle between the two vectors is 90° (i.e, 6 = 90°) then
cos 0 = cos 90° = 0. In this case dot product is zero.

Note: If & . B = 0, we have the following three possibilities
3)._b):0 = |E)| |B>|cos(9:0
0] |E)| =0 (i.e,) & isazerovector and B any vector.
(i) |T)>| =0 (i.e,) B isazero vector and & any vector.

(iii) cos6=0 (i.e)0=90° (le) a Ll b
Important Result :

Let 3) and _b) be two non-zero vectors, then 3). B) =0 & 3’ L _b>
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Property 4 : Dot product of equal vectors:
2
- =2 _|=>ll> o 1 o T 3 2
a.a:|a||a|cosO:|a||a|:|a| =a

2 2
, =2 2 2_I2l -2
Convention : (a) =a. a:|a| =a’=a’

Property 5:

cos90 = (1) (1) (0) =0

i) T.7=7.7=K.®K=1
(i) T.7=7.7=7.K=K.7=K.7T=7.%
7.7 = |T’| |T’|coso:(1) Q) @)=1
1171

Property 6 :

If misany scalar and a, 2, b ae any two vectors, then

(mz) . B=m(z2.8)=37.(mB)
Property 7 :
If m, narescalarsand E), ? are two vectors then
ma .8 =m(2.8)=(mz). 8=3. (mB)

Property 8:
The scalar product is distributive over addition.

> (> =2 > > > > - > >
a.\b+c)=a.b+a.c, foranythreevectors a, b, c
B

Proof : e
%
Let OA=a c
v > 2
—) X
oB=1 °
%
BC=7¢ |
[N [N (o] L ;) M
Then OC =0B+ BC
=Db +

Draw BL L OAand CM 1 OA

49



.. OL = Projection of Bona
LM = Projection of Cona

OM = Projection of (_b) + _c)) ona

Wehaved . B =& (Projectionof_b>on3>)
- a.b =[3|o (D
Also 2.¢=|a (Projectionof_c)ong)
- 2.2 =[3|lwm) e
Now E)(_b>+_c>) 3 (Projection of (T)>+_c)) on E’)
:_g(OM):rghOL+LM)
- Rl + [R] am
-a.B+a.¢ [by using (1) and (2)]
Hece a.(B+2)=7.8+3.2
Corollary : 2 (_b> _c>):§> B-3.7¢
Property 9:
(i) For any two vectors & and T)>

(z @) () +22.8 +(B) =a2+23 . B +1?
-
a

—a.a+a.b+b.a+b.b (bydsributionlaw)
_(3)%28:38+(8) (:23-83)
- (E’)Z+ 231 + (_b))2 =a2+2a.b +b?

)



iy (2+8).(3-8)=(3)-(B) =a2-w2
proot:  (2+8).(32-8)=2.2-3.8+8.2-8.8

Property 10 : Scalar productln ms of components::

Let E)=a1| +a21 +a3k _b)—bl_i>+b2?+b3_k)
2.8 =(a T +a,7 +as®). (b7 +b,T +bs¥
agby (7.7) +agp, (7.7) +agbs (7R) + appy (7.7)
+ asb, (??) + ashy (?_k)) +aghy (_k>_|)) +agh, (_k>?) + aghs

KK

= a1by(1) + a3b5(0) + a;b3(0) + apby(0) + apby(1) + asbs(0)
+agby(0) + agb,(0) + aghs(1)
= ayby + agh, + agbs
Thus, the scalar product of two vectors is equal to the sum of the products
of their corresponding components.

Property 11: Angle between two vectors:

Let a T))betwovectorsmclmedalananglee
Then g.bzla”blcose
_ 3. 4 3a.®
= cosf = |§>”B>| = 0 =cos |§>”_b>|
If @ =a i +ay] +aK ad B =by 1 +by] +bsK
Then & . B = ajby + ash, + aghs
|5>| \ar? +a? +ag? ; | | by? + by” + bs”

a1by + azhy + aghs
. 9 =cost
\/al +az +a3 \/bl +b +b3
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Property 12: For any two vectors E) and _b)

|2+?| < |al+ ?| (Triangle inequality)
2 2 2
wehave [2+8] = [R]+[8] +2(2.8)
2 2 2
= [2+B]| = 3] + _b)l +2|E)||B>|cose
2 2
<RI+IB] 27| ]3] [ cos < 1]
2 2
= [R+8[ <(R]-]8)
= R+8l<[R]+[3]
Example2.1: Find & . B when
() a=7-2]+Kandb =47 -4] +7K
(i) a=7 +2Kand b =27 + K
(i) a=] -2Kand b =27 +3] -2K
Solution :

iy 2.8=(7-22+%).(47-47+7%)
=)@+ H+ () (M) =19

(T’ +2T<’) . (2?+T<’) =(0) (2 + (1) (0)+(2) (V) =2
(7-2%).(27+37-2%)
=0@+VO+-2(-=7

Example 2.2 : For what value of m the vectors 2 and B are perpendicular to
each other

- >
a.b

(i)
(iii)

-5 >
a.b

() a=mi +2] +KandB =47 -9] +2K
(i) 3=51-9] +2K andB=mi +2] + K

Solution :
() Given:al®B
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2. B=0= (m7+27+%).(47-97+2%) =0
= 4m-18+2=0 = m=4
iy (57-93+2%).(m7+27+R) =0

= 5mM-18+2=0 = m:1_56

Example 2.3 : If @ and B are two vectors such that |_)| |_>| 3 and

2.b=6 Find the angle between aand b
Solution :

a. b 6

|g”g| 4

Example 2.4 : Find the angle between the vectors
= >

wla

cos 0 = :% = 0=

3i -2 -6K and 47 —J +8K
Solution : Let a=3i—2j—6_k) ;_b)=4_i>—?+8_k>
Let ‘0’ be the angle between the vectors
>

a.b=12+2-48=-34
I2]=7 [8]=9

2.8

2lls

1 3_4)
0 = cos” ( 63

Example 2.5 : Find the angle between the vectors aand b

-34
7x9

coso =

whereg:_i)—j and B = ? ®
Solution : cosf = N =(—')_?)(?__k))
zlsl [7-717-%]
~ cosp = WO (\/—:ZL)x(i/)—; 0) (=1
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Example 2.6 : For any vector _r)
provethat_r)= (_r)T)) T+ (_r)?) T)+ (_r)_k>) I’

Solution : Let ¥ =x1 + yT) +ZK bean arbitrary vector.

Example 2.7 : Find the projection of the vector

7_i)+_j)—4_k>on2_i)+6?+3_k)

Solution : Let @a=71+] -4K ; B=27+6] +3K
s 523 Ge7-av). (2767 +3R)
Projectionof a on b = N NN
|b| |2i +6 ] +3k|
_14+6-12 8
TA\[4+36+9 " 7
Example 2.8 : For any two vectors aand B
S SP e »P SP P
provethat|a+ bl +|a— b| =2(|a| +|b|
2 2 2 2
soution:  |2+8| = (B+8) =|Z[+[B8] +23. % (1)
2 2 2 2
|2-8| =(3-38) =I3[+|8] -22.% L@
Adding (1) and (2)
2 2 2 2 2
2+8] + -8 = R[+[B] +22. 3+ 3]
2



AN AN
Example2.9: If aand b are unit vectorsinclined at an angle 0, then prove that

.0 1A A
siny =5 a-b

Solution : ‘g—g’2= a2+b2-2a.b=1+1- 2‘ H ’COSG
=2-2c0s0 = 2(1-cos0) = 2(231 )
|3—G‘ =23in% = sin%=%‘ - ‘
Example2.10:|f5)+_b)+_c): ,|€1)|:3, I_b)l 5and| | 7, find the
anglebetweengand_b>
Solution : 2+B+C=0
248 =2
(2+8) = (-2)
S (R (B) 2. 8=(R)
= [l + (8 2[R [Bloso = o]’

= 3%+5° +2(3)(5)cose—7

1 T
cos 0 =3 = 6=§
Example 2.11 : Show that the vectors
27—?+_k>, _>—3?—5k 37 +4] +4kformthesudesofar|ght

angled triangle.
Sqution:LetE)=2_i)—T>+_k);
Weseethat @ + B + C= 0
E), B) < forms atriangle
> o > > D -> = D
Further a.b=(2|—j+k).(|—31—5k)
=2+3-5=0

2 LB .. Thevectorsform the sides of aright angled triangle.
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(12)

(13)

EXERCISE 2.1

2=27 427 - R ad B =67

Finda . Bwhen 3=27+27 - K and b =61 -3] +2K

f a=T+]+2KkadB =37 +2] - K find

(3+38).(232-3)
T+ K

Find 7 so that the vectors 27 + ﬂ’ + Kad T - 2j +
perpendicular to each other.

are

Find the value of m for which the vectors & = 31 + ZT) + 9K and
B=T+mj +3K ae(i) perpendicular (ii) paralle

Find the angles which the vector Figs ? + /2 K makes with the
coordinate axes.

Show that the vector i© + j + K is equaly inclined with the
coordinate axes.

N AN
If a and b are unit vectorsinclined at an angle 0, then prove that
‘/\ A

. 0 1|~ A
(|)cos§=§‘a+b’ (i) tan2

‘ a+ b
If the sum of two unit vectorsis a unit vector prove that the magnitude of
their differenceis+/3.

If & , _b) < are three mutually perpendicular unit vectors, then prove

that [2 + B + 2| =3

it |2+ 8| =60, [2-8|=40 ana [B] = 46 1ind | 2]

Let _u) 7and7v) bevector suchthat u + v +

it [2]=3 [V =4 ana [ =5 thenfina T.
7 T)

Show that the vectors 37 — ZT) + K, i"-3

27+ T) _ 4% form aright angled triangle.
Show that the points whose position vectors

47 - 3? + _k) 27 - 4? + 5_k), gigs T) form aright angled triangle.
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(14) Find the projection of
()T - onzaxis (i) T +2] —2Kon21 -] +5K
(ii)37 + ] - Kondi -] +2K

2.3.2 Geometrical Applicaton of dot product

Cosineformulae:
Example 2.12 : With usual notations :

. PP+d-a® . C+a’-p® . a’+b’-c?
0] COSA=" oo (i) cosB="5c (iii) cosC="op
Solution (i) :
From the diagram
> o o
AB+BC+CA=0 = a+B+c=0
2--(8+2)
2 2
(2)°=(8+2)
= a2=02+c2+20.¢
= a® = b2+C2+2bCCOS(n—A)

|a2= b+ c? — 2bccosA|

2bc cosA = b2 + 2 — &
b2+ -a°

2bc

Similarly we can prove the results (ii) & (iii)
Projection Formulae:
Example 2.13 : With usual notations

(i)a=bcosC+ccosB (ii) b=acosC+ccosA (iii) c=acosB+bcosA
Solution (i) :

From the diagram

COSA=

- 5 o
AB+BC+CA=G

> 5 >
:>a+b+c:8
a=-B-7¢
- Fig. 2.6
-> = > 2> S>>
a.a=-a.b-a.c
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We have

a° = —ab cos (n — C) — ac cos (n — B)
a“ =—ab (- cosC) — ac (- cos B)

= a’ = abcosC + accosB

= [a=bcosC + c cosB]|

Similarly (ii) and (iii) can be proved.
Example 2.14 : Anglein asemi-circleisaright angle. Prove by vector method.
Solution : Let AB be the diameter of the circle with centre O.

Let P be any point on the semi-circle.

To prove |APB =90°
We have OA=0B =OP (radii)

- > o
Now PA=PO+OA

e
Also PB=PO+O0OB A 0 B
Fig. 2.7

-PO-OA
=M CIARC I
2 2
_(r0) - (o)
= PO? - OA%2=0
P_AJ_I;I)B = |APB =

Hence anglein asemi-circleisaright angle.
Example 2.15 : Diagonals of a rhombus are at right angles. Prove by vector
methods.

Nia

. 2 _ > 2 >
Solution : Let ABCD bearhombus. Let AB= a and AD= b

We have AB = BC = CD = DA 5 c
: >l _ |
e, |a|=|b| .. (1) ?

- o o

AC=AB+BC=a+b

> o o A "> B
Also BD = BC+CD a

- >
-AD-AB=B -2
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aeed=(2+8).(8-3)
-(8+3).(3-3)
- (8)"-(3) =0 (]2l [8]

- o - o
Thus AC.BD =0 = ACLBD
Hence the diagonals of a rhombus are at right angles.
Example 2.16 : Altitudes of atriangle are concurrent — prove by vector method.
Solution :
Let ABC be atriangle and let AD, BE be itstwo altitudes intersecting at O.

In order to prove that the altitudes are concurrent it is sufficient to prove
that CO is perpendicular to AB.

Taking O as the origin, let the position vectors of A, B, C be 3), _b> I
respectively.
A
— - —
ThenOA=a :0B=B:; OC=¢C .
Now AD L BC F S
- > ’
= OA L BC ‘K
B C
D
Fig. 2.9
- >
= OA.BC =0
S 2.(2-8) =0
- a.¢-a.B=0 ..Q
> o
BELCA = OBL CA
> o
. 0B.CA=0 = B.(3-2) =0
-~ B.2a-5.C=0 e

Adding (1) and (2), we get

3.2-8.2=0- (3-8).2
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- > -> >
= BA.OC=0 = OC LAB
Hence the three altitudes are concurrent.
Example2.17 : Provethat cos(A-B)=cosAcosB+snA snB
Solution :
Take the points P and Q on the unit 4

circle with centre at the origin O.
Assume that OP and OQ make angles
A and B with x-axis respectively.

- |POQ =|POx —|QOx =A-B

Clearly the coordinates of P and Q 197210
are(cos A, sin A) and (cos B, sin B) . o

P (Cos A, Sin A)

Take the unit vectors T andT) along x and y axes.
> > >
.. OP=OM+MP=cosAT +snAj
e
00 =0L+LQ = cosBT +snBj

> o
By value, OP.OQ = (cosA_i)+sjnAT>) . (cosB_i>+sjnBT>) (1)
= cosA cosB+snA sinB

- - — —
By definition, OP . 0Q= ’OP‘ ‘OQ’ cos (A - B) =cos (A - B) . (2

From (1) and (2) cos(A-B)=cosA cosB+sinAsinB
2.3.4 Application of Scalar Product in Physics
Work done by force:

The work done by aforce is a scalar quantity and its measure is equal to
the product of the magnitude of the force and the resolved part of the
displacement in the direction of the force. A

Let a particle be placed at O and a >

d

- —
force F represented by OB be acting on
the particle at O. Due to the application

_)
of force F, the particle is displaced i - L
, particle is displaced in o) e —
— — F
the direction of OA. Here OA is the
displacement and OL is the displacement Fig. 211

9
in the direction of F
Inright angled A OLA
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where 0 isthe angle

OL =OAcoso =?cose {
| | between?and?

The work done by aforce = (Magnitude of force)
(displacement in the direction of force)

-7l o= |7l |3 cose

Work done by the force = I_:) d
Note: If a number of forces are acting on a particle, then the sum of the works
done by the separate forces is equal to the work done by the resultant force.
Example 2.18 : Find the work done in moving a particle from the point A,

with position vector 27 - 6? + 7_k>, to the point B, with position vector

%
3_i>—_j)—5_k>,byaforceF =_i>+3T)—_k)
Solution :
- — —
F=T+3]-K: OA=27-6] +7K;0B=31 -] -5K

- o o
d=AB=OB-OA=T +5] - 12K

Work done = I_:)?
=(7+37-%). (P+57-12)

= (1) (1) + 3(5) + 12 =28

9
Example 2.19 : The work done by the force F = ai + T) + K in movi ng the
point of application from (1, 1, 1) to (2, 2, 2) along a straight line is given to be
5 units. Find the value of a.

- — —

Solution : F:a_i>+T>+_k>; OA:T>+T’+T<); OB:Z_i)+2?+2_k>
Work done = 5 units
- = >
d=AB=OB-OA=T+]+K
%

Work done = F 3

5:(a_i)+T>+_k)).(_i>+T)+_k>)

5=a+1+1=[a= 3]
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EXERCISE 2.2
Prove by vector method
(1) If thediagonas of a paralelogram are equal then it isarectangle.

(2) The mid point of the hypotenuse of a right angled triangle is equidistant
fromitsvertices

(3) The sum of the squares of the diagonals of a parallelogram is equal to the
sum of the squares of the sides.

(4) cos(A+B)=cosA cosB-sinA snB
%
(5) Find the work done by the force F = 27 + T) + K aci ng on a particle,
if the particle is displaced from the point with position vector
27 + 2? +2K tothe point with position vector 37+ 4? +5K.

(6) A force of magnitude 5 units acting parallel to 27 - 2_j) + K displaces
the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.

(7) The constant forces 27 - 5? + 6T<), T+ ZT) ~Kand2i + YT) act
on a particle which is displaced from position 47 - ST) 2% to position
6_i) + ? - 3_k>. Find the work done.

(8) Forcesof magnitudes 3 and 4 units acting in the directions

61 + 2T> +3K and 37 — ZT) +6K respectively act on a particle which
is displaced from the point (2, 2, — 1) to (4, 3, 1). Find the work done by
the forces.

2.4 Vector product :
2.4.1 Right-handed and left handed systems:

Consider a set of three linearly independent vectors a , B , < through the
origin O. As they are linearly independent no two of them have paralel
directions and not all of them lie on the same plane. Let 6 be the smaller angle

(i.e. 0 <0 < m) between & and B . Let an observer walk from @ to B
through the angle 6 keeping O alwaysto hisleft. If the observer’s head is on the

. - - - => 2 o .
same side of the planeof a and b asthevector ¢ ,wesay a , b, C isa
right handed system or right handed triple (or) triad.

If € hasthe opposite direction, a , B , ¢ isaleft handed system.
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9

‘A b

o
9
Yoys @ y
o > ¢
a X X

Fig. 2. 12
Definition : The vector product of two vectors & and B isdenoted as @ x B
and it is defined as a vector whose magnitude is |E>| |_b>| sin  where 0 is the
angle between 2 and _b) 0 <6 <7 and whose direction is perpendicular to

both & and B in such a way that 5), B and this direction congtitute a right
handed system.

In other words, > >
2> 2_Izle A axb A
a><b=|a||b|sine n, where A

0 isthe angle between 2 and B and 0
is a unit vector perpendicular to both

E)and_b)wchthatg,_b),ﬁforma Ca
right handed system. Fig. 2.13

Note:

(D) E), ? fi form a right handed system means that if we rotate A into
T)’, then N will point in the direction perpendicular to the plane

containing & and B inwhich aright handed screw will moveif it is
turned in the same manner.

2 A x b isread as a cross b since we are putting cross between 2
and B .
2.4.2 Geometrical interpretation of Vector product :

— —
LetOA=a, OB=1D
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Let© betheanglebetweengand_g B C

Complete the parallelogram OACB >
- = : . AA b
with OA and OB as adjacent sides.
Draw BN 1L OA. 0
In right angled triangle ONB 0 >7n A
4 Fig.2.14
Bn=|8|sno 9
Now ?x_b):lgll_b)lsine/ﬁ
12 < B|=[3][B]sino
= (OA) (BN)
= Base x height

= Areaof paralelogram OACB

‘ |_> _>| _ {Areaof parallelogram with

& and B asadjacent sides

Also, areaof AOA =% area of aparallelogran OACB
—> -
-2 |OA x OB|= %l? x B

Vector area of AOAB =% (E) X E))
Some important results:
Result: (1) The area of a paralelogram with adjacent sides 2 and B is

R
(2) The vector area of a parallelogram with adjacent sidesisa x B

(3) Theareaof atriangle with sides & and_b)is% |€1) x B

_ _1|—> —>‘ 1)—> —>|
(4) The area of a triangle ABC is5 [ABxAC (or)§ BC x BA

(or) % ‘SAX EI)B’



2.4.3 Properties of Vector Product :
Property (1) : Non-Commutativity of Vector product :

Vector product is not commutétive (i.e) if 2 and B are any two vectors,
thend x B # B x & however 2 x B =— (B x 3).

Let a and B be two non-zero, > B
non parallel vectors and let 6 be the a b
angle between them. Then

—>—>|—>||—>| A 29\9‘9
— H TE_
ax b=]al|b]sin6 nwhere </\ ? N
7 is a unit vector perpendicular to the N
- -

planeof a and b Fig. 2.15

B« 2= [B|R|sn@) hy == 2| [B]sno A== (3« B)
Note that _b) & and - form aright handed system.

Hence Xx_b’iﬁxZ
ButdxB=-(Bx3

Property (2) :

Vector product of Collinear (Parallel) Vectors:
If the vectors & and B are collinear or paralel then axbB=0

Thevectorsg andB)arecoIIinear or paralel, then® =0,
sn® =0 for6=0,7

Thus 2 x B = |2|[B] sno A
- [Z|[8l o =3

Result : The vector product of two non-zero vectorsis zero vector if and only if
they are parallel (collinear)

. > = > . - - >
i.le, axb=0 < aispadlelto b, where a, barenon zero vectors.
Proof (i) :

Suppose?;l) X _b> = 8
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then [2][8|sne =38 su[Rloe |80~
= sne=0 = 06=00r=x
- a andT))arecoIIinear(paraIIeI)

. >
conversely if a || b then
06=0orn
= sn6=0
= 2«8 = [Z|[B|sne #=7
> D>
= axb=o0
Note: If & x B = _o), we have the following three possibilities.
0] & isazerovector and B isany vector.
(i) B isazerovectorand & isany vector

(iii) 2 and B are paralel (collinear)

Property (3) :
Cross Product of Equal Vectors:
=> = _ >l A
axa = |a||a|sme n
- 2[Rl @4
%
=0
> 5 > -
.. ax a = o for every non-zero vector a
Property (4) :

Crossproduct of Unit Vectors _|> ? ®
By the above property

-

Fig. 2. 16
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Also Tx7 = |T’| |?|s‘n90°?=(1) QO K=K

Similarly Tx_k>:_|) _k>><_i>:?

and Tx7T=-K, RKxT=-T, TxK=-7
Property (5) :

If misany scalar and a, b aretwo vectorsinclined at angle 6, then

maxB=m(ZxB) =3 xmB
Property (6) : Distributivity of vector product over vector addition
I

Let E), , < be any three vectors. then

() ax (m?) =axb+axc (Left distributivity)

i) (8+2)x2=(Bx3)+(2x3) Right distibutivity)
Result :
Vector Product in the determinant form

Let @ = al_i> + azT) + a3_k> and
B = bl_i> + sz) + b3_k) be the two vectors
Then  3xB =(a7 +a1 + agR) x (b7 +b,7 + bs%)

= aby (7« 7) + a7 x ) +agba( 7 x R)
vaghy (T x ) + (T x T) +apbs(T x )
sagh (R x ) + aghy(R x 7) +agbs( R x ¥)
= ab, K + a1b3(— ?) + a2b1(— ?) rahsi
+agh T +agbo(= 7)

- - -
= (aghg—agh,) i" — (aybz —aghy) j + (asb,—ashy) K
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TT K

=& @ a
b; by b
Property (7) : Angle between two vectors:

Let E), B be two vectorsinclined at an angle 0.

- = _ I|=>1il . A
Then a x b =]al|b]snd n
- - |-l . A
:>|a><b|: |a |b|sme n|
- > -l
:>|a><b|= al|blsn6
- - - -
. axb . _1l]axDb
= snob = = 0=gn
o >l l>
2| [ 2| [8]

Note:

In this case 0 is always acute. Thus if we try to find the angle using vector
product, we get only the acute angle.

Hence in problems of finding the angle, the use of dot product is preferable
since it specifies the position of the angle 6.

Property (8) : Unit vectors perpendicular to two given vectors
(i.e) Unit vectors norma to the plane of two given vectors.

Let E{, B be two non-zero, non-paralel vectors and 6 be the angle
between them.
258 = [2|[B]sno A e

Where i is aunit vector perpendicular to the both of Aand b

12<8|= 2] [B]sno e
axb
From (1) and (2) =
axb



X

Notethat - ———

Unit vectors perpendicular to 2 and b are

axb

a X
-> >
|a><b

isalso a unit vector perpendicular to aand b

ol (o)
ol |ol

X

A
LEn=%

Vectors of magnitude p normal to the plane containing aand B is given
u (3 <3)
EPX

Example 2.20:

by +

2 2 2, 2
If &, B areany two vectors, then |§) X _b>| + (_a) : _b)) = I_a)l I_b)l
Solution :

Let © be the angle between aandb

2x8 = [3]|[8|sno 4
|2 8| = 2] [8]sno
2 2 2
|2 <8 = 2] |8] sr2o
2 2 2
(E)_b) S F |T)>| cos’0

28]+ (2.8) = R[ 8] witos ooy =2 [8]

Example 2.21 : Find the vectors of magnitude 6 which are perpendicular to

boththevectors4_i>—?+3T<) and—2_i)+T)_2_k)
Solution :
Let 3):4?—?+3_k>;6>:_2_i>+?_2?
> 2> >
[ i K
Then axDb = 4 -1 3 :—I+2j+2_k>
-2 1 -2
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|Z X ?| =\ 1%+ (2%+(2)?=3

axb
Required vectors = 6| +
-

axb

=+ (- 27 +47 +4%)

Example2.22: If |§>| =13, |_b)| =5 and &. B = 60 then find |3> x _b>|
Solution :

2.3[-z8) -1
Ef

- D
[ -

= |2<B]=25
Example 2.23 : Find the angle between the vectors 27 + T) ~ K and

T+ ZT) + K by using cross product.

Solution :
let @a=27+]-K; B=1+2]+K
Let 6 be the angle betw Aand B
[RBx®
6 =gin
=l >
2118l
> > D
i ] K
gx_b): 2 1 -1 :3?—3?+3_k>
1 2 1
|€>x =32+ (=32 +3P2=33
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a
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. sho = |
|

0 =

wla

Example 2.24 : If _p> =37 +4T>—7_k) anda): 61 +ZT)—3_k> then find
_p> x a Verify that _p> and _p> X E) are perpendicular to each other and also

verify that 3 and E) X H) are perpendicular to each other.

Solution :
T T K
- -
pxq=(-3 4 -7
6 2 -3

=27 -517 - 30K

Nnow  B.(8x3)=(a7+a7-7R) . (27 -517 -30%)
= -6-204+210=0

Hence T)) and _p> X ﬁ) are perpendicular to each other.

now ¢ (8x3)=(67+27-3R). (27 -517 -30%)
=12-102+90=0

- -> > )
Hence q and p x ( areperpendicular to each other.
Example 2.25 : If the position vectors of three points A, B and C are

- =
respectively 1 +2] +3K,47 + | +5K and 7(T’ + TZ) Find AB x AC .
Interpret the result geometrically.

Solution :
5}-\:7)+2?+3_k>, (3>B:4_|)+T)+5_k> ; 66:77+7_k)
AB = OB - OA= 4T)+T>+5_k>)—(_|)+ZT)+ST<))
,6_\%:37)—?+2_k>
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> o o
AC=0C-OA=61 -2 +4K

TR
- - J
ABxAC= |3 _1 2 =0
6 -2 4

— —
The vectors AB and AC are paralel. But they have the point A as a

common point.

)

)
©)

(4)

()
(6)

(7)

(8

9)

— — .
.. AB and AC are along the same line.
.. A, B, Carecallinear.

EXERCISE 2.3
Find the magnitude of

_a>><T)>if3>=2_i)+_k> T)):_i)+?+_k>

2
1

it [2]=3 [B]=4a0d 2.8 =othentind |3 « B|

Find the unit vectors perpendicular to the plane containing the vectors
2T+ T+ Kand 7 +27 + K

Find the vectors whose length 5 and which are perpendicular to the
vectors_a)=3_i)+T>—4T<)and_b>=6_i>+5?—2_k)

B|-278

Find the angle between two vectors aand B if |E) x
it [2] =2 [8]=7a0 3 x B =37 - 27 + 6% find the angle
between @ and B.

f3=T+3]-2K and B =- 1 +3K thenfind & x B. Verify
that & and B are perpendicular to axb separately.

For any three vectors E), _b> ¢ show that
2:(B+2)+Bx(2+3)+2<(3+B) =7

Let 3’, B) ¢ beunit vectorssuchthat & . B = a . € =0and the angle
between _b) and _c> is%. Prove that E) =+ 2(_b> X _C)

N’
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(10) faxB=Cxd andgx_c)=6>x3
showthat a — dand B - C are parald.

2.4.4 Geometrical applications of crossproduct :

- >
Example 2.26 : Prove that the area of a quadrilateral ABCD is% |AC X BD|
where AC and BD are its diagonals.

Solution :
Vector Area of
quadrilateral ABCD } = Vector area of AABC + Vector area of AACD
—Z(ABXAC CACXAD ¢
D
=- CAC X AB) (AC X AD)
1-
=5AC x ( AB+AD>
1= ( A B
S2ACx A+ AD Fig. 2.17
1
=5AC x BD
. 1 ‘ - ‘
The area of the quadrilateral ABCD = 5 IACxBD

Deduction :

Area of a parallelogram = % )H)lx 32) where 31 and 32 are the
diagonals.
Example 2.27 :

If E), ? _c) are the position vectors of the vertices A, B, C of a
triangle ABC, then prove that the aea of triangle ABC is

1 o .
5 axDB+DBxC+C x a|Deduce the condition for points 5), _b> < tobe

collinear.
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_ 1 ‘ > > ‘
Solution : AreaofAABC——2 AB x AC

Now AB=0B-OA=T -3
and AC=0C-OA=C-a
=2 1> - - 2
Hence,areaofAABC=§’AB><AC|=§‘(b—a)x(c—a)‘
1l » - > > > - |
=3 bxc-bxa-axc+axa
1l 2> 2 2. 2> -
=3 bxc+axb+cxa
Areaof AABC = : E)xT:))+_b)><_C>+_C>><E)|

If the points A, B, C are colllnear then the area of AABC =0

:—laxb+b><c+c><a| 0
2

=
:laxb+bxc+c><a =0

= = =
(or) axb + bxc Cxa=0

+
Thus axB + B xC + Cxa=0 isthe required condition of
collinearity of the points with posmonsg T)) <

b c

smA snB~sinC

Example 2.28 :  With usual notation prove that
— — —
Solution :Let BC=a, CA= D, AB=
. 1 211> -2l 1 -
Bytheareapropertyoftnangl%z axbhb =5 b x c =5 |cxa
= Rk el-le 2

ab sin (n—C) = bc sin(n—A) = ca sin (n—B)
= absinC=bcsinA = casinB

Divide by abc e
snC _snA _ sinB
c ~a ~ b
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. a b c
Takethereciprocals, g A “snB = sncC

Example 2.29 : Prove that sin(A + B) = sinA cosB + cosA sinB
Solution :

Take the points P and Q on the S
unit circle with centre at the origin I’° "y,
O. Assume that OP and OQ make / :
angles A and B with x-axis A M N

respectively. o[Xe ;X
-|POQ =|POx +|QOx =A+B L5

Fig. 2.19
Clearly the coordinates of P and Q are (cosA, sinA) and (cosB, — sinB).

Take the unit vectors T and T) along x and y axes respectively.
- = o
OP=OM+MP = cosA{ +snAj
> o> o —
00 =0N+NQ = cosBT +sinB(- T) - |N&! = sing

= cosBT -sin BT)

30 0b = |60l bl sna+e)® = sna+e)®

OQxOP =10Q| |IOP|sin(A+B)K = sin(A+B)K .. (D)
- > >
i i K

—> —> - . i

OQxOP= | —snB 0| = K[sinAcosB +cosAsnB] ...(2)
cosA sinA 0

From (1) and (2)
sin (A + B) = sinA cosB + cosA sinB
Example 2.30 : Show that the area of a parallelogram having diagonals
37+ —2Kand 1 -3] +4K is5/3.
Solution: Let d=37 + ] -2K and dp= 1 -3] +4K

Areaof the parallelogram = % ‘31 X ?2‘
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-S> 5 >
i K

dixdy=|3 1 _o|=-27-147 -10K
1 -3 4

= | Fx D] = JC 27+ C197 e C10?
=+/300 =10\/3
Areaof the parallelogram = :_2L ‘ﬁl x ?2‘ :%10\/3% = 5\/3 5. units

2.4.5 Applications of Vector Product in Physics
The moment of a force about a point :

_)
Let aforce F be applied at a point

5> >
P of arigid body. Then the moment of WA
%
force F about a point O measures the
- >
tendency (amount) of F to turn the '
body about point O. If this tendency of 0 2
rotation about O is in anti-clockwise N PJe
direction the moment is positive, Fig. 2.20

otherwiseit is negative.

- -
Let F be the force and P be a point on the line of action of F. Let T be
the position vector of P relative to O.

%
The magnitude of the moment of the force F about O is the product of the

_)
magnitude of F and the length of the perpendicular from O to the line of action
of theforce.

%
.. Magnitude of the moment = ‘ F ‘ (ON)
In right angled triangle ONP

__ON_ON
smO—OP— N
[l

|?|sino = on
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%
.. Magnitude of the moment = ‘ F ‘ (ON)
9
= |_r)| ’ F ‘ sino6
_>
= ‘_r) x F
- . . .
.. Moment (or) Torque of force F about the point O is defined as the
- S
vector M = r xF

Example2.31:

A force given by 37+ ZT) ~ 4K s applied at the point
(1, - 1, 2). Find the moment of the force about the point (2, — 1, 3).

Solution :

We have ACAL)
F =37 +2] -4% i
073 = _|> - T) + 2_k> - P(1,12)
OA=27-T +3K ?Fig. 221

“(7P-7+28) - (@7 -7 +3%)
oo
- -
The moment M of the force F about the point A is given by
> o D
—> —> ! J K -
M=TxF=|_1 0 -1|=27-7] -2K
3 2 -4
EXERCISE 2.4

(1) Find the area of parallelogram ABCD whose vertices are
A(-5,2,5),B(-3,6,7),C(4,-1,5) and D(2,-5, 3)
(2) Find the area of the parallelogram whose diagonals are represented by

27 +3] +6Kand37 -6 +2K
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(3) Find the area of the parallelogram determined by the sides

T+27+3Kand-37 -27 + K

(4) Find the area of the triangle whose verticesare (3, - 1, 2), (1, - 1, - 3)
and (4,-3,1)

(5) Prove by vector method that the parallelograms on the same base and
between the same parallels are equal in area.

(6) Prove that twice the area of a parallelogram is equal to the area of another
parallelogram formed by taking as its adjacent sides the diagonals of the
former parallelogram.

(7) Provethat sin (A—B)=sin AcosB - cosAsinB.
orces2i +7j,2i -=5j + ,— I +2j — K act a a point
8) Forces2i +7],21 -5] +6K, -1 +2] - K int P

whose position vector is 47 - ST) ~ 2K . Find the moment of the
resultant of three forces acting at P about the point Q whose position

vector is6 1 + ? _3%.
(9) Show that torque about the point A(3, — 1, 3) of aforce 47 + 2? + K

through the point B(5, 2, 4) isT + ZT) ~8kK.
(10) Find the magnitude and direction cosines of the moment about the point

(1, - 2, 3) of aforce 27 + 3? + 6 K whose line of action passes through
the origin.

2.5 Product of three vectors:

Let 5), Tf < be three vectors. By inserting dot and cross between

E), _b> Cinthe samedl phabetical order we introduce the following :
- 2 2 (o ») > -> 2\ -2
( b) ( b)xc,(axb).cand(axb)xc

Consider (E) : _b)) . C

Here & . B isascaar quantity and dot product is not defined between a

scalar and vector quantity. Therefore (E) . B)) . ¢ isnot meani ngful.

Similary (E) : _b)) x ¢ isnot meaningful.
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But (_a)x_b>) . Cis meaningful, because @ x B is a vector and
ES _b>) . ¢ isthedot product between the vectors axB andC.

Similarly (2 x ?) x ¢ ismeaningful.
2.5.1 Scalar Triple Product :

Let @, B, C bethree vectors. Then the product (_a> x T)’) . Ciscaleda
scalar triple product.

Geometrical Interpretation of Scalar Triple Product :
Let E), ? < be three non-coplanar vectors. Consider a paralelopiped
. . > > 2
having co-terminus edges OA, OB and OC such that OA = a, OB = b and
2 _ >
OoC=c.

Then & x B is a vector
perpendicular to the plane

T
containing & and b.
Let ¢ be the angle between

- =
Cand dax b .

Fig. 2.22

Let CL be perpendicular to the base OADB. Here CL is the height of the
parallelopiped.

HereCL and & x b are perpendicular to the same plane
— Clispadletoa xb. = |OCL =¢
Inright angled triangle OLC, CL = I_c)l CoS ¢

.. Height of the paralleopiped CL = |_c>| CoS ¢

Area of the parallelogram

Base area of the parallelopiped =
P PIP {with?and?asadjacentsidas

Base area of the parallelopiped = |§) x _b>|

79



Now, (2x8).2=[2x8|[2]|coss
= [basearea] [height]
(_) _b)) N {Volumeof the parallelopiped with
a x . C =

. - > 2
co-terminousedges a , b, €

Thus, the scalar triple product (E) X _b)) < represents the volume of the

paralleopiped whose co-terminous edges E{, _b> < forma right handed system
of vectors.

2.5.2 Propertiesof Scalar Triple Product :

Property (1) :

2x8).2=(8x2).32=(2x3). B [cydicorder
Proof :

Let 3), _b> < represent the co-terminous edges of a parallelopiped such
that they form aright handed system. Then the volume V of the parallelopiped

isgivenbyV=(§)><_b>) i

Clearly _b) _c> A as well as _c> 5), Bform a right handed system of
vectors and represent the co-terminous edges of the same parallelopiped.

2v=(Bx2). Zaav=(2x3). 8

wv=(3x8).2=(8x2).2=(2«3).3 ()
Since dot product is commutative (1) gives
v=2.(3x8)=3.(8x2)=3.(3x3) ..

From (1) and (2)
(2x8).2-2.(8x%
The dot and cross are interchangeable in a scalar triple product.

In view of this property, the scalar triple product is written in the following
notation.
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Property (2) :
The change of cyclic order of vectors in scalar triple product changes the
sign of the scalar triple product but not the magnitude.

iey[2 82 =-[32732]=-[2®3]--[3 ¢ 3]
Proof :
We have [2 82]=(3«8).2
= (8x3). 2~ 2xB=-8x3
[2.3.2]--[% 3 ¢] (1)

Similarly we can prove other results.
Property (3) : The scalar triple product of three vector is zero if any two of
them are equal.

Proof : Let E) , _b> _c) be three vectors.

When & = B,
[2 8¢]=(3x8).2=(8x3B)?
=79.¢ =0 BxB=0
Similarly we can provefor_b)=_c>andfor_c)=5)
Property (4) :
For anythreevectorsg,_b), C and scaar [xE’ _b>_c>] =) [E) _b>_c>]
Proof : [XE) _b)?]:(kgx?)._c):x(?x?) <
- [7 B2]

Property (5) :
The scalar triple product of three vectors is zero if any two of them are
paralel or collinear.

Proof : Let & , T)) < be three vectors such that & is paralel or collinear to

_b>. Theng:x_b> for some scalar A.
[2 82]=[»8B2]=20 =0
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Property (6) (without proof) :
The necessary and sufficient condition for three non-zero, non-collinear

vectorsg,_b>,_c) to becoplanaris[g _b)_c>] =0
e, _a),_b),T:)arecoplanar = [5) T;_c)] =0
Note: Three possibilities for [E> B _c)] to be zero are

. -> 2> >

(i) atleast one of thevectors a, b, ¢ isazero vector.
- >

b

(ii) any two of thevectorsa), , C arepardldl.

(iii) The vector 2, _b) < ae co-planar.
But for cases (i) and (ii), the case (iii) istrivialy true.
Result :

Scalar Triple Product in termsof components:

Let E) = a.l_i) + az? + ag—k), _b) = b1_|> + bz? + b3T(),
- - - -
C=cpi +cyj +c3k,

a1 a a3

Then [E) _b)_c>] = | by by bg

€ C C3
7K

- >
Proof : Wehave a x b= |a; a, ag

by by bs

- — -
= (aghz — aghy) i —(ashz —agby) | + (abp — aghy) K

[2.8.2]-(3«8).2=(3xB) (T +c,7 +cs¥)
(aghs — aghy) c1 — (a1b3 — agby)c, + (a1by — azby)cs
a, a, ag
by by bs

G &2 G
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Distributivity of Cross product over Vector addition :
Result :

For any three vectors E), _b) _c)

wehave Z x (B+2)=2xB+3x ¢

This can be proved by determinant form of cross product.
Example2.32: Iftheedges a =— 31 +7] +5K, B=-51 +7] - 3K

=77 - ST) ~ 3K meet at a vertex, find the volume of the

parallelopiped.
Solution :
Volume of the parallelopiped = [5’, B), _c)]
-3 7 5
=|-5 7 -3 =-264
7 -5 -3

The volume cannot be negative
.. Volume of paralelopiped = 264 cu. units.

Note : Box product may be negative.
ES

Example 2.33: For any three vectors < prove that

e > >
a+b, b+c, c+a]= [a bc]

I
—~ —~
ol o

1 Il
N

ol o]

+ (2x8).2+(3x2).3+(8x2).3
-[282]+[823] =2[3 B2]
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Example 2.34 : If_x).5)=0, ?._b>=0, X.C=0and X = O then show

that E’ , _b) _c) are coplanar.
Solution :
X.2a=0 and?._b>:0impliesgand_b>areirto_x>

. axb isparalel to X

X = k(g X _b>)
Now X.2=0 = (2xB).2=0= [2 B 2] =0
-2 2 =
= a, b, c arecoplanar
2.5.3 Vector Triple Product :
Definition :
Let a2, B, C be any three vectors, then the product 2 x (Tf x _c>) and

5) X _b)) X _c) are called vector triple products of 5) , T)) _c>
Result :

=
For any threevectors a , b, ¢

(2<8)x2=(3.2)8-(8.2)7

This result can be proved by taking A= al_i> + azT) + a3_k> ;
_b)zbl—i>+ bz?'i' b3k , C —C1_|>+ Cz?"' C3_k)

Property (1) :

The vector triple product (E’ X _b)) x € isalinear combination of those
two vectors which are within brackets.
Property (2) :

The vector triple product (E) X T:»)) x Cis perpendicular to ¢ andliesin

the plane which contains aandB.
Property (3) :

2x (8x2)=(2.2)8-(3.8)2
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Example2.36: If & =31 +2

+6
C=57-7+2K, find (i)gx(_b>><_c>) (ii)(ﬁx?)x_c’

and show that they are not equal.
Solution :
T T K
(i) BxC=|5 _3 g| =207 +10K
5 -1 2
-> o>
i j K
- Zx(Bx2)=|3 5 _4| =1007-307 +60%
0 20 10
T T K
(ii) axB=|3 » _4| =-38] -19K
5 -3 6
> o> >
i ] K
g (E)x_b))X_C): 0 -38 —-19 :—95?—95?+190_k>
5 -1 2

From (i) and (ii) Zx(?x_c’) " (E’x_b’)x_c’
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2.5.4 Vector product of four vectors;

For the four vectors 5) , _b> _c> ? the vector product of the two vectors

(Zx_b)) and (_c)x?) namely (?x_ﬁ) X (_c>><3) is called vector
product of four vectors.
Example 2.37 : Let a , B) Cand d be any four vectorsthen

i (BxB)«(2xd)=[2Bd]2-[2B 2

iy (@xB)«(2xd)=[227d] B-[821]3

Solution :

i) (BxB)x(2x)=2x(2xT) wheeX =3x8
(.32 (3.9
{(2x8).2)2-1(3x8) .2/
-[28d]2-[282]<

Similarly we can prove other result by taking X=Cxd
Note: (1) If thefour vectorsg , B> _c> ? are coplanar then
(2x8)x(2xd)=3.
(2) Let E), B be lie on one plane and _c) d lie on another plane.

These planes are perpendicular then (5) X _b)) : (_c) X 3) =0
Example 2.38 :

Prove that [_a) B,
Solution :
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B e] [82z]
8 2] sme[822]=[2 ® <]

product of four vectors:

8ol ol

255 Scal
For four vectors a , B) _c> d the scalar product of the two vectors

namely axBand € x d iscaled scaar product of four vectors.

e (2x8).(2x7)

Result : Determinant form of (E)x_b))(_c)x?)
22 34
AN
Proof : . .
(2+8).(2x3)=(3xB).% wheeX=2x7d

(Bx%)
1B (2x)]
[

EXERCISE 2.5

(1) Show that vectors a , _b> < are coplanar if and only if

> D DD -
a+b, b+c ,c+aarecop|anar.

(2) Thevolume of a parallel opiped whose edges are represented by

_ 12T +2K,37 - K, 27 +] - 15K is546. Find the value of .

(3) Prove that ‘[a b c]‘ = abc if and only if a , b, I are mutualy
perpendicular.

87



(4) Show that the points (1, 3, 1), (1, 1,-1), (- 1,1, 1) (2, 2, - 1) are lying
on the same plane. (Hint : It is enough to prove any three vectors formed
by these four points are coplanar).

) fa=27+3]-K, B=-21+5K, ¢
Verify that ax( b x_c)):(g . _c>) B - (_) . _b)) 2

(6) Provethat a x (_b)x_c) +B x (_C>><E>

() 1 d=27+3] -5K, B=—T1+7

_c)—4_|>—2?+3_k) show that (

ol

@ Provetha (2 xB) x T =7 x (B x2)iff 3 and
(where vector triple product is non-zero).

(9) For any vector 2
provethat_i>x (a X )

(10) Provethat (_> (
B=27

ap Fnd (2 xB). (2 ¥
B=27+K, ?:2| +?+?, d=T+]
%
a

(12 Verlfy(axb) (?x?) [

for_) , _b) c and? in problem 11.

2.6 Lines:
2.6.1 Equation of aline:
Parametric and non parametric vector equations:

Let P be an any point with paosition vector T onthe given line. A relation

satisfied by T for all points on the line is then found using certain conditions.
Thisrelation is called the vector equation of the line.

Parametric vector equations:

If T is expressed in terms of some fixed vectors and variable scalars,
(parameters) the relation is then called a parametric vector equation.
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Non-parametric vector equation : If no parameter isinvolved, the equation is
called a non-parametric vector equation.
Vector and Cartesian Equations of Straight lines:

A straight line is uniquely determined in space if

(i) apointonitand itsdirection are given

(ii) two pointson it are given.

Note : Eventhough the syllabus does not require the derivations
(2.6.2, 2.6.3) and it needs only the results, the equations are
derived for better understanding theresults.

2.6.2 Equation of a straight line passing through a given point and
parallel to a given vector :
Vector form :

L et the line pass through a given point A whose position vector is & w.rto
O and parallel to the given vector V . LetPbe any point on the line and its

position vector w.r.to O be 7.
—> —
WehaveOA=a, OP=T
9
AP and V are paraldl.

2 _ .=
. AP =tV for somescaart

—> - =
OP = OA+ AP x Fig. 2.23

> _ 2> .=
IN=a+tv .. (D
This represents the vector equation of the given straight line.

Note: ¥ = & + tv, where t is a variable scalar (i.e., a parameter) is the
parametric vector equation of the line.

Corollary : If the straight line is given to be passing through the origin, then
the equation (1) becomes Y=tV

Cartesian form : Let the co-ordinates of the fixed point A be (x4, ¥4, z;) and the
direction ratios of the parallel vector bel, m, n. Then

- AT R S R -
a=x1i+y;j+zK ;v =li+mj +nkK
>_ 2, 2 D
r=xi +yj +zK
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T = Rtk T 4y + 2R =g T 41T +z R )+t (7 +mT +n®)
Equating the coefficients of _|> T) K we get
X=X+l {Theﬂe arethe

y =y +tm parametric equations
z=z+tn of theline
X=X Y% =4
= 7 =, m - t, n - t
X=X _Y-Y1 Z-7

Eliminating t, we get — m_ - n
Thisis the cartesian equation of the line passing through a point (xq, y;, Z;)
and parallel to avector whosedrsarel, m, n.

Non-parametric vector equation :

= TxV=axuv
Thisisthe non-parametric vector equation of the line.
2.6.3 Equation of a straight line passing through two given points:
Vector Form :
Let the line pass through two given points A and B whose position vectors

- - .
are a and b respectively.
Let P be any point on the line and its

. >
position vector be r
We have

— — —
OA=a,0B=bBadOP=T

— —
AP and AB are parallel vectors.

— —
.. AP =t AB for some scalar t
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= t(CTE&—C?A)zt(B)—_’)

- —>
OP = OA+Al

=Z+t(b—a) ©)  ..(1
Y =(@1-Ha+tb

This represents the vector equation of the given straight line
r=(1-t A +1tb wheret isavariable scalar (i.e., a parameter) is the

%
Note: r =
parametric vector equation of the required line.

Cartesian form :

L et the co-ordinates of the fixed points A be (X4, Y1, z) and B be (X, Yo, 2))
- T S R - T S S S
a=x i +y1j+z1K ; b=x%i+y,j +K ; r =xi +yj +zK

Substituting these values in equation (1) we get
X7 +y] +2zK = (Xl_i> *‘)’1T> + 21_k>>
= o> D> = 2 D>
+t[<x2' *Y2] +22k>—(><1' *Y1] +21k)]

Equating the coefficients of _|> T) ®

X=X+ (% — Xy) {Theﬂe aethe
e parametric equations
y =y +ty2-y) of theline
z2=7+1(z-27)
X— X y-¥1 Z7h
- = t, = —— =t
Xo = Xq Yo—VY1 HL—n

Eliminating t, we get
X=X YY1 Z-7
X=X Y2=Y1 &—74

Thisisthe cartesian equation of the required line.
Xo — X1, Yo — VY1, Zp — z; are the d.r.s of the line joining the points

Note :
(X]_! y]_! Z]_) and (X2’ YZ, ZZ)
Non-parametric vector equation :

_)

- > o
AB= OB-OA= b - a
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— - >
AP= OP-OA=T -a
> :
Since AP and AB are collinear vectors
- =
— APxAB=0

- (7-3)«(8-3) =7
Thisisthe non parametric vector equation.
2.6.4 Angle between two lines:

Let V=2, + (T and 7 = By + sV PR
be the two lines in space. T2
These two lines are in the direction of 7
- > -
uand V. TS
“Angle between the two lines is IREETs
defined as the angle between their Fig. 2.25
directions’.
- >
If(9istheanglebetweenthegivenIin&sthene:cos’1 il’)
[ell

Cartesian form : If the equations of the lines arein Cartesian form
X=X ¥Y=-Y1 Z-7 X=X ¥Y=-Y1_Z2-7
2, - b - ¢ MM =Tp TTg
Where a4, by, ¢; and a,, b,, ¢, are the direction ratios of two lines, then
angle between them is
o= COS_{ 313 + bbby + €10 }
\/ alz + b12 + 012 \/ a22 + b22 + C22
Note : When two lines are perpendicular then aja, + bib, + ¢1c, =0
Example 2.39 : Find the vector and cartesian equations of the straight line

passing through the point A with position vector 37 - T) +4K and paralel to
thevector — 51 + 7? +3K
Solution : We know that vector eguation of the line through the point with

- - - . . > _ 2> > .
position vector a and parallel to v isgivenby r = a +tv wheretisa
scalar.
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Heea =31 - | +4K

V=_57+7] +3K
.. Vector equation of thelineis
_r>=(3_i)—?+4_k>)+t(— 5_i>+7T>+3_k>) )

The cartesian equation of the line passing through (X4, y;, z;) and parallel

to avector whosed.r.sarel, m, nis
X=X Y-Y1 Z-7
I = m ~ n
Here (Xll y_']_! Z]_) = (3! - 1! 4)
(I, m, n) = (_ 51 77 3)
— + -
.. Therequired equation isX_ 53 =Y 7 1 =Z 34
Example 2.40 : Find the vector and cartesian equations of the straight line
passing through the points (- 5, 2, 3) and (4, — 3, 6)
Solution : Vector equation of the straight line passing through two points with

position vectors aand D is given by

T = a+t(b—_a>)
Here a=-57 +2] +3K
B=47-37+6K
B-d=97-5] +3K
*. Vector equation of thelineis

?:(—Si +2] +3k)+t(9_i>_5?+3_k>)or

P=a-9(s7+27+3R) +t(a7-37 +6%)
Cartesian Form:

Therequired equation is
X=X ¥Y-Y1 Z-Z
X=X Y2=Y1 &4

Here (X11 yl’ Zl):(_ 51 21 3) 1 (X21 y2! 22):(4’_3! 6)
o Xt5 _y-2 z-
9 T -5 7 3

3. . . .
isthe cartesian equation of the line
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Example 2.41 : Find the angle between the lines

Solution : Let the given lines be in the direction of

D
)

©)
(4)

©)
(6)

(7)
(8)

)

ThenU=T7+2] +2K, V=37 +2] +6
Let 6 be the angle between the given lines

P37 +27 R +t(T+27 +2R) and
?:5?+2_k>+s(3_i’+2?+6_k’)

_u>and_v>
R

- -
u.v
;. Cos0 =
>l
[2|lv
- > - —
u.v=19; |ul=3; |v]=7

1 1
cosf = 2—2 = 0= cos (2—2)

EXERCISE 2.6
Find the d.c.s of avector whose direction ratiosare 2, 3, — 6.
(i) Canavector have direction angles 30°, 45°, 60°.
(ii) Can avector have direction angles 45°, 60°, 120°?
What are the d.c.s of the vector equally inclined to the axes?

A vector ¥ has length 35\/2 and direction ratios (3, 4, 5) , find the

N . -
direction cosines and componentsof r .

Find direction cosines of the linejoining (2, — 3, 1) and (3, 1, — 2).

Find the vector and cartesian equation of the line through the point

(3, — 4, — 2) and parallel to the vector 97 + 6? +2K.

Find the vector and cartesian equation of the line joining the points
(1,-2,1)and (0, - 2, 3).

Find the angle between the following lines.

Xx-1 y+1 z-4 _y+2
-2

z-4

Find the angle between the lines
=57 -77 +u(- 7+ 47 + 2R)
T=_27+R+1(s7 +4R)
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2.6.5 Skew lines
Consider two straight lines in the space. There are three possibilities.
(i) either they areintersecting

(i) (or) paralel i

(iii) (or) neither intersecting nor \§§\§\\§\\\\\\\\§§\\\\\\
paral!Fe\l/vo lines in space which are \\\\\\X\%\k\\\&%\\\%
either intersecting or parallel are

coplanar lines. §\\\\\\\\\\\\\§\\\\\\\
Ca“e?.e.,pl a pllane can be defined \\\\\\\§§‘&\§\\\\\\\\>

passing through (the two lines \\\\\\\\k\\\\\\\\\\

completely lie on the plane) two Fig. 2.26
intersecting lines or through two
paralel lines.

Therefore, two lines lie on the same plane are called coplanar lines.

Two lines Ly and L, in space, which are neither intersecting nor parallel
are called skew lines. (See Fig. 2.26)

i.e., two linesin space which are not coplanar are called skew lines.
Shortest distance between two lines
(i) Trivialy the shortest distance between two intersecting linesis zero.
(i) Paralel lines

Theorem : (without proof) The distance between two parallel lines

>_ 2 2. D2 . .
r=aq+tu ; r = a,+suisgvenby

> (= =2
‘U X(az— a])‘

d=
[

(iii) Skew lines:
Theorem : (without proof) The distance between the skew lines

S>> D
r=aq+tu ; r = d,+sv isgivenby

> D>\
(@,-2) 0 V]

-5 o
|2 |

L
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Condition for two linesto inter sect :
The shortest distance between the intersecting lines

> S D > — .
r=a;+tu; r=a,+sv is0
The condition for intersectingisd =0 = [(E)z—gl) 77]:0 (or)
Xo=X1 Yo=V1 -7
Il my ny =0 if
2 M Ny
(X1, Y1, Z9)and (X,, Yo, 25) are the points whose position vectors are 5)1 and

- - -
ap, and Iy, my, ny; Iy, My, n, are the d.rs of the vectors u and v

respectively. (_u) and V are not paralel)
Example 2.42 : Find the shortest distance between the paralld lines

?=(7-7)+t(27 -7+ R) and
T = (2|+'+k)+s(2|—_') )

. . . . >_-> -
Solution : Compare the given equations with r=a1+tu and ' = a,+su,

FOT I S U S
gz—glz_i)'i'Z?'i'_k)
T T K

_U>>< _a>2—g =12 -1 1 :—3_i>—j +5K
1 2 1

[T x(2,-3)] =vo+ 175 = v
[ ENEES S RN

Thedistancebetween} _ | ( ap— al)‘ _/35
the parallel lines |_>| ~4/6
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Note : If the equations are in the Cartesian form, write in the vector form and
find the distance between them.

Example 2.43: Show that the two lines T = (_|> - T + t(2_i> + _k>) and
= (2_|) —T)) +s(_i> + T)— _k)) are skew lines and find the distance between

them.

2

Solution : Compare the given equations with 7= 5)1 +tu an

-> > -
dr =a

2+SV

A= T -7 8,=2T—JandU=27+K;, V=T +]-K

ar,—aj =1
100
[(Z,-3)T V=20 1]=-120
11-1
.. They are skew lines.
> > v T) ¥ —
Uuxv=1|2 0 1|=-1T+3)]+2K
1 1 -1
[T« 7| =i
-> D>\
| @, =)V
Shortest distance between the lines = NN . (D
|u><V
. .1
From (1) shortest distance between them |3W4
. -1 y-1 z+1 -4 +1
Example 2.44 : Showthatthelmesx3 =y_1 =ZO andX2 =%=23

intersect and hence find the point of intersection.
Solution : The condition for intersecting is

X=X Y2=N1 -4
I my ny =0

o my ny
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Compare with £ _Yh_ZAa an X0 Y Y2 2%
P ly m ng 2 m ny

, we
get
Xuynz) =1, 1L,-1); (X Y2 2) = (4,0,-1)
(Il' ml, nl) = (3, — 1, 0) X (Iz, m2, n2) = (2, O, 3)
The determinant becomes

3-10
3 -10| =0. Notethatﬁ)andT/)arenotparallel.
2 0 3

.. Thelines are intersecting lines.
Point of inter section :

x-=1 y-1 z+1
Take 3 ~ -1~ 0 7

.. Any pointonthelineisof thefoom (3L + 1, - A +1,- 1)

x-4 y z+1
Take 2 —0— 3 -u

Any point on thislineis of theform (2u + 4, 0, 3u-1)

Since they are intersecting, for some A, p

Br+1, —-A+1,-1)=(2u+4,0,3u—)=>Ar=1landp =0

To find the point of intersection either takeA =1 oru=0

.. The point of intersectionis (4, 0, — 1).
Note : If the two lines are in the vector form convert into cartesian form and do
it.
Example 2.45 : Find the shortest distance between the skew lines

P=(7-7) 227+ 7 +R) ad

_r): (_i>+?—_k>)+“(2_i>—?—_))

Solution :
. . e e ->_ - —
Compare the given equation with ' = a,+tu and r = a,+sv,
e T i e e T e
aj=i—jra=ir+j-K;u=2i"+j+Kk;
> D D D
v=2i - j-K
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By-a,=2] - K and U xV=4] —4K
o]0 2 -1
(3,-3)07V]=l2 1 1=
2 -1 -1
|_u>><7 =4\/—2
distance = [22_2077( 12 _3
[e.v| 422

2.6.7 Collinearity of three points:
Theorem (without proof) :

Three points A, B and C with position vectors E), Bad respectively
are collinear if and only if there exists scalars A4, A,, A3, not al zeros such that

& +AyB +43C = 0 andiy +Ay+23=0
Workingruletofind the collinearity :

Write the equation of the line in cartesian form using any two points and
verify the third point.
Note : If the three points are collinear then their position vectors are coplanar,
but the converse need not be true.
Example 2.46 : Show that the points (3, - 1, - 1), (1,0,- 1) and (5, - 2, - 1)
are collinear.
Solution :

The equation of the line passing through (3, - 1, - 1) and (1, 0, — 1) is

X23=y_+11=261=k(say)

Any point onthelineisof theform (2L +3, -1 -1,-1)

The point (5, — 2, — 1) isobtained by putting A = 1.

. The third point lies on the same line. Hence the three points are

collinear.
Note : If the position vectors of the points are given then take the points and do
the problem.
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Example 2.47 : Find the value of A if the points (3, 2, — 4), (9, 8, — 10) and
(A, 4, — 6) are collinear.
Solution :

Since the three points are collinear, the position vectors of the points are
coplanar.

let a=37 +2] -4K ;B =91 +8] —~10K ; C=AT +4] —-6K
32 -4
[282]=]98 -10] =0
%4 -6

=12.=60 = A=5

EXERCISE 2.7
(1) Find the shortest distance between the parallel lines

0 ?z(z?-?ﬁ) +t(?—2?+3?) and
_r) (_i)—ZT)+T<)) +s(_i)—2?+3T<))

z+3 x-3 _y+1 z-1
2 AT =3 T

(2) Show that the following two lines are skew lines
=57 +57+7R)+t (P27 + R) and

P=(P+7+R) +s(77+67 +7R)

(i) X5 ==

— + — — — 7
3 Showthatthelinesx—lzuzzandx 2:y 1: Z 1intersect
1 -1 "3 1 2 1

and find their point of intersection.

6 _y-7 z-4

(4) Find the shortest distance between the skew lines Xg == 1
X _y+9_z-2
(5) Showthat (2,—1, 3), (1,-1,0) and (3, — 1, 6) are collinear.

(6) If the points (A, O, 3), (1, 3, — 1) and (— 5, — 3, 7) are collinear then
find M.
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2.7 Planes:
A plane is defined as a surface such that the line joining of any two points
on it lies completely on the surface.

Vector and Cartesian Equations of the planes in parametric and non-
parametric form :

A plane is determined uniquely in the following cases :

(i) Givenapoint on the plane and anormal to the plane.

(ii) Given anormal to the plane and distance of the plane from the origin.

(iii) Given apoint and two parallel vectors to the plane.

(iv) Giventwo pointson it and aline paralel to the plane.

(v) Given three non-collinear points.

(vi) Equation of aplane that contains two given lines.

(vii) Equation of a plane passing through the line of intersection of two

given planes and a given point.

Note : Eventhough the syllabus does not require the derivations
(2.7.1t0 2.7.5) and it needs only the results, the equations are
derived for better under standing the results.

2.7.1 Equation of a plane passing through a given point and
per pendicular to a vector.
Vector Form : Let the plane pass through the point A whose position vector be

A w.rto O and perpendicular to the given vector 7.
Let P be any point on the plane and its

. - .. =

position vector be r . Join AP
. . —>
Here AP is perpendicular to n

: Kﬁ.ﬁ’:o:(&g—&)._n}:o

(r ~3) =07 n=3dn ¥ Fig.2.27

Thisisthe vector equation of the required plane (non parametric form.)
Cartesian Form :

If (X1, Y1, 21) are the coordinates of A and a, b, ¢ are the direction ratios of I
%

then & =x1 +y;] +2K ; n=ai +b] +cK ; ¥ =x1 +y] +2zK
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now, (7-3) 7 =0

= [(x—xl)_i)+(y—y1)?+(z—zl) _k)] (a_i>+bT>+c_k)) =0
= aX—xq) +by-yy) +c(z-2)=0
Thisisthe cartesian equation of the plane (in non-parametric form).
Corollary : The vector equation of the plane passing through the origin and

. =>. >
perpendicular to thevector nis r.n =0
2.7.2 Equation of the plane when distance from the origin and unit
normal isgiven :

Let p be the length of the Z
perpendicular ON from the origin O 4
to the given plane. Let f be the unit N
vector normal to the plane in the \/\
direction O to N. Y PN p
—> A I
Then ON = pn. 0 R
Let P be any point on the plane Y
and let its position vector be T x Fig. 2.28
. e S
(i.e.,) OP= r".Join NP.
—> . =2 .
NP lies on the plane and ON is perpendicular to the plane
- = (—> —>> —
= NP.ON=0 = \OP-ON/.ON=0
(P-ph).ph=0 = 7.A-ph.fi=0
i.e, _r).ﬁ=p (-.-/ﬁ./ﬁ=1)
Thisisthe vector equation of the plane (in non-parametric form).
Cartesian form :
If I, m, n are the direction cosines of W then =17 + mT) +nk

T ohzp = (x Ty +2R) . (P +m7 +nR) =p
IX+my+nz=p
Thisisthe cartesian equation of the plane (in non-parametric form).
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- . .
Corollary : If n isanormal vector but not a unit vector,

n
then N=——
_)
7]
_)
- n - |—>|_
r._)—p:r n=p|n|=q(say)
if
- >
. n=q

Thisisthe vector equation of the plane perpendicular to the vector T,

The length of the perpendicular from origin to this plane islji)—I
n

2.7.3 Equation of the plane passing through a given point and
parallel to two given vectors:

Let @ be the position vector of
the given point A referred to the

origin O. Let 0 and V be the
given vectors, which are paralel to
the plane.

Let P be any point on the plane

and let its position vector be T

Fig. 2.29

9
(.e)OP=T.
. — >
Through A, draw a lines AB and AC pardlel to u and v lying in the
-2 -2
planessuchthat AB= u and AC= v .
— — —>
Now AP is coplanar with AB and AC
— — —
. AP = sAB +t ACwheresand t are scalars
- >
=su +tv
A
OP = OA+ AP
= T=a+su+tv .. (1)
Thisisthe vector equation of the plane (in parametric form).
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Cartesian form :

Let _a> = Xl_i> +le> +Zl_k>

- _ = e I N -
u=Ili+mj+mK; v=hi+myj +nyK
e T

From (1) rr=a+su+tv

x_i> + yT) + zTZ = (xl_i) + le) + zl_k>> + s(l 1_i> + mlT) + nl_k>)

+t (Iz_i) + mz? + nz_k>>
Equating the coefficients _I) T) ®

X=X +8+tl, These are the
parametric equations

y =yt sm +tmp in cartesian form

Z=z +sn +1n,
= X=X =8+t
Y-y = sm +tmy,
Z-z =S+,
X—X, Y=Y, Z—-2
Eliminatingsandt,weget | I1 M ng [ =0
b M

This is the cartesian equation of the required plane (in non-parametric
form).

Non-parametric vector equation

> > —
AP, AB and AC are coplanar i.e., the vectors T Z, _u) V are coplanar

> 2> > - -> 2> > -2 2> -
r-a, u, v]:O or[r u v]:[a, u, v]

Thisisthe vector equation of plane in non-parametric form.
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2.7.4 Equation of the plane passing through two given points and
parallel to a given vector :
Vector Form :

Let & and B be the position
vectors of the points A and B
(respectively) referred to the origin

O. Let 7 be the given vector.

The required plane passes
through the points A and B and is
paralel to the vector v. 0 >y

Let P be any point on the plane

and let its position vector be T Fig. 2.30
9
(.e)OP=T.
. I - -
Through A, draw aline AC lying in the plane such that AC = V.
— L= —
Now AP is coplanar with AB and AC

— > >
.. AP = sAB +t ACwheresand t are scalars
>
_s(Gh-oh+ v =s(B-2) + v
s
OP = OA+ AP
- 7= +s(b—a .. (D
T = (1—s)§’+s_b’+ tV
Thisisthe vector equation of the plane (in parametric form).
Non-parametric vector equation

- = —
AP, AB and AC are coplanar i.e., the vectors - Z, B- aandV ae

coplanar
> D D Do
r-a, b -a ]—O

Thisisthe required vector equation of planein non-parametric form.
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Cartesian form:
Let E):xl_i)+yl?+zl_k> ; T)>:x2
e I -
V=I1i+mj +nkK r
From (1)
X_i) +y? + ZT() = (Xl_i> +le> + Zl_k>)
[ - - - T T
S| (Xo—-X) 1 +(Vo—-VY) | +(m—-7) k] +t(| i +mj +nk)
Equating the coefficients of _|) T) ®
X = X1 + (X — Xq) + {These arethe
- _ parametric equations
Y=yt lyz—yy) +im in cartesian form
z2=71+92—-27) +1tn
= (X—=X7) = (X —xp) +1I
(Y=Y = sly2—yp) +tm
(z-2) =s(—-7) +1tn
X=X Y=-Y1 Z-74
Eliminatingsandtweget | Xo—X; Yo—-Y1 -2 | =0
| m n
Thisisthe (non-parametric) equation of the planein cartesian form.

2.7.5 Vector and cartesian equations of the plane passing through three
given non-collinear points.

Let @ , B and € bethe position
vectors of the points A, B and C
referred to the origin O.

The required plane passes
through the points A, B and C.

Let P be any point on the plane

and let its position vector be T

. 2 >
(ie,)OP=r. Fig. 2.31
Now join AB, AC and AP.

— Lo —
AP is coplanar with AB and AC
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— —
.. AP =sAB+t ACwheresandt are scalars

_s(oh_on)+ dot_an)
-s(B-3)+:(2-37

=
OP = OA + AP

= T):E)+s(_b)—3))+t(_c>—§>) (or)

T =(l-s-Ha+sB+t¢
Thisisthe vector equation of the plane (in parametric form).
Non-parametric vector equation :

—> — —
AP, AB and AC are coplanar.

(e [ 22 2&l=0

e e e T
r-a, b-a,c—-al=0

Thisisthe required vector equation of plane in non-parametric form.
Cartesian form :
Let 2: Xl_i) + le) + Zl_k) B
e -
r=xi +yj +zK
From (1)
X_i) + y? + ZT() = (Xl_i> + yl? + Zl_k>)

+ s[(xz —x) T+ 02—y *(z- Zl)_k)]

Q)

- N I S 2
D =% 0ty ] +3K; € =xg0 +y3) +23K

+t 0 -x) T + Ya-yD T + (23— 2K )

Equating the coefficients of _I) T) and _k> we get
X = Xq + S(Xo — X1) + t(X3 — Xp) {These arethe

— _ _ parametric equations
Y =Y1tslyz = y)) + s =) in cartesian form
2=+ -7 +t(zz-79)
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X-X Y-Y1 Z-7
Eliminatingsandtweget | X2—X1 Y2—Y1 %—-71| =0

X3=X1 Y3=YN1 B3—4
This is the (non-parametric) equation of the plane in cartesian form.

Example 2.48 : Find the vector and cartesian equation of a plane which is
at a distance of 8 units from the origin and which is normal to the vector
37 +2] - 2K
Solution : Herep=8 and _n)=3_i)+2?—2T<)

37 +2]-2K 37 +2] -2K

%
A_ N
“”‘lﬁl‘ Jo+4+d | NI7

Hence the required vector equation of the planeis

—> A
r.n=p
- 3T +2] —2T<’_8
' \J17 -

7. (57 +27-2R ) = 8\T
Cartesian formis (xi +yj + zk). (3i + 2j — 2K) = 817
3x+2y—2z=&\[17
Example 2.49:

The foot of perpendicular drawn from the origin to the planeis (4, — 2, —
5), find the equation of the plane.

Solution : The required plane passes through the point A(4, — 2, — 5) and is

. —>
perpendicular to OA.

%
. a=47-27-5Kandn=0OA=4T7 -2] -5K
.. Therequired equation of the planeis Yr=an

7 (a7 -27-5%) = (47 -27 -5%) . (47 - 27 -5%)
=16+4+25

?.(4?—2?—5_13):45 (1)
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Cartesian form :
> D > > > D
(XI +y]j +zk).(4| -2j —5k)=45
4x -2y -5z =45

Example 2.50 : Find the vector and cartesian equations of the plane through the
point (2, — 1, — 3) and paralld to the lines
Xx-2 y-1 z-3 x-1 _ y+1 z2
3 T2 T _gadT =3
Solution : The required plane passes through A(2, — 1, — 3) and pardlléd to

U=37+2] -4Kand V=27 -3] +2K

. T i e S e <
Therequired equationis r = a +su +tv

7= -7-3%) +s(37 +27 -4% ) + (27 - 37 +2R)
Cartesian form :
(X1, ¥1:29)is(2,-1,-3) ; (I, m, ny) is(3, 2, -4) ; (I5, My, ny) iS(2, -3, 2)
X=X1 Y=Y1 Z—7
The equation of theplaneis | 11 m  n =0
o M
X-2 y+1 z+3
i.e, 3 2 -41|=0
2 -3 2

= 8x+14y+13z+37=0
Thisisthe required equation in cartesian form.

Example 2.51 : Find the vector and cartesian equations of the plane passing
through the points (- 1, 1, 1) and (1, — 1, 1) and perpendicular to the plane
X+2y+2z=5

Solution : The normal vector to the plane x + 2y + 2z=5is T+ ZT) +2K.
Thisvector is parallel to the required plane.

.. The required plane passes through the points (- 1, 1, 1) and (1, — 1, 1)

and parallel to the vector T+ 2? +2K.
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Vector equation of the plane:
The vector equation of the plane passing through two given points and
paralel to avector is

Y= 1- S)E> +sb +tV wheresand t are scalars.

Here E):—_i)+T>+T<) ; _b)=_i>—T)+_k) ; 7:_i)+2?+2

Tz ((7eTR) +s(P-T+R) +t(P 427 +2R)
Thisisthe required vector equation of the plane.
Cartesian form:
(X, Y1, 29 is(=1,1,1); (X, Y2, Z) is(1, -1, 1) ; (I3, My, ny) is (1, 2, 2)
X=X3 ¥Y—-Y1 Z—-74

I’

The equation of theplaneis | Xo—X1 Yo—Y1 -7 | =0
Iy my ng
Xx+1 y-1 z-1
i.e, 2 -2 0 |=0
1 2 2
= 2X+2y-3z+3=0

Example 2.52 : Find the vector and cartesian equations of the plane passing
through the points (2, 2, — 1), (3, 4, 2) and (7, 0, 6)

Solution :  Vector equation of the plane passing through three given non-
collinear pointsis

7= (1—s—t)€1> +sb +1t¢ wheresand t are scalars.
Here @ =271 +2] - K; B=31 +4] +2K;C=71 +6
LT = (1-s-t) (2_|> + 2? - T<))+ S (3_|> + 4? + 2_k>) + t(7_i> + 6_k>)
Cartesian equation of the plane:
Here (X1, Y1, 21) i1S(2,2, - 1) ; (X2, Y2, 2) iS(3,4,2) ; (X3, Y3, Z3) is(7, 0, 6)

X=X YY1 -7

I

The equation of the planeis | X2—X1 Yo—Y1 -7 | =0

X3—=X1 Y3—-Y1 I3—74
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)

)
©)

(4)
®)

(6)

()

)

©)

(10)

(11)

Xx—2 y-2 z+1
i.e., 1 2 3 | =0

5 -2 7
5x+2y-3z=17
Thisis the Cartesian equation of the plane.
EXERCISE 2.8

Find the vector and cartesian equations of a plane which is at a

distance of 18 units from the origin and which is normal to the vector 27
+77 +8K

Find the unit normal vectorsto the plane 2x —y + 2z=5.

Find the length of the perpendicular from the origin to the plane
7. (3? +47 + 12T<’) = 26.

The foot of the perpendicular drawn from the origin to a plane is
(8, — 4, 3). Find the equation of the plane.

Find the equation of the plane through the point whose p.v. is

27 - T) + K and perpendicular to the vector 47 + 2? _3%.
Find the vector and cartesian equations of the plane through the point

(2, - 1, 4) and parallel to the plane T .(4_i’ _127 - 3?) =7.

Find the vector and cartesian equation of the plane containing the line

-2 _ _ | s " e
Xz :y32:zslandparalleltothel|ne X31:y21:zl _

Find the vector and cartesian equation of the plane through the point
(1, 3, 2) and paralléel to the lines
x+1 y+2 z+3 X—-2 y+1 z+2

2 T -1 3 @ =5 =73
Find the vector and cartesian equation to the plane through the point
(-1, 3, 2) and perpendicular to the planes x+2y+2z = 5 and 3x+y+2z = 8.
Find the vector and cartesian equation of the plane passing through the
pointsA(1, — 2, 3) and B (- 1, 2, — 1) and is parallel to theline
Xx-2 _y+1 z-1

2 - 3 T 4
Find the vector and cartesian equation of the plane through the points
(1, 2,3) and (2, 3, 1) perpendicular to the plane 3x— 2y + 42— 5=0
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(12) Find the vector and cartesian equation of the plane containing the line

XE 2_Y 3 2 _ Z__zl and passing through the point (— 1, 1, — 1).

(13) Find the vector and cartesian equation of the plane passing through the
points with position vectors 37+ 4? + 2_k>, 27 - 2_j) ~ K and
7_i> + T<)

(14) Derivethe equation of the planein the intercept form.

(15) Find the cartesian form of the following planes:

() T=G-20T+B-1] +(@s+)K

(i) T=(L+s+)T +(2-s+1)] +(3-2s+20)K
2.7.6 Equation of a plane passing through the line of intersection of
two given planes:

Vector form :
The vector equation of the plane passing through the line of intersection of

> > > > .
theplanes r . ny=g; and r . Nn,=0s is
(7 Ri—a)+2 (7. Ry-ap) = 0
i.e _I’) . <_n)1+ k_n)g = ql + )\,qZ

Cartesian form :

The cartesian equation of the plane passing through the line of intersection
of the planesa;x + byy + cyz+ d; = 0 and apx + byy + c,z+ d, = Ois
(agx +byy + ¢z +dy) + A(aX + boy + cpz+ dy) = 0
Example 2.53 : Find the equation of the plane passing through the line of
intersection of the plane 2x — 3y + 4z = 1 and x — y = — 4 and passing through
the point (1, 1, 1).
Solution :

Any plane through the line of intersection of the given two planesis of the
form (2x-3y+4z—- 1) +A(Xx—-y+4)=0

But it passes through the point (1, 1,1). .. A= —%

.. The equation of the required planeis (2x — 3y + 4z — 1)—%(x— y+4)=0
i.e,3x-5y+82-6=0
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Example 2.54 : Find the equation of the plane passing through the intersection
of the planes 2x — 8y + 4z = 3 and 3x — by + 4z + 10 = 0 and perpendicular to
theplane3x-y-2z-4=0

Solution :

The equation of the plane passing through the line of intersection of the
given two planesis of theform (2x — 8y + 42— 3) + A (3x -5y +4z+ 10) =0
ie,(2+3\) x+(-8-5\y+ (4+4r)z+ (— 3+ 101) =0. But the required
planeis perpendicular to the plane3x -y -2z-4=0

.. Their normals are perpendicular.
ie,(2+30)3+(-8-50)(-1)+(@4+40)(-2)=0
6L+6=0 = A=-1
.. Therequired equationis (2x — 8y + 4z— 3) —-1(3x -5y +4z+ 10) =0
-x-3y-13=0
X+3y+13=0
2.7.7 The distance between a point and aplane:

Let (X1, Y1, Z) be a point and ax + by + cz + d = 0 be the equation of the
aX1+by1+CZ]_+d

a+b%+c?

plane. The distance between the point and the planeis

Corallary (1) :
The distance between the origin and the planeax + by + cz+ d=0is

__d
\Ja? +b%+c?

Coroallary (2) :

The distance between the two parallel planes ax + by + cz+ d; = 0 and

dy—dy

2

ax+by+cz+d,=0is >
a‘+b°+c

2

Note : If the given equation is in vector form, convert into cartesian form and
find the distance.

Example 2.55 : Find the distance from the point (1, — 1, 2) to the plane
P=(7+7+%) +s(7-7) +(7-7%)
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Solution :
The given plane is passing through the point (1, 1, 1) and parallel to two

vectors (_|> - T)) and (T) - _k)) :
.. The corresponding cartesian equation is of the form

X= Xl y N yl Z- Zl (X]_a yla Zl) = (19 1) 1)
Il my ny =0 (Il’ m, nl) = (1 -1, 0)
|2 my N, (IZ’ mp, n2) = (09 1’ - 1)

x-1vy-1z-1
ie., 1 -1 0 =0ie,x+y+z-3=0
0 1 -1
Here (xq,y1,2) =(1,-1 2
axq + by, +cz; +d

. The distance = = 1_1+2_3‘ - L

- S N@ewe@ | TN e

Example 256 : Find the distance between the pardlel planes
P(7-T+R) =340 7. (P+T-R) =5

Solution :
The corresponding cartesian equations of the planes are
—-X-y+z-3=0andx+y-z-5=0
ie, Xx+y—-z+3=0 andx+y-z-5=0

distance = 4% = 3+5 }—i
T2+ W1+1+1] T4[3

2.7.8 Equation of the plane which contain two given lines (i.e. passing
through two given lines)

- - — - - — . .
Let r =a,+tu and r = a,+sv bethelines, lieon the plane.
- 2> 5 > > > > >
Clearly r—a4, u, v arecoplanar and r — a,, U, vareaso coplanar

Thus| P -3, T,V |=0and| 7= 3, T,V |=0
Note that the above two equations represent the same required plane. The
cartesian form is
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X=X1 Y=-Y1 Z—74 X=X Y=Y -2

Il my Ny =0 or |1 my ny =0
o M M o M M
- T -
Where a=x1 i +y ] +z1K ; as=%1i +y,j +2K
->_ 2 T I - >
u=lgim+mj+n K ; v==hi+mpj +nyK

Note:

(1) If the two lines are paralldl then take the two trivia points from the
lines and the parallel vector. Now find the equation of the plane
passing through two points and parallél to avector.

(2) Through two skew lines, we can’t draw a plane.

Example 2.57 : Find the equation of the plane which contains the two lines
Xx-1 y-2 z-3 x-4 y-1 z

2 =3 - 4 a5 =5 =7
Solution :

Take the trivial point from the first line and the two parallel vectorsi.e. (X,

y1.2)=(1,23).

(I, my, ng) =(2,3,4) and (I, my, np) = (5, 2, 1)

The required equation is

X=X ¥Y=Y1 2-7 x-1y-2 z-3
b, m n | =0=|2 3 4 ]|=0
o m 5 2 1

= 5x—-18y+11z-2=0
Example 2.58 : Find the point of intersection of the line passing through the
two points (1, 1,—- 1) ; (- 1, 0, 1) and the xy-plane.
Solution :

The equation of the line passing through (1, 1, — 1) and (- 1, 0, 1) is

1 y-1 z+1

2 - 1 7 -2
It meets the xy-planei.e. z=0

x=1 -1 1 1
.'.T:yT:_—Z = x=0, y=5

The required point is(O, % O)
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Example 2.59 : Find the co-ordinates of the point where the line
v = (_'> + 2? - 5T<>) + t(2_i> - ST) + 4T<>) meets the plane

? (27447 -R) =3
Solution :
The equation of the straight line in the cartesian formis
x21 _ y_32:225 - 2 (s)
. Any point on thislineis of theform (2L + 1, — 3L + 2, 4A - 5).
The cartesian equation of the planeis2x+4y—-z—-3=0
But the required point lies on this plane.
S22+ D)+ A4(-30+2)-(4-5-3=0 =>Ar=1
.. Therequired pointis(3, -1, - 1)

EXERCISE 2.9

(1) Find the equation of the plane which contains the two lines
Xx+1 y-2 z-3 Xx-4 y-1_

(2) Canyou draw a plane through the given two lines? Justify your answer.
P=(7+27-47R) +t(27 +37 +6R) ad
7=(37+37-5R) +s(-27+37 +8 %)

(3) Find the point of intersection of theline
T= (T)—_k>) +s(2_i>—T>+T<>) and xz—plane

(4) Find the meeting point of the line
?=(e7+7-3%) +t(27-T-R) andtheplane
X—2y+32+7=0

(5) Find the distance from the origin to the plane
?.(27-7+5R) =7

(6) Find the distance between the parallel planes
X—-y+3z+5=0; 2x-2y+6z+7=0
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2.7.9 Angle between two given planes:

The angle between two planes is
defined as the angle between their >
normals. n, (]

Let the _r)._n)1=q1and_r)._n>2=q2

the equations of the given two planes A "

(where _n)l and _n)z are normals to the
planes.) '
Now if 6 be the angle between the two _
planes (i.e., between their normals) then Fig. 2.32
- =
g _M1-N7
0=cos 7T 7 -1
il 72
| Nall N2

Note: (i) If the two planes are perpendicular then _n>1 . ﬁ)z =0
(i) If the two planes are parallel then _n>1 = tﬁ)Z wheretisascaar.

2.7.10 Angle between a line and a plane
The angle between aline and a plane is
the complement angle between the line
and the normal to the plane.

Let _r) = 2 + t_b> be the line and

> >
I . n =qbetheplane.

If 0 isthe angle between the line and the
plane then (90 — 6) is the angle between

the line and the normal to the plane. Fig. 2.33
i.e, (90-0)istheangle between B and 1
B.1 B.1 b.n
5 c0s(90°-0)=7————= Sn0=7" —=0=sn? -
n n n
2z 2z 2z
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Note : If the line is pardlel to the plane i.e, the normal to the plane is

perpendicular to the line then B.n=0
Example 2.60 : Find theangle between 2x—y+z=4andx+y+2z=4
Solution : The normalsto the given planes are

n1-2_|)—?+_>and n,= T+ j T+2K

Let 6 be the angle between the planes then

- -

nl. n2 _l o=
- 646 2 -

Al e

Example 2.61 : Find the angle between the line

wla

cos0O =

_r):(_i>+ZT>—T<)) +p(2_i)+T>+2_k>) and the plane

7 (37-27 +6R) =0
Solution : Let 6 be the angle between the line and the plane.

= >
b.n

o | B
[8][7]

B=2T+]+2K: n=31-2] +6K
16 o- (16)

3x7 = 0=sn7(31

EXERCISE 2.10
(1) Find the angle between the following planes :
(i) 2x+y—z=9andx+2y+z=7
(i) 2x-3y+4z=1land-x+y=4
iy 7. (57 +7T-%) =7ad 7. (P +47-2R) = 10
(2) Show that the following planes are at right angles.

?.(P-7+%)=15a07. (P-T-3%) =3

(3) Theplanes T . (2T’+x?—3_k>) =10and T . (ki +3T’+TZ) =5
are perpendicular. Find A.

sind =

sing =
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— + —
(4) Find the angle between the line X32 = y_ 11 = Z_ 23 and the plane

3X+4y+z+5=0
(5) Find the angle between the lineY =7 + ? +3K + x(z_f + T) - _k>)
and the pIane_r>.(_i> + T)) =1

2.8 Sphere:

A sphereisthe locus of a point which movesin space in such away that its

distance from afixed point remains constant.

The fixed point is called the centre and the constant distance is caled the

radius of the sphere.

Note : Eventhough the syllabus does not require the derivations
(2.8.1, 2.8.2) and it needs only the results, the equations are
derived for better understanding theresults.

2.8.1 Vector equation of the sphere whose position vector of centreis

- L
C and radiusisa.

Let O be the point of reference

(origin) and C be the centre of the

sphere having position vector < b
— P
(.e)OC=7C s 7>
Let P be any point on the sphere ¢ f
whose position vector be T 0
N .
(e)oP=T7 Fig. 234
: L . 2 >
Theradius of the sphereisgivenasa. (i.e,) CP= a
, > o o
From the figure (2.34) OP = 0OC +CP
> _ 2> >
r=c+a
> 2> >
r-c= a
EREINEL
= |r-cl=]a L. (D

Thisisthe vector equation of the sphere.
Coroallary : Vector equation of a sphere whose centreis origin and radiusis a.
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When O coincides with the centre C then € = 0 and the vector equation

of the sphere (1) becomes |_r)| = |2|
Cartesian form :

Let _r)=x_|)+yT)+zT<)
- - - -
C=C i +cj +c3K
= _r>—_c>:(x—cl)_i>+(y—c2)?+(z—c3)_k>
2
But |_r>—_c>| = a’ .. (2
From(2)  (x-c))?+(y-cy)?+ (z—cg)?=a° ..

This is the cartesian equation of the sphere whose centre is (¢4, 5, ¢3) and

raidusisa.
Corollary : If the centre is at the origin, then the equation (3) takes the form

X+ +Z=a’
This isknown as the standard form of the equation of the sphere.
Note: General Equation of a Sphere:
The equation X2+ y2 + 2+ 2ux + 2vy + 2wz + d = O represents a sphere
with centre (— u, — v, — w) and theradius = w+v+wi—d
Note:
(i) the coefficients of X2, y2 Zae equal.
(ii) The equation does not contain the terms of xy, yz and zx.

2.8.2 Vector and Cartesian equations of the sphere when the
extremities of the diameter being given :

Let C be the centre of the sphere.
Let A and B be the end points of the
diameter AB. A B

Let @ be the position vector of

9
the point A and B be the position A rg
vector of the point B with reference
tothe origin O. o)

Fig. 2.35
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—> —
(ie)OA=aandOB=TB
Let P be any point on the surface of the sphere. Let T be the position

_)
vector of P. (i.e.,) OP = T

- o> o
AP = OP - OA

I
—
|

- o o
BP=OP-0OB = r —
We know that the diameter AB subtends aright angle at P.

= ATISJ_I;D
= NS.@:O
= (7-3).(7-3) =0 e

which is the required equation of the sphere.
Cartesian Form:

Let A(Xq, Y1, 21) and B(x,, Y,, Z,) be the end points of the diameter AB.
Let P (X, Yy, 2) be any point on the surface of the sphere.
¥ K

— —
Now 3 = OA=x1_i)+le>+ 7K ; _b>=OB=x2_i>+sz>+ 2z

_>
?:OP:x_i)+yT>+z_k>

rom (7-3).(7-B8) =0
[(x_i)+y?+ z_k>)—(x1_i)+y1?+zl_k>)] . [(x_i)+y?+z_k))—(x2_i>+y2?+ 22_k>)} =0

(=3 T + =y T + -2 R ]| =3 T + (y=y9) T + 2= 2) K J=0
o (X x)) (X=%Xp) + (Y= Y1) (Y~ ¥) + (2 21) (2-2,) =0

Thisisrequired cartesian form of the equation of the sphere in terms of the
end points of the diameter.

Example 2.62 : Find the vector and cartesian equations of the sphere whose

centreis 27 — T) + 2K and radiusis 3.
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Solution : We know that the vector equation of the sphere with centre and
radiusis

|7-2|=a
Here =27 -7 +2K anda=3
*. Therequired vector equat|0n|s| ( _|> ?+2_k>)‘ =3

Cartesan equation :
Putting Y =xi+ yT) +7K we get
(7 +y7+2R)- (7 -T+2%)] =3

|(x— AT +(y+1)7 +(z- 2)T<’| =3
2
lxc-27 + @+ 07 +@-2R] =22
(x=2+(y+1)°+(z-2°=9
= X +yP+ 2 —Ax+2y-42=0
Example 2.63 : Find the vector and cartesian equation of the sphere whose
centreis (1, 2, 3) and which passes through the point (5, 5, 3).

Solution : Radius = \/(5— 1)2+ (5 2)2 + (3 3)2
:—\,16+ = —\/E:S

Here a=5 and_c)=_i>+2T>+3_k>
.. Vector equation of the sphereis

|7-2|=a
[_r)—(_i)+2?+3T<))}:5 .. (D)
Cartesian Equation : Let T =x7 +yT) +7K

From (1)
(P ey +2R) = (427 +3%)]| = 5
|(x 1)| +(y- 2)] +(z-3)K |

(x-1)2+(y-22?+(z-3%=25
Xy + 22— 2x—4dy-6z-11=0
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Example 2.64 : Find the equation of the sphere on the join of the points A and B

having position vectors 27 + 67) 7R and 27 - 4? +3K respectively as a
diameter.

Solution : Vector equation of the sphereis (_r) - 5)) : (_r> - B)) =0
Here 2=27+6] -7Kand B =27 -4] +3K
Let _r> = x_i) + yT> + z_k>
Therequired equation is

(g7 + 2R )-(27+67-7% ) L (7 a7 + 2% )-(27-47+3% ) =0

[(x - 2)_i) +(y— 6)? + (z+7)T<>] . [(x - 2)_i>+(y+4)T>+(z—3)T<>] =0 ..
Cartesian Equation :
From (1)

(X-2)(x=2)+(y-6) (y+4 +(z+7)(z-3)=0

= X+ + P —Ix-2y+4z-41=0
Example 2.65 : Find the coordinates of the centre and the radius of the sphere
whose vector equation is _r)2 _re (8_|> - 6? + 10_k)) -50=0

Solution : Let_r> = x_i> +yT> + ZT<>

2
P27 . (s7-67 +10%) -50=0

_r)2=x2+y2+22
=2 +y?>+ 7 —8x+6y—10z-50 = 0
Here 2u = coefficientof x = -8 = u = -4
2v = coefficientof y =6 = v=3
2w = coefficientof z= -10 = w=-5
Centre: (-u,—v,—w) = (4,-3,5)

Radius: \[u? + V2 + W’ —d = /16 + 9 + 25 + 50 =+/100 = 10 uts.

Example 2.66 :

Chord AB is adiameter of the sphere | r— (2_|> +7 - 6_k>) ) =+[18 with
coordinate of A as (3, 2, — 2) Find the coordinates B.
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Solution : The equation of the sphereiis ‘ r— (2_|) +7 - 6_k)) ‘ =4[18
= Centre of the sphereis (2, 1, — 6)

(i.e.,) Position vector of the centreis 27+ T) _6K
We know that
Centreisthe mid point of diameter AB
The co-ordinates of A are (3, 2, — 2) and let the coordinates of B be a., B, v)
a+3 B+2 y-2
(2111_6):( 2 9 2 5 2)
= a=1 p=0, y=-10
.. Coordinates of B are (1, 0, — 10)

EXERCISE 2.11
(1) Find the vector equation of a sphere with centre having position vector

27 - T) + 3K and radius 4 units. Also find the equation in cartesian

form.
(2) Find the vector and cartesian equation of the sphere on the

join of the points A and B having position vectors 27 + 6? ~ 7K and

27+ 4? ~ 3% respectively as a diameter. Find aso the centre and
radius of the sphere.

(3) Obtain the vector and cartesian equation of the sphere whose centre
is (1, -1, 1) and radius is the same as that of the sphere

P (P+7+2%) =5
(4) If A(-1,4,-3)isoneend of adiameter AB of the sphere

2 +y? + 7 — 3x— 2y + 22— 15 = 0, then find the coordinates of B.
(5) Find the centre and radius of each of the following spheres.

0 |7-(G7-7+a®)| =5
iy |27 + (37— 7 +4®)]| =2
(iii) X2 +y2 + 2 +4x -8y +22=5

(VT2-7. (4?+27’_6?) ~11=0
(6) Show that diameter of a sphere subtends a right angle at a point on the
surface.
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3. COMPLEX NUMBERS

3.1 Introduction :

The number system that we are aware of today is the gradua development
from natural numbers to integers, from integers to rational numbers and from
rational numbersto the real numbers.

If we consider the following polynomia equations (i) x — 1 = 0,
(i) x+1=0, (iii)x+1=1, (iv)2x+1=0and (v) % — 3 =0, we see that al
of them have solutions in the real number system. However this real number
system is not sufficient to solve equations of the form 2 +9=0i.e, there does
not exist any real number which satisfies % = — 9. The mathematical need to
have solutions for equations of the above form led us to extend the real number

system to a new kind of number system that allows the square root of negative
numbers.

Let us consider solution of a simple quadratic equation X2 + 16 = 0. Its

solutionsare x = + 4\/—_1 . We assume that square root of — 1 is denoted by the
symbol i, called the imaginary unit. Thus for any two real numbers a and b, we
can form a new number a + ib. This number a + ib is called a complex number.
The set of al complex numbers is denoted by C and the nomenclature of a
complex number was introduced by C.F. Gauss, a German mathematician.
Hence the extension of the concept of numbers from real numbers enables one
to solve any polynomial equation. The symbol i was first introduced in
mathematics by the famous Swiss mathematician, Leonhard Euler
(1707 — 1783) in 1748. ‘i’ isthefirst letter of the Latin word “imaginarius’ and
it is aso referred to as ‘iota’, a Greek alphabet. Later on the subject was
enriched by the original work of A.L. Cauchy, B. Riemann, K. Weierstrass and
others.

3.2 The complex number system :

A complex number is of the form a + ib where‘a’ and ‘b’ are real numbers
and i is called the imaginary unit, having the property that i’=—1.1fz=a+ib
then ais called the real part of z, denoted by Re(2) and b is called the imaginary
part of zand is denoted by Im(2) .

Some examples of complex numbersare 3 —i2, \/2 +i3, —% +i.

125



Note that 3 istherea part and — 2 isthe imaginary part of 3 —i2 and so on.

Two complex numbersa + iband c +id areequal if and only if a=cand b
=d. i.e., the corresponding real parts are equal and the corresponding imaginary
parts are equal. The real numbers can be considered as a subset of the set of
complex numbers with b = 0. Hence the complex numbers 0 + i0 and — 2 +i0
represents the real numbers 0 and — 2 respectively. If a = 0 the complex number
O+iboribiscalled apureimaginary number.

Negative of a complex number :

If z=a+ ib isacomplex number then the negative of z is denoted by — z
anditisdefinedas—z=—-a+i(-b)
Basic Algebraic operations:

Addition : (a+ib)y+(c+id) =(a+c)+i(b+d)

Subtraction : (a+tib)—(c+id) = (a—c)+i(b-d)

To perform the operations with complex numbers we can proceed as in the
algebra of real numbers replacing i2 by — 1 whenever it occurs.

Multiplication : (a+ib)(c+id) = ac+iad +ibc+ i’bd

= (ac—bd) +i (ad + bc)

3.3 Conjugate of a complex number :

If z=a + ib, then the conjugate of z is denoted by z and is defined by
z =a-ib
a+tib_a+ib c-id
c+id “c+id *c—id

Division :

Multiplying the numerator and denominator by the conjugate of the
denominator, we get
a+ib [ac+hbd . | bc—ad
c+id ™| 2+ 2] T | 2+ P
3.3.1 Properties:

(i) zz =(a+ib) (a-ib)= a® + b? which is anon-negative real number.

(ii) Conjugateof z isz ie, z =z

(i) If zisred,i.e, b=0thenz=z. Conversely, if z=z,
i.e,ifatib=a-ibthenb=-b =2b=0 = b=0
(- 2#0inthereal number system). .. b=0 = zisreal.
Thus zisred < theimaginary partisO
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(iv) Letz=a+ib. Thenz =a-ib
 z+z =(a+ib)+(a-ib)=2a

v
:>a:Re(z):22Z

Similarly, b=1m(z) =55~
(v) The conjugate of the sum of two complex numbers z;, z, is the sum of
their conjugatesi.e, z;+z, =2; +2,
Proof : Let zy =a+tibandz=c+id
Then z1+z=(a+ib)+(c+id)=(a+c)+i(b+d)

z1+7 =(@+c)-i(b+d
7z =a-ib, z =c-id
7 +2, = (a—ib) + (c—id) = (a+c)—i(b+d)

Similarly it can be proved that the conjugate of the difference of two
complex numbers z;, z, is the difference of their conjugates.

e, z1-2=2 -2
(vi) The conjugate of the product of two complex numbers z;, z, is the
product of their conjugates.

Proof : Letzy=a+ibandz, =c+id. Then
712, = (a+ib) (c+id) = (ac— bd) + i(ad + bc)
212, = (ac - bd) —i(ad + bc)
z =a-ib, z =c-id
7 2, = (a—ib) (c—id) = (ac - bd) —i(ad + bc)

=17
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(vii) The conjugate of the quotient of two complex numbers z;, z,, (z, # 0)
isthe quotient of their conjugates.

. z) ;.
i.e, |3 |=— (without proof)

) Z,
N n
wiii) ' = (2)
Example 3.1 : Write the following as complex numbers
(i) \-35 (i) 3-/-7
Solution :

() V-35=(-1)x(35) =-1.+/35=i~35
(i) 3-=7 =3-A(c1)x7 =3-4/-17 = 3-i\[7

Example 3.2 : Write the real and imaginary parts of the following numbers :

()4-i\/3 (ii)g [
Solution :
(i) Letz=4-in[3; Re(d =4, Imz)=-4/3
(i) Letz=%i i Re(2) =0, Im(z)=%
Example 3.3:

Find the complex conjugate of (i) 2 +in7, (ii))—4—i9 (iii)A/5
Solution :

By definition, the complex conjugate is obtained by reversing the sign of
the imaginary part of the complex number. Hence the required conjugates are
(i) 2 -7, (ii)—4+i9and (iii)+/5 (- the conjugate of any real number is
itself).

Example 3.4 :
Express the following in the standard form of a + ib
H@E+2)+(-7-1) (i) @B—-6i)—(2-7)
. . . 5+5i
(iii) (2-3i) (4 + 2i) (iv) 3_4i

Solution :
i) B+2)+(-7-)=3+2-7—-i=-4+i

(i) (8-6i)—(2i-7)=8-61-2i+7=15-8
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(ii) (2-3i) (4+2)=8 +4i — 12i — 6i°= 14— 8i
. 5+5i _5+5 3+4i _ 15+20i + 15i + 20i°
V) 374734 *3+4 - 2442
_-5+35 -1 7.
=~ 25 =75 *5!
Note: i4=1
i3=_j
i2=_1
(I)4n - 1
(i)4n— 1 - _

i
" 2=-1:nez
Example 3.5 : Find the real and imaginary parts of the complex number
320 _ {19
2i-1
Solution :

10 9
_ 3j20 _ {19 362 — (i2) |
0 ;= |2i_|1 _ 339 (i9)i

2i-1
_ 3 (1)
—1+2i

3+i
—-1+2i
340 —1-2
—1+2i —1-2i
_—3-6i—i-2i
- (_ 1)2 + 22
“1-7 -1 7.
=~ 5 T 5 5!

=

-7
Re( = -5 andIm(z) =5~
Example3.6:1fz =2+i,2,=3-2i and23:_71+32Bi

find the conjugate of (i) zyz,  (ii) (23)4
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Solution :

(i) Conjugate of 1z, is z; 2,

e (2+0)(3-2) = (2+0) (3-2)
= (2-i) (3 +2i)
= (2-1) (3+2i)
=6+4i-3i-2°=6+4i-3i+2

- s [ =
(i) 23 :(2_3 = —%+32@i

72 2
_K 143 } J(35.20)
22 472 "4
2
(G 4 g
_ 1 A3
=27 2!
EXERCISE 3.1
(1) Expressthefollowing in the standard forma + ib
. 2(i-3 L (L+i)(1-20)
(I) (1+ |)2 (”) 1+ 3|
4.9 .16

. o [
(iii) (- 3+1) (4 - 2i) (IV)3_2i8_i10_i15

(2) Findthereal and imaginary parts of the following complex numbers:

L1 . 2+5i . .
Ok (||)4_3i (iii) (2+1) (3-2i)
. L 1+i0\"
(3) Findtheleast positive integer n such that (ﬁ) =1
(4) Find the real values of x and y for which the following equations are

satisfied.
i) QA-ix+(1L+i)y=1-3i
(i) (1 +3|):<i— 2 +(2—33l)?/+| _

(i) X2 + 3x+ 8+ (x+ 4)i = y(2+1)
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(5) For what values of x and y, the numbers — 3 + i>?y and X% + y + 4i are
complex conjugate of each other?

3.4 Ordered pair Representation :
In view of the representation of complex numbers, it is desirable to define

a complex number a + ib as an ordered pair (a, b) of real numbers a and b
subject to certain operational definitions. These definitions are as follows:

(i) Equdity: (a,b)=(c,d) ifandonlyifa=c,b=d

(ii) Sum: (a,b)+(c,d=(a+c,b+d)

(iii) Product: (a, b).(c, d)=(ac- bd, ad + bc)

m(a, b) = (ma, mb)

Result :

Theimaginary uniti isdefined asi = (0, 1).

We have (a, b) = (a, 0) + (0, b) = a(1, 0) + b(0, 1)

and(0,1)(0,1)=(0-1,0+0)=(-1,0).

By identifying (1, 0) with 1 and (0, 1) with i we see that (a, b) =a +ib.

Thus we associate the complex number a + ib with the ordered pair (a, b).
The ordered pair (0, 0) corresponds to the real number O.
Remark :

Though the set of real numbers is ordered, the set of complex humbers is
not ordered. i.e., order relation does not exist in C. Given two complex numbers
7y and z, we cannot say z; < z, Orf z; > z. We can only say that

74 =z, Or Z1 # Z,, Since the points are represented in a plane. Thus the order
relations ‘greater than’ and ‘less than’ are not definied for complex numbers.
i.e., theinequalitieslike 1’ +i >3- 2i,i >0, (3 +1) < 2 etc. are meaningless.
3.5 Modulus of a complex number :

Let z=a+ ib be acomplex number.

The modulus or absolute value of z denoted by | z | is defined by
|21=/a+ b2

From the definition, it is obvious that E| =]z]| Since a’ + b’ = 7z,

|z]= \/Z—E (Taking the positive square root)
Result: Letz=x+iy

Now,x<\/x2+y2,thenRe(z)<|z| for y=0 .. (Y
Ify=0thenx=|z|then Re(2) = | z| ... (2
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Combining (1) and (2)
Similarly

Example 3.7 : Find the modulus of the following complex numbers:
H-2+4 (ii)2-3i (iii) — 3—2i (iv) 4 + 3i
Solution :
(i) |—2+4i|=\/(-2?+4% =20 = 25
(i) |2-3i|=\22+(-3)? = VI3
(iii) |-3-2i| =/(- 3%+ (-2 = V13
(iv) |4+3i|=\42+32 =B =5
3.5.1 Properties:
If 24, 2, ... z,, are complex numbers, then the following properties hold.

(i) Themodulus of a product of two complex numbers is equal to the product
of their moduli.

ezl =171 ||
. 2 _ 5= o5 — |2
Proof : 2121 = (1) 3 2 [~ 2z =|z[]

=@ 73

=(aa)(22)

=1z F 1P
Taking the positive square root on both sides, we get
lz12 =121 | ||
Note: Thisresult can be extended to any finite number of complex numbers
e, 212 ...70|= 1z ||| ... |7
(ii) The modulus of a quotient of two complex numbersis equal to the quotient
of their moduli.

|2y |

Al
Tz

i.e, Z

where z, # 0.
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: 4 1 :
Proof : Sincez,#0, z; = (2—2) .pandso |z |= 2—2 | z,| (by the previous
result)
1zl |z
Therefore 1= |5
|l " %
4| 1zl
Hence | =15
5| " 1z

(iii) Triangle inequality :
The modules of sum of two complex numbers is aways less than or equa
to the sum of their moduli.

e,z +2| < |zg| + |2

Proof : Let z; and z, be two complex numbers.
Weknow that |z + 2, P = (z1+2) (71 + 7)) [~ |zP=2z ]
@+2) (a+2)

217 +21+ 7 +7

2 v+t 12

124 P+12, P +2Re (2,2,)

2 2 -
<z [P+ " +2]z7 25| [-Re(@<]|z]
o2 2 —_
=z "+ "+ 2|7 |z wlz | =z|

_ 2

=[1z1+]z]]

P <llzl+lz)?
Thus taking positive sguare root we get
lz1+ < |z1] + | 2]
Note: 1 Writing — z, for z, in this result

Weasohave|z -2 | < [z | + |- |= 71— < |7] + | 2]
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Note: 2

The above inequality can be immediately extended by induction to any
finite number of complex numbers i.e, for any n complex numbers

2,2y, 2Z3, ..., Iy
|Z1+ 2+ 23+ ...+ 7| < || + || + ... +]| 7]

(iv) The modulus of the difference of two complex numbers is always greater
than or equal to the difference of their moduli.

Proof : Let z; and z, be two complex numbers.

Weknow that |z -2 > = (z1-2) (1 - 2) [|zPP=2zZ ]
=(z-2) (2_1—2_2)
=37 -0H-57 57
=27 +22 -2Re (21 Z72)

|z P+ P-2]27 2,1 [ Re@@<|z]
~Re(2>-|z]]

[\

=z P+1F-217] |z |

=z P+1F-21z] |zl
=[lzl-12°
cza-nPllznl-120?
Thus taking positive sguare root we get

lz1-2| 2|7 | - | 2]
- (1+3i)(1-20)
Example 3.8 : Find the modulus or the absolute value of (3 + 4)
Solution :
1+3)(A-2i) _ J1+3i] |1-2i]
(3 + 4i) B |3+4i|

_N12+312+ (9 _ 1045
\ 3+ 42 \25
10+/5
A
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3.6. Geometrical Representation

3.6.1 Geometrical meaning of a Complex Number

If real scales are chosen on two mutually perpendicular axes X'OX and
Y'OY (caled the x axis and y axis respectively), We can locate any point in the
plane determined by these lines, by the ordered pair of rea numbers (a, b)
called rectangular co-ordinates of the point.

Since every complex number a + ib can
be considered as an ordered pair (a, b) of
real numbers, we can represent such
number by a point P in the xy plane,
caled the complex plane. Such a
representation is aso known as the
Argand diagram. The complex number
represented by P can therefore be read as Fig. 3.1
either (a, b) ora +ib.

With this representation the modulus of the complex number z = a + ib

represents the distance between z and the origini.e, | z | = '\/a2+ b2 The
complex number z = a + ib can also be represented by the vector O_E
(Fig. 3.1) where P = (&, b) and pictured as an arrow from the origin to the point
(a, b). To each complex number there corresponds one and only one point in the
plane, and conversely to each point in the plane there corresponds one and only
one complex number. Because of this we often refer to the complex number z as
the point z

Clearly, the set of real numbers (x, 0) corresponds to the x-axis called real
axis. The set of al purely imaginary number (O, y) corresponds to the y-axis
called the imaginary number axis. The origin identifies the complex number
0=0+i0.

3.6.2 Polar form of a Complex Number :
Let (r, 6) be the polar co-ordinates of the point
P = P(x, y) in the complex plane corresponding to the complex number

Z=X+1iy.

135



Then we get from the figure (Fig. 3.2),

_OM _x . _PM_y
cose—op—randsne— P= 7

y
A
X=rcosd ; y=rsno P(x,y)
where r:\/x2+y2:|x+iy|iscalled <
the modulus or the absolute value of ,/ Y
z=x+ iy denoted by mod zor | z| 26 > x
(i.e., the distance from the origin to the o * M
point 2) Fig. 3.2
tan 0 =¥, .0 =tan‘1¥ is called the amplitude or argument of z=x + iy

denoted by amp z or arg z and is measured as the angle which the line OP
makes with the positive x-axis (in the anti clockwise sense).

Thusz=x+ iy =r(cos® +i sin 0) is caled the polar form or the modulus
amplitude form of the complex number. It is sometimes convenient to use the
abbreviation cis 6 for cos6 +i sin 6.

1Y

0 =tan X

isapplicable only for first quadrant numbersi.e., X & y are

positive.
3.6.3 Principal Value:

The argument of z is not unique. Any two distinct arguments of z differ
from each other by an integral multiple of 2x. In order to specify a unique value
of arg z, we may restrict its value to some interval of length 2r. For this
purpose, we introduce the concept of “principal value” for arg zasfollows:

For an arbitrary z = 0 the principal value of arg z is defined to be the
unique value of zthat satisfies— t <arg z<m.

Note: For z= 0, the argument is indeterminate.

Results:
(1) For any two complex numbers z; and z,

0 lzzl =1zl 12| (i) ag(z;.zp)=agz; +agz
Proof :

Letzy =rq(cos,+isinBy) and z,=r,(COSO, +isinHO,)
then |21l =1y, @9z =0; ; [|=1y ag2=0,
2.2y = I, (C0S01 +isin0O;) . (cosO, +isin0by)
=r4r, [(cOsBy . cOS O, —sinb; . sinB,) +
i (SN0, .cos0,+cos6; .sin6,)]
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r1rz [cos (01 +0) +isin (01 +0,)]

clzazl=rnr =171z and

ag(z1) =0,+0,=agz; +arg z,

Note:
This result can be extended to any finite number of complex numbersi.e.,
) ... | = |zl 1] ... | 7]

(i) arg(z12...z)=agz;+agz+... +ag z,
(2) For any two complex numbers z; and z,

|z |

Pl . 4
= = |z_2| (z,#0) (i) arg 2_2 =agz —-agz

5

Letzy =rq(cosB,+isin®y) and z,=r,(cosB, +isinO,)
Then [z |=ry, agz;=0rand |2, |=T1, agz,=0,
zy rq(cosb;+isindy)
Zy " ry(cos6,+ising,)

ry (cos@,+isin0;) (cosO,—isinby)
o (cosb, +1isinB,) (cosO,—isinby)

ry (cosd, cosb, + sinb, sinb,) + i (sinB, cosB,—cosH4 sin 6,)
r2 cos?0, + sin0,

:—; [cos (01 — 0,) +i sin (81 — 65)]
|

ri |z

T g

i
e}

=

and

gl
arg(z—zj =0,-6,=agz -agz

Exponential form of a Complex Number :
The symbol d%or exp (i0) (called exponentia of i0) is defined by

d¥=cos@+isine

Thisrelation is known as Euler’sformula.
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Ifz=0 thenz=r (cosO +i sin6) = ré®. This is called the exponential
form of the complex number z By straight forward multiplication of

1= (cos 0, +isin6;) and 2= cos 0, +i sin 0,
we have €%1.¢%2 = ¢(®1+ 02
Remarks:
(1) 1f6,=6andb,=—-06 intheabove definition
thenwe have? . 0 =d@-0 = d0-1
— dC9) =eTle . Thuswriting dC0 ase 10

i 1
we observethat e = ~o
e

(2) 1f 6, =0,=0then (¢%)" = ?® . By mathematical induction it can be

shown that (€)= €™ wheren=0,1,2 ...

(3) Since€e? =& '° weseethat, if z=re® then z =re ©
(4) Two complex numbersz; =r 1ei91 and z, = r2ei92 areequal if and only
ifry=rpand 0, =0,+2nm, n e Z (the set of al integers)

General rulefor determining the argument 6.

Letz=x+iy 0=n-a | 0=a
wherex,y € R 0=-n+a ‘ 0=—a
Takeoc:tan‘ljl'xl}
0 Both cos 6 and sin 6 are + ve. 0=a
zliesin the first quadrant.
(i) Sin®is+ve cosbis—ve 0=n—-qa
zliesin the second quadrant.
(iii) | Bothsin 6 and cos 6 are— ve 0=-n+a
zliesin the third quadrant.
(iv) | Sin®is—veandcosOis+ ve, 0=-a
zliesin the fourth quadrant.
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Example 3.9 : Find the modulus and argument of the following complex
numbers :
(i) —\2+i2 (i) 1+i/3 (iii))—1-i+/3
Solution :
(i) Let —A[2+i~/2 =r(cosO +isino)
Equating the real and imaginary parts separately
rcos@=-+/2 | rsin®=/2
rcos’0 = 2 | rPsn9=2
r? (c0326 + sinze) =4

r=4/4=2
cosg=—Y2_=1
=55
\/1— = 0 inthe 2" quadrant
sno = 2 =@
n 3n
O=n-4=7

modulusr =2, argument 6 = %ﬁ

Hence—\/—2+i\/—2:2(cos%n+isin%n)
(i) Let 1+i/3=r(cos +isin6)
Equating the real and imaginary parts separately
rcos6=1 rsin0=43
r’cos’ 0 = 1 l r?sin’0 =3

r2(c0329+sjn26) 4= r=2
cosb =5
3 = 0 inthe 1% quadrant
snb = 5
0=3 [ye:mﬁiﬂ
modulusr = 2, argument6=%
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Hence 1+i\/§=2(cos%+isin%>
(i) Let —1-i~/3=r(cos6 +isino)
Equating the real and imaginary parts separately
rcos@=-1|rsnf=-1/3
r’cos?® = 1 | r’sin®0=3
r? (c0529+sin26) =4
= r=2
-1
cosO = >

NE = 0 inthe 3" quadrant
snb = —

modulusr =2, argument 6 = %

Hence — 1—i\/—3=2[cos(%)+ i sin(%ﬂ=2[cosz—g— i sinz—ﬂ

Example 3.10: If (a1 +iby) (ap +iby) ... (a, +ib,) = A+iB,
provethat (i) (a2 +by?) (a’+b,9) ... (3,2 +b,2) = A% +B?

b b b
. _1(P1 _1(P2 _1(5n) _ _1(B
(ii) tan (—alj + tan (_azj +... +tan (—an) =kn + tan (A) keZ

Solution :
Given (a; +ibq) (ay +iby) ... (a, +ib,) =A+iB
| (ag +iby) (ap +iby) ... (@, +iby) |= |A+iB]|
| (@ +iby) | [(ax+iby)|...[(an+ibp) |= |[A+iB]
\Ja2 +by? \[a?+ b2 ... A[a2+ b2 = \[AZ+ B
Squaring on both sides
(@ +b?) (@ + b)) ... (& + b)) = A%+ B?
Also
arg [(a +iby) (a2 +iby) ... (ay +iby)] =arg (A +iB)
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arg (ay +iby) +arg (ap +iby) ... +arg (a, +iby) = arg (A +iB)

b:
Now arg (g +ib;) = tan ™t (a')

Hence (1) becomes

b b b
tant (a—ﬂ +tan L (a—z) +.. +tant (a”) = tan (%)

By taking the general value,

b b b
tan * (a_ﬂ +tan t (3_3 +..+tan ! (an) = kn +tan * (%)

Example 3.11 :

P represents the variable complex number z, find the locus of P if

wla

Q) Re(zz%il):l (ii) arg@%ﬂ -
Solution :
Let z=x+iythen
. z+1 x+iy+1 (x+1)+iy
(M) Z+i T xHiy+i T x+ily+ 1)
_[x+D+iy] [x=ily+ D)
T oxFi(y+1) T [x—i(y+ 1)

@)

_Xx+ D +y(y+ D) +ilyx—xy—x-y-1)

X+ (y+ 1)
_XX+D+y(y+ D +i(=x-y-1)
) X2+ (y+ 1?2
Given that Re (ZZLJr:D =1
COX(x+1) +yy+1)
Tyt

= AV Hx+y =Xy +2y+1
= X-y = lwhichisastraight line.
.. Thelocusof Pisastraight line.

i) ag(557) = 5
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Lagiz-1)-ag(z+1) =

agx+iy—1D—-ag(x+iy+1)

wla wla wla wla

ag[(x—1) +iy] —arg[(x+ 1) +iy]

-1_Y -1_Y _
tan Ty -t g =
Yy Yy
'[an_l x—1 X+1 o
()]
X — X+1
_x _. T
= X2_1+y2—tan3
_y
x2+y2—1_\/§

2y =3¢ +3y° —[3
- \J3x% ++[3y% — 2y —~[3 = 0 isthe required locus,
Result : (without proof) :
If |z—2z; | =|z- 2, | then the locus of zis the perpendicular bisector of the
linejoining the two points z; and z,.
3.6.4 Geometrical meaning of conjugate of a complex number :

. y P(z2)
Let z = x + iy be a complex number A

represented by P in the Argand diagram. <
Then we know that its conjugate z is
givenby z =x—iy. o AL » X
ie,z=Xy)= z=(X-Y)
.. If Q represents the conjugate z, then
conjugate of z is obviously the mirror Q(z)

image of the complex point z on the red .
axis (Fig. 3.3). This clearly indicates that Fig. 3.3

z=27 < zispurely area number. Aloz=z
In polar coordinates let
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z=r(cos0 +i sin 0) then
Z=r(cos(-0)+isin(-0)) soif
z=(r,0) thenz=(r,-0)
Thus the moduli of both z and zZ are same i.e, r = \/x2+y2 But the
amplitude of z is 6 and that of z is — 0. Hence El =]z| ad
amp z= —ampz

y
A I
I,, !

Fig. 3.4 gives the simple geometric o O
relations among the complex number z K : » X
its negation — z and its conj ugate z _ /," !

-z = (=% — Y. It is the point L’ !
symmetrical to z about the origin. "2 <

Fig. 3.4

3.6.5 Geometrical representation of sum of two complex numbers

Let A and B represent the two complex numbers z; = x; + iy; and
Z, = Xo *+ iy, in the Argand diagram. Complete the parallelogram OACB. Then C
represents the complex number z; + z,.

Proof :
Since OACB is a paralelogram,
diagonals OC and AB bisect at M.
.. From Fig. 3.5, the midpoint M of the B(z e
linejoining A(Xq, Y1) and B(x,, o) is e
X1 + X + b
(12 Z,ylzyz) () R
If Cis(h, k) then midpoint M of OC is e

aIsogivenby(onrh,O;k) o

> <

i.e.,Mis(g , Ig) ... (2
.. From (1) and (2)
h_ X+X% Nty
2 -2
= h=x+%  k=y +y;

NIx

1l
N
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v Cis(Xg+X, Y1 tYo)

Hence C represents the complex number, z; + z,

Note: OA=]|z|, OB=]|z |andOC=|z + 2|
In any triangle the sum of two sides is greater than the third side.
.. from AOAC we have OA+ AC>OC or OC<OA+AC

|21+ | < |71+ ]2
Further, if the points are collinear
lz1+ 2| = 71|+ 2|

Combining (1) and (2) we get

Q)
@

lz1+ 2| <79 |+ ]2
Thisisthe reason why thisinequality is called the triangle inequality.
3.6.6 Vector interpretation of complex numbers:
Let A and B represent the two complex numbers z; = x; + iy; and

Z, = Xo + iy, in the Argand diagram. Complete the parallelogram OACB. Then C
represents the complex number z; + z,.

A complex number z=x + iy can
be considered as a vector OP whose
initial point is the origin O and
whose terminal point is
P = P(X, y). We sometimes call
OP = x + iy the position vector of
P. Two vectors having the same
length or magnitude and the same
direction but different initial points
such as OP and AB are considered
equdl. (Fig. 3.6) .. OP=AB=x+1iy

Based on the above interpretation
of complex numbers as vectors,
addition of complex numbers
corresponds to the “parallelogram
law” for addition of vectors. Thus
to add the complex numbers z; and
z,, we complete the parallelogram

OABC whose sides OA and OC
correspond to z and z. The

diagonal OB of this parallelogram
correspondsto z; + z,. (Fig. 3.7)

y B
A /
A
PXxy)
X
0 >
Fig. 3.6
Y B
A 22 ///
A // Z,
-1
gl e
Lo C
/’ 22
o/. > x
Fig. 3.7
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3.6.7. Geometrical representation of difference of two complex

numbers

Let A and B represent the two
complex numbers z; = x4 + iy; and
Z, = X + iy, respectively in the
Argand diagram. Produce BO to B’
such that OB’ = OB. Then B’
represents the complex number
— 2,. Complete the parallelogram

OADB'. Then D represents the sum
of the complex numbers z; and

-z orz -2z ie, D represents
the difference of complex numbers
z; and z,. (Fig. 3.8)

Result :

K C(z,z,)

B(z;)

Ay

D)

B'(-z,)

Fig. 3.8

From the diagram OD = AB. But OD = | z; — 7, |. AB is the distance
between z; and z,. Thus, distance between two complex numbers z; and z, is

lz1-2].
Note:

Complete the parallelogram OACB. Then C represents the complex

number z; + z,.
3.6.8 Geometrical
numbers:

Let A and B represent the two
complex numbers z; and 2

respectively in the Argand diagram.
Let zy =rq (cos 6 + i sin 6;) and
Z,=r,(Cos0, +isinb,)
ThenOA=r,, [XOA =6,
OB=r,,|XOB =0,.
Take apoint L on OX such that OL

= 1 unit. Draw the triangle OBC
directly similar to A OLA. (Fig. 3.9)

145

representation

of product of two complex

P <

C(z; 2y




then %:% i.e Q:_C
OL ~ OA 17
- 0OC =141y
Also |XOC =|XOB +|BOC
= | XOB +|XOA

=0,+0, or 0y +06, ( XOA =|BOC )
.. The point C represents the complex number z,z, with polar coordinates
(rprp 61+65)

If P represents the complex ;
number Qe l?

z=r (cos0 +isin®) =re® x

then the effect of multiplication by =" 0 X > x
(cosa+isina) = €% istherotation

Fig. 3.10
of P(2) counter clockwise about O through an angle a.

in
In particular, since i = cosg +isin %: e2, the effect of multiplication of
any complex numbers P(2) by i isthe rotation of P counter clockwise about the
origin through an angle 90°. (Fig. 3.10)
3.6.9 Geometrical representation of the quotient of two complex
numbers

Let A and B represent two complex y
numbers z; and z, in the Argand A A@)
1

diagram.
Let z; = rq(cos 61 +i sin 67) and
Z)=r5(Cos6,+1sN06y); (z#0)
ThenOA=r,, [ XOA =6,
OB = |’2, XOB = 62 .
Take a point L on OX such that OL

= 1 unit. Draw the triangle OAC .
directly similar to A OBL. (Fig. 3.11) Fig.3.11

C (zy/zy)

Lo ~°
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then OB~ OL i.e., r_z =1

|XOC =|XOA —|COA =6,-6,

r
. C is the point whose polar coordinates are (r_; 01— ezj . Hence C

4
represents the complex number 2—2

Example 3.12: Graphically provethat |21 + 2, + 3| < |7g |+ || + | 5]
Solution :

By triangle inequality in AOAB, K
|21+ 2| < |z |+ || ...(D) \zo\ A
By triangle inequality in AOBP, \f\ ,/\, |23
|21+ + 3| < |zt 2|+ 73 AL P
<Nzl+121+12z] from (D) e
p+ntzl < |zl+]n|+]z) 0
Fig. 3.12

Example 3.13 : Prove that the complex numbers 3 + 3i, — 3 3i, — 3\/3 + 331
are the vertices of an equilateral triangle in the complex plane.

Solution : y
Let A, B and C represent the C(-33,3V3)A
complex numbers (3 + 3i),
(- 3-3i) and (- 3\/3+i3\/3) in AGI
the Argand diagram.
AB=|(3+3i)-(-3-3i)] > x
=|6+6i |=/72
B (-3,3)
Fig. 3.13

BC = |(- 3-3i) - (- 33+ 3V3i)|
= |3+ 33) +i (-3-33)| =72
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CA = |(-3y3+ 3\/3i) - (3+ 3i)|
= (- 38-9) +1 (313~ 3)| =72
AB =BC = CA
.. A ABC isan equilateral triangle.

Example 3.14 : Prove that the points representing the complex numbers
2i,1+i, 4+ 4i and 3 + 5i on the Argand plane are the vertices of arectangle.

Solution :

Let A, B, C and D represent the z
complex numbers 2i, (1 + i), (4 + 4i) and PGS
3 + ' 5i) in the Argand diagram C@d)
respectively. a
AB = |2i—(1+i)] 3
=|-1+1 =V 17+ ()7 =42
- ; ; B (1,1
BC = |(1+i)— (4+4i)] @40 > x
=|-3-3i|
Fig. 3.14

=\(-3+(-3°=~9+9=+/18
CD = | (4 +4i) — (3+5i) |
=|1-i| =12+ (- 1)?%=42
DA:|(3+5i)—2i|:|3.|.3i|=\/3ZT32=\/E3
. AB=CD and BC = DA
AC = [(0+2i) - (4-4i)|
=|-4-2i]
=\ 42+ (-2? = 16+ 4=~20
ABZ+BC2:2+18:20
AC? = 20
Hence AB2 + BC2 = AC2
As pairs of opposite sides are equal and |§ =90°, . ABCD isarectangle.

Example 3.15 : Show that the points representing the complex numbers
7+9i,—-3+7i, 3+ 3i form aright angled triangle on the Argand diagram.
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Solution :
Let A, B and C represent the complex B3 D

numbers <

7+ 9,—-3+7 and 3 + 3i in the
Argand diagram respectively.
AB = |(7+9)-(-3+7i)|

C(@3.3)

A(7.9)

= |10+2i | = \/10?+ 22=~[104 0

BC= | (= 3+7i)— (3+3)) |
= |- 6+4i
=\/(~ 6)® + 42 =36+ 16 =52

CA = |(3+3i)—(7+9i)|
=|-4-6i|

Fig. 3.15

=\(-4?+ (-6’ =16+ 36 = /52

— AB? = BC? + CA?
- |BCA =90°

Hence AABC is aright angled isosceles triangle.
Example 3.16 : Find the square root of (- 7 + 24i)
Solution :

Let\—7+24i =x+iy

On squaring,

—T7+24i = (@ -y?) +2ixy

Equating the real and imaginary parts

x2—y2 =—7and2xy=24
ey =08y + 4y

Solving, ¥ —y? = —7andx?+y>=25

we get x* =9 andy?=16

L x=x3 andy=+4
Since xy is positive, x and y have the same sign.
L (x=3,y=4) or(x=-3,y=-4)

s A= 7 +24i = (3+4i) or (-3 4
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EXERCISE 3.2
IfF(A+i)(1+2)(Q+3i)...(1+n)=x+iy
show that 2.5.10 ... (1 +n%) = X% + y?
Find the square root of (— 8 — 6i)
If Z=(0, 1) find z
Prove that the triangle formed by the points representing the complex
numbers (10 + 8i), (- 2 + 4i) and (- 11 + 31i) on the Argand plane is
right angled.
Prove that the points representing the complex numbers (7 + 5i), (5 + 2i),
(4 + 7i) and (2 + 4i) form a paralelogram. (Plot the points and use
midpoint formula).

Express the following complex numbersin polar form.

(i) 2+ 20/3i ([i)—1+i+/3 (iii)—1-i (iv)1-i
If arg(z—1) :%and ag(z+1) = 2% then provethat [ z| =1
P represents the variable complex number z. Find the locus of P, if
(i)|m[§%ﬂ:-2 (i) |2=5i|=|z+5i |
z-1 . z-1\ &
(iii) Re(m):l (iv)|2z-3|=2 (V) arg(m):i

3.7 Solutions of polynomial equations:

Consider the quadratic equation X2 —Ax+7=0
Its discriminant is b% - dac = (- 4)° - (4) (7) (1)
= 16 — 28 = — 12 whichisnegative.
.. Theroots of this quadratic equation are not real. The roots are given by

_(_4)?/_ 12 _ 4J_r\2/— 2_,.03

Thus we see that the roots 2 + in[3 and 2 — i A[3 are conjugate to each other.
We shall now consider the cube roots of unity.
L et x be the cube root of unity then
X = (1)%
- x=1
= (x-1)C+x+1) =0
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X=1=0 ; x2+x+l:0

_-13\1- (@) A1)

Hencex =1 and X 2
—1+4/3i —1-/3i
2 ’ 2
1+2\/§| and—l—\/§|

) are conjugate

.. Cube roots of unity are 1,

Here again the two complex roots —

to each other.

From the above two examples one can infer that in an equation with real
coefficients, imaginary roots occur in pairs (i.e., one root is the conjugate of the
other). This paved the way for the following theorem.

Theorem :
For any polynomia equation P(x) = O with real coefficients, imaginary
(complex) roots occur in conjugate pairs.
Proof :
Let P(X) = ax" +a, X™ 1+ ... + a;x + a5 = 0 be a polynomial equation
of degree n with real coefficients.
Let zbe aroot of P(x) = 0. We show that z isalso aroot of P(x) = 0.
Sincezisaroot of P(x) =0

P@=az"+a, (7" 1+.. +az+ay=0 ..
Taking the conjugate on both sides

P@ = af'+a, 2" t+.. . +az+ay =0

Using the idea that the conjugate of the sum of the complex numbers is
equal to the sum of their conjugates,

aZ +a, 2" 1+ .. +az+ag =0

n
since?'=(z) and
ag, Ay, ay ... a, are real numbers, each of them is its own conjugate and
hence we get

FI

anZ'+a, 27T+ ... +aZ +a5=0
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which is same as P(E) =0

Thismeans z isalso aroot of P(x) = 0.

Hence the result.
Example 3.17 : Solve the equation x* — 4x% + 8x + 35 = 0, if one of its roots is
2+4/3i
Solution :

Since2 +i+/3 isaroot, 2 - i\/3isaso aroot.
Sum of the roots = 4

Product of the roots (2 +i/3) (2-in/3) =4+3=7
.. The corresponding factor is XC—Ax+7
X - A%+ 8x+ 35 = (X — AX + 7) (X2 + px + 5)
Equating xterm, weget 8=7p-20=p=4
.. Other factor is (x2 +4x +5)
X +AX+5=0 = x=-2+i
Thustherootsare2 +in/3 and— 2 + i
EXERCISE 3.3
(1) Solvethe equation x* — 8x3 + 24x% — 32x + 20 = 0if 3 +i isaroot.
(2) Solvethe equation x* — 4x3 + 11x% - 14x + 10 = 0 if oneroot is 1 + 2i
(38) Solve: 6x* — 2553 + 32x° + 3x — 10 =0 given that one of therootsis2 —i
3.8 DeMoivre's Theorem and its applications:
Theorem :
For any rational number n, cos n6 + i sin N6 is the value or one of the
values of (cos0 +i sin 0)"
Proof :
Casel : Let n be apositive integer.
By simple multiplication we have
(cosB +isinB,) (cosH, + isinB,) = cos(64 + 65) +isin(B, + 6,)
Similarly (cosd, +isinG;) (cosd, + isinB,) (cosb3 + i sin 03)
=cos(01 + 65, +63) +isin(0; + 6, + 63)
By extending it to the product of n complex number we have
(cosBq +i sinbq) (CosH, +i SiNB,) ... (cosB, + i Sinb,y)
=cos(01+0,+...+0,)+isinO,+0,+...+08))
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Inthisexpression put 61 =6, ... =6, =0, then
we have
(cos @ +isin0)" = cosnd + isin nd
Casell : Let nbeanegativeinteger and equa to — m; (misa+ve integer)
. (cos 0 +isinB)" = (cosd +ising)™ ™
__ 1
~ (cos0 +i sin)™
I S
~ cosmd +i sinmd by case|
cosmb —i sinmp
(cosmP +i sinmB) (cosmb — i sin mo)
cosmd — i sinmb
cos?m@ + sin’mod
cosmo — i sinmP
cos(— m)0 +i sin(— m)o
= cosnd +i sinnb

p
q ’

Case lll : Let n be afraction and equa to 5, where g is a positive integer and

p isany integer.

q
Consider [cos%+ i sin%} =cosO +isnd

6 .. 0. . . .
Therefore cosa +i sma issuch that its gth power iscosd + i sino.

1

Hence cos% +i sin% is one of the values of (cos0 +i sin e)a.

Raise each of these quantities to the pth power.

P 1P
(cos%+ i sin%) is one of the values of [(cose +i sine)q}
p. ..

OI9+|smq
ie, cosnd +isinnd isone of the values of (cosd + i sinb)".

Note : De Moivre's theorem holds good for irrational values also but the proof
is beyond the scope of this book.

b
i.e, cos D 0 isone of the values of (cosd + i sinB)d
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Properties:

0] (cosH +isin®)™ " = cos(— ne) +i sin (- nO)
= coshd —isinnod
(i) (cosh — i sinB)" = {cos(-0) +i sin(— O)} "

= cos (- nB) +i sin(— nb)
= cosnb —i sinnb

[os(5-0) isn(3-o)]
cosn(%—e)+ i sin n(%—e)

. 3 N -3
Example 3.18 : Simplify - (cosze+|.5|r126) Ec:s3e |s_|n.36) -
(cos40 +isin46) °(cosO +isinob)

(iii) (sind +i cosH)"

Solution :

(cos20 +isin 26)3 (cos30 —i sin 36)‘3
(cos46 +isin 40 )_6(0059 +isn 6)8

The given expression =

. 3 N -3 . .

406 0.8 -i240 _j8o
(e™) (e7) € €

— o150 160
= €319 = 05310 +i sin 310
Alternative method :

(cosO +i sin 6)6 (cosO +i sin 6)9
(cos6 +i sine)’24 (cos6 +i sin 6)8

The given expression =

= (cos0 +ising)8*9+24-8

= (cos6 +isin 6)31

= cos310 +isin310
gcose+isin6)4

Example 3.19 : Simplify : (sin6 +1 0059)5
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Solution :
(cosO +i sine)4 _ (cosO +i sin9)4

(s +§ cost)” [cos(g - e) +isn (g— eﬂs
005[49 5( H+isin[4e—5(g—eﬂ
003(96 5—§)+|sn(99—5;)
el ) 1% )
:cos(i—ge)—isin%—ge)

=sin 90 —i cos 90
Alternative method :
(cosB +i sin6}4 _1 [gcose +i sinez"}
(sind +icos9)® ~ i° | (cosh —i sind)°
= —i(cos46 +isin40) (cos50 +i sin 50)
= —i[cos90 + i sin 90]
=sn9% —icos99

Result: |z]=1 & z=7

Example 3.20 : If nisapositive integer, prove that

1+sno +icosd " T . b1
(l+sin9—icose) =cosn(§—e)+|snn(§—9)
Solution :
Let z=sin® +i cosH

NII—\

sind — i cosd

. . n n
~(l+s8n@+icosBy _(1+z\ _ n_ . . n
(1+sine—icose) _[lJrl] =7'=(dn6 +icoso)
z

n

SRS
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Example 3.21 : If nisapositive integer, prove that

(3+i)"+ (3-i)"=2""1 cos'y
Solution :
Let (\3+i)=r(cosd +i sin6)
Equating real and imaginary parts separately, we have
rcos@=+/3 and rsnf=1

B o1 or
cosh =5, snb=5 = 0=75
. m . . T
Hence (3+i) = 2(cosg+ i smg)
n n
(\/3+i)"= [2 (cos%+ i sin%ﬂ = 2”(cos%+i sin%)
N .. nm
= 2”(cos€+ i smg) .. (D)

To determine~/3 — i, wereplacei in the above result by — i we get

(3-i) = Z(COS%— i sin%j

(\/:_B—i)n:Z”(cosn—g—isinn—g) )
Adding (1) and (2) we have
(\3+i)"+ ({3-i)"=2" (2 cosn—g)
n+ nn
=2"*"1 cos g

Example 3.22: If o and arethe roots of X — 2x + 2 = 0 and cot 0 =y+1,

n_ n ;
show that (Yto) —(y+P) _ S_nr?e
oa-p sin"

Solution :
Theroots of the equation X2—2x+2=0arel+i.
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Letao=1+iandp=1-i
Then (y+o)" =[(coto — 1) + (L +1i)]"
= (cotd +i)"
:9:”9 [cos +i sin]"
1 .
:sinne [cosnd +i sin nb]
1
sin"@
n n_ 2isinn@
(y+o)'=(y+p)= = o
Further a-B=(@Q+i)—(1-i)=2i
(y+o)"—(y+B)" 2isnnd _ sinnd
a-P ~ 2isn™  sin"

Similarly (y+p)" = [cosnd —i sin nO]

EXERCISE 3.4
(cos20 —isin 29)7 (cos30 +isin 39)‘5
(cos46 +isin 46)12 (cos56 —isin560)" 6
(coso +i sin 0c)3
(sinB+icos[3)4
(3) If cosa+cosfB +cosy=0=snao+sinf +siny, prove that
(i) cos3a. + cos3p +cos3y =3cos(a+p+vy)
(i) sin3a+sin33+sin3y=3sin(a+p+7y)
(iii) cos 20, + cos 23 + cos 2y =0
(iv)sn2o +sin2B+sin2y=0
(Hints: Takea=cisa, b=cispB,c=cisy
a+b+c=0=a’+b’+b>=3abc
Ya+ b+ Uc=0 = a®+b%+c%=0)
2

(1) Simplify :

(2) Simplify :

. . . 3
(v) cos?a +c052B + coszy =sn“o + smzﬁ + smzy =3
For problems4to9, m,ne N

(4) Provethat
n+2
nn

MH@a++@-i"=2 2 cos 4
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(i) 1+ 3"+ (@ - 3" =2"" L cos's
(i) (L + cos® +isin0)" + (1+cos® —i sin )" = 2n+1cosn(6/2) cosn—ze
(iv) (L+)* and (1 +i)** 2 are read and purely imaginary respectively

(5) If o and B are the roots of the equation x* — 2px + (p° + ¢°) = 0 and

__4 (y+o)"—(y+B)" _ 1 sinnd
tan 6 = y+pshowthat a—B =q <o
(6) IfaandBaretherootsofx2—2x+4:0

Provethat o' — B" = 2“+1S|n3anddeductoc -

™ It x+)—1(: 2cosO provethat

1
N

(i)x“+x—1n:2003n9 (i) xX"-=5=2isnnd

8 Ifx+1:ZCoseandy+)—l/:ZCos¢ show that

ﬂ—Zcos(me no) (ii) —))(%:Zisin(me—n(b)

<5

i) y”

(9) Ifx=cosa+isina; y=cosp+isnf
1
that +— =2 +
prove X" vy cos (ma. + np)

(10) If a = cos2a. + i sin 20, b =cos2B +i sin2B and c=cos 2y +i sin 2y
prove that

(I)\/ﬂ:+\/——2605(a+ﬁ+y)

2 2
(u)a b = 2c0s2(a+ B —7)

3.9. Roots of a complex number
Definition :
A number o is caled an nth root of a complex number z, if " =zand

1
wewrite @ = 2"
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Working ruleto find the nth roots of a complex number :
Stepl :  Writethe given number in polar form.
Step2 :  Add 2kn to the argument
Step3 :  apply De Moivre stheorem (bring the power to inside)
Step4 : Putk=0,1...upton-1
[llustration :
Let Z = r(cosH +i sind)
= r{cos (2kr + 0) +i sin (2kr + 0)}, kisan integer.
1 1
- 21 = [r{cos (2kn + 6) +i sin (2kr + 6)]"

2 (2kn+0) . . (2kn+O
= r'| cos n +IS|nT

wherek =0, 1,2... (n-1)

1
Only these values of k will give n different values of g provided z= 0
Note:
(1) Thenumber of nth roots of a non-zero complex number isn.
(2) Themoduli of these rootsis the same non negative real number.
(8) The argument of these n roots are equally spaced. That is if 0 is the
principal value of arg zi.e., — = < 0 < then the arguments of other
2 4n 0
N A
(4) If k be given integral values greater than or equal to n, these n values
are repeated and no fresh root is obtained.
3.9.1 The nth roots of unity
1=(cos0+isin0) = cos 2kr + i sin 2kn
1 1
nth roots of unity = 1n= (cos2km +i sin 2krc)ﬁ

roots of z are obtained by adding respectively

ke . . 2k
:(COSTTE+ISmTTC)Wherek:O,l,Z,...n—l
.. The nth roots of unity arecosO+isin0, cosz—r:t+i sin%n,
4n

ﬂ+"— @+"@ 12_n+.. 12_n
Cos—, +isin~~, cos™ ~+isin= - ... ,cos(n—1)7+isin(n-1)7

. 21
2n . . 2% i=
Let o =cosT tisinT =e n
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Then the nth roots of unity are

j2e 4 on j20-1)
fen en en e N become 1, , @ ... ©
It isclear that the roots are in geometric progression.
Results:
1) o"=1
2n . . 2 .
m”=(coan+|san) =cos2n+isn2n=1
(2) Sum of therootsisO
e, l+o+o’+.. +o" 1=0
- LHS=1+w+ 0’ +... + 0" LisaG.P. with n terms.
n
1d-o) ¢[1+r+r2+“.+m_l=
l-o
=0 =RH.S.

(8) Therootsarein G.P with common ratio
. . . 2
(4) Theargumentsarein A.P with common dlfference%E

(5) Product of theroots= (- )" *1
1
3.9.2. Cuberoots of unity : (1)3

1
Let x = (1)3
1
s X=(cos0+isin0)3
1
= (cos 2kn + i sin 2kn)3 , where k is an integer.
X = (cosz—?+ i sin%) , wherek=0, 1,2

The three roots are

L. 2r . . 2¢; Ao . . 4n
cosO +1i sino, cos§+ Isin=3, cos§+ Isin73°
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Result :
1
The modulus of each root of (1)3is1
All these roots lie on the
circumference of the unit circle. Let A, B
and C be points represented by the three

roots 1, — % i lzé in ordered pair form.
The angles between OA and OB, OB and
OC, OC and OA are each 2—; radians or

120°. Hence when these points are joined
by straight lines they will form the Fig. 3.16
vertices of an equilateral triangle.

120°

S

v
>
%,

C\

2n . . 2
If we denote the second root cos%E +isin gn by ® then the other root

4o, an (o2n 2w 2
COS3 |sm3— COS3 |sm3 eCOmes m™.

2

Hence we observe that the cube roots of unity, namely 1, o, o arein G.P.

Note:
-1+in/3 _ >

(i) Evenif_lé_zIB is taken as o it can be proved that ——>—— =
(i) 1+o+ =0 (by actual addition) i.e., the sum of the cube roots of
unity is zero.
(iii) Since w isaroot of the equation x>=1, weseethat o° = 1.
Fourth roots of unity :

1
Let x be afourth root of unity. Then x = (1)4

xt=1 = (cos 2kr +i sin 2kn) wherekisan integer.
1
x = (cos 2kr + i sin 2km)4

_( LS &)

=|cos™, +isinTy

= (cosk—2n+ i sink—;) wherek=0, 1, 2,3
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The four roots are

.. T .. T o 3t . . 3n
cos0+isn0, C0s5 +18in%, cosm+18NTm, CoS7 +1sSin7"

ie, 1,i,-1(=i%,-i(=i%. Letusdenotecos +i sin by o. Thenthe

four roots of unity are 1, o, o2, ©°.

y
_ A,
The fourth roots of unity form
the vertices of a square al lying
on the unit circle. 2 /2
We observe that the sum of 0 P
the fourth roots of unity is zero.
i.e.,1+oo+0)2+a)3=0
andw?=1 o}
Fig. 3.17
Note : The values of » used in cube roots of unity and in fourth roots of unity
are different.
Sixth roots of unity : Let x be asixth root of unity. Then x = (1)/®
~ 1=cos0+isn0
(1)Y® = (cos 2kn + i sin 2kn)Y/®
wherek is an integer.
By De Moivre' s theorem

1
X = (1)6:(0052—27[+i sinz—gﬂ), wherek=0,1,2,3,4,5

The six roots are
cosO0+isn0 =1
T .. T
cosz+ising

2t . . 2%
cosgﬂsmg
3t .. 3¢n
COS?"‘ISIH?
A . . 4rn
COS?"‘ISHW?

51, . 5n
COSS IS|n3
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Then the six, sixth roots of unity are 1, o, o2, 05, o, @°

From the above figure it can .
be noted that the six roots of .
unity form the vertices of a
hexagon al lying on the unit
circle (Fig. 3.18). Thus it can be °
seen that the n, nth roots of unity
form the vertices of n sided .
regular polygon al lying on the
unit circle (Fig. 3.19). o

(]

L]

Fig. 3.19
Example 3.23 : Solve the equation e -x*-1=0
Solution :

e -x*-1=0 = x5(x4+1)—1(x4+1)=0
= (-1 *+1=0

= X-1=0; x*+1=0
i1
x= (125 (-4
1

()  x=(1)5=(cosO+isin0)>

1
= (cos 2krt + i sin 2km)®
= cos 2B i 6nZKE | 01,234
5 5
1 1
(i) (-4 =(cosn +isinm)4

INTE

{cos(2k+ D)t +isin(2k + D)r}
= cosFEE L p BADT g9 53
Thus we have 9 roots.
Example 3.24 : Solve the equation x +x*+x3+1=0
Solution :
X +x+x3+1=0 = X*0C+1)+1(3C+ 1) =0
= K+ 0C+1D=0
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x4:—1 ;x3:—1
1
(i) x = (-1)*
1
= (cosn +i sinm)4
1

ie., = [cos (2kn + 1) +i sin (2kn + 7)]4
= [cos(2kzl)n+ i sin(ZkZl)nJ ; k=0,1,2,3
1
(i) X=-1 = x=(-1)3
1

= (cosm+isin Tc)§
1
= [cos (2kn + 7) +i sin (2kn + ©)] 3

= cos(k+1)3+isin(k+1)3, k=0,1,2

Note:
T .. T 3n . . 3n 50 . . 5rn
Therootsare(coszﬂsmzj ; (cosTHsmT) ; (cosTﬂsmT)
n . . In T .. T -
and (cosZﬂst), (cos§+|sm§> , (cos t + i sn ) and

(1)
COSg |sm3
1

. 1 .1 1 .1 .11 01
|.e.,E+|@, _EH\E’ —E—l\ﬁ,ﬁ—'@
1. .43 1 43

2t -L 5175

2
Example 3.25: Find al the values of (/3 +i)3
Solution :
Let \/3+i =r (cosO +isino)
=rcos0=+/3, rsn6=1

—r =\ (3) +1=2

V3 L o1 _
Cos0 = 2 :smG)-2 = 0 =

ola

2 2 2
o (\3+i)3=23 (cos%+isin%)3
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Wl

5 2

= 3| (e i Gn E
=2 {(COSGJ"S”‘J}
1
_— 1
(cos§+|sm§)3
T T l
[cos(an +§)+isin(2kn +§H3

= 23[005(6k+1)g+isin(6k+1)%} wherek=0, 1, 2

wIN
a

2

wIin

2

N

Note: The values are

2 2
= .. = 7 Y 4 13n .13
23(cosg+| smg), 23(c053n+|sm3n), 23(003—9 +|sm—9n)

Aliter :

2 2
(3+i)3= 3(0056+|sn6)
2 . ) 2
=23 (cos (2krt + 5) +isin (an +5D 3
2 - 12
=23[cos(12k+1)g+isin(12k+1)g}3

(}J“\J

[cos(12k+ D3 9™t isin(12k+1) J wherek=0, 1, 2
2 2
The different values are 23 (cosgﬂ sing) , 23 (cos%+ i sin 13n)

2

= 25n . 25m
3 b

2 (cos 9 +isn 9)

2

ie, 23 (cosgﬂsing), 23 (cosg+|sm 9) 23
13n . . 13n 251 251 n n

cos—g +isinTg- sincecos—q— 9 +isn—(g— 9 —(:osg+|sm9

Thus we have obtained the same values in this case also.

Note : If we add 2kr before taking the power 2 inside, we will get the same
answer.
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EXERCISE 3.5

Find al the values of the following :

1 1 2
@) ()3 (ii) (8i)3 (iii) (-~/3-1)3
Ifx=a+b, y=am+ b(oz, z=aw? + bo show that
(i) xyz=a’+ b’

(i) ¥ +y>+ 2 =3(@+b% where o isthe complex cube root of unity.
Prove that if ©° = 1, then
() (@+b+c) (a+bw+cod) (a+be’+co)=a°+ b3+ - 3abc

. 5 . 5
. (—1+1+3 —-1-i4/3
<“)( 2@*( 2ﬂ=‘1
1 1 1
(“I)1+20)_1+c0+2+c0_0
Solve:
() x*+4=0 (i)x*-xC+x2-x+1=0

4
Find al the values of @ —i 3?) and hence prove that the product of the

valuesis 1.
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4. ANALYTICAL GEOMETRY

4.1 Introduction :

Tracing the history of Mathematics, around 430 B.C., study of conic
sections or conics, i.e., study of plane sections of a right circular cone began.
The study included degenerate or singular conics (comprising single point, pair
of distinct lines, two coincident lines etc.,, which were already dealt with in
detail in lower classes) and non-degenerate or non-singular conics (comprising
of circles, parabolas, ellipses and hyperbolas).

The study of conic sections from Greek Geometry, developed by
Apollonius, is described today as graphs of quadratic equations in the
co-ordinate plane. The Greek mathematicians of Plato’s time (429 — 347 B.C.)
described these curves as the curves formed by dlicing a double cone (right
circular cone of two nappes) with a plane and hence the name conic sections.

Analytic Geometry grew out of need for establishing uniform techniques
for solving geometrical problems, the aim being to apply them to the study of
curves, which are of particular importance in practica problems.

The aim was achieved in the co-ordinate method viz., cartesian, polar,
bi-polar (where calculations are fundamental and constructions play a
subordinate role). Thus solving problems by the method of Analytical
Geometry requires less inventiveness. This method of the ancient Greek origin
(~ 1-2B.C.) was systematically developed in the first half of the 17" century
by great mathematicians Fermat, Descartes, Kepler, Newton, Euler, Leibnitz,
L'Hopital, Clairaut, Cramer and the Jacobis.

A magjor breakthrough in the study occurred with the development of the
hypothesis of Planetary Phenomena by the German mathematician cum
physicist Johannes Kepler. He stated that all the planets in the solar system
including the earth are moving in elliptical orbits with sun at one of a foci,
governed by inverse square law. This led to the development of Newton's
gravitation theory.

Euler applied the co-ordinate method in a systematic study of space curves
and surfaces, which was further developed by Albert Einstein in his theory of
relativity.

Needless to say that today the development in this area has conquered
industry, medicine and scientific research. And we shall cite a few of them
before getting into the depth of actual study of conics.
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4.1.1 Geometry and Practical applications of a parabola :

e A parabola is a conic section )
obtained on dlicing a right circular cone )

by a plane parallel to the line joining L
vertex and any other point of the cone 5
(Fig.4.1)

e |If P is any point on the
parabola with focus F and vertex
V, the angles subtended by FP
and PX with the tangent at P are
equal where PX is parallel to the
axis VFA of the parabola. (Fig.
4.2)

This property is made use of
in parabolic reflectors (surface
obtained by revolving the
parabola about its axis and coated
with silver paint) of sound, light
and radio waves when the
respective source is placed at the
focus S as given in (Fig. 4.3).
Light (or sound or radio waves)

Fig. 4. 3

from S fals on the reflecting surface gets reflected paralel to the axis of
parabola. For example, Flash light, head light of motor vehicles, parabolic
mirrors, spot light reflectors, sel ective microphone sounding boards etc.

The same reflectors can be
employed in intensifying signals.
Electromagnetic waves arriving
pardlel to the axis of the
parabolic  reflector will  be
focussed at the focus where a
suitable receiver ‘R’ could be
placed. (Fig. 4.4)

Fig. 4. 4

For example, Radio telescope, television satellite dishes, solar heaters,

radar antenna’s etc.

e Thestrongest simple arch is parabolic in shape.
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e The supporting cable of a uniformly loaded bridge is parabolic in shape
(weight of cable neglected in comparison with weight of the bridge).

e The path of an object thrown or projected obliquely upwards is a parabola.
Also bombs dropped from a moving war plane or food packets dropped from
helicopters during cyclone time to people in need (not moving verticaly
upwards or downwards) traces a parabola.

e  Some comets have parabolic path with sun at the focus.

4.1.2 Geometry and Practical Applications of an ellipse:

e An €llipse is a conic obtained on €
dlicing across obliquely one nappe of a
cone. (Fig. 4.5)

e If Pisany point on the élipse and
Fiand F; its foci, the angle subtended by (.5
F1P and FoP with the tangent at P are

equal and if a source of light or sound is Fig. 4.5

placed at one focus of an ellipsoidal

reflector (surface generated by revolving

an elipse about its mgor axis) al the

waves will be reflected so as to pass -
through the other focus (Fig. 4.6) Fig.4.6

This property is also used in “Wispering Gallery”, the roof or walls of
which are shaped like an ellipsoidal reflector.

e Thedlipsoidal reflectors are designed for Nd : YAG (ND>* Neodymium

ions; YAG — Yttrium Aluminium Garnetz) laser that is widely used in medicine,
industry and scientific research.

P

A light reflector in the form of a
tube whose cross section isan elipse M L aser rod M.
has Nd : YAG rod and a linear flash (O [ G
lamp placed at the foci of the ellipse.
(Fig. 4.7). Here light emitted from T
the lamp is effectively coupled to the Capacitor bank
Nd : YAG rod to produce laser beam. ——HH—}
e In Bohr-Sommerfeld theory of y—|.|.|.—w—
the atom electron orbit can be Power Supply  Ballast resistor
circular or eliptical.

Ellipsoidal
reflector

Trigger
- pulse

Fig. 4.7
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e The orhits of our planet earth and all other planets and planetoids in our
solar system are elliptical with sun situated at one of the foci. Also al the
satellites, either natural or artificial to all the planets in the solar system have
eliptic orbits (with the force binding them following inverse square law).
[Fig.4.8(a)]

Jupiter Venus Uranus pfercury

Saturn

Neptune Mars Earth Pluto

Fig. 4.8(a) Fig. 4.8(b)
Path of Halley’s Comet (which returns after every 75 years) is an elipse
with e ~ 0.97 and the sun at afocus[Fig. 4.8 (b)], e being the eccentricity.

e FElliptical arches are often used for their beauty.

e Steam boilers are believed
to have greatest strength when
heads are made elliptical with
magjor and minor axes in the
ratio2: 1.
Fig. 4.9
* Gears are sometimes (for particular need) made elliptical in shape (Fig. 4.9)

I I
Fig. 4. 10
e Theorbit of Comet Kohoutek is an ellipse with e ~ 0.9999 (Fig. 4.10).
e The shape of our mother earth is an oblate spheroid i.e., the solid of

revolution of an ellipse about its minor axis, bulged along equatorial region and
flat along the polar region.

e Theareaof action of an airplane which leaves a moving carrier and returns

in a given time (with no wind) is an ellipse with the take off and landing
positions of the carrier asfoci.

e The track of a plane making an
On-pylon turn in a wind of constant
velocity is an ellipse with one focus
directly over the pylon (Fig. 4.11).

Fig. 4. 11

170



4.1.3 Geometry and Practical Applications of a Hyperbola :

e A hyperbolais a conic obtained on dicing a
double napped cone by a plane parallel to the axis
of the cone (Fig.4.12)

e Thelinesfrom the foci to any point on
a hyperbola make equal angles with the
tangent at that point. Hence if the surface of P

a reflector is generated by revolving a Iy ,\F1>

hyperbola about its transverse axis, al rays
of light converging on one focus are _
reflected to the other (Fig.4.13) Fig.4.13

e This property is made use of in some &F
telescopes in conjunction with a parabolic
reflector.  American space research
foundation NASA’s Hubble space i
telescope uses hyperbolic reflectors in
conjunction with parabolic reflectors
(Fig. 4.14).

e Hyperbolas are useful in range-
finding. (The difference in the times at
which a sound is heard at two listening
posts is proportional to the difference of
the distances from the posts to the point
of emanation of sound. A third listening Parsbiols

post serves to give another hyperbola and

the point of emanation is at the point of Fig. 4. 14
intersection of the two curves).

Fy=Fp

Hyperbola

e Boyle'slaw pv = constant is hyperbolic in relationship. The same is true of
relationship of any two quantities, which are inversely proportional.

e Hyperbolic paths arise in Einstein’'s theory of relativity and form a basis
for LORAN (Long Range Navigation) radio navigation system.
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4.2 Definition of a Conic:

Consider acircle C. Let A bethe
line through the centre of C and
perpendicular to the plane of C and
let V be a point on A not in the plane
of C. Let P beapoint on C and draw
the infinite straight lines through P
that also passes through V. As P
moves around C, what sweeps out is ;
called a right circular cone with the P
axis A and vertex V. Each of the lines Fig. 4. 15

PV is called a generator of the cone, and the angle o between the axis and the
generator is caled a vertex angle (semi-vertical angle). The upper and lower
portions of the cone that meet at the vertex are caled nappes of the cone
(Fig. 4.15).

The curves obtained by slicing the cone with a plane not passing through
the vertex are called conic sections or simply conics.

A conic is the locus of a point which

|1
moves in a plane, so that its distance from é M P (Moving point)
a fixed point bears a constant ratio to its £
distance from a fixed straight line. g
(Fig.4.16) 5 . .
The fixed point is called focus, the 2| ~ TCFRedoint)
fixed straight lineiscalled directrix, and Fig. 4. 16

the constant ratio is called eccentricity, which is denoted by ‘€.
From the figure we have % =constant = e

4.2.1 General equation of a Conic :
Let F(xq, y7) be thefocus, Ix + my + n = O, the equation of the directrix ‘I

and ‘€ the eccentricity of the conic.

Let P(x,y) be any point on the conic. !
Drop aperpendicular fromPto‘I’. P(x,)
2 2 M |
FP = AJ(x-x)?+(y-yp)
PM = Perpendicular distance from
P(x, y) tothelinelx+my+n=0 F(x,,y,)
_Ix+nmy+n
== 211 Fig. 4. 17
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o . FP
By the definition of aconic, sy = e
- FP?= & PM?

O Ol Ev o
12+

Simplifying this we get an equation of second degree in x and y of the form
AX® + Bxy + Cy? + Dx+ Ey + F = 0.
4.2.2 Classification with respect to the general equation of a conic:

The equation AX® + Bxy + Cy? + Dx + Ey + F = O represents either a
(non—degenerate) conic or a degenerate conic. If itisaconic, thenitis

(i) aparabola if B2 - 4AC=0 (ii) andlipse if B2-4AC<0

(iii) ahyperbola if BZ—4AC>0
4.2.3. Classification of conicswith respect to eccentricity :

1. If e< 1, thentheconicisan dlipse.
From the figure 4.18 we observe

P3
that F,P; is always less than PjM;. %ﬂ/_
\F&

y

. FoPi :
i.e, W:e< 1,(0=1223..)

Fig. 4. 18
2. If e = 1, then the conic is a

parabola. 1L /

From the figure 4.19 we observe
that FP; is always equal to PjM;. "R

_ FPj | '
i.e., er:l' i=123..)
Fig. 4.

3. If e > 1, then the conic is a 4 ,
hyperbola. xa 7
From the figure 4.20 we \ M | B
observe that F.P; is aways .
greater than P{M,;. P, ° F
L L .
i.e, W: e>1,(=123.)
Fig. 4. 20
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4.3 Parabola:

The locus of a point whose distance from a fixed point is equal to its
distance from a fixed line is called a parabola. That is a parabola is a conic
whose eccentricity is 1.

Note : Eventhough the syllabus does not require the derivation of
standard equation and the tracing of parabola (4.3.1, 4.3.2) and it
needs only the standard equation and the diagram, the equation is
derived and the curveistraced for better under standing.

Now we derive and trace the standard equation of a parabola.

4.3.1. Standard equation of a parabola:

Given : A
*  Fixed point (F) ML P (5y)
* Fixedline(l) a.7)
* Eccentricity (e=1)
*  Moving point P(x, y) 7 o) Tl > x
Construction : (-a,0)
* Plot the fixed point F and
draw the fixed line‘I’. Fig. 4. 21

Drop a perpendicular (FZ) fromF tol.

*
* TakeFZ=2aandtreat it as x-axis.

% Draw aperpendicular bisector to FZ and treat it as y-axis.

* Let V(0, 0) bethe origin.

* Drop aperpendicular (PM) fromPtol.

*  Theknown points are F(a, 0), Z(— a, 0) and hence M is (- a, ).

- . FP
By the definition of a conic, M = e=1 = FP?= pPM?2

(x-a)?+ (-0 = (x+a)+(y-y)*
X2 — 2ax + & +y? = X% + 2ax + a° which smplifiesto y? = 4ax.
Thisisthe standard equation of the parabola.
To trace a curve, we shall use the tools dealt in detail in chapter 6.
4.3.2.Tracing of the parabola y? = 4ax :
(i) Symmetry property :
It is symmetrical about x-axis.
i.e., x-axis divides the curve into two symmetrical parts.
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(ii) Special points:

The parabola passes through the origin since (0, 0) satisfies the equation
y2 = 4ax.

To find the points on x-axis, put y = 0. We get x = 0 only.

.. the parabola cuts the x-axis only at the origin (O, 0).

To find the points on y-axis, put x = 0. Weget y =0 only.

.. the parabola cuts the y-axis only at the origin (0, 0).
(iii) Existence of the curve:

For x < 0, y2 becomes negative. i.e, y is imaginary. Therefore the curve
does not exist for negative values of x. i.e, the curve exists only for

non-negative values of x. y

(iv) Thecurveat infinity : A
As X increases, y2 aso v Py
increases. a,y)
1 » X
I.e.,aSX—>oo,y2—>oo AR
i.e,asX—> 0,y —>t o (a0
the curve is open

rightward. [Fig. 4.22] Fig. 4. 22

4.3.3. Important definitionsregarding a parabola :

Focus : The fixed point used to draw the parabola is called the focus (F).
Here, the focusis F(a, 0).

Directrix : The fixed line used to draw a parabolais called the directrix of
the parabola. Here, the equation of the directrix isx=-— a.

Axis : The axis of the parabola is the axis of symmetry. The curve
y2 = 4ax is symmetrical about x-axis and hence x-axis or y = 0 is the axis of the
parabola y2 = 4ax. Note that the axis of the parabola passes through the focus
and perpendicular to the directrix.

Vertex : The point of intersection of the parabola and its axis is called its
vertex. Here, the vertex is V(0, 0).

Focal distance : The focal distance is the distance between a point on the
parabola and its focus.

Focal chord : A chord which passes through the focus of the parabola is
called the focal chord of the parabola.

Latus Rectum : It is a focal chord perpendicular to the axis of the
parabola. Here, the equation of the latus rectum isx = a.
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End points of latusrectum and length of latusrectum :

To find the end points,
solve the eguation of latus
rectum x = a and y2 = 4ax.
Using X = ainy2=4ax
we get y2 = (4a)a = 4a°

Ly=+2a

Fig. 4. 23

If L and L™ are the end points of latus rectum then L is (a, 2a) and L' is
(a, — 2a). The length of latus rectum = LL' = 4a. Length of semi-latus rectum

= FL = FL' = 2a. So far we have discussed standard equation of a parabola
which is open rightward. But we have parabolas which are open leftward, open

upward and open downward.

4.3.4. Other standard parabolas:

1. Open leftward :

y2 = —4dax [a> 0]

If x > 0, then y becomes
imaginary. i.e., the curve does
not exist for x > 0 i.e, the
curveexist for x< 0.

2. Open upward :

x° = day[a> 0]

If y < 0, then y becomes
imaginary. i.e., the curve does
not exist for y < 0 i.e, the
curveexist fory > 0.

3. Open downward :

X2 = —4ay[a>(]

If y > 0, then y becomes
imaginary. i.e., the curve does
not exist for y > 0 i.e, the
curveexist fory <0.
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Remark : So far we have discussed four standard types of parabolas.
There are plenty of parabolas which cannot be classified under these
standard types. For example, consider the following parabolas.

y y Yy Yy

A A A
N

7 AN
Fig. 4. 27

For the above parabolas, the axes are neither parallel to x-axis nor parallel
to y-axis. In such cases the equation of the parabolas include xy term, which is
beyond the scope of this book, eventhough we will find the eguation of the
parabolas which are not in standard form. Note that for the standard types the
axis is either paralel to x-axis or parallel to y-axis. We will study only these
four types.

All the parabolas discussed so far have vertex at the origin. In general the
vertex need not be at the origin for any parabola. Hence we need the concept of
shifting the origin or trandation of the axes.

4.3.5 The process of shifting the origin or translation of axes:

Consider the xoy system. Draw a line parallel to x-axis (say X-axis) and
draw aline parallel to y-axis (say Y-axis). Let P(X, y) be a point with respect to
xoy system and P(X, Y) be the same point with respect to XOY system.

L et the co-ordinates of O’ with respect to xoy system be (h, k)

The co-ordinate of P with Y
respect to xoy system : 4 &Y
oL=OM+ML=h+X k-] - Pxy)

. o' 1Y
i.e,x=X+h X > X
Similaly y=Y +k P

. The new co-ordinates of P 0|00 ML

with respect to XOY system

X=x-h Fig. 4. 28
Y=y-k
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4.3.6 General form of the standard equation of a parabola, which is
open rightward (i.e., the vertex other than origin) :

Consider a parabola with vertex V whose co-ordinates with respect to XOY
system is (0, 0) and with respect to xoy systemis (h, k).

Since it is open rightward, the equation of the parabola w.r.t. XOY system
is Y = 4aX.

By shifting the origin X =x—hand Y =y —k, the equation of the parabola
with respect to old xoy system is (y — k)2 = 4a(x — h).

This is the general form of the standard equation of the parabola, which is
open rightward. Similarly the other general forms are

(y - K)? = — 4a (x - h) (open leftwards)
x- h)2 =4a (y — k) (open upwards)
(x— ) = — 4a (y - k) (open downwards)

Note: To find the genera form, replace x by x — hand y by y — k if the
vertex is (h, k)

Remark : The above form of equations do not have xy term.

Example 4.1: Find the eguation of the following parabola with indicated focus
and directrix.

i (@0 ; X=-a a>0
i) -1,-2) ; x-2y+3=0
(iii) (2,-3) ;7 y—-2=0

Solution: (i) Let P(x, y) be any point on the parabola. If PM is drawn
perpendicular to the directrix,

P e=1 xX=-a
PM P(x,y)
= FP? = pM? M

2

2 2_(,Xta

x—a)*+(y-0) (i\/?)

= (x-a’+y’ = (x+a) _

= y2=4ax Fig. 4. 29
Thisisthe required equation.

F(a,0)
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Alternative method :

From the given data, the parabola is ‘f

open rightward. rT-a
. The equation of the parabola is of F(a,0)

the form (y — K)° = 4a (x — h) 7 S (0 > x
We know that the vertex is the (-a,0)

midpoint of Z(— a 0) and focus F(a, 0), }

where Z is the point of intersection of the
directrix and the x-axis. Fig. 4. 30

- Vertex is(#‘, 0%0) =(0,0) = (h, k)

Again the distance between the vertex and the focus VF = a
.. The required equation is (y — O)2 =4a(x-0) i.e, y2 = 4ax
(ii) Let P(x, y) be any point on the parabola. If PM is drawn perpendicular to

the directrix,
% —e=1 M P(x, y)
- FP2 = pM2 T
2 o
2 2 _ X— +3 +
X+D+(y+2 —(ir \/12722) @ F(-1,-2)
=

= 4+ 4xy + Y2 + 4x+ 32y + 16 = 0 Fig.4.31

Note : Here the directrix is paralel to neither x-axis nor y-axis. This type
is not standard type. Therefore we can’t do this problem as in the aternative
method of previous problem.

(iii) Let P(x, y) be any point on the parabola. If PM is drawn perpendicular to

the directrix
% 1 M P(x,y)
N FP? = PM?
| y-2° !
e, (x=27+(y+3)* = (i \1 ) : F(2,-3)
(x=2)%+ (y+3)% = (y—2)2 Fig. 4. 32

= x2-4x+10y+9=0
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Note : Since the directrix y = 2 is parallel to x-axis, the type is standard
and hence this problem can be solved by alternative method of 4.1(i).
Example 4.2 : Find the equation of the parabolaif
(i) thevertexis(0, 0) and thefocusis(—a, 0),a>0
(ii) thevertexis(4, 1) and thefocusis (4, — 3)
Solution: (i) From the given data the parabolais open leftward
The equation of the parabolais of the form y
(y—K? = - da(x - h)
Here, the vertex (h, k) is (0, 0) and VF = a v (00)
.. Therequired equation is . - > X
(y- O)2 =—-4a(x-0) (-a,0) |
= — Jax

Fig. 4. 33
(ii) From the given datathe parabolais open downward.
. The equation is of the form y
(x—h)?=-4da(y-k A 4

Here, the vertex (h, k) is (4, 1) and

the distance between the vertex and

the focus

VF =a
=\(4-22+(1+3? =4=a

.. therequired equation is

(x=4) = -4(4) (y- 1)

(x—4)% = - 16(y - 1) Fig. 4. 34
Example 4.3: Find the equation of the parabolawhose vertex is (1, 2) and the
equation of the latusrectumisx = 3.

Solution: From the given data the parabolais open rightward.

V4,1)

* F4,-3)

.. The equation is of the form ‘):
(v - K = 4a(x - h) *d
Here, the vertex V (h, K) is (1, 2) N F(3,2)
Draw a perpendicular from V to the latus ('1,2) y=2
rectum. > X
It passes through the focus.
- Fis(3,2) Fig. 4. 35

AganVF=a=2
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.. Therequired equation is
(-2 = 4(2) (x- 1)
(y-2)?%=8(x-1)
Example 4.4: Find the equation of the parabola if the curve is open rightward,
vertex is (2, 1) and passing through point (6, 5).
Solution: Sinceit is open rightward, the equation of the parabolais of the form
(vy-K? = 4a(x—h)
The vertex V(h, k) is (2, 1)
s (y-1%=4da(x-2)
But it passes through (6, 5)
#=4a6-2) = a=1
.. The required equation is (y — l)2 =4(x-2)
Example 4.5 : Find the equation of the parabola if the curve is open upward,
vertex is (- 1, — 2) and the length of the latus rectum is 4.
Solution: Sinceit is open upward, the equation is of the form
(x—h)? = daly - K)
Length of the latusrectum = 4a = 4andthisgivesa=1
Thevertex V (h, k) is(- 1, — 2)
Thus the required equation becomes (X + 1)2 =4(y+2)
Example 4.6 : Find the equation of the parabola if the curve is open leftward,
vertex is (2, 0) and the distance between the latus rectum and directrix is 2.
Solution: Sinceit is open leftward, the equation is of the form
(y-K? = —4a(x—h)
The vertex V(h, k) is (2, 0)
The distance between latus rectum and directrix = 2a = 2 giving a=1
and the equation of the parabolais
(-0 =-41) (x-2)
or y2 = -4(x-2)
Example 4.7 : Find the axis, vertex, focus, directrix, equation of the latus
rectum, length of the latus rectum for the following parabolas and hence draw
their graphs.
(i) y%=4x (i) x°=-4y (i) (y + 2)° = — 8(x + 1)
(iv) y>-8x+6y+9=0 (V) X2 —2x+8y+17=0
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Solution:

(i) Y’ = 4
(v-0)° = 4(1) (x—0)
Here (h, k) is(0,0)anda=1
Axis : The axis of symmetry is Yy
X-axis.
Vertex : Thevertex V (h, k) is(0, 0)
Focus : ThefocusF (a, 0)is(Z, 0)
Directrix : The equation of the directrix is
x=-a iex=-1
Latus Rectum : The equation of the latus
rectumisx=a i.ex=1

and its length is 4a = 4(1) = 4 .. the graph of the parabola looks as in
Fig. 4.36.
(ii) X2 = — 4y
(x-0)* =-4(1) (y-0)
Here (h,k)is(0,0)anda=1 J
. . y =1
Axis D y-axisorx=0
Vv (0,0)
Vertex : V(0,0 > x
Focus :F(@©,-a)ieF(0-1) y =-1 -
Directrix ry=a iey=1 -
Latusrectum :y=-a iey=-1
. length=4 Fig. 4. 37

.. thegraph looks asin Fig. 4.37
(iii) (y+2)?=-8(x+1)
Y2 =-8X whereX =x+1
Y2 = —4(2) X Y=y+2 a=2
The type is open |eftward.

Referredto X, Y Referredto x, y
X=x+1,Y=y+2
AXis Y=0 Y=0 = y+2=0
Vertex 0,0 X=0;Y=0
= x+1=0;y+2=0
x=-1 y=-2
L V(EL1L-2
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Focus (-a,0) ie (=20 X=-2 ;Y=0
= X+1=-2,y+2=0
Xx=-3,y=-2
F(-3-2
Directrix X=a ie X=2 X=2 => x+1=2
= x=1
Latus rectum X=-a ie X=-2 | X=-2 = x+1=-2
= x=-3
Length of 4a=8 8
Latus rectum
Y
A y
x =1
e 0.0
X
F (-1,-2) > X
(-3-2)
/
Fig. 4. 38
(iv) Yy’ —8x+6y+9=0
y2+6y = +8x—9
(y+3)2-9=+8x-9
(v+3)° = &
Y? = 8X whereX = x
Y? = 4(2)X Y=y+3
a=2
Thetypeis open rightward
Referredto x, y
Referred to X, Y X=x,Y=y+3
AXxis Y=0 Y=0 = y+3=0
Vertex 0,0 X=0;Y=0
= x=0;y+3=0
. V(0,-3

184




Focus (a0 ie (2,0 X=+2 ;Y=0
= Xx=2,y+3=0
F(2,—3)
Directrix X=—a ie X=-2 | X=-2 = x=-2
Latus rectum X=a ie X=2 X=2 = x=2
Length 4a=8 8
x=-2 A
» X
x =2
v y=-

Fig. 4. 39
v) X2 —2x+8y+17=0
X2 —2x = —-8y-17
(x-1)°%-1=-8y-17
(x-1)°=-8y-16
(x—1)* = - 8(y +2)
X% = -8y whereX = x-1
X2 = — 42)Y Y=y+2
a=2
Thetypeis open downward

>

\kﬁ
5
-
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Referredto x, y

Referredto X, Y X=x—1,Y =y+2
AXxis X=0 X=0 = x-1=0
= x=1
Vertex 0,0 X=0;Y=0
= x-1=0,y+2=0
V(@ -2
Focus (0,-a) ie (0,-2 X=0 ;Y=-2
= x-1=0,y+2=-2
F@, -4
Directrix Y=a ie Y=2 Y=2 = y+2=2
= y=0
Latus rectum Y=—a ie Y=-2 |Y=-2=y+2=-2
y=—4
Length 4a=8 8

4.3.7 Some practical problems:

Example 4.8:

The girder of a railway bridge is in the parabolic form with span
100 ft. and the highest point on the arch is 10 ft. above the bridge. Find the
height of the bridge at 10 ft. to the left or right from the midpoint of the bridge.

Solution:

" C -
I i 10
7 10

Girder

X

(-50,-10) A (50-10)
Fig. 4. 41

Consider the parabolic girder as open downwards

ie.,

X = day

It passes through (50, — 10)

50 x 50 = — 4a (- 10)
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250

= a="4
o= o2,
X2 = — 250y
Let B(10, y;) be a point on the parabola
. 100 = — 250y,
100 2

Y1=-280 =5
Let AB be the height of the bridge at 10 ft to the right from the mid point

AC=10andBC:%

2 3
AB=10-5 =95 ft

i.e. the height of the bridge at the required place = 9% ft.

Example 4.9 :
The headlight of a motor vehicle is a parabolic reflector of diameter 12cm

and depth 4cm. Find the position of bulb on the axis of the reflector for

effective functioning of the headlight.

Solution:

By the property of parabolic . P
reflector the position of the bulb
should be placed at the focus.

By taking the vertex at the 4| 12em
origin, the equation of the . x
reflector isy? = 4ax F

Let PQ be the diameter of the
reflector

Fig. 4. 42
. Pis(4, 6) and since P(4, 6) lieson the parabola, 36 =4ax4 = a=2.25
Thefocus isat adistance of 2.25cm from the vertex on the x-axis.

187



.. The bulb has to be placed at a distance of 2.25 cms from the centre of
the mirror.

Example4.10:
On lighting a rocket cracker it gets projected in a parabolic path and
reaches a maximum height of 4mts when it is 6 mts away from the point of

projection. Finaly it reaches the ground 12 mts away from the starting point.
Find the angle of projection.

Solution:
V(0,0)
4\ 4
6 h
12
(-6,-4) 6,-4)
Fig. 4.43 Fig. 4.44

The equation of the parabolais of the form X2 =— 4ay (by taking the vertex at
the origin). It passes through (6, — 4)

IN[{e]

. 36=16a = a-=

Theequationis X = 9y LD
Findtheslope at (— 6, — 4)
Differentiating (1) with respect to x, we get

_ ody dy = 2
2X——9dx :>dX——9X
At(—6,—4),g¥ = —% ><—6=‘§1 i.e tan€)=‘§1
.1 (4
0 = tan (3)

.. The angle of projectionis tant @)

Example4.11:

A reflecting telescope has a parabolic mirror for which the distance from
the vertex to the focus is 9mts. If the distance across (diameter) the top of the
mirror is 160cm, how deep is the mirror at the middle?
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Solution:

Let the vertex be at the origin. y
VF = a =900 4 80
The equation of the parabolais
V2= 4x900 x X
VOO X F

Let x; be the depth of the mirror at the

T \pS— Ty —
middle

Since (x4, 80) lies on the parabola

2_ _16 ]
80 —4X900XX1:>X1— 9 (xp 80)

.. depth of the mirror = %6 cm

Example4.12:

Assume that water issuing from the end of a horizonta pipe, 7.5m above
the ground, describes a parabolic path. The vertex of the parabolic path is at the
end of the pipe. At a position 2.5m below the line of the pipe, the flow of water
has curved outward 3m beyond the vertical line through the end of the pipe.
How far beyond this vertical line will the water strike the ground?

Solution:

Pipe line

V0.0
3 mts

25
| (3,-2.5)

7.5 mts N 3
Ground 3
Fig. 4. 46 A ox o wTd
Fig. 4. 47
As per the given information, we can take the parabola as open downwards

iex=- day
Let P be the point on the flow path, 2.5m below the line of the pipe and 3m
beyond the vertical line through the end of the pipe.

s Pis(3,-25)
Thus 9=-4a(-25)

_9
= a=70
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. The eguation of the parabolais xZ:—4><% y

Let x; be the distance between the bottom of the vertical line on the ground

from the pipe end and the point on which the water touches the ground. But the
height of the pipe from the ground is 7.5 m

The point (x4, — 7.5) lies on the parabola
X2 = —4><1—90 x (- 7.5) =27

X, = 33
. Thewater strikes the ground 3\/3 m beyond the vertical line.

Example 4.13:;

A comet is moving in a parabolic orbit around the sun which is at the focus
of a parabola. When the comet is 80 million kms from the sun, the line segment

from the sun to the comet makes an angle of % radians with the axis of the orbit.

find (i) the equation of the comet’s orbit (ii) how close does the comet come
nearer to the sun? (Take the orbit as open rightward).

Solution:
Take the parabolic orbit as open y
rightward and the vertex at the origin. * Comet
Let P be the position of the comet in P
which FP = 80 million kms. 8
Draw a perpendicular PQ from P to the e
axis of the parabola. Y SS5Q > x
Let FQ=x;
From the triangle FQP,
PQ=FP.sn3
=80x12E = 40\/3 Fig. 4. 48

1
Thus FQ = x; = FP. cos3 =80 x5 =40

-~ VQ=a+40if VF =a; Pis(VQ, PQ) = (a+40,40\3)
SincePIi&sontheparaboIayz=4ax
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(40@)2 = 4a(a + 40)
= a=-60 or 20
= — 60 is not acceptable.
.. The equation of the orbit is
Y2 = 4% 20 x X

y? = 80x
The shortest distance between the Sun and the Comet isVF i.e. a
.. The shortest distance is 20 million kms.
Example4.14 ;

A cable of a suspension bridge hangs in the form of a parabola when the
load is uniformly distributed horizontally. The distance between two towers is
1500 ft, the points of support of the cable on the towers are 200ft above the road
way and the lowest point on the cable is 70ft above the roadway. Find the
vertical distance to the cable (parallel to the roadway) from a pole whose height
is 122 ft.

Solution :
D \\ B
P Q 130
¢ 750 v 22 A
C 70 70 iR 70

Fig. 4. 49

Take the lowest point on the cable as the vertex and take it as origin. Let
AB and CD be the towers. Since the distance between the two towersis 1500 ft.

VA’ = 750 ft ; AB =200 ft
-~ A'B=200-70=130ft
Thus the point B is (750, 130)
The equation of the parabolais X2 = day
Since B isapoint on 2 = day
(750)° = 4a(130)

4 = 182750
= 4a="3
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)

)

©)

L 75x7
.. The equation isx? = 5;—3,50

Let PQ bethe vertica distance to the cable from the pole RQ.
RQ=122, RR=70 = RQ=52
Let VR bex; .. Qis(xy, 52)
Qisapoint on parabola
X12 - 75 >]<.3750 % 52
x; = 150\/10
PQ = 2x; = 300+/10 ft.
EXERCISE 4.1
Find the equation of the parabola if
(i) Focus:(2,—3) ; directrix:2y—3=0
(i) Focus:(—1,3) ; directrix:2x+3y=3
(iii) Vertex:(0,0) ; focus: (0,-4)

(iv) Vertex:(1,4) ; focus: (-2,4)

(v) Vertex:(1,2) ; latusrectum:y=5

(vi) Vertex:(1,4) ; open leftward and passing through the point
(-2, 10)

(vii) Vertex:(3,-2) ; open downward and the length of the latus
rectumis 8.

(viii) Vertex:(3,—-1) ; open rightward ; the distance between the
latus rectum and the directrix is 4.

(ix) Vertex:(2,3) ; open upward ; and passing through the point
(6,4).
Find the axis, vertex, focus, equation of directrix, latus rectum, length of

the latus rectum for the following parabolas and hence sketch their
graphs.

(i) y* = - 8x (i) X% = 20y

(i) (x— 4)° = 4y + 2) (iv)y> +8x—6y+1=0

(V) X2 — 6x— 12y —3=0

If a parabolic reflector is 20cm in diameter and 5cm deep, find the
distance of the focus from the centre of the reflector.
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(4) The focus of a parabolic mirror is at a distance of 8cm from its centre
(vertex). If the mirror is 25cm deep, find the diameter of the mirror.

(5) A cable of asuspension bridge isin the form of a parabola whose span is
40 mts. The road way is 5 mts below the lowest point of the cable. If an
extra support is provided across the cable 30 mts above the ground level,
find the length of the support if the height of the pillars are 55 mts.

4.4 Ellipse:
Definition : Thelocus of apoint in a plane whose distance from a fixed point bears
aconstant ratio, less than one to its distance from afixed lineis called dlipse.

Note : Eventhough the syllabus does not require the derivation of
standard equation and the tracing of elipse (4.4.1, 4.4.2) and it
needs only the standard equation and the diagram, the equation is
derived and the curveistraced for better under standing.

Now, we will derive the standard equation of an ellipse.
4.4.1 Standard equation of the ellipse :

Given : y
* Fixed point F * xale
* leedll.nt?l P(x,y) M
* Eccentricity e (e< 1)

* Moving point P (X, y) C (a,0)
Construction : Zf (-a,0) F(vae,O); 77
* Plot the fixed point F (a/e{0)

and draw the fixed
linel Fig. 4. 50

% Drop aperpendicular (FZ) fromF to |

% Drop aperpendicular (PM)

* Plot the points A, A" which divides FZ internally and externally in theratioe: 1
* Take AA = 2aand treat it as x-axis.

* Draw aperpendicular bisector to AA" and treat it as y-axis.
% Let Cbetheorigin.

* The known points are the origin C(0, 0), A(a, 0), A'(- a, 0)
% To find the co-ordinates of F and M, do the following :

Since A, A’ divides FZ internally and externally intheratio e : 1 respectively,
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H-e FA e
Az 1 - =1
AZ
L FA=eAZ ’ ,
i.e, CA-CF = e(CZ-CA) ~FA =eAZ

a-CF=e(CZ-a ..(1)| i.e AC+CF=¢e(A'C+C2)
a+tCF=e@a+Cz ..(2

@+(1) = 2a=e[2cZ] = CZ=4g

2-(1) > 2CF=e2a) = CF=ae
M is@, y) and Fis(ae 0)

To obtain the equation of the ellipse, do the following :
Since P isany point on the ellipse

FP
BN = € = FPP=ePM?

a2
i.e (x- ae)2 +(y- O)2 = e{(x—g) + (y—y)z}
R T
1L-)x2+y?=a’(1-¢€)
Dividing by a° 1- ez), we get

©
a° a2(1—e2)
2
i.e X—2+§:l, wherebzzaz(l—ez)

Thisisknown as the standard equation of an ellipse.

. X2y
4.4.2 Tracing of theelllpse? + 2 = l,a>b
(i) Symmetry property :

It is symmetrical about x-axis and y-axis simultaneously and hence about
the origin.

(ii) Special points:
It does not pass through the origin.
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To find the points on x-axis, put y = 0, we get X = + a. Therefore the curve
meets the x-axis at A(a, 0) and A'(— a, 0).

To find the points on y-axis, put X = 0, we get y = + b. Therefore the curve
meets the y-axis at B(0, b) and B'(0, — b)
(iii) Existence of the curve:

. . . _ Q 2 2 . .
Write the equation of the ellipse asy = + 3 \a“—x. yisrea only if

a?-x% >0. i.e., the curve does not exist for a2-x<0 or ¥—-a’>0

Equivalently the curve does not exist for x > a and x < — a. Thus the curve
existsonly when—a<x<a.

Write the equation of the ellipse as x = J_r% \/bz—yz. x isrea only if

b? - y2 > 0. The curve does not exist for b? — y2 <0 i.e, y2 -b?>>0 ie,the
curve does not exist for y > b and y < — b. The curve exist only when
—b<y<b. .. Ellipseisa closed curve bounded by the lines x = + a and
y=+b. Thusthecurveis

y
X =-ale 0 X =ale
B
M Pxy) M

zZ| A C 1'31 A 7 >
(-ale,0)| (-a0) ©0,00] (ae0) @0)| (ate, 0)

Bl
Fig. 4. 51

4.4.3 Important definitionsregarding ellipse :
Focus: The fixed point is called focus, denoted as F4 (ae, 0).

Directrix : Thefixed lineis called directrix | of the ellipse and its equation

ey =B
isx=14 .

Major axis : The line segment AA’ is called the major axis and the length
of the mgjor axisis 2a. The equation of the major axisisy = 0.
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Minor axis : The line segment BB’ is called the minor axis and the length
of minor axis is 2b. Equation of the minor axisis x = 0. Note that the length of
major axisis aways greater than minor axis.

Centre : The point of intersection of the magjor axis and minor axis of the
dlipseis called the centre of the ellipse. Here C(0, 0) is the centre of the ellipse.
Note that the centre need not be the origin of the ellipse always.

End points of latusrectum and length of latusrectum :

To find the end points, solvex=ae... (1) and —2+£2= ...(2
Using (2) in (1) we get
22 )f
a
+ =1
a° b2
g § =1-¢°
Y =0’ (1-€)
=a“(1-¢
2 [ 2 4=
a2 |or5=1-¢€
_ L P
Y=*7a

2
If L, and L, arethe end points of the latus rectum then L, is(ae, %) and
2
Ly is(ae, —%) .

The end points of the other latus rectum are (— ae + %Z) .

.
The length of the latus rectum is™y -

For the above discussed ellipse, the major axis is along x-axis. There is
another standard ellipse in which the mgjor axis is along the y-axis.

Vertices : The points of intersection of the elipse and its mgjor axis are
called its vertices. Here the vertices of the ellipse are A(a, 0) and A'(- a, 0).
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Focal distance : The foca distance with respect to any point P on the
ellipse is the distance of P from the referred focus.

Focal chord : A chord which passes through the focus of the dlipse is
called the focal chord of the ellipse.

A special property : Thanksto the symmetry about the origin, it permits
(i) thesecondfocusF, (- ae, 0)

(ii) the second directrix x = —%

Latus rectum : It is afoca chord perpendicular to the mgjor axis of the
elipse. The equations of latus rectum are x = ae, X = — ae.

Eccentricity
b2
e= 1-=
a2
Remark :

Inthe case of an ellipse0<e< 1. Ase—>0,g—>1 i.e, b—a orthe

length of the minor and major axes are close in size. i.e., the élipseis close to
being acircle.

As e > 1, g — 0 and the ellipse degenerates into a line segment

(degenerate conic) i.e., the ellipseisflat.
4.4.4 The other standard form of the éllipse :
If the mgjor axis of the ellipse is along the y-axis, then the equation of the
X L ¥ _
5 =

eIIipsetakestheform? + o 1,fora>h.

For this type of dlipse, we have the following as explained in the earlier
dlipse.

Centre . C(0,0
Vertices : A(0,a), A'(0,-a)
Foci : F1(0,a¢), F; (0, — ae)

Equation of major axis isx=0

Equation of minor axisisy=0

End points of minor axis : B (b, 0), B'(— b, 0)
Equation of directrices: y =+ ale
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b? b?
End points of latus rectums : (J_r Yy ae) , (_ =, - ae)

a’ a’
y
A
y =ale
A(0,2)
(-b%/a jae) L} L, (-b%/aae)
x
1
B C B » X
(-b%/a -,ae)L,! L, (b*/a,-ae)
y = ale A'(0,-a)
Fig. 4. 52

4.4.5 General formsof standard ellipses:

To obtain the general forms of standard ellipses, replace x by x — hand y
by (y — K) if the centreis C(h, k).

2 Y
Thus the general forms of standard ellipses are x azh) + v bzk) =
x=h?  (y=K?

b? ¥ a
Focal property of an ellipse:

The sum of the focal distances of any point on an ellipse is constant and is
equal to the length of the mgjor axis.

1:

=1, a>b

>
P <

X =-ale X =ale
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Proof :
Toprove: F1P +F,P =2a

Let P be apoint on the ellipse. Drop the perpendiculars PM and PM’ to the
. : a a .
directricesx =75 and x = -5 respectively .

F,P FoP
Weknowthatm = g W =e
.. FiP = ePM, F,P=ePM
. FiP+F,P = e(PM + PM')
= &(MM)

2a
e

= 2a
= length of the mgjor axis
Example 4.15 : Find the equation of the ellipse whose foci are (1, 0) and
T |
(= 1, 0) and eccentricity is5 .
Solution:

The centre of the ellipse is the midpoint of FF' where F is (1, 0) and F' is
(-1,0).

. (1-1 0+0 y
CentreCm(T, 2 ) =(0,0)
But F,F —2ae—2ande—l . C o > X
1F2 = = =2 (10 F, ‘ F (10)
1
2a><§ =
Fig. 4. 54
a=2
2_ .2 2 1
b*=a"(1-¢9) = 4(1—2) =
From the given datathe major axisis along x-axis.
.. the equation of the ellipse is of the form
x-h? | (y=K? _ g
2 + 02 =1 = 4 +3=1
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Example 4.16 : Find the equation of the ellipse whose one of the foci is (2, 0)

and the corresponding directrix is x = 8 and eccentricity is5

Solution:
Let P(x, y) be amoving point. By definition
FP _ x =8
PM ~ € y
A
.. FP? =& pMm? P(y) M (8,)
1 8 ’
x—22+(y-07>%=7 (iX;j > x
(x-22+(y-02=7 (77 s
(x-22+y? =% (x-8)
Fig. 4. 55
4[(x-2%+y] = (x-8)°
3% + 4y = 48
2
X
16+t12 71
Aliter :
From the given data, the major y
axis is along the x-axis and the 4 x =8
equation of the ellipse may be
taken as
Y, o feo  |zeo
a b
FZ=2 - ae=6
1 Fig. 4. 56

Bute:§ :Za—% a=6
:>§a:6:a:4
bZ:aZ(l—eZ):lG(l—%r) = 16><% = 12

.. Therequired equation is % t15 =1
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Example 4.17 : Find the equation of the ellipse with focus (- 1, — 3), directrix

.4
X—2y=0and eccentricity ¢

Solution:
Let P(x, y) be amoving point. By definition
FP
PM ~ €
(]
FP? = &2 pPM2 L P(x.y)
2 9
_ =
(e 020+ |+ ’
F(-1,-3)

125 [(x + 1)% + (y + 3)%] = 16 (x - 2y)? Fig. 4. 57

— 100%° + 64xy + 61y2 + 250x + 750y + 1250 =0
Example 4.18 : Find the equation of the ellipse with foci (+ 4, 0) and vertices

(+5,0)

Solution:
Let the foci be F;(4, 0) and y

F, (- 4, 0), vertices be A(5, 0) +

and A'(- 5, 0). The centre is

the midpoint of AA’ IV doo ENA
, _(=5+5 0+0 ('5’0)%‘%(5’0)
|.e.,C|s( > 2 )

=(0,0)
Fig. 4. 58

From the given data, the major axis is along the x-axis and the equation of
the ellipse is of the form

2 P,
a2 b2
HeeCA=a=>5

CF =ae=4 since e = 5

b®=a’(1-¢€) = 25- 16 = 9 and the

2

required equation of the éllipseis % +9
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Example 4.19 : The centre of the ellipseis (2, 3). One of the foci is (3, 3). Find
the other focus.

Solution:
From the given data the mgjor axis is
parallel to the x axis. Let F4 be (3, 3) B, C F, y =3
Let F, be the point (x, y). Since
C (2, 3) isthe midpoint of F; and F, on
themajor axisy = 3 Fig. 4. 59
Xx+3 _ y+3
5 =2and “5— =3

Thisgivesx =1 and y = 3. Thusthe other focusis (1, 3).
Example 4.20 : Find the equation of the ellipse whose centre is (1, 2), one of

thefoci is (1, 3) and eccentricity is%

Solution:
The major axisis parallel to y-axis. K ‘e
.. The equation is of the form F,(13)
_h)2 —_ 12 C(12)
C=h’, =k _
b a > X
CF=ae=1
1 2
Bute=5 = a=2 a"=4 Fig. 4. 60

B =a’(l-€) = 4(1—%1)=3; c(h, k) =(1,2)

2 2
(X—31) +(y—42) -1

.. Therequired equation is
Example 4.21 : Find the equation of the ellipse whose mgjor axis is aong
x-axis, centre at the origin, passes through the point (2, 1) and eccentricity %

Solution:

Since the mgjor axis is along the x-axis and the centre is at the origin, the
2

equation of the ellipseis of the form ? + 2 =1

202



4.1

It passes through the point (2, 1). 2 + 02 - 1 .. ()
b’=a’(1-€) = b2=a2(1—%1)
. 4b° = 3a° (2
Solving (1) and (2) we get a = 136, b’=4

.. Therequired equation is & +§ =1

Example 4.22 : Find the equation of the dlipse if the mgjor axis is parallel to
y-axis, semi-major axisis 12, length of the latus rectum is 6 and the centreis (1,
12)

Solution:

Since the major axis is parallel to y-axis the equation of the ellipse is of the
form

2 2
=02 | =K _,

b? a°
ThecentreC (h, k) is (1, 12)
Semi major axis a=12 = a’=144
2b? 2b?

Length of the latus rectum— =6 = 75 =6

x-1)7?  (y-12)°

( 36) +(3/144) —1

Example 4.23 : Find the equation of the ellipse given that the centre is (4, — 1),

focusis (1, — 1) and passing through (8, 0).
Solution :

From the given data since the 4
major axis is parallel to the x axis, > x
the equation is of the form . g(4,-1)

2 2 F,(1,-1

(h)® L -R7 2D

a b

The centre C(h, k) is (4, — 1) Fig. 4. 61

(x=4°  (y+17 _
a? b?

. b%=36and the required equation is

1
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It passes through (8, 0) .. ? +==1 .. (D

bZ:az(l—eZ):az—azeZ:az—Q

@) = §+a21—9 -
= 1682 — 144 + a2 = a* - 922
- a*-26a°+144=0
= a’=180r8
Case(i) a® =18
b®>=a’-9 = 18-9=9
Case (i) : a’=8
b’ =8-9 = — 1 whichisnot possible
a = 18, b2=9

2 2
Thus the equation is (x 184) + by Bl) =1

Example 4.24 : Find the equation of the ellipse whose foci are (2, 1), (- 2, 1)
and length of the latus rectum is 6.

Solution : y
From the given data the mgjor axis is
parallel to the x axis. y=1

.. The equation is of the form E2,n)| F@D
x=h?  (y-K?
a° b2

Since the centre is the midpoint of Fig. 4. 62
FiF2

C(—=2+2 1+1
CIS( 5 2)=(0,1)

and the equation becomes

=1

¥ (y-1)>2
25 7
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FiF,=2ae =4 = a’e’=4
2P =2 b2
L at-b’=4 ..

2
The length of the latus rectum % =6 b’=3a .. (2

1 = a’°-3a-4=0 (by (2)
= a=4 o -1
a=-1lisabsurd
La=4
b’ =3a = 12

2 2
P X (=D _
Thus the equation is 16t 12 =1
Example 4.25 : Find the equation of the ellipse whose vertices are (- 1, 4) and

o1
(-7, 4) and eccentricity is 3 .

Solution : 2

From the given data the mgjor axis is P
parallel to x axis. A A

. The equation is of the form =P Y

x=h? , (y-K?_, >

a° b?
The centre is the midpoint of AA
_1_ Fig. 4. 63
Cis( 12 ! , —4;4) =(-4,4)

Thus the equation becomes
x+47 , (y-4)°

=1
a2 b2

Weknowthat AA'=2a=6 = a=3
b2=a2(1—e2)=9(1—%) =8

2 2
The required equationis(x +94) + v 84) =1
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Example 4.26 : Find the equation of the ellipse whose foci are (1, 3) and (1, 9)

o1
and eccentricity is5

Solution : y 1
From the given data the mgjor axis is ¢ 7-
parallel toy axis. F,(19)
.. The equation is of the form
x=h? =K, F,(13)
2 2
b a > X
The centre of the ellipse is the !
midpoint of F; F, Fig. 4. 64
. (1+1 3+9
CIS( ) )=(1,6)
Fl F2 =2ae = 6
ae=3
1
But e=5 .. a=6

b’=a’(1-¢€) = 36(1—%1) =27
Thus the required equation is

x-1?%  (y-6)?°_
27 T3 -1

Property (without proof) :

A point moves such that the sum of its distances from two fixed pointsin a
planeisaconstant. The locus of thispoint is an ellipse.

Example 4.27 : Find the equation of a point which moves so that the sum of its
distances from (- 4, 0) and (4, 0) is 10.

y
P(x,y)

& » X
Fy-40) | F,(4,0)

Fig. 4. 65
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Solution :
Let F; and F, be the fixed points (4, 0) and (— 4, 0) respectively and
P(x4, 1) be the moving point.
It isgiven that FiP+F,P =10
e, \Joa =47+ (1= 07+ + 47+ 41 -0 =10
Simplifying we get
9x12 + 25y12 = 225. .. Thelocusof (X, yq) is

X2

Example 4. 28 : Find the equations and lengths of major and minor axes of

x-1)%  (y+1)? _
9 T 15 -1

2
(i) g+ =1 (@) 42+32=12 (i)
Solution :

(i) The major axis is along x-axis and the minor axis is along y-axis. This
gives the equation of major axis asy = 0 and the equation of minor axis as

x=0. Wehave a®=9 ; b°=4 = a=3, b=2
.. The length of major axisis 2a = 6 and the length of minor axisis2b =4
(i) X§2+ g =1
The magjor axisis along y-axis and the minor axisis along x-axis.
.. The equation of major axis is x = 0 and the equation of minor axis is
y=0.Herea’=4 ; b’=3 = a=2, b=+3
.. The length of major axis (2a) =4
The length of minor axis (2b) = 24/3
(iii) Letx—1=Xandy+1=Y
X2 Y2
.. The given equation becom&sg +t16 =1 Clearly the mgjor axisisaong
Y-axis and the minor axisis aong X-axis.
.. The eguation of mgjor axis is X = 0 and the equation of minor axis is
Y=0
i.e., the equation of major axisis x — 1 = 0 and the equation of minor axis
isy+1=0
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Herea? = 16, b2=9
= a=4, b=3
.. Length of major axis (2a) =8
.. Length of minor axis (2b) =6
Example 4. 29 : Find the equations of axes and length of axes of the ellipse
6x° + 9y? + 12x— 36y — 12=0
Solution :
6x° + 9y° + 12x— 36y — 12 = 0
(6x2 + 12X) + (9y? — 36y) = 12
B(x2 + 2X) + 9(y> — 4y) = 12
B{(x+1)°-1} +9 {(y-2)?-4} =12
B(x+1)2+9(y—2°=12+6+36
6(x+ 1)°+9(y—2)% = 54
x+1? (=2 _
9 6

1
LetX =x+1; Y=y-2
2 2
.. The equation becomes 9 te = 1
Clearly the mgjor axis is along X-axis and the minor axisis along Y-axis.
.. The equation of the major axisis Y = 0 and the equation of the minor
axisis X =0.
The equation of the magjor axisisy — 2 = 0 and of minor axisisx+1=0
i.e., the equation of the magjor axisisy—2=0
Herea’=9, b’°=6 = a=3, b=+/6
.. The length of major axis (2a) =6
The length of minor axis (2b) = /6
Example 4.30 : Find the equations of directrices, latus rectum and length of
latus rectums of the following ellipses.

0) % +>§ =1 (i) 25+ 92 =225 (iii) 4+ 3y +8x+ 12y +4=0
Solution :
(i) Themagjor axisisalong x-axis

Herea? = 16, b%=9
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b? [[9 7
e= 1—; = 1-76 =72
Equations of directricesare X = J_rg
X_irlG
A7
Equations of the latus rectumsare X = + ae
X = £47
20> 2x9 9
Length of the latus rectum a8 = Z =3
(i) 252 +92=225 .. Xg %ﬁ =

Herea? = 25, b2=9

Equations of the latusrectum are y = + ae
y=t4
Length of the latus rectum is %bz = ZLSQ = 1—58
(iii) A% +3 +8x+12y+4=0

(P +8X) + (32 +12y) +4 =0
40 +23) +3(y” + 4y) =~ 4
H(x+1)>-1} +3{(y+2)° -4 = -4
4x+ 12 +3(y+272%=12

x+1)?  (y+2)? _
3 +t7 17 =1
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2 2
X° Y
3t =1 whereX=x+1, Y=y+2

. o . 1
Themajor axisisalong Y axis. Herea’=4, b’=3and e=5
Equations of the directri v=+2 e Yzipm

quations of the directrices are =t e =@
Y=+4

(i) Y=4 = y+2=4 = y=2
(i) Y=—=4 = y+2=-4 = y=-6
Thedirectricesarey=2andy=-6

. : 1
Equations of the latus rectum are Y=tae ie Y=%2 (E)

Y==x1
i) Y=1 = y+2=1
= y=-1
(i) Y=-1= y+2=1
= y=-3
.. Equation of thelatusrectumarey = —l1andy=-3
2
Length of the latus rectumis% = % =
Example 431 Find the eccentricity, centre, foci, vertices of the following
2
elipses: (i) o5+ ﬁ = (||) ﬁ =
Gty &2 3) (y_45) =1 (iv) 36x2 + 4y2 — 72x + 32y — 44= 0
Solution : (|)25 )E =
The major axisisaong x-axis a’=25b°=9
e=g and ae=4 1

Clearly centre Cis (0, 0), 4 \
Foci are (+ ae, 0) = (+ 4, 0) A 220 doo FNA
Verticesare (+ a, 0) = (+ 5, 0) -5 ’0)& ﬂ (5,0)

Fig. 4. 66
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(i) Themajor axisisaong y-axis a’=9,b°=4

ezlsg and ae=+/5 2
. A0.3)
Clearly centre Cis (0, 0)
Foci are (0, + ae) = (0, £1/5) Fig05)
Verticesare (0, +a) = (0, £ 3) cl.0) >
F,¢ (0,-V5)
A'(0,-3)
Fig. 4. 67
(iii) Letx+3=X, y—-5=Y
2 2
.. The equation becom&e% + YZ =1
The major axisis aong X-axis
a’=6, b’=4
1
€= and ae=+/2
Referred to x, y
Referred to X, Y X=x+3: Y=y—5
Centre (0,0 X=0;Y=0
= x+3=0,y-5=0
x=-3,y=5
Centre C(- 3, 5)
(ta0)ie (x6,0) | () X =16, Y=0
() (6. 0) x+3=6, y-5=0
x=4/6 -3, y=5
A(-3++6,5
Vertices ( ik )

(i) (-/6,0)

(i) X=-+6,Y=0
Xx+3=-4/6,y-5=0
x=-3-4/6 ,y=5

A (-3-46,5)

211




(+ ae, 0) (i) X =42, Y=0

ie (£4/2,0) Xx+3=+2,y-5=0
(i) (v2,0) Xx=-3+2,y=5
, F1(-3++2.5)
foci _
(i) (-~/2,0) (ii) X=-42,Y=0

X+3=-4/2,y-5=0
Xx=-3-4/2,y=5

Fa(3-12.5)

X y

1 A
Nl T i
(-3-V6,S)Q ‘W(s 6, 5)

v I

v
=

Fig. 4. 68
(iv) 36x°+ 4y? — 72x+ 32y — 44 =0
36(x2—2x)+4(y2+8y):44
36 {(x—1)%>— 1} + 4{(y + 4> 16} = 44
36(x — 1)°+ 4 (y + 4)° = 144
x=2°  (y+4° _
4 6 -

1

. X2 Y
ie., 7 t3g =1 whereX=x-1,Y=y+4

The major axisisaong Y-axis.
a®=36, b’=4

e:%éandae:4\/§
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Referred to x, y

Referred to X, Y X=x—1: Y=y+4
Centre (0,0 X=0;Y=0
= x-1=0,y+4=0
x=1Ly=-4
CentreC(1, — 4)
(0,+a)i.e (0,£6) 0] X=0 Y=6
() (0, 6) X-1=0,y+4=6
x=1 y=2
Vertices A(L 2)
(i) (0, - 6) (i) X=0,Y=-6
Xx-1=0,y+4=-
Xx-1=0,y+4=-6
x=1 y=-10
A (1, -10)
(0, + ae) @i X=0; Y=4/2
ie (0,+4+2) X—1=0, y+4=4/2
() (0. 42) x=1y=4y2 -4
Foci F1(L 4~2-4)
(i) (0, - 4\/2) (i) X=0, Y=-4/2

X—1=0 ; y+4=—-4[2
Xx=1,y=-4-442

Fo(L-4-442)

Fig. 4. 69
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4.4.6 Some practical problems:

Example 4.32 : An arch isin the form of a semi-ellipse whose span is 48 feet
wide. The height of the arch is 20 feet. How wide is the arch at a height of 10

feet above the base?
Solution :
Take the mid point of the
base as the centre C (0, 0)
Since the base wide is 48 fest,
the vertices A and A" are (24, 0)
and (— 24, 0) respectively. (:24.0) 24,0)

Clearly 2a=48 and b = 20.

2
SN e

The correspondin uationis —5 +
€sp g €q 242 " 902

Let x; be the distance between the pole whose height is 10m and the centre.
Then (x4, 10) satisfies the equation (1)

2 2
X1 10
? +ﬁ: 1 = x =123
Clearly the width of the arch at aheight of 10 feet is2x; = 243

Thus the required width of arch is 24/3 feet.
Example 4.33 : The ceiling in a hallway 20ft wide is in the shape of a semi
ellipse and 18 ft high at the centre. Find the height of the ceiling 4 feet from
either wall if the height of the side wallsis 12ft.
Solution :
Let POR be the height of the ——RG6,y)
ceiling which is 4 feet from the 6
From the diagram PQ = 12 ft (-10,0) qeo Q|00
To find the height QR 12
Since the width is 20ft, take A,
A’ as vertices with A as (10, 0) and
A as (- 10, 0). Take the midpoint Fig. 4. 71 P
of AA’ asthe centre which is (0, 0)

214



Fromthediagran ~ AA' =2a = 20 = a=10
and b=18-12 =6

200 t3 "1
Let QRbey; then R is(6,y,)
SinceR lieson the elipse,

2
36 Y1 _ _
~ PQ+ QR=12+438
.. Therequired height of the ceiling is 16.8 feet.

Example 4.34 : The orbit of the earth around the sun is elliptical in shape with
sun a a focus. The semi major axis is of length 92.9 million miles and
eccentricity is 0.017. Find how close the earth gets to sun and the greatest
possible distance between the earth and the sun.

Solution :
Semi-magjor axis CAis y
‘6 A

s

a=92.9 million miles <

Given e = 0017 N /'/ WA )

The closest distance of the c[©00) v,
earth from the sun = FA kj

and farthest distance of the

earth from the sun = FA Fig. 4. 72
CF = ae =929x0.017
FA = CA-CF = 92.9-92.9x 0.017
=929[1-0.017]
= 92.9 x 0.983 = 91.3207 million miles
FA" = CA +CF = 929+ 92.9 x 0.017
=929(1+0.017)
= 92.9 x 1.017 = 94.4793 million miles
Example 4.35 : A ladder of length 15m moves with its ends always touching
the vertical wall and the horizontal floor. Determine the equation of the locus of
a point P on the ladder, which is 6m from the end of the ladder in contact with
thefloor.
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Solution :
Let AB be the ladder and P(xy, y;) be
apoint on the ladder such that AP = 6m.
Draw PD perpendicular to x-axis and B
PC perpendicular to y-axis. 0
Clearly the triangles ADP and PCB
aresimilar. c

PC _PB _BC .
- DA oy

) X1
l.e., DA ~

3y
OA=OD+DA =X+ =2 x; OB=0C+BC=y;+ 5 =3y,

|

X
fig

+
w

25 5, 25
= Gx°+ 7y =225

I

>

®
N

But OAZ? + OB?

€ Y

. Thelocus of (X4, y;) isa +35 =1, whichisan ellipse.

EXERCISE 4.2
(1) Find the equation of the ellipse if
(i) oneof thefoci is (0, — 1), the corresponding directrix is

3x+16=0and e:g

(ii) thefoci are(2,-1),(0,-1)ande =%
(iii) thefoci are (+ 3, 0) and the vertices are (+ 5, 0)

(iv) thecentreis (3, - 4), oneof thefoci is (3 ++/3, —4) and e = 3?
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)
©)
(4)

©)

(6)

()

®)

(v) the centre at the origin, the mgjor axis is adong x-axis, e = % and

passes through the point (2, ?5)

(vi) thelength of the semi magjor axis, and the latus rectum are 7 and %)

respectively, the centre is (2, 5) and the mgjor axis is parale to
y-axis.

(vii) thecentreis (3, — 1), one of thefoci is (6, — 1) and passing through
the point (8, — 1).

(viii) thefoci are (3, 0), and the length of the latus rectum is3—52 .
\3
2

If the centre of the éelipse is (4, — 2) and one of the focus is (4, 2),
find the other focus?

Find the locus of a point which moves so that the sum of its distances
from (3,0) and (— 3, 0) is9

Find the equations and length of major and minor axes of

(i) 9x° + 25y = 225 (iii) 9x° + 4y° = 20

(i) 5x° + 9y + 10x — 36y —4=0  (iv) 16x° + 9y? + 32x — 36y — 92 =0
Find the equations of directrices, latus rectum and lengths of latus
rectums of the following ellipses:

(i) 25x° + 169y = 4225 (i) 9x° + 16y° = 144

(iii) X° + 4y> — 8x— 16y —68=0  (iv) 3x° + 2y° — 30x— 4y + 23 =0
Find the eccentricity, centre, foci, vertices of the following ellipses and
draw the diagram :

(i) 16x% + 25y = 400 (i) X° + 4y° — 8x— 16y — 68 =0
(iii) 9% + 4y = 36 (iv) 16x° + 9y® + 32x — 36y = 92

A kho-kho player in a practice session while running realises that the sum
of the distances from the two kho-kho poles from him is always 8m. Find
the eguation of the path traced by him if the distance between the polesis
6m.

A satellite is travelling around the earth in an elliptical orbit having the
earth at a focus and of eccentricity 1/2 . The shortest distance that the
satellite gets to the earth is 400 kms. Find the longest distance that the
satellite gets from the earth.

(ix) the verticesare(+4,0)ande=
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(9) The orbit of the planet mercury around the sun isin elliptical shape with
sun at afocus. The semi-major axis is of length 36 million miles and the
eccentricity of the orbit is 0.206. Find (i) how close the mercury gets to
sun? (ii) the greatest possible distance between mercury and sun.

(10) The arch of a bridge is in the shape of a semi-€llipse having a horizontal
span of 40ft and 16ft high at the centre. How high is the arch, 9ft from

theright or left of the centre.

4.5 Hyperbola:

Definition: The locus of a point whose distance from a fixed point bears a constant
ratio, greater than one to its distance from afixed lineis called a hyperbola.

Note : Eventhough the syllabus does not require the derivation of
standard equation and the tracing of hyperbola (4.5.1, 4.5.2) and it
needs only the standard equation and the diagram, the equation is
derived and the curveistraced for better under standing.

We shall now derive the standard equation of the hyperbola.

4.5.1. Standard equation of the hyperbola:
Given : y

*  Fixed point (F) 1t
*  Fixedline (I) M| P(x,y)
* Eccentricity e, (e> 1)
* Moving point P(x, y)
i g g & » X

Construction ' . A C| Z| A Faeo)
* Plot the fixed point F and

draw thefixed line‘I’.
* Drop a perpendicular (F2) _

fromFtol. Fig.4.74

* Drop aperpendicular (PM) fromP tol.

*  Plot the points A, A which divides FZ internally and externally in the ratio

e: 1 respectively.
* Take AA' = 2aand treat it as x-axis.

*  Draw aperpendicular bisector of AA" and treat it as y-axis.

Let C bethe origin. The known points are C(0, 0), A(a, 0), A'(- a, 0).
To find the co-ordinates of F and M do the following :
Since A, A’ divides FZ internally and externally in theratio e : 1 respectively,
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e FA' e
Az 1 - =1
AZ
L FA=eAZ ’ ,
i.e.CF-CA=¢e(CA-C2) ~FA =eAZ

.~ CF-a=e(a-Cz ..(1)| i.e AC+CF=¢e(A'C+C2)
a+tCF=e@a+Cz ..(2

@-(1) = 2a=e[2c7 = Cz=%
@ +() = 2CF=e2a) = CF=ae
M is@ y) and Fis(ae, 0)

To obtain the equation of the hyperbola we do the following:
Since P isa point on the hyperbola,

FP
We have PV =€ = FP? = e?PM?

x- a0+ (y-02 = & (x-2) + - 2]

2 2
x2—2aex+a2e2+y2:e2[e2 ‘i";‘e“a]
X2 — X +yP = a? - a%e?
( —1)x2—y2:a2(e2—1)
¥
a2_a2(e2—1)_

X2

? - )béz =1 whereb® = & (e2 — 1) isapositive quantity.
Thisisthe regquired standard equation of the hyperbola.
2
. X
4.5.2 Tracing of the hyper bola? ﬁ =

T
(i) Symmetry :

The hyperbolais symmetric about x-axis, y-axis and hence the hyperbolais
symmetric about the origin.

(ii) Special points:

The hyperbola does not pass through the origin.

To find the points on x-axis, put y = 0, we get X = + a. Therefore the curve
meets the x-axis at A(a, 0) and A'(- a, 0).
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To find the points on y-axis, put x = 0, we get y2 =ie, yisimaginary.
Therefore the curve does not meet the y-axis.
(iii) Existence of the curve:

Write the equation of the hyperbolaasy = ig \/xz— . Ifx*-a’<0

i.e, —a<x<a Yyisimaginary. i.e., the curve does not exist for —a< x < a.
Therefore the curve exists for x < — a and x > a. Note that for al vy, the curve
exists.

(iv) Thecurveat infinity : y

. x=-ale & x =ale

As X increases y2 aso B

increases i.e, a x — o, }A, | c | AK

y2—>oo. a8SX—> o,y — * . pe 7 7 @);x
Fig. 4. 75

4.5.3 Important definitionsregarding hyperbola:

(-ae,0)
Thus the curve branches 1B
out to infinity on either side.
Focus: The fixed point is called afocus F4 (ae, 0) of the hyperbola.

Directrix : The fixed line is called the directrix of the hyperbola and its

— a
equationisx =1 .

Transverse axis : The line segment AA’ joining the vertices is called the
transverse axis and the length of the transverse axis is 2a. The equation of
transverse axis is y = 0. Note that the transverse axes cut both the branches of
the curve.

Conjugate axis : The line segment joining the points B(0O, b) and
B'(0, — b) is called the conjugate axis. The length of the conjugate axis is 2b.
The equation of the conjugate axisisx =0

Centre: The point of intersection of the transverse and conjugate axes of
the hyperbola is called the centre of the hyperbola. Here C(0, 0) is called the
centre of the hyperbola.

Vertices : The points of intersection of the hyperbola and its transverse
axis is caled its vertices. The vertices of the hyperbola are A(a, 0) and

A'(-a, 0).
As in the case of elipse, hyperbola also has the specia property of the

second focus Fo(— ae, 0) and the second directrix x = —% .
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Eccentricity : e= 1+
Remark :

In the case of ahyperbolae> 1. Ase — 1, g—> 0ie,ase— 1, bisvery

small related to a and the hyperbola becomes a pointed nose. Ase — «, b is
very large related to a and the hyperbola becomes flat.

Latus rectum : It isafocal chord perpendicular to the transverse axis of
the hyperbola. The equations of the latus rectum are x = + ae.

End points of latusrectum and length of latus rectum :
To find the end points, solvex=ae... (1) and ? 2 1...(2

Using (1) in (2) we get

a2 ¥
2 T
'.}bézzez—l
LY =P (E-1)
= 2. (Z—g (- b’ =a’ (- 1))
VN
Ly=173

' : . b
If Ly and L, arethe end points of one latus rectum then L |s(ae, —Z) and

Ly is(ae, —%j .

Similarly the end points of the other latus rectum are (— ae, + %Z) and the

2

length of the latus rectum is% .

For the above discussed hyperbola, the transverse axis is along x-axis.
There is another standard hyperbola in which the transverse axis is aong
y-axis.
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4.5.4 Theother form of the hyperbola:
If the transverse axis is along y-axis and the conjugate axisis along x-axis,

Y _x

_—:1
a® b

For this type of hyperbola, we have the following as explained in the
earlier hyperbola

then the equation of the hyperbolais of the form

Centre : C(0,0
Vertices : A(0,a), A" (0, -a)
Foci : F1(0,ae), F5 (0, — ae)
Equation of transverseaxis is : x=0
Equation of conjugate axisis : y=0
End points of conjugate axis : (b, 0), (- b, 0)
Equations of latus rectum . y=tae
Equations of directrices Dy=+ %
b? b?
End points of latus rectum : (J_r rY ae) , (i rYhe ae)
y
A
F ¢ (0, ae)
A(0,a)
y =ale
o C , > X
B’ B
=-a/e :
A’(0, -a)
F,4 (0, - ae)
Fig. 4.76
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Example 4. 36 : Find the equation of hyperbola whose directrix is2x +y =1,
focus (1, 2) and eccentricity /3 .

Solution:
Let P(x, y) be any point on the hyperbola. Draw PM perpendicular to the
directrix.

By definition, % e = - FP?=¢?. PM?

2
, 2y oy 2X_+L1j
l1.e., (X 1) + (y 2) 3( \/m M| P(x,y)
(- 12+ (y-22 =2 @x+y- 12 -
i, TX°+12xy — 2y — 2x + 14y - 22=0 :
This is the required eguation of the + F(1,2)
hyperbola. a
Fig. 4. 77

Example 4.37 : Find the equation of the hyperbola whose transverse axis is
aong x-axis. The centre is (0, 0) length of semi-transverse axis is 6 and

eccentricity is 3.
Solution:

Since the transverse axis is along x-axis and the centre is (0, 0), the
2

equation of the hyperbolais of the form ?— 2 =1

Given that semi-transverse axis y
a= 6, eccentricity e= 3 \ T /
2_ .2
We know that b° = a2 (€ - 1) Aol oA .
. b® = 36(8) F, “:\F
= 288

.. The equation of the hyperbolais
NG _ﬁ Fig.4.78

36 288~ 1
Example 4.38 : Find the equation of the hyperbola whose transverse axis is
pardlel to x-axis, centre is (1, 2), length of the conjugate axis is 4 and

eccentricity e= 2.
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Solution:
Since the transverse axisis parallel to x-axis, the equation is of the form
x=h?  (y-K*_
2 @ '

Here centre C(h, k) is (1, 2).
The length of conjugate axis2b=4ande=2

b% = a2 (€® - 1)

4=2a?(4-1)

2_4
= a=3

2 2
. Therequired equation is (X4/§) _ U 42) =1

Example 4.39 : Find the equation of the hyperbola whose centre is (1, 2). The
distance between the directrices is % , the distance between the foci is 30 and

the transverse axisis parallél to y-axis.

Solution:
Since the transverse axisis parallel to y-axis, the equation is of the form

(v-K? _ x=h?_,
a2 b2
Here centre C(h, k) is (1, 2)
: ' . 2a 20
The distance between the di rectrlcesg =3
The distance between thefoci, 2ae=30 = ae=15

%(ae) :%) x15 = a’>=50

ae 9
Also ale = & = >
b’ =a’ (-1 = bZ:SO@—l) =175
The required eauation is Y22 _ =2
e requir equatlonls 50 — 175 =

Example 4.40 : Find the equation of the hyperbola whose transverse axis is
paradlel to y-axis, centre (0, 0), length of semi-conjugate axis is 4 and

eccentricity is 2.
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Solution:
From the given data the hyperbolais of the form 2

Given that semi-conjugate axisb=4and e = 2,
b% = a® (& - 1)
4 =a%(2%-1)

2_16
a =73

2
Hence the equation of the hyperbola is% - % =1

or 3y2 -2 =16
Example 4.41 : Find the eguation of the hyperbola whose foci are (+ 6, 0) and
length of the transverse axisis 8.
Solution:
From the given data the
transverse axisis along x-axis.
.. The equation is of the form
x=h? (=K _, . oo,
a2 b2 E,(-6.0) ‘ F,(6,0)
The centre is the midpoint of )
F,and F, Fig. 4. 79

: . (—6+6 0+0
i.e, CIS(T , T) =(0,0)
The length of thetransverse axis2a=8, = a=4
FlFZ =2ae =12 ae=6
S 4e=6

~<

e=

b2:a2(e2—1):16(9—1) _16x5_49
4 4

2
.. Therequired equation is 6 ~20°-1

Mo
Nlw
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Example 4.42 : Find the eguation of the hyperbola whose foci are (5, + 4) and

eccentricity is% .

Solution:
From the given data the transverse y
axis is parallel to y-axis and hence 4 ¢ F.(54)
the equation of the hyperbola is of !
theform > x
(y-R? x=h’_, €00
a2 2
t F,5.4)
The centre C (h, K) is the midpoint
of FyandF Fig. 4. 80

: . (5+5 4-4
i.e, CIS( 5 T) =(5,0)

FiF, = 2ae = \[(5- 52+ (4+4)% =8
ae=4

3 8
But e=5 .a=3

b® = a? (- 1) :%4 (%—1)

.. Therequired equation is
=07 (x-57°_ 9 Ix-57 _
649 ~ 80/9 1 O g — " g 1
Example 4.43 : Find the equation of the hyperbola whose centre is (2, 1), one
of thefoci is (8, 1) and the corresponding directrix isx = 4.
Solution:
From the given data the equation

» <

isof theform I =
2 2 C(}J) Fy(8,1)
C=h® =k, . o
a b > X
CentreC (h, k) is(2, 1)
CF,=ae=6
(Draw CZ perpendicular to x = 4) Fig. 4. 81
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The distance between the centre and directrix

a
CZ—e =

ae.%1 =6x2 = a’=12
ae 6

P=a’(-1) .. b>=12(3-1) = 24
.. Therequired equation is
x-2° (-1?_,
2 - 24 -

Example 4.44 : Find the eguation of the hyperbola whose foci are (0, + 5) and
the length of the transverse axisis 6.

Solution:
From the given data the transverse axisis Y
aong y-axis and hence the equation is of F
1(075)
theform
2 2
(=K C=h®_ 0
a b C
The centre C (h, k) is the midpoint of
FrandF, F,(0,-5)
Fig. 4. 82

: . (0+0 5-5
i.e. CIS(T , T) =(0,0)

F1F2 =2ae = 10
The length of the transverse axis =2a=6
= a=3 ande =
b? = a2 (€8 - 1)
25
= 9(3—1)

=16

wlo

e

.. Therequired equation is g - ézl
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Example 4.45 : Find the equation of the hyperbola whose foci are (0, ++/10)
and passing through (2, 3).

Solution:
From the data, the transverse axisis along y
they-axis. .. it isof the form
P R F,(0,V10)
2—2-1
a“ b ©0.0) -
Given that the foci are (0, £ ae) = C g
(0. £+10)
= ae=1/10 F,(0, -V10)
2 _ .2 _ 22 2
Also b —a(e2 1)—ae2 a Fig. 4. 83

b% = 10 - a2

A

- =1
a® 10-a?

.. Equation of the hyperbolais

It passes through (2, 3),
9 4
2 10-a
9g10—a2)—4a2 _
a?(10-a%
90 - 982 - 4a’ = 10a% - a*
or a*-23a%+90=0
(@®-18) (a°-5) =0
a®=18 or 5
If a2 =18, b®=10- 18 =-8whichisimpossible.
Ifa?=5 b°=10-5=5

2
.. Equation of the hyperbolais )g - Xg =1 or yz— X°=5
Example 4.46 : Find the equations and length of transverse and conjugate axes

2 P

of thehyperbolag -7
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Solution:
The centre is at the origin, the transverse axis is aong x-axis and the
conjugate axis is along the y-axis. i.e., transverse axisis x-axisi.e., y = 0 and the
conjugate axisy-axisi.e.,, x=0.
Hencea’®=9, b’°=4 = a=3, b=2
.. Length of transverse axis = 2a=6
Length of conjugate axis = 2b =4
Example 4.47 : Find the equations and length of transverse and conjugate axes
of the hyperbola 16y2 - 9x° =144
2
N
Solution: 9 ~16~
The centre is at the origin, the transverse axis is adong y-axis, and the
conjugate axisis along x-axis.
.. Thetransverse axisisy-axis, i.e. x=0
The conjugate axisis x-axisi.e. y = 0.
Herea2:9, b’=16 = a=3, b=4
.. Thelength of transverse axis = 2a=6
The length of conjugate axis = 2b = 8
Example 4.48 : Find the equations and length of transverse and conjugate axes
of the hyperbola9x2 — 36X — 4y2 —-16y+56=0
Solution:
9% — 4x) — 4y + 4y) = — 56
oA(x—2° -4} - 4{(y+2° -4} =-56
9(x—2)%-4(y+2)° =36-16-56
9(x—2)°—4y+2)°=-36
Ay+2)? - 9x-2)° =36
(v+2?  (x=2° _
9 -4 T

Y2 X2
9 — 7 =1Where{

1

X=x-2
Y=y+2

Clearly the transverse axis is along y-axis and the conjugate axis is along x-
axis. i.e. transverse axisisy-axis or X=0 i.e,x-2=0

The conjugate axisis X-axisor Y=0 i.e,y+2=0

Here a°=9, b° =4 = a=3, b =2
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.. Thelength of transverse axis = 2a =6
The length of conjugate axis = 2b = 4

Example 4.49 : Find the equations of directrices, latus rectum and length of
2

X
latus rectum of the hyperbolag -7 =1
Solution:
The centreis at the origin and the transverse axis is along x-axis.

. . . a
The equations of the directricesarex =+ g

The equations of the latus rectum are x = + ae
b2

Length of the latus rectum = 2?

Here a2:9, b?=4

.. The equations of the directrices are

_ .3 ... 9
X_i\/fg/?) l.e. X—i\/f3

The equation of the latus rectum are x = ++[13
2% 8
Length of the latusrectum is "3

Example 4. 50 : Find the equations of directrices, latus rectum and length of
latus rectum of the hyperbola 16y2 — 9% =144

Solution: )g - % =1
Here a®=9, b’°=16 e = g
Thetransverse axisis along the y-axis.
.. The equations of the directricesare y =+
The equation of the latusrectumarey=+ae i.e, y=+5
20> 32

Length of the latus rectum is? =3
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Example 4.51 : Find the equations of directrices, latus rectum and length of
latus rectum of the hyperbola9x2 — 36x — 4y2 -16y+56=0

2 2 -
Y=y+2
Solution: Bysimplifyingweget% - ijl where{)(:i_2

Here a2:9, b?=4

[, B 13

= 1+— =

e +a2 3
a 9

ae=\/13, e = ﬁ

Thetransverse axisis aong Y-axis.

.. The equations of the directricesare Y=+ g ie Y=+

Gl
w

Noyv—9 9 _9
(I) Y_\/f)) = y+2—\/1_3 = y—\/E—Z

. 9 -9 -9
(i) Y:—E = y+2:ﬁ = y:\/ﬁ—Z
The equations of the latusrectum are Y=+ ae i.e. Y=+4/13

(i) Y=4/13 = y+2= 413 = y=4[13-2

(i) Y=-13 = y+2=-413 = y=-+/13-2
2
Length of the latus rectum is% = %
Example 4.52 : The foci of a hyperbola coincide with the foci of the ellipse

2

55 tg=1 Determine the equation of the hyperbolaif its eccentricity is 2.

Solution :

2
The equation of the ellipseis )2(—5 +tg9=1

>
2_ 2_ _ b” _ 9 _4
- a2=25 ©2=09, e=\[1-3=1/1-25 =5

ae=4
Thefoci of the ellipse are (+ ag, 0) = (£ 4, 0)
Given that the foci of the hyperbola coincide with the foci of the ellipse,
foci of the hyperbolaare (+ ae, 0) = (£ 4, 0)
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L ae=4
Given that the eccentricity of the hyperbolais 2
a2)=4 = a=2
For a hyperbola b? = & (e2 -1)
=ale?-a?
=16-4=12
2
.. The equation of the hyperbolais 7 -1

Property (without proof) :

A point moves such that the difference of its distances from two fixed
points in a plane is a constant. The locus of this point is a hyperbola and this
differenceis egqual to the length of the transverse axis.

Example 4.53 : Find the equation of the locus of all points such that the
differences of their distances from (4, 0) and (- 4, 0) isaways equal to 2.
Solution :

By the property, the locus is a hyperbola. Take the fixed points as foci.

- Fpis(4,0)and F,is (-4, 0)

Let P(x, y) be apoint on the hyperbola

F1P ~ F,P = length of transverse axis=2a =2

sLa=1
Centre is the midpoint of F;F, = (0, 0) y
Hence from the given data the 4
hyperbolais of the form § - § =1 P(x,y)
FF, = 2ae=8 4
c/ é > x
ae=4 = e=4 E, C|00 F
b% = a? (€ - 1) _
- 116 1) = 15 Fig. 4.84

X
. Theequationis7 - 5 =1

Alter nate method:
Let P(x, y) be apoint on the hyperbola and let Fand F, be the fixed points

(4,0) and (- 4, 0).
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Itisgiventhat F{P ~F,P =2
\Vx= 42+ (y- 02 ~\(x+4)2+(y-02 = 2

Simplifying, we get X—lz - % =1
Example 4.54 : Find the eccentricity, centre, foci and vertices of the hyperbola

2
X
i é = 1 and also trace the curve

Solution : y

A

a’=4, b’=5
= \ /
= e= +?: F, \ A’ cl©,0 A/ F . x
3 y(-z,m (2,0)@
ae= 2x 5 =3

The transverse axis is along the

Nlw

é‘

X-axis Fig. 4.85
Centre : (0, 0)
Foci ‘(xae, 0)=(+3,0

vertices : (+a,0)=(x20)
Example 4.55 : Find the eccentricity, centre, foci and vertices of the hyperbola

2
X
ﬁ 1 and aso trace the curve.

6 18 - ,
Solution : A .
=6 bP=18 \Flwﬂ
b? 24
= e [1eBo B
a Cl©.0) > x
sae= 2\/.6' | A0, 6
Thetransverse axisis along the y-axis
F,4(0,-2N6
Fig. 4. 86

Centre : (0,0
Fociare  : (0, +ae) = (0, +2\/6)
verticesare : (0, + @) = (0, £/6)
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Example 4.56 : Find the eccentricity, centre, foci and vertices of the hyperbola
o — 16y2 — 18x— 64y — 199 = 0 and also trace the curve.

Solution: 9(x% — 2X) — 16 (y2 + 4y) = 199

A(x—1)>%-1} — 16{(y+2)°—4} = 199
9(x— 1)° - 16(y + 2)° = 199 + 9 — 64

9(x— 1)% - 16(y + 2)° = 144

x-1?% (y+2? _
16 - 9 -

1

X2 f_l N {X:x—l

b*_ 5
=16, b°=9 = e="\[1+5=7

ae=4><%=5
Thetransverse axisis parallel to X-axis.
Referred to X, Y Referred to x, y
X=x-1,Y=y+2
Centre (0,0 X=0 ; Y=0
x-1=0 ; y+2=0
x=1 oy =-—
C@1,-2
(+ae 0)is(x5,0) (i) X=5 ; Y=0
@) (5,0 Xx-1=5 ; y+2=0
X=6 ; =-2
Foci s F1(6,-2)
(i) (=5,0) (i) X==5 ; Y=0
x—1=-5; y+2=0
wFy(-4,-2)
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(xa 0)ie (4,0 (i) X=4 ;Y =0
Vertices () (4,0) X—-1=4 yy+2=0
o A(B,-2
(i) (-4,0) (i) X=-4 ;Y=0
X—-1=-4 ;y+2=0
A (-3,-2)
y
A Y
N e

;AA’ cl 1,2 AAl > X
(7(-&-2) <5,-2>&.2) g

Fig. 4. 87
Example 4.57 : Find the eccentricity, centre, foci and vertices of the following
hyperbola and draw the diagram : 9 — 16y2 +36x+32y+164=0

Solution:

9(x2+4x)— 16(y2—2y) =-164
A(x+2)°-4} — 16{(y-1)>-1} =164
9(x +2)?— 16(y — 1)° = — 164+ 36— 16
16(y — 1)% - 9(x + 2)° = 144
(=12  (x+2? _
9

6 -1
Yoxe o {X:x+2
9 ~16 - lwherely_y 4
2
a =9, b°=16 = e= 1+—==73
a2 3
ae=5
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Thetransverse axisis parallel to Y-axis.

Referred to X, Y Referred to x, y
X=x+2,Y=y-1
Centre (0,0 X=0 ;7 Y=0
Xx+2=0 ; y-1=0
X=-2 ;y=1
. C(=21)
(0, tae)i.e,(0,£5) (i) X=0 ; Y=5
() (0,5) X+2=0 ; y-1=5
X=-2 ; y=6
~ F1(-2,6)
(ii) (0, - 5) (i) X=0 ; Y=-5
Xx+2=0 ; y-1=-5
X==2 ;o y=-4
Foci L Fy(-2,-4)
(0,ta) (i) X=0 ; Y=3
: (i) (0,3 x+2=0 ; y-1=3
Vertices © A(=2,4)
(i) (0, - 3) (i) X=0 © y=-3
Xx+2=0 ; y-1=-3
X=-— ;o y=—
A (-2,-2)
‘Tx=-2
y
A
"(-2,6)
Y7l x
cl 2,1
> x
A'%
A’(—ZA\

Fig. 4. 88
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Example 4.58 :

Points A and B are 10 km apart and it is determined from the sound of an
explosion heard at those points at different times that the location of the
explosion is 6 km closer to A than B. Show that the location of the explosion is
restricted to a particular curve and find an equation of it.

y
A
P(x.y)
./\\. > X
A(-5,0) B(5,0)
Fig. 4. 89
Given :
PB-PA=6
e, \(x=52+y?-\(x+52+y? =6
Simplifying we get — 9y2 +16x° = 144

2 2
—1)§+X§:1 i.e, % - }156 = 1whichisahyperbola
EXERCISE 4.3
(1) Find the equation of the hyperbolaif
i focus: (2, 3) ; corresponding directrix : X+ 2y =5, e=2
(i) €sp g y

(i) centre: (O, 0) ; length of the semi-transverse axisis5; e :% and
the conjugate axisis aong x-axis.

(iii) centre: (0O, 0) ; length of semi-transverse axisis 6 ; e = 3, and the
transverse axisis parallel to y-axis.

(iv) centre: (1, — 2) ; length of the transverse axisis 8 ; e = % and the
transverse axisis parallel to x-axis.

(v) centre: (2, 5) ; the distance between the directrices is 15, the
distance between the foci is 20 and the transverse axisis parallel to
y-axis.
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(vi) foci: (0, % 8); length of transverse axisis 12
(vii) foci:(£3,5);e=3
(viii) centre : (1, 4) ; one of the foci (6, 4) and the corresponding
directrix isx:% .
(ix) foci: (6,—1)and (-4, — 1) and passing through the point (4, — 1)
(2) Find the equations and length of transverse and conjugate axes of the
following hyperbolas :
(i) 144x° — 25y = 3600 (i) 8y° — 2x° = 16
(iii) 16x% — 9y +96x + 36y — 36 =0
(3) Find the equations of directrices, latus rectums and length of latus rectum
of the following hyperbolas :
(i) 4x° - 9y? = 576 (i) 9% — 4y? — 36x + 32y + 8=0
(4) Show that the locus of a point which moves so that the difference of its
distances from the points (5, 0) and (— 5, 0) is 8 is N — 16y2 =144,
(5) Find the eccentricity, centre, foci and vertices of the following
hyperbolas and draw their diagrams.

(i) 25x° — 16y° = 400 (ii))g—§=l
(iii) x° — 4y% + 6x + 16y — 11=0 (iv) X% — 3y° + 6x + By + 18 = 0
4.6 Parametric form of Conics:
Conic Parametric Parameter Range of Any point on
eguations parameter the conic
Parabola X = at? t —o<t<ow |‘t'or
y = 2at (at2, 2at)
Ellipse X=acoso 0 0<0<2rn ‘0" or
y=bsno (a cosH, b sinb)
Hyperbola | x=asec6 0 0<06<2n ‘9" or
y=btano (asec 6, btan 0)
_al-1)

Note: For elipse, we have another parametric form of equations x 1+

= 1b;r_2:2 ,— o0 <t< oo, Thisresult will be obtained by putting tan% =tinthe

parametric equationsx =acosd andy=b sin 6.
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Thus we have two forms of representations of conics i.e., cartesian form
and parametric form. Now we will derive the equations of chord, tangent and
normal to the conics.

4.7 Chords, tangents and normals
We derive these equations using both forms of conics.
4.7.1 Cartesian form
(i) Parabola
Equation of the chord joining A(Xq, y7) and B(X,, Yy,) on the parabola

y2=4ax

since (xy, y;) and (xp, Yo) lie on L A
the parabola,
y12 = 4aX1, y22 = 4aX2
Y17 - Yo = 4a(xg - X)) > X
Yi—Y2 4a
—_— B )
Xp—X Y1t Y2 & yzy)2 =dax
Fig. 4.90
i.e., the slope (m) of the chord AB = da
B P Tty

The equation of the chord, using slope (m) and point (x4, y4) is
4a
(y_ yl) - yl + y2 (X_ Xl)

If the point (X, y,) coincides with (x;, y1) then the chord becomes the
tangent at (X1, y;). Therefore, to obtain tangent at (xX;, Y1), put X, = X and
Yy, = y1 inthe equation of the chord. .. the equation of the tangent is

4a X
VR - SRV s
v-y) Yityr (=) ‘ &&S‘
= YY1 = 2a(X + Xp) -
(usey,? = daxy) /
Thus the equation of the tangent / \
at (xq, y) to the parabolay2 = 4ax y? =4ax

isyy; = 2a(x + xq)
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To find the equation of the normal using perpendicularity.
Equation of the tangent is
2ax —yy+2axy =0

.. thenormal is of the form
yiX+ 2ay = Kk

But it passes through (X4, Y1)

Fig. 4. 92

L k=xgyp + 28y,
Thus the eguation of the normal at (X, y;) to the parabola is
yix+2ay = xy; +2ay;

(i) Ellipse
Equation of the chord joining A(xq, y;1) and B(X,, y5) on the ellipse
2 Y
X
27 2
Since (X1, yq) and (X, y,) lie on y
the ellipse, G
@ T a® v \
By simplification, the slope B2
Yi—Y2 - b? (X1 +Xo)
= = Fig. 4. 93

X=X Ay +yy)
.. the equation of the chord is

—b? (X + X9)

a(y; +Y>) x=x)

(Y-yp) =

To get the equation of the tangent at (X1, y;) put X, = X; and y, =y, inthe
equation of the chord.
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~.The equation of the tangent at y
(X]_v yl) IS (x],yl)

_p? 73
-y = ﬁ (x-x) i <o
) >
XXl yyl \_/

Fig. 4. 94

To get the equation of the normal, use the perpendicularity property to a
straight line.

.. The equation of the tangent is
xlbzx + ylazy ~a%?=0

4
.. The equation of the normal is of K .y
theform ylazx - xlbzy =k \

But it passes through (x4, ;)

L k=@-b) Xy,

.. Therequired equation is
2
2 _ 2 42 ax by _
yia’x— xgb%y = (a®— b?) xpy; or Xy, @

(iii) Hyperbola
Following the same procedure as in the case of ellipse we get the equation
of the chord as
b%(x; + %)

2y +yy) "

y-y1 =

_ X1 W1
The equation of the tangent at (x4, ;) as 2R

a’x by

and the normal at (x4, y;) as X_1 + Vi =a?+1?

Note : To get the results for the hyperbola replace b® as — b? in the results
of ellipse.
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4.7.2 Parametric form :

To get the parametric forms of equations of chord, tangent and normal to
conics, replace (X4, Y1), by the corresponding ‘any point’ in the parametric form.

(i) Parabola:

The equation of the chord joining (x4, y;) and (x,, y») on the parabolais

__da_
YY1 =54y, (%)

.. The equation of the chord joining (atlz, 2at;) and (atzz, 2at,) or ‘t" and
‘t,’ on the parabolais
4a
y—2at; = m (x- atlz)
e Yyt +ty) = 2xX+2atgt,

To find the equation of the tangent at ‘'t put t; = t, =t in the equation of
the chord. We get

y(2t) = 2x + 2at?
e yt=x+ at®
Another method:
The tangent at (x4, Y1) to y2 =4axisyyq = 2a(X + Xq)
.. Thetangent at (atz, 2at) is
y(2at) = 2a (x + at?)
ie, yt=x+at’

Applying the perpendicularity, we get the equation of the normal at ‘t’" as
y+tx = 2at + at>

Similarly we can derive the equation of chord, tangent and normal for
ellipse and hyperbola.
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Note : The equation of tangent at (x;, Y1) is obtained from the equation of the
curve by replacing X by xxq, y2 by yyq, Xy by% (xy1 + X1y), x by % (x + X4) and
y by % (y+y1)
To find the condition that y = mx + ¢ may be a tangent to the conics
(1) Parabola:

Let y = mx + c be atangent to the parabolay2 =4ax at (Xq, Yp)

We know that at (x4, Y1), the equation of the tangent isyy; = 2a(x + x4)

.. The above two equations represent the same tangent and hence their
corresponding coefficients are proportional

L 2aX—-yy+2ax, =0

Cc
= Xl:m' y1:

Thus we have three results to the parabolay2 = 4ax.

(1) The condition for the tangency isc = n%

(2) The point of contact is (% , %a) i.e, (% , Z—rg) )
(3) The equation of any tangent is of the formy = mx + %

Note : Instead of taking the eguation of the tangent in the cartesian form, we
can prove the same result by taking the tangent in the parametric form.

Similarly, we can derive the results for other conics also.
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Results connected with ellipse:

2 ﬁ L

(i) The condition that y = mx + ¢ may be a tangent to theellipse? +

b2 -
isc? = a?m? + b?
. . . —azm b2 2 2 2
(ii) Thepoint of contact is{——, 5| wherec” = e +b

(iii) The equation of any tangent is of the formy = mx i\/azmz +b?
Note: Iny= me_r\/azm2 +b% eithery = rn><+'\/a2r‘n2 +b? holds
ory = mx—/a?m? + b? holds
Results connected with hyperbola :
(i) The condition that y = mx + ¢ may be a tangent to the hyperbola is

&= 2P - b?
a— 2 —
(if) The point of contactis( im,TbZ) where 2 = a2m2 — b2

(iii) The equation of any tangent is of theformy = mxi\/azmz— b?
Note: Iny= mxi\/azmz— b, eithery = mx+\/a2m2— b?
ory=mx-1/ a’m? — b? is correct but not both.

4.7.3 Equation of chord of contact of tangents from a point (X, y;)
2
to the (i) Parabolay2 =4dax (i) eIIipse§+)bé2 =1 (iii) hyperbola?— 2 =1
Solution :
The equation of tangent at y
QX2 Yo) sy, = 2a(X + Xo)
It passes through the point Ky
P(x1, y1)
Y2 = 2a (X + %) (D) @)
The equation of tangent at PV
R(X3, y3) isyys = 2a(X + X3)
It passes through the point
P(x1, y1) 2
S Y13 = 2a(Xq t Xg) - (2
The result (1) and (2) show that
Q(xy, ¥2) and R(x3, ys) lie on the

straight line yy; = 2a(x + xy). Fig. 4. 96
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.. Equation of QR, the chord of contact of tangentsis yy; = 2a(X + X4)
Similarly we can find the required eguations of the chord of contact for

XX Yy XX Yy
eIIip:aeasa—Z1 + b—21=1andforthehyperbolaasa—21—b—21=l

Example 4.59 : Find the equations of the tangents to the parabola y2 = bx from
the point (5, 13). Also find the points of contact.
Solution:

The equation of the parabolais y2= 5x Here 4a=5 = a=%
L et the equation of the tangent bey = mx+% i.e,y=nmx +% .
Since it passes through (5, 13) we have
5
13 = 5m+$n

5 20m—52m+5=0
(10m-1) (2m-5) =0

S m= L _2
L M=750r m=3

Using the values of m, we get the equations of tangents are 2y = 5x + 1,
10y = x + 125.

: . a 2a 5 5
The points of contact are given by ?ﬁ , Wherea:Z m=3, 15

.. the points of contact are (% , 1) , (125, 25)

Example 4.60 : Find the equation of the tangent at t = 1 to the parabola y2 =12x

Solution: Equation of the parabola isy2 =12x.
Here4a=12, a=3
‘t’ represents the point (atz, 2at). .. t =1 representsthe point = (3, 6)

. . (x+Xq)
Equation of tangent at (x;, y4) to the parabolay2 =12xisyy; =127
.. Equation of tangent at (3, 6) isy(6) = ﬂé*‘_@ ie,x—y+3=0

Alternativeform :
The equation of thetangent at ‘t’ isyt =x+ at
Here 4a=12 = a=3
Also t=1
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.. The equation of the tangentis y=x+3
X-y+3=0
Example 4.61 : Find the equation of the tangent and normal to the parabola
C+x-2y+2=0at (L, 2)
Solution:
The equation of the parabolaisx2 +X-2y+2=0
Equation of the tangent at (x,, y4) to the given parabolais

X+X (Y +y)
XXq + 21—2 21 +2:Oi.e.,x(1)+&21—2£%21+2:0

Onsimplificationweget 3x—2y+1=0
Equation of the normal is of theform 2x + 3y + k=0
This normal passes through (1, 2)
. 2+6+k=0 .. k=-8
.. Equation of thenormal is2x+3y-8 = 0
Example 4.62 : Find the equations of the two tangents that can be drawn from
the point (5, 2) to the ellipse 24 + 7y2 =14
Solution:
Equation of the ellipseis
24 + 7y2 =14
’ Y
. X
|.e., 7 + 2 - 1
Herea®=7, b?=2
L et the equation of thetangentbe y = mx + '\/azmz +b?
Sy = mx+\/7m2+2

Since this line passes through the point (5, 2) we get
2 = 5m+\[7mP + 2
ie. 2—5m:\/7mz+2
o (2-5m)? =P +2
4+ 25mP — 20m = 7mP + 2
18nP — 20m+2 = 0
o’ —10m+1 =0
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S Om-1) (m-1)=0
1
~m=1 or m= 9
To find the equations of the tangents, use slope-point form
(iym=1,
Theequationisy—2=1(x-5)i.e,x-y-3=0
(i) m=1/9
The equationis y - 2=%(x— 5),i.e,x-9+13=0.
Thus the equations of the tangentsarex—-y—-3=0,x—9y +13=0
Example 4.63 : Find the equation of chord of contact of tangents from the point
(2, 4) to the elipse 22 + 5y = 20

Solution:
The equation of chord of contact of tangents

from (x;, Y1) t0 2 + 5y? — 20 = 05 2xx; + 5yy; — 20 =0
.. therequired equation from (2, 4) is2x(2) + 5y(4) - 20=0
i.e. x+5y-5=0
EXERCISE 4.4
(1) Find the equations of the tangent and normal
(i) totheparabolay? = 12x at (3, - 6)
(i) tothe parabolax® =9y at (- 3, 1)
(iii) to the parabolax? + 2x— 4y + 4 =0 at (0, 1)
(iv) tothedllipse 2x® + 3y =6 at (\[3, 0)
(v) tothe hyperbola9x2 - 5y2 =3la(2,-1)

(2) Find the equations of the tangent and normal

(i) tothe parabolay2 =8xatt :%

(i) to theellipsex2 + 4y2 =32a6 :%

(iiii) to the ellipse 16x° + 25y° = 400att:\/—1é

. 2 n
(iv) tothe hyperbolag —)é =lab=g
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(3) Find the equations of the tangents
(i) tothe parabolay2 =6x, pardlel to3x-2y+5=0
(ii) tothe parabolay2 = 16X, perpendicular to theline3x—-y+8=0

(iii) to theellipse§+)§ =1, which are perpendicular tox+y+2=0

(iv) tothe hyperbola4x2 - y2 = 64, which are parallel to
10x-3y+9=0

(4) Find the equation of the two tangents that can be drawn
(i) from the point (2, — 3) to the parabolay2 =4x
(i) from the point (1, 3) to the ellipse 4x> + 9y? = 36
(iii) from the point (1, 2) to the hyperbola2x2 - Sy2 =6.

(5) Prove that the line 5x + 12y = 9 touches the hyperbola X — 9y2 =9and
find its point of contact.

(6) Show that thelinex —y + 4 = 0 is atangent to the eIIipsex2 + 3y2 =12
Find the co-ordinates of the point of contact.

(7) Find the equation to the chord of contact of tangents from the point
(i) (-3, 1)tothe parabolay? = 8x
(i) (2, 4) tothe ellipse 2x° + 5y° = 20
(iii) (5, 3) to the hyperbola 4x® — 6y? = 24

Results without Proof :

(1) Two tangents can be drawn to (i) a parabola (ii) an ellipse and
(iii) ahyperbola, from any point on the plane.

(2) (& Threenormalscan be drawn to a parabola
(b) Four normals can be drawn to (i) an ellipse and (ii) a hyperbola from

any point on the plane.
(3) Theequation of chord of contact of tangents from a point (X, ;)

) aparabolay2=4axisyy1=2a(x+x1)
2 XX
. . X X1 W
ii) anédlipse— + =lis—> +—>=1
(if) e’z + 12 2 T2
XX Yy
Yo W

2
iii) ahyperbola™ — 5 = lis—5 —
(|||)ayperoaé12 2 |sa2 b2

(4) The chord of contact of tangents from any point on the directrix (i) of a
parabola passes through its focus (ii) passes through the corresponding
focus for ellipse and hyperbola
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®)

(6)

()

)

9)

(10)

The condition that Ix + my + n = 0 may be atangent to
(i) theparabolay? = daxisan? = In
.. . X2 f . 22 2 2
(i) theellipse”5+15=1isa’t’ +b m=n

2
(iii) the hyperbo|a§—§: 1isall? - b2m? = n?
The condition that Ix + my + n = 0 may be anormal to
(i) theparabolay2=4axisal3+2almz+m2n=0

2
X f a bz_gaz—bz)

(i) theellipse;+b2=lis|—2+—m2- 2
2
2 2 2 12 2.2
X as b” (@ +b)
thehyperbola 5 -5 =1is5-—>=
(iii) the hyper oaaz 2 ISz 2 2

Thelocus of the foot of the perpendicular from afocusto atangent to

(i) theparabolay2=4axisx= 0
2
(ii) thee||ipse§+ L= Listhecirdex’ + )7 =a”

e
b2

(Thiscircleisalso called auxiliary circle)
Thelocus of the point of intersection of perpendicular tangentsto

(i) the parabolay2 =4ax isx = — a (the directrx)

(iii) the hyperbola§— 1isthecirclex2+y2=a2

(i) the ellipse§ + § = 1isx? +y? = a® + b? (This circle is caled

director circle)
X )E 2 2 2
(i) an hyperbola; ~ 2 =1lisx"+ y2 = a“ — b” (This circle is dso

called director circle)

The point of intersection of the tangents at ‘t;” and ‘t,’ to the

parabolay? = 4ax is[atst,, a(t; + t,)]

The normal at the point ‘t;" on the parabolay2 = 4ax meets the parabola

again at the point ‘ty’, then t, = — (t1+@
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(11) If ‘ty’ and ‘ty’ are the extremities of any focal chord of the parabola
y? = dax, thentyt, = — 1
Note: For the proof of above results one may refer the Solution Book.

4.8. Asymptotes

Consider the graph of afunction y = f(x). Asapoint P on the curve moves
farther and farther away from the origin, it may happen that the distance
between P and some fixed line tends to zero. This fixed line is caled an
asymptote.

Note that it is possible only when the curve is open. Since hyperbola is
openand y — * w0 asx — + o« and X — — o hyperbola have asymptotes.
Definition :

An asymptote to a curve is the tangent to the curve such that the point of
contact is at infinity. In particular the asymptote touches the curve at
+ o0 and — oo,

y
' \o\a
)
@eﬁ
Xy
% P
. \@6 P
< P
A’ A _ -
F, b C F, x
P
P
Fig. 4. 97

2
The equations of the asymptotesto the hyperbola? - )béz =1

Assume that the equation of an asymptote is of the formy = mx + c.

To find the points of intersection of the hyperbola and the asymptote, solve
< ¥
- - = landy=nmx+c.
2 2 y
QKLf_l

b>

ol
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1 2 2mc c? j
=S -= |- x-|5+1|=0
(az @X 2 (bz

The points of contact are at infinity. i.e., the roots of the equations are
infinite. Since the roots are infinite, the coefficients of x° and x must be zero.

.. there are two asymptotes to the hyperbola whose equations are
b -b
y=3x ady=""X

XY X Yy _
|.e.a—b—0anda+ b—O

The combined equation of asymptotesis

EYEY =0ie 5-%=0

Fig. 4. 98
Results regarding asymptotes :
(1) The asymptotes pass through the centre C(0, 0) of the hyperbola.
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(2) The slopes of asymptotes areg and — g i.e., the transverse axis and

conjugate axis bisect angles between the asymptotes.
(3) If 2a isthe angle between the asymptotes then the slope of g - % =0is

t _9
ana-a.

.. angle between the asymptotesis 2o = 2 tan‘lgl

(49) We know that sec?o = 1 + tanal

2 2,12

b® _a“+b

sec’o = 1+ = > = ¢
a a

= Seco = e :>oc:sec’1e

.. angle between the asymptotes 2o = 2 sec le
Important Note:
Eventhough the asymptotes are straight lines, if the angle between the
asymptotes is obtuse, take obtuse angle as the angle between them and
not the corresponding acute angle.
(5) The standard equation of hyperbola and combined equation of
asymptotes differs only by a constant.
(6) If 14 =0 and |, = 0 are the separate equations of asymptotes, then the

combined equation of the asymptotesisl|, |, =0.
.. the equation of the corresponding hyperbola is of the form I41, = Kk,
where k isa constant. To find thisk, we need a point on the hyperbola.
Example 4.64 : Find the separate eguations of the asymptotes of the hyperbola
3% —Bxy— 2y + 17x+y+14=0
Solution: The combined equation of the asymptotes differs from the hyperbola
by a constant only.
.". the combined equation of the asymptotesis
3x2—5xy—2y2+ 17x+y+k=0
Consider 3x° - Bxy — 2y2 =3 - 6xy + Xy — 2y2
= 3X (X - 2y) + y(X - 2y)
= (3x+y) (x-2y)
.. The separate equationsare3x+y+1=0, x-2y+m=0

253



(Bx+y+1) (x—2y+m) = 3 —5xy—2y° + 17x+y+k
Equating the coefficients of x, y terms and constant term, we get

| +3m =17 )
—2+m=1 (2
Im=Kk

Solving (1) and (2) weget 1 =2, m=5 andk=10
Hence separate equations of asymptotesare3x +y+2=0, x—2y+5=0
The combined equation of asymptotesis
3% —5xy— 2y + 17x+y+10=0
Note : The hyperbola, discussed above is not a standard hyperbola.
Example 4.65 : Find the equation of the hyperbola which passes through the
point (2, 3) and hasthe asymptotes4x + 3y — 7=0and x— 2y = 1.
Solution:
The separate equations of the asymptotesare4x+3y—-7=0,x-2y-1=0
.. combined equation of asymptotesis (4x+3y—-7) (x—2y—-1)=0
The equation of the hyperbola differs from this combined equation of
asymptotes by a constant only.
. the equation of the hyperbolais of the form
Ux+3y-7)(x-2y-1)+k=0
But this passes through (2, 3)
8+9-7(2-6-1)+k=0 .. k=50
.. The equation of the corresponding hyperbolais
(Ux+3y—-7)(x-2y-1)+50=0
ie, 4x% — 5xy — 6y? — 11x+ 11y +57 = 0
Example 4.66 : Find the angle between the asymptotes of the hyperbola
-y’ -12x-6y-9=0
Solution: 3x2—y2—12x—6y—9= 0
30— 4x) — (Y2 + 6y) = 9
3{x-2%-4 -{(y+3°-9 =9
3(x-22-(y+3)? =12
x-2? +3°_,
4 12 -

Herea=2, b=+/12 =23
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The angle between the asymptotesis
20=2tan ! g = Ztm_lézé =2tan 1[3=2x73 =2§“
Another method : a®=4, b>=12

2
e= 1+Z—:«/1+1—2 =2

The angle between the asymptotesis
T o_2n
373
Example 4.67 : Find the angle between the asymptotes to the hyperbola
3 —5xy— 2y + 17x+y+14=0
Solution: Combined equation of the asymptotes differs from that of the
hyperbola by a constant only.
. Combined equation of asymptotesis 3x> — 5xy — 2y° + 17x+y + k=0
3x% — Bxy — 2y° = 3x° — Bxy + Xy — 2y°
= 3x(x - 2y) + y(x - 2y)
= (x—2y) (3x+y)
.. Separate equationsarex—2y +1=0, 3x+y+m=0

Let m; and m, be the slopes of these lines, then m1=% ,my=-3

20 = 2sec 12 =2x

, . |m-mp| ja2-3) |
-, angle between the linesis  tand = ‘l+mlmz —‘1+1/2(_3) =7
0 =tan 1 (7)

Alternative method : Combined equation of asymptotes is nothing but pair of
straight lines. Hence the angle between the asymptotesis

2/h? - ab

at+b
Comparing with ax® + 2hxy + by2+ 20x+ 2fy+c=0

Wehavea=3, b=-2, 2h=-5
{25
Z+6

tan 0 =

tan 6 = 3.2
2x7
=[5 =7
0 = tan* (7)
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Note : Since the above hyperbola is not in the standard form, it is difficult to
identify whether the angle between the asymptotes is obtuse or acute.
According to the above method we will get only the acute angle as the angle
between the asymptotes.

Therefore if the hyperbola in the standard form, use either 2 tan‘lg or

2 sec leto find the angle between the asymptotes and take the angle as it is.

Example 4.68 : Prove that the product of perpendiculars from any point on the
2

hyperbola ? 2 =1 toitsasymptotesis constant and the value isagTbbz

Solution:
2 2
Xy X~ Y1

Let P (xq, y1) be any point on the hyperbola; - b2= 1. ¥—?= 1...(0
The perpendicular distance from (x4, y;) to the asymptote
4 % 4 %
a b a b
XY - 0is——LangroX + f=0is — L
==
a b
y
A
£y
L0
P(xpyp)
< Z A Fl > x
Fig. 4. 99
. 4 n
.. Product of perpendiculer distences =——te —22
.. Product of perpendicular distances = i+l' l+i
a® b a® b
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oY1

_ a® b _ 1 b

= i_,_i TP+ a2 (by (1))
a2 b 2P
a’ b’ S

= — 5, wWhichisaconstant.
a“+Db

EXERCISE 4.5
(1) Find the equation of the asymptotes to the hyperbola
(i) 36x°— 25y° = 900 (i) 8x2 + 10xy — 3y° — 2x+ 4y —2=0

(2) Find the equation of the hyperbolaif
(i) theasymptotesare2x+3y—-8=0and3x—-2y+1=0and (5, 3) isa
point on the hyperbola
(ii) its asymptotes are parallel tox + 2y — 12 =0and x — 2y + 8 = 0,
(2, 4) isthe centre of the hyperbola and it passes through (2, 0).
(3) Find the angle between the asymptotes of the hyperbola
(i) 24x° — 8y> = 27 (i) 9(x — 2)° — 4(y + 3)° = 36
(iii) 4x° — 5y? — 16x + 10y + 31=0
4.9 Rectangular hyperbola
Definition:
A hyperbola is said to be a rectangular hyperbola if its asymptotes are at
right angles.

The angle between the asymptotesis given by 2tan_1g . But angle between

the asymptotes of the rectangular hyperbolais 90° .

- 2tan L (9) =90° .- g: tand5° = a=bh.

a
2
Using a = b in the hyperbola§ - § =
rectangular hyperbola as X — y2 = a. Hence the combined equation of the
asymptotes is X2 — y2 = 0. The separate equationsarex —y=0and x + y = 0.
i.e,x=yand x=-y. Thetransverse axisisy = 0, conjugate axisisx = 0.

1, we get the equation of

All the results corresponding to the rectangular hyperbola of the form
X — y2 = a° are obtained simply by putting a = b in the corresponding results of

the hyperbola§ -5=1

b2
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This type of rectangular hyperbolais not a standard one. For standard type,
the asymptotes are the co-ordinate axes.

The standard rectangular hyperbola xy = c? is obtained by rotating the

rectangular hyperbola X — y2 = a° through an angle 45° about the origin in the
anticlockwise direction.

Fig. 4. 100
4.9.1 Standard equation of arectangular hyperbola:

For a standard rectangular hyperbola the asymptotes are co-ordinate axes.
Since the axes are the asymptotes, the equations of the asymptotes are x = 0 and
y = 0. The combined equation of the asymptotes is xy = 0. Therefore the
equation of the standard rectangular hyperbolais of the form xy = k. To find k,
we need a point on the rectangular hyperbola.

YA

D, \ F (a,2)
\ A (a2, an2)
C 45° L




Let the asymptotes meet at C. Let AA" = 2a be the length of the transverse
axis. Draw AM perpendicular to x-axis. Since the asymptotes bisect the angle

a . a
between the axes, | ACM = 45°, CM:acos45°:\E ,AM:asm45°:E

. a a . N
", co-ordinates of A are (@@) . This point lies on the rectangular

hyperbolaxy =k. .. k= % E ork="% and

the equation of the rectangular hyperbolais xy = S or

a2
xy=c2 Where02=7.

Eccentricity of the hyperbolais given by b? = az(e2 —1.Sncea=bina
rectangular hyperbola, a=a (e2 -1

Eccentricity of the rectangular hyperbolaise=+/2.

Also the vertices of the rectangular hyperbola are (\/1—2 \%) , (— %, - \%)

and foci are (a, a), (— a, — a).

The equation of transverse axisisy = x and the conjugate axisisy = — X.

If the centre of the rectangular hyperbolais at (h, k) and the asymptotes are
paralel to x and y-axis, the general form of standard rectangular hyperbolais (x

—h) (y-k =c2
The parametric equation of the rectangular hyperbola xy = ¢ are

c . .
x=cty=7 where ‘t’ isthe parameter and ‘'t is any non-zero real number.

Any point on the rectangular hyperbola is (ct , 9) . This point is often

referred to asthe point ‘t’.
Results:

*  Equation of the tangent at (x4, y;) to the rectangular hyperbolaxy = c?
iISXyq +yXg = 2c?

* Equation of thetangent at ‘t’ isx + yt2 = 2ct.

*  Equation of normal at (X1, Y1) iSXXq —Yyy1 = x12 - y12 .
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% Equation of normal at ‘t’ isy—xt2=t —ct®

* Two tangents and four normals can be drawn from a point to a
rectangular hyperbola.

Example 4.69 : Find the equation of the standard rectangular hyperbola whose
centreis (— 2, %3) and which passes through the point (1, _—32)

Solution:
The equation of the standard rectangular hyperbola with centre at (h, K) is

(x—h) (y—k) =c?
The centreis (— 2, _7) .

.. the equation of the standard rectangular hyperbolais (x+2) (y g) =c?

It passes through (1 , _—32> s (1+2) (_?2+g) =c" = ¢°=

Hence the required equation is (X + 2) (y + g) :g or

2Xy+3x+4y+1=0
Example 4.70 : The tangent at any point of the rectangular hyperbola xy = ?
makes intercepts a, b and the normal at the point makes intercepts p, g on the
axes. Provethat ap + bg=0

Yy A
2
2 >
&
:>\ <
b}
A .

Fig. 4. 102
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Solution: Equation of tangent at any point ‘t’ on xy = isx+ yt2 = 2ct

x Yy _
o 2t * 2¢it =

2c
~. Intercept onthe axesarea = 2ct, b=

. . c
Equation of normal at 't onxy = ¢ isy - xt* = - ct>
X y
CRRNE ts)_l
t~ t—C
c

t

t
. _ o (ZX) (€ 3, 2C (C 3)
s ap+bq—2ct(t2) (t—ct)+t (t—ct

_ _Z(c 3\, 2 (C 3)
=7 (t_Ct)th (t‘Ct
=0

Example 4.71 : Show that the tangent to a rectangular hyperbola terminated by
its asymptotesis bisected at the point of contact.

Solution:
The equation of tangent at A

P(ct,g) isx + yt2 = 2ct

Putting y = 0 in this equation
we get the co-ordinates of A as

. -1 (c 3
.. Intercept on axes are p=t—2 T—ctv), Q=

. B
(2ct, 0). Putting x = 0 we get Pet, c/t)
. 2C
the co-ordinates of B as (O, T) o
> x
A
Fig. 4. 103
0+ 2
t
The mid-point of AB is % > :(ct%)

which is the point P. This shows that the tangent is bisected at the point of
contact.
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EXERCISE 4.6
(1) Find the equation of the standard rectangular hyperbola whose centre is

(—% , = %) and which passes through the point (1 , %) .

(2) Find the equation of the tangent and normal (i) at (3, 4) to the rectangular
hyperbolas xy = 12 (ii) at (— 2, ;) to the rectangular hyperbola
2xy—-2x—-8y—-1=0

(3) Find the equation of the rectangular hyperbola which has for one of its
asymptotes the line x + 2y — 5 = 0 and passes through the points (6, 0)
and (- 3, 0).

(4) A standard rectangular hyperbola has its vertices at (5, 7) and (— 3, -1).
Find its equation and asymptotes.

(5) Find the equation of the rectangular hyperbola which has its centre at
(2, 1), one of its asymptotes 3x — y — 5 = 0 and which passes through the

point (1, — 1).

(6) Find the equations of the asymptotes of the following rectangular
hyperbolas.
(i) xy —kx—hy=0 (i) 2xy + 3x + 4y +1=0

(iii) 6x° + 5xy — By> + 12x + 5y + 3=0
(7) Prove that the tangent at any point to the rectangular hyperbola forms
with the asymptotes atriangle of constant area.

Results without proof :

(1) The foot of the perpendicular from a focus of a hyperbola on an
asymptote lies on the corresponding directrix.

(2) (i) Two tangents (ii) four normals can be drawn from a point to the
rectangular hyperbolaxy = 2.
(3) The condition that the line Ix + my + n = 0 may be a tangent to the
rectangular hyperbola xy = isaclim=n?
(4) If the normal to the rectangular hyperbola xy = ¢ a ‘ty meets the
curve again at ‘t,’ prove that t13 t,=-1
Note: For the proof of above results one may refer the Solution Book.
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Now, we summarise the results of the four standard types of parabolas.

. . Equation of . Equation of Length of
Type Equation Diagram Focus %irectrix Axis Vertex Lat?Js Rectum | Latus %ectum

Open rightwards y2 = 4ax F , . (a0) X=—a y=0 0,0) X=a 4a
Open leftwards y2 = — Jax }X_Fx (—a,0) X=a y=0 0,0) X=—a 4a

) N
Open upwards X" = day &Z{ (0,a) y=-a x=0 (0,0) y=a 4a

X

2 A

Open downwards X*= —4day ] 0,—4a) y=a x=0 0,0 y=—a 4a

7
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Thus we get the following :

Cartesian form: Parabola Ellipse Hyperbola

Equation of chord joining __4a bz(x +Xo) b2(x +Xo)
y-y1= (x=x) 2Ty _ DV

X1, V) and (X, Yity2 y-¥1=- (xX=%y) Yy-y= (X=Xy)

(%1, Y1) and (%5, ) 17 a(yytyy) . 1T al(y;+yo) '

Equation of tangent at (X, y;)

yy; = 2a(X + X;)

xx1/a2 +yy1/b2 =1

XX/ a’ - yy1/b2 =1

Equation of normal at (xy, y;)

Xyy +2ay = Xy, + 2ay;

2
ax ﬂ=a2+b2

X1 Y1 R
Parametric form : Parabola Ellipse Hyperbola
Equation of chord Chprd joining the . Chord joning the points ‘6", and ‘0, is | Chord joning the points‘6’, and ‘0’ is
points*t," and "ty is 1, (g, +9,) y . (B118)  (6-6) x  (B-0) y (6116 (B,16y
Yty +tp) = 2x+2att, | jesT 5 4 SnT 5 =005 5 08T 5 —pSnT 5 =S

Equation of tangent

a'tis yt=x+at?

. LI 5 x g —
a‘o IS 3 cose+b sno=1

1] 1 Z x —
a‘ois asecG—btane—l

Equation of normal

a'tis
tx+y:2at+at3

X by _ 5 5
cosH sing 2 b

ax by _ .2 .2

secO * tand
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OBJECTIVE TYPE QUESTIONS
Choose the correct or most suitable answer :

1-12
(1) Therank of the matrix| 2 -2 4 |is

4 -4 8
D122 33 (44
-1
(2) The rank of the diagonal 2
matrix 0_4
0
(10 2 33 45
(3) If A=[2 0 1], then rank of AAT is
D122 33 40

1
(4) If A= H then the rank of AAT is
3

D320 31 4)2

A -1 0
(5) Iftherank of thematrix| O A —1]is2then)is

-1 0 A
(1) 1(2) 2 33 (4) any real number
(6) If Aisascalar matrix with scalar k = 0, of order 3, then Alis
1 1 1
Q) P I 2 F I (€ (4) ki

-13 2
@) Ifthematrix|: 1 k 3:| has an inverse then the values of k

1 4 5
(1) kisany real number (2)k=-4 (3)kz-4 (A k=4

_[2 1} S
®) 1fA=|, | then (adj A) A=

ol D Wl W
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9)

(10)

(11)

(12)

(13)

(14

(15

(16)

17

If Aisasquare matrix of order nthen |adj A|is

@) AP @ A" @ AM! @A
001
Theinverse of thematrix|0 1 Ofis
100
100 0 01 001 -1 0 0
(1|0 10| 2|0 10| 3010 4 0 -10
001 100 100 0 0 1
If Aisamatrix of order 3, then det (kA)
(1) K3det (A) () K det(A)  (3) kdet (A) (4) det (A)

If | is the unit matrix of order n, where k # 0 is a constant, then
adj(kl) =

(1) K" (adi 1) (2 k(adj 1) (3) K (ad (1)) (4 K" " (adi 1)

If A and B are any two matrices such that AB = O and A is non-singular,
then

(1))B=0O (2)Bissingular (3) Bisnon-singular (4) B=A

00
_ 12
IfA—[0 5},thenA is

) [g éﬂ @ 2 522} &) [g 8} @ B (ﬂ
Inverse of E ﬂis

2 -1 -2 5 3 -1 -3 00
(1)[_5 3} @, _} (3)[_5 _3} (4)[1 —2}

In a system of 3 linear non-homogeneous equation with three
unknowns, if A=0and A, =0, Ay # 0 and A, = 0 then the system has

(1) unigue solution (2) two solutions
(3) infinitely many solutions (4) no solutions
The system of equationsax+y+z=0 ;x+by+z=0 ; x+y+cz=0
has anon-trivia solution then 1 + 1 + 1 =
l-a 1-b 1-c

1) 1(2) 2 (3)-1 40
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(18)

(19)

(20)

(21)

(22)

(23)

ab cb
If ae+be¥ =¢c ; pet+ ey:dandA:‘ ‘;A: ‘
p q 1 P q 2 d q
ac
A3=‘p d then the value of (X, y) is
Ay Ag Ay Ag
(2) (Al, AJ @ (Iog A 993,
Mo M Ao M
3 (Iog ng 00 Az] (@) (I 09y, 109
If the equation —-2X+y+z=|
X—2y+z=m
X+y—-2z=n
such that | + m+ n =0, then the system has
(1) anon-zero unique solution (2) trivia solution
(3) Infinitely many solution (4) No Solution

- . . - . .
If a isanon-zero vector and mis a non-zero scalar then ma is a unit
vector if

1

(Dm=+1 (2a=|m| (3)a:|mI @da=1

If & and B are two unit vectors and © is the angle between them, then

(E) + _b>) isaunit vector if

(De=3 0=7% 30=5 (@9:%5

If & and B include an angle 120° and their magnitude are 2 and /3

then?._b>isequal to

(D)3 (2 -3 (32 4 —3§
If_u)=5>><(_b)><_c>)+_b)><(_C)XE))+_C>><(E)><_b>),then
(1) uisaunit vector (2)U>=_a>+5>+_c>
@u=0 @WUu=0
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(24)

(25)

(26)

(27)

(29)

(29)

(30)

t2+B8+2=0 []=3 [8]=4 [2] =5 then the angie
between & and B is

T 2n 5n T
Dg Gy (©)hry 43

The vectors 21 + 3? +4K andai + bT) +cK are perpendicular
when
(Da=2, b=3 c=-4 (2)a=4,b=4,c=5
(3 a=4,b=4,c=-5 @a=-2, b=3, c=
The area of the paralelogram having a diagonal 37 +
sde 7 —3] +4K is
(1) 10V3 Q6D (9D (4) 3y/30
1|2+ B|=[2 - B]then
(1) 7 ispardlel to B
2 A s perpendicular to B

- -
@ [2]-[8]
4 & and B areunit vectors

If _p) H) and _p) + _q> are vectors of magnitude A then the magnitude of

|2 -3lis

()21 (RVER 321 @1
Ifa)x(_b)x_c))+_b>><(_c)x€l))+_c)><(QXB)):?x?then
WX=0 2y=0

3 X and 7 arepardlel (4) X=0or ?=T)) or X and 7 are paralel

— —
IfPR=27 + ] + K, QS=—- 1 +3] +2K then the area of the
guadrilateral PQRSis

(1) 53 @G @28 @3
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(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

—> —>
The projection of OP on a unit vector OQ equals thrice the area of
paralelogram OPRQ. Then | PO

(1) tan’lé (2) cost (%) (3sint (\%) (@sin” G”D

If the projection of a on B and projection of Bon & ae equal then

the angle between a+Bada-bis
T T T 2n
D3 23 © Oy

It & x (B) X E)) = (3) x T))) x ¢ for non-coplanar vectors 2, B,
_c> then
(1) apadldtod  (2) B padldto €

@) Cpadldtoa (@A)a+B+c=0

If aline makes 45°, 60° with positive direction of axes x and y then the
angle it makes with the zaxisis

(1) 30° (2) 90’ (3) 45° (4) 60°
t[2x8, Bx2 2x3] =sathen[3, B, 2
(1) 32 (2)8 (3) 128 40
t[2+8, B+2, C+3] =smen[3. B, 2] is
L4 (2) 16 3 32 4 -4

The value of [_i) + T) T) + _k), K+ _i>] isequal to
(1o 21 (32 (44
The shortest distance of the point (2, 10, 1) from the plane

(3| ~] +4k):2\/2_6is
(1) 226 (2)V/26 (3)2 @ 7z
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(39)

(40)

(41)

(42)

43

The vector (E) x T)’) x (_c> x 3) is
(1) perpendicular to E), B) Candd
(2) paralé to the vectors (Ta) x T:?) and (_c) x 3)

(3) paralel to the line of intersection of the plane containing aand b

and the plane containing Candd

(4) perpendicular to the line of intersection of the plane containing a

and B and the plane containing Candd

If E{, _b> < are aright handed triad of mutually perpendicular vectors

of magnitude a, b, ¢ then the value of [E) I'f _c>] is

(1) a2 b? )0 A3) % abc (4) abc

If E), _b> < are non-coplanar and

[248. Bx2 ¢x3] = [3+8.B+2 2+3] then
[2 8. 2]is

(1) 2(2) 31 40
_r>=s_i>+tT>istheequationof

(1) astraight line joining the points 7 and T)
(2) xoy plane (3) yoz plane (4) zox plane

If the magnitude of moment about the point T) + K of aforce

T+ aT> ~ R acti ng through the point T+ T) is~/8 then the value of a
is

(1) 1(2) 2 (33 (4) 4
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(44)

(45)

(46)

(47)

(48)

(49)

The equation of the line paralle to X13 = y45-3 = 22;5 and passing

through the point (1, 3, 5) in vector formis
(1)_r):(_i>+5?+3_k>) +t(_i>+3T>+5_k>)
(2)?=T’+3?+5_k’+t(_i>+5?+3_k>)
3 T =(_i>+5? +%T<>) +t(_i> +3T> +5_k))

@7 =7 +37 +58 +1(T+57 +3 %)

The point of intersection of the line T = (_I) - _k)) +
(37 + 27+ 7R) andtreplane 7. (7 + T - %) =8is
1)(,6,22) (2(-8-6,-220 (343,11 @ (-4,-3,-11)
The equation of the plane passing through the point (2, 1, — 1) and the

line of intersection of the planes T (_i>+3?—_k)) = 0 and

T+2%) =0is
(D x+4y-z=0 (2)x+9y+11z=0
() 2x+y-z+5=0 (4 2x-y+z=0

The work done by the force =7+ T) + K acti ng on aparticle, if the
particle is displaced from A(3, 3, 3) to the point B(4, 4, 4) is
(1) 2 units (2) 3 units (3) 4 units (4) 7 units
If_a)=_i)—2?+3_k)and5)=3_i>+T)+2T<>thenaunitvector
perpendicular to & and B is

- > - - > -

(1)|+|+k (2)|—|+k

V3 \3

> . > > >
(3)|+|+2k (4)|—|—k

3 3

. . . . X—6 y+4 z—4
The point of intersection of the lines "—¢= = “— = —5 and
Xx+1 y+2 z+3.
2 =4 - _, s
M©G0-49 (2100 (3)(0,2,0) 4 (120
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(50)

(51)

(52)

(53)

(54)

(55

(56)

(57)

The point of intersection of the lines
P27 +sR) w27+ T+ R) and

7=(27+37+5%) +s(T +27 +3%) is

1211 21,21 3 (1,1,2 4 (1,11
The shortest distance between the lines x;l = y:—%z = 223 and
X-2_y-4 z-5.
3 - 4 ~ 5 8
2 1 2 1
(1) NE 2 6 3 4 26

The shortest distance between the paralld lines
Xx-3_y-1 z-5 x-1 y-2 z-3

4 - 2 T _3 and 4 - 2 — 73 is
(1) 3(2) 2 1 (40
The following two Iineﬁarex;z1 :_Lll :% and > 3 2_ y_—51 = Z; 1
(1) parallé (2) intersecting  (3) skew (4) perpendicular

The centre and radius of the sphere given by
X2 +yP+ 22— 6x+8y—10z+1=0is
(1) (-3,4,-5),49(2) (- 6,8,-10), 1

3B, -4,5),7 (4) (6, -8, 10), 7

o —_100 100
Thevalueof[_lzl\/ﬂ +[_1_2| \/é} is
1220 3-1 41

- 3
The modulus and amplititude of the complex number [e3" “/4] are
respectively
T - —3n —3n
D eg,g 2 99,7 (3) €’ 4 4 eg,T
If (m—>5) +i(n + 4) is the complex conjugate of (2m + 3) +i(3n - 2)
then (n, m) are

wl-z-s) @(z9 eG-9 @iy
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(58) 1f x° +y? = 1then the value of ToXF 1Y i

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

1+x-—iy
(D) x-1iy (2) 2x (3) - 2iy (4) x+iy
The modulus of the complex number 2 + i3 is
()3 (213 QN7 @7

If A+iB = (ay +iby) (a, + iby) (ag + ibg) then A2 + B?is

(1) a®+by®+a,” +by° +ag”+ by’

() (ag+a+ag) + (by + by + by)®

(3 (ag”+by%) (@7 + b)) (ag” + bs?)

(@) (9% +a)” +ag?) (0y” + by” + bg?)

If a=3+iand z=2 - 3i then the points on the Argand diagram
representing az, 3az and — azare

(1) Verticesof aright angled triangle

(2) Vertices of an equilatera triangle

(3) Vertices of an isoscelestriangle

(4) Collinear
The points z;, z,, z3, Z4 in the complex plane are the vertices of a

paralelogram taken in order if and only if

Dz+z=2+z7 Qz+z=7+z

Azn+zn=+z (V)z3- =23-2

If z represents a complex number then arg (2) + arg (?) is

(1) n/4 (2) n/2 30 (4) /4

If the amplitude of a complex number is /2 then the number is

(1) purely imaginary (2) purely red

30 (4) neither real nor imaginary

If the point represented by the complex number iz is rotated about the

origin through the angle% in the counter clockwise direction then the

complex number representing the new positionis
)iz 2)-iz -z 4z

3
The polar form of the complex number (i25) is

(@D} cos% + isin% (2)cosm+isinm

(3 cosn—isinm (4)cos% - isin%
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(67) If P represents the variable complex number zand if |[2z-1]|=2|z]|
then thelocus of P is

(1) the straight line x :%f (2) the straight line y :%f
3 thestraightlinez:% 4 thecirclex2+y2—4x—1:0
1+e19
68 = =
(1) cos6 + isn®d (2) cos6—-isind
(3)sin6 — icosb6 (4)sin6 +icos6

(69) Ifzn:cos%n + i:sinn?Tc thenz, z, ... Zis
M1 (-1 (3 (4)-i

(70) If — z liesin thethird quadrant then zliesin the
(2) first quadrant (2) second quadrant
(3) third quadrant (4) fourth quadrant

o 1.
(71) If x=cos6 + i sin 6 the value of x"+E|s

(1) 2 cosnd (2)2isnnd (3)2sinnd (4) 21 cosnb
(72) Ifa=cosa—isina,b=cosp-isnp
c=cosy—isiny then (a® ¢® - b%) / abcis
(1) cos2(a.—f +y) +isin2(a—p+ )
(2)—2cos(a—P+7)
3)-2isn(a—-PB+7)
(4) 2cos(a—P+7)

Z
(73) z,=4+5i, ,=-3+2i then Z—;is

1) 5-2=i ()-S5 +22i

372 -2 @5+
(74) Thevaueofi+i®?+i®+i%+i%®js

D) (2 —i 31 4-1
(75) Theconjugateof i3 +i*+i1>+i16is

DH12-1 30 (4)—i
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(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)
(85)

(86)

(87)

If —i + 2isoneroot of the equation ax® — bx + ¢ = 0, then the other root
is

@-i-2 2i-2 (3)2+i (4) 2i +i
The quadratic equation whose roots are + i \[7 is

1) X%+7=0 2 x-7=0

()X +x+7=0 (4)x°-x-7=0

The equation having 4 — 3i and 4 + 3i asrootsis

(1) X% +8x+25=0 (2) X% +8x—25=0

(3) X —8x+25=0 (4 x°—8x—25=0
If%isaroot of the equation ax+bx+1= 0, wherea, b arereal then
(a, b)is

1@ 1) 2@,-1) 3 (0, 1) 4) (1,0
If —i + 3 isaroot of x> — 6x + k= 0 then the value of k is

(15 (25 (3)/10 (4) 10

If ® isacube root of unity then the value of

4 4
l-o+0d) +(1+o-0?) is

(1)0 ) 32 (3)- 16 (4)-32
If » isthe nth root of unity then

D1+’ +et+. o+’ +e’+...

(2 o"=0 B o"=1 @o=e""?

If o isthe cube root of unity then the value of
1l-0)(1-0°)1-0)@-0d)is

D9 2-9 (3) 16 (4) 32

The axis of the parabolay2 —2y+8x-23=0is

Dy=-1 (9 x=-3 (3 x=3 @y=1
16x% — 3y° — 32x — 12y — 44 = 0 represents

(1) andlipse (2) acircle (3) aparabola (4) ahyperbola
Theline 4x + 2y = cis atangent to the parabolay2 =16xthencis

-1 (2-2 (34 (4-4

The point of intersection of the tangents at t; = t and t, = 3t to the
parabolay2 =8xis
(1) (6t% 8) (@ @L6) (3 (4 (@) (4. )
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(89)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

The length of the latus rectum of the parabolay2 —4x+4y+8=0is

18 (2)6 (34 (42
Thediretrix of the parabolay2 =x+4is
(1) =2 @x=-2  @x=-% @x=

The length of the latus rectum of the parabola whose vertex is (2, — 3)
and the directrix x =4 is

M2 @4 (36 (4)8
The focus of the parabolax2 =16yis
(1) 4,0 (2 (0,4) () (=40 (4) (0,-4)
The vertex of the parabolax2 =8y-1is
w(-50 @G0  ®@(g @ (0 -3)
Theline 2x + 3y + 9 = 0 touches the parabolay2 = 8x a the point
9 9
@ ©.-3) @ey  @(s3 @3 -0

The tangents at the end of any foca chord to the parabola y2 = 12x
intersect on the line

(1)x-3=0 (2)x+3=0 (B y+3=0 4y-3=0
The angle between the two tangents drawn from the point (- 4, 4) to
y2 =16xis

(2) 45° (2) 30° (3) 60° (4) 90°
The eccentricity of the conic o + 5y2 —54x - 40y + 116 =0is

1 2 4 2
L3 @3 33 Oy

The length of the semi-major and the length of semi minor axis of the
2

XV
elllpse144+169—lare

(1) 26,12 (213,24 (3) 12, 26 (4) 13,12
The distance between the foci of the ellipse o + 5y2 =180is
D4 (26 (38 (42
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(99) If the length of major and semi-minor axes of an ellipse are 8, 2 and their
corresponding equations arey — 6 = 0 and x + 4 = 0 then the equations of

theellipseis
(D(Xz® wlg)_ ()aié) (y;@zzl
@)“Ié)—‘yiw 4 @y &40 _wlgle

(100) The straight line 2x—y + ¢ = 0 is atangent to the ellipse 4 + 8y° = 32 if
?1I)S¢ 24/3 (2)+6 (3) 36 (4)+4

(101) The sum of the distance of any point on the ellipse 4 + 9y2 = 36 from

(\/5, 0)and (-+/5, 0)is

L4 (28 36 (4) 18
(102) The radius of the director circle of the conic 0 + 16y2 =144is
(D7 (2) 4 (33 45

(103) The locus of foot of perpendicular from the focus to a tangent of the
curve 16x° + 25y2 =400is
W)XP+y?=4  (QxX+y*=25 (3X¥+y*=16 (4 X +y*=9
(104) The eccentricity of the hyperbola lZy2 — 4% - 24x + 48y —127=0is
(1) 4 23 (32 (46
(105) The eccentricity of the hyperbola whose latus rectum is equal to half of
its conjugate axisis
\5

3

5 3
3 @3 35 @
(106) The difference between the focal distances of any point on the hyperbola

ﬁ ﬁ = 1 is 24 and the eccentricity is 2. Then the equation of the

hyperbolals

(1) 123 144 432 (2232 432 144~
2

(3)@—12\/?3:1 (4)%—12:1

(107) Thedirectrices of the hyperbolax2 Ay — 3)2 =16 are

my:i% (2 x= —\/5 (3)y:i3§ (4)x:13§
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(108) Theline5x — 2y + 4k = 0 isatangent to 42 - y2 =36thenkis
4 2 9 81
Mg @3 ©n 416

(109) The equation of the chord of contact of tangents from (2, 1) to the
2

hyperbola)l(—6 - )95 =1lis

(1) 9x—8y—-72=0(2) x+8y+72=0
(3)8x—9y—-72=0(4)8x+9y+72=0

(110) The angle between the asymptotes to the hyperbolalﬁ6 - g =1is

(Dn-2tan @ @n-2tant @
32 tan_lg (4) 2 tan—l (%)
(111) The asymptotes of the hyperbola36y2 — 25x% + 900 =0 are
6 5 36 25
(Dy=+5x @y=tgx (Qy=t3ex (4)y=+5x

(112) The product of the perpendiculars drawn from the point (8, 0) on the
2

. . X .
hyperbolato its asymptotes isgg—3g=1is
25 576 6 25
D576 2 %5 ) 25 O
(113) The locus of the point of intersection of perpendicular tangents to the
hyperbola)l(—6 - )95 =1lis

MxX+y?=25  (x+y¥=4 (QX+y’'=3 (@)X +y’=7
(114) The eccentricity of the hyperbola with asymptotes x + 2y — 5 = 0,

2X-y+5=0is
13 (2~2 (33 42

(115) Length of the semi-transverse axis of the rectangular hyperbolaxy = 8is
D2 24 (3) 16 (48

(116) The asymptotes of the rectangular hyperbola xy = c? are
(D x=cy=c 2)x=0,y=c (3)x=c,y=0 (@4)x=0,y=0
(117) The co-ordinate of the vertices of the rectangular hyperbolaxy = 16 are
(1) (4, 4), (- 4, - 4) ) 2.9), (- 2, - 8)
(3 (4.0, (-40) (4 (8,0),(-8,0)
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(118) One of thefoci of the rectangular hyperbolaxy = 18 is

(1) (6,6) 23,3 ) (4,4 4 (5,9)
(119) The length of the latus rectum of the rectangular hyperbolaxy =32 is
(1) 82 (2) 32 (3)8 (4) 16

(120) The area of the triangle formed by the tangent at any point on the
rectangular hyperbolaxy = 72 and its asymptotesis
(1) 36(2) 18 (3) 72 (4) 144

(121) The normal to the rectangular hyperbolaxy = 9 at (6, %) meets the curve
again at

@ @ 24) ) (— 24, __83) (3) (%3 - 24) (4) (24, g)
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ANSWERS

EXERCISE 1.1
15 6 -15 -3 1 7
—4 1
@ (i){_2 3} G| o -3 o} (iii)|:—1 ~1 5}
| -10 0 5 5 1 -13
T1 -1 0
[_5 _2} 2 3 -4
@| ., ®-2 3 -
-2 3 -3

0 3 3 -4 11 -5 326
(4) (i)%|:3 2 7} (ii)3—15|:1 -6 25} (iii){l 1 2}
3-1-1 6 1 -10 225

21 -1 4 —2 -1 1 -1 0
(iv)|:0 2 1}(\/)%{1 3 1} ©) {2 3 4}
52 -3 “1-2 4 _2 3 -3

EXERCISE 1.2
() x=3,y=-1 2)x=-1,y=2 (B)x=1,y=3,z=5
(4 x=4,y=1,z=0 B)x=1y=12z=1
EXERCISE 1.3
@ 2 21 (3)2 43 (5)2 6) 2
EXERCISE 1.4
@ (1,1 (2) No solution (©)] G,r (9 -5Kk), k) i ke R

4 (1L,1,1) () (4-k3k-4,K:keR (6)(1,203)
) @(5k—12),%(15—4k),k);keR (8)(%(2+S—t,51t))?5’t€R

9) (1,2,1) (10) (50 +2k 50— 3k, K): k=0,1,2, ... 16
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EXERCISE 1.5
(1) (i) Consigent:x=4,y=-1,z=2
(i) Consistent :x=2k-1, y=3- 2k, z=kinfinitely many solutions.
(iii) Inconsistent
(iv) Inconsistent
(v) Consistent : x =1 - Ky + Ky, ¥ =Kkq, z=ky, infinitely many
solutions.
(2) If A = 0the system has a unique solution.
If A =0, the system has infinitely many solutions.
(3 Whenk= 1, k= — 2 the system has a unique solution.
When k = 1, the system is consistent and has infinitely many solutions.
When k = — 2 the system isinconsistent and has no solution.
EXERCISE 2.1

@4 (@ -15 (3)% @) ([)m=-15 (ii)m=%

(5) (% 2—3? ﬁ) (10) 22 (11) - 25

(14) @)o (ii)_ri,g (iii)\/%

EXERCISE 2.2
50 124
5) 7 ©% (7) 17 Gl
EXERCISE 2.3
> —> - D
—i —j +3K 10i" — 10§ +5K T T
D) V6 QN7 3= jl—l (4) = . 57 © %
EXERCISE 2.4

M) 6V8 @5 (65 (4) 5+/165

D P A 3 =1
(8) —241 +137] +4K (10)7\/1_(),(\/1—,0\@)
EXERCISE 2.5
2 -3 (11 -4
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(4)

®)

(6)

()
8)

D

)

)

(6)

()

©)

9)

EXERCISE 2.6

(g, % _—76) (2) (i) not possible (ii) yes (3) (% % %)

' 3 4 S - _ - D, o
Thed.csare(s\/—z,5\/—2,5\/_2)and r —7(3| +4] +5k)
+( 1 -4 i)
T _\/2_6’ \/2_6’\/2_6
T=(a7-a7-2R) +t(o7 67 +2%) ; 253 - LEA- 222

7=(To27+®) w7 e2R) LR

0 2
@ ()
cos (21 (9) cos \/ﬁ
EXERCISE 2.7
. 5 . 285
(')\[5 (iV\/Tz2 (@-1,0 (43430 6) -2
EXERCISE 2.8
7 (27 +77 +8R%) O
= ; X+ y+oez=
\117
* 3 (3) 2 units (4) 8x—4y+3z=89 (5)4x+2y—3z=3
ﬁ
i

[(x—2) +(y+1)?+(z—4)_k’] .(4?—12?—3?):0
4x—-12y—-3z2-8=0

PP +27+R) +s(2P+37 +3R) +1 (57 + 27+ R)
3X-7y+5z+3=0
_r)=(_i>+3T>+2_k>)+s(2_i>—T>+3_k>)+t(_i)+2?+2_k>)
8Xx+y-5z2-1=0

T = (—_i>+3T>+2_k>) + s(_i>+2?+2_k>) +t (3_i>+?+2_k>)
and2x+4y—-5z=0
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) 7 =(7-27+3R) +s(c27+47-4%) + (27 +37 +4R)
and2x-z+1=0

ay 7T=(P+27+3R) +s(7+7-28) +1 (57 - 27 +4%)
2y+z-7=0

(12 _r)=(—_i>+T)—_>)+s(3_i)+?+2_k>)+t(2_i>+3?—2_k>)
and8x—-10y —7z+11=0

3 T=(37+47+28) +s(- T +67-3R) +t(47-47-7)
and 6x + 13y — 282-14=0

(15) (i()2x —-5y-z+15=0 (i)2y—z-1=0

EXERCISE 2.9
() 11x-10y-13z+70=0 (2) No. Because of the lines are skew lines

() (20,00 (4 (6,-1,-5) (5)\/% (6)2%1—1
EXERCISE 2.10

@ 03 (ii)cos—l(ﬁ) (i) cos‘l(\/%) @)z (4)sin‘l(2i\/9—l) (53
EXERCISE 2.11

lw

0 )_r)—(z_i)—?+3_k))‘ =4 and X2 +y2+ 2 —4x+2y—62-2=0

@) [?—(2?+6?-7?] : [?—(—2?+4?-3?)] = 0 and
X2 +y?+22—10y+10z+41=0
Centreis (0, 5, — 5) and radiusis 3 units.

©) )_r)— _i)—?+_k))‘:5; XAV + - 2X+2y—22-22=0

4 B@4,-2,1

(5) (i) Centre (2,—1,4) ; r=5units

(ii) Centre (— % % - 2), r =2 units
(iii) Centre (-2, 4, — 1), r =~/26 units
(iv) Centre(2, 1, - 3),r =5units
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EXERCISE 3.1

@) @O1+3  (i)—i (i)~ 10+ 101 (iv)1
) R.P. I.P.

o 3 B

(i) _2—57 g—g

(iii) 8 _1
3 n=4

@ () x=2, y=-1
(i) x=3, y=-1

(iii) x=-17, y:—:%andx:%3 , y:g

B) x=+1, y=—-4 and x==%2i, y=1
EXERCISE 3.2
(2) 1-3iand—1+3i

o Gid) (F
6) (i) 4cis% (ii)zcisz—37T (iii)\/écis(—%”) (iv)\/’zcis(—ﬁ)

8) ()x+2y=2 (ihy=0 (iiyx+y+1=0
(iv)4x2+4y2—12x+5=0 (v)x2+y2+2x—3=0
EXERCISE 3.3
(1) 3+i, 1+i (2 1+2i, 1+i (3) 2+i, % _—21
EXERCISE 3.4
(1) cis(-1070) (2) cis (3o + 4B)
EXERCISE 3.5

() () cisg, cisS—g, cisg—éT (if) 2 cis g, 2cis%“, 2cis%7t
(iii) 273 cis(%), 22 cisg, 2%° cis(%”)
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. . . . .7
(4) (|)\/_20|s%, \/ims%, \/—20|S,EZTTc and \/_ZCISTTC

N TR/ Y 1 SN -/

(i) Cisg, CisT, Cisg, CisTg

(5) cis(k-1)7% , k=0123

EXERCISE 4.1
(1) () 4% —16x+ 36y +43=0 (i) 9% — 12xy + 4y° + 38X — 60y + 121 =0
(iii) X° = — 16y (iv) (y — 4% = - 12(x - 1)
(v) (x-1)* = 12(y - 2) (vi) (y - 4% = - 12(x~ 1)

(Vi) (x=3)°=-8(y+2)  (viii) (y+ 1)°=8(x - 3)
(ix) (x— 2)° = 16(y - 3)

Equation .

Q. Axis | Vertex | Focus of Equation of Length of the

No. N Latus rectum Latus rectum
directrix

i) |y=0 (0,0 (=2,00 |x-2=0 x+2=0 8

(i) |x=0 (0,0 (0,5) y +5=0 y-5=0 20

@iy | x-4=0 | (4-2 | @4-1) |y+3=0 y+1=0 4

(ivy [y-3=0 | (1,3 (-1,3 | x-3=0 x+1=0 8

) |x-3=0 | @3-1) |@2 y+4=0 y-2=0 1

(3) Distance=5cm.
(4) Diameter =40+/2cm  (5) 20+/2 mts
EXERCISE 4.2
(1) (i) 16x% + 25y° — 96x + 50y — 231 =0
2 2
(x=1)° +D°_,

(i) 5 5 (i) 55 + Y= =1
2 2 2
vy &3, LAl WG+E=1
N2 o my2 a2 2
i) (X402) +()/495) —1 (vii) & 253) +(y161) —1
°LY X

o X .
(V|||)2—5+16=1 (|x)16+4=1



2

X
@ (4,-6) @ g0z * :&: 1
4 No Equation of | Equationof | Length of Length of
' major axis minor axis | major axis minor axis
(1) y=0 x=0 10 6
(i) |y-2=0 x+1=0 6 2-/5
(i) |x=0 y=0 24/5 4[5
3
(iv) |x+1=0 y-2=0 8 6
5) No Equation of Equation of the Length of the
' directrices latus rectums latus rectum
@ | _ . 169 X=+12 S0
X=+712 13
(i) | ,_, 16 x=+~[7 9
X=zx 2 >
) | = g2 20 X=4+54/3 5
(iv) | y=10;y=-8 |y=4;y=-2 4+[3
(6) No. e Centre Foci Vertices
@ |3 (0,0) (=30 (£50)
5
i [\3 |@42 (4+5032) | (14.2;(-6,2)
2
(i) B | (00) (0, ++/5) (0,+3)
3
(IV) ﬂ (_ 11 2) (— 1, 2 i\ﬁ) (_ 11 6)! (_ 1! - 2)
4

284




Zﬁ_

") 16
(9) (i) 28.584 million miles (ii) 43.416 million miles

(10) ‘g‘ /310 feet

(8) 1200 km

EXERCISE 4.3

(1) () x°-16xy— 11y? + 20x + 50y — 35=0 (ii)2ﬁ5_2£4=

)

©)

2 2
(X 1) y+2
(iii) :}3&6 288~ (iv) g -1
(y-5° (x-2°%_ | X _
U T V) 36-2871
X (y-5)? (x=1° (y-4)
Vi) -"g =1 Vi) 2572 —"754 =1
X — 1 +1)°
(g &
No Equation of | Equation of Length of Length of
' transverse Conjugate Transverse Conjugate
axis axis axis axis
(1) = x=0 10 24
(i) [x=0 y=0 242 4~[2
(i) |y-2=0 x+3=0 6 8
No Equations of Equation of Length of
' Directrices Latus rectums latus rectum
@ |, _,36 x=+4~13 32
X== \/1—:_)’ 3
(1) I - y=4++/13 8
y= 4+ \/E 3
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(5) | No. | Eccentricity | Centre Foci Vertices
M |z 3@ (0,0) (++/41,0) (4,0
(W | 2 3@ (0,0) (0, ++/34) (0,£3)
(iii) e=325 (=32 | (-3%4/52) (-12),(-572
(iv) |e=2 (-31) | (-35(3-3) | (-33(-3-1)

EXERCISE 4.4
1) () x+y+3=0;x-y-9=0
(ii)2x+3y+3=0; 3x-2y+11=0
(iii) x—2y+2=0; 2x+y-1=0
(iv) x=+/3;y=0
(v) 18x+5y=31; 5x—18y—-28=0
(2 ()2x-y+1=0;2x+4y-9=0
(i) x+2y—8=0; 2x-y-6=0
(iii) 4x+5+/3y=40 ; 10~/3x-8y-%/3=0
(iv) 4/3x-3y=18 ; 3x+4[3y-14+/3=0
(3) (i) 3x-2y+2=0 (i) x+3y+36=0
(iii) y=x+5 (iv) 10x-3y+32=0
4 (i) x+2y+4=0; x+y+1=0
(iil) x—2y+5=0; 5x+4y—-17=0
(iii) 3x+y-5=0; x-y+1=0

® (53] ©ca

(7) ()4x-y-12=0 (i)x+5y—5=0 (i) 10x-9y—12=0
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D

)

®)

)

)

©)
(4)

()
(6)

EXERCISE 4.5

0% -Y=0 aa (£+Y)=0

(ii)4x—-y+1=0and2x+3y—-1=0
(i) (2x+3y-8) (3x—2y+1)=110

(ii) (x+2y - 10) (x—2y+6)+64=0
(i)z—g (ii) 2tan—1§ (iii) 2tan—1525
EXERCISE 4.6

o3+

(i) 4x+3y—24=0 ; 3x—4y+7=0
(ii)x+8y=0; 32x—4y+65=0
(X+2y-5) (2x-y+4)=16
x-1)(y-3) =16
Xx—1=0andy-3=0
(3x-y-5)(x+3y-5-7=0

(i) x-h=0and y—-k=0
(i) x+2)=0; (y+%)=0

(iii) 3x-2y+3=0

2x+3y+2=0

287



KEY TO OBJECTIVE TYPE QUESTIONS
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