
SG24-5423-00

International Technical Support Organization

www.redbooks.ibm.com

Developing an e-business Application for the
IBM WebSphere Application Server

John Akerley, Murtuza Hashim, Alexander Koutsoumbos, Angelo Maffione

Developing an e-business Application for the
IBM WebSphere Application Server

September 1999

SG24-5423-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 1999)

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 195.

Take Note!

The sample code for this redbook is available as sg245423.zip on:

ftp://www.redbooks.ibm.com/redbooks/SG245423/

Download sg245423.zip and read the README.TXT file included in the file. Any updates to the
book will also be found here.

Sample Code on the Internet

This book is based on a pre-General Announcement version of a product and may not apply when
the product becomes generally available. We recommend that you consult the product
documentation or follow-on versions of this redbook for more current information.

Note

Contents

Preface . xiii
What You Should Know . xiii
The Team That Wrote This Redbook . xiv
Product Service and Support . xv
Redbook Code and Updates . xv
Comments Welcome . xvi

Chapter 1. Introduction . 1

Chapter 2. A Web Programming Primer . 3
2.1 The Web Programming Model . 3
2.2 Dynamic Page Generation . 4
2.3 Servlets . 6

2.3.1 Accessing Servlets . 6
2.3.2 The Java Servlet API . 7
2.3.3 The Servlet Life Cycle . 7

2.4 JavaServer Pages . 10
2.4.1 JavaServer Pages Specification . 10
2.4.2 JavaServer Pages Elements. 10
2.4.3 JavaServer Pages API . 15
2.4.4 How JavaServer Pages Work . 15

2.5 Maintaining State in Web Applications . 16
2.5.1 Web Server Authentication . 16
2.5.2 Hidden Form Fields . 17
2.5.3 Cookies . 17
2.5.4 URL Rewriting . 18
2.5.5 Servlet Session Management . 18

2.6 Web Security . 19
2.6.1 Authentication . 19
2.6.2 Confidentiality. 20
2.6.3 Integrity . 20
2.6.4 Non-repudiation . 20

2.7 Caching . 21

Chapter 3. Designing the Home Banking Application 23
3.1 Application Requirements. 23
3.2 System Requirements . 24
3.3 Use Cases . 24
3.4 Application Prototype . 26
3.5 Analysis Object Model . 28
3.6 Subsystem Design . 29
iii

3.7 Security Model . 31
3.8 HBA Architecture and Design . 32

3.8.1 Access to the Business Model . 32
3.8.2 Controlling the Interaction Between the Client and Server 34
3.8.3 What Goes into a JavaServer Page? . 36

3.9 Error Handling . 37
3.10 HBA Subsystems . 38

Chapter 4. Tool Usage in the Home Banking Application 47
4.1 The Tool Suite . 47
4.2 Design and Analysis Tool: Rational Rose 98 Java Edition 50
4.3 Web Site Prototyping Environment: NetObjects Fusion 50

4.3.1 Prototyping the Site . 51
4.4 Web Development Environment: WebSphere Studio 57

4.4.1 Page Designer . 60
4.4.2 Importing the Site . 62
4.4.3 Restructuring the Site . 64
4.4.4 Adding Dynamic Pages to the Site . 67
4.4.5 Publishing the Site . 71

4.5 Java Development Environment: VisualAge for Java 71
4.5.1 Developing Servlets with VisualAge for Java 72
4.5.2 WebSphere Test Environment . 73
4.5.3 JSP Execution Monitor . 77

4.6 Application Server: WebSphere Application Server 85
4.6.1 WebSphere Application Server Architecture 86
4.6.2 WebSphere Implementation of JavaServer Pages 87
4.6.3 Managing Your WebSphere Environment 87

Chapter 5. Implementing the Home Banking Application 99
5.1 Implementing the Domain Firewall . 99
5.2 Implementing the Business Model . 103
5.3 Implementing the Web Application . 104

5.3.1 General Implementation Issues . 105
5.4 SubSystem Implementation . 109
5.5 Application Manager. 109

5.5.1 Application Manager Interaction . 111
5.5.2 Application Manager Servlets . 112

5.6 Login . 115
5.6.1 Login Interaction. 118
5.6.2 Login Servlets . 119
5.6.3 Login JavaServer Pages and HTML Pages. 122

5.7 Account Information . 122
5.7.1 Account Information Interaction . 125
iv Developing an e-business Application for IBM WebSphere

5.7.2 Account Information Servlets . 127
5.7.3 Account Information JavaServer Pages 129

5.8 Bill Payment . 131
5.8.1 Bill Payment Interaction . 132
5.8.2 Bill Payment Servlets . 135
5.8.3 Bill Payment JavaServer Pages . 143

5.9 Transfer Funds . 144
5.9.1 Funds Transfer Interaction . 146
5.9.2 Transfer Funds Servlets . 148
5.9.3 Transfer Funds JavaServer Pages . 149

5.10 Payee. 149
5.10.1 Payee Interaction . 151
5.10.2 Payee Servlets . 154
5.10.3 Payee JavaServer Pages . 158

5.11 User . 159
5.11.1 User Interaction . 160
5.11.2 User Servlets . 162
5.11.3 User JavaServer Pages . 166

5.12 Utility Classes . 166
5.12.1 CacheControl . 166
5.12.2 Formatter . 167
5.12.3 XMLConfigUtil . 168

Chapter 6. Deploying the Home Banking Application 169
6.1 Installing the Servers . 169
6.2 Configuring the Servers . 169

6.2.1 Configuring the Web Servers . 169
6.2.2 Deploying the HBA Application Classes 177
6.2.3 Deploying the HBA Web Site . 179
6.2.4 Configuring the WebSphere Application Server 179

Appendix A. HBA Use Cases . 185

Appendix B. Working with the HBA Implementation 191
B.1 Deployment. 191
B.2 Development. 193

Appendix C. Special Notices . 195

Appendix D. Related Publications. 197
D.1 International Technical Support Organization Publications 197
D.2 Redbooks on CD-ROMs . 198
D.3 Other Publications . 198
D.4 Product Documentation . 200
v

How to Get ITSO Redbooks . 201
IBM Redbook Fax Order Form . 202

Glossary . 203

List of Abbreviations. 211

Index . 213

ITSO Redbook Evaluation . 217
vi Developing an e-business Application for IBM WebSphere

Figures

1. Components of a Web Application . 3
2. Servlet Execution Model. 8
3. How JavaServer Pages Work. 16
4. HBA Use Case Model in Rational Rose . 25
5. Main Page of the HBA . 26
6. HBA Login Page . 27
7. HBA Accounts Page . 28
8. Analysis Object Model in Rational Rose. 29
9. HBA Application Flow . 30
10. HBA Security Architecture . 31
11. Separation of the Model from the Application. 33
12. JavaServer Page as Controller. 35
13. Servlet as Controller . 36
14. HBA Application Manager . 38
15. HBA Logout . 39
16. HBA Authentication Sequence . 40
17. HBA Account History . 41
18. HBA Account Balance . 41
19. HBA Bill Payment . 42
20. HBA Payee Setup. 42
21. HBA Add Payee . 43
22. HBA Delete Payee . 44
23. HBA Transfer Funds. 45
24. HBA Change Password . 46
25. HBA Tool Usage. 48
26. Tool Usage with an SCM Tool . 49
27. Tool Usage Life Cycle . 50
28. Site Navigation Bar, or Menu, of the HBA Application 52
29. NetObjects Fusion Visual Page Editor . 53
30. Extra Links on an HBA Page . 54
31. Fusion Publishing Wizard . 55
32. Fusion Generated Site in Windows NT Explorer 56
33. Page Designer—Normal View . 60
34. Page Designer—HTML Source View . 61
35. JSP Support in the Page Designer. 62
36. Importing the Prototype Site . 63
37. Relations View of the Imported Site . 63
38. Changing File Extensions. 65
39. Defining Publishing Targets . 66
40. Publish Setup . 66
41. WebSphere Studio Files View after Site Restructure 67
vii

42. Adding the SERVLET Tag . 68
43. Previewing the Account History Page in the Page Designer 70
44. Editing the Account History Page in the Page Designer 70
45. The WebSphere Test Environment . 74
46. Launching the WebSphere Test Environment . 75
47. WebSphere Test Environment Window . 76
48. WebSphere Test Environment Output to Console Window 76
49. Launching the JSP Execution Monitor . 78
50. Options Dialog for JSP Execution Monitor . 78
51. Loading a JSP for Monitoring . 79
52. The JSP Execution Monitor . 80
53. JSP Syntax Error in the JSP Execution Monitor . 82
54. Stepping Through Syntax Errors in the JSP Execution Monitor 83
55. JSP Generated Servlets . 84
56. WebSphere Application Server Architecture . 86
57. WebSphere Administration Console. 88
58. WebSphere Application Server Manager Introduction 89
59. Servlet Configuration under WebSphere . 90
60. Servlet Aliases in WebSphere . 91
61. Servlet Filtering in WebSphere . 92
62. JVM Debug Settings in WebSphere . 93
63. Active Session Monitor in WebSphere . 94
64. Resource Monitor in WebSphere . 95
65. Database Connection Monitor in WebSphere . 96
66. Connection Management in WebSphere . 97
67. Session Management in WebSphere . 98
68. Selected Elements of the Bank Domain Firewall 102
69. Selected Elements of the Rose Model of the Bank Implementation. . . . 104
70. Complete HBA Implementation . 105
71. Application Manager - User Recognition . 109
72. BankServlet init Method Sequence . 111
73. Session Management JSP/BankServlet Interaction Diagram 112
74. Login Subsystem . 115
75. Login Screen . 116
76. Accounts Page . 117
77. Unsuccessful Login Page . 117
78. LoginServlet Interaction Diagram . 118
79. Account Information Page . 123
80. Account Balance Page . 124
81. Account History Page . 124
82. Account Information Architecture . 125
83. Account Information Interaction . 126
84. Account Balance and History Interaction . 126
viii Developing an e-business Application for IBM WebSphere

85. Pay Bill Page . 131
86. Bill Paid Page . 132
87. Bill Payment Architecture: Choose Bill Payment 133
88. Bill Payment Architecture: Pay Bill . 133
89. Displaying the Pay Bill or Transfer Funds JavaServer Page 134
90. Bill Payment Interaction Diagram . 135
91. Transfer Funds Page . 145
92. Funds Transferred Page. 146
93. Transfer Funds Architecture: Choose Transfer Funds 147
94. Transfer Funds Architecture: Transfer Funds. 147
95. Payee Setup Page . 150
96. Add Payee Page. 150
97. Delete Payee Page. 151
98. Add/Delete Payee Servlet Architecture . 152
99. Payee Servlet doGet Interaction. 152
100. PayeeServlet doPost Sequence. 153
101. Change Password Page. 160
102. Change Password Architecture . 161
103. Change Password Interaction . 162
104. Netscape Administration Server on Windows NT. 171
105. Netscape Enterprise Server (Create Server Menu) 172
106. Web Server Menu . 173
107. Setting the Document Root Directory . 174
108. Applying the Document Root Directory Changes. 175
109. WebSphere Bank Application Packages . 177
110. VisualAge SmartGuide . 178
111. WebSphere Administration Page . 180
112. Adding bank.jar to the Classpath . 181
113. Servlet Configuration Facility . 182
114. Add a New Servlet Dialog. 183
ix

x Developing an e-business Application for IBM WebSphere

Tables

1. Domain Firewall and Command Pattern Comparison 33
2. BankServlet Methods. 113
3. BankServlet Collaborators . 113
4. LoginServlet Methods . 119
5. LoginServlet Collaborators. 119
6. AccountServlet Methods . 127
7. AccountServlet Collaborators . 127
8. MoneyTransferServlet Methods. 136
9. MoneyTransferServlet Collaborators . 136
10. BillPaymentServlet Methods . 142
11. BillPaymentServlet Collaborators . 142
12. TransferFundsServlet Methods . 148
13. TransferFundsServlet Collaborators . 148
14. PayeeServlet Methods. 154
15. PayeeServlet Collaborators . 154
16. ChangePasswordServlet Methods. 163
17. ChangePasswordServlet Collaborators . 163
18. WebSphere Studio Code Folders . 179
xi

xii Developing an e-business Application for IBM WebSphere

Preface

It seems that e-business is one of the most often used terms in the computer
industry lately. In this book you will follow along with the process of a small
team designing and developing the quintessential e-Business application:
Home Banking through the Internet.

The Home Banking Application (HBA) demonstrates the use of IBM
e-Business products in the development and deployment of the application.
First, we introduce this book in the context of Web development, then provide
an overview of the applicable Web technologies. Next, we describe the
design of the Home Banking Application and the tools we used to build it.
Finally, we show how to implement the application, and how to install and
configure the application on several platforms and Web servers.

What You Should Know

You should have a working knowledge of Java and Web technologies,
including HTML, browsers and Web servers. Familiarity with VisualAge for
Java will also help when reading the “WebSphere Test Environment” on
page 73, but is not required. You do not need to have any experience with the
WebSphere Application Server or WebSphere Studio, but access to the
documentation for these products may be helpful as you read the book.

It will also help if you are familiar with the diagrams used in object modeling,
especially those using the Unified Modeling Language (UML).
© Copyright IBM Corp. 1999 xiii

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

John Akerley is a consultant at the IBM International Technical Support
Organization, San Jose Center, California where he teaches and writes about
Java and Web development tools and techniques. John previously worked on
the VisualAge for Java certification team at the IBM Toronto Lab, where he
helped create certification programs, taught, wrote, and consulted on
VisualAge for Java.

Murtuza Hashim is an e-business IT Specialist in IBM Global Services US.
He has four years of experience in the software engineering field. His areas of
expertise include object-oriented design and development, Web development
and enterprise e-business solutions. Murtuza holds a Masters degree in
Software Engineering and a Bachelors degree in Systems Engineering. He is
also a Sun Certified Java Programmer.

Alexander Koutsoumbos is a Technical Consultant for IBM Australia. His
areas of expertise include object technology, distributed computing, and
e-business applications. He has presented on topics ranging from Java
applications development to VisualAge for Java at conferences and to IBM
customers.

Angelo Maffione is an I/T specialist at the Java Technology Center - IBM
Semea Sud - Bari. As employee of IBM Global Services, he is involved in
projects for customers dealing with Java-Internet solutions and architectures.
Angelo holds a degree with honors in Computer Science from the University
of Bari, Italy. Before joining IBM three years ago, Angelo worked for the
Computer Science Department at the University of Bari, Italy as a researcher.
He received an IBM Outstanding Technical Achievement Award in 1996.
xiv Developing an e-business Application for IBM WebSphere

Product Service and Support

IBM WebSphere and VisualAge for Java Service and Support is staffed by
knowledgeable developers who handle everything from how-tos to complex
technical problems. The most common way of contacting Service and
Support is through their Web sites: http://www.software.ibm.com/webservers

and http://www.software.ibm.com/ad/vajava. The sites have links to
newsgroups, fixes, announcements, and other information. Check these sites
periodically for information.

WebSphere Service and Support monitors several newsgroups:

ibm.software.websphere.studio
ibm.software.websphere.http-servers
ibm.software.websphere.application-server

VisualAge for Java Service and Support monitors several VisualAge for Java
newsgroups:

ibm.software.vajava.beans
ibm.software.vajava.enterprise
ibm.software.vajava.ide
ibm.software.vajava.install
ibm.software.vajava.language
ibm.software.vajava.non-technical

You can find these newsgroups at:

news.software.ibm.com

There is also a wealth of good material on the VisualAge Developer Domain
site:

www.software.ibm.com/vadd

IBM employees can also use the internal forums for VisualAge for Java and
the WebSphere Application Server:

ibm.ibmpc.vajava
ibm.ibmpc.webspher

Redbook Code and Updates

The source code described in this book, as well as any updates to the book
can be found at:

ftp://www.redbooks.ibm.com/redbooks/SG245423/
xv

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 217
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com

• Send your comments in an Internet note to redbook@us.ibm.com
xvi Developing an e-business Application for IBM WebSphere

Chapter 1. Introduction

The explosive growth of the World Wide Web over the last few years
continues unabated. The Web has evolved from sites that serve static HTML
pages to a global arena for recreation, information, collaboration, and
business transactions.

This book will take you through the process of developing an e-business, or
Web, application: Internet Banking. The book will show this process using
Java technologies: servlets and JavaServer Pages as well as IBM Web
development and deployment software: VisualAge for Java, IBM WebSphere
Application Server and IBM WebSphere Studio.

This book is not a complete reference for either the tools or technologies
used. It documents one team’s approach to developing a Web application.
Use this book in combination with the resources listed in Appendix D,
“Related Publications” on page 197 as you build your own applications.

The remainder of this book is organized as follows:

• Chapter 2, “A Web Programming Primer” provides an overview of the
applicable Web technologies.

• Chapter 3, “Designing the Home Banking Application” describes the
design of the application.

• Chapter 4, “Tool Usage in the Home Banking Application” describes the
tools we used to build the HBA.

• Chapter 5, “Implementing the Home Banking Application” describes the
implementation of the application.

• Chapter 6, “Deploying the Home Banking Application” details the steps
required to install and configure the application on several platforms and
Web servers.

Appendix A, “HBA Use Cases” lists the use cases defined for the HBA.

Appendix B, “Working with the HBA Implementation” explains how to work
with the code developed for the Home Banking Application.

The process of building servlet-based systems is maturing. Building systems
using JavaServer Pages and servlets is a fairly new way of building Web
applications, and there are several design and implementation approaches.
The book will try to show you these different approaches with a discussion of
the benefits of each. IBM has developed a complete framework for
developing e-business applications: The IBM Application Framework for
© Copyright IBM Corp. 1999 1

e-business, commonly referred to as EBAF. Although this book does not
discuss EBAF, the approaches and tools used are compatible with the EBAF
directions.

The banking scenario used in this book will be documented in several other
books and workshops developed by the International Technical Support
Organization. The approaches used to develop the HBA in this book are an
attempt to create a codebase which can evolve to new technologies, for
example, an Enterprise JavaBeans or CORBA based bank implementation.

This book does not attempt to create a complete banking application—it does
not cover persistence, concurrency, locking, and the connection with a bank’s
legacy system. This book also does not address more complex client
scenarios (for example, using JavaScript or applets). See Appendix D,
“Related Publications” on page 197 and refer to www.redbooks.ibm.com for
books on these issues.

When you have finished this book you should have a good idea how to build a
basic e-business application.
2 Developing an e-business Application for IBM WebSphere

Chapter 2. A Web Programming Primer

This chapter introduces the e-business and Web development technologies
you should be familiar with as you read this book. You should already be
familiar with Web concepts such as HTTP, browsers, and Web servers, as
well as the Java programming language.

2.1 The Web Programming Model

A Web application is any application that uses Web technologies, including
Web browsers, Web servers and Internet protocols. Web applications
typically connect to other servers such as database or transaction based
systems (Figure 1).

Figure 1. Components of a Web Application

The Web programming model uses a multitier architecture, meaning that
applications are partitioned into components. The first tier is the Web
browser. The second, or middle, tier includes a Web server (and an optional
application server) that assembles Web pages from static and dynamic
content and delivers them to clients. In our application, the middle tier logic is
implemented in Java, using servlets and JavaServer Pages.

The third tier provides services such as database and transactional
capabilities. Typically, these are mature business systems which
organizations want to integrate with the Web. In this book we will describe the
first two tiers. There are several resources in Appendix D, “Related
Publications” on page 197 that discuss the third tier.

Browser

Content

External
Resources

Web
Server

DBMS
TP

Monitor
© Copyright IBM Corp. 1999 3

2.2 Dynamic Page Generation

Dynamic pages are used to provide Web application output to Web browsers.
Dynamic pages are served based on a client request, for example, to view
stock prices or trade stocks on the Web. Dynamic pages require Web servers
to do more than send the contents of a static HTML page to the browser.

The main technologies supporting dynamic pages are:

Common Gateway Interface (CGI)
CGI is the original means of generating dynamic content for Web servers. In
the CGI model a new process is created for each request from the browser.
This, while simple to implement and supported by most Web servers,
performed poorly because a new process had to be launched for each HTTP
request that accessed a CGI program, limiting the number of concurrent
requests a server could handle. Additionally, a CGI program cannot interact
with the Web server once it has begun execution because it runs in a
separate process.

Scripting Languages
Several companies have created server-side scripting environments,
including Net.Data from IBM, Active Server Pages (ASP) from MicroSoft, and
ColdFusion from Allaire. These technologies are quite popular and allow Web
site builders to embed dynamic content as scripts directly into Web pages.
The scripts are then interpreted by the server when the page is served. The
downside to these technologies is that they are limited to a particular group of
products or operating systems and the developer must learn the scripting
language.

Server plug-in technologies
There are several plug-in technologies supported by various Web servers.
These technologies provide very good performance but are closely coupled
to the Web server and can be difficult to program. The plug-in technologies
include the Netscape NSAPI and MicroSoft ISAPI.

Servlets
Servlets are the Java solution to dynamic content and are covered in detail in
2.3, “Servlets” on page 6. Servlets have the following features:

• Portability

Servlets are written in Java, making them portable across platforms and
across different Web servers, because the Servlet API defines a standard
interface between a servlet and a Web server.

• Persistence and Performance
4 Developing an e-business Application for IBM WebSphere

A servlet is loaded once by a Web server, and invoked for each client
request. This means that the servlet can maintain system resources (like a
database connection) between requests, and there is no overhead of
instantiating a new servlet on each request. Servlets can be loaded
dynamically or when the Web server is started.

• Java Based

Because servlets are written in Java, they inherit all the benefits of Java,
including a strong type system, object-orientation, and modularity.
Through garbage collection and the absence of pointer manipulation,
servlets avoid many memory management problems that can plague other
applications.

JavaServer Pages (JSP)
JSP is a new Java-based scripting technology. JavaServer Pages are
described in detail in 2.4, “JavaServer Pages” on page 10. JavaServer Pages
have the following features:

• Separation of content presentation and generation

Responsibility for content and data can be delegated to server side
components, with JavaServer Pages being responsible for extracting that
content and merging it with an HTML document.

• Better Model/View/Controller architecture

JavaServer Pages provide better support for Model/View/Controller (MVC)
architecture in a Web application than do servlets. Prior to JavaServer
Pages, servlets were responsible for both the control logic and dynamic
content generation. This dual role of both controller and view makes the
application more difficult to maintain.

• Separation of roles in the development team

Having the business logic encapsulated in components, the control logic
handled by servlets, and the dynamic page content handled by JavaServer
Pages makes it easier to demarcate roles in a Web team. The JavaServer
Page, being a separate file, can be maintained by an HTML author, with a
programmer being responsible for the servlets and JavaBeans. The HTML
author can interact with the JavaBeans and servlets through tags, much
like adding an applet tag in an HTML document.

• Portability and familiarity

By using Java as the scripting language, JavaBeans as the component
architecture, and standards like HTML for the presentation, JavaServer
Pages are very portable across platforms and Web servers. By using Java
Chapter 2. A Web Programming Primer 5

as the programming model and HTML for presentation, JavaServer Pages
build on existing skill sets.

• Java based

Because JavaServer Pages are based on Java, they inherit all the benefits
of Java, including a strong type system, object-orientation and modularity,
and strong memory management.

2.3 Servlets

Servlets are server side Java programs that run inside a Java enabled Web
server or application server. Java servlets are to a Web server what Java
applets are to Web browsers. Servlets are loaded and executed within a Web
server, and applets are loaded and executed within a Web browser.

Servlets are defined by the Java Servlet API, which defines a standard
interface between a servlet and a Java enabled server. This makes them
portable across these servers.

2.3.1 Accessing Servlets
Servlets are accessed from a Web browser in several ways:

• HTML forms: Servlets are commonly the target of the Submit button in
HTML forms. User input is passed to the servlet using the POST or GET
methods.

• Hypertext links: Servlets can be the target of a hypertext link in the same
way as any other URL. Following the link invokes the service or doGet
method of the servlet. Servlets can also be invoked using other requests
such as PUT and DELETE.

• SERVLET tag: Some Web servers support the HTML SERVLET tag or
support servlets as server side includes using the <!-- include -->
syntax. The servlet’s service or doGet method is invoked and the output is
placed in the HTML page, replacing the SERVLET tag. Note that in the
JSP 0.92 and 1.0 specifications the only include directive is: <%@ include

file=relativeurlspec>.

• Other servlets: Servlets can access other loaded servlets using:

getServletContext().getServlet("servletname"));.

Note that the Java Servlet API 2.1 deprecates this method and provides
the RequestDispatcher interface, which provides methods to forward
requests to other servlets and to include output from other servlets.
6 Developing an e-business Application for IBM WebSphere

2.3.2 The Java Servlet API
The Java Servlet API defines a standard interface between a Web server and
a servlet. Client requests are made to the Web server, which then invokes the
servlet to service the requests through this interface. The API is composed of
two packages:

• javax.servlet

• javax.servlet.http

The javax.servlet package contains classes to support generic,
protocol-independent servlets. This means that servlets can be used for any
protocol that supports a request/response paradigm. Examples of such
protocols are FTP, SMTP, and POP. The javax.servlet.http package contains
classes to support HTTP servlets. For complete information see the JavaDoc
for the Java Servlet API and the resources in Appendix D, “Related
Publications” on page 197.

Similar to an applet, a servlet does not have a main method, it has a set of
methods, or entry points, which are invoked by the server. A servlet is created
from a Java class by implementing the servlet interface. Typically this is done
by extending either GenericServlet for protocol-independent servlets, or the
HttpServlet class for HTTP-specific servlets.

You may hear the Servlet API described as the JSDK or Java Servlet
Development Kit. The JSDK is a reference implementation of the Servlet API.
In this book we worked with the Servlet API 2.0 as implemented in the IBM
WebSphere Application Server 2.02.

2.3.3 The Servlet Life Cycle
A client of a servlet-based application does not usually communicate directly
with a servlet, but requests the servlet through a Web server that invokes the
servlet through the Servlet API. The server’s role is to initialize, invoke the
service method (or doGet or doPost), and destroy each servlet instance.
Typically, there is one instance of each servlet, with multiple threads created
to handle multiple client requests (Figure 2). This characteristic makes
servlets very efficient.
Chapter 2. A Web Programming Primer 7

Figure 2. Servlet Execution Model

Servlets can be dynamically loaded when their services are first requested, or
the Web server can be configured so that specific servlets are loaded when
the Web server initializes.

Once loaded, the Web server communicates with a servlet through the
Servlet interface, which defines five methods: init, service, destroy,
getServletConfig and getServletInfo.

init
This method is called when the servlet is first loaded. A subclass of
GenericServlet or HttpServlet only needs to implement this method if it needs
to perform setup tasks that should be performed once rather than during each
client request. An example of this is initializing a connection to a database or
loading default data.The init method is guaranteed to be called once, and to
complete before any requests are handled.

service
Each time a client request is made, this method is called and it is passed a
ServletResponse and ServletRequest object. The service method is
responsible for constructing a response for the client request.

A subclass of HttpServlet does not implement this method. When the server
calls the HttpServlet service method, it determines whether the request is a
GET or POST, and calls the appropriate doGet or doPost methods that a
servlet developer provides implementations for:

Main Process

Servlet Runtime

Servlet 2

Servlet 1

Request for Servlet 1

Java Enabled Web Server

Request for Servlet 1

Request for Servlet 2
Thread

Thread

Thread
8 Developing an e-business Application for IBM WebSphere

doPost

Invoked whenever an HTTP POST request is issued through an HTML
form. The parameters associated with the POST request are
communicated from the browser to the server as a separate HTTP
request. A doPost method should be used whenever modifications on the
server will take place.

doGet

Invoked in response to an HTTP GET method from a URL request or an
HTML form. An HTTP GET method is the default when a URL is specified
in a Web browser. In contrast to the doPost method, doGet should be used
when modifications will not be made on the server or when the parameters
are not sensitive data. The parameters associated with a GET request are
appended to the URL and passed in the HTTP request.

The response from the servlet can be of several types:

• An output stream which the browser interprets based on the content-type,
typically an HTML page.

• An HTTP error response.
• A redirection to another URL, servlet, or JavaServer Page.

destroy
The destroy method is called when the Web server unloads the servlet. A
subclass of GenericServlet or HttpServlet only needs to implement this
method if it needs to perform cleanup operations, such as releasing a
database connection or closing files.

getServletConfig
The getServletConfig method returns a ServletConfig instance that can be
used to return the initialization parameters and the ServletContext. The
ServletContext interface provides information about the servlet’s
environment, and access to the log.

getServletInfo
The getServletInfo method is an optional method that provides information
about the servlet, such as its author, version, and copyright.

The service, doGet and doPost methods are invoked with a request and
response object that provide information about the request and the means of
communicating the response to the browser. These classes are:
javax.servlet.ServletResponse and javax.servlet.ServletRequest for
GenericServlets; javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse for HttpServlets.
Chapter 2. A Web Programming Primer 9

2.4 JavaServer Pages

JavaServer Pages is a server side scripting technology that allows for
dynamic generation of the response on the server. Using JavaServer Pages,
you can embed a scripting language inside an HTML page and access
business logic through scriptlets or JavaBeans.

A traditional servlet uses an output stream to write HTML code to the Web
server for display in a browser. Programmers who write servlet code in Java
are, however, not always user interface designers, and may not produce
good-looking Web pages. Using JavaServer Pages, you can separate the
tasks of programming servlets from that of designing HTML pages. You will
see examples of JSP usage in Chapter 5, “Implementing the Home Banking
Application” on page 99.

2.4.1 JavaServer Pages Specification
JavaServer Pages is a new technology. At the time of writing, the level 1.0
specification was under review and the current specification was level 0.92;
however, not many implementations of this level exist. For example, the IBM
WebSphere Application Server supports a modified version of the JSP 0.91
specification, and will move to the JSP 1.0 or higher specification in the
future.

This book uses the JSP syntax as defined in the WebSphere Application
Server 2.0.

2.4.2 JavaServer Pages Elements

Directives
Directive are placed at the start of a JSP, before any other JSP tags. The
general form of a directive is:

<%@ variable="value" %>

Here is an example of a directive:

<%@ import="java.io.*;java.util.*;itso.bank.model.*" %>

Declarations
Use declarations to declare variables and methods for later use in the JSP.
The general syntax is:

<script runat=server>
// code for class-wide variables and methods
</script>
10 Developing an e-business Application for IBM WebSphere

For example:

<SCRIPT RUNAT=server>
int i=0;
String name="Hello";
private void foo() { ...code... }
</SCRIPT>

Scriptlets
Scriptlets consist of Java code that is copied, as-is, into the generated
servlet. The general form of a scriptlet is:

<% java code %>

Scriptlets can also refer to the implicit variables request (the servlet request
object), response (the servlet response object), out (the output writer for the
generated HTML), and in (the servlet input reader). For example:

<% out.println("Some bold text"); %>

Expressions
An expression is a place holder for a Java variable or expression that is
evaluated and the result is placed in the output page. Typically the expression
refers to a property or method of a JavaBean, or to a previously defined
variable. The general form of an expression is:

<%= expression %>

Tags
JSP tags provide the ultimate separation between your Java code and HTML
pages. The tags are used to access properties of JavaBeans. In WebSphere
Application Server 2.0, the three tags are BEAN, INSERT and REPEAT. The
BEAN tag is part of the JSP 0.91 specification. The INSERT and REPEAT
tags are extensions created by IBM for the WebSphere Application Server. In
the JSP 0.92 specification, the BEAN tag is changed to USEBEAN and the
capabilities provided by the INSERT and REPEAT tags are provided by the
DISPLAY and LOOP tags. In the 1.0 specification, the USEBEAN tag
becomes jsp:usebean, DISPLAY becomes jsp:getProperty, and the LOOP tag
has been removed until a standard extension mechanism can be agreed
upon.

Two more promising additions in the 0.92 specification are the ERRORPAGE
directive, which provides a consistent way to handle exceptions; and the
INCLUDEIF and EXCLUDEIF tags, which provide for conditional display of
text using the tags.
Chapter 2. A Web Programming Primer 11

At the time of writing, the JSP 1.0 specification was available at
http://java.sun.com/products/jsp for review.

For a complete reference of the tags and parameters, see the Create
dynamic Web pages→Using JSP section in the WebSphere Application
Server online documentation.

BEAN
The BEAN tag creates a reference to a JavaBean to allow subsequent access
to the properties and methods of the bean. For example:

<BEAN name="customer" type="itso.bank.CustomerView">
</BEAN>

This tag defines customer as a reference to an object of the
itso.bank.CustomerView type. Once the bean is defined by the BEAN tag, it
can be accessed in the JavaServer Page using a scriptlet, expression, or the
INSERT tag.

The complete BEAN tag syntax is:

<BEAN name="Bean_name" varname="local_Bean_name" type
="class_or_interface_name" introspect="yes|no" beanName="ser_filename"
create="yes|no" scope="request|session|userprofile" > <param
property_name="value"></BEAN>

where the attributes are:

• name

This name is used to look up the bean in the appropriate scope (specified
by the scope attribute). For example, this might be the session key value
with which the Bean is stored. The value is case-sensitive.

• varname

This is the name used to refer to the Bean elsewhere within the JSP file.
This attribute is optional. The default value is the value of the name
attribute. The value is case-sensitive.

• type

This is the name of the Bean class file. This name is used to declare the
Bean instance in the code. The default value is Object. The value is
case-sensitive.
12 Developing an e-business Application for IBM WebSphere

• introspect

When the value of this attribute is yes, the JSP processor examines all
request properties and calls the set property methods that match the
request properties. The default value of this attribute is yes.

• beanName

This is the name of the Bean’s .class or the serialized file (.ser file) that
contains the Bean. This attribute is used only when the Bean is not
present in the specified scope and the create attribute is set to yes. The
value is case-sensitive. The path of the file must be specified in the
Application Server Java classpath unless the file is in the
applicationserver_root\servlets directory.

• create

When the value of this attribute is yes, the JSP processor creates an
instance of the Bean if the bean is not found within the specified scope.
The default value is yes.

• scope

This indicates lifetime of the Bean. This attribute is optional and the
default value is request. The valid values are:

• request - The Bean is set in the request mode by a servlet that invokes
the JSP file using the APIs described in the JavaServer Pages API. If
the Bean is not part of the request context, the Bean is created and
stored in the request context unless the create attribute is set to no.

• session - If the Bean is present in the current session, the Bean is
reused. If the Bean is not present, it is created and stored as part
of the session if the create attribute is set to yes.

• userprofile - The user profile is retrieved from the servlet request
object, cast to the specified type, and introspected.
If a type is not specified, the default type is
com.ibm.servlet.personalization.userprofile.UserProfile.
The create attribute is ignored.

• param

A list of property and value pairs. The properties are automatically set in
the Bean using introspection. The properties are set once when the Bean
is instantiated.
Chapter 2. A Web Programming Primer 13

INSERT
Use the INSERT tag to insert JavaBean properties from a bean in a
previously declared BEAN tag into the output page or from request
parameters or attributes.

<insert requestparm=pvalue requestattr=avalue bean=name
property=property_name(optional_index).subproperty_name(optional_index)
default=value_when_null>

</insert>

where:

• requestparm

The parameter to access within the request object. This attribute is
case-sensitive and cannot be used with the Bean and property attributes.

• requestattr

The attribute to access within the request object. The attribute would have
been set using the setAttribute method. This attribute is case-sensitive
and cannot be used with the Bean and property attributes.

• bean

The name of the JavaBean declared by a BEAN tag within the JSP file.
The value of this attribute is case-sensitive. When the Bean attribute is
specified but the property attribute is not specified, the entire Bean is used
in the substitution. For example, if the Bean is type String and the property
is not specified, the value of the string is substituted.

• property

The property of the Bean to access for substitution. The value of the
attribute is case-sensitive and is the locale-independent name of the
property. This attribute cannot be used with the requestparm and
requestattr attributes.

• default

An optional string to display when the value of the Bean property is null. If
the string contains more than one word, the string must be enclosed within
a pair of double quotes (such as "HelpDesk number"). The value of this
attribute is case-sensitive. If a value is not specified, an empty string is
substituted when the value of the property is null.
14 Developing an e-business Application for IBM WebSphere

REPEAT
The repeat tag retrieves subsequent values in a loop, until an
ArrayOutOfBoundsException stops the processing.

<repeat index=name start=starting_index end=ending_index>
</repeat>

where:

• index

An optional name used to identify the index of this repeat block. The value
is case-sensitive.

• start

An optional starting index value for this repeat block. The default is 0.

• end

An optional ending index value for this repeat block. The maximum value is
2,147,483,647. If the value of the end attribute is less than the value of the
start attribute, the end attribute is ignored.

2.4.3 JavaServer Pages API
The JavaServer Pages API defines the communication between Java code
(typically servlets or other JavaServer Pages) and a JavaServer Page. There
are two Java types in the API:

• com.sun.server.http.HttpServiceResponse: Extends
sun.servlet.http.HttpResponse and provides a new method: callPage to
invoke a JavaServer Page.

• com.sun.server.http.HttpServiceRequest: Extends
sun.servlet.http.HttpRequest and provides a new method, setAttribute, to
set attributes in the request object. These attributes can be accessed in
the JavaServer Page using the BEAN tag.

Information can also be passed to the JavaServer Page using the putValue
method of the HttpSession object to associate objects with the session.
These objects are accessible for the life of the session, while objects set in
the request are only accessible for the life of the request.

2.4.4 How JavaServer Pages Work
The first time a JavaServer Page is invoked (or whenever it is changed) it is
parsed into a Java source file containing a servlet, then compiled and
initialized. Once the servlet is initialized, the service method is invoked. For
all subsequent requests, the service method of the existing servlet is invoked,
Chapter 2. A Web Programming Primer 15

and the output of the servlet, the combination of the static and dynamic
elements (created through JSP elements) is sent to the browser as shown in
Figure 3. A JavaServer Page has an extension of .jsp in order for it to be
identified by the server as a JSP file.

Figure 3. How JavaServer Pages Work

2.5 Maintaining State in Web Applications

HTTP is a stateless protocol, which means that it does not maintain state
across client requests. In most cases, HTTP creates a new connection for
each request, which means that there is no way for a server to recognize that
a series of requests have come from the same client. For many Web
applications, the ability to maintain information across client requests is a
core requirement.

There are a number of approaches that add state to HTTP, including Web
server authentication, hidden form fields, cookies, and URL rewriting. In all
these approaches, the Web application must manage the state information.
Servlet Session Management manages state at a higher level and supports
cookies and URL rewriting through a Session Management API.

2.5.1 Web Server Authentication
The majority of Web servers support user authentication that restricts access
to resources to users who have logged in using a username and password
maintained by the Web server. In addition to limiting access to resources,
authentication can be used to track a client session. When a user has logged

JavaServer
Page

Web
Browser

Temporary
Java

Source

Web Page

HTTP Request
or

callPage

Loaded
Servlet

Parsed

Compiled

HTML
16 Developing an e-business Application for IBM WebSphere

in, the browser retains the username and password and resends them with
every request to the same realm. A realm is the combination of a location or
resource and the hostname of the server.

This approach is simple to implement and is supported on most Web servers.
In addition, as long as the browser is not restarted, it will attempt to use the
same username and password any time it is directed at that realm.

The major drawback with this approach is that each user is required to have a
unique user ID and password and log on every time they visit the site. They
may not appreciate this step. Users expect and appreciate a login procedure
when requesting sensitive information, but see it as intrusive and restrictive
otherwise. In addition, while all logins from a user are considered a session,
they may actually come from different machines.

2.5.2 Hidden Form Fields
Hidden form fields, as their name implies, are fields in an HTML form that are
not displayed in the client’s browser. They are sent to the server whenever the
HTML form containing them is submitted. Hidden form fields can be used to
maintain state information by placing a session ID in a hidden form field each
time the a response is sent to the client.

This approach is supported in most browsers, does not require any server
setup, and does not require a user to be logged in. The major drawback with
this approach is that it only works with dynamically generated forms. If your
Web site is interspersed with static and dynamically generated pages, this
approach may not be appropriate.

2.5.3 Cookies
A cookie is a piece of data passed between a Web server and a Web browser.
The Web server sends a cookie that contains data it requires the next time
the browser accesses the server. This data may uniquely identify the user to
the Web server as well as store other information. When the browser receives
the cookie, it stores it and sends it back to the server when requested.

The major drawback with cookies is that not all browsers accept cookies.
Typically, a browser rejects cookies because the user does not want cookies.
Many users are suspicious of anything being stored on their machine from
what they believe may be an untrustworthy source.
Chapter 2. A Web Programming Primer 17

2.5.4 URL Rewriting
Another way of tracking user information is to append state information to the
hyperlinks in each page sent back to the browser. This technique is known as
URL rewriting. When the browser makes a new request of the server, the URL
request contains information about the client.

Some disadvantages of URL rewriting are: the user must follow a strict path
through the site, they cannot deviate from pages which have the encoded
URLs, and the developer must be careful to rewrite all the URLs that are sent
back to the client.

2.5.5 Servlet Session Management
All the above approaches address the need to add state to the HTTP
protocol, and each approach has its advantages and disadvantages. The
Java Servlet API contains types designed to handle session management at
a higher level, allowing developers to focus on building Web applications.

With servlet session management, each user can be associated with
HttpSession objects that are used to store or retrieve information about that
user. This object maintains information about a single session. Other Java
objects can be added to a session using the putValue method and retrieved
using getValue. A session object can be created and retrieved using the
getSession method.

Session management can be implemented using cookies or URL rewriting. A
unique identifier for the session object is placed in the cookie or added to the
URL. This ID is then used to retrieve the session object.

Session Life Cycle
A session is a series of connections from the same browser over a fixed
period of time. A session can be terminated automatically by the server after
some fixed time period, or be terminated manually by the Servlet by calling
the invalidate method.

For a complete discussion of Session Management, see the Java Servlet API
JavaDoc and tutorial and Appendix D, “Related Publications” on page 197.
18 Developing an e-business Application for IBM WebSphere

2.6 Web Security

Security on the Web is a huge topic. As companies decide to provide services
to their customers on the Internet, they must take measures to implement
security. This section introduces some key security concepts that were
applicable to the HBA application.

In order to be resistant to attack, companies must take measures to secure
their Web servers, the information that travels between the Web server and
the user, and possibly also the users’ computers. There are several very
different areas to be considered when securing your Web applications:

• Server Location:

Securing the Web server involves securing the physical surroundings of
the server and network, the computer on which the Web server runs, and
securing the Web server itself.

• Client:

Securing the user’s computer involves controlling what software the user
is allowed to run as well as the levels of software that they have installed
on their computer. The key software to secure is the client or the browser
that the user uses to access the Internet. Securing the client completely is
only possible in an Intranet environment, although a level of security can
be enforced in an Internet environment, for example, by ensuring that
clients support SSL. Securing the client may also involve running
anti-virus software on the client machine.

• Application

Securing the Web application is the main focus of this section. The main
security issues for Web applications include knowing:

• Who you are communicating with (authentication)

• That the transaction is private (confidentiality)

• That the data has not been tampered with (integrity)

• That the participants will not later deny the transaction
(non-repudiation)

These four items will be discussed in the rest of this section.

2.6.1 Authentication
Authentication is the identification of the client or server. In a Web application,
authentication can be handled by the Web server or by the application itself.
Most Web servers provide authentication and access control to limit access to
Chapter 2. A Web Programming Primer 19

known users. However, many Web applications are gateways to existing
business applications. In these cases, the authentication information may
already exist in another system, and authentication can be handled by the
Web application itself, or by integrating the Web server’s authentication with
the existing system.

Authentication can be based on a user ID and one or more passwords, or on
digital certificates (see “Digital Certificates” on page 21).

2.6.2 Confidentiality
Confidentiality is provided by encryption. Secure Sockets Layer (SSL) is the
most widely used technology for encryption on the Web.

SSL is a layer that sits between the TCP/IP protocol and the application layer.
While the standard TCP/IP protocol simply sends a stream of data between
two computers, SSL adds numerous features to that data, such as encryption
of the data using a variety of algorithms, authentication, and non-repudiation
of the server (using digital signatures), authentication and non-repudiation of
the client (using digital signatures), and data integrity (through the use of
message authentication codes).

When two programs talk to each other using SSL, these programs use the
strongest cryptographic protocol that they have in common. These protocols
include the Data Encryption Standard (DES) and other symmetric protocols.
SSL allows for authentication of both the client and the server through digital
certificates and digitally signed challenges.

There are two levels of SSL security based on the length of encryption keys:
export and domestic grade. Export grade is used internationally, domestic
grade can only be used in North America.

2.6.3 Integrity
Both sides of a transaction must be sure that the information they receive has
not been tampered with in any way. This integrity is also provided by the SSL
protocol through message authentication codes (MAC). Each SSL
transmission has a MAC appended that ensures that the transmission has not
been tampered with.

2.6.4 Non-repudiation
It is important that both sides of a transaction agree that the transaction has
taken place. Non-repudiation is provided by digital certificates which prove
that the certificate holder was involved in the transaction.
20 Developing an e-business Application for IBM WebSphere

Digital Certificates
Digital certificates are a mechanism for authenticating and securing the
information that is transmitted between two entities. They consist of a private
key and a public key. The private key is used to encrypt a transmission and is
only held by the signer. The public key is used to decrypt the transmission
and verify the signature. Only the public key can decrypt a transmission
signed with the private key and vice-versa.

Client-Side and Server Side Digital Certificates
A client certificate’s purpose is to verify the identity of an individual and can
eliminate the need to remember usernames and passwords. Client
certificates can be used with SSL, but are not mandatory. The downside to
client certificates is that each user must obtain one and always have it when
accessing the Web application.

A server certificate must be implemented by a Web server that implements
SSL. When a browser connects to the Web server using the SSL protocol, the
server sends the browser its public key in a certificate. The certificate is used
to authenticate the identity of the server and to distribute the server’s public
key, which is used to encrypt the initial information that is sent to the server
by the client.

2.7 Caching

In Web applications, a cache is a place where things are stored temporarily
so that data does not have to be retrieved each time from the original source.
There are several places where data can be cached in a Web application:

• Browser: Most Web browsers maintain a cache of the pages that have
been accessed. These cached pages are stored on the client machine’s
hard drive and are not usually refreshed when the browser is restarted. A
user can control this caching through browser settings and by manually
reloading pages.

• Proxy Server: A Proxy server can be used in organizations wishing to
make access to the Web more efficient for their users. Pages are cached
by the Proxy server, and users from the organization will receive the
cached page rather than the page from the actual URL.

• Web application: A Web application can perform its own caching. For
example, an application might cache values rather than access a database
on each request.

• Legacy Application: Many applications, especially databases, maintain
very sophisticated caching systems designed to increase performance.
Chapter 2. A Web Programming Primer 21

Caching can have a positive effect on the performance of a Web application,
but can also complicate the design. Some dynamic information has a definite
lifetime, and a cached version may not be not valid. Other information is valid
only for the time when it is originally created.

Design the caching strategies for the pages in your Web application when you
design the application. Do not cache pages when the data is not valid for a
length of time, or else set realistic timeouts for the data on the page.

Preventing Web Page Caching:
To prevent Web browsers and Proxy servers from caching dynamically
generated Web pages (meaning dynamic output that results from processing
JSP files, SHTML files, and servlets), use the following code to set headers in
the HTTP Response (in the JavaServer Page or the servlet):

response.setHeader("Pragma", "No-cache");
response.setDateHeader("Expires", 0);
response.setHeader("Cache-Control", "no-cache");

Setting the HTTP headers is a more effective method of controlling browser
caching than using the <META> tag equivalents. For example, <META
HTTP-EQUIV="Pragma" CONTENT="No-cache"> is the equivalent of the first
HTTP header setting. Setting the HTTP headers is the recommended
method, because some browsers do not treat the <META> tags in the same
way as the equivalent HTTP header settings. On some browsers, the
<META> tag equivalents do not work when the callPage method is used to
load a JSP file that contains the <META> tags.

There may be instances when you want to permit a page to be cached, but
you do not want a proxy server to permit multiple users to have access to the
cached page. For example, suppose your servlet does not use session
tracking and it generates a Web page that contains user input. To maintain
that personalization, you would want to prevent other users from having
access to the cached page. To prevent a proxy server from sharing cached
pages, use the following code:

response.setHeader("Cache-Control", "private");

This header can be combined with the three previous headers for preventing
caching.
22 Developing an e-business Application for IBM WebSphere

Chapter 3. Designing the Home Banking Application

In this chapter we will explain how we designed the HBA, including:

• Application Requirements

• System Requirements

• Use Cases

• Application Prototype

• Analysis Object Model

• Subsystem Design

• Subsystem Design

• Security Model

• HBA Architecture and Design

• Error Handling

Finally, we will introduce each subsystem of the HBA in 3.10, “HBA
Subsystems” on page 38.

3.1 Application Requirements

Customers using the HBA must be able to:

• Access their checking or savings account balances

• Access their checking or savings account histories

• Transfer funds between checking and savings accounts

• Pay bills from their checking and savings accounts

• Manage the list of payees to which they can pay bills

• Change their password

Customers must be able to do this securely and from any Internet-connected
computer. We also decided that we would require customers to authenticate a
second time before performing a transaction that modified an account
balance.
© Copyright IBM Corp. 1999 23

3.2 System Requirements

The initial system requirements, based on the application requirements, are:

HBA customers need:

• A user ID provided by the bank

• A login password or PIN (personal identification number) and a transaction
password

• At least one active bank account

• An Internet browser that supports the Secure Sockets Layer (SSL)

• Access to the Internet

A provider of the services implemented by the HBA needs:

• A Web and application server

• A digital certificate recognized by the client browsers

3.3 Use Cases

A set of Use Cases was created for the HBA. The complete Use Case model
is shown in Figure 4. The individual Use Cases were used as inputs to the
object model and architecture design. The individual Use Cases are in
Appendix A, “HBA Use Cases” on page 185. The Use Case model is very
important in a Web application. It can map very closely to the Web pages that
will make up the site and can serve as a storyboard to walk through the site.
The Use Case model can also drive the design of the application as
described in 3.8, “HBA Architecture and Design” on page 32.
24 Developing an e-business Application for IBM WebSphere

Figure 4. HBA Use Case Model in Rational Rose

Unsuccessf ul Login

(from Use Case View)

An unauthenticated
user can perf orm
some actions, such as
accessing the About
Us html page.

Successf ul Pay Bill

(from Use Case View)

Unsuccessf ul pay bi ll

(from Use Case Vi ew)

Successf ul Change Password

(from Use Case View)

Unsuccessf ul Change Password

(from Use Case View)

Successf ul transf er f unds
(fromUse Case View)

Unsuccessf ul Transf er Funds

(from Use Case View)

User

(from Use Case View)

Add Pay ee

(fromUse Case Vi ew)

Delete Pay ee

(from Use Case View)

Login
(from Use Case View)

Get Acc ount Hi story
(from Use Case View)

Get Account Balance

(from Use Case View)

Choose Pay ee Setup

(from Use Case View)

Logout
(fromUse Case Vi ew)

Change Password
(from Use Case View)

Choose Action
(from Use Case View)

Choose Account Inf ormation
(from Use Case View)Transf er f unds

(from Use Case View)

Pay Bi ll

(from Use Case View)

Suc cessf ul Login
(from Use Case View)
Chapter 3. Designing the Home Banking Application 25

3.4 Application Prototype

The prototype is used to explore the look and feel of the HBA. It was created
quickly using NetObjects Fusion. Using NetObjects Fusion for prototyping the
look and feel of the site can be very productive because you can use the
predefined templates and site styles to quickly show different ideas.

A user starts interacting with the HBA by entering the http://hostname into
their browser, and they are then presented with the main page of the HBA
(Figure 5).

Figure 5. Main Page of the HBA
26 Developing an e-business Application for IBM WebSphere

In order to access their accounts, the user must go to the Login page to
identify themselves by means of their UserId and Password (Figure 6).

Figure 6. HBA Login Page

Once they have logged in, they have full access to their accounts (Figure 7).
Chapter 3. Designing the Home Banking Application 27

Figure 7. HBA Accounts Page

3.5 Analysis Object Model

In many Web applications the analysis model would be based on the model of
an existing legacy application. Especially in the case of an Internet banking
system, it is unlikely the system would not be built on an existing bank’s
infrastructure. Our application does not connect to an existing bank system,
and this book does not address the issues involved in connecting to a legacy
application. See Appendix D, “Related Publications” on page 197 for these
resources.

Because we did not start with an existing application, we created an analysis
model of a bank’s business model. The object model contains four main
objects: Bank, BankAccount, Customer, and TransactionRecord (Figure 8). A
Bank has many BankAccounts that may be of three types: CheckingAccount,
Savings Account, and PayeeAccount. A PayeeAccount is used to have a
target for bill payments by a customer. Each BankAccount may be the target
of many transactions, so it may have many TransactionRecords. Each
28 Developing an e-business Application for IBM WebSphere

BankAccount has an owner: a Customer. The PayeeAccount is used to refer
to a corporation that the customer pays bills to. For example, the gas
company could be a payee.

Figure 8. Analysis Object Model in Rational Rose

3.6 Subsystem Design

We have designed eight subsystems in our HBA application:

• Application Manager: Initializes the bank and provides some session
management and logout functionality.

• Login: Authenticates the user.

• Account Information: Provides account balance and history.

CheckingAccount

overdraft : BigDecimal

mayW ithdraw()

PayeeAccount

billPaymentTitle : String

mayWithdraw()

SavingsAccount

minAmount : BigDecimal

mayWithdraw()

TransactionRecord

/ transType : String
transAmount : BigDecimal
transId : TimeStamp

BankAccount

accountId : String
balance : java.math.BigDecimal
accountType : String

deposit()
withdraw()
transfer()
getHistory()

1

0..*

1

0..*

Bank

getCustomer()
validCard() 1

0.. *

1

0.. *

Customer

t itle : String
firstName : S tring
lastName : S tring
customerId
userId
loginPassword
t ransactionPassword 1..*

1
1..*

1

1

0..*

1

0..*
Chapter 3. Designing the Home Banking Application 29

• Pay Bill: Enables the user to pay bills to corporations (payees).

• Payee Setup: Manages the user’s list of payees.

• Transfer Funds: Enables the user to transfer money between their various
bank accounts.

• User: Supports password management.

Figure 9 shows the proposed flow between servlets, HTML pages and
JavaServer Pages in the HBA. It is very similar to the Use Case model shown
in Figure 4 on page 25.

Figure 9. HBA Application Flow

The subsystems are discussed in 3.10, “HBA Subsystems” on page 38.

Login.jsp

Login Servlet

accounts.jsp

Unsuccessful
Login.html

BillPaymentServlet

TransferFundsServlet

ChangePasswordServlet

PayeeServlet

AlreadyLoggedIn.html

AccountInformation.jsp

FundsTransferred.jsp

AccountBalance.jsp

PayBill.jspTransferFunds.jsp BillPaid.jsp

AddPayee.jsp

DeletePayee.jsp

PayeeSetup.jsp

AccountServlet

doPost

doGet

MoneyTransferServlet

doGet

doPost

AccountHistory.jsp
doPost

User.jsp
doGet

NotLoggedIn.html

Logout.jspChangePasword.jsp doPost

ITSOBankError.jsp

(Called from any page)

doPost
doGet

doPost

doPost

doPost
30 Developing an e-business Application for IBM WebSphere

3.7 Security Model

The security design (Figure 10 on page 31) for the HBA is as follows:

• Access to the Web server will be controlled through passwords and a
secure environment.

• The server will only serve application pages using the SSL protocol. This
way, the application does not need to worry about the encryption of the
transmission. Some e-business applications may require a specific level of
security that the application should check, for example, the use of 128 bit
keys in SSL communications.

• Users will be required to log in to the HBA and to provide a further
password when initiating a transaction that modifies the balance of any
account.

Figure 10. HBA Security Architecture

Security Used in Internet Banking Applications
An informal investigation of some of the worldwide Internet banking
applications on the Web showed us that at the moment, about 20% use a
single userid and password combined with a server certificate and SSL for
authentication, 40% use client and server certificates, while the remaining
40% use SSL and a server certificate with a second level of authentication
(similar to our transaction password).

Account
History

Account
Balance

Payee
Setup

Bill
Payment

Transfer
FundsLogin

Password

Transaction
Password

HTTPS

Server
Application

SSL

Server

HTTP
Server

HBA
Client

Browser
Chapter 3. Designing the Home Banking Application 31

3.8 HBA Architecture and Design

Now we have a start on the design of our application. We know the page
structure and flow from the Use Case model, we have a business object
model, and we have outlined the major subsystems of the site.

In the HBA design process there were several points at which design
decisions must be made. The basic architecture of the HBA is defined by the
scope of the project: to build a Home Banking Application using IBM tools that
runs on the IBM WebSphere Application Server. Three of the major design
decisions we faced were:

1. Access to the Business Model

2. Controlling the Interaction Between the Client and Server

3. What Goes into a JavaServer Page?

3.8.1 Access to the Business Model
Whether you are connecting to an existing legacy application or to a new
business model, you need to design the access to the business model. In our
case, we decided to create a business model layer, or domain firewall, to
separate our Web application from the business model implementation.

The domain firewall is an API that abstracts the object model for the client. It
is implemented in 5.1, “Implementing the Domain Firewall” on page 99 using
Java interfaces. For example, in our domain firewall we have account objects
and they respond to messages that a bank account understands, like
getBalance.

All interaction with the business logic is channeled through the firewall, and
the client application is isolated from any changes in the implementation of
the business logic. The separation is shown in Figure 11.
32 Developing an e-business Application for IBM WebSphere

Figure 11. Separation of the Model from the Application

Another option is to use a command pattern. The Command Pattern is
defined in Design Patterns (see Appendix D, “Related Publications” on page
197). The Command Pattern is used to package and execute commands, and
is very effective when you want the commands to be executed uniformly but
do not know where or how they will necessarily be executed.

In designing a system to use a command pattern, the Use Cases can map
roughly to the commands. For each Use Case, you create a command which
is executed in some sort of command handler. Table 1 compares the two
approaches.

Table 1. Domain Firewall and Command Pattern Comparison

Domain Firewall Command Pattern

Pros Object-oriented interface
Understandable domain

One point of entry
Easy to implement logging and undo action
Matches well with transactional systems

Cons May be complex to implement
Many points of entry

Not an intuitive interface
Lose object-oriented interface

Business Model

Domain Firewall

Web Application
Chapter 3. Designing the Home Banking Application 33

3.8.2 Controlling the Interaction Between the Client and Server
All applications need a point of control to mange the flow of the
application. In object-oriented programs the Model/View/Controller (MVC)
paradigm has become popular. In MVC the different parts of the
application are separated into:

• Model: The business logic of the application.

• View: The user interface.

• Controller: The component that manages the interaction between the
model and the view and the flow of the application. In the original MVC
designs, the controller managed the user input, but in many versions of
MVC, it has become the controller of the flow of the application.

In servlet-only applications, the servlet was used as both the controller and
the view (HTML was coded in Java or read from a file), but this has
disadvantages. If the servlet is used to generate dynamic content, then any
changes made to the format of the output also requires that the Servlet be
recompiled. This makes the application more difficult to maintain, particularly
if there are frequent changes to the format of the output.

In a JSP/servlet based Web application, the controller could be implemented
directly in JavaServer Pages, or in servlets that then invoke JavaServer
Pages.

If JavaServer Pages are used as the controller, browsers make requests
directly to a JavaServer Page (Figure 12). After receiving the client request,
the compiled JSP servlet requests information from server components,
which perform any necessary computation and encapsulate the business
logic. Then, the compiled JSP servlet inserts the results of the computation
into the Web page, which is then rendered and interpreted by the browser as
usual. In this case, controller code and view code are mixed in the same
component. This may make maintenance of the application more difficult. In
addition, the tools currently available for Java development do not have strong
support for JSP/HTML development and vice-versa.
34 Developing an e-business Application for IBM WebSphere

Figure 12. JavaServer Page as Controller

If servlets are used as the controller (Figure 13), browsers invoke servlets
which then invoke JavaServer Pages. The Java Server pages would access
only the information needed to display results. The Servlet interacts with the
JavaBeans to perform any necessary computation and encapsulate the
business logic, and may also create beans to store the results of the
computation. The JSP then extracts whatever information it requires from the
JavaBeans and merges them with the Web page. The browser then interprets
and renders the Web page as usual.

Although using servlets as the controller adds another layer to the application
beyond JavaServer Pages, we think it is a good idea, because:

• View and controller code are logically separated.

• You can use the best tools for Java and for HTML/JSP without trying to
combine them.

• Your Java developers and HTML developers are not working on the same
code.

We used a servlet as the controller except in the few cases where the
JavaServer Page had no request data associated with it.

JavaServer
Page

Web
Browser

Bean

Bean
Chapter 3. Designing the Home Banking Application 35

Figure 13. Servlet as Controller

3.8.3 What Goes into a JavaServer Page?
Now you know that we think the servlet should act as the controller. You still
need to decide exactly what goes into a JavaServer Page. A JavaServer Page
can contain Java code or bean tags to represent dynamic content.

In the first approach, the Java code is embedded directly inside the HTML
document using scriplets. We believe you should use this approach when the
programming logic is relatively minor. Having any more than a trivial amount
of programming logic inside the HTML document can make it more difficult to
separate roles in a development team, as the HTML and Java code are tightly
coupled. If scriptlets are used, business logic should still be encapsulated in
JavaBean components.

In the second approach, the programming logic resides in components and
bean tags are used to request information from these components, which is
then inserted into the HTML document. This approach has an advantage in
that it facilitates a cleaner separation of roles in a development team, and the
programming logic is contained inside components which would be the
responsibility of a Java programmer.

In this approach we recommend that you go a step further and create special
view beans to be used in JavaServer Pages. These beans are created by the
servlet and placed in the session or the request. They simply encapsulate
data based on the results of the request. You may also see similar beans
called adaptor beans in other documents.

JavaServer
Page

Browser

Bean

Bean

Servlet
Request

Response
36 Developing an e-business Application for IBM WebSphere

As with using servlets as controllers, using View beans will add another layer
of code to your application, but it will make the code cleaner and easier to
maintain. You will find examples of view beans in 5.3, “Implementing the Web
Application” on page 104. This separation will also make your application
easier to test because you can unit test each subsystem using dummy data in
the view beans.

An additional current reason to use view beans is that, using the current
implementation, the type of a bean in a JSP page cannot be declared as an
interface, and any methods which throw checked exceptions must be caught
in the JavaServer Page.

3.9 Error Handling

Error handling in the HBA application is handled in several ways:

• User Errors

If a user enters an incorrect value, an appropriate message is displayed
either on a separate page or the page on which the entry was made.

• Application Errors

If the application detects an error, for example, the bank is not available,
the callErrorPage method is called that sends the user to a generic error
page and lists the error.

In the JSP 0.92 and 1.0 specifications, the errorpage directive is introduced.
This can be used as a generic way of handling runtime exceptions in JSP
pages. In the 0.91 specification there is no general error handling
mechanism, but the XML servlet configuration file (a feature of WebSphere)
allows an error page to be defined. The XML servlet configuration file is
discussed in “Servlets” on page 105.

In both specifications, JSP pages containing elements that can throw
checked exceptions must catch these exceptions. This is another reason to
create the View layer (see 3.8.3, “What Goes into a JavaServer Page?” on
page 36).
Chapter 3. Designing the Home Banking Application 37

3.10 HBA Subsystems

The HBA subsystems were introduced in 3.6, “Subsystem Design” on page
29. The individual subsystems are described in this section.

Application Manager
The Application Manager (Figure 14) provides session management for the
HBA application by means of the BankServlet. All JavaServer Pages in the
site call the BankServlet using the SERVLET tag. This calls a method of the
BankServlet, which validates that the user has a valid login session. If the
user does not have a valid login session, they are redirected to the Not
Logged In page; otherwise, the page continues to be loaded.

Figure 14. HBA Application Manager

The Application Manager also initializes the bank when the Web server starts
and handles the logout function (Figure 15).

The user can choose to log out of the application from anywhere in the site by
clicking Logout from the menu. When they click logout, the user gets sent to
the Logout JSP and the user’s session is invalidated.

destination
request

Bank Servlet

validate that the user
has logged in and has
a valid session

authenticated

Not Logged
In.html

access denied
38 Developing an e-business Application for IBM WebSphere

Figure 15. HBA Logout

Login
In order to enter the HBA, a user needs to access the Login page (Figure 16).
When the user enters their user ID and password and clicks Login on the
Login page, their request is submitted to the LoginServlet. The LoginServlet
creates a new session for the user. It then gets the Customer object from the
bank based on the userid and checks to see if the password is valid. Once
the user has been authenticated, a CustomerView object is added to the
user’s session. The CustomerView object will used throughout the HBA to
provide access to the customer’s data.

If the login attempt was successful, the user is sent to the Accounts page. If
authentication was denied the user is redirected to the Unsuccessful Login
page.

Any HBA
Page

LogOut.jsp

BankServlet

invalidate
session

LogOut
Chapter 3. Designing the Home Banking Application 39

Figure 16. HBA Authentication Sequence

Account Information
The Account Information subsystem provides the Account Balance and
Account History function. When the user requests Account Information, they
are sent to the Account Information JSP. This page lists the customer’s bank
accounts along with an option to display the account history or balance.

The Account Information page is called by the AccountServlet with an
AccountViewList bean which lists the customer’s accounts.

Account History
When the user selects their account and clicks on Account History, the
request is sent to the AccountServlet (Figure 17). The AccountServlet
retrieves all the transactions for the selected account. The AccountServlet
then calls the Account History JavaServer Page where the account history is
displayed.

Login.jsp
Login Servlet

submit
login

get
Customer

accounts.jspUnsuccessful
Login.html

unsuccessful successful store
CustomerView

Session

CustomerView

Bank
40 Developing an e-business Application for IBM WebSphere

Figure 17. HBA Account History

Account Balance
When the user selects an account and chooses the account balance option
from the Account Information JSP the request is sent to the AccountServlet
(Figure 18). The AccountServlet retrieves the balance information and calls
the Account Balance JSP.

Figure 18. HBA Account Balance

Pay Bill
When the user selects the Pay Bill option from the Accounts JavaServer Page
they are sent to the Pay Bill JavaServer Page (Figure 19). The Pay Bill JSP
retrieves the account and payee information to display the accounts and
payees. The user then selects an account and a payee; enters an amount
and the transaction password; and submits the request. The request is sent
to the BillPayment servlet that validates the password, performs the

Session

Account
Information.jsp Account Servlet

Account
History.jsp

Choose Account
History

getAccount

account list
view

CustomerView

Account Servlet

Choose Account
Balance

getAccount

account
balance

Account
Information.jsp

Account
Balance.jsp

Session

CustomerView
Chapter 3. Designing the Home Banking Application 41

transaction and invokes the Bill Paid JSP. If the validation fails, the user is
sent back to the Pay Bill JSP with an error message.

Figure 19. HBA Bill Payment

Payee Setup
When the user selects Payee Setup from the Pay Bill JSP they are sent to the
Payee Setup JSP (Figure 20). This page lists all the payees the user currently
has. From here the user can choose to add or delete a payee to or from their
list.

Figure 20. HBA Payee Setup

PayBill.jsp
unsuccessful

BillPaymentServlet

get accounts

BillPaid.jsp

success

submit transfer

Session

CustomerView

Payee
Setup.jsp

Pay Bill.jsp

Payee Setup

get Payee List

Session

CustomerView

PayeeServlet
42 Developing an e-business Application for IBM WebSphere

Add Payee
When the user clicks the Add Payee button they are sent to the Add Payee
JSP (Figure 21) where they can select the payee to add to their accounts.
The request is sent to the PayeeServlet. The PayeeServlet determines that
the action is to add a payee and adds the payee to the user’s list of payees.
The user is then sent to the Payee Setup JSP, where all of their current
Payees are listed, including the one that they just added.

Figure 21. HBA Add Payee

Delete Payee
When the user selects a payee from the Payee Setup JSP and selects the
Delete Payee action, the request is sent to the PayeeServlet. The servlet
determines that the action is Delete Payee and deletes the payee from the
user’s Payee list. It then redirects the user to the Payee Setup JSP, where the
current list of the users payees is displayed without the one that was just
deleted (Figure 22).

Payee
Setup.jsp

Payee Servlet

Add Payee.jsp

Choose the
new payee

add payee

successful

unsuccessful

Session

CustomerView

add payee
Chapter 3. Designing the Home Banking Application 43

Figure 22. HBA Delete Payee

Transfer Funds
When the user selects Transfer Funds from the Accounts JSP, the request is
sent to the TransferFundsServlet (Figure 23). This JSP gets the account
information from the customer object to display the accounts. From here, the
user selects the source and target accounts and enters the amount and the
transaction password and submits the request. The servlet validates and
performs the transfer and invokes the Funds Transferred JSP to display the
results. If there is an error, the user is sent back to the Transfer Funds JSP
with the corresponding error message.

Payee
Setup.jsp

Payee Servlet

Delete Payee.jsp

Confirm delete
payee

delete payee

Payee
deleted

Session

CustomerView

select
payee
44 Developing an e-business Application for IBM WebSphere

Figure 23. HBA Transfer Funds

User
The User subsystem is composed of one function: Change Password.

When the user selects Change Password from the User JSP, they are sent to
the Change Password JSP (Figure 24). There they can choose to change
their application login password, which grants them access to the HBA; or
their transaction password, which authorizes them to perform transactions.
Once they select the type of password they want to change, and enter the
old, new, and confirmed new password and click Submit, the request is sent
to the ChangePasswordServlet. The servlet validates, and if validated, the
user is redirected to the Accounts JSP page. If the validation fails, the user is
sent back to the Change Password JSP with an error message.

Transfer
Funds.jsp

unsuccessful

Transfer Funds
Servlet

get accounts

Funds
Transfered.jsp

success

submit transfer

Session

CustomerView
Chapter 3. Designing the Home Banking Application 45

Figure 24. HBA Change Password

Change
password.jsp

Change
Password

Servlet

enter data

change password

successful

Accounts.jsp

unsuccessful

Session

CustomerView
46 Developing an e-business Application for IBM WebSphere

Chapter 4. Tool Usage in the Home Banking Application

To create a Web application you need several types of tools. In our case, we
are building a JavaServer Pages and servlet based Internet banking system.
This chapter describes the tools used, as well as how they were used
together. The types of tools and specific tools used were:

• Design and Analysis Tool: Rational Rose 98 Java Edition

• Web Development Environment: WebSphere Studio

• Java Development Environment: VisualAge for Java

• Web Site Prototyping Environment: NetObjects Fusion

• HTML and JSP Page Editor: WebSphere Studio Page Designer

• Application Server: WebSphere Application Server

• Web Servers: IBM HTTP Server and Netscape Enterprise Server

This section introduces the tools used in the HBA development and explains
how we used the tools. For more information on each tool, consult the
appropriate documentation or the tool’s Web site.

4.1 The Tool Suite

The tools available for building Web applications using JavaServer Pages and
servlets are maturing, as are the way they are used. New versions of some
tools and specifications may have appeared by the time you read this book,
so some descriptions may not match your environment. Figure 25 shows the
way we used the toolset to create the HBA.
© Copyright IBM Corp. 1999 47

Figure 25. HBA Tool Usage

Initially NetObjects Fusion is used to quickly generate a site prototype. In our
case, we also reused much of the NetObjects Fusion site in the final HBA by
importing the site into WebSphere Studio. The WebSphere Studio Page
Designer is used to add dynamic content and maintain the pages. VisualAge
for Java is used to create and maintain all the Java code used in the HBA.
WebSphere Studio manages the source control and publishing of the site.

During HBA development, we used two different source control mechanisms,
VisualAge for Java and WebSphere Studio. Studio was used to maintain the
HBA site, and VisualAge for Java was used to maintain the Java code as it
was being developed. In a production environment, an improved scenario
would be to add a Software Configuration Management (SCM) tool to
manage versions of the application (Figure 26).

VisualAge for
Java

Web
Server

Application
Server

Create and debug
servlets, JavaBeans
and other Java classes

Deploy servlets,
JavaBeans and classes

WebSphere
Studio Page

Designer

Deploy HTML, JSP and
image files

Create HTML
and JSP pages

WebSphere
Studio

Export class files

Edit files

Publish

NetObjects
Fusion

Publish and review
initial prototype

Rational
Rose

Create design artifacts
and generate initial
code

Import initial Java code

Import
Initial
prototype
48 Developing an e-business Application for IBM WebSphere

Figure 26. Tool Usage with an SCM Tool

For a description of a similar environment, see Creating WebSphere
Applications with VisualAge TeamConnection in Appendix D, “Related
Publications” on page 197.

Figure 27 shows the life cycle of tool usage in HBA development. Initially, the
Java code is created and unit tested in VisualAge for Java WebSphere Test
environment using the JSP and HTML files published by WebSphere Studio.
Once the code is working correctly it is imported into WebSphere Studio and
published with the rest of the site to test the final deployment using the
WebSphere Application Server.

SCM Tool

VisualAge for
Java

Web
Server

Application
Server

Create and debug
servlets, JavaBeans
and other Java classes

Deploy servlets,
JavaBeans and classes

WebSphere
Studio Page

Designer

Deploy HTML, JSP and
image files

Create HTML
and JSP pages

WebSphere
Studio

Export class files

Edit files

Publish

Check files in and out,
manage baselines

NetObjects
Fusion

Publish and
review initial
prototype

Rational
Rose

Create design artifacts
and generate initial
code

Import initial Java code

Import
Initial
prototype
Chapter 4. Tool Usage in the Home Banking Application 49

Figure 27. Tool Usage Life Cycle

4.2 Design and Analysis Tool: Rational Rose 98 Java Edition

Rational Rose 98 Java Edition, or Rational Rose, is a popular object
modeling, analysis, and design tool from Rational Corporation. We used
Rational Rose for the creation of use cases, interaction diagrams, domain
object model and the domain firewall. We then generated a first pass at the
Java code for the domain firewall and business logic using Rational Rose.

The object model, use case model and sequence diagrams used throughout
the book were created in Rational Rose.

4.3 Web Site Prototyping Environment: NetObjects Fusion

We used NetObjects Fusion to build a prototype site. This prototype can be
used to demonstrate the proposed site to clients or team members. In our
case we also reused the site by importing it into WebSphere Studio.

NetObjects Fusion (Fusion) is a tool for building Web sites without being an
HTML expert. With Fusion you can:

VisualAge for
Java

Web Server

Application
Server

WebSphere
Studio

Export class files

Publish

NetObjects
Fusion

Rational
Rose

Import

Import
Initial
prototype

Create and
debug Java
classes

Test servlets
and JSP
pages

File
System

Browser

Edit HTML
and JSP
pages

Import classes
and configuration
files
50 Developing an e-business Application for IBM WebSphere

• Design your pages

• Publish your Web site to remote locations

• Generate HTML that is consistent across browsers

• Create a well defined environment for controlling the content of your Web
site

For more information about Fusion, go to http://www.netobjects.com

For our project, we used NetObjects Fusion 4.0 workstation edition. It also
comes in a team edition (NetObjects Fusion Authoring Server) supporting
collaborative development.

Fusion is used to prototype our HBA application and generate initial HTML
pages that we will modify. The prototype site does not have the complete
bank functionality, and additional links are added to show pages that would
be generated through servlet or JavaServer Page calls.

4.3.1 Prototyping the Site
The HBA application was developed using one of NetObjects Fusion’s custom
templates: Company Internet. This template quickly provided the HBA with a
consistent look and feel, including the Site Navigation Bar. The pattern is
quickly recognizable by a new user as shown in Figure 28.

Fusion makes it easy to make changes throughout the site. You change a
property in one page and it cascades throughout the site to reflect your
change in every page in the site. Fusion does this by the use of
MasterBorders. Pages in a section of the site can share a MasterBorder, and
if an area of the MasterBorder is changed in one page, it is reflected in all
pages that use that MasterBorder.
Chapter 4. Tool Usage in the Home Banking Application 51

Figure 28. Site Navigation Bar, or Menu, of the HBA Application

Creating the HTML Pages
Fusion provides a visual editor for creating the pages of the site. We used this
feature to prototype all the pages of our site. We simply dragged and dropped
components on our pages and positioned and labeled them (Figure 29). Once
we created our pages visually, we could then preview them before we
published them.

Site Menu
52 Developing an e-business Application for IBM WebSphere

Figure 29. NetObjects Fusion Visual Page Editor

Creating the Dummy Content
In the final HBA site, much of the content will be dynamically generated using
servlets and JavaServer Pages. For the prototype these tables, lists and other
elements were filled in with dummy content. For example, list boxes were
populated with dummy account IDs.

Creating the Prototype Links
In the HBA site, many of the JavaServer Pages are only accessed through
servlets, as shown in the HBA application flow in Figure 9 on page 30. In the
prototype, because there are no servlets, we need to provide a mechanism to
display and review these pages. We did this by creating extra links to these
pages.
Chapter 4. Tool Usage in the Home Banking Application 53

Figure 30 shows the Accounts.html page with the extra links at the bottom of
the page. This page will become Accounts.jsp in the final site.

Figure 30. Extra Links on an HBA Page

Publishing the Prototype Web site
Fusion manages all the pages and resources of our Web site in its own
format. Once we are ready to publish, we use the Publishing Wizard (Figure
31). We set the directory where we want to publish: a local directory, or a
remote server. We click OK, and Fusion generates all the HTML pages and
images for our site and puts them in the appropriate directories.
54 Developing an e-business Application for IBM WebSphere

Figure 31. Fusion Publishing Wizard

The resulting files can be seen in Figure 32.
Chapter 4. Tool Usage in the Home Banking Application 55

Figure 32. Fusion Generated Site in Windows NT Explorer
56 Developing an e-business Application for IBM WebSphere

4.4 Web Development Environment: WebSphere Studio

WebSphere Studio is an integrated suite of tools and wizards for building Web
applications. It has the following components:

• NetObjects ScriptBuilder—A language sensitive text editor that you can
use for a number of scripting, markup, and programming languages.

• NetObjects Fusion—A graphical, authoring tool for designing, building,
and managing entire Web sites. See 4.3, “Web Site Prototyping
Environment: NetObjects Fusion” on page 50.

• VisualAge for Java, Professional Edition—IBM’s Java development
environment. See 4.5, “Java Development Environment: VisualAge for
Java” on page 71.

• Web Development Workbench—The workbench provides a complete
application assembly environment for dynamic Web sites.

• Page Designer—An integrated HTML and JSP page editor.

• Applet Designer—A graphical tool that allows you to create multimedia
applets for your Web pages.

For more information on WebSphere Studio, see
www.software.ibm.com/webservers/studio and the product documentation.

We did not use the NetObjects ScriptBuilder or the Applet Designer in the
HBA project, so we do not describe them here. NetObjects Fusion and
VisualAge for Java are described in 4.3, “Web Site Prototyping Environment:
NetObjects Fusion” on page 50 and 4.5, “Java Development Environment:
VisualAge for Java” on page 71. In this section we will describe the Web
Development Workbench and Page Designer. When we discuss the Web
Development Workbench we will often refer to it as WebSphere Studio.

Web Development Workbench
Using the WebSphere Studio workbench, you can view, edit, and manage
your site during the development and publishing processes. The workbench
has the following features:

Views
The WebSphere Studio workbench provides three views of your files:

• File View: Shows all the files and folders in your site. It is shown in the
left-hand side of the workbench window.

• The right-hand side of the workbench window can show one of two views:

• Relations View: Shows links between files.
Chapter 4. Tool Usage in the Home Banking Application 57

• Publishing View: Shows the Assembly stages. You can create an
unlimited number of assembly stages in which you develop and test
your site without affecting the production version.

Report Generation
Studio can generate the following reports to help you manage development of
your Web site:

• Import Report—Lists the options you select during import and shows the
status of imported files.

• Publishing Report—Summarizes the results of the publishing process.

• Project Integrity Report—Summarizes the results of a check for broken
links in your Web project.

• File Report—Provides detailed information about a file.

• Assembly Stage Report—Provides detailed information about a project
and its assembly stages.

• Relations map—Shows the relationship between a selected file, its parent
files, and its children files.

• Project map—Shows the relationships among the files in your application.

Team Development
You can use several popular Software Configuration Management tools to
provide more sophisticated version control and release management of your
applications.

Site Import
When you already have an existing Web site, importing is a quick and
painless way to create WebSphere Studio Web sites and populate them with
files.

Link Management
There are several types of links that Studio manages or helps you manage:
industry-standard links, source links, generated links, and custom links.
WebSphere Studio automatically recognizes and manages industry-standard
links; you must identify the other three kinds. Once you identify generated
links, WebSphere Studio dynamically manages them. For example, when you
rename or move a file within WebSphere Studio, the links pointing to it are
automatically updated.

The WebSphere Studio link types are:

• Inside link—A link to another file in the site. Appears as a solid line with an
arrow head at the end.
58 Developing an e-business Application for IBM WebSphere

• Embedded link—A link to a file which is not a hyperlink (does not have a
HREF tag, but a tag such as). Appears as a solid line with a
small depression in the form of a V with a dot.

• Outside link—A link to a file outside the site. Appears as a dashed line.

• Broken link—A link to a published file whose child file is not set for
publishing, or a link to a file that does not exist. Appears as a
double-crossing line on either a solid line (inside link) or a dashed line
(outside link).

• Self link—A link from a file to itself. Appears as an arrow that loops back to
the file icon.

• Anchor link—A link from one position in a file to another position in the
same file. Appears as a solid line with an anchor.

• Unverified link—A link to a file that cannot be verified using HTTP.
Appears as a dashed line with a question mark at its end.

• Source Link—A link from a publishable file to the file that is used to create
it. For example, you can create a source link from a .class file to the Java
source. Appears as a solid line with an open square containing two
arrows.

• Custom Link—A link that you create to identify a relationship unrecognized
by WebSphere Studio. Appears as a solid line with a small star.

• Generated Link—A link that is generated by a user-defined rule and
existing hyperlinks. Appears as a multi-headed arrow on either a solid line
(inside link) or a dashed line (outside link).

Publishing Support
WebSphere Studio supports publishing your entire site to different servers
and supports different publishing stages (such as test and production). You
can specify the directories to which different parts of the site are published
and set files to not be published.

Site and Sub-Site Archiving
You can archive your site or parts of your site when you are finished
development or to produce development baselines.

Integration with Various Asset Editing Tools
You can specify default editors for each type of file in your site.

Style Sheet Support
Use cascading style sheets to provide a consistent look and feel for your site.
Chapter 4. Tool Usage in the Home Banking Application 59

Code Generation Wizards
You can easily generate servlets which access databases or JavaBeans.

4.4.1 Page Designer
The Page Designer is an integrated JSP and HTML page editor. You can use
the Page Designer to edit the JSP and HTML pages of your site. The editor
provides Normal (WYSIWYG) or source views of the pages. Figure 33 shows
the Normal view and Figure 34 shows the HTML Source view of the Page
Designer.

Figure 33. Page Designer—Normal View
60 Developing an e-business Application for IBM WebSphere

Figure 34. Page Designer—HTML Source View

You can use the Page Designer to insert JSP syntax into your page, as shown
in Figure 35.
Chapter 4. Tool Usage in the Home Banking Application 61

Figure 35. JSP Support in the Page Designer

The Page Designer also provides the AnimatedGIF Designer and WebArt
Designer to help you produce animated GIFs and other Web graphics.

For more information on the Page Designer, see the product documentation.

4.4.2 Importing the Site
Once the HBA prototype was acceptable, we imported the site into
WebSphere Studio. We used File→Import Site and specified
http://localhost as the URL. Figure 36 shows the Import dialog and Figure
37 shows the Relations view of the imported site.
62 Developing an e-business Application for IBM WebSphere

Figure 36. Importing the Prototype Site

Figure 37. Relations View of the Imported Site
Chapter 4. Tool Usage in the Home Banking Application 63

4.4.3 Restructuring the Site
We made several changes to the structure of the site created in NetObjects
Fusion to change it to a dynamic site and make it easier to work with using
WebSphere Studio:

• Move all HTML files to the top level directory

• Move images to a subdirectory

• Rename HTML to JSP files

• Remove prototype links

• Create a classes folder

• Set publishing targets

• Delete the Theme folder

Move all JSP and HTML Files to the Top Level Directory
NetObjects Fusion creates a subdirectory for each child level of the site.
This results in many directories being created, sometimes holding only
one file. We decided to move all the HTML pages to the top level of the
site. Once we moved the files we deleted the extra folders that NetObjects
Fusion had created.

Move Images to a Subdirectory
To make it easier to refer to images and keep them organized we moved
all the images to an images subdirectory. We simply created a new folder
in our WebSphere Studio project named images and dragged all the
images to this folder. All affected links were automatically updated.

Rename HTML to JSP Files
Although we could have changed the extension within NetObjects Fusion,
the prototype would then not have worked. We simply selected each file
that was intended to be a JavaServer Page, and changed it to a .jsp
extension (Figure 38).
64 Developing an e-business Application for IBM WebSphere

Figure 38. Changing File Extensions

Remove Prototype Links
In the prototype, extra links were created in order to see pages which would
be generated through a call to a servlet or a JSP in the running application.
These links were removed at this stage.

Create a Classes Folder
We created a classes folder to hold the JAR file for the site. The JAR file will
contain all the Java types used in the HBA except the servlets.

Set Publishing Targets
The site is to be published to three different areas:

• Document Root directory for all image, JSP and HTML files

• WebSphere Application Server servlets directory for all the servlets and
servlet configuration files

• WebSphere Application Server classes directory for the bank.jar file
Chapter 4. Tool Usage in the Home Banking Application 65

To set the publishing targets we selected the server in the Publish View and
selected Edit→Properties and the Publish tab. On the Publish page we
clicked on Define Publishing Targets and set the targets as shown in Figure
39.

Figure 39. Defining Publishing Targets

After the Publishing Targets were set, we configured the project to publish to
a local Windows NT configuration (Figure 40).

Figure 40. Publish Setup
66 Developing an e-business Application for IBM WebSphere

Delete the Theme folder
We are not using style sheets for this project, so we deleted the Theme
folder.

Figure 41 shows the Files view after restructuring.

Figure 41. WebSphere Studio Files View after Site Restructure

4.4.4 Adding Dynamic Pages to the Site
2.4, “JavaServer Pages” on page 10 described the different types of JSP
elements. In 3.8.3, “What Goes into a JavaServer Page?” on page 36, we
discussed the reasons you might use the different types of JSP elements in a
JavaServer Page. In this section we describe how JavaServer Pages were
created for the HBA using the WebSphere Studio Page Designer.
Chapter 4. Tool Usage in the Home Banking Application 67

Adding the SERVLET Tag
Our HBA architecture (3.8, “HBA Architecture and Design” on page 32) calls
for a servlet to be invoked in each JSP to determine whether the user is
authenticated or should be redirected to another area of the site. The
SERVLET tag is added to each JavaServer Page using the Page Designer.
The SERVLET tag is added as the first element of the HTML BODY, as shown
in Figure 42.

Figure 42. Adding the SERVLET Tag
68 Developing an e-business Application for IBM WebSphere

We could also add the SERVLET tag using the Insert→Servlet menu item in
the Normal View of the Page Designer.

Adding JSP Elements
We used JSP elements to display all the dynamic content for the site. The
JSP elements were added to each file using the Page Designer.

In each JavaServer Page we replaced the dummy text we created using
NetObjects Fusion with the JSP syntax required to provide our HBA
functionality. The specific syntax for each page is discussed in Chapter 5,
“Implementing the Home Banking Application” on page 99. The following is an
example of adding JSP syntax using the Page Designer.

In the Page Designer we either select the table in Normal view and then
switch to the HTML source view, or search for TABLE 3 (the name that
NetObjects Fusion gave the table) in HTML Source View and then insert the
JSP syntax:

<BEAN NAME="account" TYPE="itso.bank.viewobjects.BankAccountView" INTROSPECT="no"
CREATE="no" SCOPE="request"> </BEAN>

<table id="Table3" border=1 cellspacing=1 cellpadding=3 width=408 <TR>
<TBODY><TR>
<TD WIDTH=72><P ALIGN=LEFT>Date</TD>
<TD WIDTH=90><P ALIGN=LEFT>Type</TD>
<TD WIDTH=99><P ALIGN=CENTER>Amount</TD>
<TD WIDTH=108><P ALIGN=CENTER>

Balance</TD></TR>
<tr>

<repeat index=count>
<% account.getTransactions(count); %>
<td><insert bean=account

property=transactions(count).transTimeStamp></insert></td>
<td><insert bean=account property=transactions(count).transType></insert></td>
<td><insert bean=account

property=transactions(count).transAmount></insert></td>
<td><insert bean=account

property=transactions(count).transClosingBalance></insert></td>
</tr>

</repeat>
</TBODY>

</table>

We can immediately preview the page (Figure 43), or continue to work with
the visual representation of the page (Figure 44).
Chapter 4. Tool Usage in the Home Banking Application 69

Figure 43. Previewing the Account History Page in the Page Designer

Figure 44. Editing the Account History Page in the Page Designer
70 Developing an e-business Application for IBM WebSphere

Creating Links to HBA Java Components
As discussed in 4.1, “The Tool Suite” on page 47, the Java code for the HBA
is created and unit tested in VisualAge for Java. Once the code is working,
the servlets are exported as class files, while all the supporting Java classes
are exported as one Jar file. The Jar file (bank.jar) is added to the classes
folder, while the servlets directory (\itso\bank\servlet) is added to the servlets
folder. The XML servlet configuration files are added to the WebSphere
Studio servlet folder from the VisualAge for Java Project Resources directory.
The links to the servlet configuration files and the servlets are automatically
created by WebSphere Studio. We then created a custom link from index.html
to the JAR file to ensure that the site was complete when published.

The complete site for the HBA can be found at:

ftp://www.redbooks.ibm.com/redbooks/SG245423/

4.4.5 Publishing the Site
The site is published to the Assembly stage by selecting the Test assembly
stage in the Publish view and then selecting File→Publish Whole Project.

4.5 Java Development Environment: VisualAge for Java

VisualAge for Java is IBM’s Java development environment. It is an
integrated, visual development environment with powerful support for
JavaBeans, client/server development, visual programming and enterprise
connectivity.

These are three VisualAge for Java editions: Entry, Professional, and
Enterprise.

• VisualAge for Java Entry Edition is a free version with a 500 class limit.
This makes it ideal for small projects or evaluation purposes.

• VisualAge for Java Professional Edition removes the 500 class limit from
the Entry edition.

• VisualAge for Java Enterprise Edition adds enterprise access builders and
a team programming environment to the Professional Edition.

Common to all editions is:

• Incremental compilation

• Visual Composition Editor—for visual programming
Chapter 4. Tool Usage in the Home Banking Application 71

• Integrated Development Environment, including:

• Debugger

• Browsers—Project, Package, and Class

• Source code editor

• Repository-based environment

• Advanced coding tools, including automatic formatting, automatic code
completion, and fix-on-save

• Data Access Beans for simplified access to relational databases

For more information on VisualAge for Java see
www.software.ibm.com/ad/vajava and Appendix D., “Related Publications” on
page 197.

4.5.1 Developing Servlets with VisualAge for Java
VisualAge for Java is a powerful servlet development and testing environment
supporting multiple JVM emulation as well as incremental compilation and
linking. In particular, it has strong support for testing and debugging servlets,
which is one of the more complex tasks of servlet development. To appreciate
these strengths, we need to contrast servlet development using VisualAge for
Java with traditional approaches.

In a typical servlet development life cycle, the servlet is developed and then
deployed to an application server for testing. Debugging the servlet typically
involves some well-placed print statements or writing to the log. This clutters
the application code, and we have to remember to either remove these
debugging statements or wrap them in an if statement and use a debug
attribute to toggle them on or off. Checking the errors involves mining through
the server’s error logs. Code modifications involve deploying the servlet back
to the server during each iteration. In addition, if the server’s JVM does not
support automatically reloading the updated servlet, the server must be
restarted. This cycle continues until the servlet is ready for production and
deployed to the production server.

Using VisualAge for Java, you can develop and test servlets using the Java
Servlet Development Kit (JSDK) or the WebSphere Test Environment.

To use the JSDK to develop servlets you run the HTTPServer class (that
comes with the JSDK) within the VisualAge for Java environment. The
HTTPServer class is a minimal Java Web Server that handles HTTP requests
for servlets. It does not serve HTML documents or JSP files. To test the
72 Developing an e-business Application for IBM WebSphere

servlet you load the servlet’s URL in a Web browser,
http://localhost:8080/servlet/HelloWorldServlet, for example.

Debugging the servlet is simply a matter of placing a breakpoint in the code
that handles the request and reloading the URL to generate another request.
This causes the debugger to be activated, and at this point you can step
through the code, inspect any variables, and make any desired code
modifications. If you make any code modifications, the new code is invoked by
the HTTPServer class. You can then resume execution to see the results of
our code changes. Note: Be careful when modifying code in the debugger
when working with VisualAge for Java Version 2. There is a bug which can
cause the Workspace to become corrupt.

4.5.2 WebSphere Test Environment
While VisualAge for Java is a powerful servlet development environment,
servlets only represent one architectural component of a Web application. A
Web application also includes other resources such as HTML documents and
JSP files. As stated earlier, the HTTPServer class only handles HTTP
requests for servlets. It does not serve HTML documents or JSP files.
Developing, testing, and debugging a Web application that incorporates all
these components is a major challenge.

The WebSphere Test Environment is a version of the WebSphere Application
Server that provides an execution environment for testing Web applications.
In addition to supporting HTML requests for servlets, as is the case with the
HTTPServer class, it serves both HTML documents and JSP files.

We used the WebSphere Test Environment to develop, test, and debug the
components of the Home Banking Application within VisualAge for Java,
including the HTML documents, JSP files, servlets, and business objects.

Using the WebSphere Test Environment
The WebSphere Test Environment environment is part of the VisualAge for
Java Enterprise or Professional Update available from
www.software.ibm.com/vadd, the VisualAge Developers Domain Web site.

Follow the installation instructions that come with the update and add the
WebSphere Test Environment feature to VisualAge for Java. During the
installation, you will be prompted for the document root directory, where your
Web resources, including HTML documents and JSP files, reside. If your Web
server is on a different machine, you need to copy or map the document root
directory from your Web server to the machine on which you are installing the
WebSphere Test Environment.
Chapter 4. Tool Usage in the Home Banking Application 73

Once the WebSphere Test Environment is running, you can serve your HTML
documents and JSP files from this document root. The document root can be
changed after install by modifying the doc.properties file in the httpservice
directory. Figure 45 shows how the WebSphere Test Environment works with
the first request for a JSP page.

Figure 45. The WebSphere Test Environment

Prior to testing a Web application, the WebSphere Test Environment must be
started. This is done by running the com.ibm.servlet.SERunner class (Figure
46) located in the WebSphere Test Environment project. You must also add
your project to the SERunner’s classpath.The SERunner listens on port 8080
by default.

VisualAge for Java

Web browser

File System

1. Go to URL: http://localhost:8080/page.jsp
2. Compile JSP
file and import
Java source

4. Send output of
compiled JSP

3. Initialize and
invoke servlet
service method
74 Developing an e-business Application for IBM WebSphere

Figure 46. Launching the WebSphere Test Environment

If the WebSphere Test Environment has been successfully launched, you will
see a WebSphere Test Environment window (Figure 47) and within the
console window the message endpoint.main.port=80 displayed twice (Figure
48).

You may get the following error message when loading JavaServer Pages in
the WebSphere Test Environment:
Chapter 4. Tool Usage in the Home Banking Application 75

Error getting compiled page.
Internal Error: Cant load page compiled class {0}: {1}.

If you get this error message, check that the JSP Page Compile Generated
Code project is added to the SERunner’s classpath; and if you are using the
VisualAge for Java Enterprise Edition, make sure that you have authority to
create packages in this project.

Figure 47. WebSphere Test Environment Window

Figure 48. WebSphere Test Environment Output to Console Window
76 Developing an e-business Application for IBM WebSphere

Running Internal and External Servlets
If you are using the WebSphere Test Environment, you probably want to run
servlets that reside in the VisualAge for Java environment in order to use the
VisualAge for Java debugger to step through problem code. You can also
invoke external servlets, which reside outside the VisualAge for Java
environment. To run an external servlet it must be located in the WebSphere
Test Environment servlets directory: <install dir>\ide\project_resources\IBM
WebSphere Test Environment\servlets. However, with external servlets you
cannot debug and step through the code inside VisualAge for Java. In
addition, any classes referenced by the servlet must be in a directory that is
in the VisualAge for Java workspace classpath. Note that the WebSphere
Test Environment does not automatically reload updated external servlets, so
you will have to stop and restart it when making changes to your servlet.

If your servlet resides in both the VisualAge for Java environment and in the
WebSphere Test Environment servlets directory, the external servlet will be
invoked.

4.5.3 JSP Execution Monitor
While the WebSphere Test Environment enables you to test a Web
application, including HTML documents and JSP files, the JSP Execution
Monitor gives you finer control in monitoring, testing, and debugging your JSP
source.

The JSP Execution Monitor simplifies testing and debugging of your JSP
source by allowing you to detect run-time errors and syntax errors and step
through your JSP code. You can dynamically make modifications and reload
the JSP file.

Using the JSP Execution Monitor
Before monitoring the execution of your JSP files, you must have already
started the WebSphere Test Environment (“Using the WebSphere Test
Environment” on page 73).

To monitor the execution of your JSP files, you need to start the JSP
Execution Monitor. Select Workspace→Tools→JSP Execution Monitor
(Figure 49) to open the JSP Execution Monitor’s Option dialog (Figure 50). In
this dialog, you specify the port number the JSP Execution Monitor uses,
whether to monitor execution of the JSP source, and whether to report the
types of syntax errors in the JSP source. By default, the port number is 8082,
which can be changed if it is already in use.
Chapter 4. Tool Usage in the Home Banking Application 77

Figure 49. Launching the JSP Execution Monitor

Monitoring the Execution of Your JSP
To enable monitoring execution of our JSP source, you need to select the
Enable monitoring JSP execution checkbox and click OK to begin
monitoring (Figure 50).

Figure 50. Options Dialog for JSP Execution Monitor
78 Developing an e-business Application for IBM WebSphere

Now you can monitor the execution of your JSP source by pointing your
browser at the JSP or navigating through your site until you reach the JSP
page (Figure 51).

Figure 51. Loading a JSP for Monitoring

The JSP Execution Monitor window opens as the JSP file is loaded (Figure
52). You will see up to four panes displayed:

• JSP File List—JSP files that have been launched in the browser.

• JSP Source—The JSP source code for the running JavaServer Page.

• Java Source—Java code that is generated from the JSP source.

• Generated HTML Source—Generated HTML output.
Chapter 4. Tool Usage in the Home Banking Application 79

Figure 52. The JSP Execution Monitor

It is not required to have all four panes opened at any one time. You can
toggle them on or off, depending on what information you want displayed in
the JSP Execution Monitor. In our application, we did not display the
Generated HTML source pane.

To step through your JSP source, select the JSP file in the JSP File List, then
click the Step button from the toolbar, or alternatively, the Action→Step
menu option. As you step through the code, you will see the JSP source
highlighted in the JSP source pane. You will also see the equivalent
generated Java source in the Java Source pane.

In addition, you can insert breakpoints in the Java Source pane, then press
the Play button on the toolbar to resume execution of the JSP up to the next
breakpoint. If you press the Play button without having inserted a breakpoint,
you will step all the way to the end of the JSP file. If you want to finish
executing the JSP source without stepping through each line or stopping at a
80 Developing an e-business Application for IBM WebSphere

breakpoint, just press the Terminate button from the toolbar to resume
execution.

The user interface of the JSP Execution Monitor changes if you install the
Professional or Enterprise Update for VisualAge for Java Version 2. You also
get a Fast Forward button in your JSP Execution Monitor, which will execute
the JSP (without stepping) until the end of the page or the next breakpoint.

Retrieving Syntax Error Information
In addition to monitoring run-time errors (“Monitoring the Execution of Your
JSP” on page 78), it is also useful to be able to monitor syntax errors in your
JSP files. It is possible for the JSP Execution Monitor to detect syntax errors
even when the Retrieve syntax information option is disabled. However, it will
only tell you that a syntax error has occurred, not the type of syntax error.
Select the Retrieve syntax error information checkbox when launching the
JSP Execution Monitor (Figure 50 on page 78) to see details of the syntax
errors.

In order for the Retrieve syntax error information to function, the servlets and
referenced classes must exist within VisualAge for Java as well as outside the
environment in the VisualAge for Java classpath.

After the Retrieve syntax error information has been selected and a JSP file is
loaded that has syntax errors, the JSP Execution Monitor will display the
syntax error in the status line (Figure 53). There are two types of syntax
errors, JSP and Java syntax errors. JSP syntax errors, as the name suggests,
are errors in the actual JSP syntax, while Java errors are errors in the
generated Java source. The type of syntax error is displayed in the status line
located at the bottom of the JSP Execution Monitor window.

For example, the accounts_balance.jsp has a Java syntax error in the form of
a missing semi-colon at the end of a statement (Figure 53). If you have
multiple syntax errors, you can step through them by selecting
Problems→Previous Problem or the Problems→Next Problem menu
option as shown in Figure 54.
Chapter 4. Tool Usage in the Home Banking Application 81

Figure 53. JSP Syntax Error in the JSP Execution Monitor

If you attempt to load a JSP file that has either a JSP or Java syntax error,
and you have launched the JSP Execution Monitor without selecting Retrieve
syntax error information, the JSP Execution Monitor will not launch.

In our application, we chose to deselect the Retrieve syntax error information
option after the first couple of invocations of a JSP file. By this point, we were
confident there were no syntax errors in the JSP file and did not want the
extra overhead.
82 Developing an e-business Application for IBM WebSphere

Figure 54. Stepping Through Syntax Errors in the JSP Execution Monitor

JSP Generated Code in VisualAge for Java
When a JSP file is loaded, it is compiled outside the IDE by a page compiler
into a servlet then imported into the IDE. Generated servlets are placed into
the JSP Page Compile Generated Code Project in the workspace. The name
of the servlet and its package varies, depending on whether or not the JSP
Execution Monitor was enabled when the JSP file was loaded.

If the JSP Execution Monitor was enabled, the generated code will be placed
in the pagecompile._<JSP directory name>_debug.<JSP file name>_debug
package. The generated servlets will have the name <JSP file
name>_xjsp_debug, and extend JspDebugHttpServlet because they contain
extra debugging information. JspDebugHttpServlet comes with the
WebSphere Test Environment (it is located in the com.ibm.ivj.jsp.debugger
package) and extends HttpServlet.
Chapter 4. Tool Usage in the Home Banking Application 83

If the JSP Execution Monitor was disabled when the JSP was loaded, the
package name is <JSP directory name>.<JSP file name>. The generated
servlet is named <JSP file name>_xjsp and extends HttpServlet.

Figure 55 shows the generated servlets for the JSP files, accounts.jsp,
account_information.jsp, and account_balance.jsp with both the JSP
Execution Monitor enabled and disabled. The generated servlets extending
HttpServlet directly were loaded with the JSP Execution Monitor disabled,
while conversely, those loaded with the JSP Execution Monitor enabled
extend JspDebugHttpServlet.

Figure 55. JSP Generated Servlets

Disabling the JSP Execution Monitor
Once you are satisfied with your JSP source, you probably want to disable the
JSP Execution Monitor for faster compilation and better performance when
testing your application. To do this, simply start the JSP Execution Monitor
(“Using the JSP Execution Monitor” on page 77) and deselect the options.
You can still debug servlets, including the servlets generated from JSP files,
without the JSP Execution Monitor.
84 Developing an e-business Application for IBM WebSphere

4.6 Application Server: WebSphere Application Server

The IBM WebSphere Application Server is a Java based application
environment for building, deploying and managing Internet and intranet Web
applications. This complete set of products expands to fit your Web
application server needs, ranging from the simple to enterprise level
applications. The WebSphere Application Server has three editions:

WebSphere Application Server Standard Edition
The Standard Edition includes the following features:

• Simple installation

• High performance

• A function-rich IBM HTTP server (based on technology from the Apache
HTTP server) with additional SSL-based security and performance
features

• Support for Lotus Domino Version 5.0

• Tivoli-ready modules

• Enhanced administration

• XML Document Structure Services

• Works with most popular Web servers

WebSphere Application Server Advanced Edition
The Advanced Edition contains all the features of the WebSphere Application
Server Standard Edition, as well as:

• CORBA support, enhanced to provide both bean-managed and
container-managed persistence

• Enterprise JavaBeans Server, providing relational database transaction
management and monitoring based on Enterprise JavaBeans and CORBA
components

WebSphere Application Server Enterprise Edition
The Enterprise Edition includes all features of the WebSphere Application
Server Advanced Edition, as well as:

• TXSeries support, IBM's world-class transactional application environment

• Component Broker support, with its full distributed object and business
process integration capabilities
Chapter 4. Tool Usage in the Home Banking Application 85

For additional information, go to the web site:

http://www.software.ibm.com/webservers

For our project, we only needed the capabilities of the WebSphere
Application Server Standard Edition. The rest of this book refers to the
Standard Edition when WebSphere Application Server is mentioned.

4.6.1 WebSphere Application Server Architecture
The IBM WebSphere Application Server is built on the services of a Web
server to provide additional services to support business applications and
transactions on the Web. It provides support for serving static HTML as well
as dynamic content for industrial-strength business applications. It can also
use a set of connectors to act as a gateway to an existing legacy application.
Figure 56 shows the WebSphere Application Server architecture. The server
is built to work with the most common industry standards.

Figure 56. WebSphere Application Server Architecture

The WebSphere Application Server provides the following services:

• HTTP Engine

The HTTP engine is a Web server that handles HTTP Web requests:
requests for static resources such as GIF files and HTML files, requests
for CGI programs, and requests for plug-in applications. Servlet requests
are passed on to the servlet engine after undergoing Web server
authentication.

HTTP Engine (Web server)

Native Web server plug-in

Servlet Engine

Servlets

Suite of tools to create, test,
deploy and manage Web
applications.
86 Developing an e-business Application for IBM WebSphere

The Web servers we used for the HBA application were the Netscape
Enterprise Server on Windows NT and the IBM HTTP Server on NT and
AIX.

• Native Web Server Plugin

The native Web server plugin allows WebSphere to be connected to many
Web servers using their proprietary protocol, such as ISAPI to connect to
Microsoft IIS and NSAPI to connect to Netscape servers.

• Servlet Engine

The servlet engine is used to process dynamic content. It provides a
facility for servlet management and supports JavaServer Pages. The
server also comes with built in servlets for remote administration and page
compilation.

4.6.2 WebSphere Implementation of JavaServer Pages
WebSphere Application Server 2.0 supports a modified version the JSP 0.91
specification. A 0.92 specification has been released, but the WebSphere
Application Server will move directly to the JSP 1.0 specification sometime
after it is finalized.

The JSP 1.0 specification will change the names of some of the tags, for
example, the BEAN tag will be called jsp:usebean.The tags described in this
book are from the WebSphere Application Server 2.0 implementation of the
JSP 0.91 specification.

For more complete information on the JSP implementation in WebSphere,
see the WebSphere documentation.

4.6.3 Managing Your WebSphere Environment
Once you have installed and started WebSphere Application Server, you will
need to configure it. The WebSphere Application Server Administration Tool
makes it easy to:

• Manage servlets
• Debug and monitor servlets
• Manage connections to databases
• Manage sessions

To go to the Administration Tool, direct your browser to http://hostname:9527,
where hostname is the TCP/IP hostname of your WebSphere server. This
takes you to the login screen of the WebSphere Application Server Manager
(Figure 57).
Chapter 4. Tool Usage in the Home Banking Application 87

Figure 57. WebSphere Administration Console

Enter your User Name and Password (by default it is admin/admin) and click
Log In, and the Introduction page of the WebSphere Application Server
Manager (Figure 58) will be loaded into your browser.
88 Developing an e-business Application for IBM WebSphere

Figure 58. WebSphere Application Server Manager Introduction

Servlet Management
Once you have logged into the WebSphere Application Server Manager and
are at the Introduction page (Figure 58), click on the arrow next to Servlets in
the left pane and the Servlets list is expanded. Under Servlets there are three
options: Configuration, Aliases and Filtering. When you click on Servlet
Configuration, you go to the Servlet Configuration Section (Figure 59).
Chapter 4. Tool Usage in the Home Banking Application 89

Figure 59. Servlet Configuration under WebSphere

The Servlet Configuration section is used to add, configure, and remove
servlets from the WebSphere application environment. You can set up
servlets so that they are loaded on server startup, and set initialization
parameters for the servlet. The Servlet Aliases section (Figure 60) defines
names for servlets and series (chains) of servlets.
90 Developing an e-business Application for IBM WebSphere

Figure 60. Servlet Aliases in WebSphere

The Servlet Filtering section allows for a specific mime type to be associated
with a servlet. Once the mime-type is requested from the Web server, the
page is filtered through the servlet that is mapped to the mime-type. For
instance, the pageCompile filter is defined for java-internal/parsed-html. All
parsed-html files must go through this servlet before being served out to the
client. This capability can be used to filter content of a particular mime-type
through certain servlets. This technique can be used to control the data that
is presented to the client (Figure 61).
Chapter 4. Tool Usage in the Home Banking Application 91

Figure 61. Servlet Filtering in WebSphere

Debugging and Monitoring
The WebSphere Application Server provides powerful debugging and
monitoring capabilities to monitor details about specific areas of the server. It
provides monitors for system administrators as well as for developers to track
down any problems in their servlets. The Debugging and Monitoring Section
can be found under Server Execution Analysis. It consists of: JVM Debug,
Log Files, Monitors and Trace.

The JVM Debug (Figure 62) section allows the administrator to turn on the
debugging of the JVM execution environment within WebSphere. This puts
information into the log files about garbage collection and the classes being
loaded, that information enables a developer to monitor the execution of
instructions within the JVM in WebSphere. This is very useful when looking
for memory leaks.
92 Developing an e-business Application for IBM WebSphere

Figure 62. JVM Debug Settings in WebSphere

The Log Files section controls how the log files should be managed, what
should be put into them, and whether to create a new file every day or to
append to a master log file.

The Monitors section in WebSphere is the most important area for debugging.
It provides monitors for sessions, database connections, exceptions, loaded
servlets, and log files. The Active Sessions monitor shows all the active
sessions connected to your Web server and the page of your site a user has
currently loaded (Figure 63).
Chapter 4. Tool Usage in the Home Banking Application 93

Figure 63. Active Session Monitor in WebSphere

The Resource Usage Monitor shows the resources being used by the server.
This allows you to monitor the peak traffic hours of your Web site, and the
associated performance (Figure 64).
94 Developing an e-business Application for IBM WebSphere

Figure 64. Resource Monitor in WebSphere

WebSphere provides the capability to pool database connections. The
DataBase Connection Monitor allows you to monitor the status of database
connections to databases (Figure 65).
Chapter 4. Tool Usage in the Home Banking Application 95

Figure 65. Database Connection Monitor in WebSphere

These are some of the more important monitors that WebSphere provides to
monitor the status of your Web application. These tools along with the JSP
Execution Monitor give you a complete environment for testing and debugging
your application.

Connection Management to Databases
WebSphere Application Server provides connection management to
databases and provides a central location to manage these connections and
view the usage of those connections (Figure 66).
96 Developing an e-business Application for IBM WebSphere

Figure 66. Connection Management in WebSphere

Session Tracking

The WebSphere Application Server provides session tracking: the ability to
keep track of a user’s state while they are browsing your Web site. This
enables a Web application to act intelligently by responding based on a user’s
previous actions. You can store sessions in two ways in WebSphere: using
cookies or URL rewriting, as discussed in 2.5, “Maintaining State in Web
Applications” on page 16. You can also combine the approaches: cookies are
used if the client supports them, otherwise URL encoding is used (Figure 67).
The session tracking mechanism can also be configured to time out a users
session if they have not been active for a specified amount of time.
Chapter 4. Tool Usage in the Home Banking Application 97

Figure 67. Session Management in WebSphere
98 Developing an e-business Application for IBM WebSphere

Chapter 5. Implementing the Home Banking Application

In this chapter we discuss the implementation of the Home Banking
Application (HBA).

The HBA implementation is composed of several subsystems:

• Domain Firewall

• Business Model

• Servlet/JSP Implementation (Web application)

The focus of this book is on the servlet/JSP implementation. The
implementation of the business model and the domain firewall will be briefly
explained so that the system as a whole is understood.

5.1 Implementing the Domain Firewall

In 3.6, “Subsystem Design” on page 29 we discussed the design of the
domain firewall. Although in most cases the implementation would be created
before or at least concurrently with the domain firewall, it may be easier to
understand the system if the domain firewall is introduced first. The
implementation classes (see 5.2, “Implementing the Business Model” on
page 103) implement the Java interfaces defined in the firewall.

The implementation of the firewall consists of a set of Java interfaces and
classes. These types provide access to all the functionality of the bank
implementation as well as providing initial finder methods to locate and
instantiate the bank implementation.This firewall should make it possible to
substitute multiple implementations of the bank without changing any code in
the firewall or Web application. In addition, the domain firewall made it
possible to test the bank implementation using simple command line or Java
clients without a Web application infrastructure.

The interfaces in the package are implemented by the appropriate type in the
implementation package, providing a clear separation between the domain
firewall (interface) and the implementation. All interaction between the Web
application and the implementation goes through the interfaces.

The interface package is itso.bank.common and is composed of the following
interfaces and selected methods:
© Copyright IBM Corp. 1999 99

Bank
• getAccount: Return the account associated with accountID.
• getCustomerByUserId: Return the customer by the UserId.
• getPayeeAccounts: Return all the payees registered with the bank.

BankAccount
• getAccountType: Return the account type associated with the account.
• getBalance: Return the balance of the account.
• getHistory: Return the transaction records which match the criteria

specified by the parameters.
• transfer: Transfer the amount from this account to the toAccount

parameter.

BankSystem
• getBank: Return the bank implementation.

CheckingAccount
• getOverDraftLimit - Get the allowed overdraft limit.

Customer
• addPayee: Add this account to the customer’s bill payment profile.
• checkLoginPassword: Return true if this is the correct password for this

customer.
• checkTransactionPassword: Return true if this is the correct password for

this customer.
• getAccountByID: Return the account that has this account ID.
• getAccounts: Return all the non-payee (saving or checking) accounts

owned by this customer.
• getPayees: Return all the payee accounts associated with this customer.
• removePayee: Remove this account from the customer’s bill payment

profile.
• changeLoginPassword: Change the login password.
• changeTransactionPassword: Change the transaction password.

PayeeAccount
• getBillPaymentTitle: Get the payee title (company name).

SavingsAccount
• getMinimumBalance: Get the minimum accepted balance for the account.

TransactionRecord
• equals: Compare two TransactionRecords.
• getAccount: Return the account number associated with the transaction.
• getClosingBalance: Return the balance following the transaction.
100 Developing an e-business Application for IBM WebSphere

• getOtherAccount: Return the other account number associated with a
transfer type transaction.

• getTimeStamp: Return the timestamp associated with the transaction.
• getTransAmount: Return the amount of the transaction.
• getTransType: Return the type of the transaction.

The package also contains the following classes which would be common to
any implementation of the HBA:

BankCollection
An abstraction of java.util.Vector that provides a simple implementation
independent means of passing vectors.

BankHome
Initial finder class. Provides a create method to create the bank
implementation given an implementation key. In this implementation the
key is simply the package name for the implementation.

• create: This static method builds the class name of the BankSystem
class and creates an instance of it. The BankSystem in this
implementation either creates a new bank with sample data or
deserializes an existing bank.

• getBank: Return the bank. The bank is a singleton object created by
the BankSystem.

The following exceptions are used in the HBA:

NotImplementedException
This exception is used during development to flag implementation areas
not completed.

ITSOBankCommunicationException
Used if the implementation is distributed, for example, using an RMI based
implementation.

ITSOBankException
• BankTransactionException—This exception is thrown, for example, if there

are insufficient funds for a transfer.

• UnauthorizedException

InvalidPasswordException

InvalidPinException

The complete JavaDoc for the domain firewall and source for the HBA is on:
ftp://www.redbooks.ibm.com/redbooks/SG245423/, the FTP site.
Chapter 5. Implementing the Home Banking Application 101

Although it is not part of this book, an administration interface was also
created to make it easy to create new customers and accounts. The bank
implementation supports this interface also. Figure 68 shows selected
elements of the domain firewall as defined in Rational Rose.

Figure 68. Selected Elements of the Bank Domain Firewall

Ba nk

getCustomerbyUsername(userId : String) : Customer
getPayees(accountId : String) : BankCollection

Customer

addPayee(account : CorporateAccount) : void
removePayee(account : CorporateAccount) : void
getPayees() : BankCollection
getAccounts() : BankCollection
getAccountById() : BankAccount
getCustomerId() : String
getFirstName() : String
getLastName() : String
getTitle() : String
getUsername() : String
changeLoginPassword()
changeTransactionPassword()
checkLoginPassword()
checkTransactionPassword()

Ba nkAcco unt

transfer(toAccount : BankAccount, amount : BigDecimal) : void
getHistory(startDate : Date, endDate : Date, type : String) : BankCollection
equals(account : BankAccount) : boolean
getAccountId() : String
getBalance() : BigDecimal
getCustomer() : Customer
getAccountType() : String
withdraw()
deposit()

TransactionRecord

equals(record : T ransact ionRecord) : boolean
get TimeS tamp() : Date
get Tran sA mou nt() : B igDe cimal
get Tran sT ype() : St ring

Checkin gAccoun t

getOverdraft() : BigDecimal

SavingsAccount

getMinAmount() : BigDecimal

CorporateAccount

ge tBi llPa ym entP ro fi l e() : Ba nkCollect io n

BankHome

create()
getBank()

BankSyste m

getBank()

Ba nkCo ll ectio n
102 Developing an e-business Application for IBM WebSphere

5.2 Implementing the Business Model

As discussed in 3.5, “Analysis Object Model” on page 28, the business model
for a banking application would probably be based on an existing legacy
application. Since we did not have one, we built a simple Java bank that uses
Java serialization for persistence. While serialization is an extremely brittle
means of providing persistence and we do not recommend it for a production
application, it was a simple and effective means for this application and
allowed us to concentrate on the Web application itself.

The implementation package is itso.bank.baseimpl and it contains the
following classes (shown in Figure 69):

• BankAccountImpl

• BankImpl

• BankSystemImpl

• CheckingAccountImpl

• CustomerImpl

• PayeeAccountImpl

• SavingsAccountImpl

• TransactionRecordImpl

Each class implements the corresponding interface from the
itso.bank.common package.
Chapter 5. Implementing the Home Banking Application 103

Figure 69. Selected Elements of the Rose Model of the Bank Implementation

5.3 Implementing the Web Application

In this section we discuss the general implementation issues for the Web
application layer of the HBA and then describe each subsystem in detail.
Figure 70 shows the complete implementation of the HBA.

BankSystemImpl

loadBank()
saveBank()
getBank()

BankSystemImpl
provides access to
Bank

BankImpl

getCustomerByUserId()
getPayeeAccounts()

CustomerImpl

title : String
firs tName : String
las tName : String
userid : String
customerid : String

checkTransactionPassword()
changeTransactionPassword()
changeLoginPassword()
checkLoginPassword()

1

0..*

1

0..*

TransactionRecordImpl

/ transType : String
transAmount : BigDecimal
timestamp : TimeStamp
otherAccount

BankAccountImpl

accountId : String
balance : java.math.BigDecimal
accountType : String

depos it()
withdraw()
getAccountType()
transfer()
getHistory()

1

0..*

1

0..*

1 0..*1 0..*

0..*

1

0..*

1

SavingsAccountImpl

m inAmount : BigDecimal

mayWithdraw()

PayeeAccountImpl

billPaymentTitle : String

mayWithdraw()

CheckingAccountImpl

overdraft : BigDecimal

mayWithdraw()
104 Developing an e-business Application for IBM WebSphere

Figure 70. Complete HBA Implementation

5.3.1 General Implementation Issues

Servlets
The WebSphere Application Server provides a subclass of HttpServlet named
PageListServlet. The PageListServlet adds some very useful function to the
HttpServlet. The pathnames of JavaServer Pages accessed by the servlet
can be specified in a separate XML configuration file. In this file you can
specify a default JavaServer Page and an error page, and name any other
pages called from the servlet. In this way you can change the names and
locations of JavaServer Pages without changing code.

In the HBA we used the PageListServlet and added another utility that
allowed us to use the XML configuration file to specify pages we accessed
using the sendRedirect method. This utility is described in 5.12, “Utility
Classes” on page 166.

Browser

Serialized
Bank

WebSphere and
Web Server

request
load/save

BankServlet

Servlets

Business
Objects

View
Objects

JavaServer
Pages

Domain
Firewall

response

callPage

instantiate

access

HTML
Pages

sendRedirect
Chapter 5. Implementing the Home Banking Application 105

The XML configuration file is named ServletName.servlet and is placed in the
same directory as the servlet class file. An example configuration file is
AccountServlet.servlet:

<?xml version="1.0"?>
<servlet>
<page-list>

<error-page>
<uri>/itso_bank_error.jsp</uri>

</error-page>
<default-page>

<uri>/account_information.jsp</uri>
</default-page>
<page>

<uri>/account_information.jsp</uri>
<page-name>account_information</page-name>

</page>
<page>

<uri>/account_history.jsp</uri>
<page-name>account_history</page-name>

</page>
<page>

<uri>/account_balance.jsp</uri>
<page-name>account_balance</page-name>

</page>
</page-list>
<code>itso.bank.servlet.AccountServlet</code>
</servlet>

For more information on servlet configuration files, see the WebSphere
Application Server product documentation.

View Beans
In 3.8.3, “What Goes into a JavaServer Page?” on page 36 you learned that
we decided to use view beans to encapsulate the data retrieved from the
business objects. The view bean is a class that represents a data view of the
real implementation object. The JSP will then extract whatever data it
requires from the view using bean tags. Servlets interact with the
implementation through the domain firewall and construct view beans from
the implementation object for subsequent use by JSP’s.

There were two main approaches to creating the view beans:

1. The view class simply holds a reference to the implementation object and
would delegate calls to the implementation object.
106 Developing an e-business Application for IBM WebSphere

This approach presented a number of issues. Because each method in the
interface specifies a throws clause, our view class has to specify the same
throws clause for each method implemented, or enclose each method call
in a try/catch block in the JavaServer Page. This meant using a
combination of bean tags and scriptlets, where bean tags were used to get
the properties from the view, with scriptlets used to place try/catch blocks
around the bean tags. This approach also meant that an error was not
detected until the bean was accessed in the JavaServer Page: probably
too late to do anything about it.

2. Create a view class that does not implement the interface. What it has is a
number of read-only properties that mirror those in the implementation
object. In addition, it requires a default constructor to conform to JSP
implementation, and a constructor that takes one argument, the actual
implementation object. The second constructor sets the view bean’s
properties to those of the implementation using its get methods. Because
the get methods can throw checked exceptions, the constructor also
specifies the same throws clause. This meant that we could remove the
throws clause from the view’s get methods, eliminating the need to wrap
the Bean tags in try/catch blocks and catching errors in the servlet when
constructing the bean.

The use of view beans also meant that we could perform any necessary
transforms between the model and the view when the view bean was
constructed. In our case we made appropriate date and currency
transforms and also converted BankCollections into arrays for access by
the bean tags. Other applications could use these transforms to support
multiple languages or personalization.

Using View Beans in the Accounts Subsystem
The BankAccountView class is used to encapsulate objects that implement
the BankAccount interface: BankAccountImpl objects in the HBA. The class
has four read-only properties, balance, accountId, accountType, and
transactions that are accessed by their corresponding accessor methods:

public final String getAccountId() {
return accountId;

}
public final String getAccountType() {

return accountType;
}
public final String getBalance() {

return balance.toString();
}
public final itso.bank.viewobjects.TransactionRecordView[]
getTransactions() {
Chapter 5. Implementing the Home Banking Application 107

return fieldTransactions;
}
public final TransactionRecordView getTransactions(int index) {

return getTransactions()[index];
}

Constructors
The class has two constructors:

public BankAccountView(BankAccount account){}

public BankAccountView(BankAccount account) throws
ITSOBankCommunicationException,

ITSOBankException
{

this.balance = Formatter.getAsCurrency(account.getBalance());
this.accountId = account.getAccountId();
this.accountType = account.getAccountType();
BankCollection transactions = account.getTransactions();
fieldTransactions = new TransactionRecordView[transactions.size()];
for(int i = 0; i < transactions.size(); i++){

fieldTransactions[i] = new TransactionRecordView(
(TransactionRecord)transactions.elementAt(i));

}
}

The Formatter class is shown in 5.12.2, “Formatter” on page 167.

Using the View Objects
Here is an example using a view object in the AccountServlet (ignoring
try/catch and error handling requirements). An account is retrieved from a
customer and the account view is then inserted into the request object:

HttpSession session = req.getSession(false);
CustomerView customerView =

(itso.bank.viewobjects.CustomerView) session.getValue("customer");
Customer customer = BankHome.getBank().getCustomerByUserId(

customerView.getUserId());
BankAccount account = customer.getAccountByID(accountID);
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("account", new BankAccountView(account));

To access the balance property of the view object in a JSP page, the following
code could be used:

<BEAN name="account" type="itso.bank.viewobjects.BankAccountView"
introspect="no" create="no" scope="request"></BEAN>
<INSERT bean="account" property="balance"></INSERT>
108 Developing an e-business Application for IBM WebSphere

5.4 SubSystem Implementation

The subsystems in the HBA were introduced in 3.6, “Subsystem Design” on
page 29. Each implementation is described in this section.

5.5 Application Manager

Once a customer has logged in to the HBA, other subsystems need to be able
to verify that the customer has been authenticated. This is accomplished
using sessions and the application manager. The Application Manager is
implemented through the BankServlet, which also creates the bank
implementation when it is preloaded by the WebSphere Application Server
and handles the logout functionality (Figure 71).

Figure 71. Application Manager - User Recognition

In WebSphere you can provide session management in Servlets and JSP
pages quite easily by using the HTTPSession class. When a user first visits
your site, you create a new session by a call to the HTTPRequest class:

HttpSession session = request.getSession(true);

doGet

Any HBA JSP

Not Logged
In JSP

CustomerView

Session

isLoggedIn

BankServlet

Not
Logged In
Chapter 5. Implementing the Home Banking Application 109

This creates a new session that a user uses to navigate the Web site. As the
user moves between pages, you use this session to maintain state
information about the user. You can store information in a session by putting
a key-value pair in the session:

session.putValue("Entry","WebSphere")

This puts a key with a name of "Entry" in the session that stores a String
object with the value of "WebSphere". You can retrieve this value from the
session by requesting the value by its key.

String entry= (java.lang.String)session.getValue("Entry");

This takes the value for the key "Entry" and stores it in a String variable called
entry. This mechanism provides a way to store information about the user.
This technique is used in the Home Banking Application to store the
CustomerView object. In most other cases, we used the HttpRequest object
to store information, which is then accessed by a JavaServer Page. In this
way, information was only accessed once when it was still valid. It also kept
the information in the session to a minimum. Using the session to store many
objects with indefinite lifetimes can use up large amounts of memory and
should be avoided.

The only time we used the HttpSession object to store additional objects was
when we used the sendRedirect method to redirect the response to a
completely new page. This was required for responses to actions which
modified the state of objects and which could be replayed by reloading the
page. For example, after transferring money to another account pressing the
Reload button on the browser could perform the transfer again unless the
sendRedirect method was used.

Values are set in the HttpServiceRequest object through the setAttribute
method. For example:

Customer customer = BankHome.getBank().getCustomerByUserId(
customerView.getUserId());

BankAccountViewList accountList =
new BankAccountViewList(customer.getAccounts());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("accountlist", accountList);

Access to the HttpSession objects should be synchronized so that several
users are not accessing information simultaneously. In the HBA, we
synchronized access in our business model when the state of an object was
being modified. All other access is simply read access and did not need
synchronization.
110 Developing an e-business Application for IBM WebSphere

5.5.1 Application Manager Interaction
The BankServlet is loaded by the WebSphere Application Server on startup.
At that time the servlet instantiates the bank implementation using the
BankHome object (Figure 72).

Figure 72. BankServlet init Method Sequence

The BankServlet is placed in each JavaServer Page of the HBA using the
SERVLET tag:

<SERVLET Name=BankServlet
CODEBASE=/servlet/itso.bank.servlet.BankServlet></SERVLET>

When the user requests a page that contains this line in it, the doGet method
of the BankServlet is called (see “doGet” on page 114). This method checks
to see if the user has logged in. If the user has not logged in, the Not Logged
In page is sent to the user’s browser. This interaction is shown in Figure 73.

BankServlet BankHome BankSystemImpl

create(implementation)

get implementation class

instantiate

getBank
Chapter 5. Implementing the Home Banking Application 111

Figure 73. Session Management JSP/BankServlet Interaction Diagram

5.5.2 Application Manager Servlets
The servlet responsible for enforcing session management in the Home
Banking Application is the BankServlet.

BankServlet
Due to problems with using preloaded servlets of type PageListServlet, the
BankServlet extends HttpServlet and calls other pages using the URL rather
than a value from the servlet configuration file.

The BankServlet checks if the user is logged in before allowing the user to
access a page in the HBA. It does this each time the user accesses a page of
the Web site. If the user is not logged in, the Not Logged In page is displayed.

HBA Application
JSP

Not Logged In
Page

Other Logic

BankServlet

doGet()

isLoggedIn

[loggedin = false] callPage

[loggedin = true]
112 Developing an e-business Application for IBM WebSphere

If the request is for Logout.jsp, the BankServlet invalidates the session before
passing control back to Logout.jsp. The BankServlet also initializes the Bank
object during Web server startup, and on server shutdown the BankServlet is
used to save information about the bank. Currently all information is saved as
output to a serialized file.

Table 2 shows the BankServlet methods and Table 3 shows the collaborating
objects.

Table 2. BankServlet Methods

Table 3. BankServlet Collaborators

BankServlet Error Handling
The BankServlet sends the user to the Not Logged In Page if they are not
logged in and they are accessing a page which requires authentication. If the
user is accessing the Login page itself and they are already logged in, the
BankServlet sends the user to the Already Logged In page.

Method Description

init Initializes the BankServlet and the bank implementation.

destroy Sets the bank to null so that it will be finalized and serialized.

isLoggedIn Checks to see if the user has a valid session.

doGet Checks to see whether the customer needs to be logged in
and whether they have a valid session. Invalidates the
session if the request is for the Logout page.

doPost Calls doGet.

Class Description

BankHome Used to initialize the Bank object. It returns the current Bank
object if one is already created.

Bank Provide bank services.

HttpSession Manage user sessions.

HttpRequest Access to pathInfo parameter to supply the target URL.

HttpResponse Used to invoke sendRedirect.
Chapter 5. Implementing the Home Banking Application 113

BankServlet Methods
doGet
The doGet method is invoked when the BankServlet is invoked from a JSP
(Figure 73 on page 112). The doGet method checks whether the user is
logged in and whether they are accessing the Login page. If the user is not
logged in and not accessing the Login page, they are sent the Not Logged In
page. If the user is logged in:

• If the request is for Login.jsp, the user is redirected to the Already Logged
In page.

• If the request is for Logout.jsp, the user’s session is invalidated and
control is returned to the requesting page, which will send the rest of
Logout.jsp page to the user.

• If the request is for any other page, control is returned to the requesting
page, which will continue sending the page to the user.

The method body is:

public final void doGet(HttpServletRequest req, HttpServletResponse res)
throws javax.servlet.ServletException, java.io.IOException

{
String destination = req.getPathInfo();
String pageName = destination.substring(destination.lastIndexOf("/"));
if (isLoggedIn(req)){

if (pageName.equals("/login.jsp")){
res.sendRedirect(

"/already_loggedin.html");
}
else if (pageName.equals("/logout.jsp")){

HttpSession session = req.getSession(false);
if(session != null){

session.invalidate();
}

}
}
else{

if (!pageName.equals("/login.jsp")){
res.sendRedirect("/not_logged_in.html");

}
}

}

114 Developing an e-business Application for IBM WebSphere

isLoggedIn
The isLoggedIn method checks to see if the user is logged into the Home
Banking Application. If the user is logged in it returns true, otherwise it
returns false:

public boolean isLoggedIn(HttpServletRequest req)
{

boolean status = false;
HttpSession session = req.getSession(false);
if (session != null){

status = true;
}
return status;

}

5.6 Login

The Login subsystem is the entry point into the Home Banking Application
application (Figure 74). The design of this subsystem is explained in “Login”
on page 39.

Figure 74. Login Subsystem

Browser:
Login.html

Response

Login
Servlet

doPost

Not
Logged
In.html

CustomerView

errors

success

Session

Accounts
JSP

Already
Logged
In.html
Chapter 5. Implementing the Home Banking Application 115

When the user goes to the Login page they need to enter their user ID and
login password (Figure 75).

Figure 75. Login Screen

Once they enter these values, they click Login to submit their request. If the
login is successful, they are sent to the Accounts page (Figure 76); otherwise
they are sent to the Unsuccessful Login page (Figure 77).
116 Developing an e-business Application for IBM WebSphere

Figure 76. Accounts Page

Figure 77. Unsuccessful Login Page
Chapter 5. Implementing the Home Banking Application 117

5.6.1 Login Interaction
When the user submits the login form, the request is sent to the doPost
method of the LoginServlet (Figure 78). The doPost method retrieves the
user’s user ID and password and delegates the authentication to the login
method. This method retrieves the Customer object for this userid from the
bank, if one exists. The Customer object checks the password of the user. If
the password is correct a session is created, a new CustomerView object is
added to the session and the user is sent to the Accounts JSP. If an error
occurs, the user is sent to the Unsuccessful Login page.

Figure 78. LoginServlet Interaction Diagram

Login Page Login Servlet Accounts Page Unsuccessful
Login Page

HttpSession

doPost()

login

[login unsuccessful] sendRedirect()

[login successful] callPage()

putValue(CustomerView)
118 Developing an e-business Application for IBM WebSphere

5.6.2 Login Servlets
The LoginServlet is the gatekeeper of the HBA application. All users are
granted entry to the application by this servlet.

LoginServlet
The LoginServlet is responsible for authenticating the user’s login attempt. If
the login attempt is successful, it allows entry into the Home Banking
Application. It is also responsible for taking any actions if the login attempt
was unsuccessful.

Table 4 shows the LoginServlet methods and Table 5 shows the collaborating
objects.

Table 4. LoginServlet Methods

Table 5. LoginServlet Collaborators

LoginServlet Error Handling
Send the user to Unsuccessful Login page if the login is unsuccessful. If any
other error is found, the user is sent to the ITSO Bank Error page with a
description of the error using the callErrorPage method.

Method Description

doPost Process the Login request. Called when a user submits the
form on the Login page (“doPost” on page 120).

init Access the XML configuration file.

login Performs the login validation. Sends the user to the
appropriate page based on the login status: Accounts if
successful, Unsuccessful Login if unsuccessful.

Class Description

BankHome Provide a reference to the bank.

Bank Provide a reference to a customer object.

Customer Check the login password.

CustomerView Store customer information in session.

HttpSession Add CustomerView to session.

HttpRequest Provide UserId and Password.

HttpResponse Invoke sendRedirect.
Chapter 5. Implementing the Home Banking Application 119

LoginServlet Methods
doPost
As shown in the interaction diagram (Figure 78 on page 118), the method
called when the user submits the Login Form is doPost:

public final void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
try {

String userId = req.getParameter("txtUserId");
String password = req.getParameter("txtPassword");
login(req, res, userId, password);

}
catch (Exception e)
{

callErrorPage(req, res, e);
return;

}
}

init
public final void init(ServletConfig config) throws

javax.servlet.ServletException {
super.init(config);
xmlconfig = new XMLConfigUtil(this);

}

login
The login method is used to validate the login attempt of the user. If the login
attempt is successful, the user is sent to the Accounts page, otherwise they
are sent to the Unsuccessful Login Page. The Bank provides the
getCustomerByUserId method, which is used to retrieve a Customer object
from the bank. The Customer object is used throughout the HBA to get and
put information about the customer to and from the bank.

The Customer object is retrieved from the Bank by the call to
getCustomerByUserId.

public final void login(HttpServletRequest req, HttpServletResponse res,
String userId, String password)

throws ServletException, IOException,
ITSOBankCommunicationException, ITSOBankException

{
Customer customer = null;
boolean status = false;
if (BankHome.getBank() != null) {

customer = BankHome.getBank().getCustomerByUserId(userId);
120 Developing an e-business Application for IBM WebSphere

The login password that was entered is validated against that of the Customer
object. If the login attempt by the user was successful, a status flag is set to
true. If there is an error of another type, it is redirected to the callErrorPage
method. If the customer is authenticated (status is true), then a new session
is created.

if (customer != null) {
if (customer.checkLoginPassword(password)){

HttpSession session = req.getSession(true);
if(session != null){

status = true;

If the customer is authenticated (status is true) then a CustomerView object is
created and stored in the user’s session. The purpose of storing the object in
the session is to make it accessible to the other subsystems.

status = true;
session.putValue("customer",

new itso.bank.viewobjects.CustomerView(customer));
}
else{

callErrorPage(req, res, new Exception
("Error creating session"));

return;
}

}
}

If the customer is authenticated (status is true) then the user is sent to the
Accounts page, otherwise they are redirected to the Unsuccessful Login
page.

if (status){
callPage("accounts", req, res);

}
else{

res.sendRedirect(xmlconfig.getPageURI("unsuccessful_login"));
}

}
else{

callErrorPage(req, res, new Exception("Bank servlet null"));
return;

}
}

Chapter 5. Implementing the Home Banking Application 121

5.6.3 Login JavaServer Pages and HTML Pages
The Login subsystem uses several JSP and HTML pages:

• Login—Provides the Login form. If the user is already logged in when they
access this page, the BankServlet sends them to the Already Logged In
page.

• Accounts—Lists the functions that users can perform on their accounts.

• Unsuccessful Login—This HTML page simply tells the user they entered
an incorrect userid or password.

• Already Logged In—This HTML page tells the user that they are already
logged in.

• ITSO Bank Error—This page is used throughout the HBA if an unexpected
error is encountered. It displays a message using the following code:

<p>The HBA application has encountered the following error:
<BEAN NAME="error" TYPE="java.lang.Exception" INTROSPECT="no"
CREATE="no" SCOPE="request"> </BEAN>

<INSERT BEAN="exception"> </INSERT>

5.7 Account Information

Users access the Account Information subsystem to request a current
balance for a specified account, or a transaction history for that account.
When the user clicks on Account Information from the Accounts page they
are presented with a screen that has a drop-down list of their available
accounts and the actions they can perform on these accounts (Figure 79).
122 Developing an e-business Application for IBM WebSphere

Figure 79. Account Information Page

The user selects the account from the drop down list, and an action to
perform. If they choose the Account Balance button, the current balance for
that account will be displayed (Figure 80). If they choose the Account History
button, they get a transaction history for that account (Figure 81).
Chapter 5. Implementing the Home Banking Application 123

Figure 80. Account Balance Page

Figure 81. Account History Page
124 Developing an e-business Application for IBM WebSphere

5.7.1 Account Information Interaction
The AccountServlet is invoked by the user selecting Account Information on
the Accounts page (invoking doGet) or pressing the Account History or
Account Balance button in the Account Information page to invoke the
doPost method (Figure 82).

Figure 82. Account Information Architecture

The AccountServlet determines which account inquiry the user requested
and calls the appropriate JavaServer Page. If account information was
selected (doGet was invoked), it calls the Account Information JSP. If an
account balance was requested (doPost was invoked), it calls the Account
Balance JSP (“AccountBalance” on page 130); otherwise it calls the Account
History JSP (“Account History” on page 130). The interactions involved are
shown in Figure 83 and Figure 84.

Browser

Account
View

doPost

Response

Account
Balance

JSP

Account
History

JSP

Account
Servlet

doGet

Account
Info JSP

Response AccountList
View
Chapter 5. Implementing the Home Banking Application 125

Figure 83. Account Information Interaction

Figure 84. Account Balance and History Interaction

AccountServlet CustomerView Bank Acc ount
ViewList

Account
Information JSP

Accounts JSP Customer

getCustomerId

getCustomerByUserId

getAcc ounts

new AccountViewList

callPage

doGet

AccountInformaton
JSP

Account
Servlet

AccountBalance
JSP

AccountHistory
JSP

CustomerBank AccountV
iew

CustomerView

doPost, param=accountId, button

getC ustomerId

getCustomerByUserId

getAccou ntByID

new AccountView (Account)

callPage [button = balance]

callPage [button = history]
126 Developing an e-business Application for IBM WebSphere

5.7.2 Account Information Servlets

Account Servlet
There is only one servlet required in this subsystem, the AccountServlet. The
AccountServlet is responsible for coordinating user requests for account
information and delegating that request to the appropriate JavaServer Page.

Table 6 shows the AccountServlet methods and Table 7 shows the
collaborating objects.

Table 6. AccountServlet Methods

Table 7. AccountServlet Collaborators

AccountServlet Error Handling
Send the user to the ITSO Bank Error page with a description of the error.

Method Description

doGet Creates the Account Information page.

doPost Calls either the Account History JSP or the Account Balance
JSP with the account information.

Class Description

BankHome Provide a reference to the bank.

Bank Used to get a reference to a customer object.

Customer Provides a list of accounts or a single account object.

CustomerView Used to store customer information in the session.

BankAccount Provides account information.

BankAccountView Used to store account information in request object.

BankAccountViewList Used to store information for a set of accounts in the request
object.

HttpSession Get CustomerView from session.

HttpRequest Provides account IDs and button values.
Chapter 5. Implementing the Home Banking Application 127

AccountServlet Methods
doGet
The doGet method stores the user’s accounts in the request and calls the
Account Information page:

public final void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
itso.bank.util.CacheControl.setCache(res, true);
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res, new Exception("No session"));
return;

}
CustomerView customerView =

(itso.bank.viewobjects.CustomerView)
session.getValue("customer");

try {
Customer customer = BankHome.getBank().getCustomerByUserId(

customerView.getUserId());

Get the customer’s accounts and store them in a view object:
BankAccountViewList. The BankAccountViewList object is placed into the
request object for subsequent retrieval by the Account Information
JavaServer Page. It uses the setAttribute method of the HttpServiceRequest
class, which is a subclass of HTTPServletRequest, necessitating the cast.

BankAccountViewList accountList =
new BankAccountViewList(customer.getAccounts());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("accountlist", accountList);

}
catch (Exception e) {

callErrorPage(req, res, e);
return;

}
callPage(AccountInfoJSP, req, res);

}

Page caching (introduced in 2.7, “Caching” on page 21) is controlled by a call
to itso.bank.util.CacheControl.setCache(res, true), which instructs the
browser not to cache the page. The setCache methods are shown in 5.12.1,
“CacheControl” on page 166.

doPost
This method is invoked from a POST request from the Account Information
JSP. The selected account view object is placed into the request object.
128 Developing an e-business Application for IBM WebSphere

public final void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String accountID = req.getParameter("lstAccountName");
itso.bank.util.CacheControl.setCache(res, true);
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res,
new Exception("Null session in Account servlet"));

return;
}
CustomerView customerView = (itso.bank.viewobjects.CustomerView)

session.getValue("customer");
try {

Customer customer = BankHome.getBank().
getCustomerByUserId(customerView.getUserId());

BankAccount account = customer.getAccountByID(accountID);
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("account", new BankAccountView(account));
}
catch (Exception e) {

callErrorPage(req, res, e);
return;

}
if (req.getParameter("btnSubmit").equals("Account Balance"))

callPage(AccountBalanceJSP, req, res);
else

callPage(AccountHistoryJSP, req, res);
}

5.7.3 Account Information JavaServer Pages
There are three JavaServer Pages used in the Account Information
subsystem:

• Account Information—Provides a list of accounts and buttons to choose
account history or balance inquiries.

• Account Balance—Retrieves the current balance of the selected account.

• Account History—Retrieves a transaction history for the selected account.

Account Information
The Account Information JSP builds the user interface that allows a user to
make account inquiries (Figure 79 on page 123). The dynamic portion of the
page (the ComboBox or pulldown list of accounts) is created using the
following code:
Chapter 5. Implementing the Home Banking Application 129

<BEAN NAME="accountlist" TYPE="itso.bank.viewobjects.BankAccountViewList"
INTROSPECT="no" CREATE="no" SCOPE="request"> </BEAN>
<select id="FormsComboBox1" name="lstAccountName" >
<repeat index=count>
<% accountlist.getAccounts(count); %>
<option value=<insert bean = accountlist

property=accounts(count).accountId></insert>>
<insert bean = accountlist property=accounts(count).accountType>
</insert>:
<insert bean = accountlist property=accounts(count).accountId></insert>
</option>
</repeat>
</select>

The REPEAT tag loops until an IndexOutofBoundsException is thrown. The
line <% accountlist.getAccounts(count); %> is used to stop the loop before
the next option tag is started.The processing of the user request is sent to the
AccountServlet:

<FORM NAME="LayoutRegion2FORM"
ACTION="/servlet/itso.bank.servlet.AccountServlet" METHOD=POST>

AccountBalance
This JSP (Figure 80 on page 124) is responsible for displaying the current
account balance by extracting the AccountView object from the request and
inserting the fields into a table. The table code (without formatting tags) is:

<BEAN NAME="account" TYPE="itso.bank.viewobjects.BankAccountView"
INTROSPECT="no" CREATE="no" SCOPE="request"></BEAN>
<table>
<tr>
<td>Account ID</td>
<TD><INSERT BEAN="account" PROPERTY="accountId"></INSERT></TD>
</tr><tr>
<td>Type</td>
<TD><INSERT BEAN="account" PROPERTY="accountType"></INSERT></TD>
</tr><tr>
<td>Balance</td>
<TD><INSERT BEAN="account" PROPERTY="balance"></INSERT>
</TD></tr></table>

Account History
The Account History JSP (Figure 81 on page 124) produces a statement of all
transactions that have taken place in an account. Like the Account Balance
JSP, it extracts the AccountView object from the request. In this case, we are
interested in the accounts’ transactions. The code is as follows:
130 Developing an e-business Application for IBM WebSphere

BEAN NAME="account" TYPE="itso.bank.viewobjects.BankAccountView"
INTROSPECT="no" CREATE="no" SCOPE="request"> </BEAN>
<table><TR>
<TD>Date</TD><TD>Type</TD>Amount</TD><TD>Balance</TD>
<repeat index=count>
<% account.getTransactions(count); %>
<tr><td>
<insert bean=account property=transactions(count).transTimeStamp>
</insert></td>
<td><insert bean=account property=transactions(count).transType>
</insert></td>
<td><insert bean=account property=transactions(count).transAmount>
</insert></td>
<td><insert bean=account property=transactions(count).transClosingBalance>
</insert></td>
</tr></repeat></table>

5.8 Bill Payment

When a user wants to pay a bill, they go to the Pay Bill JSP page of the HBA
(Figure 85). The user selects the account to pay the bill from, the payee, an
amount, and a transaction password and clicks Pay Bill.

Figure 85. Pay Bill Page
Chapter 5. Implementing the Home Banking Application 131

The system responds with the Bill Paid JSP (Figure 86), which shows that the
request has been processed, or redisplays the Pay Bill JSP with an error
message.

Figure 86. Bill Paid Page

5.8.1 Bill Payment Interaction
The Bill Payment JavaServer Page is displayed through a GET request to the
MoneyTransferServlet with a parameter of PayBill (Figure 87). The actual
transaction is performed by the BillPaymentServlet (Figure 88).
132 Developing an e-business Application for IBM WebSphere

Figure 87. Bill Payment Architecture: Choose Bill Payment

Figure 88. Bill Payment Architecture: Pay Bill

As shown in Figure 89, the doGet request from the Accounts JavaServer
Page invokes the MoneyTransferServlet, which displays the appropriate page.

Accounts.jsp

MoneyTransfer
Servlet

doGet

Pay Bill
JSPResponse

AccountList
View

PayeeList
View

PayBill.jsp
Response

BillPayment
Servlet

doPost

Pay Bill
JSP

Response AccountList
View

Bill Paid
JSP

PayeeList
View

AccountView

TransactionRecordView

error

Error
message

success
Chapter 5. Implementing the Home Banking Application 133

Figure 89. Displaying the Pay Bill or Transfer Funds JavaServer Page

When you enter your data and submit the form to pay a bill, a POST request
is sent to the BillPaymentServlet. The doPost method in turn calls the
MoneyTransferServlet’s processRequest method, which validates the data
that was submitted in the Pay Bill Form. If the validation fails, the user is sent
back to the Pay Bill page with an error message. If the validation succeeds,
the MoneyTransferServlet’s transferFunds method is called. Once the
transfer has occurred the user is sent to the Bill Paid JSP page (Figure 86 on
page 132).

Before the transferFunds method is called, the servlet must retrieve the
source and destination accounts from the Customer object and pass these
objects along with the amount to the transferFunds method. The
transferFunds method invokes the transfer method of the source
BankAccount passing the destination BankAccount and the amount to
transfer as parameters. If the transfer fails, the transfer method throws a
BankTransactionException and the complete transaction is aborted. Figure
90 shows the interaction.

Accounts
JSP

MoneyTransfer
Servlet

BillPayment
JSP

PayeeListView

doGet

c allPage

AccountListViewCustomer BankCustomerView

getCustomerId

getCustomerByUserId

getPayees

getAccounts

new AccountListView

new PayeeListView
134 Developing an e-business Application for IBM WebSphere

Figure 90. Bill Payment Interaction Diagram

5.8.2 Bill Payment Servlets
The BillPayment servlet transfers funds between a Checking or Savings
Account and a Payee Account. The BillPaymentServlet extends
MoneyTransfer servlet. The purpose of the MoneyTransfer servlet is to
transfer money between two bank accounts.

MoneyTransferServlet
This servlet is responsible for displaying the initial Pay Bill or Transfer Funds
page and validating that the source account has sufficient funds for the
transfer and that the amount and password are valid. The servlet then
performs the transaction if the validation is successful. Once the transaction
is complete the user is sent to the appropriate page.

In this implementation of the HBA, the MoneyTransferServlet could have
handled all the function of paying bills and transferring funds. However, we
recognized that our implementation was very simplistic, and that providing
the subclasses would provide more flexibility for another implementation.

PayBill
JSP

BillPaymentS
ervlet

MoneyTransfer
Servlet

CustomerVi
ew

Customer PayeeAc
count

BankAcco
unt

BillPaid
JSP

doPost

processRequest

getCustomerId

getAccountById(Payee)

getAccountById(Source)

validate

transfer

sendRedirect
Chapter 5. Implementing the Home Banking Application 135

Table 8 shows the MoneyTransferServlet methods and Table 9 shows the
collaborating objects.

Table 8. MoneyTransferServlet Methods

Table 9. MoneyTransferServlet Collaborators

Method Description

doGet Display the BillPayment JSP or TransferFunds JSP
based on the passed parameter.

processRequest Performs the validation. If the validation succeeds
performs the transfer and sends the user to a result
page, otherwise sends the user to the source page
with an error message.

transferFunds Performs the transfer between the two bank
accounts.

validate Validates the request to transfer the money. Checks
for correct syntax, and any other requirements.

Class Description

Customer Used to get the source and target bank accounts.

BankAccount Used to transfer money between accounts.

BankHome Provide a reference to the bank.

Bank Used to get a reference to a customer object.

CustomerView Used to store customer information in the session.

BankAccount Provides account information.

BankAccountViewList Used to store information for a set of accounts in the
request object.

PayeeAccount Provides account information.

PayeeAccountViewList Used to store information for a set of accounts in the
request object.

HttpSession Add view objects to the request object.

HttpRequest Provide request information.

HttpResponse Invoke sendRedirect.
136 Developing an e-business Application for IBM WebSphere

MoneyTransferServlet Error Handling
A BankTransactionException is thrown if an error occurs in the money
transfer. If other errors are found, the callErrorPage method is called.

MoneyTransferServlet Methods
init
Access the XML servlet configuration.

public final void init(ServletConfig config) throws
javax.servlet.ServletException {

super.init(config);
xmlconfig = new XMLConfigUtil(this);

}

doGet
Display the Pay Bill or Transfer Funds page.

public final void doGet(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res) throws
javax.servlet.ServletException, java.io.IOException

{
BankAccountViewList fromAccounts = null;
BankCollection toList = null;
itso.bank.util.CacheControl.setCache(res, true);

Get the parameter: either PayBill or TransferFunds.

String dest = req.getQueryString();
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res,
new Exception("Null session in Account servlet"));

return;
}
CustomerView customerView =

(itso.bank.viewobjects.CustomerView)
session.getValue("customer");

try {
Customer customer = BankHome.getBank().getCustomerByUserId(

customerView.getUserId());

Build the list of accounts to transfer the money from.

fromAccounts = new BankAccountViewList(customer.getAccounts());
if(dest.equals("PayBill")){

destination = "pay_bill";
Chapter 5. Implementing the Home Banking Application 137

If this is a bill payment, create a list of Payee accounts.

PayeeAccountViewList toAccounts =
new PayeeAccountViewList(customer.getPayees());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("toaccounts", toAccounts);

}
else{

If the same list is used for source and destination (it is a transfer, not a bill
payment), just refer to the first list.

destination = "transfer_funds";
BankAccountViewList toAccounts = fromAccounts;
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("toaccounts", toAccounts);
}

Use a view object to hold each account list.

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("fromaccounts", fromAccounts);

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("message", message);

}
catch (Exception e) {

callErrorPage(req, res, e);
return;

}
callPage(destination, req, res);

}

processRequest
The processRequest method is invoked during a bill payment or a funds
transfer to transfer the funds between accounts.

public final void processRequest(HttpServletRequest req,
HttpServletResponse res, String srcAccount, String dstAccount,
String amount, String passCode) throws java.io.IOException

{
BankAccount sourceAccount = null;
BankAccount destinationAccount = null;
Customer customer = null;
String message = "";
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res, new Exception("Null session in servlet"));
return;

}

138 Developing an e-business Application for IBM WebSphere

try
{

CustomerView customerView = (itso.bank.viewobjects.CustomerView)
session.getValue("customer");

customer = BankHome.getBank().getCustomerByUserId(
customerView.getUserId());

Get the source and destination bank accounts from the customer.

sourceAccount = customer.getAccountByID(srcAccount);
destinationAccount = customer.getAccountByID(dstAccount);

Validate the user input.

if ((message = validate(customer, amount, passCode)) == null)
{

If validated transfer the funds.

TransactionRecord rec = transferFunds(sourceAccount,
destinationAccount, amount);

Put the following objects in the session to be used by the Bill Paid and Funds
Transferred pages. We need to use the session here because you cannot
access the objects in the request object when you use sendRedirect. We do
not use callPage here because the transaction would be replayed if the page
was reloaded.

session.putValue("transrec", new TransactionRecordView(rec));
session.putValue("srcaccount",

new BankAccountView(sourceAccount));
if(this instanceof TransferFundsServlet){

session.putValue("destaccount",
new BankAccountView(destinationAccount));

}
else{

session.putValue("destAccount",
new PayeeAccountView((PayeeAccount)destinationAccount));

}

Send the user to the Destination JSP page using redirect instead of callPage
so the transaction is not replayed.

res.sendRedirect(this.destination);
}
else
{

throw new BankTransactionException(message);
}

Chapter 5. Implementing the Home Banking Application 139

}
catch (itso.bank.common.BankTransactionException e)
{

If we find errors, the original Pay Bill or Transfer Funds page is displayed with
an error message.

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("message", e.getMessage());

try{
BankAccountViewList fromAccounts =

new BankAccountViewList(customer.getAccounts());
if(destinationAccount instanceof PayeeAccount){

PayeeAccountViewList toAccounts =
new PayeeAccountViewList(customer.getPayees());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("toaccounts", toAccounts);

}
else{

BankAccountViewList toAccounts =
new BankAccountViewList(customer.getAccounts());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("toaccounts", toAccounts);

}
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("fromaccounts", fromAccounts);
callPage(this.source, req, res);

}
catch(Exception f){

callErrorPage(req, res, e);
return;

}
}
catch(Exception e){

callErrorPage(req, res, e);
return;

}
}

transferFunds
The transferFunds method performs the transfer on the business objects.

public final TransactionRecord transferFunds(BankAccount srcAccount,
BankAccount dstAccount, String amount)
throws ITSOBankCommunicationException,
BankTransactionException, ITSOBankException

{
if (srcAccount.getAccountId() == dstAccount.getAccountId())
140 Developing an e-business Application for IBM WebSphere

throw new itso.bank.common.BankTransactionException(
"Accounts cannot be the same");

return srcAccount.transfer(dstAccount,
new java.math.BigDecimal(amount));

}

validate
The validate method checks to see that the values entered for the transfer are
correct.

public final String validate(Customer customer,String amount,
String passCode) throws ITSOBankCommunicationException,
ITSOBankException

{
String message = null;
try {

java.math.BigDecimal objAmount = new java.math.BigDecimal(amount);
if (objAmount.compareTo(new java.math.BigDecimal(0)) < 0){

message = "Cannot specify a negative amount";
}
else if (amount.equals("")) {

message = "Invalid format for currency";
}
else if (passCode.equals("")) {

message = "Please specify password";
}
else if (!customer.checkTransactionPassword(passCode)) {

message = "Password incorrect: Authorization Denied!";
}

}
catch (NumberFormatException e) {

message = "Invalid format for currency";
}
return message;

}

BillPaymentServlet
The BillPayment servlet’s task is to perform the bill payment transaction.
When the customer submits the form to pay a bill to a payee (Figure 85) the
BillPayment servlet fetches the data submitted in the form. It then transfers
money from a customer bank account to the payee account using the
MoneyTransferServlet’s processRequest method.
Chapter 5. Implementing the Home Banking Application 141

Table 10 shows the BillPaymentServlet methods and Table 11 shows the
collaborating objects.

Table 10. BillPaymentServlet Methods

Table 11. BillPaymentServlet Collaborators

BillPaymentServlet Error Handling
The user is sent to the Pay Bill JSP if there is an error in the parameters. For
other errors the callErrorPage method is invoked.

BillPaymentServlet Methods
constructor
public BillPaymentServlet() {

source = "pay_bill";
destination = "bill_paid";

}

doPost
Retrieve the request parameters and invoke processRequest.

public final void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
itso.bank.util.CacheControl.setCache(res, true);
String accountId = req.getParameter("lstAccountName");
String payee = req.getParameter("lstPayeeName");
String amount = req.getParameter("txtAmount");
String passCode = req.getParameter("txtPasscode");
processRequest(req, res, accountId, payee, amount, passCode);

}

Method Description

doPost Fetches the user data and delegates the transfer to
the processRequest method of the MoneyTransfer
servlet.

Class Description

MoneyTransferServlet The parent class of BillPayment servlet Provides this
servlet with basic money transfer capability.

HttpRequest Provide request information.

HttpResponse Passed to processRequest.
142 Developing an e-business Application for IBM WebSphere

5.8.3 Bill Payment JavaServer Pages
The two JavaServer Pages involved in the BillPayment subsystem are the Pay
Bill JSP (Figure 85 on page 131) used to enter the Bill Payment Information
and the Bill Paid JSP (Figure 86 on page 132) to display the results.

Pay Bill
This JSP is responsible for displaying a screen from which to pay bills. It
presents the user with lists of the user’s bank accounts and payee accounts
and fields to enter the amount and transaction password. After the user has
filled in and submitted the form, the request is sent to the BillPayment servlet.
This page has three dynamic components:

• Account ChoiceBox—This is populated using the same syntax as in 5.7,
“Account Information” on page 122.

• Payee ChoiceBox—This is populated using the same syntax as in 5.7,
“Account Information” on page 122, using the payee accounts of the
customer.

• Error message—The error message is displayed on the BillPayment page
if there was an error in a previous submission. The error message is
displayed using the following code:

<BEAN NAME="message" TYPE="java.lang.String" INTROSPECT="no" CREATE="no"
SCOPE="request"> </BEAN>
<insert bean=message></insert>

The following HTML shows the ACTION attribute of the Pay Bill JSP Form.

<FORM NAME="LayoutRegion1FORM"
ACTION="/servlet/itso.bank.servlet.BillPaymentServlet" METHOD=POST>

Bill Paid
The user is sent to this page after a successful bill payment. The first thing
this page does is get the information from the view beans in the request. It
displays the payee name, source bank account name, the amount
transferred, source account ending balance, and the transaction date. The
code in the JSP (without the formatting attributes) is:

<BEAN NAME="srcaccount" TYPE="itso.bank.viewobjects.BankAccountView"
INTROSPECT="no" CREATE="no" SCOPE="session"> </BEAN>
<BEAN NAME="destaccount" TYPE="itso.bank.viewobjects.PayeeAccountView"
INTROSPECT="no" CREATE="no" SCOPE="session"> </BEAN>
<BEAN NAME="transrec" TYPE="itso.bank.viewobjects.TransactionRecordView"
INTROSPECT="no" CREATE="no" SCOPE="session"> </BEAN>
<table><tr><td>Payee</td>
<TD><insert bean=destaccount property=billPaymentTitle></insert>
Chapter 5. Implementing the Home Banking Application 143

</td></tr><tr><td>Amount</td>
<TD><insert bean=transrec property=transAmount></insert>
</td></tr><tr>
<td>From Account</td>
<TD><insert bean=srcaccount property=accountType></insert>:
<insert bean=srcaccount property=accountId></insert>
</td></tr><tr><td>Ending Balance</td><TD>
<insert bean=srcaccount property=balance></insert>
</td></tr><tr><td>Date</td><TD>
<insert bean=transrec property=transTimeStamp></insert>
</td></tr></table>

Note that the scope of the beans was session as discussed in
“BillPaymentServlet Methods” on page 142.

5.9 Transfer Funds

Users access the Transfer Funds subsystem to transfer money between their
bank accounts. A user selects the account to transfer money from, the
account to transfer money to, an amount, and a transaction password and
clicks the Transfer button (Figure 91).

The Transfer Funds subsystem is very similar to the Pay Bill subsystem, so it
will be explained in less detail.
144 Developing an e-business Application for IBM WebSphere

Figure 91. Transfer Funds Page

The user is then redirected to either the Funds Transferred page (Figure 92),
which shows that the request has been processed, or back to the Transfer
Funds page to display the error.
Chapter 5. Implementing the Home Banking Application 145

Figure 92. Funds Transferred Page

5.9.1 Funds Transfer Interaction
The Transfer Funds JavaServer Page is displayed through a GET request to
the MoneyTransferServlet with a parameter of transfer (Figure 93). The actual
transaction is performed by the TransferFundsServlet and
MoneyTransferServlet (Figure 94).
146 Developing an e-business Application for IBM WebSphere

Figure 93. Transfer Funds Architecture: Choose Transfer Funds

Figure 94. Transfer Funds Architecture: Transfer Funds

When you enter your data and submit the form for a funds transfer, the
doPost method is invoked on the TransferFundsServlet. The doPost method
calls the MoneyTransferServlet’s processRequest method in the same way
as the BillPaymentServlet. Once the money transfer has occurred, the
callPage method is invoked, which sends the user to the Funds Transferred
JSP page.

Browser

Response

MoneyTransfer
Servlet

doGet

Transfer
Funds
JSP

fromAccounts:
AccountList View

toAccounts:
AccountList View

PayBill.jsp

Response

TransferFunds
Servlet

doPost

TransferFunds
JSP

Response AccountList
View

FundsTransferred
JSP

AccountView

TransactionRecordView

error

Error
message

success
Chapter 5. Implementing the Home Banking Application 147

5.9.2 Transfer Funds Servlets
The Transfer Funds subsystem is made up of the MoneyTransferServlet and
the TransferFundsServlet. The subsystem transfers funds between two of a
user’s checking or savings accounts. This functionality is common to Bill
Payment as explained in the BillPayment subsystem. For this reason, the
TransferFunds servlet also extends MoneyTransferServlet.

TransferFundsServlet
This servlet fetches the data that the user has submitted for transferring funds
and calls processRequest to take care of the money transfer. This servlet
extends MoneyTransferServlet.

Table 12 shows the TransferFundsServlet methods and Table 13 shows the
collaborating objects.

Table 12. TransferFundsServlet Methods

Table 13. TransferFundsServlet Collaborators

TransferFundsServlet Error Handling
The user is sent to the Pay Bill JSP if there is an error in the parameters. For
other errors, the callErrorPage method is invoked.

Method Implementations
Constructor
public TransferFundsServlet()
{

source = "transfer_funds";
destination = "funds_transferred";

}

Method Description

doPost This method performs the funds transfer. It fetches
the data that the user has submitted for the funds
transfer and delegates the transfer to the
processRequest method of its parent class
MoneyTransfer servlet.

Class Description

MoneyTransferServlet The parent class of TransferFunds servlet. Provides this
servlet with basic money transfer capabilities.

HttpRequest Provide request information.

HttpResponse Passed to processRequest.
148 Developing an e-business Application for IBM WebSphere

doPost
public final void doPost(javax.servlet.http.HttpServletRequest req,

javax.servlet.http.HttpServletResponse res) throws
javax.servlet.ServletException, java.io.IOException

{
String sourceAccountID = req.getParameter("srcAccountName");
String targetAccountID = req.getParameter("destAccountName");
String amount = req.getParameter("txtAmount");
String passCode = req.getParameter("txtPasscode");
itso.bank.util.CacheControl.setCache(res, true);
processRequest(req, res, sourceAccountID, targetAccountID,

amount, passCode);
}

5.9.3 Transfer Funds JavaServer Pages
The two JavaServer Pages involved in the Transfer Funds subsystem are the
Transfer Funds JSP used to enter the Funds Transfer Information and the
Funds Transferred JSP to display the results.

Transfer Funds JSP
This JSP is responsible for listing the users source and target bank accounts.
It is almost exactly the same as the Pay Bill JSP in 5.8, “Bill Payment” on
page 131.

Funds Transferred JSP
This JSP is responsible for showing the results of a successful transfer. It is
almost exactly the same as the Bill Paid JSP in 5.8, “Bill Payment” on page
131.

5.10 Payee

The Payee subsystem is used to add and delete payees from the customer’s
payee list. The payees are added from the payee list of the bank.

The three pages of the Payee subsystem are shown in Figure 95, Figure 96,
and Figure 97.
Chapter 5. Implementing the Home Banking Application 149

Figure 95. Payee Setup Page

Figure 96. Add Payee Page
150 Developing an e-business Application for IBM WebSphere

Figure 97. Delete Payee Page

5.10.1 Payee Interaction
The Payee subsystem is composed of one servlet and three JavaServer
Pages, as shown in Figure 98.
Chapter 5. Implementing the Home Banking Application 151

Figure 98. Add/Delete Payee Servlet Architecture

Figure 99 shows the sequence of calls when the doGet method of the
PayeeServlet is invoked.

Figure 99. Payee Servlet doGet Interaction

Browser

Payee
View

doPost

Response

Delete
Payee
JSP

Add
Payee
JSP

Payee
Servlet

doGet

PayeeSetup
JSP

Response PayeeList
View

pay_bill.jsp PayeeServlet payee_setup.jsp

doGet

Bank Customer PayeeListView

getCustomerByUserId

getPayees

new PayeeListView

callPage
152 Developing an e-business Application for IBM WebSphere

When the user clicks the "Add Payee" or "Delete Payee" button in the Payee
Setup page, the doPost method of the PayeeServlet is invoked (Figure 100)
with the appropriate command. Based on the command (add or delete) the
user is redirected to either the AddPayee page or the DeletePayee page.

When Add Payee is pressed, the PayeeServlet calls the Bank’s
getPayeeAccounts method in order to obtain all the potential new payees for
the customer. Once the user chooses the new account, the PayeeServlet
invokes the Customer’s addPayee method, passing the new Payee object in
order to add it to the Customer Payee List.

In the case of a delete payee action, the PayeeServlet invokes the Customer
getAccountByID method, passing it the AccountID obtained from the user in
the PayeeSetup JavaServer Page. After having retrieved the payee, the
PayeeServlet invokes the Customer’s removePayee method, passing the
payee reference.

Figure 100. PayeeServlet doPost Sequence

payee_setup.jsp PayeeServlet add_payee.jsp delete_payee.jspAccountBankCustomer

if (val idNewPayee() == true)

doPost() : command getCustomerByUserId

command ==
Add Payee getPayees

callPage

getPayee

command ==
Delete Payee

command ==
Add New
Payee

addPayee

callPage

command ==
Confirm
Payee
Deletion

removePayee
Chapter 5. Implementing the Home Banking Application 153

5.10.2 Payee Servlets
The Payee subsystem is composed of the PayeeServlet.

PayeeServlet
The PayeeServlet manages all requests coming from the JavaServer Pages
in the Payee subsystem. It decides which step to perform after the user
submits his request. The PayeeServlet manages the following actions:

• Add Payee

• Delete Payee

• Confirm Payee Deletion

• Submit New Payee

• Cancel

Table 14 shows the PayeeServlet methods and Table 15 shows the
collaborating objects.

Table 14. PayeeServlet Methods

Table 15. PayeeServlet Collaborators

Method Description

doGet Displays PayeeSetup.jsp

doPost Performs the payee addition or
deletion.

Class Description

Customer Used to get the source and target bank
accounts.

BankHome Provides a reference to the bank.

Bank Used to get a reference to a customer
object.

CustomerView Used to store customer information in the
session.

PayeeAccount Payee account information.

PayeeAccountViewList Used to store information for a set of
accounts in the request object.

HttpRequest Provide request information.
154 Developing an e-business Application for IBM WebSphere

PayeeServlet Error Handling
If the user enters incorrect parameters, the Payee Setup page is displayed
with the appropriate error. For any other errors, the callErrorPage method is
called.

PayeeServlet Methods
doGet
The doGet method displays the current payee list and allows the user to
select an account to delete or choose Add Payee.

public final void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
String message = " ";
itso.bank.util.CacheControl.setCache(res, true);
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res,
new Exception("Null session in Account servlet"));

return;
}
CustomerView customerView = (itso.bank.viewobjects.CustomerView)

session.getValue("customer");
try {

Customer customer = BankHome.getBank().getCustomerByUserId(
customerView.getUserId());

Use a view object to hold the account list.

PayeeAccountViewList payeeList =
new PayeeAccountViewList(customer.getPayees());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("accounts", payeeList);

}
catch (Exception e) {

callErrorPage(req, res, e);
return;

}
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("message", message);
callPage(source, req, res);

}

doPost
The doPost method provides either the Delete Confirmation page and deletes
the payee or the Add Payee page and adds the payee.
Chapter 5. Implementing the Home Banking Application 155

public final void doPost(HttpServletRequest req, HttpServletResponse res)
throws javax.servlet.ServletException, java.io.IOException

{
String message = "";
Customer customer = null;
PayeeAccount payee = null;
String destination = source;
BankServlet servlet = null;
String command = null;
String payeeID = null;
if(req.getParameter("btnSubmit") != null){

command = req.getParameter("btnSubmit").trim();
}

Make sure a Payee was selected.

if(req.getParameter("payee") != null){
payeeID = req.getParameter("payee").trim();

}
else{

message = "Please Select the Payee you want to Delete";
destination = source;

}
itso.bank.util.CacheControl.setCache(res, true);
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res,
new Exception("Null session in Account servlet"));

return;
}
try
{

Get the Customer object.

CustomerView customerView = (itso.bank.viewobjects.CustomerView)
session.getValue("customer");

customer = BankHome.getBank().getCustomerByUserId(
customerView.getUserId());

if (command.equals("Add Payee"))
{

Add the potential payees to the request object.

PayeeAccountViewList payeeList =
new PayeeAccountViewList(
BankHome.getBank().getPayeeAccounts());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("payees", payeeList);
156 Developing an e-business Application for IBM WebSphere

destination = "add_payee";
message =

"Please Select the Payee you want to Add and click Submit New Payee";
}
else if(command.equals("Delete Payee") && payeeID != null)
{

Send the Confirm Payee Deletion page.

payee = (PayeeAccount) customer.getAccountByID(payeeID);
((HttpServiceRequest)req).

setAttribute("payee", new PayeeAccountView(payee));
destination = "delete_payee";
message = "Please Select the Payee you want to Delete";

}
else if(command.equals("Submit New Payee"))
{

if (customer.getAccountByID(payeeID) != null)
{

message = "Payee with this accountID already exists";
}
else if ((payeeID == null) || (payeeID.startsWith(" ")) ||

(payeeID.equals("")))
{

message = "Payee payeeID cannot be blank or start with blank";
}
else{

payee = (PayeeAccount)BankHome.getBank().getAccount(payeeID);
customer.addPayee(payee);

}
}
else if(command.equals("Confirm Payee Deletion"))
{

Remove the payee.

payee = customer.getAccountByID(payeeID);
customer.removePayee(payee);

}
if(destination.equals(source)){

PayeeAccountViewList payeeList =
new PayeeAccountViewList(customer.getPayees());

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("accounts", payeeList);

}
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("message", message);
callPage(destination, req, res);
Chapter 5. Implementing the Home Banking Application 157

}
catch (Exception e)
{

callErrorPage(req, res, e);
return;

}
}

In the class declaration of the PayeeServlet source is defined as:

source = "payee_setup";

5.10.3 Payee JavaServer Pages

PayeeSetup JavaServer Page
In the PayeeSetup JavaServer Page, the dynamic content does the following:

• Populates the customer’s Payee list—The Payee list is built using the
following code (without formatting attributes):

<table><tr>
<td colspan=3>Payee List</td></tr><tr><td> </td>
<td>Title</td><td>Account Number</td></tr>
<BEAN NAME="accounts" TYPE="itso.bank.viewobjects.PayeeAccountViewList"
INTROSPECT="no" CREATE="no" SCOPE="request"> </BEAN>
<repeat index=count>
<% accounts.getAccounts(count); %>
<tr><td><input type=radio name="payee" value="<insert bean = accounts
property=accounts(count).accountId></insert>"> </td>
<td><insert bean = accounts
property=accounts(count).billPaymentTitle></insert></td>
<td>
<insert bean = accounts property=accounts(count).accountId></insert>
</td></tr></repeat></table>

• Manages the message area—This is similar to the message function in
5.9, “Transfer Funds” on page 144.

AddPayee JavaServer Page
In the AddPayee JavaServer Page, the dynamic contentdoes the following:

• Populates the potential new payee list—The code for the list is as follows:

<BEAN NAME="payees" TYPE="itso.bank.viewobjects.PayeeAccountViewList"
INTROSPECT="no" CREATE="no" SCOPE="request"> </BEAN>
<select id="FormsComboBox" name="payee">
<repeat index=count>
<% payees.getAccounts(count); %>
158 Developing an e-business Application for IBM WebSphere

<option value=<insert bean = payees
property=accounts(count).accountId></insert>>
<insert bean = payees property=accounts(count).billPaymentTitle>
</insert>
</option>
</repeat>
</select>

• Manages the message area—This is similar to the message function in
5.9, “Transfer Funds” on page 144.DeletePayee JavaServer Page

DeletePayee JavaServer Page
In the DeletePayee JavaServer Page, the dynamic content is as follows:

<BEAN NAME="payee" TYPE="itso.bank.viewobjects.PayeeAccountView"
INTROSPECT="no" CREATE="no" SCOPE="request"> </BEAN>
<INPUT TYPE="hidden" NAME="payee" VALUE="<insert bean=payee
property=accountId></insert>">
<table><tr><td>Payee Name</td>
<TD><insert bean=payee property=billPaymentTitle></insert>
</TD></tr><tr><td>Account #:</td>
<TD><insert bean=payee property=accountId></insert>
</TD></tr></table>

5.11 User

The User subsystem of the HBA is used to maintain passwords through the
Change Password page (Figure 101). When users go to the Change
Password page, they are presented with a choice box and three fields. The
choice box is used to control whether to change the login or transaction
password. The first text field is used to enter the current password. The next
two fields are the new password and the password confirmation.
Chapter 5. Implementing the Home Banking Application 159

Figure 101. Change Password Page

5.11.1 User Interaction
The User subsystem is composed of one servlet and two JavaServer Pages,
as shown in Figure 102.
160 Developing an e-business Application for IBM WebSphere

Figure 102. Change Password Architecture

Once the user selects the password type, enters the passwords and, submits
the form, the ChangePasswordServlet’s doPost method is invoked. The
doPost method retrieves the parameters and validates the passwords. If
validation succeeds, the user’s password is changed, and the user is sent to
the Accounts JSP. If the attempt is invalid, the user is sent back to the
Change Password Page. This interaction is shown in Figure 103.

Response

ChangePassword
Servlet

doPost

ChangePassword
JSPResponse

Accounts
JSP

error

Error
message

success

Customer
Chapter 5. Implementing the Home Banking Application 161

Figure 103. Change Password Interaction

5.11.2 User Servlets
The User subsystem is made up of the ChangePasswordServlet.

ChangePasswordServlet
The ChangePasswordServlet authenticates the user’s password, validates
the data the user enters, and changes the passwords.

Table 16 shows the ChangePasswordServlet methods and Table 17 shows
the collaborating objects.

Change
Password JSP

ChangePassword
Servlet

Accounts JSP Bank Customer

doPost: pwdType

validate

[validate == false] callPage

callPage

[validate == t rue] changePwd

getCustomerByUserId
162 Developing an e-business Application for IBM WebSphere

Table 16. ChangePasswordServlet Methods

Table 17. ChangePasswordServlet Collaborators

ChangePasswordServlet Error Handling
If the validation fails, the Change Password JSP is displayed with an
appropriate message; otherwise the callErrorPage method is invoked.

ChangePasswordServlet Methods
doPost
The doPost method calls the validate and changePassword methods.

public final void doPost(HttpServletRequest req, HttpServletResponse res)
throws javax.servlet.ServletException, java.io.IOException {

String passwordType = req.getParameter("lstPasswordType").trim();
String currentPassword = req.getParameter("txtCurrentPassword").trim();
String newPassword = req.getParameter("txtNewPassword").trim();
String reNewPassword = req.getParameter("txtReNewPassword").trim();
String message = null;
itso.bank.util.CacheControl.setCache(res, true);
HttpSession session = req.getSession(false);
if(session == null){

callErrorPage(req, res, new Exception(
"Null session in Change Password servlet"));

return;
}
CustomerView customerView = (itso.bank.viewobjects.CustomerView)

session.getValue("customer");
try {

Method Description

doGet Displays Change Password page.

doPost Performs the password change.

changePwd Calls the appropriate changePassword method on the
Customer object.

validate Validates the password values entered by the user.

Class Description

Customer Used to change the passwords.

CustomerView Stored in session to hold customer ID.

HttpSession Used to store the CustomerView.

HttpRequest Provides the request information.
Chapter 5. Implementing the Home Banking Application 163

Customer customer = BankHome.getBank().getCustomerByUserId(
customerView.getUserId());

Validate the data.

if ((message = validate(customer, passwordType,
currentPassword, newPassword, reNewPassword)) == null) {

Change the password.

changePwd(customer, passwordType,
currentPassword, newPassword);

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("message", "");

Send the user to the Accounts JSP page.

callPage("accounts", req, res);
} else {
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("message", message);

Send the user to the Change Password JSP.

callPage("change_password", req, res);
}

} catch (Exception e) {
callErrorPage(req, res, e);
return;

}
}

doGet
The doGet method displays the Change Password page.

public final void doGet(HttpServletRequest req, HttpServletResponse res)
throws

javax.servlet.ServletException, java.io.IOException {
String message = "";
itso.bank.util.CacheControl.setCache(res, true);
try{

((com.sun.server.http.HttpServiceRequest)req).
setAttribute("message", message);

callPage("change_password", req, res);
} catch (Exception e) {

callErrorPage(req, res, e);
return;

}
}

164 Developing an e-business Application for IBM WebSphere

validate
The validate method validates the current and new passwords.

public final String validate(itso.bank.common.Customer customer,
String passwordType, String currentPwd, String newPwd,
String confirmedNewPwd)
throws ITSOBankCommunicationException, ITSOBankException {

String message = null;
if (customer != null)
{

if (currentPwd.equals(""))
{

message = "Current Password cannot be blank";
}
if (passwordType.equalsIgnoreCase("application"))
{

if (!customer.checkLoginPassword(currentPwd))
{

message = "Current login password is not correct";
}

}
if (passwordType.equalsIgnoreCase("authorization"))
{

if (!customer.checkTransactionPassword(currentPwd))
{

message = "Current transaction password is not correct";
}

}
if (newPwd.equals(""))
{

message = "New Password can not be blank";
}
if (confirmedNewPwd.equals(""))
{

message = "Confirmed New Password can not be blank";
}
if (currentPwd.equals(newPwd))
{

message = "Current Password cannot equal New Password";
}
if (!newPwd.equals(confirmedNewPwd))
{

message = "New Password and Confirmed New Password must be same.";
}

}
return message;

}

Chapter 5. Implementing the Home Banking Application 165

changePwd
The changePwd method performs the password change.

public final void changePwd(Customer customer, String type,
String oldPwd, String newPwd)
throws ITSOBankCommunicationException, ITSOBankException

{
if (type.equalsIgnoreCase("application")) {

customer.changeLoginPassword(oldPwd, newPwd, newPwd);
} else {

customer.changeTransactionPassword(oldPwd, newPwd, newPwd);
}

}

5.11.3 User JavaServer Pages

User JavaServer Page
The User page simply allows the user to select the Change Password
function.

Change Password JavaServer Page
The Change Password page allows the user to select which password to
change and enter the new password. The JSP code is similar to preceding
pages.

5.12 Utility Classes

There are several utility classes used in the HBA and defined in the
itso.bank.util package. They are:

• CacheControl—Handle the caching of the JavaServer Pages

• Formatter—Format dates and currencies for JavaServer Pages

• XMLConfigUtil—Access to XML configuration information

5.12.1 CacheControl
The CacheControl class encapsulates the control of the cache in one place.

import javax.servlet.http.HttpServletResponse;
public final class CacheControl {

public static final void setCache(HttpServletResponse res,
boolean noCache) {

setCache(res, noCache, 0);
}

166 Developing an e-business Application for IBM WebSphere

public static final void setCache(HttpServletResponse res,
boolean noCache, int expiration) {

if(noCache){
res.setHeader("pragma", "no-cache");
res.setHeader("Cache-Control", "no-cache");
res.setHeader("Expires", "0");

}
else if(expiration > 0){

res.setHeader("Expires", Integer.toString(expiration));
}

}
}

5.12.2 Formatter
The Formatter class is used to format attributes in the view beans.

import java.math.BigDecimal;
import java.util.Date;
import java.text.DateFormat;
import java.util.TimeZone;

public final class Formatter {
private static final String DEFAULT_ZONE = "GMT";
public final static String getAsCurrency(double amount) {

java.text.NumberFormat nf = new java.text.DecimalFormat();
nf.setMinimumFractionDigits(2);
nf.setMaximumFractionDigits(2);
return "$" + nf.format(amount);

}
public final static String getAsCurrency(BigDecimal amount) {

return getAsCurrency(amount.doubleValue());
}
public final static String getFormattedDate(Date date) {

return getFormattedDate(date, DEFAULT_ZONE);
}
public final static String getFormattedDate(Date date, String zone) {

DateFormat df = new java.text.SimpleDateFormat("MM/dd/yyyy");
df.setTimeZone(TimeZone.getTimeZone(zone));
return df.format(date);

}
}

Chapter 5. Implementing the Home Banking Application 167

5.12.3 XMLConfigUtil
The XMLConfigUtil class provides the getPageURI method to get URIs
(URLs) from the XML configuration information to be used in the
sendRedirect method.

package itso.bank.util;
import com.ibm.servlet.config.*;
import com.ibm.servlet.*;
import javax.servlet.*;
public class XMLConfigUtil {

private XMLServletConfig servletconfig;
private PageList pagelist;
private String description;
public XMLConfigUtil(Servlet servlet)
{

ServletContext servletcontext =
servlet.getServletConfig().getServletContext();

try{
this.servletconfig=(XMLServletConfig)servlet.getServletConfig();

}
catch(ClassCastException ex){

servletcontext.log("Bad xml servlet config");
}
org.w3c.dom.Element element =

servletconfig.getElement(PageList.ELEMENT_PAGELIST);
if(element == null)
{

servletcontext.log("no pagelist found");
}
else
{

pagelist = new PageList(element, servletconfig);
return;

}
}
public String getPageURI(String pagename){

return pagelist.getPageURI(pagename);
}

}

168 Developing an e-business Application for IBM WebSphere

Chapter 6. Deploying the Home Banking Application

This chapter describes the deployment of the HBA. The subsystems of the
HBA were unit tested using VisualAge for Java. The complete testing was
done on the deployed versions on the WebSphere Application Server.

To deploy our Home Banking Application, we need a Web server and a
servlet engine. We have chosen to deploy the HBA on two platforms:
Windows NT Workstation and AIX. Both platforms run the WebSphere
Application Server, and we will use two different Web servers:

• Netscape Enterprise Server (NES) on Windows NT

• IBM HTTP Server on AIX and Windows NT

6.1 Installing the Servers

Refer to the Web server and WebSphere Application Server documentation
for installation instructions.

6.2 Configuring the Servers

We need to configure the two Web servers as well as the WebSphere
Application Server on each platform.

6.2.1 Configuring the Web Servers

Configuring Netscape Enterprise Server (Windows NT)
Configuring NES on Windows NT consisted of:

• Setting the Secure Sockets Layer (SSL) protocol

• Configuring the server properties

Setting the Secure Sockets Layer (SSL) Protocol
To enable SSL:

1. We generated our server's key-pair file (containing public and private
keys) and used it to request and install the server certificate. The
password specified when creating the key-pair is used for starting the
server. Refer to the NES documentation for the steps to follow to generate
the key-pair file.

2. We requested a certificate from a Certificate Authority, specifying the
previously generated key-pair file. We requested a free trial Web server
digital certificate from VeriSign. For the procedure to follow, refer to the
© Copyright IBM Corp. 1999 169

VeriSign Web site at the URL http://www.verisign.com and the NES
Administrator Guide.

3. We installed the VeriSign certificate on the Web Server. The certificate
was encrypted with our public key so that only we can decrypt it. The
server used our key-pair file password to decrypt the certificate during the
installation. For the details about the installation procedure, refer to the
NES Administrator Guide.

4. After having generated a key-pair file and installed our certificate, we
activated SSL on our Web server. Again, refer to the NES documentation
for the details.

Configuring the Server Properties
We installed the Web server following the instructions in the NES installation
documentation. After the server was installed we used the Netscape
Administration Server at the URL http://hostname:2720. This was the port we
chose for the administration server when we installed NES (Figure 104).

The name of our host was barium.
170 Developing an e-business Application for IBM WebSphere

Figure 104. Netscape Administration Server on Windows NT

We chose to add a new Web server by clicking on the link Create New
Netscape Enterprise Server 3.6. We entered all the values for our new Web
server on the resulting page (Figure 105). We set the server port to port 443.
Port 443 is the default port used for SSL communication. However, the Web
server does not need to run on port 443 to enable SSL. For other settings,
refer to the Netscape Administration Server documentation.
Chapter 6. Deploying the Home Banking Application 171

Figure 105. Netscape Enterprise Server (Create Server Menu)

Once the Web server has been created it is displayed on the main console of
the administration page (Figure 104 on page 171). We then configured the
document root directory for the Web server. We clicked on the barium button
for "barium" and were presented with the settings for our Web server (Figure
106).
172 Developing an e-business Application for IBM WebSphere

.

Figure 106. Web Server Menu

We then clicked on the Content Management button on the toolbar (Figure
107) and were presented with the Primary Document Directory page. In the
Primary directory field, we typed c:/www/html for the document root
directory on our sever and clicked OK. (When we publish our Web site, we
will publish it to this directory.) We then clicked Save and Apply. Now the
server starts with our changes (Figure 108).
Chapter 6. Deploying the Home Banking Application 173

Figure 107. Setting the Document Root Directory
174 Developing an e-business Application for IBM WebSphere

Figure 108. Applying the Document Root Directory Changes.

Configuring the IBM HTTP Server (AIX)
We chose to also deploy our application to the IBM HTTP Server on AIX to
show the application running in a very scalable and robust environment. For
detailed instructions on the following procedures, see the IBM HTTP Server
documentation. We also deployed the HBA on the IBM HTTP Server running
on Windows NT and the instructions are similar. The configuration steps for
the IBM HTTP Server were similar to those for NES:

• Set the Secure Sockets Layer protocol.

• Configure the server properties.
Chapter 6. Deploying the Home Banking Application 175

Setting the Secure Sockets Layer Protocol
To enable SSL on our server, we completed the following steps:

1. We created a new key database, specifying a key database password
using the IKEYMAN software (part of the IBM HTTP Server).

2. We created a new self-signed certificate using IKEYMAN and configured it
as the default certificate in the database.

3. We set up a secure network connection for the IBM HTTP Server and
stored the encrypted database password in a stash file.

4. We registered the server key database with the server. In order to perform
this operation we need to change the configuration file (conf/httpd.conf) in
the following sections (Steps 1, 2, 6 and 8 are not documented in the
documentation that comes with the IBM HTTP Server):

1. Add the LoadModule ibm_ssl_module modules/IBMModuleSSL.dll
statement in order to load the DLL as indicated in the
httpd.conf.sample.ssl file in the IBM HTTP Server conf directory.

2. Change the port number from 80 to 443 (so that the HTTP protocol is
disabled).

3. Ensure that the line Listen 443 is uncommented.

4. Place the host name of the server in the virtual host stanza for port
443.

5. Ensure that the SSLEnable directive is uncommented in the virtual host
stanza.

6. Set the "SSLServerCert CertificateName" directive.

7. Set the Keyfile directive. It belongs outside of the virtual host stanza.

8. Change the Directory directive to whatever has been set in the
DocumentRoot directive.

The Web server will now run with the following settings:

• Support for SSL connections is turned on.

• Port 443 is used for SSL connections and port 80 is disabled.

• Client authentication is disabled.

• The server will use the strongest encryption level supported by both the
client and the server.

Configuring the Web Server
We only had to do one thing to configure the IBM HTTP Server: set the
DocumentRoot directory. We did this by editing the httpd.conf file in the IBM
176 Developing an e-business Application for IBM WebSphere

HTTPServer conf directory and modifying the DocumentRoot property in the
file to point to the root directory of the bank:
/usr/lpp/HTTPServer/share/htdocs/bank.

We then restarted our server in order for the changes to take affect. Under
AIX we stopped and started the server using the command line. Under
Windows NT we stopped and started the service from the Services console.

6.2.2 Deploying the HBA Application Classes
In our HBA application we have several packages in the WebSphere Bank
Application project (Figure 109). We decided to deploy the application
classes as one JAR file and the servlets as individual class files.

Figure 109. WebSphere Bank Application Packages

To create and export the JAR file, select the packages and select
Packages→Export. This brings up the Export SmartGuide. Select the Jar
File radio button and click Next. In the next dialog select the .class checkbox
and specify the full path of the Jar file in the Jar file field. You can export the
Jar file to any directory because they must then be imported into WebSphere
Studio. Click Finish to create and export the Jar file (Figure 110).
Chapter 6. Deploying the Home Banking Application 177

Figure 110. VisualAge SmartGuide

Now the servlets package needs to be exported. Select the servlets package
and select Packages→Export. Select the Directory radio button and click
Next. In the next dialog select the .class checkbox and enter the path where
you want to temporarily store the servlets. Click Finish to export the classes.
178 Developing an e-business Application for IBM WebSphere

Once the JAR file and servlets are exported, simply drag them and the servlet
configuration files into the appropriate folders in WebSphere Studio as shown
in Table 18.

Table 18. WebSphere Studio Code Folders

6.2.3 Deploying the HBA Web Site
The Web site for the HBA application is managed under WebSphere Studio.
WebSphere Studio provides a publishing wizard to deploy the site. In order to
deploy the HBA Web site open it in WebSphere Studio and select the
Publishing view. In the Publishing view select the Assembly Stage that
contains the server that has your publishing targets (Test in our case) and
then select File→Publish Whole Project.

6.2.4 Configuring the WebSphere Application Server
To install WebSphere, refer to the documentation provided at
http://www.software.ibm.com/websphere or the product documentation. After
installing WebSphere we invoked the Administration facility by typing the URL
http://hostname:9527 to access the Administration Login page (Figure 111)
and typed admin/admin for the user name and password.

File(s) WebSphere Studio Folder

bank.jar classes

All servlet class files servlet

All servlet configuration
files

servlet
Chapter 6. Deploying the Home Banking Application 179

Figure 111. WebSphere Administration Page

After logging into WebSphere we need to perform the following operations:

1. Add the bank.jar file to the WebSphere Application Server classpath.

2. Add the BankServlet to the WebSphere Application Server configuration.

3. Configure the BankServlet to load on WebSphere Application Server
startup.

4. Add an implementation parameter to the BankServlet to specify the
implementation we are using.

5. Set the timeout parameter for sessions to 30 minutes.

Add the bank.jar File to the Classpath
To add the BankServlet to WebSphere we need to go to the Servlet
Management facility in WebSphere. From the Introduction page in
WebSphere go to the Java Engine section found under Setup (Figure 112).
180 Developing an e-business Application for IBM WebSphere

Figure 112. Adding bank.jar to the Classpath

Add the full path of bank.jar to the Application Server Classpath field. If you
are working in an NT environment, make sure you use the 8 character DOS
filename conventions for the path and that you end the line with a semicolon.
You will need to restart the server now in order to perform the next step.

Adding the BankServlet to WebSphere Application Server
To add the BankServlet to WebSphere we need to go to the Servlet
Management facility in WebSphere. From the Introduction page in
WebSphere, go to the Servlet Configuration Section found under Servlets
(Figure 113).
Chapter 6. Deploying the Home Banking Application 181

Figure 113. Servlet Configuration Facility

Click on the Add button and you are presented with the Add a New Servlet
dialog (Figure 114). Enter BankServlet for the Servlet Name and
itso.bank.servlet.BankServlet for the Servlet Class and click Add. The servlet
is added to the list of servlets in the Servlet Configuration Facility.
182 Developing an e-business Application for IBM WebSphere

Figure 114. Add a New Servlet Dialog

Create the Implementation Parameter
To create the implementation parameter for the BankServlet select the
BankServlet from the list of servlets in the Servlet Configuration Facility
(Figure 113 on page 182). Then click Add under Servlets Properties. The
cursor starts to blink in the Name Column under Servlets Properties. Enter a
value of "implementation" for the Name. Click on the Value column and enter a
value of "itso.bank.baseimpl". This is the name of the implementation
package. After entering these values, click on the Save button to save the
changes made to the BankServlet.

Load BankServlet on Startup
To instruct WebSphere to load the BankServlet at startup, click on
BankServlet in the Servlet Configuration Facility (Figure 113 on page 182).
Then click the Load at Start radio button. After making these changes, click
on the Save button to save the changes to the servlet and then restart the
server.

Set the Timeout Parameter
To set the timeout on sessions (the amount of time a session is idle before it
is invalidated), select the Intervals tab in the Setup→Session Tracking
page of the WebSphere Administration facility. In the Invalidate Time field
enter 1800000 to set the timeout to 30 minutes or whatever time (in
milliseconds) you have determined as a valid timeout parameter.

The HBA is now ready to be accessed by users.
Chapter 6. Deploying the Home Banking Application 183

184 Developing an e-business Application for IBM WebSphere

Appendix A. HBA Use Cases

The use cases were defined during the analysis stage of HBA development
and differ slightly from the design and implementation models. For example,
use case UC02 was never implemented.

Each use case indicates a sequence of actions performed by this system in
response to an event initiated by an actor to the system. Where not indicated,
the Actor is the Authenticated User.

UC01 - Login/Authentication
Actors: User
Definition:
User enters userid and login password, submits entries
System responds
Uses/Extends: None

UC01A - Successful Login/Authentication
Actors: User
Definition:
User enters userid and login password, submits entries
System responds with the Accounts Menu Screen
Extends: Login/Authentication
Uses: None

UC01B - Unsuccessful Login/Authentication
Actors: User
Definition:
User enters userid and login password, submits entries
System responds with the Login Error screen
Extends: Login/Authentication
Uses: None

UC02 - Get Accounts Menu
Definition:
User chooses the Accounts option
System responds with the Accounts screen
Extends: None
Uses: Login Authentication

UC03 - Get Account Balance
Definition:
User chooses the Account Information option
© Copyright IBM Corp. 1999 185

System responds with the Account Information screen
User chooses an account
User chooses the Account Balance option
System responds with the Account Balance screen
Extends: None
Uses: Login/Authentication; Get Accounts Menu

UC04 - Get Account History
Definition:
User chooses the Account Information option
System responds with the Account Information screen
User chooses an account
User chooses the Account History option
System responds with the Account History screen
Extends: None
Uses: Login/Authentication; Get Accounts Menu

UC05 - Transfer funds between user accounts
Definition:
User chooses the Transfer Funds option
System responds with the Transfer Funds screen
User chooses source account
User chooses target account
User enters amount
User enters the Transaction password
User submits data
System responds
Extends: None
Uses: Login/Authentication; Get Accounts Menu

UC05A - Successful transfer funds between user accounts
Definition:
User chooses the Transfer Funds option
System responds with the Transfer Funds screen
User chooses source account
User chooses target account
User enters amount
User enters the Transaction password
User submits data
System responds with the Funds Transferred screen reporting information
and date as transaction ID
Extends: Transfer funds between user accounts; Get Accounts Menu
Uses: Login/Authentication
186 Developing an e-business Application for IBM WebSphere

UC05B - Unsuccessful transfer funds between user accounts
Definition:
User chooses the Transfer Funds option
System responds with the Transfer Funds screen
User chooses source account
User chooses target account
User enters amount
User enters the Transaction password
User submits data
System responds with the Transfer Funds screen showing an error message
Extends: Transfer funds between user accounts
Uses: Login/Authentication; Get Accounts Menu

UC06 - Pay bill
Definition:
User chooses Pay Bill option
System responds with the Pay Bill screen
User chooses source account
User chooses payee account
User enters amount
User enters the Transaction password
User submits data
System responds
Extends: None
Uses: Login/Authentication; Get Accounts Menu

UC06A - Successful Pay Bill
Definition:
User chooses Pay Bill option
System responds with the Pay Bill screen
User chooses source account
User chooses payee account
User enters amount
User enters the Transaction password
User submits data
System responds with the Bill Paid screen reporting information and date as
transaction ID
Extends: Pay bill
Uses: Login/Authentication; Get Accounts Menu

UC06B - Unsuccessful Pay bill
Definition:
User chooses Pay Bill option
System responds with the Pay Bill screen
Appendix A. HBA Use Cases 187

User chooses source account
User chooses payee account
User enters amount
User enters the Transaction password
User submits data
System responds with the Pay Bill screen showing an error message
Extends: Pay bill
Uses: Login/Authentication; Get Accounts Menu

UC07 - Payee Setup
Definition:
User chooses Pay Bill option
System responds with the Pay Bill screen
User chooses Payee Setup option
System sends the Payee List screen
Extends: None
Uses: Login/Authentication; Get Accounts Menu

UC08 - Payee Setup: add entry
Definition:
User chooses add Payee option
System responds with the Add Payee screen
User chooses an entry from the New Payee List
User submits data
System responds
Extends: None
Uses: Login/Authentication; Get Accounts Menu; Payee Setup

UC08A - Payee Setup: successful add entry
Definition:
User chooses add Payee option
System responds with the Add Payee screen
User chooses an entry from the New Payee List
User submits data
System responds with the updated Modify Payee List screen
Extends: None
Uses: Login/Authentication; Get Accounts Menu; Payee Setup

UC08B - Payee Setup: unsuccessful add entry
Definition:
User chooses add Payee option
System responds with the Add Payee screen
User chooses an entry from the New Payee List
User submits data
188 Developing an e-business Application for IBM WebSphere

System responds with the Add Payee screen showing an error message
Extends: None
Uses: Login/Authentication; Get Accounts Menu; Payee Setup

UC09 - Payee Setup: delete entry
Definition:
User selects the Payee to delete
User chooses delete Payee option
System responds with the Confirm Delete Payee screen
User submits the confirmation
System responds with the updated Payee List screen
Extends: None
Uses: Login/Authentication; Get Accounts Menu; Payee Setup

UC10 - Change passwords
Definition:
User selects the User option
System responds with the User screen
User selects the Change Passwords option
System responds with the Change Password screen
User selects which password to change
User enters the old, new and confirmed new passwords
User submits changes
System Responds
Extends: None
Uses: Login/Authentication

UC10A - Successful change passwords
Definition:
User selects the User option
System responds with the User screen
User selects the Change Passwords option
System responds with the Change Password screen
User selects which password to change
User enters the old, new and confirmed new passwords
User submits changes
System responds with the Accounts screen
Extends: Change passwords
Uses: Login/Authentication

UC10B - Unsuccessful change passwords
Definition:
User selects the User option
System responds with the User screen
Appendix A. HBA Use Cases 189

User selects the Change Passwords option
System responds with the Change Password screen
User selects which password to change
User enters the old, new and confirmed new passwords
User submits changes
System responds with the Change Password screen showing an error
message
Extends: Change passwords
Uses: Login/Authentication

UC11 - Logout
Definition:
User selects Logout option
System logs out user and responds with the Logout screen
Extends: None
Uses: Login/Authentication
190 Developing an e-business Application for IBM WebSphere

Appendix B. Working with the HBA Implementation

This appendix lists the steps involved in deploying the HBA or working with
the HBA code. This appendix assumes that you have the Zip file which is
available from:

ftp://www.redbooks.ibm.com/redbooks/SG245423/

B.1 Deployment

Prerequisites:
WebSphere Application Server Version 2.0
A WebSphere supported Web server

Steps:
To deploy the HBA:

1. Unzip site.zip to the document root directory of your Web Server.

2. Unzip site_code.zip to a temporary directory:

• Copy bank.jar to the AppServer\classes directory of WebSphere.

• Copy the itso directory to the AppServer\servlets directory of
WebSphere. Make sure you are copying both the .class and .servlet
files.

3. Edit the servlets.properties file:

• On NT: AppServer\properties\server\servlet\servletservice (or use the
WebSphere Application Server Administration utility).

• On AIX: IBMWebAS/properties/server/servlet/servletservice

Change the servlets.startup=invoker line to:

servlets.startup=invoker BankServlet.

Add the following lines below # Servlets added by the user:

servlet.BankServlet.code=itso.bank.servlet.BankServlet
servlet.BankServlet.initArgs=implementation=itso.bank.baseimpl

(or use the WebSphere Application Server Administration utility).

4. Edit the bootstrap.properties file in AppServer\properties and add the
bank.jar file to the CLASSPATH.

• For an NT environment: You must use the 8 character naming
convention for this, for example:

f:\WEBSPH~1\APPSER~1\classes\bank.jar;
© Copyright IBM Corp. 1999 191

(or use the WebSphere Application Server Administration utility).

• For an AIX environment, use colons to separate entries.

5. Follow Chapter 6, “Deploying the Home Banking Application” on page 169
for configuring SSL and the Web servers and restart WebSphere and the
Web server.

Removing or Changing the pre-filled User ID and Password fields
Some implementations may only have one level of password authentication.
In that case the login and transaction passwords are the same. If you don’t
want the user ID and password fields pre-filled or you are using a different
implementation you can change them by:

1. Open Login\Login.jsp in the document root directory.

• Search for deepblue

• Change it to the user ID you want or delete it.

• Search for ibmibm

• Change it to the password you want or delete it.

2. Open Accounts\Pay_Bill\pay_bill.jsp

• Search for ibmibm

• Change it to the password you want or delete it.

3. Open Accounts\Transfer_Funds\transfer_funds.jsp

• Search for ibmibm

• Change it to the password you want or delete it.

Notes
If you are deploying on AIX, check the file permissions. The user ID which
runs the Web and application server must be able to access the HBA files
and directories.

Also on AIX, the Java processes started by WebSphere Application Server
must be stopped manually when restarting the server. On NT, shut down the
WebSphere Application Server from the Services dialog.
192 Developing an e-business Application for IBM WebSphere

B.2 Development

Currently, the VisualAge for Java Enterprise and Professional Updates only
work on Windows NT. You must be using VisualAge for Java on Windows NT
in order to develop using the update. We used WebSphere Studio 3.0 Beta 2
to develop the HBA. Other versions may not be compatible.

Prerequisites:
VisualAge for Java Version 2.0
VisualAge for Java Rollup 2
VisualAge for Java Enterprise or Professional Update (only on Windows NT)
NetObjects Fusion Version 4.0
WebSphere Studio Version 3.0 Beta 2

Steps:
Site (HTML and JSP) Development: Open the HBA.war archive using
File→Open Archive in WebSphere Studio.

Servlet and Java Code Development: Extract HBA.dat from java_src.zip and
import the DAT file into VisualAge for Java.

To run the system in VisualAge for Java:

1. Unzip site.zip to the document root directory of your Web Server that you
specified when adding the WebSphere Test Environment to VisualAge for
Java or publish the site using WebSphere Studio.

2. Unzip servlet_config.zip into the WebSphere Test Environment\servlets
directory.

3. Edit the servlets.properties file in ide\project_resources\IBM Websphere
Test Environment\properties\server\servlet\servletservice:

• Change the servlets.startup=invoker line to:
servlets.startup=invoker BankServlet

• Add the following lines below # Servlets added by the user:
servlet.BankServlet.code=itso.bank.servlet.BankServlet
servlet.BankServlet.initArgs=implementation=itso.bank.baseimpl

4. Add the WebSphere Bank Application to the ClassPath of the
ServletRunner.
Appendix B. Working with the HBA Implementation 193

To deploy a new development version:

1. From WebSphere Studio:

• Publish the project to the correct directories for your Web server and
WebSphere Application Server.

2. From VisualAge:

• Export the following packages to bank.jar in the AppServer\classes
directory of WebSphere:

itso.bank.admin
itso.bank.baseimpl
itso.bank.common
itso.bank.util
itso.bank.viewobjects

• Export the itso.bank.servlets class files (not a JAR file) to the
AppServer\servlets directory of WebSphere.

Follow the steps outlined in B.1, “Deployment” on page 191.

The system has a dependency on c:\temp\bank.ser in Windows NT and
/tmp/bank.ser on AIX. If this file cannot be created, the serialization of the
bank will fail.
194 Developing an e-business Application for IBM WebSphere

Appendix C. Special Notices

This publication is intended to help Web application developers to develop
e-business applications using IBM tools. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by WebSphere Application Server, WebSphere Studio, NetObjects
Fusion or VisualAge for Java. See the PUBLICATIONS section of the IBM
Programming Announcement for WebSphere Application Server, WebSphere
Studio and VisualAge for Java for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 1999 195

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

VeriSign is a trademark of VeriSign, Inc.

ColdFusion and Allaire are trademarks of Allaire, Inc.

NetObjects, Fusion and ScriptBuilder are trademarks of NetObjects Inc.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, Visual Source Safe, ASP, Active Server
Pages and the Windows logo are trademarks of Microsoft Corporation in the
United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.

IBM DB2
VisualAge WebSphere
TeamConnection AIX
SP TXSeries
Net.Data
196 Developing an e-business Application for IBM WebSphere

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 201.

• Programming with VisualAge for Java Version 2.0, SG24-5264

• IBM WebSphere and VisualAge for Java Database Integration with DB2,
Oracle, and SQL Server, SG24-5471

• Enterprise JavaBeans Development Using VisualAge for Java, SG24-5429

• VisualAge for Java Enterprise Version 2: Persistence Builder with GUIs,
Servlets, and Java Server Pages, SG24-5426

• VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265

• VisualAge for Java Enterprise Version 2 Team Support, SG24-5245

• Application Development with VisualAge for Java Enterprise, SG24-5081

• Internet Security in the Network Computing Framework, SG24-5220

• Java Network Security, SG24-2109
© Copyright IBM Corp. 1999 197

D.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

D.3 Other Publications

These publications are also relevant as further information sources:

• Akerley, John, Nina Li and Antonello Parlavecchia. 1999. Programming
with VisualAge for Java Version 2.0. Englewood Cliffs, NJ; Prentice Hall;
ISBN 0-13-021298-9

• Asbury, Stephen and Scott R. Weiner. 1999. Developing Java Enterprise
Applications. New York, NY; John Wiley; ISBN 0-471-32756-5

• Booch, Grady. 1994. Object-Oriented Analysis and Design with
Applications (Addison-Wesley Object Technology Series), Reading, MA;
Addison-Wesley Publishing Company; ISBN 0805353402

• Cheswick, William R. and Steven M. Bellovin. 1994. Firewalls and Internet
Security : Repelling the Wily Hacker. Reading, MA; Addison-Wesley
Publishing Company; ISBN 0201633574

• Flanagan, David. 1997. Java in a Nutshell; A Desktop Quick Reference,
Sebastopol, CA; O'Reilly & Associates; ISBN 156592262X

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
198 Developing an e-business Application for IBM WebSphere

• Fowler, Martin, Kendall Scott (Contributor) and Ivar Jacobson. 1997. Uml
Distilled ; Applying the Standard Object Modeling Language.Reading, MA;
Addison-Wesley Publishing Company; ISBN 0-201-32563-2

• Gamma Erich, Richard Helm, Ralph Johnson and John Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software, Reading, MA;
Addison-Wesley Publishing Company; ISBN 0-201-63361-2

• Garfinkel, Simson and Gene Spafford. 1997. Web Security and
Commerce. Sebastopol, CA; O'Reilly & Associates; ISBN 1-56592-269-7

• Grand, Mark. 1998. Patterns in Java. New York, NY; John Wiley; ISBN
0-471-25839-3

• Horstmann, Cay S. and Gary Cornell. 1997. Core Java 1.1; Fundamentals,
Englewood Cliffs, NJ; Prentice Hall; ISBN 0137669577

• Horstmann, Cay S. and Gary Cornell. 1997. Core Java 1.1; Advanced
Features, Englewood Cliffs, NJ; Prentice Hall; ISBN 0137669658

• Hunter Jason and William Crawford. 1998. Java Servlet Programming,
Sebastopol, CA; O'Reilly & Associates; ISBN 1-56592-391-X

• Jacobson, Ivar. 1992. Object-Oriented Software Engineering ; A Use Case
Driven Approach, Reading, MA; Addison-Wesley Publishing Company;
ISBN 0201544350

• Moss, Karl. 1998. Java Servlets, New York, NY; Computing McGraw-Hill,
ISBN 0-07-913779-2

• Naughton, Patrick and Herbert Schildt. 1998. Java The Complete
Reference.New York, NY; Osborne McGraw-Hill, ISBN 0-07-882231-9

• Nilsson Dale and Peter Jakab. 1999. Developing JavaBeans Using
VisualAge for Java. New York, NY; John Wiley; ISBN 0-471-29788-7

• Rumbaugh, James et al. 1991. Object-Oriented Modeling and Design,
Englewood Cliffs, NJ; Prentice Hall; ISBN 0136298419

• Taylor, Chris and Tim Kimmet. 1998. Core Java Web Server. Englewood
Cliffs, NJ; Prentice Hall; ISBN 0-13-080559-9

• Bayeh, Elias. 1998. The WebSphere Application Server architecture and
programming model. IBM Systems Journal Vol 37, No. 4, 1998
www.research.ibm.com/journal
Appendix D. Related Publications 199

D.4 Product Documentation

The following product documentation was helpful during the project:

VisualAge for Java
• Online product documentation

• PDF documentation:

JSP/Servlet Development Environment

Team Programming

• Web sites:

www.software.ibm.com/ad/vajava
www.software.ibm.com/vadd

WebSphere Application Server
• Online product documentation

• Bayeh, Elias. 1998. The WebSphere Application Server architecture and
programming model. IBM Systems Journal Vol 37, No. 4, 1998
www.research.ibm.com/journal

• Web sites:

www.software.ibm.com/webservers

WebSphere Studio
• Web sites:

www.software.ibm.com/webservers

NetObjects Fusion
• Web sites:

www.netobjects.com
200 Developing an e-business Application for IBM WebSphere

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 201

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
202 Developing an e-business Application for IBM WebSphere

Glossary

This glossary defines terms and abbreviations that
are used in this book. If you do not find the term you
are looking for, refer to the IBM Dictionary of Com-
puting, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Standard Dictionary for Infor-
mation Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the Ameri-
can National Standards Institute, 1430 Broadway,
New York, New York 10018.

A
abstract class. A class that provides common
behavior across a set of subclasses but is not itself
designed to have instances. An abstract class rep-
resents a concept; classes derived from it represent
implementations of the concept. See also base
class.

access modifier. A keyword that controls access to
a class, method, or attribute. The access modifiers
in Java are public, private, protected, and package,
the default.

accessor methods. Methods that an object pro-
vides to define the interface to its instance vari-
ables. The accessor method to return the value of
an instance variable is called a get method or getter
method, and the mutator method to assign a value
to an instance variable is called a set method or set-
ter method.

applet. A Java program designed to run within a
Web browser. Contrast with application.

application. In Java programming, a self-con-
tained, stand-alone Java program that includes a
main() method. Contrast with applet.

application programming interface (API). A soft-
ware interface that enables applications to commu-
nicate with each other. An API is the set of
programming language constructs or statements
that can be coded in an application program to
obtain the specific functions and services provided
by an underlying operating system or service pro-
gram.

argument. A data element, or value, included as a
parameter in a method call. Arguments provide
additional information that the called method can
use to perform the requested operation.

associated. In WebSphere Studio, a file that is
marked as belonging to a site. Associated files dis-
play as non-dimmed icons in the File View.

attribute. A specification of an element of a class.
For example, a customer bean could have a name
attribute and an address attribute.

B
base class. A class from which other classes or
beans are derived. A base class may itself be
derived from another base class. See also abstract
class.

bean. A definition or instance of a JavaBeans com-
ponent. See also JavaBeans.

BeanInfo. (1) A companion class for a bean that
defines a set of methods that can be accessed to
retrieve information on the bean’s properties,
events, and methods. (2) In the VisualAge for Java
IDE, a page in the Class Browser that provides
bean information.

beans palette. In the Visual Composition Editor, a
pane that contains beans that you can select and
manipulate to create programs. You can add your
own categories and beans to the beans palette.

break point. A point in a computer program where
the execution will be halted.

browser. (1) In VisualAge for Java, a window that
provides information about program elements.
There are browsers for projects, packages, classes,
methods, and interfaces. (2) An Internet-based tool
that lets user browse Web sites.

C
category. In the Visual Composition Editor, a
selectable grouping of beans on the palette. Select-
ing a category displays the beans belonging to that
category. See also beans palette.
203

child. In WebSphere Studio, a file that is referenced
by another file.

class. A template that defines properties, opera-
tions, and behavior for all instances of that tem-
plate.

class hierarchy. The relationships among classes
that share a single inheritance. All Java classes
inherit from the Object class.

class library. A collection of classes.

class method. See method.

CLASSPATH. (1) In VisualAge for Java the lists of
pathnames which will be searched for dynamically
loaded classes, BeanInfo information and external
source for debugging. (2) In your deployment envi-
ronment, the environment variable that specifies the
directories in which to look for class and resource
files.

client/server. The model of interaction in distrib-
uted data processing where a program at one loca-
tion sends a request to a program at another
location and awaits a response. The requesting
program is called a client, and the answering pro-
gram is called a server.

Class Browser. In the VisualAge for Java IDE, a
tool used to browse the classes loaded in the work-
space.

component model. An architecture and an API
that allows developers to define reusable segments
of code that can be combined to create a program.
VisualAge for Java uses the JavaBeans component
model.

composite bean. A bean that is composed of other
beans. A composite bean can contain visual beans,
nonvisual beans, or both. See also bean, nonvisual
bean, and visual bean.

concrete class. A non-abstract subclass of an
abstract class that is a specialization of the abstract
class.

connection. In the Visual Composition Editor, a
visual link between two components that represents
the relationship between the components. Each
connection has a source, a target, and other prop-

erties. See also event-to-method connection,
parameter connections, and property-to-property
connection.

console. In VisualAge for Java, the window that
acts as the standard input (System.in) and standard
output (System.out) device for programs running in
the VisualAge for Java IDE.

construction from parts. A software development
technology in which applications are assembled
from existing and reusable software components,
known as parts. In VisualAge for Java, parts are
called beans.

constructor. A special class method that has the
same name as the class and is used to construct
and possibly initialize objects of its class type.

container. A component that can hold other com-
ponents. In Java, examples of containers include
Applets, Frames, and Dialogs. In the Visual Compo-
sition Editor, containers can be graphically repre-
sented and generated.

current edition. The edition of a program element
that is currently in the workspace. See also open
edition.

custom link. In WebSphere Studio, a relationship
between files that you identify and WebSphere Stu-
dio does not automatically recognize.

D
DNS. See “domain name server.”

demarshal. To deconstruct an object so that it can
be written as a stream of bytes. Synonym for flatten
and serialize.

deserialize. To construct an object from a de-mar-
shaled state. Synonym for marshal and resurrect.

domain. A domain name server (DNS) or Internet
protocol (IP) address, for example, soft-
ware.ibm.com or 123.45.67.8.

domain name server. A system for translating
domain names such as www.software.ibm.com into
numeric Internet protocol addresses such as
123.45.67.8.
204 Developing an e-business Application for IBM WebSphere

double-byte character set (DBCS). A set of char-
acters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require dou-
ble-byte character sets. Compare with single-byte
character set.

dynamic information. Information that is created
at the time the user requests it. Dynamic informa-
tion changes over time so that each time users view
it, they see different content.

E
edition. A specific “cut” of a program element. Visu-
alAge for Java supports multiple editions of pro-
gram elements. See also current edition, open
edition, and versioned edition.

encapsulation. The hiding of a software object’s
internal representation. The object provides an
interface that queries and manipulates the data
without exposing its underlying structure.

event. An action by a user program, or a specifica-
tion of a notification that may trigger specific behav-
ior. In JDK 1.1, events notify the relevant listener
classes to take appropriate actions.

event-to-method connection. A connection from
an event generated by a bean to a method of a
bean. When the connected event occurs, the
method is executed. See also connection.

F
FTP. See “file transfer protocol.”

factory. A nonvisual bean capable of dynamically
creating new instances of a specified bean.

feature. (1) A component of VisualAge for Java that
is installed separately using the QuickStart. (2) A
method, field, or event that is available from a
bean’s interface and to which other beans can con-
nect.

field. See attribute

file transfer protocol. An international standard for
transferring files from one computer to another
across a network.

File View. In WebSphere Studio, graphical repre-
sentation of all the files in your site arranged in fold-
ers.

flatten. Synonymous with demarshal.

Folder. In WebSphere Studio, a group of related
files.

free-form surface. The open area of the Visual
Composition Editor where you can work with visual
and nonvisual beans. You add, remove, and con-
nect beans on the free-form surface.

G
generated link. In WebSphere Studio, a link that is
created by WebSphere Studio based on the param-
eters of a code file.

graphical user interface (GUI). A type of interface
that enables users to communicate with a program
by manipulating graphical features, rather than by
entering commands. Typically, a GUI includes a
combination of graphics, pointing devices, menu
bars and other menus, overlapping windows, and
icons.

H
HTML. See “hypertext markup language.”

HTTP. See “hypertext transfer protocol.”

home page. See “start page.”

hyperlinks. Areas on a Web page that, when
clicked, connect you to other areas on the page or
other Web pages.

Hypertext Markup Language (HTML). The basic
language that is used to build hypertext documents
on the World Wide Web. It is used in basic, plain
ASCII-text documents, but when those documents
are interpreted, or rendered, by a Web browser
such as Netscape, the document can display for-
205

matted text, color, a variety of fonts, graphical
images, special effects, hypertext jumps to other
Internet locations, and information forms.

Hypertext Transfer Protocol (HTTP). The protocol
for moving hypertext files across the Internet.
Requires an HTTP client program on one end, and
an HTTP server program on the other end. HTTP is
the most important protocol used in the World Wide
Web.

I
IDE. See Integrated Development Environment.

IP. See “Internet protocol address.”

IP number. An Internet address that is a unique
number consisting of four parts separated by dots,
sometimes called a dotted quad (for example:
198.204.112.1). Every Internet computer has an IP
number, and most computers also have one or
more domain names that are mappings for the dot-
ted quad.

Import Wizard. A WebSphere Studio feature that
copies an existing Web site into the WebSphere
Studio environment.

inheritance. (1) A mechanism by which an object
class can use the attributes, relationships, and
methods defined in classes related to it (its base
classes). (2) An object-oriented programming tech-
nique that allows you to use existing classes as
bases for creating other classes.

inside link. In WebSphere Studio, a file within a
WebSphere Studio site that links to other files in the
site.

instance. Synonym for object, a particular instantia-
tion of a data type.

integrated development environment (IDE). In
VisualAge for Java, the set of windows that provide
the user with access to development tools. The pri-
mary windows are Workbench, Class Browser, Log,
Console, Debugger, and Repository Explorer.

interchange file. A file that you can export from
VisualAge for Java that contains information about
selected projects or packages. This file can then be
imported into any VisualAge for Java session.

interface. A named set of method declarations that
is implemented by a class. The Interface page in
the Workbench lists all interfaces in the workspace.

Internet. The collection of interconnected networks
that use TCP/IP and evolved from the ARPANET of
the late 1960s and early 1970s.

Internet Protocol (IP). The protocol that provides
basic Internet functions.

Internet protocol address. A numeric address that
uniquely identifies every computer connected to a
network. For example, 123.45.67.8

intranet. A private network, inside a company or
organization, that uses the same kinds of software
that you would find on the public Internet. Many of
the tools used on the Internet are being used in pri-
vate networks; for example, many companies have
Web servers that are available only to employees.

J
JDBC. In JDK 1.1, the specification that defines an
API that enables programs to access databases
that comply with this standard.

Java. A programming language invented by Sun
Microsystems that is specifically designed for writ-
ing programs that can be safely downloaded to your
computer through the Internet and immediately run
without fear of viruses or other harm to your com-
puter or files.

Java archive (JAR). A platform-independent file
format that groups many files into one. JAR files are
used for compression, reduced download time, and
security.

JavaBeans. The specification that defines the plat-
form-neutral component model used to represent
parts. Instances of JavaBeans (often called beans)
may have methods, properties, and events.

K
keyword. A predefined word reserved for Java, for
example, return, that may not be used as an identi-
fier.
206 Developing an e-business Application for IBM WebSphere

L
listener. In JDK 1.1, a class that receives and han-
dles events.

local area network (LAN). A computer network
located on a user’s establishment within a limited
geographical area. A LAN typically consists of one
or more server machines providing services to a
number of client workstations.

log. In VisualAge for Java, the window that displays
messages and warnings during development.

M
MIME type(Multi-purpose Internet Mail Exten-
sions). An international standard for categorizing
types of Web files such as text and images.

MVC. See Model View Controller.

marshal. Synonymous with deserialize.

message. A communication from one object to
another that requests the receiving object to exe-
cute a method. A method call consists of a method
name that indicates the requested method and the
arguments to be used in executing the method. The
method call always returns some object to the
requesting object as the result of performing the
method. Synonym for method call.

method. A fragment of Java code within a class
that can be invoked and passed a set of parameters
to perform a specific task.

method call. Synonymous with message.

model. A nonvisual bean that represents the state
and behavior of an object, such as a customer or an
account. Contrast with view.

Model View Controller. An application architecture
which separates the components of the application:
the model represents the business logic or data; the
view represents the user interface and the control-
ler manages user input, or, in some cases the appli-
cation flow.

mutator methods. Methods that an object provides
to define the interface to its instance variables. The
accessor method to return the value of an instance
variable is called a get method or getter method,
and the mutator method to assign a value to an
instance variable is called a set method or setter
method.

N
named package. In the VisualAge for Java IDE, a
package that has been explicitly named and cre-
ated.

nesting. In WebSphere Studio, the number of
folder levels beneath other folders. One level of
folders gives you a “nesting” of one. If that folder
contains other folders, you have a nesting of two
and so on.

nonvisual bean. In the Visual Composition Editor,
a bean that has no visual representation at run
time. A nonvisual bean typically represents some
real-world object that exists in the business environ-
ment. Compare with model. Contrast with view and
visual bean.

O
ODBC driver. An ODBC driver is a dynamic link
library that implements ODBC function calls and
interacts with a data source.

object. (1) A computer representation of something
that a user can work with to perform a task. An
object can appear as text or an icon. (2) A collection
of data and methods that operate on that data,
which together represent a logical entity in the sys-
tem. In object-oriented programming, objects are
grouped into classes that share common data defi-
nitions and methods. Each object in the class is
said to be an instance of the class. (3) An instance
of an object class consisting of attributes, a data
structure, and operational methods. It can represent
a person, place, thing, event, or concept. Each
instance has the same properties, attributes, and
methods as other instances of the object class,
although it has unique values assigned to its
attributes.
207

object class. A template for defining the attributes
and methods of an object. An object class can con-
tain other object classes. An individual representa-
tion of an object class is called an object.

object-oriented programming (OOP). A program-
ming approach based on the concepts of data
abstraction and inheritance. Unlike procedural pro-
gramming techniques, object-oriented program-
ming concentrates on those data objects that
constitute the problem and how they are manipu-
lated, not on how something is accomplished.

Open Database Connectivity (ODBC). A
Microsoft-developed C database API that allows
access to database management systems calling
callable SQL, which does not require the use of an
SQL preprocessor. In addition, ODBC provides an
architecture that allows users to add modules (data-
base drivers) that link the application to their choice
of database management systems at run time.
Applications no longer need to be directly linked to
the modules of all the database management sys-
tems that are supported.

open edition. An edition of a program element that
can still be modified; that is, the edition has not
been versioned. An open edition may reside in the
workspace as well as in the repository.

operation. A method or service that can be
requested of an object.

outside link. In WebSphere Studio, a link to a file
that is located outside the current Web site.

P
package. A program element that contains related
classes and interfaces.

palette. See beans palette.

parameter connection. A connection that satisfies
a parameter of an action or method by supplying
either a property’s value or the return value of an
action, method, or script. The parameter is always
the source of the connection. See also connection.

parent. In WebSphere Studio, a file that contains a
reference to another file.

parent class. The class from which another bean
or class inherits data, methods, or both.

part. An existing, reusable software component. In
VisualAge for Java, all parts created with the Visual
Composition Editor conform to the JavaBeans com-
ponent model and are referred to as beans. See
also nonvisual bean and visual bean.

primitive bean. A basic building block of other
beans. A primitive bean can be relatively complex in
terms of the function it provides.

private. In Java, an access modifier associated
with a class member. It allows only the class itself to
access the member.

process. A collection of code, data, and other sys-
tem resources, including at least one thread of exe-
cution, that performs a data processing task.

program. In VisualAge for Java, a term that refers
to both Java applets and applications.

program element. In VisualAge for Java, a term
referring to any of the entities under source control.
Program elements are projects, packages, classes,
interfaces, or methods.

project. In VisualAge for Java, the topmost kind of
program element. A project contains Java pack-
ages.

promotion. Within a JavaBean, to make features of
a contained bean available to be used for making
connections. For example, a bean consisting of
three push buttons on a panel. If this bean is placed
in a frame, the features of the push buttons would
have to be promoted to make them available from
within the frame.

property. An initial setting or characteristic of a
bean; for example, a name, font, text, or positional
characteristic.

property sheet. In the Visual Composition Editor, a
set of name-value pairs that specify the initial
appearance and other bean characteristics.

property-to-property connection. A connection
from a property of one bean to a property of another
bean. See also connection.
208 Developing an e-business Application for IBM WebSphere

protected. In Java, an access modifier associated
with a class member. It allows the class itself, sub-
classes, and all classes in the same package to
access the member.

protocol. (1) The set of all messages to which an
object will respond. (2) Specification of the structure
and meaning (the semantics) of messages that are
exchanged between a client and a server. (3) Com-
puter rules that provide uniform specifications so
that computer hardware and operating systems can
communicate.

prototype. A method declaration or definition that
includes the name of the method, the return type
and the types of its arguments. Contrast with signa-
ture.

publishing. In WebSphere Studio, the process of
copying your site’s files to Web servers.

Publishing View . In WebSphere Studio, a graphi-
cal representation of the stages (for example Test
or Production) where you define the layout of your
Web servers and identify the files you want in your
Web site.

R
Relations View. In WebSphere Studio, a graphical
representation of each file in your site and the links
between those files.

Remote Method Invocation (RMI). In JDK 1.1, the
API that enables you to write distributed Java pro-
grams, allowing methods of remote Java objects to
be accessed from other Java virtual machines.

repository. In VisualAge for Java, the storage area,
separate from the workspace, that contains all edi-
tions (both open and versioned) of all program ele-
ments that have ever been in the workspace,
including the current editions that are in the work-
space. You can add editions of program elements to
the workspace from the repository.

Repository Explorer. In VisualAge for Java, the
window from which you can view and compare edi-
tions of program elements that are in the repository.

resource file. A file that is referred to from your
Java program. Examples include graphics and
audio files.

Resources folder. In WebSphere Studio, the
folder that physically holds a site’s folders and files.

resurrect. Synonymous with deserialize.

RMI compiler. The compiler that generates stub
and skeleton files that facilitate RMI communica-
tion. This compiler can be automatically invoked
from the Tools menu item.

RMI registry. A server program that allows remote
clients to get a reference to a server bean.

S
Scrapbook. In VisualAge for Java, the window
from which you can write and test fragments of
code, without having to define an encompassing
class or method.

serialize. Synonymous with demarshal.

signature. The part of a method declaration con-
sisting of the name of the method and the number
and types of its arguments. Contrast with prototype.

single-byte character set. A set of characters in
which each character is represented by a 1- byte
code.

SmartGuide. In IBM software products, an inter-
face that guides you through performing common
tasks.

source link. In WebSphere Studio, a link you cre-
ate to identify the source file of a publishable file.

Start page. The first page a user sees when brows-
ing a Web site, also known as the “home page.”

static information. Web files that do not change on
every access.

sticky. In the Visual Composition Editor, the mode
that enables an application developer to add multi-
ple beans of the same class (for example, three
push buttons) without going back and forth between
the beans palette and the free-form surface.

superclass. See abstract class and base class.
209

T
tear-off property. A property that a developer has
exposed as a variable to work with as though it
were a stand-alone bean.

thread. A unit of execution within a process.

type. In VisualAge for Java, a generic term for a
class or interface.

U
URL . See “uniform resource locator.”

Unicode. A character coding system designed to
support the interchange, processing, and display of
the written texts of the diverse languages of the
modern world. Unicode characters are typically
encoded using 16-bit integral unsigned numbers.

uniform resource locator (URL). A standard iden-
tifier for a resource on the World Wide Web, used
by Web browsers to initiate a connection. The URL
includes the communications protocol to use, the
name of the server, and path information identifying
the objects to be retrieved on the server.

user interface (UI). (1) The hardware, or software,
or both that enables a user to interact with a com-
puter. (2) The term user interface typically refers to
the visual presentation and its underlying software
with which a user interacts.

V
variable. (1) A storage place within an object for a
data feature. The data feature is an object, such as
number or date, stored as an attribute of the con-
taining object. (2) A bean that receives an identity at
run time. A variable by itself contains no data or
program logic; it must be connected such that it
receives run-time identity from a bean elsewhere in
the application.

versioned edition. An edition that has been ver-
sioned and can no longer be modified.

versioning. The act of making an open edition a
versioned edition; that is, making the edition
read-only.

view. (1) A visual bean, such as a window, push
button, or entry field. (2) A visual representation that
can display and change the underlying model
objects of an application. Views are both the end
result of developing an application and the basic
unit of composition of user interfaces. Compare
with visual bean. Contrast with model.

visual bean. In the Visual Composition Editor, a
bean that is visible to the end user in the graphical
user interface. Compare with view. Contrast with
nonvisual bean.

visual programming tool. A tool that provides a
means for specifying programs graphically. Applica-
tion programmers write applications by manipulat-
ing graphical representations of components.

Visual Composition Editor. In VisualAge for Java,
the tool where you can create graphical user inter-
faces from prefabricated beans and define relation-
ships (connections) between both visual and
nonvisual beans. The Visual Composition Editor is
a page in the class browser.

W
Web application. A software system that is
designed to automate a business process and is
delivered on intranets or the Internet.

Workbench. In VisualAge for Java, the main win-
dow from which you can manage the workspace,
create and modify code, and open browsers and
other tools.

workspace. The work area that contains all the
code you are currently working on (that is, current
editions). The workspace also contains the stan-
dard Java class libraries and other class libraries.
210 Developing an e-business Application for IBM WebSphere

List of Abbreviations

ANSI American National Standards Institute

API application programming interface

ATM automated teller machine

AWT Abstract Windowing Toolkit

CAE Client Access Enabler

URL uniform resource locator

CLI call level interface

DB2 DATABASE 2

DBCS double-byte character set

DBMS database management system

DLL dynamic link library

DNS domain name server

DRDA Distributed Relational Database Archi-
tecture

ECD edit-compile-debug

ECI external call interface

FTP File Transfer Protocol

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines Corpo-
ration

IDE integrated development environment

IDL interface definition language

IIOP Internet inter-ORB protocol

IMS Information Management System

IOR interoperable object reference

ITSO International Technical Support Organi-
zation

JAR Java archive

JDK Java Developer’s Kit

JNI Java Native Interface

JVM Java Virtual Machine

LAN local area network

MOFW managed object framework
© Copyright IBM Corp. 1999
MVS Multiple Virtual Storage

NLS National Language Support

NT new technology

ODBC Open Database Connectivity

OMG Object Management Group

OMT object modeling technique

OO object-oriented

OOA object-oriented analysis

OOD object-oriented design

ORB Object Request Broker

OS/2 Operating System/2

OTS object transaction service

PIN personal identification number

RAD rapid application development

RDBMS relational database management system

RMI Remote Method Invocation

SBCS single-byte character set

SDK Software Developer’s Kit

SQL structured query language

TCP/IP Transmission Control Protocol/Internet
Protocol

TP transaction processing

UOW unit of work

URL uniform resource locator

WWW World Wide Web
211

212 Developing an e-Business Application for WebSphere

Index

A
Account Balance JSP 41, 130
Account History JSP 40, 130
Account Information JSP 40, 41, 129
Account Information subsystem 122
Accounts JSP 39, 41, 44, 45, 54, 116, 122, 133
AccountServlet class 127
AccountServlet object 40, 41
AccountViewList bean 40
Active Server Pages 4
adaptor pattern 106
Add Payee JSP 43, 158
Already Logged In HTML page 122
Application Framework for e-business 1
Application Manager 109
ArrayOutofBoundsException class 15
authentication 16, 19

B
Bank interface 100
BankAccount interface 100
BankAccountImpl class 107
BankAccountView class 107
BankCollection class 101
BankHome class 101
BankServlet 109
BankServlet class 111, 112, 183
BankSystem interface 100
BEAN tag 12
Bill Paid JSP 42, 132, 143
Bill Payment Subsystem 131
BillPaymentServlet class 134, 141

C
CacheControl class 166
caching 21
callPage method 15, 139, 147
Certificate Authority 169
Change Password JSP 45, 166
ChangePasswordServlet class 162
ChangePasswordServlet object 45
CheckingAccount interface 100
client side digital certificate 21
ColdFusion 4
com.ibm.servlet package
© Copyright IBM Corp. 1999
PageListServlet class 105
SERunner class 74

com.sun.server.http package
HttpServiceRequest class 15
HttpServiceResponse class 15

command pattern 33
Common Gateway Interface 4
confidentiality 19, 20
cookies 17, 97
CORBA 2
Customer interface 100
CustomerView 110
CustomerView bean 39

D
Data Encryption Standard 20
DeletePayee JSP 159
DES 20
digital certificates 21, 169
Document Root directory 65
DocumentRoot directive 177
domain firewall 32, 99
dynamic pages 4

E
EBAF 2
encryption 20
Enterprise JavaBeans 2

F
Formatter class 167
Funds Transferred JSP 44, 145, 149

H
hidden form fields 17
Home Banking Application

Account Balance subsystem 40
Account History subsystem 40
Account Information subsystem 38
Add Payee subsystem 42
analysis object model 26
Application Manager 38
business model access 32
business model implementation 103
213

client-server interaction 32, 34
Customer object 39
Delete Payee subsystem 43
error handling 37
implementation 103
JavaServer Page design 32, 36
Login subsystem 39
Pay Bill subsystem 41
Payee Setup subsystem 42
prototype 26
requirements 23
security model 28
subsystem design 28
Transfer Funds subsystem 44
use cases 24
User subsystem 44

HTML
forms 6
hidden form fields 17
pages

Already Logged In 122
Unsuccessful Login 39, 116, 122

HTTP 18
HTTP header 22
HTTPServer class 72
HTTPSession 109

I
IBM HTTP Server 169
IKEYMAN 176
INSERT tag 14
integrity 20
ISAPI 4
ITSO Bank Error JSP 122
itso.bank.baseimpl package 183
itso.bank.common package

Bank interface 100
BankAccount interface 100
BankCollection class 101
BankHome class 101
BankSystem interface 100
BankTransactionException class 101
CheckingAccount interface 100
Customer interface 100
InvalidPasswordException class 101
InvalidPinException class 101
ITSOBankCommunicationException class 101
ITSOBankException class 101

NotImplementedException class 101
PayeeAccount interface 100
SavingsAccount interface 100
TransactionRecord interface 100
UnauthorizedException class 101

itso.bank.servlet
BankServlet 109, 111

itso.bank.servlet package
AccountServlet class 127
BankServlet class 111, 112, 183
BillPaymentServlet class 134, 141
ChangePasswordServlet class 162
LoginServlet class 119
MoneyTransferServlet class 133, 135
PayeeServlet class 154
TransferFundsServlet class 148

itso.bank.util package
CacheControl class 166
Formatter class 167
XMLConfigUtil class 168

itso.bank.viewobjects
CustomerView 110

itso.bank.viewobjects package
AccountView class 130
BankAccountView class 107, 108
BankAccountViewList class 110, 128
CustomerView class 108, 110, 118, 121, 128
TransactionRecordView class 107

ITSOBankCommunicationException class 101
ITSOBankException class 101

J
Java Servlet Development Kit 7, 72
JavaServer Pages

Account Balance 41, 130
Account History 40
Account Information 40, 41
Accounts 39, 41, 44, 54, 116, 122, 133
Add Payee 43, 158
API 15
BEAN tag 12
Bill Paid 42, 143
Change Password 45, 166
declarations 10
Delete Payee 159
directives 10
elements 10
expressions 11
214 Developing an e-business Application for IBM WebSphere

Funds Transferred 44, 145, 149
in WebSphere 87
INSERT tag 14
introduction 5, 10
ITSO Bank Error 122
Login 122
Logout 38, 114
Not Logged In 111
Pay Bill 41, 42, 143
Payee Setup 42, 43
PayeeSetup 158
REPEAT tag 15
scriptlets 11
specification 10, 37, 87
tags 11, 36
Transfer Funds 149
User 166

javax.servlet package
GenericServlet class 9
introduction 7
ServletConfig class 9
ServletContext class 9
ServletRequest class 9
ServletResponse class 9

javax.servlet.http package
HttpServletRequest class 9
HttpServletResponse class 9
HttpSession class 15
introduction 7

JSDK 7
JSP Execution Monitor

introduction 77
using 80

JSP Page Compile Generated Code project 76

L
Login JSP 122
Login Subsystem 115
LoginServlet class 119
LoginServlet object 39
Logout JSP 38, 114

M
MAC 20
message authentication code 20
META tags 22
Model/View/Controller architecture 5, 34
multitier architecture 3

N
Net.Data 4
NetObjects Fusion

custom templates 51
MasterBorders 51
prototyping with 26, 48, 50
Publishing Wizard 54

NetObjects ScriptBuilder 57
Netscape Enterprise Server 169
non-repudiation 19, 20
Not Logged In JSP 111
NotImplementedException class 101
NSAPI 4

P
PageListServlet class 105
Pay Bill JSP 41, 42, 131, 143
Payee Setup JSP 42, 43, 158
Payee Subsystem 149
PayeeAccount interface 100
PayeeServlet object 43
private key 21
proxy servers 21, 22
public key 21
putValue method 15

R
Rational Rose 50
REPEAT tag 15

S
SavingsAccount interface 100
scripting languages 4
Secure Sockets Layer 20, 169
security

introduction 19
sendRedirect method 110, 139
serialization 103
SERunner class 74
server plug-in technologies 4
server side digital certificate 21
SERVLET tag 38, 68, 111
Servlets

XML Configuration 105
servlets

accessing 6
debugging 72
215

destroy method 9
doGet method 9
doPost method 9
getServletConfig method 9
getServletInfo method 9
init method 8
introduction 4
life cycle 7
service method 8
Servlet API 6, 7, 18
SERVLET tag 6
ServletConfig class 9
ServletContext class 9
session management 18

session management 109
setAttribute method 15
Software Configuration Management 48
SSL 20
sun.servlet.http package

HttpRequest class 15
HTTPServer class 72, 73

T
TCP/IP 20
TransactionRecord interface 100
Transfer Funds JSP 44, 149
Transfer Funds Subsystem 144
TransferFundsServlet object 44

U
Unsuccessful Login HTML page 39, 116, 122
URL rewriting 18, 97
User JSP 45, 166
User subsystem 159

V
VeriSign 169
VisualAge Developers Domain 73
VisualAge for Java

introduction 71
source control 48

W
Web application 3
Web programming model 3
WebSphere Application Server

connection management 96

debugging 92
introduction 85
Server Manager 87
sessions 97

WebSphere Studio
Applet Designer 57
creating links 68
File View 57
import 48, 62
introduction 57
link types 58
Page Designer 60
Publishing View 58
Relations View 57
Report Generation 58
source control 48
Views 57
Web Development Workbench 57

WebSphere Test Environment
errors 75
generated code 80
initialization 75
introduction 73
usage in HBA development 49

X
XML 37
XMLConfigUtil class 168
216 Developing an e-business Application for IBM WebSphere

© Copyright IBM Corp. 1999 217

ITSO Redbook Evaluation

Developing an e-business Application for the IBM WebSphere Application Server
SG24-5423-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5423-00

D
eveloping

an
e-b

usin
ess

A
pplication

for
the

IB
M

W
ebSph

ere
A

pplication
Server

S
G

24-5423-00

	Contents
	Figures
	Tables
	Preface
	What You Should Know
	The Team That Wrote This Redbook
	Product Service and Support
	Redbook Code and Updates
	Comments Welcome

	Chapter 1. Introduction
	Chapter 2. A Web Programming Primer
	2.1 The Web Programming Model
	2.2 Dynamic Page Generation
	2.3 Servlets
	2.3.1 Accessing Servlets
	2.3.2 The Java Servlet API
	2.3.3 The Servlet Life Cycle

	2.4 JavaServer Pages
	2.4.1 JavaServer Pages Specification
	2.4.2 JavaServer Pages Elements
	2.4.3 JavaServer Pages API
	2.4.4 How JavaServer Pages Work

	2.5 Maintaining State in Web Applications
	2.5.1 Web Server Authentication
	2.5.2 Hidden Form Fields
	2.5.3 Cookies
	2.5.4 URL Rewriting
	2.5.5 Servlet Session Management

	2.6 Web Security
	2.6.1 Authentication
	2.6.2 Confidentiality
	2.6.3 Integrity
	2.6.4 Non-repudiation

	2.7 Caching

	Chapter 3. Designing the Home Banking Application
	3.1 Application Requirements
	3.2 System Requirements
	3.3 Use Cases
	3.4 Application Prototype
	3.5 Analysis Object Model
	3.6 Subsystem Design
	3.7 Security Model
	3.8 HBA Architecture and Design
	3.8.1 Access to the Business Model
	3.8.2 Controlling the Interaction Between the Client and Server
	3.8.3 What Goes into a JavaServer Page?

	3.9 Error Handling
	3.10 HBA Subsystems

	Chapter 4. Tool Usage in the Home Banking Application
	4.1 The Tool Suite
	4.2 Design and Analysis Tool: Rational Rose 98 Java Edition
	4.3 Web Site Prototyping Environment: NetObjects Fusion
	4.3.1 Prototyping the Site

	4.4 Web Development Environment: WebSphere Studio
	4.4.1 Page Designer
	4.4.2 Importing the Site
	4.4.3 Restructuring the Site
	4.4.4 Adding Dynamic Pages to the Site
	4.4.5 Publishing the Site

	4.5 Java Development Environment: VisualAge for Java
	4.5.1 Developing Servlets with VisualAge for Java
	4.5.2 WebSphere Test Environment
	4.5.3 JSP Execution Monitor

	4.6 Application Server: WebSphere Application Server
	4.6.1 WebSphere Application Server Architecture
	4.6.2 WebSphere Implementation of JavaServer Pages
	4.6.3 Managing Your WebSphere Environment

	Chapter 5. Implementing the Home Banking Application
	5.1 Implementing the Domain Firewall
	5.2 Implementing the Business Model
	5.3 Implementing the Web Application
	5.3.1 General Implementation Issues

	5.4 SubSystem Implementation
	5.5 Application Manager
	5.5.1 Application Manager Interaction
	5.5.2 Application Manager Servlets

	5.6 Login
	5.6.1 Login Interaction
	5.6.2 Login Servlets
	5.6.3 Login JavaServer Pages and HTML Pages

	5.7 Account Information
	5.7.1 Account Information Interaction
	5.7.2 Account Information Servlets
	5.7.3 Account Information JavaServer Pages

	5.8 Bill Payment
	5.8.1 Bill Payment Interaction
	5.8.2 Bill Payment Servlets
	5.8.3 Bill Payment JavaServer Pages

	5.9 Transfer Funds
	5.9.1 Funds Transfer Interaction
	5.9.2 Transfer Funds Servlets
	5.9.3 Transfer Funds JavaServer Pages

	5.10 Payee
	5.10.1 Payee Interaction
	5.10.2 Payee Servlets
	5.10.3 Payee JavaServer Pages

	5.11 User
	5.11.1 User Interaction
	5.11.2 User Servlets
	5.11.3 User JavaServer Pages

	5.12 Utility Classes
	5.12.1 CacheControl
	5.12.2 Formatter
	5.12.3 XMLConfigUtil

	Chapter 6. Deploying the Home Banking Application
	6.1 Installing the Servers
	6.2 Configuring the Servers
	6.2.1 Configuring the Web Servers
	6.2.2 Deploying the HBA Application Classes
	6.2.3 Deploying the HBA Web Site
	6.2.4 Configuring the WebSphere Application Server

	Appendix A. HBA Use Cases
	Appendix B. Working with the HBA Implementation
	B.1 Deployment
	B.2 Development

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications
	D.4 Product Documentation

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

