
ibm.com/redbooks

Linux Client Migration
Cookbook, Version 2
A Practical Planning and Implementation Guide
for Migrating to Desktop Linux

Chris Almond
Jeroen van Hoof

Nick Lassonde
Ben Li

Kurt Taylor

For any organization that is exploring or
planning for a Linux desktop migration

Provides in-depth detail on the
technical and organizational
challenges

Front cover

Includes methods for
planning and
implementation

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Linux Client Migration Cookbook, Version 2
A Practical Planning and Implementation
Guideline

October 2006

International Technical Support Organization

SG24-6380-01

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (October 2006)

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Forward . xv
Bernard Golden, Navica . xv
Greg Kelleher, IBM . xvii

Preface . xix
The team that wrote this redbook. xx
Acknowledgements . xxi
Become a published author . xxii
Comments welcome. xxii

Part 1. Choosing Linux . 1

Chapter 1. Introduction . 1
1.1 The migration landscape today . 2
1.2 Identifying suitable environments . 2
1.3 Strategic context . 3
1.4 Client environments. 5
1.5 Why Linux . 6
1.6 Linux overview and distribution choices . 7
1.7 Desktop Linux futures . 7
1.8 The rest of this book . 23

Chapter 2. The case for migration . 25
2.1 Why migrate . 27

2.1.1 Desktop security . 27
2.1.2 Costs related to Linux client . 32
2.1.3 Manageability of the Linux client . 34
2.1.4 Client customization . 37
2.1.5 Free software and the open source philosophy 38
2.1.6 Ease of use and retraining . 38
2.1.7 New economies of scale . 38

2.2 When to migrate - Or not to migrate . 39
2.2.1 Desktop Linux markets — the threshold of entry 39
2.2.2 Client roles fit thin and slim client model . 40
2.2.3 High number of migratable applications . 41
2.2.4 Organizational readiness . 41
© Copyright IBM Corp. 2004, 2006. All rights reserved. iii

2.3 What makes Linux so different . 42
2.3.1 The movements: free software and open source 42

2.4 Migration goals . 43
2.4.1 Pilot migration . 44
2.4.2 Full migration. 44

Part 2. Planning the pilot migration . 47

Chapter 3. Organizational and human factors planning 49
3.1 Assessing usage patterns . 50

3.1.1 Functional segmentation - Fixed function to general office. 50
3.1.2 Surveying user data . 52
3.1.3 User survey . 52

3.2 Establishing functional continuity . 53
3.2.1 Bridging applications . 53
3.2.2 Functionally equivalent utility applications . 54
3.2.3 Web applications. 55
3.2.4 Building bridges to the server . 55

3.3 Human factors . 56
3.4 Retraining considerations . 57

3.4.1 Bridging applications can separate retraining from migration 58
3.4.2 Learning a new look and feel . 58
3.4.3 Familiar actions . 58
3.4.4 File systems: Everything has been moved . 58
3.4.5 Hands-on Linux prior to migration . 59

Chapter 4. Technical planning . 61
4.1 Assessing the client IT environment . 63

4.1.1 Assessing the client hardware . 63
4.1.2 Assessing the client software configuration 65
4.1.3 Assessing data dependencies . 66
4.1.4 Assessing application equivalency . 67
4.1.5 Assessing the infrastructure . 67
4.1.6 Assessing the user . 68

4.2 Integrating with existing network services . 69
4.2.1 Setting the environment . 69
4.2.2 Authenticating within a Windows domain . 70
4.2.3 File sharing using domain shares . 72
4.2.4 Printing services in the domain . 73
4.2.5 DHCP and DNS configuration. 75
4.2.6 Web proxy interface . 75

4.3 Standardizing the desktop. 75
4.3.1 Linux distributions . 76
4.3.2 Linux desktop environments . 76
iv Linux Client Migration Cookbook, Version 2

4.3.3 Look and feel. 79
4.3.4 User lockdown. 83
4.3.5 Application choices . 83
4.3.6 File systems and partitions . 83

4.4 Migrating applications . 84
4.4.1 Moving back to client/server computing . 84
4.4.2 Logical segmentation - Thin, slim, or fat . 85

4.5 Client administration planning . 86
4.5.1 Operating system and vendor distribution updates. 87
4.5.2 Application updates. 88
4.5.3 Remote administration . 88
4.5.4 Rollout of additional or replacement clients 89
4.5.5 Backup of clients . 90
4.5.6 Virus mitigation . 90
4.5.7 Examples of administration of enterprise distributions 91

4.6 Desktop versus notebook considerations . 94
4.6.1 Hardware considerations . 95
4.6.2 Peripheral extensions . 96
4.6.3 Connectivity options . 97
4.6.4 Offline mode . 98

4.7 Unmigratable applications . 99
4.7.1 What makes an application unmigratable . 99
4.7.2 Terminal Server, Citrix Metaframe, or NoMachine NX solutions. . . 100
4.7.3 Ericom Powerterm WebConnect for Workplace solution 101
4.7.4 VMware solutions . 101
4.7.5 Dual boot solution . 102
4.7.6 What to do if all else fails . 102

4.8 Deploying the new client . 103
4.8.1 Deployment method . 103
4.8.2 Update deployed clients . 104
4.8.3 Personalization of deployed clients. 105

4.9 Post-migration troubleshooting and technical support 106
4.9.1 What to expect . 106
4.9.2 How to handle the unexpected . 107
4.9.3 When to contact vendor enterprise support 107

Chapter 5. Linux architecture and technical differences. 109
5.1 What is Linux. 110

5.1.1 Distributions . 110
5.1.2 Standards . 111

5.2 Technical differences . 112
5.2.1 Kernel booting process . 114
5.2.2 Communication, files, and services. 115
 Contents v

5.2.3 Multi-user . 117
5.2.4 Graphical and text-based environments . 118
5.2.5 System runlevels. 122
5.2.6 Drives, partitions, and file systems . 123
5.2.7 Virtual memory . 124
5.2.8 File links . 125
5.2.9 Replaceable kernel . 125
5.2.10 Device drivers and hardware support . 126
5.2.11 Font support . 126
5.2.12 64 bit and multi-core support. 127

Part 3. Performing the pilot migration. 129

Chapter 6. Migration best practices . 131
6.1 The transitional desktop . 132
6.2 Choose an installation methodology . 132

6.2.1 Wipe and Reload. 132
6.2.2 Dual boot. 132
6.2.3 Hardware refresh . 133
6.2.4 Hardware round-robin . 133

6.3 Centralize data locations . 133
6.3.1 Central file server . 133
6.3.2 Central mail server . 134

6.4 Break down migration into manageable groups 134
6.5 Minimize impact of down time . 135
6.6 Get user feedback . 136
6.7 Automate the migration . 136
6.8 Use a systems management tool . 136
6.9 Do not migrate until you are ready . 137
6.10 Do not just migrate, upgrade . 138

Chapter 7. Client deployment models . 139
7.1 Restricting the desktop . 140

7.1.1 KDE Kiosk framework . 140
7.1.2 GNOME lockdown options . 151

7.2 Remoting tools . 154
7.2.1 Remote access . 154
7.2.2 Thin client . 155
7.2.3 Application forwarding. 155
7.2.4 Multi-station computing . 155

7.3 Rich client . 156
7.3.1 Eclipse and the Eclipse Rich Client Platform 157
7.3.2 IBM Workplace Client Technology . 158
7.3.3 IBM Workplace Managed Client . 158
vi Linux Client Migration Cookbook, Version 2

7.4 Stateless client . 160
7.4.1 Red Hat’s Stateless Linux project . 161
7.4.2 Custom implementation of stateless client 162

7.5 Multi-station client architecture . 162
7.5.1 Multi-station computing and Userful Desktop Multiplier 163
7.5.2 What is multi-station computing . 164
7.5.3 Approaches to desktop consolidation and deployment. 166
7.5.4 Where and when to deploy multi-station systems. 168
7.5.5 Advantages of deploying multi-station Linux systems. 170

Chapter 8. Client migration scenario. 173
8.1 Example client migration . 174

8.1.1 Assess the client usage pattern . 174
8.1.2 Identify the most important applications and infrastructure integration

points . 174
8.2 Migration plan details . 175

8.2.1 Client approach . 175
8.2.2 Graphical environment . 175
8.2.3 Hardware. 175
8.2.4 Application continuity . 176
8.2.5 Windows networking . 177

8.3 Performing the migration . 178
8.3.1 Basic installation tasks . 178
8.3.2 Integrating existing network services . 179
8.3.3 Application configuration and installation . 184
8.3.4 Screen captures: Client migrated to Linux 189

Chapter 9. Integration how-tos. 195
9.1 How to join a Windows domain . 196

9.1.1 Joining an NT4 domain . 196
9.1.2 Joining an Active Directory domain. 197

9.2 Using winbind to make domain users known locally 199
9.2.1 Common implementation of winbind . 199
9.2.2 Alternate implementations of winbind . 202

9.3 How to use LDAP to connect to Active Directory 204
9.4 Pluggable Authentication Modules and the domain 207

9.4.1 How to authenticate users using winbind and PAM 208
9.4.2 How to authenticate users using LDAP and PAM. 209
9.4.3 PAM and home directories . 212

9.5 How to mount a share on the Linux client . 214
9.5.1 Mounting a share using smbfs . 214
9.5.2 Mounting a share using CIFS . 215
9.5.3 Use of smbclient . 215
 Contents vii

9.6 Automatically mounting home directories at logon 216
9.6.1 pam_mount on Red Hat Desktop . 216
9.6.2 pam_mount on Novell Linux Desktop . 218

9.7 How to use network printers in the domain . 219

Part 4. Appendixes . 231

Appendix A. Linux glossary for Windows users 233
What does it all mean. 234
Common Linux Terms . 234

Appendix B. Using enterprise management tools 255
Why use enterprise management tools . 256
Internet standard technologies . 256

Web-Based Enterprise Management (WBEM) . 256
Simple Network Management Protocol (SNMP) . 257

Red Hat Satellite server and Red Hat Network (RHN). 257
Architectural and functional overview . 257
RHN Terminology . 259
Sample update scenario . 262

Novell ZENworks Linux Management . 264
Architecture and Functionality. 264
Usage examples . 268

Webmin . 269
Functionality . 270
Usage examples . 271

Other important tools . 272

Appendix C. Automating desktop migration using Versora Progression
Desktop . 277

Benefits of an automated migration . 278
What is Progression Desktop . 278
How to migrate with Progression Desktop . 279

GUI . 280
Command line (with templates). 282
Systems management tool . 283

Progression Desktop architecture . 284
PNP Files . 284
Settings Packages . 285
Plug-Ins . 287

Enterprise Source License . 287

Appendix D. Multi-station computing deep dive using Userful Desktop
Multiplier . 289
viii Linux Client Migration Cookbook, Version 2

Deploying multi-station solutions on the IBM IntelliStation platform. 290
Hardware requirements. 290
Selecting your IBM IntelliStation model. 296

Software requirements and installation considerations 296
Deployment considerations . 298

Storage, printing, and external service considerations 298
Remote file systems . 299
Network services. 299
Network, electrical, and physical infrastructure considerations. 299
Complementary technologies . 302

Additional system management considerations . 303
Software updates . 303
Management tools. 304
Software and support . 304
System shutdown . 304
Multi-language support . 304
Security considerations . 305
Privacy considerations . 305

Case study one: General office desktops for a 25-user office 306
Requirement . 306
Solution Design . 307

Case study two: Transactional desktops: Public computers for a city library. 308
Requirement . 308
Solution Design . 308
Additional multi-station case studies . 309

Understanding how multi-station computing works: Exploiting the flexibility of X
Window System . 309

The design of X . 309

Appendix E. Client personalization . 313
Microsoft Windows client personalization. 314
Linux client personalization . 314

Desktop personalization: KDE Desktop . 315
Desktop personalization: GNOME Desktop . 317

Appendix F. Desktop automation and scripting . 321
Scripting languages . 322

Shell scripting . 322
Perl . 322
Python . 323
Embedded Scripting Languages . 323
Kommander. 325

Desktop interprocess communication . 326
 Contents ix

DCOP . 327

Appendix G. Application porting . 329
GTK+ . 330
Qt . 330
REALBasic . 330
wxWidgets . 330
Mono and the .NET Framework . 331

Related publications . 333
IBM Redbooks . 333
Other publications . 333
Online resources . 333
How to get IBM Redbooks . 338
Help from IBM . 338

Index . 339
x Linux Client Migration Cookbook, Version 2

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004, 2006. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
ibm.com®
AIX®
Domino®
DB2®
DFS™
IntelliStation®
IBM®

Lotus Notes®
Lotus®
Notes®
OS/2®
Redbooks™
S/390®
Sametime®
System i™
System p™

System z™
Tivoli®
WebSphere®
Workplace™
Workplace Client Technology™
Workplace Managed Client™
1-2-3®

The following terms are trademarks of other companies:

Java, JavaScript, JDK, JVM, NetBeans, Power Management, Sun, Sun Microsystems, and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, ActiveX, Excel, Expression, Internet Explorer, Microsoft, MSN, Outlook, Visual Basic,
Visual C#, Windows Media, Windows NT, Windows Server, Windows Vista, Windows, Win32, and the
Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Itanium, Pentium, Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

AMD and the AMD64 logo are trademarks of Advanced Micro Devices Corporation in the United States,
other countries, or both.

SUSE and YaST are registered trademarks of SUSE AG.

AGFA is a trademark or registered trademark of Agfa Corporation, Agfa-Gevaert N.V., or Agfa-Gevaert AG
depending on jurisdiction.

Nero and Nerovision are registered trademarks of Ahead Software AG.

Opera is a registered trademark of Opera AS.

Novell, iFolder, Mono, Nterprise, Red Carpet, Ximian, Novell Evolution, and ZENworks are trademarks or
registered trademarks of Novell in the United States, other countries, or both.

Red Hat is a trademark of Red Hat Corporation in the United States, other countries, or both.

Tarantella is a trademark or registered trademark of Tarantella Corporation in the United States and other
countries.

Debian is a registered trademark of Software in the Public Interest, Inc.

OpenLDAP is a registered trademark of the OpenLDAP Foundation, Inc.

Mandrake is a registered trademark of Mandrakesoft S. A. and Mandrakesoft Corporation.
xii Linux Client Migration Cookbook, Version 2

REALbasic is a registered trademark of Real Software Corporation.

VMWare is a registered trademark of VMWare Corporation

KDE, K Desktop Environment, and Konqueror are registered trademarks of KDE e.V.

GNOME is a trademark of the GNOME Foundation.

Apple and Macintosh are trademarks of Apple Computer Corporation in the United States, other countries,
or both.

Macromedia and Macromedia Flash are trademarks of Macromedia Corporation in the United States, other
countries, or both.

Mozilla, Mozilla Firefox, and Mozilla Thunderbird is a trademark or registered trademark of The Mozilla
Organization in the United States, other countries, or both.

Adaptec and Easy CD Creator are trademarks or registered trademarks of Adaptec Corporation in the
United States, other countries, or both.

Adobe, Acrobat, Photoshop, FrameMaker, and Adobe Reader are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Citrix and MetaFrame are either registered trademarks or trademarks of Citrix Systems Incorporated in the
United States and/or other countries.

NoMachine and NoMachine NX are trademarks or registered trademarks of Medialogic S.p.A Corporation
Italy.

SAP is a trademark or registered trademark of SAP AG in Germany and in several other countries.

RealPlayer is a registered trademark of RealNetworks Incorporated in the United States and/or other
countries

WinZip is a registered trademark of Winzip Computing Incorporated.

Yahoo! is a registered trademark of Yahoo! Incorporated.

Big Brother is a trademark of Quest Software Corporation.

Nagios is a registered trademark of Ethan Galstad.

Netscape is a registered trademark of Netscape Communications Incorporated in the United States and/or
other countries

Jasc and Jasc Software are registered trademarks of Jasc Software Corporation.

CUPS and Common UNIX Printing System are trademarks of Easy Software Products Co.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, or service names may be trademarks or service marks of others.
 Notices xiii

xiv Linux Client Migration Cookbook, Version 2

Forward
Bernard Golden, Navica

Open source software is a hotbed of innovation. Because the source code of a
product is available for inspection and modification, users have the opportunity to
change and extend the open source products they use.

Using the released version of a product as a foundation, open source developers
can implement new functionality important to them and their organizations.
Rather than being forced to live with the limitations of a product, open source
users can improve it and make it better suited to their needs. They can even
submit their code changes to the project managers for inclusion in the main code
base of the product, ensuring that subsequent releases of the product will
already include their changes, easing migration to newer versions of the product.

Because open source evolves so rapidly through user extension, it's critical for
open source developers to adhere to standards for interoperability between
applications. With the use of standards-based integration mechanisms,
applications can evolve independently at their own pace, yet still be assured of
being able to interoperate with other products.

A vibrant example of this open source characteristic can be seen in the Linux®
desktop. Dozens of products are shipped in a Linux distribution, each
progressing according to specific project goals and on project-specific timelines;
however, products are able to interoperate based upon standards
implementation.

The innovation and creativity of open source can be seen in the diversity of
products. While Firefox is a very well-known open source browser released by
the Mozilla Foundation, there are several other browsers included in a typical
distribution, each focused on delivering an Internet experience in its own fashion.

This combination of rapid evolution, use of standards, and richness of
alternatives is in direct contrast to the practices of the proprietary software world.
In the proprietary world, vendors attempt to provide an integrated, sole source,
single alternative software offering. Standards are often bypassed or only loosely
implemented; since the vendor focuses on owning the entire stack; enabling
other offerings conflicts with its business model.

While the convenience of an integrated, closed single offering can seem quite
beneficial, it inevitably begins to fail under the stress of growth. As the vendor
attempts to add more products to the integrated software stack, each of which
must be integrated and delivered in a bundled offering, delivery dates begin to
recede into the far distance, repeatedly delayed to allow each product in the
© Copyright IBM Corp. 2004, 2006. All rights reserved. xv

bundle to be completed. To draw an analogy, integrated offerings resemble a
convoy of ships, with progress to market paced by the slowest vessel.

The benefits of open source development seem quite obvious in comparison to
the slow-moving convoy that is integrated proprietary software.

However, the embarrassment of riches that is open source development can
pose problems as well. The innovation and experimentation characteristic of
open source leads to situations like the challenge of the current Linux desktop:
two strong offerings — KDE and Gnome — are strongly represented in user
usage. Each provides its own way of enabling software applications to interact
with the desktop environment.

While users are well-served by being able to select which desktop best suits their
needs, Independent Software Vendors (ISVs) are faced with a dilemma: support
one or the other, or double invest to support both. In a world where the Linux
desktop holds a small market share, this dilemma deters ISVs from supporting
the Linux desktop at all. Clearly, if the Linux desktop is to achieve its potential,
software applications are critical.

Based on this, the Portland Project1 was born. The Portland Project represents
an initiative by both the KDE and Gnome developer communities to present a
common set of application interfaces — a de facto standard — that application
writers can use to ensure that a single version of their application will run in both
desktop environments.

The Portland Project provides a common set of tools that application writers can
make use of to ensure application portability. Each of the desktops can continue
to evolve, while adhering to a set of interfaces that enables application vendors
to achieve low-cost portability. In this way, the Portland Project supports the
open source characteristics of innovation and integration through standards.

Open source on the desktop faces a number of challenges, and the desktop
development community is focused on working through them in a methodical
way, with an end goal of enabling the Linux desktop to be a convenient,
inexpensive, and easily-used computing environment.

— Bernard Golden
Chief Executive Officer, Navica

Bernard is a recognized authority and consultant on the use of open source software, particularly in
enterprise settings. He is the author of "Succeeding with Open Source2", which is used as a course
text in over a dozen university computer science and business programs throughout the world.

1 http://portland.freedesktop.org/wiki/
2 Succeeding with Open Source, by Bernard Golden (Addison-Wesley Press, 2005):
http://www.navicasoft.com/pages/bkoverview.htm
xvi Linux Client Migration Cookbook, Version 2

http://www.navicasoft.com/pages/bkoverview.htm
http://portland.freedesktop.org/wiki/
http://www.navicasoft.com/pages/bkoverview.htm

Greg Kelleher, IBM
The Open Desktop community is defined by the people involved. It is a
world-wide community of individuals who share a deep passion for technology
and frequently a great sense of humor as well. They are individuals who thrive on
collaborating with their peers in the Open Source Software community, in
accomplishing real progress toward creating and delivering technical
innovations, and in freely sharing the value of those innovations with the rest of
the world. Those shared innovations — coming from the highly cohesive efforts
of the technology focused sub-groups within the Open Desktop community and
their passion to create something new and highly flexible — are the source of the
momentum that drives this migration book project, as well as every other Open
Desktop project.

This second version of the Linux Client Migration Cookbook is intended to help
the Open Desktop community continue to move forward — to enable more
people to grow the community by leveraging the amazing work happening right
now in Open Desktop development around the world. More than anything else,
those individuals and sub-groups within the community — who are working
diligently on printing, GUI design, power management, sound, multimedia,
GNOME, KDE, x.org, the kernel, drivers, applications, internationalization, fonts,
sound, accessibility, Laptop support, and so forth — are the heart and soul of the
Open Desktop community. What exists is an Open Desktop meritocracy, a
common passion to be creative, and a tremendously cohesive effort. An effort
that is leading to a mature alternative client computing platform. There are no
solo players or rock stars that I want to shout out to here. Instead, my deepest
respect and thanks go out to all of the contributors within the Open Desktop
community.

A special thanks goes to the hard core Linux technologists that authored both
versions of this book, to the Linux Desktop Architects, the OSDL Desktop Linux
working group, and to Chris Almond, the Project Leader and technical editor for
this book, who leads by being open minded and creative.

— Greg Kelleher
Senior Program Manager, WW Linux Client Strategy and Market Development

IBM® Corporate Linux & Open Source
 Forward xvii

xviii Linux Client Migration Cookbook, Version 2

Preface

This second version of the Linux Client Migration Cookbook builds on the content
strategy we started with in the first version. Although anyone interested in using
Linux on the desktop could benefit from different portions of this book, our
primary audience for this book is existing business IT environments that need to
begin an evaluation of desktop Linux, or in a broader sense any organization
whose strategy is to move toward greater adoption of open source software and
open standards.

For this version, our goal was to complete an end-to-end refresh of existing
content, and add as much new content as possible. Some key areas that we
have focused on included the following:

� The future viability of desktop Linux strategies is starting to brighten
considerably. A key reason for that is that the desktop developer communities
have started collaborating on projects and standards in a way that is now
achieving unprecedented levels of cooperation. We highlight that fact in the
Forward section of this book, as well as a new section in Chapter 1: 1.7,
“Desktop Linux futures” on page 7.

� We have added key sections to the book that focus on illustrating the
differences between Linux and Windows®. See 2.3, “What makes Linux so
different” on page 42, and this new chapter: Chapter 5, “Linux architecture
and technical differences” on page 109. When coming from a Microsoft®
Windows orientation, these sections will provide important technical
background for readers in understanding why a strategy based on open
software and open standards can yield so many new, different, and
potentially more efficient ways to design, deploy, and manage client
computing systems.

� Once you settle on an open client computing strategy you still have to deploy
the new platform. Because of the extreme flexibility of the Linux software
stack, IT organizations will have many options for how to design their
deployment model. When migrating from Windows based environments, often
the best way to approach this process will be to step back and reevaluate
whether or not it makes sense to continue a strategy of providing users with
dedicated high powered desktop computers, each running operating system
images that by default have many more applications loaded than they actually
need. We have focused on adding content that illustrates the flexibility you
have in Linux for designing operating system images and deployment models
for those images. The Multi-Station computing deep dive provided in section
7.5, “Multi-station client architecture” on page 162 and in Appendix D
 Preface xix

provides a great example of how the flexibility of the desktop Linux software
stack facilitates innovative deployment models that consolidate client
computing systems.

� Finally, once you have settled on the design and configuration of your Linux
based desktop operating system image, and you have designed and tested a
cost-effective deployment model that optimizes hardware usage and
projected management costs, then you still have to migrate your users to the
new systems. One key challenge in minimizing the disruption to users is this:
how do you efficiently capture and migrate the set of important desktop
personalization data from existing Windows based clients to the target Linux
based clients? Tools for automating migration of this data are now available
from multiple vendors. We highlight the importance of using these tools in a
medium-to-large enterprise, and provide a deep dive introduction to how you
can use one of those tools, in Appendix C, “Automating desktop migration
using Versora Progression Desktop” on page 277.

The team that wrote this redbook
Version 2 of this IBM Redbook was produced by a team of specialists from
around the world working at the International Technical Support Organization,
Austin Center.

Chris Almond is a Project Leader and IT Architect based in the Austin, Texas
ITSO center. He has a total of 15 years of IT industry experience, including the
last five with IBM. His experience includes UNIX/Linux systems engineering,
network engineering, Lotus® Domino®-based content management solutions,
and WebSphere Portal-based solution design.

Jeroen van Hoof is a Senior IT Specialist with IBM Global Services in the
Netherlands. He has over 15 years of experience with UNIX operating systems
and over 10 years experience with Linux. Before joining IBM through PwC
Consulting, he worked in high-performance computing at the Dutch National
Supercomputing Centre as a parallelisation expert. His areas of expertise include
UNIX/Linux, Windows, Virtualization, TCP/IP networking (routing, switching),
parallelisation (MPI, PVM), firewall security, programming (Fortran, C, Pascal,
Perl), SAP Basis consultancy, and Web technologies (HTTP, HTML, CGI). He is
a Red Hat Certified Engineer, VMWare Certified Professional and SAP Certified
Technology Consultant. He holds a PhD in Theoretical Physics from the
University of Nijmegen.

Nick Lassonde is the Chief Software Architect at Versora, where he leads
development activities on Progression Desktop, a leading automation tool for
migrating personalization data between Windows and Linux desktop
xx Linux Client Migration Cookbook, Version 2

environments. Prior to Versora, Nick was Senior Architect for Miramar Systems,
where he focused primarily on development of tools for moving critical data and
configurations between computer operating systems and for design and
implementation of automated testing procedures. Prior to Miramar, Nick served
as a Software Architect for Cadence Design Systems, where he focused on
interoperability issues between Microsoft and Linux/UNIX® workstations.

Ben Li is the Vice-President of Innovation and Outreach at Userful Corporation,
where he oversees development of integrated software and hardware solutions
for multi-station Linux systems. His technical experience includes management
roles in security and system administration on Linux, Windows and OS X
operating systems in academic environments, developing and refining content
management systems and workflows, as well as online and cross-media
publishing. Ben is also a researcher for The Center for Innovation Studies, a
Calgary-based research and advocacy group for the innovation and research
commercialization community, and holds two degrees from the University of
Calgary. As a consultant prior to joining Userful, Ben has developed a helpdesk
notification system for a multi-national business services corporation, as well as
a database-driven public relations tracking and reporting system for a leading
Canadian energy company.

Kurt Taylor is a Senior Software Engineer at the IBM Linux Technology Center,
located in Austin, Texas. Kurt is currently a Technical Team Leader for the Linux
System Management Team. He has worked at IBM for 10 years, and has over 17
years of industry experience architecting, designing and developing distributed
network and system management products. He is currently working with the
OpenPegasus project and the OSDL Desktop Linux workgroup. Kurt graduated
from the University of North Texas with a Bachelor of Science degree in
Computer Science.

Acknowledgements
This is the second version of this IBM Redbook. The IBM Redbook team would
like to acknowledge and thank the team of authors that wrote the first version of
this book: Chris Almond, Art Cannon, Jeroen van Hoof, Christian Patsch,
Sekkar Vaddadi, Oliver Mark, and Thomas Schwaller. Their efforts in the first
version helped to create the original concept for this book, and laid down the
structure and a significant amount of content that still appears in the second
version.

In addition, the team would like to thank the following people for providing
significant support for this project:
 Preface xxi

� Greg Kelleher, Senior Program Manager Worldwide Linux Desktop Strategy
and Market Development: For sponsoring the project and helping to guide the
development of the content outline and scope for this book.

� Stephen Hochstettler, ITSO Project and Linux Team Leader: For his vision
and support.

� John Bergland, ITSO Project Leader, Lotus and WebSphere Portal, for his
contributions.

� Bernard Golden, for his contributions.

� Gerry Anderson, Jim Zemlin, and Dirk Hohndel, Intel® Inc.

� Mike Sheffey, Jon Walker, Versora Inc., and Timothy Griffin, Userful Inc.

� Gerry Riveros, Jonathan Blandford, Chris Blizzard, Dan Walsh, Seth
Nickell, and Máirín Duffy, Red Hat, Inc.

� IBM ITSO Professionals: Erica Wazewski (legal support), and Leslie
Parham for her support in preparing the book for publication

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

http://ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

http://www.redbooks.ibm.com/
xxii Linux Client Migration Cookbook, Version 2

http://ibm.com/redbooks/residencies.html
http://www.redbooks.ibm.com/

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Bldg 905, 3D-004
11400 Burnet Road
Austin, Texas 78758-3493
 Preface xxiii

http://www.redbooks.ibm.com/contacts.html

xxiv Linux Client Migration Cookbook, Version 2

Part 1 Choosing Linux

Part 1 of this book includes:

� Chapter 1, “Introduction” on page 1

� Chapter 2, “The case for migration” on page 25

Part 1
© Copyright IBM Corp. 2004, 2006. All rights reserved. 1

2 Linux Client Migration Cookbook, Version 2

Chapter 1. Introduction

For several years now, many people involved with computing and the Internet
have harbored hopes that Linux might become a viable user operating system
choice for a broader segment of general purpose users. At the same time, there
has been growing frustration with the problems and limitations of the current
dominant commercial desktop operating system offerings from Microsoft. In turn,
this frustration has fueled a greater need in the market for alternative desktop
operating system choices. At the same time, Linux-based desktop-oriented
distributions have improved tremendously as a result of the inclusive and
open-ended dynamics of the open source development movement.

The goal of this book is to provide a technical planning reference for IT
organizations large or small that are now considering a migration to Linux-based
personal computers. For Linux, there is a tremendous amount of “how to”
information available online that addresses specific and very technical operating
system configuration issues, platform-specific installation methods, user interface
customizations, and more. This redbook includes some technical “how to” as
well, but the overall focus of the content in this book is to walk the reader through
the important considerations and planning issues you could encounter during a
migration project. Within the context of a pre-existing Microsoft Windows-based
environment, we attempt to present a more holistic, end-to-end view of the
technical challenges and methods necessary to complete a successful migration
to Linux-based clients.

1

© Copyright IBM Corp. 2004, 2006. All rights reserved. 1

1.1 The migration landscape today
As this book was being written, the range of choices and capabilities of native
Linux software was expanding rapidly. For those few nascent IT organizations
that have the choice to grow an install base of Linux desktops organically (that is,
they are starting a desktop IT infrastructure from scratch), then the Linux choice
should provide a basis for all of their application needs today. But the majority of
Linux desktop deployments will most certainly occur within the context of a
migration. And, at an application’s level, one of the most common and important
migration challenges will likely be the feasibility of migrating users from the
Microsoft Office productivity suite to a Linux-based equivalent.

Other high-profile migration challenges with heavy network infrastructure
dependencies include messaging (Microsoft Outlook® does not run natively on
Linux), and to a lesser extent interaction with enterprise directory and
authentication services. To that end, this book includes sections that discuss and
demonstrate migration methods for Linux client integration into an existing Active
Directory® and Exchange-based network.

As for migration of office productivity suite applications, at this time we believe
that the odds for migration success currently favor organizations or users that do
not rely heavily on use of advanced functions in Microsoft Office, or customized
applications that integrate with or extend Office. We believe that greater odds for
success currently favor the “fixed function” or “technical/transactional” usage
patterns, as defined in 2.2.1, “Desktop Linux markets — the threshold of entry”
on page 39, and 3.1, “Assessing usage patterns” on page 50.

1.2 Identifying suitable environments
Some clients, such as large banking and insurance companies, public
administrations, and the retail sector, are pushing toward an Open Source
based-solution not only on servers, but also on their corporate desktops. As with
all products, technologies, or solutions, a "one size fits all" approach to the open
source desktop will not be feasible in all cases. Critical questions need to be
asked:

� Is the client's employee population strictly dependent on a third-party
application, plug-in, or devices that are only supported on Windows?

Note: In the near term, we still see successful Linux client migrations favoring
“limited use” client scenarios (the fixed function, transactional, or technical
user segments). As Linux-based office productivity suite applications (and the
content migration tools supporting those applications) mature, we expect
greater frequency and success for migration of advanced office users.
2 Linux Client Migration Cookbook, Version 2

� Has the client intensively developed custom applications based on native
Win32® APIs and programming environments, such as Visual Basic® or
other Windows scripting languages?

� Is the client's entire employee population dependent on advanced Microsoft
Office-based functions (for example, dependencies on complex macros)?

If the answer is yes to any of these questions, then a Linux-based solution might
be a less-suitable alternative, or present a more complex (higher initial
deployment cost) solution strategy that will require careful consideration.

1.3 Strategic context
From a migration point of view, Linux is only one piece in the puzzle. Clients are
faced with the problem of simplifying and optimizing existing end-to-end IT
infrastructures, including servers, databases, applications, networks, systems
management processes, and clients. All of this has to be done while constantly
maintaining focus on minimizing complexity, risk, and cost, while providing a
stable and scalable foundation for growth and new solution deployment as
business requirements dictate.

In business environments, a desktop computer is almost never an island. It
needs to be integrated into a larger networked, services-oriented environment; it
connects to various servers, storage devices, printers, and so on. It uses not only
the operating system, but also a wide range of middleware products, application
packages, and might even require custom application development. It has to be
deployed, supported, and managed.
 Chapter 1. Introduction 3

In this IBM Redbook, we take the approach that you will be migrating clients to
Linux within an existing Microsoft Windows-based environment. In this IBM
Redbook, we do not present an entire network migration strategy to Linux-based
clients and servers. But, it is safe to assume that any Linux client migration
strategy will likely be part of a larger strategic IT infrastructure migration plan,
where Linux plays a role in supporting enterprise network and application
services. To demonstrate this separation of concerns, in Figure 1-1 on page 5 we
show an example infrastructure migration path for converting a Windows
NT®-based infrastructure to Linux. This redbook mainly focuses on the portions
of this migration path that are within the dotted line box in the figure.

Note: For medium to large enterprises, you can expect that the business case
for a migration cannot be entirely justified by the potential just for cost savings
in operating system and application software licensing fees. In fact, in a client
migration scenario, you should expect that the most important cost
consideration that will come into play in medium to large enterprises will be the
overall cost of managing the client computing infrastructure on an ongoing
basis.

Be prepared to answer this question: “How will migrating to desktop Linux
affect our year-to-year overall cost associated with supporting and managing
our client IT infrastructure?”

The key to answering this question lies in understanding the following:

� How you can leverage the Linux software stack to create innovative,
cost-effective deployment models.

� Recognition of the importance and value in using enterprise management
tooling that is specifically designed to optimize efficient ongoing support of
desktop Linux in the enterprise.

� Understand how migration strategies apply to the different functional
segments, and how the threshold of entry for migrating each of those
segments can be affected by both technical and business process
dependencies.

There are many sections of this book that, collectively, will enable you to better
understand how to create innovative, cost-effective desktop Linux deployment
models. We focus on the importance of enterprise management tooling in 6.8,
“Use a systems management tool” on page 136, and in Appendix B, “Using
enterprise management tools” on page 255. You can find more information
about functional segmentation strategies and threshold of entry analysis in
2.2.1, “Desktop Linux markets — the threshold of entry” on page 39, and
3.1.1, “Functional segmentation - Fixed function to general office” on page 50.
4 Linux Client Migration Cookbook, Version 2

Figure 1-1 Migration route diagram1

1.4 Client environments
The choice of an appropriate client platform for a particular set of users can
depend on their functional role and the applications they must use to accomplish
their objectives.

More and more line-of-business applications are being developed to depend less
on the underlying operating system by taking advantage of open standards and
pervasive technologies such as Web browsers. For economical reasons, many
enterprises are quickly moving toward Service Oriented Architectures (SOAs)
that allow them to compose applications out of existing services. This allows and
encourages the reuse of application logic and data across the enterprise and
even between enterprises.

SOAs are often implemented through Web services. Web services is an
emerging set of standards that ensures interoperability by using such common
technologies as Extensible Markup Language (XML), Simple Object Access
Protocol (SOAP), Hypertext Transfer Protocol (HTTP), and others.

1 Source “The IDA Open Source Migration Guidelines”, netproject Ltd © European Communities
2003
 Chapter 1. Introduction 5

Clients for applications based on Web services are often written in Java™ or
based on Web browsers accessing portals. This makes the underlying operating
system for clients transparent to the application and allows flexibility of choice,
based on cost, support, flexibility, support for open standards, and so on.

It is important to understand what functions are required by a client platform to
meet the needs of users today, while keeping an eye on the direction of
technologies and enterprise architectures. This helps to ensure that the choices
made today provide the capabilities that are required now and support the
requirements of future architectures.

1.5 Why Linux
Linux has evolved into a powerful desktop operating system that can run on
already existing hardware. In many cases, it requires less memory and
processing power than other alternatives to provide similar performance on the
client.

Because of its core design and open nature, Linux can be easily customized.
Linux is available under the GNU General Public License2 (GPL) agreement and
can be obtained for free. However, most enterprises buy a Linux distribution to
take advantage of the bundling features and support that accompanies them.
The openness and flexibility of Linux, not the price, is becoming the driver for
many organizations to migrate to this operating system. Its functionality, stability,
scalability, and support have been key factors that have expanded the use of
Linux from academic areas to the enterprise.

With support from such companies as IBM and others that deliver key client
platforms, such as Lotus Notes®, the Mozilla Web browser, open office suites,
and Java desktops, Linux is gaining momentum as a desktop operating platform.

Linux supports the Portable Operating System Interface (POSIX) standard that
defines how a UNIX®-like system operates, specifying details such as system
calls and interfaces. POSIX compliance has made it possible for developers to
port many popular UNIX applications and utilities to Linux.

Linux also provides a complete implementation of the TCP/IP networking stack.
A full range of clients and services are supported, including a standard socket
programming interface so that programs that use TCP/IP can be easily ported to
Linux.

2 Copies of the GNU GPL Licenses can be found at http://www.gnu.org/copyleft/gpl.html
The GNU project is supported by the Free Software Foundation (FSF):
http://www.gnu.org/fsf/fsf.html
6 Linux Client Migration Cookbook, Version 2

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/fsf/fsf.html

Linux supports the standard ISO-9660 file system for CD-ROMs, printing
software, multi-media devices, and modems. In short, it provides the facilities to
support the requirements of a wide range of client application types.

1.6 Linux overview and distribution choices
In 1984, the Free Software Foundation (FSF), started by Richard Stallman,
began the GNU project to create a free version of the UNIX operating system.
This system can be freely used, but even beyond that, the source code can be
freely read, modified, and redistributed. A number of components were created,
including compilers and text editors. However, it lacked a kernel. In 1991, Linus
Torvalds began developing an operating system in a collaborative way. All
information was made available for anyone on the Internet to improve the
operating system that was called Linux. Linux was exactly the operating system
kernel the FSF needed.

In the Linux community, different organizations have created different
combinations of components built around the kernel and made them available as
a bundle. These bundles are called distributions. Some of the most well-known
distributions include Fedora and Red Hat Enterprise Linux, openSUSE and
SUSE Linux Enterprise, Debian, and a derivative of Debian, Ubuntu Linux.

Linux is a UNIX-like, POSIX-compliant operating system distributed under the
GNU software license. This means that the operating system can be distributed
for free. Linux supports all the major window managers and all the Internet
utilities, such as File Transfer Protocol (FTP), telnet, and Serial Line Internet
Protocol (SLIP). It provides 32-bit and 64-bit multitasking, virtual memory, shared
libraries, and TCP/IP networking. It is coupled to a native POSIX thread library
for high-performance multithreading, symmetric multiprocessing (SMP) up to 16
logical CPUs or eight hyperthreaded CPU pairs, and massive parallel processing
(MPP) up to 10000 AMD Opteron processors in a new Cray computer under
development.

Linux has been developed to run on the x86, Itanium®, AMD64, and IBM System
z™, System i™, and System p™ servers and S/390® architectures. A common
source code base is used for all of them.

1.7 Desktop Linux futures
The future for desktop Linux looks promising. As this book was being prepared
for publication, Novell released a ground-breaking version of their enterprise
desktop Linux product: SUSE Enterprise Linux Desktop 10. At the same time,
Red Hat is preparing for release of Version 5 of Red Hat Enterprise Linux, which
 Chapter 1. Introduction 7

promises to include many of the cutting edge innovations from the Fedora
community project in their desktop offering. Both Red Hat and Novell are
providing desktop-oriented Linux products that demonstrate tremendous value,
especially focused on business environments: from small business up to
enterprise class. At the same time, the explosive popularity of the Ubuntu Linux
distribution has aptly demonstrated the increasing interest in Linux as a viable
desktop operating system alternative for the mainstream communities of casual
home users and home computing enthusiasts.

Currently, one of the most important challenges facing the development
communities that are focused on desktop Linux is compatibility of various
application programming interfaces. For instance, how do you manage
development of a single code stream for a popular multimedia player, while
providing full functionality plus consistent look and feel when running in both the
GNOME and KDE environments on Linux? This is possible today, but not without
considerable effort on the part of the development teams. And the methods one
team uses to accomplish this feat might not be at all similar to the same methods
another team uses to reach the same goal.

A common set of standards is needed that allows developers to create
applications which seamlessly integrate into various desktop Linux distributions,
and the distributions need to support those standards. In support of this goal,
there is a significant amount of community collaboration going on right now that
will lead to further evolution and adoption of standards going forward.

To that end, the Open Source Development Labs (OSDL) sponsors a Desktop
Linux Working Group. Also, freedesktop.org is actively supporting projects that
are focused on interoperability and shared technologies between the various
Linux desktop environments. More information about these projects can be found
here:

� ODSL Desktop Linux Working Group:

http://www.osdl.org/lab_activities/desktop_linux

� freedesktop.org:

http://freedesktop.org/wiki/Home

Perhaps the single best point of reference for up-to-date information about
Linux-focused standards development can be found at the Free Standards
Group. Their tag line is: “Safeguarding the Future of Linux Through Standards”3.
One of the key projects that the Free Standards Group supports is the Linux
Standard Base (LSB). The LSB, and how it relates to supporting desktop Linux,
is discussed in detail in the rest of this section.

3 About the Free Standards Group: http://www.freestandards.org/en/About
8 Linux Client Migration Cookbook, Version 2

http://www.osdl.org/lab_activities/desktop_linux
http://freedesktop.org/wiki/Home
http://www.freestandards.org/en/About

From Server to Desktop: Linux Standard Base
Engages Application Developers Worldwide

For many years, the open source development community has been engaged in
the quest for a stable, unified, well-supported operating system (OS) — a reliable
platform to provide the foundation for large-scale adoption at the enterprise level.
While the Linux* OS has fulfilled many of the requirements of large-scale
organizations as a cost-effective, reliable server OS, its adoption at the desktop
level has been less common within enterprises. Part of the reason for this is the
relative lack of full-featured desktop applications that meet the requirements of
large organizations. The varied nature of non-standardized Linux OS
distributions makes it difficult or impossible to achieve a global reach when
developing applications for the desktop — the variations are too numerous and
the user base is too fragmented.

The efforts of the Free Standards Group (FSG) and Intel, as well as other
committed members of the ecosystem, promise to create a wealth of new
opportunities for application developers. The fragmentation and disunity that
inhibited the potential of UNIX* stands as a lesson to the industry. To avoid the
mistakes of the past, many of those who were strongly involved with the evolution
of UNIX are committed to achieving greater standardization and wider
acceptance for Linux OS. A positive step in that direction has been the
emergence of Linux Standard Base (LSB) as a worldwide standard ratified by the

In the rest of this section, we reproduce the content of the following
whitepaper:

“From Server to Desktop: Linux Standard Base Engages Application
Developers Worldwide”a

This is provided for publication in this book by Intel Corporation and the Free
Standards Group. For more information, see:

http://www.intel.com/software/opensource
http://www.freestandards.org

a. Reproduced with permission from Intel Corporation, and the Free Software Group.

The opportunities and the promise of LSB as a stabilizing force to build greater
acceptance for Linux at the enterprise level, particularly on the desktop, are
substantial.
 Chapter 1. Introduction 9

http://www.freestandards.org
http://www.intel.com/software/opensource

International Standards Organization (ISO) and International Electrotechnical
Commission (IEC). This landmark ratification also points toward the emergence
of a thriving, competitive Linux OS distribution ecosystem that will encourage
greater innovation and increased market opportunities. Both independent
software vendors (ISVs) and users benefit from the expanded options and
increased flexibility in the selection of operating systems for the desktop
environment. Now is an excellent time for software companies and developers to
become engaged in advancing and improving LSB and producing innovative
applications for this platform. The Linux Desktop Project, initiated in 2005 and
discussed later in this paper, focuses on standardizing the Linux desktop
environment and establishing a commonality upon which developers can rely.

The current state of the Linux operating system desktop

The substantial costs of porting applications impose a burden on developers
targeting applications for various operating systems. Particularly in the case of
Linux OS, ISVs have been forced to grapple with multiple distributions of the
operating system, often supporting multiple versions of the kernel, libraries, and
applications to reach a worldwide audience. To expand the availability of
applications for the Linux OS platform and minimize the development tasks in
porting applications, standardization is vital. The Free Standards Group was
founded to bring together industry participants and establish a working standard
for the Linux OS that addresses binary portability and application development
concerns. This purpose was achieved with the ISO/IEC ratification of LSB, which
brings balance and order to the creation of desktop applications for Linux OS.

The latest Linux OS desktop versions available today enable a very friendly user
experience. Also, the addition of application suites, such as OpenOffice 2.0,
provide a viable alternative to proprietary desktop office tools.

Jim Zemlin, executive director of the FSG, described LSB in simple terms as a
unified set of application binary interfaces (ABIs), software libraries, and
interoperability standards that will enable developers to target a single Linux
operating system, avoiding the need to port applications for multiple distributions.
“However, having said that,” Zemlin continued, let’s talk a bit about market
adoption and the availability of a broader set of applications on the desktop. The
value of a given environment is proportional to the network effect that is created
by the total number of users within that desktop environment. In other words, the
more people who can exchange information easily using a particular computing
environment, the more valuable that computing environment is. ISVs want to

From a market perspective, the state of the Linux Desktop OS is relatively
immature, but a number of indicators show that the arc of innovative
development for the desktop is rapidly increasing.
10 Linux Client Migration Cookbook, Version 2

target a platform where, ideally, there will be millions and millions of users who
will purchase and utilize their software.”

“Linux [OS] needs to create this kind of environment,” Zemlin said. “By using an
open standard—such as Linux Standard Base—application vendors will not only
be able to target the Linux desktop platform, but they will be able to target more
than a single distribution—for example, Novell and Red Hat. They will be able to
target a Linux Standard Base certified desktop distribution of their choice, thus
creating an ecosystem of distribution vendors. It could be an Asian desktop, such
as Red Flag in China, or Mandriva in South America, or Novell in Europe, or Red
Hat in the U.S. You will get the kind of consistency required for mainstream uses
in business, government, and education.”

Components of a Linux Standards Base

Built from a foundation of existing standards, LSB delineates the binary interface
between an application and a run-time environment. Existing standards that LSB
draws from include Single UNIX Specification (SUS), System V Interface
Definition* (SVID), compilers for the Intel Itanium processor, C++ ABI, and
System V Application Binary Interface* (ABI). At the same time, LSB builds on
earlier efforts that attempted to prevent UNIX fragmentation, such as POSIX and
SUS. In fact, it uses some POSIX source code standards and SUS interface
definitions.

Although LSB has incorporated the durable aspects of these precursors, the
FSG has learned from the UNIX experience, and, because of this, LSB has not
adopted the limitations of POSIX and SUS. Notably, POSIX defined only
programming interfaces and could not guarantee binary compatibility. At the
other end of the spectrum, standards such as OSF/1, which aimed for binary
compatibility, were found to be too restrictive. LSB strikes a balance between the
two approaches—it includes a binary compatibility layer that splits the difference
between the approaches taken with POSIX and OSF/1.

LSB formalizes the framework for interface availability within individual libraries
and itemizes the data structures and constants associated with each interface.
Figure 1-2 on page 12 illustrates the component organization in the LSB 3.1
environment. These components include shared libraries required by developers
(including C++), file system hierarchies (defining where files are located in the
system), specifications for the behavior of public interfaces, application
packaging details, application behavior pre- and post-installation, and so on.
 Chapter 1. Introduction 11

Figure 1-2 Component organization in the LSB 3.1 environment

The LSB Software Development Kit (LSB SDK), created and maintained by the
LSB working group, consists of a build environment and the required tools to
streamline porting software applications to conform with the LSB SDK. Tools
within the LSB SDK also enable developers to validate the binaries and RPM
packages to ensure LSB compliance and monitor the API usage by the
application while the build is taking place so that conformance is assured.

Initial versions of LSB focused on server-side considerations—an approach that
corresponded well with the early adoption of Linux OS at the server level within
enterprises. The desktop initiative for LSB—a product of the Desktop Project for
2005 and 2006—completes the picture with specifications for application
behaviors and libraries for Linux desktop applications.

The increasing availability of development tools to support efforts in this area
is an essential component of building a unified Linux OS ecosystem and
facilitating the development of compliant solution stacks.
12 Linux Client Migration Cookbook, Version 2

Intel supports advances in this area with LSB-compliant compilers and other
software development tools that contribute to stable, enterprise-caliber
application development.

LSB 3.0 and the more desktop-oriented LSB 3.1 set the stage for LSB 4.0, which
addresses many of the prominent issues that have proven problematic for
developers targeting this platform. As discussed in the section titled Milestones
on the Road to Large-scale Adoption, the goal is to allow developers to write an
LSB-4.0-compliant desktop application that will be able to run across
LSB-compliant distributions, integrating well with the two major desktop
environments, GNOME* and KDE*.

More details on the progress of the LSB specifications can be found at:

http://lsb.freestandards.org

Incentives for independent software vendors

The nature of open-source development has created a climate in which new
business models emerge around application development and distribution.

Strengthening the Linux Operating System Ecosystem

From an Intel standpoint, a standards-based Linux OS running on an open
computing platform contributes to the overall health of the Linux OS
ecosystem. Within a healthy Linux OS ecosystem, innovation and
collaboration come together to provide fresh business models and solutions
stacks — helping to extend the desktop market into areas of the world where
demand for cost-effective PCs has been rising. Having clearly standardized
interfaces creates more interest from ISVs to innovate and develop targeted
solutions for the platform. In turn, this creates opportunities for hardware sales
in areas of the market where inexpensive systems are required for large and
small organizations.

Dirk Hohndel, director of Open Source Strategy in the Intel Software and
Solutions Group, said, “Intel actively engages in Linux Standard Base
development efforts to help meet the requirements of our customers who are
asking for Linux [OS] solutions. We are working to provide a healthy and
stable set of solutions for customers in different parts of the world. Obviously,
whatever software stack our customers are choosing and for whatever reason,
we want to make sure that Intel represents the platform of choice for them. Our
primary goals are to respond to customer demand and contribute to the
progress in developing a strong, international ecosystem.”
 Chapter 1. Introduction 13

http://lsb.freestandards.org
http://lsb.freestandards.org

Within this open and flexible model, a new generation of solution stacks can
combine the best characteristics of proprietary applications and free
open-source software to challenge the marketplace, spur development, further
design innovation, and extend market opportunities into new, previously
untapped areas.

Difficulties in targeting the Linux Desktop Operating System

Ian Murdock, Chief Technology Officer of the Free Standards Group, has been
involved in standards development since the evolution of UNIX in the early 1990s
through the current effort to evangelize the benefits of LSB and bring coherence
to Linux OS development. “Previously,” Murdock said, “developers would have to
sit down and choose the distribution target— maybe Red Hat, Novell, and
Debian—and then create individual ports for each of those distributions.”

Particularly on the desktop,” Murdock continued, “there is no standard way to do
some pretty basic things—like create an icon on the desktop or interface with the
printing subsystem. Just to do some of those basic things, you have to make
assumptions about the environment that you are running in. And that includes
not only which distribution you are running, in the desktop case, but also which
desktop environment you are running. For example, there might be different ways
to add an item to a menu, depending on whether the user is running GNOME or
KDE. This is true even on the same version of the same distribution. The key
issue is this: as a software developer writing an application for a platform, you
want to pick the platform that gives you the greatest reach into your target
market.”

In the current worldwide marketplace, distributions are often along geographical
lines. What is popular on the desktop in the United States might be completely
different than what is popular on the desktop in Asia. If the developer is targeting
a specific geography, this makes it easier to choose the appropriate distribution.
But it also immediately places limitations on the overall addressable market.

Prior to 3.1, LSB has been focused primarily on core components such as C and
C++ run-time environments, areas typically associated with server applications.
With the LSB core firmly established as an ISO standard, the LSB 3.1 release
targets a level higher up the stack. LSB 3.1 starts at the lowest levels of desktop
technologies, such as the popular graphical user interface toolkits GTK and Qt*.

“LSB essentially provides a single platform that an application developer can
target. Applications will typically work across all distributions compliant with
LSB. It is all about maximizing the addressable market.”

— Ian Murdock, Chief Technology Officer, Free Standards Group
14 Linux Client Migration Cookbook, Version 2

Essentially,” Murdock said, “we have an ABI standard that covers both GTK and
Qt and that allows application developers to write a desktop application against
these toolkits that can run across LSB-3.1-compliant distributions.” LSB 4.0
further defines the desktop development environment, as discussed in the
section Milestones on the Road to Largescale Adoption, which explores the
anticipated LSB roadmap.

Building success while expanding choice

As LSB provides a more stable, more consistent development platform with
unified programming interfaces, the expanded market potential should
strengthen the environment for commercial software sales. In all likelihood,
developers will continue to take advantage of the agility and flexibility of
open-source development to design new approaches to solving business
challenges. With maturity and widespread adoption, LSB will enable software
companies to experience enhanced opportunities and a broadened client base
as usage of the platform expands.

"The key for the Linux [OS] desktop to succeed,” Zemlin said, “is to create a
platform with consistent developer tools around a standard that enables many
different system providers to distribute Linux desktop solutions—to be able to
have applications run across all of those different distribution platforms.”

Dirk Hohndel, Director of Open Source Strategy in the Intel Software and
Solutions Group, sees clear benefits for ISVs. “From the perspective of the ISV
developer community—from the people who are trying to make a living with
software that is running in this ecosystem—the LSB standard is tremendously
helpful. It makes it so much easier to make the right decisions for your
development environment, to make sure that the development you do (usually for
one specific distribution) is easily accessible to customers who are running a
different distribution. This means that it broadens your market without
dramatically or exponentially increasing the effort on the development side.”

Any desktop platform by nature is more successful if it is localized and can be
customized to a particular region or use case. When a developer customizes
software, the most important consideration is to maintain enough consistency of
standardization so that applications run on any of those particular regional or
customized distributions.

“Proprietary software vendors are highly motivated to sell their software in the
emerging Linux desktop market. They don’t care what platform it is — as long
as there are plenty of users out there.”

— Jim Zemlin, Executive Director, Free Standards Group
 Chapter 1. Introduction 15

The benefits of LSB are manifestly visible to ISVs, but the situation for distribution
vendors is somewhat different. These vendors might be concerned that support
for the standard could weaken their differentiation in the marketplace. However,
despite the requirements of writing code to the new standard, most distribution
members of the FSG see LSB as a way of furthering innovation, rather than
stifling it. As Zemlin said, “A way to think of it is: innovation on top of shared
invention. These companies are willing to standardize components of their open
source invention in order to foster compatible innovation—on top of a shared
platform.”

Ian Murdock also values the innovation sparked by the open-source community
and believes that LSB will keep that alive while unifying the platform for
commercial development efforts. “I think that the job of LSB,” Murdock said, “is
almost akin to that of an integrator. We want to maximize the kind of Wild West
mentality that prevails in the open-source community. The open-source
community scales remarkably well because there is no central coordination or
planning. We absolutely want to preserve that—that is what makes it tick. But, at
the same time, we want to build this nice layer above it that makes the collective
integrated whole on par with the commercial platforms. It is part of working with
the stakeholders across the board—the upstreams, the distros, and the ISVs.
And, it is also about doing a good job of building an abstraction layer above this
Wild West ecosystem, so that it is more familiar to the commercial folks, in
particular.”

While there is very little difficulty in targeting a single Linux OS desktop, the
challenge increases exponentially if an application developer wants to support
multiple Linux desktop distributions. For application vendors to stay competitive
and effectively address the needs of their customers, they must target multiple
platforms. In most cases, the time and cost associated with supporting multiple
distributions is prohibitive. However, LSB and its unified ecosystem resolve this
issue; developers can develop locally yet market to a large (and growing)
international marketplace.

Reaching a global user base

A massive change has occurred in the software development model due to the
Internet’s creation of a collaborative infrastructure. This new development model
means commercial companies developing software need to proactively address
the transformation and take advantage of the huge increase in the number of
people using computer technology. Countries such as Brazil, India, and China
are impacting the international market. Within these emerging markets, an
increasing slate of new applications for Linux OS-based systems powered by
Intel processors and technology can be found in numerous sectors—including
government, education, and transactional applications, as well as small and
mid-sized businesses. As the gap closes and the number of people with access
16 Linux Client Migration Cookbook, Version 2

to computing technologies rises, there is great opportunity to sell both
applications and hardware to a global market.

An industry call to action

Some of the areas where individual participants can work to advance the
development of this ecosystem include:

LSB compliant operating systems:

Linux OS distribution vendors can help advance the acceptance of the standard
by building LSB-compliant distributions and desktop tools. Compliance should be
part of their standard development testing and QA at each release cycle. Most
leading Linux distribution vendors have already achieved compliance. To achieve
the goals discussed in this paper, all distribution vendors should participate in the
LSB development process. The Client Linux Resource Center
(www.intel.com/go/linux) provides solution-oriented information and resources
about the operating system vendors participating with Intel.

LSB compliant applications:

ISVs can follow the LSB specification when developing applications for Linux
OSs. They can also provide their feedback to the FSG to make sure their
concerns are included in the next version of the standard.

User adoption:

Users now have a choice in their OSs and can include the selection of
LSB-compliant systems in procurement policies and purchasing behavior. Large
users of the technology can institute license and support agreements to include
lifetime support, whether purchasing a Linux OS distribution or a Linux OS
hardware system. This is something that is very easy for an user to accomplish
and it effectively produces an insurance policy, so to speak, when purchasing
this type of technology.

One extremely useful developer resource is freedesktop.org at:

http://www.freedesktop.org

“Our primary goals are to respond to the customer demand and contribute to
the progress in developing a strong, international ecosystem.”

— Dirk Hohndel, Director of Open Source Strategy, Intel
 Chapter 1. Introduction 17

http://www.freedesktop.org
http://www.freedesktop.org

Freedesktop.org is an open-source forum working toward greater interoperability
and shared technology for X Window System desktops, including GNOME and
KDE. This forum welcomes developers of all persuasions interested in furthering
the graphical user interface technology associated with Linux OS and UNIX.

Growing the specification and corresponding tests for LSB provides extremely
useful benefits to application developers and platform providers. This contributes
to the growth of the overall marketplace and adds to the importance of LSB.
Users and companies must also be educated so they can comply with and utilize
the standard and develop solutions on top of it. As the number of libraries and
interfaces included in the specification becomes more comprehensive and
robust, the rate of adoption will grow and ultimately the market can thrive.

Milestones on the road to large-scale adoption

The approval of LSB by ISO, which took place on November 1, 2005 at the Open
Source Business Conference, represented an important milestone clearly
indicating the maturity and scope of LSB and the Linux OS. Ratified as a Publicly
Available Specification (PAS) by ISO/IEC, the ISO standard will be published as
International Standard 23360.

LSB Desktop Project

This ISO milestone dovetails with the October 18, 2005 announcement by the
FSG of the formation of the LSB Desktop Project, which is supported by Intel and
numerous other organizations. This project has already attracted an impressive
contingent of industry participants including Adobe, IBM, HP, Linspire, Mandriva,
Novell, RealNetworks, Trolltech, Red Hat, Xandros, and others. These
companies are contributing time and resources in the effort to unify the common
libraries and application behavior specified in LSB.

Once common application run-time and install time requirements are
standardized and adopted by primary Linux OS distributions, developers will be
freed from having to compile to multiple instances of Linux libraries and
distributions. The LSB Desktop Project addresses the standardization of core
pieces of the Linux OS desktop and provides clear guidelines for ISVs to follow in
their development efforts.

Developers preparing for LSB 4.0 can begin now by building their applications for
LSB 3.1. LSB 3.1 provides the foundational layer upon which LSB 4.0 will be
built. As Ian Murdock said, “There is going to be some evolution beyond 3.1. For
example, we can include additional functionality in some of the toolkits that is not
in 3.1. Much of this depends on the ongoing discussion with the OSVs. In a
sense, we are trying to capture what the OSVs want and need rather than
18 Linux Client Migration Cookbook, Version 2

mandating what has to be done. On the desktop side, the big change is going to
be integration of the standards produced by the freedesktop.org community,
which will go a long way toward solving many of the issues involved in creating a
common desktop framework.”

As a sub-project of the LSB, LSB Desktop Project follows the same modular
framework that enables distribution vendors and ISVs to target the standard in a
way that meets their requirements. This vision of a standard Linux OS has
aligned a broad sector of industry leaders with the goal to build a robust,
worldwide ecosystem that achieves a level of interoperability consistent with the
requirements of users and ISVs.

The direction and focus of the Free Standards Group relies on active
participation and collaboration among a deep and wide segment of industry
participants including distribution vendors, ISVs, system vendors, open source
developers, and independent software developers. Through ongoing
development and clear standards that broaden the client base, the next
generation of Linux OS-based desktop applications can be successfully created
and released to a wide segment of both mature and developing markets.

Get more information about the activities of the Linux Desktop Project by visiting:

http://lsb.freestandards.org

Subscribe to the lsb-desktop list to stay engaged with others who are involved
with shaping and refining the specifications for the Linux desktop at:

http://lists.freestandards.org

Discussion forums and the latest news about Linux desktop advances can be
found at:

http://www.desktoplinux.com

Roadmap to LSB 4.0

Figure 1-3 on page 20 illustrates the unfolding roadmap for LSB. With LSB 3.0
now in place as an ISO standard and LSB 3.1 scheduled to be ratified in
mid-2006, the focus is on application portability, as expressed by the LSB 4.0
enhancements now under discussion. These enhancements offer a practical
solution to many of the desktop development issues discussed earlier in this
paper — defining the interoperability framework, providing an update to the LSB
core that includes GCC and other related items, and essentially establishing the
unified development environment that will unlock opportunities for many ISVs. As
shown in the Figure 1-3 on page 20, the estimated user base for Linux OS
applications based on LSB 4.0 will be in the range of 75 million users.
 Chapter 1. Introduction 19

http://lsb.freestandards.org
http://lists.freestandards.org
http://www.desktoplinux.com

Figure 1-3 LSB Roadmap

LSB 3.1 Additions

LSB 3.1 includes the following:

� Integration of ISO standard LSB Core (ISO/IEC 23360).

� Readiness for GCC 4.1 and glibc 2.4. It should be possible for software built
on LSB-compliant distributions based on GCC 4.1 or glibc 2.4 to build
LSB-compliant applications.

� Addition of LSB Desktop, which initially covers the GUI toolkits (Gtk and Qt).

� Alignment of the LSB roadmap with the roadmaps of the major Linux
distributions (Red Hat, Novell, Red Flag, Ubuntu, Mandriva, Xandros, and
others). This will make it easier for software developers to correlate different
versions of the LSB specification with the distributions that implement them.
For example, targeting LSB 3.x provides support for Red Hat Enterprise Linux
20 Linux Client Migration Cookbook, Version 2

5 and SLES 10, LSB 4.x provides support for Red Hat Enterprise Linux 6 and
SLES 11, and so on.

� Greater participation of Linux distribution vendors and upstream maintainers
in the LSB development process. This will make it easier to achieve roadmap
synchronization and improve binary compatibility across major versions of the
standard.

� Modularization of the LSB standard at both the compliance/certification level
and the project management level. This will allow LSB to more rapidly
incorporate emerging de facto standards with minimal disruption on the
slower moving core functionality, as well as facilitate broader and more
targeted participation in the LSB development process.

� Improved developer tools and documentation. This will broaden the Linux
application market by making it easier for ISVs (particularly those coming
from Microsoft Windows*) to target Linux.

� Franchised certification. This will allow third parties to integrate LSB
certification into their own value-added certification and support offerings in a
decoupled manner.

LSB 3.2 Additions
� Addition of freedesktop.org standards for cross-desktop interoperability

(including menu entries, desktop icons, and so on), making LSB Desktop a
complete desktop platform that allows ISVs to create applications that
integrate effectively across GNOME and KDE.

LSB 4.0 Enhancements

The major additions and enhancements planned for LSB 4.0 include:

� Integration of updates to the compiler toolchain and core libraries that affect
ABI compatibility (GCC, glibc, and so on).

� Binary compatibility with LSB 3. LSB 3 applications should run on LSB
4-certified distributions without being recompiled, as a step toward binary
compatibility across major versions of the LSB standard.

� Addition of standardized language run times. Candidates are to be
determined based on workgroup participation; the short list of desirable
candidates includes Perl, Python, LAMP, and Java*.

� Addition of specialized LSB modules within the new modularized LSB
framework. The actual candidates are to be determined based on workgroup
participation; the short list of desirable candidates includes identity,
manageability, multimedia, packaging, and security.
 Chapter 1. Introduction 21

� Improvements in project infrastructure, including expanding the LSB database
to track the major distributions in relation to LSB (useful for both internal
project management and as an external developer resource), as well as
continued improvements in the test frameworks.

Developers interested in learning the latest details about progress toward LSB
4.0 or who wish to participate in the discussion and definition of the standard
should visit:

http://www.freestandards.org

This is a participatory, collaborative effort with room for diverse viewpoints and
many opportunities to contribute to the crafting and improvement of LSB.

Summary

A standardized Linux operating system, as represented by the pending Linux OS
desktop announcement in LSB 3.1, offers application developers a foundation for
creating a new generation of desktop application and thus access to a share of a
potential multi-billion dollar marketplace. Although standards can be a very
esoteric part of the computing world, the ramifications of international standards
have significant impact on global trade and affect many areas of the computer
industry. For this reason, Intel and many other industry leaders are actively
supporting the work of the Free Standards Group to refine and improve the Linux
Standard Base to meet the requirements of the international community. The
ultimate goal is the creation of a flourishing Linux OS ecosystem within which a
new breed of desktop application can be developed to meet the needs of
education, government, and business, and thus extend the benefits of reliable
computing to the widest audience possible.

The Free Standards Group is preparing to launch a Linux Developer Network to
help developers acquire the skills and resources to port applications to Linux OS
platforms. For current details and more information about the Free Standards
Group, visit:

http://www.freestandards.org

“Ten years from now, or maybe as little as five years from now, there will be a
global ecosystem of Linux [OS] desktop solutions provided by profitable,
competitive vendors based on this global standard. Our goals are to reduce
computing costs, increase innovation, and lower support costs, as well as help
produce an economy of human resources and human invention that will
support this standard around the globe.”

— Jim Zemlin, Executive Director, Free Standards Group
22 Linux Client Migration Cookbook, Version 2

http://www.freestandards.org
http://www.freestandards.org
http://www.freestandards.org

For details about developing applications for standardized Linux OS, visit:

http://www.intel.com/go/linux

1.8 The rest of this book
The rest of this book consists of:

� Part 1, “Choosing Linux” on page 1

– Chapter 1, “Introduction” on page 1

Introduction to the goals of this book, the strategic context, why you might
want to migrate, and a deep dive on developer-oriented desktop Linux
futures due to continuing development and adoption of the Linux Standard
Base as well as other standards-oriented efforts.

– Chapter 2, “The case for migration” on page 25

This chapter presents a detailed discussion about when and why you
might want to migrate to Linux on the desktop. In addition, we introduce
the topic of differences between Linux and Windows.

� Part 2, “Planning the pilot migration” on page 47

– Chapter 3, “Organizational and human factors planning” on page 49

This chapter provides a discussion of human and organizational factors
that are important considerations for transition management, and the
importance of gathering non-technical data about the “as is” client
environment.

– Chapter 4, “Technical planning” on page 61

This chapter provides background, analysis, and planning guidance for
various technical topics that need to be considered as part of planning for
a Linux client migration.

– Chapter 5, “Linux architecture and technical differences” on page 109

This chapter illustrates differences by presenting a top to bottom view of
the desktop Linux software stack, the dynamics of the free software and
open source movements, the definition of a “distribution”, and the
importance of standards.

� Part 3, “Performing the pilot migration” on page 129

– Chapter 6, “Migration best practices” on page 131

This chapter describes best practice methods you can use in your own
Linux client migration projects. The topics covered include situations,
which can make a migration to Linux easier, and use of third-party tools to
automate specific migration tasks.
 Chapter 1. Introduction 23

http://www.intel.com/go/linux
http://www.intel.com/go/linux

– Chapter 7, “Client deployment models” on page 139

This chapter concentrates on several client deployment models that can
make desktop Linux clients easier to manage. We present general ideas
that have been realized in several client projects, and several tools that
are available as stand-alone open source projects, commercial products,
or can be integrated in future versions of mainstream Linux distributions.

– Chapter 8, “Client migration scenario” on page 173

This chapter documents steps necessary to complete our own sample
migration.

– Chapter 9, “Integration how-tos” on page 195

This chapter demonstrates additional methods for integrating Linux clients
into an existing Windows domain (NT4 or Active Directory). We cover
many integration issues, including mounting home directories from SMB
shares at logon.

� Part 4, “Appendixes” on page 231

– Appendix A, “Linux glossary for Windows users” on page 233

– Appendix B, “Using enterprise management tools” on page 255

– Appendix G, “Application porting” on page 329

– Appendix F, “Desktop automation and scripting” on page 321

– Appendix E, “Client personalization” on page 313

– Appendix C, “Automating desktop migration using Versora Progression
Desktop” on page 277

– Appendix D, “Multi-station computing deep dive using Userful Desktop
Multiplier” on page 289
24 Linux Client Migration Cookbook, Version 2

Chapter 2. The case for migration

This chapter presents a detailed discussion about when and why you might want
to migration to Linux on the desktop. A lot of that discussion is triggered by
understanding why Linux is different than Windows, and how those differences
can justify a potentially costly migration process. So in addition, we introduce the
topic of differences between Linux and Windows. Those differences are
discussed at a high level here, and in much more detail later in the book (see
Chapter 5, “Linux architecture and technical differences” on page 109.

We do not go into detail about total cost of ownership (TCO) or return on
investment (ROI) models in this chapter. We also do not try to “sell” a migration;
although, this chapter does present arguments as to why you might want to
migrate to desktop Linux.

Since this book describes a migration to Linux clients from Windows clients, a
comparison with the Windows platform is unavoidable. However, we primarily
want to introduce the reasons for migrating on their own merits. A comparison
with the Windows platform has been presented in various articles, papers, and
reports many times, from various sources that are available on the Internet. And
most of those sources tend to contradict each other anyway since they naturally
reflect the bias of the authors writing them.

The sections in this chapter are:

� 2.1, “Why migrate” on page 27

Reasons for considering a migration.

2

© Copyright IBM Corp. 2004, 2006. All rights reserved. 25

� 2.2, “When to migrate - Or not to migrate” on page 39

Deciding factors about actually performing a migration.

� 2.3, “What makes Linux so different” on page 42

Understanding where Linux comes from and the dynamics of the open source
and free software movements.

� 2.4, “Migration goals” on page 43

Pilot and full migration goals.
26 Linux Client Migration Cookbook, Version 2

2.1 Why migrate
For many business environments today, Linux-based client computers can
already provide a fully functional and cost-effective alternative to Microsoft
Windows. The decision whether or not to migrate in your environment depends
on many factors. It is important that you carefully consider all of the technical and
organizational challenges before making any decisions. There are many
situations where, on technical merits alone, a Linux-based client computing
strategy is hard to beat. But in the broader analysis, a migration in those
environments might still not be justifiable because of the high cost of overcoming
organizational lock-in around an existing Windows-based environment.

In this section, we focus on some of the differentiating aspects of a Linux-based
client computing strategy, presented as follows:

� Desktop security (2.1.1, “Desktop security” on page 27

� Costs: direct & indirect (2.1.2, “Costs related to Linux client” on page 32)

� Manageability of the Linux client solution (2.1.3, “Manageability of the Linux
client” on page 34)

� Client customization (2.1.4, “Client customization” on page 37)

� OSS philosophy (2.1.5, “Free software and the open source philosophy” on
page 38)

� Ease of use (2.1.6, “Ease of use and retraining” on page 38)

� Economies of scale (2.1.7, “New economies of scale” on page 38)

2.1.1 Desktop security
You can easily write an entire book about the topic of comparing methods of
securing Windows-based and Linux-based client systems. And, the technical
landscape for comparing Windows with Linux is currently evolving rapidly:

� The upcoming release of Windows Vista™ will significantly change how the
Windows platform manages many security-related concerns from a user point
of view.

� The continual improvement and wider adoption of SELinux. All versions of
Red Hat Enterprise Linux Version 5 and Red Hat Desktop Version 5 will
include SELinux as an optional security services layer, thus providing the
latest methods for multi-level security controls (MLS)1 that are needed in
many environments where highly sensitive data is managed. New “targeted
policies” are now evolving that will allow for desktop-oriented security

1 For more information, see: The Path to Multi-Level Security in Red Hat Enterprise LInux:
http://www.redhat.com/f/pdf/sec/path_to_mlsec.pdf
 Chapter 2. The case for migration 27

http://www.redhat.com/f/pdf/sec/path_to_mlsec.pdf

management policies that focus on a “compartmentalizing the breach”
strategy. The basic idea in this strategy is to protect user space from non-user
space processes. This strategy is supported by the fact that modern desktops
are adding more and more “services” by default (that is, client applications
that need network connectivity and awareness in relation to other client and
server applications in the domain). It would be onerous to support application
level compartmentalization for every desktop application needing it. So
instead, because of the fact that desktop systems do not need to meet
stringent availability requirements, you focus on a strategy that affords high
levels of security (compartmentalization) to just specific file system partitions
on the client that are used to store the most sensitive data. “In order to
achieve this goal, the community and independent software vendors (ISVs)
must work with the SELinux developers to produce the necessary policies.”2

� Novell’s AppArmor3 provides a Linux network security framework. AppArmor
originally was developed by Immunix, Inc. Novell acquired Immunix in 2005,
and AppArmor is now included in the SUSE Linux Enterprise 10 products.
AppArmor is an open source project.4 The approach that AppArmor takes is
different than SELinux, and they are currently seen as competing products.
Novell maintains an extensive FAQ for AppArmor at this site:

http://developer.novell.com/wiki/index.php/Apparmor_FAQ

Because of its dominant share in the desktop computing market, coverage of
Windows security concerns (the latest exploits, viruses, patches, and so on)
receives a lot of attention in the IT press relative to those same sets of concerns
on Linux. That does not mean that security concerns disappear when you
migrate to Linux. But when you consider the open “UNIX-like” architecture of
Linux and the fast response dynamics of open source community development,
Linux does present a very compelling option when the goal is to lower the total
cost involved in providing secure client computing platforms.

Even though Linux has many security-related features or properties, we
concentrate on the ones relevant to a Linux client. Because on a Linux client
there is interactive user activity, the security issues we look at reflect that. We
focus on the features most related to this interactive user activity and some
others that are also relevant:

� Browser security
� Messaging-client security
� User fencing and security
� Bugfix response time
� Modularity of the operating system
� Firewalling

2 From the Fedora Core 5 SELinux FAQ: http://fedora.redhat.com/docs/selinux-faq-fc5/
3 http://www.novell.com/linux/security/apparmor/overview.html
4 http://en.opensuse.org/AppArmor
28 Linux Client Migration Cookbook, Version 2

http://fedora.redhat.com/docs/selinux-faq-fc5/
http://developer.novell.com/wiki/index.php/Apparmor_dev
http://developer.novell.com/wiki/index.php/Apparmor_dev
http://www.novell.com/linux/security/apparmor/overview.html
http://en.opensuse.org/AppArmor
http://developer.novell.com/wiki/index.php/Apparmor_FAQ

� Cultural differences in the developer communities
� System level access
� File system controls

Browser security
The browsers used with a Linux client are mostly open source software. Some of
these browsers are also available for other operating systems. In a Linux client,
the browser is not part of the operating system—it is a stand-alone application
hosted by the operating system. For Linux platforms, there are a number of
browsers to choose from. The most commonly used are:

� Mozilla and Mozilla Firefox
� Opera
� Konqueror

Because the browser is not closely built into the operating system, it is more
difficult to use the browser as an entry point for circumventing operating system
security. All of the browser software runs in user space and not in kernel space.
This also means that the browser software can be installed as a non-root user.

Apart from the fact that security exploits of the browser do not immediately affect
the operating system, the bug-fixing process for the most commonly used
browsers is usually very fast, most notably within days (and sometimes hours)
after discovery of the security problem. This “speed to fix” is a result of the active
involvement of a large and growing community of open source developers, and
again because only the application is being patched and tested to provide the fix,
not the host operating system as well.

Another temporary advantage of open source browsers is their small market
share relative to Microsoft Internet Explorer®, thus making them smaller targets
for exploitation. This advantage would diminish in the long run as more clients
begin using alternative open source browsers.

Messaging-client security
A messaging client in this context is defined as an application that is used to
communicate messages with another user of another computer over a TCP/IP
network, including the Internet. This includes both e-mail applications as well as
instant messaging applications.

Like browser applications, messaging applications for Linux are open source
software, and they are stand-alone applications that are hosted by the operating
system. This means that all advantages listed in the section about browser
security are valid for messaging applications as well.
 Chapter 2. The case for migration 29

The open source messaging client can generally handle more than one
messaging protocol. This means that a choice of a messaging application for the
Linux client can still provide some flexibility in the choice of which server-side
messaging application or protocol is being used. The choice of client application
can actually be influenced by the choice of server-side application. Thus, security
considerations can be an influence when designing messaging system services
in a Linux-based environment.

User fencing and security
User security has been an important part of UNIX operating systems from their
early beginnings. Since Linux, like UNIX, is inherently a multi-user operating
system, it is possible to use this core feature to separate different security roles
on the client. Also, the fact that there is only one user with all administrative
rights (the root user) by default helps in keeping the client secure.

The security options in Linux that can be applied to users and groups are
typically applied to “fence off” the login environment of the individual user. The
user does not, by default, have administrative access to the operating system on
the client.

Bugfix response time
A large factor in responding to security exploits is the time to fix. The risk related
to an exploit is directly related to the time the security “hole” is available to people
who want to exploit it. Since most if not all components in a Linux client are open
source software, fixes either come from the open source community or from an
enterprise vendor that offers this kind of support. It has been shown that the time
to fix security exploits in the Linux kernel is quite short.

Also, since the source is open, it is possible for an organization to develop a
bugfix on its own, test it and deploy it internally, and even share the modified
source code with the OSS development community for consideration.

Firewall support
The Linux kernel has firewall services built into the kernel. As of Version 2.4 of
the kernel, this firewall is called iptables. Configuring iptables correctly enables
the administrator to implement a network security policy on the Linux client.
Iptables firewalling can be used to secure the Linux client in the following areas:

� Protect against worm viruses.
� Prevent individual users from using protocols not allowed by policies.
� Secure against known exploits.
30 Linux Client Migration Cookbook, Version 2

Community development dynamics
The cultural differences in the developer ecosystems between Windows and
Linux is quite significant. First, the open nature of Linux and other services that
run on Linux allow anyone (with the proper skills) to be able to perform a process
or source code level security audit of the system whenever necessary. The size
and vigilance of the developer community facilitates a “many eyes” approach that
usually yields a very quick and peer-reviewed response to security problems.5
Also, with open source packages any problems could potentially be fixed by the
same person who found the flaw. In contrast, if a security flaw is identified in a
closed-source product, then you are dependent on the ability of the software
vendor to provide a timely fix. In an open-source product, fixes could come from
the official repository, or could be developed in-house if the service is extremely
crucial and needs to be fixed immediately.

System level access
Another major cultural difference is permissions for a standard user. Due to
backwards compatibility concerns, many Windows users run with Administrator
level access. Many older applications require Administrator access to run
properly, and most applications still require Administrator access to install. On
Linux systems, running as the root user is discouraged. Some distributions even
display warning boxes or special warning wallpaper for the root user, to
demonstrate the security risk to an individual user. Instead, in many cases users
only need to have administrator levels of access to their home directories. When
users wish to perform system maintenance, historically they would start a
console as a root user and perform the configuration from there. On modern
distributions, most graphical system configuration tools prompt for the root user
password, thus granting root access only to that configuration tool. This main
difference means that even if a user were to launch some malware, then it would
not have complete control of the machine. Because the malware would still be
able to modify or delete personal settings, it is still a problem for users. However,
by not compromising the entire operating system, an infected Linux system in
this scenario could be significantly easier to recover compared to a
Windows-based system.

File system controls
Considering file system security, both the Windows and Linux base OS support
grant and revoke permissions to read, modify, and execute files and folders. On
Windows NT-based operating systems with NTFS partitions, Windows uses
Access Control Lists (ACLs) to define each user or group who has permission to
any given file. Most Linux distributions default to a less granular method of
permissions, which breaks down access levels into three groups: the owner of a

5 Linus’s Law states: “give enough eyeballs, all bugs are shallow”. Coined by Eric S. Raymond. See:
http://en.wikipedia.org/wiki/Linus's_law
 Chapter 2. The case for migration 31

http://en.wikipedia.org/wiki/Linus's_law

file, the group of a file, and everyone else. Therefore, if you want to grant read
and write permission to two given users but not to anyone else, then there must
be a group with just those two users in it, and then the file can be associated with
that group. While it is possible to create countless groups in order to provide
granular file security, the option is not realistic. While most environments do not
have such specific requirements, there is a solution if necessary. Many modern
file systems now include support for ACLs, and support from other tools (such as
backup tools and file system browsers like Konqueror and Nautilus) is starting to
gain momentum.

2.1.2 Costs related to Linux client
The different cost factors related to the client are fairly general and independent
of the operating system, but the relative impact and size of these cost factors can
be highly dependent on the client operating system. Cost factors to consider for a
Linux migration include:

� License and support cost for the Linux distribution
� Hardware cost
� Application cost for the base desktop client
� Management and support cost
� Migration cost

Free software and open source are discussed later in this chapter (2.1.5, “Free
software and the open source philosophy” on page 38), and in more detail in
2.3.1, “The movements: free software and open source” on page 42.

License and support cost for the Linux distribution
The Linux kernel and most applications included in Linux distributions are open
source and licensed under the GNU Public License (GPL). This means that the
software is freely distributable. Therefore, there are no license costs
independently related to the Linux client.

However, distributions packaged by enterprise distributors are not free. There is
usually a per-seat pricing model for enterprise distributions. And this fee usually
includes a support mechanism for the installed machine for one year. It might

Note: In an actual situation in which you are presenting a justification model
for a large scale migration to desktop Linux, you undoubtedly talk about
overall cost to the company and the return on investment models that justify
that cost. But within that situation, it is important to emphasize that you would
not be talking about Linux on that day, in that context, if it were not for the
game changing industry dynamics of the free software and open source
movements.
32 Linux Client Migration Cookbook, Version 2

also be possible to purchase extra levels of support from the enterprise
distribution vendors.

Given the open source nature of the Linux operating system and related
software, it is also possible to use it completely free of license and support costs.
For support, the organization is then completely dependent on the open source
community and well-trained personnel within the organization.

Hardware cost
Most Linux distributions can run well on older hardware. Depending on your
client application requirements, it is even possible to reuse hardware that has
already been retired because it cannot support the latest Microsoft Windows
performance requirements.

However, the newer enterprise distribution offerings for the desktop have
minimum memory requirements that approach the same requirements of
Microsoft Windows. Because this is a memory requirement only, you might still
be able to use existing or even retired systems to support these distributions.

Application cost for the base desktop client
The Linux distributions include a large number of basic applications such as
editors, imaging software, browsers, e-mail applications, instant messaging
applications, and even some office productivity tools such as word processing,
presentation, and spreadsheet applications. This means that the cost for these
basic applications when using a Linux client is small to none.

Even if an application needed is not included in the distribution, chances are that
there is an OSS equivalent that can be installed free of cost.

Management and support costs related to the client
In any medium to large enterprise, keeping any production desktop client
operational and free of bugs and security exploits is usually one of the largest
overall cost factors. This does not change in a Linux-based client strategy. But,
the fact that the operating system is UNIX-like introduces a lot of innovative
cost-saving strategies for consideration. For example, because the client can be
remotely connected to and managed using telnet or SSH protocols, it is possible
to install scripts on the client that can easily be remotely executed.

Using remote scripts, it is possible to monitor the clients for problems and to
execute a task on all clients from a central server. For example, it is possible that
a bugfix can be implemented on all clients by remotely executing a script on the
client that is able to fetch a patch and install it, without user interruption.
 Chapter 2. The case for migration 33

A key consideration here is how the organization plans to use distributed system
management tools. These management tool suites are available as additional
add-on tools, or from enterprise Linux vendors, included as part of the operating
system packaging. Examples are Red Hat Network from Red Hat and the
ZENworks Suite from Novell.

Enterprise management tooling is discussed further in Best Practices, 6.8, “Use
a systems management tool” on page 136, and details about several tooling
platforms are included in Appendix B, “Using enterprise management tools” on
page 255.

2.1.3 Manageability of the Linux client
As stated in the previous section, one of the major considerations related to
client choice is the way the client can be managed. Some of the inherent
properties of the Linux operating system, as well as tools developed in either the
open source community or by vendors, make the Linux client a very manageable
client alternative.

The properties and tools we discuss in this section are:

� Modular structure of the operating system
� Update mechanism
� Inherent remote access

Note: For medium to large enterprises, you can expect that the business case
for a migration cannot be entirely justified by just a potential cost savings in
operating system and application software licensing fees. In fact, in a client
migration scenario, you should expect that the most important cost
consideration that comes into play is the overall cost of managing the client
computing infrastructure on an ongoing basis.

As the size of the supported client base scales up, these costs (IT staffing,
support and help desk, system upgrade and replacement, repair and
protection from viruses and other attacks, and so on) greatly overshadow the
costs of recurring operating system and application software licensing.

This is why we strongly recommend that the approach for building a cost
justification model for a client migration to Linux should emphasize the
potential for introducing innovative ways to achieve savings in how enterprise
client platforms are managed. The integrated management tooling suites
provided by IBM strategic Linux business partners (Novell and their
ZENWorks Suite; Red Hat and their Red Hat Network) provide important
value-added features that any enterprise must consider implementing as part
of a Linux client migration plan.
34 Linux Client Migration Cookbook, Version 2

� Remote management and provisioning tools

Modular structure of the operating system
The Linux kernel has, by design, a modular structure. This means that the kernel
is not one monolithic binary. Instead, it consists of a central smaller kernel binary
together with various kernel modules. The kernel modules can be loaded when
needed. Some of the modules have to be loaded at bootup, because these are
needed to read file systems or other peripheral hardware.

Not only is the kernel modular, but the application framework around the kernel
has a modular construction as well. The applications such as scripting engines
(Perl, PHP, and Python) or editors (gedit, and vi) are not integrated into the
operating system and can even be replaced by others or new versions more or
less independently.

The modular nature of Linux means that updates or patches only involve a small
part of the operating system, for example, either a single application binary or a
library within the application framework or a single kernel module. This
modularity is the main reason that an update or a patch almost always does not
require a reboot on Linux.

Update mechanism
The update mechanism for Linux does not need to be central to the system.
What we mean by this is that since updating or patching is not destructive to the
system state (in other words, leading to a reboot), it can be done while other
applications are running. Unless the update or patch impacts the core kernel or a
running application, it can be done online.

This means that the mechanism that checks for new updates can be scheduled
regularly and can be allowed to implement the changes automatically.

Inherent support for remote access
The Linux operating system has inherent remote access through TCP/IP, like all
UNIX operating systems. This is a really powerful tool for systems management,
because almost all management tasks can be done remotely, and since the
advent of the secure socket layer can be done securely using SSH.

Remote access to the client is useful for two types of administrative tasks:

� Remote execution of administrative programs or monitoring scripts
� Access to the client from a central location to give support on the client

Remote execution
Remote execution is used to execute applications or scripts from a central
location, for example, to force all clients to update a virus scanner or fetch a
 Chapter 2. The case for migration 35

critical security patch. This can also be used to execute monitoring scripts that
enable the administrator to do preventive work, for example, to clear a temporary
directory before a file system fills up.

Remote support
Almost all support on the client can be provided by accessing the client from a
remote location. The only types of problems that still require hands-on interaction
at the client are network problems. All other problems reported by the user can
be handled by logging onto the client remotely and studying the system
configuration and the log files. This capability could improve the effectiveness of
helpdesk staff significantly.

Remote management and provisioning tools
There are a lot of tools available in the open source community as well as from
commercial parties for remote management or monitoring and provisioning.
Some of the most popular tools are:

� Webmin6

� Big Brother/Big Sister7

� Nagios8

Webmin is mainly used for remote management of a single machine. Big Brother
and Nagios are mostly used to monitor run-time properties of a network of
machines, then to apply preventive administrative tasks when system properties
go outside of established limits.

Commercial tools are available for these tasks as well. For example, IBM
provides Tivoli® Configuration Manager and Tivoli Monitoring software for
automation of monitoring and remote management tasks.

Red Hat Enterprise Linux distributions can use the Red Hat Network (RHN) to
remotely manage individual systems or groups of systems. The RHN also offers
automatic provisioning services as described in “Administration of Red Hat
Desktop” on page 91.

Novell Linux Desktop and SUSE Linux distributions use ZENworks software to
remotely manage or provision systems, as described in “Administration of Novell
Linux Desktop” on page 93. After Novell acquired Ximian software, the SUSE
Linux distributions adopted Ximian’s Red Carpet product (now under the
ZENworks name) as the standard tool for their enterprise distributions. Before

6 http://www.sourceforge.net/projects/webadmin; http://www.webmin.com
7 http://www.sourceforge.net/projects/big-brother;
http://www.sourceforge.net/projects/bigsister; http://www.bb4.org
8 http://sourceforge.net/projects/nagios; http://www.nagios.org/
36 Linux Client Migration Cookbook, Version 2

http://www.sourceforge.net/projects/webadmin
http://www.webmin.com
http://www.sourceforge.net/projects/big-brother
http://www.sourceforge.net/projects/bigsister
http://www.bb4.org
http://sourceforge.net/projects/nagios
http://www.nagios.org/

that, SUSE Linux used Yast online Update (YoU) as the tool to remotely manage
systems.

2.1.4 Client customization
Sometimes it is useful to match the client to the role of the user using it. If a
standard client build contains every possible application provided by the source
distribution, then it becomes not only large but also more difficult to maintain.
Therefore, client customization becomes an important goal in a Linux desktop
deployment strategy.

In this section, we look at the following features of the Linux client:

� Flexibility to add or remove components of the Linux installation
� Ability to prevent “bloating” of the client by maintaining package control
� Availability of task-oriented distributions
� Flexibility of desktop design and session manager

Flexibility to add or remove components
Starting during the installation, it is fairly simple to add or remove components to
the installation. Most installers supply a default installation, with the option to
change which components to add or remove. This is again a result of the
modular structure of the Linux operating system. This flexibility enables the
construction of customized installations for the Linux client.

Ability to prevent bloating of the client
Using the flexibility to add or remove components, it becomes possible to prevent
the client from “bloating”. Because customized Linux clients can be constructed
for different user roles, it is not necessary to put all applications in one client
image. This ensures that the client size does not grow out of control.

Linux distributions have been constructed as small as a single floppy disk (1.4
Mb). The enterprise distributions will install to several Gb in a default installation.

Availability of task-oriented distributions
Because of the freedom to include and remove components and the absolute
freedom to add other applications from the open source community, it becomes
possible to create special task-oriented distributions. It is possible to create a
distribution (and a Linux client based on it) for audio/video work or for signal
processing. These task-oriented distributions are useful when there are very
specialized desktop client requirements in an organization.
 Chapter 2. The case for migration 37

Flexibility of desktop design and session manager
One of the most obvious differences between the design of a Microsoft Windows
client and a Linux-based client is the freedom of choice you have in selecting
desktop session managers and window managers in Linux. Also, most session
managers (certainly KDE and GNOME) also provide extensive sets of theme
options that can be used to further customize the look and feel of the desktop
user interface. These themes are essentially a collection of icons, colors, window
frames, backgrounds, and widgets, which combine to provide the selected look
and feel.

2.1.5 Free software and the open source philosophy
For some organizations, the fact that Linux is open source software can be
reason enough for justifying a migration. This is mainly because those
organizations want to avoid vendor lock-in. Another reason that organizations
might want to use open source software is that the source code is available and
can be studied or adapted to their specific needs when necessary.

2.1.6 Ease of use and retraining
Modern Linux-based user interfaces (UI), such as those based on GNOME and
KDE, provide the familiarity of a windowing desktop application environment as
well as very sophisticated application development platforms. In a properly
designed Linux-based desktop UI, you should easily be able to provide
acceptable levels of both familiarity (in the mechanics of controlling the UI
components and in application behavior) and ease of use. Further on in this
book, we discuss key strategies for easing the “on-the-glass” user transition in a
Windows to Linux migration scenario (for example, see 3.2.1, “Bridging
applications” on page 53).

2.1.7 New economies of scale
A Linux-based desktop computing strategy introduces many new options for
designing client deployment models, options that introduce new economies of
scale in the design of client architectures. Thin client architectures, and the
hybrid strategy aptly demonstrated by the “Multi-Station” approach pioneered by

Note: Even if these factors are not influencing your migration decision, it is still
very important that you understand the dynamics of the free software and
open source software movements. The Linux alternative as it exists today and
the rate of innovation occurring right now around the Linux platform would not
be possible without the support of the developer communities. (See 2.3.1,
“The movements: free software and open source” on page 42)
38 Linux Client Migration Cookbook, Version 2

Userful Corporation9, are excellent examples of new economies of scale in the
design of client architecture. See 7.2, “Remoting tools” on page 154 and 7.5,
“Multi-station client architecture” on page 162 for more details.

2.2 When to migrate - Or not to migrate
This book focuses on methods for migrating Microsoft Windows-based clients to
Linux-based clients within a mainly Windows-based enterprise. But in general,
the client migration is almost always part of a larger migration to open source
software within the enterprise. This has to be taken into account when planning a
client migration.

Even though the new Linux desktop might have properties (as indicated in 2.1,
“Why migrate” on page 27) that are in favor of a migration, the total end result of
the migration must have advantages as well. The total end result of the migration
is not just a number of clients running Linux. Because of infrastructure and
application environments, the architecture after the migration is usually more
complex.

In the rest of this section, we look at several circumstances that favor a decision
to migrate to a Linux client. These circumstances can mostly be described as an
absence of a complicating factor. We describe some in detail.

2.2.1 Desktop Linux markets — the threshold of entry
The Open Source Development Labs (OSDL) is at:

http://www.osdl.org

OSDL has developed a useful chart that illustrates the relative threshold of entry
levels for each type of user segmentation in an organization. For more
information about user and role segmentation and how it can affect your
migration strategy, see 3.1.1, “Functional segmentation - Fixed function to
general office” on page 50. The threshold chart is shown in Figure 2-1 on
page 40 below.

9 http://www.userful.com
 Chapter 2. The case for migration 39

http://www.userful.com
http://www.osdl.org
http://www.osdl.org

Figure 2-1 Desktop Linux markets — threshold of entry10

You can see from Figure 2-1 that, as your user segments move toward
increasingly complex business application requirements, the threshold of entry
increases.

2.2.2 Client roles fit thin and slim client model
Clients within a client/server model are generally called either fat, slim, or thin.
This indicates where the majority of the application used actually runs. For
example, in a thin client only the presentation part of the application runs locally
(for example, in a browser), and the rest of the application runs on the server.
These different roles are described in more detail in 4.4.2, “Logical segmentation
- Thin, slim, or fat” on page 85.

One of the complicating factors in the migration is a large number of fat clients. A
fat client is a client with a large number of applications locally installed. The
larger the number of applications, then the greater the chance that some of those
applications will be difficult to migrate to the Linux client. Some of them might
even be unmigratable, which leads to a more complex infrastructure integration,
as described in 4.7, “Unmigratable applications” on page 99.

If the current client is thin, this means that migrating the client to Linux does not
involve the complicating factor of a complex infrastructure integration. In the

10 From http://www.osdl.org/lab_activities/desktop_linux (reproduced with permission)
40 Linux Client Migration Cookbook, Version 2

http://www.osdl.org/lab_activities/desktop_linux

idealized case of the user only using a browser to connect to a portal for all of
their application needs, then migration becomes almost trivial.

The more the client fits a thin or slim client model, the easier it is to migrate to a
Linux client. This leads to most early migrations only including the thin clients in
an organization and leaving fat clients in their present state. It can also bring
organizations to move to a thinner client prior to migrating to an alternative client
operating system altogether.

2.2.3 High number of migratable applications
An application is termed migratable when there is a direct way to migrate the
application to a Linux client, either by using a Linux version of the application or
using a Linux-based alternative.

As described in more detail in 4.7, “Unmigratable applications” on page 99,
applications that do not migrate well to Linux complicate the migration to a large
extent. This also means that more migratable applications lead to easier
migration.

Before performing a migration and handling the unmigratables, some
organizations try to move away from applications that do not migrate easily. The
best way to do this is to move the application to a portal-based application. This
not only facilitates moving to a Linux client, but then the application also is not a
problem in any future migrations.

2.2.4 Organizational readiness
Even if all other factors in the migration are favorable, an organization that is not
ready for a migration will still be unsuccessful. An organization that is ready can
be defined as:

� Having users that are ready and able to move to another client

� Having administrators and support staff that are enthusiastic about the
migration and knowledgeable about the technology you are migrating to

� Having procedures in place that will streamline the handling of problems
during and after the migration

These factors are discussed further in Chapter 3, “Organizational and human
factors planning” on page 49.

One of the most important factors is that the migration has to be carried by the
administrators. The people who have to manage the clients and infrastructure
after the move can make or break the migration. Getting system administrators
 Chapter 2. The case for migration 41

and support staff behind the migration is one factor that can become very
important in the decision process.

2.3 What makes Linux so different
We must begin any discussion about why Linux is so different by first
understanding where it came from. Linux would not exist as it is today if it were
not for the cultural dynamics of the free software and open source movements.

2.3.1 The movements: free software and open source
Two critical forces have shaped the development of Linux so far:

� The free software movement11

� The open source movement12

These two forces have created the growth medium for the grass-roots
community dynamics that have led to the development of Linux as it is today
(and, to a large extent, also led to the graphical desktop environments and
applications that you run on top if it).

In casual conversations, it is easy to lump the goals of the free software and the
open source movements together. To an outside observer, the differences
between them are subtle and rarely recognized. To members of the community,
the differences are very important.13 The free software movement is a social
movement. And “free software” in this case is not free by their definition unless
the source code is available. In other words, free software implies open source.
In contrast, the open source movement embodies a development methodology.
The fact that a software product is “open source” does not necessarily mean it is
free. So, “free software” implies open source, while defining a project as “open
source” does not necessarily guarantee all of the freedoms that are promoted by
the free software movement.

Note: We begin defining how Linux is different by discussing the cultural
dynamics of the free software and open source movements here. We continue
this discussion by illustrating top-to-bottom technical differences of the Linux
desktop software stack in Chapter 5, “Linux architecture and technical
differences” on page 109.

11 Definition of free software: http://gnu.open-mirror.com/philosophy/free-sw.html
12 Definition of open source: http://en.wikipedia.org/wiki/Open_source
13 For more about the relationship between free software and open source, see:
http://www.gnu.org/philosophy/free-software-for-freedom.html
42 Linux Client Migration Cookbook, Version 2

http://gnu.open-mirror.com/philosophy/free-sw.html
http://en.wikipedia.org/wiki/Open_source
http://www.gnu.org/philosophy/free-software-for-freedom.html

An excellent essay is available online that explains in detail the relationship
between the free software and open source movements:

Live and let License, by Joe Barr, in linuxworld.com, published 5/23/2001

http://www.itworld.com/AppDev/350/LWD010523vcontrol4/

The community development dynamics that have been guided by the goals of
the free software and open source movements have led to top-to-bottom
transparency in the Linux software stack: from low-level kernel all the way up to
user productivity applications in the UI.

It is this characteristic, the potential for top-to-bottom transparency of the entire
software stack, that should be viewed as the single most important differentiator
between Linux and Windows. And note too that this characteristic does not
derive from purely technical differences. It is rooted in the freedoms promoted by
both the free software movement and the community development dynamics
promoted by the open source movement.

The following is stated earlier in this book, but it is worth repeating again in this
context. In an actual setting in which you are presenting a justification model for a
large migration to desktop Linux, you undoubtedly talk about overall cost to the
company and the return on investment models that justify that cost. But within
that setting, it is important to emphasize that you would not be talking about
Linux on that day, in that context, if it were not for the game changing industry
dynamics of the free software and open source movements.

Any IT organization that makes a strategic investment in Linux is also making an
investment in these movements. And the long-term viability of a Linux-based
strategy is going to be affected by the continuing progress of these movements.

2.4 Migration goals
Not all migrations are the same. While eventually migrations will have a goal of
replacing all desktop clients in an organization with Linux clients, most early
migrations serve as pilot projects and only migrate a part of the desktops.

Note: “Free” in this context has a different meaning than simply not having to
pay for something. A common refrain in the development community is to
define freedom in this context using the following phrase: “freedom as in
speech, not as in beer”. Freedom in this sense means that you have been
granted certain liberties in how you may use the product, not that it has a
certain price.
 Chapter 2. The case for migration 43

http://www.itworld.com/AppDev/350/LWD010523vcontrol4/
http://www.itworld.com/AppDev/350/LWD010523vcontrol4/

In this section, we discuss both goals in more detail. We indicate how the goals
of both types of migration are different. Details for planning either a partial
migration, pilot migration, or full migration are found in the rest of this book.

2.4.1 Pilot migration
The actual goal of the pilot migration is not that some client will be running the
Linux operating system. The main goal of a pilot migration is answering the
following question: How can we deploy across the organization with confidence?

A pilot migration has to target all types of usage models that will be included in an
eventual full migration. All applications that are going to be considered in the
migration have to be included in the pilot as well. This way, the pilot can be seen
as an information-gathering exercise for the full migration.

The pilot migration should give answers to most of the following questions:

� Can all applications still be used after migrating?

� Are users able to use the infrastructure of the organization in the way they did
before the migration?

� Are administrators still able to perform all their tasks after the migration?

� Do the new infrastructure components, such as terminal servers or
consolidated Windows desktops, function as planned?

2.4.2 Full migration
In a full migration, the migration methods that were tested in the pilot phase are
used to successfully complete migration of all targeted desktops to the new
configuration.

Goals of a full migration could include the following:

� Increase the level of desktop client security.

� Improve manageability of desktop clients.

� Lower the overall total cost of ownership (TCO) of desktop clients.

� Decrease dependency on a single software vendor.

� Improve the lifecycle of client hardware.

� Comply with governmental regulations or strategies (for example, China has
declared use of OSS as a strategic imperative).

� Extend usage of Linux from servers to desktop to leverage existing
experience and skills.
44 Linux Client Migration Cookbook, Version 2

� An excuse for change (for example, to clean up existing problems and start
new with a standardized client implementation strategy).

Good planning is a major part of the migration. If a migration is started from a
technical perspective, it is very easy to start with the technical challenges. That is
certainly a part of a successful migration. But to complete a successful migration,
management support on all levels is certainly just as important.

In the remainder of this book, we discuss how to plan a migration, both human
factors and from a technical point of view. We then document an example of
migration, including technical how to steps for solving some of the issues
involved.
 Chapter 2. The case for migration 45

46 Linux Client Migration Cookbook, Version 2

Part 2 Planning the
pilot migration

Part 2 of this book includes:

� Chapter 3, “Organizational and human factors planning” on page 49

� Chapter 4, “Technical planning” on page 61

� Chapter 5, “Linux architecture and technical differences” on page 109

Part 2
© Copyright IBM Corp. 2004, 2006. All rights reserved. 47

48 Linux Client Migration Cookbook, Version 2

Chapter 3. Organizational and human
factors planning

This chapter provides useful information regarding non-technical issues that
correlate with a client migration. In contrast to migrations in a data center, you
have to consider many more human and organizational factors—justified by the
fact that a migration affects the daily work of the users.

The sections in this chapter are:

� 3.1, “Assessing usage patterns” on page 50

Considerations and sample segmentation model for assessing usage
patterns

� 3.2, “Establishing functional continuity” on page 53

Defines “functional continuity” and stresses the importance of taking
advantage of this when possible

� 3.3, “Human factors” on page 56

Considerations for planning how to manage transitions and expectations

� 3.4, “Retraining considerations” on page 57

Methods to consider for minimizing the cost and time associated with
retraining users

3

© Copyright IBM Corp. 2004, 2006. All rights reserved. 49

3.1 Assessing usage patterns
When planning a pilot migration, one of the most important steps is to perform an
as-is analysis of your current IT environment that focuses on client application
usage patterns. From this analysis, you should be able to derive a segmentation
of role-based usage patterns. A very helpful tool for gathering this information is
a user survey. Practical methods for performing this survey are provided in 4.1,
“Assessing the client IT environment” on page 63.

3.1.1 Functional segmentation - Fixed function to general office
When considering the range of applications hosted by a client (that is, what type
of work is done at a workstation), desktops in an enterprise or corporate
environment can be roughly segmented into five distinct types, as shown in the
top row of Figure 3-1.

Figure 3-1 Client functional segmentation

The types are:

� Fixed function

Users of these client machines run only a fixed and limited set of designated
applications. Applications are customized for specific usage. For example, a
kiosk or point-of-sale terminal.

� Technical Workstation
50 Linux Client Migration Cookbook, Version 2

Users of these client machines work on industry-specific applications. It might
require specific software packages, tailored to sector or problem domain, for
example, engineering applications, such as CAD and CAM applications, or
entertainment applications, such as movie animation.

� Transactional Workstation

A client designed to run form-based applications to support transaction
processing. Often additional functions required include access to an intranet
or defined Internet sites, and simple e-mail (though no attachments).
Examples of transactional clients include travel agency workstations, bank
teller workstations, and front office workstations in insurance agencies.

� Basic Office Workstation

A client designed to run applications in support of a company’s business
processes. Support is required for ERP and CRM GUIs, intranet browsing,
access to Internet sites, instant messaging, e-mail (with attachments), and
the creation and viewing of simple documents (memos, letters, and
spreadsheets) within the company only. The level of Windows interoperability
required depends on the number of Windows clients deployed in the
organization. The applications could create files in portable formats (for
example, ODF, PDF, or HTML). Examples of basic office clients include a
loan officer workstation or an office administrator in a small business.

� General Office Workstation

A client designed to run a broad suite of applications, including business
process applications (ERP and CRM GUIs), complex compound document
creation (such as word processing, presentation graphics, and desktop
publishing), and collaboration (instant messaging, file sharing, workflow, and
advanced calendaring). The level of Windows interoperability required
depends on the number of Windows clients deployed in the organization and
the number of external organizations that a user interacts with. Browsing
intranet and Internet sites is required, with support for a broad range of
multimedia (such as streaming audio and video or Macromedia Flash).
Examples of an advanced office client include workstations to support sales
and technical professionals, finance planners, and executive assistants.
 Chapter 3. Organizational and human factors planning 51

For more discussion on this topic, see 2.2.1, “Desktop Linux markets — the
threshold of entry” on page 39. Also, see the discussion about “segmented
perspectives” on the Open Source Development Laps “Desktop Linux” page:

http://www.osdl.org/lab_activities/desktop_linux

3.1.2 Surveying user data
Assuming that a group or role-based segment of users is identified for migration,
then the next step is to collect data (a technical survey) that captures all aspects
of the workstation usage profile. This profiling data should include all applications
that are being used, all application dependencies (for example, database
servers), and all required file types that are used, as well as client hardware data.

As part of this survey, you need to pay careful attention to evaluating hardware
and peripheral device compatibility. Another topic that needs special attention is
the range of file types that are used company-wide. In order to avoid the
possibility of inaccessible files or content, it is reasonable to make a list of all
types and then identify applications or migration paths that guarantee the
usability on the new system.

3.1.3 User survey
The task of an user survey can take a lot of time, but it is also extremely
important, because along with information about users’ application usage
patterns, you can gain insight into the user’s point of view. This can help you
discover how users use the systems and what is important to them.

Another important issue you can learn about by this survey is the existence of
applications or other items that are not listed in the software catalog of a
company. Sometimes users have built templates or databases on their own,

Planning tip: You should expect that the migration of clients that fit into the
more advanced functional segments as defined in the right side of Figure 3-1
on page 50 requires more intensive application and data migration steps. In
considering the overall cost of migration, it might be appropriate to identify and
migrate only those workstation segments that fit into the left side of this figure.
As native Linux applications for the desktop mature and become more readily
available, migration of the more advanced client functional segments, as
shown in the right side of Figure 3-1 on page 50, should become more
common.
52 Linux Client Migration Cookbook, Version 2

http://www.osdl.org/lab_activities/desktop_linux

which are useful to them, or they have installed applications that are necessary
for their work requirements.

3.2 Establishing functional continuity
This chapter includes methods that help to retain the functions of existing
applications. After the migration, users in most cases will have to switch to
different but functionally equivalent applications. In order to bridge this gap,
which can result in a loss of productivity, it is useful to develop a strategy in which
users get accustomed to the new applications.

3.2.1 Bridging applications
Some applications that run natively on Linux are also available natively for
Windows. These applications provide an opportunity to minimize the transition
effects and retraining requirements that are triggered by an operating system
migration to Linux. Thus, it is possible to migrate to applications that will be
supported on the Linux platform prior to actual migration of the operating system
itself.

The benefit of such pre-migration changes is that the users are allowed to get
accustomed to the new applications before the actual migration of the operating
system is done.

After the new operating system is installed, the users will not experience any
change at all as far the applications are concerned when making the switch with
respect to those applications.

Table 3-1 on page 54 provides several examples of applications that you can use
as “bridging” applications between Microsoft Windows and Linux. The
Linux-based equivalents listed in the second column are examples of
applications that provide versions, which can run natively on both Microsoft
Windows and most major distributions of Linux. Thus, they allow application
migration to occur prior to operating system migration.

Important: The method described in this section can provide an extremely
important way to help ease user interruption and frustration, as well as
minimize the amount of application retraining necessary to complete the
migration.
 Chapter 3. Organizational and human factors planning 53

Table 3-1 Example bridging applications

3.2.2 Functionally equivalent utility applications
The functions provided by utility applications such as file system browsers,
archivers, and viewers force the design of these tools to be more closely tied to
the host operating system. They cannot be considered “bridging applications”, in
the sense that we described for the applications listed in the previous section.
One of the reasons Linux is considered to be approaching equivalency with
Windows is the availability of many choices for utility applications. In many
cases, these applications can in fact have more powerful feature sets than their
equivalent utility applications used in Windows today.

Table 3-2 on page 55 provides examples of functionally equivalent utility
applications available in Linux.

Application used in Windows Bridging application

Microsoft Internet Explorer Mozilla or Mozilla FireFox

Microsoft Outlook or Outlook Express Mozilla, Mozilla Thunderbird, or Evolution

Microsoft Word OpenOffice.orga Writer

a. http://www.openoffice.org

Microsoft Excel® OpenOffice.org Spreadsheet

Microsoft Powerpoint OpenOffice.org Impress

Jasc Paint Shop Pro, Adobe Photoshop The GIMPb

b. http://www.gimp.org

Messaging Client (MSN®, Yahoo, ICQ,
AIM)

GAIMc

c. http://gaim.sourceforge.net

IBM Lotus Sametime® 7.5d,e

d. IBM Lotus Sametime and IBM Lotus Notes will begin offering native versions
for both Windows and Linux beginning with these versions.
e. http://www.ibm.com/software/sw-lotus/products/product3.nsf/wdocs/st7
5home

(Native Windows and Linux support)

IBM Lotus Notes 7.xd,f

f. http://www.ibm.com/software/sw-lotus/products/product4.nsf/wdocs/lin
ux

(Native Windows and Linux support)
54 Linux Client Migration Cookbook, Version 2

http://www.openoffice.org
http://www.gimp.org
http://www.ibm.com/software/sw-lotus/products/product3.nsf/wdocs/st75home
http://www.ibm.com/software/sw-lotus/products/product3.nsf/wdocs/st75home
http://www.ibm.com/software/sw-lotus/products/product4.nsf/wdocs/linux
http://www.ibm.com/software/sw-lotus/products/product4.nsf/wdocs/linux
http://gaim.sourceforge.net

Table 3-2 Examples of equivalent utility applications in Linux

3.2.3 Web applications
Unfortunately, it is not likely that you can find bridging applications (the ideal
case) or functionally equivalent applications to meet every requirement. For
instance, applications providing ERP or CRM are especially likely to have thick
client implementations for which there are not cross-platform equivalents
between Windows and Linux. Enterprise application vendors are responding to
this not by developing separate thick client implementations for each operating
system, but by focusing on the Web browser as the container for extending their
client applications to alternative client platforms, such as Linux.

If a browser-based solution is not feasible, the approach of bridging applications
to the new desktop by first transitioning to a cross-platform Web client interface
cannot be used. In this case, you might have to migrate the application to a
newer version that does support multi-platform clients, or you might have to
consider switching to another software vendor that meets cross-platform client
requirements.

3.2.4 Building bridges to the server
In the last three sections, we showed ways to make the changeover easier for
the users by switching to ported applications or Web clients. Another possibility
to bridge gaps regarding functionalities is moving the application from the client
back to the server as the primary processing host.

Server-based computing (for example, terminal services-based remote hosting
of client applications) can yield many advantages. An introduction to some
methods for this are discussed in more detail in 7.2, “Remoting tools” on
page 154. Regardless of which operating system is installed or which sort of
client is in use, you should always be able to insure that the same application
user interface is delivered in your terminal application. The only requirement is

File managers
(Windows Explorer)

Konqueror (KDE)
Nautilus (GNOME)

Archivers
(like WinZip)

KArchiver, Ark (KDE)
FileRoller (GNOME)

Viewers
(like Adobe Reader)

Konqueror, KView (KDE)
Nautilus, Evince (GNOME)
Adobe Reader for Linux

Multimedia players
(like Windows Media® Player)

xmms, xine, RealPlayer, totem,
amaroK, JuK (KDE)
Rhythmbox, Banshee (GNOME)
 Chapter 3. Organizational and human factors planning 55

the availability of client-based applications that facilitate interaction with the
remotely hosted application on the server.

In the case of Windows Terminal Server or Citrix Metaframe, the requirements
are met—clients are available for both Windows and Linux. Native Windows
terminal servers can be accessed from Linux using rdesktop, an open source
client for the Remote Display Protocol (RDP). The URL for this useful tool is:

http://sourceforge.net/projects/rdesktop/

Citrix delivers ICA clients for several operating systems with its MetaFrame
Suite, including an ICA Client for Linux.

Using this technique, many applications can be moved to the server-based
model. Your migration path in this case introduces the possibility of moving from
a fat to a thin client. This approach is especially worth considering for clients that
fit into the Fixed Function and Transactional Workstation roles as defined in
Figure 3-1 on page 50.

A new approach to server-based computing is given by the developers of
NoMachine NX, using a connection protocol that has been shown to reduce
network traffic on both X and RDP sessions significantly. More information about
the NX protocol and NoMachine can be found here:

http://en.wikipedia.org/wiki/NX_technology
http://www.nomachine.com

3.3 Human factors
Because a desktop client migration affects users in a very direct way,
considering human factors in the transition management strategy is extremely
important.

You can expect that a radical change in the desktop interface from what users are
accustomed to will cause different kinds of reactions: From enthusiastic
acceptance to outright rebellion. Therefore, it is important to keep the users
informed about the new developments in a clear and understandable way. A
communications plan is key.

Figure 3-2 on page 57 provides an example of a new technology acceptance
curve in an organization.
56 Linux Client Migration Cookbook, Version 2

http://en.wikipedia.org/wiki/NX_technology
http://www.nomachine.com
http://sourceforge.net/projects/rdesktop/

Figure 3-2 Impact of changes

The effect of a good communications plan is to flatten out the negative aspects of
the acceptance curve in Figure 3-2. A communications plan coupled with proper
training on the new desktop applications should minimize the number of users
that fall into the rejection and opposition mode, cause users to start out with
acceptance instead of dissatisfaction as the initial response, and lead to a quick
transition into exploration and productive use.

Regarding the IT support staff, these same issues have even more importance.
A strategic decision to switch the operating system and the way the clients are
managed can cause the impression of disapproval of the work they have done so
far. It could give staff the impression that their current skills are being devalued. It
probably will not be easy to convince an administrator of Windows systems that
migrating to Linux clients is a good strategy unless you can also convince them
that the organization is prepared to make a significant investment in upgrading
their skills as well.

Thus, two very important areas to focus on prior to starting a pilot migration are:

� Develop a communications plan.
� Select a pilot group that is best suited for the task.

3.4 Retraining considerations
In the course of the migration, retraining for users will be necessary in many
cases. Because classes are always cost-intensive due to the payment for a
trainer and the non-productive time of the employees, you have to figure out
ways that can reduce this amount.
 Chapter 3. Organizational and human factors planning 57

3.4.1 Bridging applications can separate retraining from migration
Referring to the bridging applications mentioned in 3.2.1, “Bridging applications”
on page 53, the strategy of replacing current applications with OSS equivalents
that are available on both Windows and Linux could reduce training costs. The
migration could be done in a smoother way, because users have had the chance
to acclimate themselves to the same applications that will be used on a
Linux-based client, prior to actual migration.

3.4.2 Learning a new look and feel
Another strategy to save costs is the effort to retain the look and feel of the
current applications and the desktop. It is possible to customize certain aspects
of the GNOME and KDE desktops to emulate the look and feel of the Windows
Desktop and Windows-based applications. Many freely available themes are
available for download and further customization. For both KDE and Gnome,
examples can be found at:

http://www.kde-look.org
http://art.gnome.org

3.4.3 Familiar actions
Emulating actions is also a good idea. A good example is enforcing double-click
instead of single-click as the open action for desktop icons in the window
manager.

3.4.4 File systems: Everything has been moved
Windows users are used to a hierarchical file system based on partition mount
points such as C:\ or D:\. The hierarchical file systems in Linux differ from this
convention. Some conventional mount points for file systems in linux include
/usr, /home, and so forth. Migrated users could encounter much confusion when
trying to understand the new Linux file system hierarchy. To smooth this
transition, one recommended method is to migrate the entire contents of the
user’s existing My Documents folder into a similarly named folder in the user’s
Linux home directory. Inside of /home/user/My Documents, the content and
structure will appear exactly the same as was present in the original folder in
Windows.
58 Linux Client Migration Cookbook, Version 2

http://www.kde-look.org
http://art.gnome.org

3.4.5 Hands-on Linux prior to migration
Most Linux distribution vendors are now providing live or bootable
CD-ROM-based distributions. One of the pioneers in creating live CD
distributions was Knoppix:

http://www.knoppix.com

The following description from Knoppix further explains what a live CD provides:

KNOPPIX is a bootable CD with a collection off GNU/Linux software,
automatic hardware detection, and support for many graphics cards, sound
cards, SCSI and USB devices, and other peripherals. KNOPPIX can be used
as a Linux demo, educational CD, rescue system, or adapted and used as a
platform for commercial software product demos. It is not necessary to install
anything on a hard disk. Due to on-the-fly decompression, the CD can have
up to 2 GB of executable software installed on it.

A live CD can be used to provide users with the ability to run a bootable Linux
system on their desktop. They can use it to test and evaluate the UI, applications,
and other facets of the Linux client, before an actual client migration occurs. And
this can be done without harming the host operating system install on the local
hard disk. Another benefit of using a live CD as part of a migration plan is for
detection of hardware and device problems. If you are able to customize the
driver modules loaded by a live CD image, then you should be able to also help
validate proper hardware detection and device support on your target platforms
prior to actual client migration.
 Chapter 3. Organizational and human factors planning 59

http://www.knoppix.com

60 Linux Client Migration Cookbook, Version 2

Chapter 4. Technical planning

So far, we have focused on organizational planning considerations and strategy.
In contrast to this higher-level view, in this chapter we take the discussion to a
more technical level. What are some of the technical challenges that need to be
considered and planned for when migrating from a Windows-based client to a
Linux-based client?

Sections in this chapter include:

� 4.1, “Assessing the client IT environment” on page 63

Before starting to look into technical details of a future Linux and Open
Source-based environment, it is critical that you thoroughly assess the current
status of IT infrastructure and the supporting processes.

� 4.2, “Integrating with existing network services” on page 69

This section describes how to plan for integrating Linux clients in an existing
network. We specifically look at how to incorporate Linux clients in a
predominantly Microsoft Windows-based network.

� 4.3, “Standardizing the desktop” on page 75

This section discusses the topics that should be considering when building a
standard desktop client for an organization. We discuss distributions, the
different desktop environments with their underlying toolkits, and also more
general topics, such as corporate identity guidelines, look and feel,
application menu design, user restrictions, and file system setup.

4

© Copyright IBM Corp. 2004, 2006. All rights reserved. 61

� 4.4, “Migrating applications” on page 84

A migration path needs to be determined for each application that will be
migrated to a Linux-based equivalent. Different migration paths will be
necessary because not all Microsoft Windows-based applications have
Linux-based equivalents. This section demonstrates methods for defining
functional and logical client groupings based on what types of applications
they run.

� 4.5, “Client administration planning” on page 86

This section describes several methods for efficient administration of the
Linux client.

� 4.6, “Desktop versus notebook considerations” on page 94

This section describes additional considerations necessary for planning
migration of mobile (notebook-based) clients.

� 4.7, “Unmigratable applications” on page 99

This section covers issues related to applications that cannot be migrated to
run directly on a Linux client. We propose alternate ways to support these
applications.

� 4.9, “Post-migration troubleshooting and technical support” on
page 106

This section discusses considerations for supporting a Linux client after
migration.
62 Linux Client Migration Cookbook, Version 2

4.1 Assessing the client IT environment
Before starting to look into technical details of a future Linux and open
source-based environment, it is critical that you thoroughly assess the current
status of the IT infrastructure and the supporting processes.

For the IT Infrastructure, many components will come to play, not only the core
installation of a desktop environment, but also any other infrastructure
components around it. This might be servers providing file and print functions,
databases, directory services, application servers (both native and Web-based)
or even mainframes which are accessed via host emulation or API-based
communication. Some of the key considerations and methods in this area are
discussed in more detail in 4.2, “Integrating with existing network services” on
page 69.

Because we are focusing on migrating client workstations, two key areas in the
client IT environment need to be surveyed:

� Human interactions: The user application usage patterns

� Physical systems: Desktop system properties, special devices, and peripheral
integration requirements

4.1.1 Assessing the client hardware
You should complete a physical systems survey of all client systems targeted for
migration. The results of this survey will enable you to identify any hardware
support issues, and define rules for buying and replacing systems in the future.

This survey should ideally be done through an automated process on a regular
basis to develop historical data. This survey can also be done as a one-time scan
for migration purposes. IBM eGatherer technology and the Asset Depot offering
can help automate the survey. For more details, see the IBM Redpaper Using
Asset Depot for Inventory Management:

http://www.redbooks.ibm.com/abstracts/redp3763.html?Open

Questions to ask in this area are:

� What hardware is in use (vendor, type, and model)? If this results in a large,
diversified list, then consolidation is something to consider, regardless of the
platform you are using.

� Is the hardware standardized? If all the machines are the same, then driver
support and operating system deployment should be significantly simpler.
 Chapter 4. Technical planning 63

http://www.redbooks.ibm.com/abstracts/redp3763.html?Open

� What local attached devices are currently installed and required by users?
This includes any type of printers, scanners, and special function keyboards
required for business types of transactions.

� Is support for Linux included in current requests or proposals to hardware
vendors when buying hardware?

� Which key components of your hardware are currently required by users? For
example, machines might have sound cards installed, but drivers are not
installed because users are not supposed to use sound. Therefore, sound
support on Linux would not be required.

� What types of attached devices need to be supported? For instance,
synchronizing calendaring and other data with PDAs or smartphones might
be required. Also, USB sticks, Bluetooth devices, and external FireWire hard
drives have become very popular, though some organizations disallow such
devices due to security reasons. It might be necessary to support such
hardware or to explicitly not include support for some of these devices.
Likewise, many users might be synchronizing their desktops with an MP3
player. While supporting these MP3 players in Linux could help users enjoy
the Linux experience, it can also increase the complexity of supporting a
Linux desktop installation.

Sometimes hardware providers provide explicit support for Linux, while other
devices are maintained by a third party. IBM, for example, provides information
about supported desktop hardware for their current models, so customers can
check on both officially supported hardware as well as available drivers.
Information can be found at:

http://www-306.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

A sample client hardware survey table might look like Table 4-1 on page 65.
64 Linux Client Migration Cookbook, Version 2

http://www-306.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

Table 4-1 Sample hardware survey results

4.1.2 Assessing the client software configuration
You need to complete a client software configuration survey of all client systems
targeted for migration. The results of this survey will enable you to identify all
applications, services, special configurations, and component support issues that
need to be considered in the migration plan. This survey can shed light on
specific technical support issues, such as hidden user IDs or scheduled tasks.

Key survey questions:

� What third-party applications are installed and used? This will result in a list of
ISV applications including versions used and potential fixes applied.

� What in-house applications are installed and used? This will result in a list of
applications developed and maintained within the company that might need to
be ported to Linux or a platform-neutral environment.

� What applications require access to data external to the client? This will result
in a list of applications accessing file servers, application servers, Web
servers, databases, mainframes, and other implementations of data
processing. See 4.4, “Migrating applications” on page 84, for more details.

� Are groups of users defined? How are they characterized? This should give
you an overview as to whether there are some typical groups or users and, if
so, how they are grouped. Grouping can be done by departments,
applications used, type of work, or business responsibility. If a questionnaire
is used when interacting with users, then this should become a kind of
self-assessment.

Model Type RAM in GB Disk in GB Total Attachments

2373MU4 T40 2 80 120 List of the various
peripheral devices
attached: Printers,
scanners, digital
cameras, and USB
devices

23668AU T30 1 60 42

2366MU1 T30 1 48 1023

2366MU9 T30 0.5 48 311

26473U5 T23 1 48 278

26476RU T23 0.5 30 67

26478EU T22 1 30 44

264757U T21 0.5 24 1

2682MU3 R40 1 48 99
 Chapter 4. Technical planning 65

� What security-related applications, processes, and regulations are being
enforced? This gives you an overview of products used for securing the client,
such as anti-virus, desktop safeguarding, port scanning, as well as rules and
regulations of how those applications are installed, maintained, updated, and
how the user is forced to use them. It also includes policies for security
patches of any operating system components and installed applications.

4.1.3 Assessing data dependencies
For most client/server applications, the only requirement is the availability of a
functional replacement client-side application that runs natively on Linux. An
example could be an application which uses a Web interface to access data
stored on the server. As long as the Web interface can be run in a Linux-based
browser, then the client-side migration of that application becomes a non-issue.

For some applications (mainly local and native applications), data can be stored
in a proprietary format that will require a data conversion process. Applications in
this category can include mail systems (such as Lotus Notes) or productivity
suites (such as Lotus Smartsuite or Microsoft Office). Without discussing the
actual technical migration, during the assessment you should explore the current
use of such applications.

Some example questions to ask in this area are:

� Do you use Microsoft Office? If so, which components and how often?

� Do you use macros in Microsoft Office? If so, what type of macros and for
which components and how often?

� Do you use Microsoft Outlook? If so, which components and how often?

� Do you use Microsoft Project? If so, which components and how often?

� Do you use Visual Basic to automate activities within or across applications?

� Do you use Lotus Smartsuite? If so, which components and how often?

� Do you use Lotus Notes? If so, which components and how often?

� Do you share files with external organizations? If so, which formats and how
often?

Some answers to the above questions will require further reviewing of the
underlying infrastructure. For instance, using Microsoft Outlook on the client most
often leads into Microsoft Exchange on the server, while Lotus Notes on the
client usually indicates Lotus Domino on the server. For scenarios such as these,
server installations have to be taken into consideration when designing a new
client stack, and migration of user accounts has to be planned. If there is no
Linux client for the back-end server, the back-end server might need to be
66 Linux Client Migration Cookbook, Version 2

migrated to a Linux-compatible solution before the Linux client migration can
begin.

4.1.4 Assessing application equivalency
We expect most, but not all applications, to have functional equivalents available
that run natively on the Linux client. And, there are special (ideal) cases where
the functional equivalents are also what we call “bridging applications”
(discussed in 3.2.1, “Bridging applications” on page 53). In general, once you
have assembled a list of all the supported (and required) applications that require
functional equivalents on the target Linux platform, then you will need to select
applications that provide the same functions on Linux. There are many online
sources to help guide you in this process. Here are three:

� “The table of equivalents/replacements/analogs of Windows software in
Linux”:

http://www.linuxrsp.ru/win-lin-soft/table-eng.html

� Linuxquestions.org: “Software equivalents to Windows Software”:

http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_so
ftware

� www.novell.com: “Novell Linux Desktop Equivalents of Windows Software”:

http://www.novell.com/coolsolutions/feature/11684.html

4.1.5 Assessing the infrastructure
Survey considerations in this area include:

� What is the network infrastructure that clients connect to?

� What is the topology of the network infrastructure? This includes a
architectural overview of all local and remote connections including
bandwidth and protocol conversion.

� What type of network protocols are installed and configured on the client in
order to access any type of infrastructure components?

� What servers do the clients connect to and which services do they use? The
list of servers should include physical and logical instances. Services can
include file, print, DHCP, Web content, dynamic content, applications, and
others.

� What databases are accessed and how is this access implemented? From
this, all connections to databases can be derived as well as the type of
implementation, such as a native client (such as IBM DB2® UDB client), an
API connection (perhaps over named pipes), message queuing (such as IBM
WebSphere® MQ), or direct application access (such as an SAP client).
 Chapter 4. Technical planning 67

http://www.linuxrsp.ru/win-lin-soft/table-eng.html
http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software
http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software
http://www.novell.com/coolsolutions/feature/11684.html
http://www.linuxrsp.ru/win-lin-soft/table-eng.html
http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software
http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software
http://www.novell.com/coolsolutions/feature/11684.html

� What mainframes are accessed, how do the workstations connect to them?
Accessing mainframes of different kinds can be done through native clients
(such as IBM Personal Communications), Web interfaces (such as IBM
WebSphere Host on Demand and IBM WebSphere Host Publisher), or API
connections (such as through High Level Language Application Program
Interface (HLLAPI)).

4.1.6 Assessing the user
Another key element of a migration is the user. In some cases, especially when
talking about success and acceptance of a migration, this is the most important
aspect at all. If users are committed to the change, looking forward to working in
the new environment, or actively involved in development or deployment of the
solution, then user expectation management issues can be minimized.

Questions to ask in this area are:

� What are the most often performed tasks for a user or group of users?

� Are there definitions of user roles? If so, how are they defined?

� Are there any defined exemptions from these user roles or rules?

� Are there user-specific settings that need to be migrated, such as browser
bookmarks or wallpaper?

� Do any of the existing applications use user-customizable plug-ins for
operation?

� Are users involved in the software selection process, and how?

� Do users have the option to pull software from an installation repository?

� Is there a process to request, install, or delete software?

� How often do users call the help desk and what are the average values of key
measurements such as response time, recurring calls, and level of support
involved?

� What is the skill level of users for the base operating system?

� What is the skill level of users for productivity applications (that is, word
processing)?

� What is the skill level of users for business applications?

� What type of devices (local and remote) do users require access to?
68 Linux Client Migration Cookbook, Version 2

4.2 Integrating with existing network services
In this section, we describe how to plan for integrating Linux clients in a existing
network. We specifically look at how to incorporate Linux clients in a
predominantly Microsoft Windows-based network.

4.2.1 Setting the environment
Usually a Linux client will not be the first Linux machine added in an
environment. Instead, back-end servers are typically the first machines that are
migrated to Linux. This means that most descriptions of how to incorporate Linux
clients in an existing network will describe the servers as being Samba servers
running on Linux. Since this book is focused on client migration only, we decided
to consider the scenario where Linux client pilot migration is occurring in an
environment where back-end servers have not yet been migrated.

A Linux client migration project could occur within any of the following
environments:

� NT4 domain with Microsoft Windows NT 4.0 PDC (and possibly BDCs)
� Active Directory (AD) domain with Microsoft Windows 2000 or 2003 servers
� NT4 domain with Linux running Samba PDC and BDCs
� Other non-Microsoft Windows domain-based environment

The majority of environments will be the second option, because the first is
becoming less common now that NT4 is end-of-life. The third option is becoming
more widespread, and most descriptions of client migration already assume the
server back-end to be migrated to a Samba domain.

In this book, we concentrate on the first two types of environments (that is, a pure
Windows environment) for two reasons:

� Most domains still fit this model.

� There are already a lot of descriptions about how to put Linux clients in a
Samba domain.

Within the Linux community, the most widely used tool for integrating Linux
clients with Windows is Samba. Samba originates from being a successful UNIX
application that provides network services based on the Server Message Block
(SMB) protocol. This is the same protocol used by Microsoft Windows to provide
client/server networking services for file and printer sharing. Thus, Linux systems

Planning tip: If a server-side upgrade of the domain to either AD or Samba is
already planned, take this into account in the client migration planning. Try to
avoid integrating twice.
 Chapter 4. Technical planning 69

running with Samba can integrate seamlessly within a Windows domain for tasks
such as accessing network file shares and printing services.

For integration examples using Samba, see Chapter 9, “Integration how-tos” on
page 195. Here we indicate technical issues that have to be taken into account
when planning the migration.

4.2.2 Authenticating within a Windows domain
In this section, we look at all technical issues that need to be considered when
planning for authentication of Linux clients within an existing Windows domain.

Reasons for authenticating a Linux client in an existing Windows domain include:

� Network services that require domain authentication need to be accessed
from the Linux client (such as network file servers, printers).

� Users will have only a single username and password combination (network
services single sign-on).

� Administrators will only need to administer a single user collection.

There are several ways to authenticate to a Windows domain:

� Using Samba/winbind without changing the existing infrastructure

� Using LDAP connecting to Active Directory directly, which means changing
the AD schema

� Using LDAP connecting to a separate directory, which means synchronizing
the extra directory with Active Directory

Some of the advantages and disadvantages of these methods are discussed in
the next section.

Samba/winbind connect to unchanged Windows domain
Advantages of this option are:

� No changes needed to domain.
� Users do not need to be created locally.

Disadvantages are:

� Winbind does not scale well.
� Some implementations require creation of a local mapping for users, which

might be different on each client.
� When using the winbind separator, this can impact most applications being

used on the client.
70 Linux Client Migration Cookbook, Version 2

The winbind separator
Using winbind will lead to a choice for what is used as the winbind-separator.
This is the character that will separate the domain name from the username in
the Linux username. For example, AD6380+Administrator is the Linux username
of the user Administrator in domain AD6380 when the winbind-separator is a plus
sign (+). The impact of the chosen character has to be studied in all applications
and network services being used. Using the plus (+) character for separation
generally is the best choice for most Linux shells and applications.

LDAP connect to changed Active Directory
Advantages:

� Mapping users to uid and gid is done within the AD, that is, centrally.
� LDAP is a general protocol to connect to AD.

Disadvantages:

� The AD schema needs to be changed.

Using LDAP means that it might be necessary to change the Active Directory
schema to include UNIX-like information such as a uid and gid for users and
groups. Microsoft’s Service for UNIX can be used to do this.

LDAP connect to directory synchronized with Active Directory
Advantages:

� Mapping users to uid and gid is done within a central directory.
� LDAP is a general protocol to connect to directories.

Disadvantages:

� The two different directories have to be synchronized.

Synchronizing two directories, each containing different objects with partially
different definitions, is not a trivial exercise. This is one of the reasons that this
method is not discussed in Chapter 9, “Integration how-tos” on page 195.

Planning tip: Plan and test winbind and the winbind separator extensively to
validate the setting prior to migrating clients.

Planning tip: When planning to use LDAP with Active Directory to
authenticate, check whether it is possible to extend the Active Directory
schema in your organization.
 Chapter 4. Technical planning 71

Choosing to create users locally on the client means extra administrative
overhead. In this case when a user is added to the domain, the user ID has to
also be added to any of the Linux clients that the user will be using to connect
with that domain. Even though this process could be automated, it is really not
necessary when using winbind.

In the case of authenticating natively with an Active Directory domain, Kerberos
has to be configured as well as Samba.

In summary, the applications that are going to enable us to authenticate with a
Windows domain are Samba, Kerberos, winbind, and LDAP.

4.2.3 File sharing using domain shares
Let us assume that some Linux clients are joining a domain and the majority of
clients in the domain will still be Windows clients. In this scenario, the best way to
share files is through Windows shares.

Mounting shares on a Linux client using the correct mount command (smbmount or
mount -t cifs) gives the user access to those file systems on the Linux client, in
a way that is much like any other file system they are used to accessing.
However, if the share is not open for everybody, a username and password
combination is needed, just like under Windows. When mounting a share
manually, the login information can be input without problem. However, this
might lead to several other problems:

� Manually mounting shares using the mount command might not be an
acceptable practice for all users. Users are not used to having to mount
shares manually, because under Windows this is done automatically when
logging on.

� A way must be found to enable automatic mounting on login just like on
Windows. In Linux, automatic mounting of SMB shares can be accomplished
using entries in the /etc/fstab file.

A simple solution would be to mount shares in a logon profile. However, this
needs a password, and the user is used to shares being mounted using the
password supplied upon logon.

A Pluggable Authentication Module (PAM) exists to enable automatic mounting at
logon, called pam_mount. Since this module is not completely mature yet, care
has to be taken to include this in the planning. Currently, it is the preferred way to
incorporate some sort of single sign-on-like functionality, such as under
Windows, so that all the shares are mounted automatically on login to the Linux
client.
72 Linux Client Migration Cookbook, Version 2

When planning for this, extra time should be included to test the pam_mount
module on the Linux client chosen for the project. When it works, it is a very
powerful method of mounting shares automatically.

Home directories and shares
During planning, it might be very tempting to push user home directories on
Linux clients to Windows shares. This will enable a “thinner” client.

Putting the user’s home directory on a share would indeed enable logging on to
any client and have the same home directory integrated. Using a graphical logon,
this would mean getting the same desktop and environment on any client used.

However, care has to be taken. Some session managers (most notably KDE)
need to create symbolic links or sockets in the user’s home directory as part of
normal operation. One of the shortcomings of the SMB file system is that
symbolic links or sockets cannot be created in such a file system. This means
that any KDE-based application would have problems when running on the
desktop machine in a scenario where home directories are remotely mounted on
SMB shares.

4.2.4 Printing services in the domain
Of course, it is possible to add printers directly to Linux clients. But this creates
extra administrative overhead in a scenario where you are integrating Linux
clients into an existing Windows domain that provides network printing services
already. Since almost all Linux distributions now include the Common UNIX
Printing System (CUPS), it is possible to use CUPS in conjunction with Samba
on the client to enable printing to the existing domain printers.

If you plan to use CUPS on the Linux clients to print to existing printers, some
issues have to be taken into account:

� Is CUPS and Samba integration handled correctly?

� Do the printers need authentication? Domain passwords for shared printer
access could be exposed.

� What are the advantages of using print servers versus direct printing to the
printers network interface?

� Are drivers available for CUPS for each printer model in use?

Planning tip: Test and plan use of pam_mount extensively.

Planning tip: A strategy using remote file shares for mounting of home
directories will need to be carefully tested.
 Chapter 4. Technical planning 73

CUPS and Samba integration
In most distributions, CUPS and Samba will be integrated properly. It needs to be
checked, however, and this has to be taken into account when planning. Most
importantly, you have to check if Samba is part of the CUPS back-end. How to
do this is described in 9.7, “How to use network printers in the domain” on
page 219.

Printers and authentication
Printers in the domain can require domain authentication to be able to use them.
This is possible using CUPS, by providing the username and password in the
URI of the printer. The consequence of this is that the password will be exposed
in several CUPS configuration files. The only current workarounds to exposing
passwords are either making printers unauthenticated (that is, available to
everyone) or creating a special printer user for each printer and only
incorporating this special user on those clients that need to print to the server.

Print server versus direct printing
Using CUPS, it is possible to use the domain print servers or print directly to the
network interface of the printer (if available). Usually if all clients already in the
domain use print servers, it is good to follow this principle for the Linux clients as
well.

The advantages of using the print servers are:

� There is no difference between print jobs coming from the Windows or Linux
clients.

� The printer is controlled from the print server, so when it needs to be rerouted
or disabled this is done for all clients.

CUPS drivers
There is quite a big difference in the models and drivers included in CUPS in
each of the different distributions. So this is one of the most important steps to
check.

If your printer is old, or used by very few people, then decisions have to be made
about how much to invest to get it working on Linux clients. The investment for a
new printer that works “out-of-the-box” might be a lot less than to get older
models to work.
74 Linux Client Migration Cookbook, Version 2

4.2.5 DHCP and DNS configuration
In almost all cases, using DHCP and DNS from a Windows domain will work
without problems. This is completely transparent to the user. Once configured
correctly for the Linux client, both protocols should work without any problems.

However, some care has to be taken when using DHCP and X11. The Linux
client generally accepts host names from DHCP. If this occurs after X11 has
started and the user is logged on, then new applications might have trouble
accessing authorization information handled by Xauth.

4.2.6 Web proxy interface
The protocol that is used to talk to a Web proxy is independent of the operating
system. This means that talking to a Windows Web proxy is as easy as setting
the correct settings in the Web browser.

This means that interfacing the Linux client with an existing Web proxy is one of
the easiest tasks of the migration.

4.3 Standardizing the desktop
When deploying a Linux desktop solution, you will most likely want a
standardized environment used across your organization. While one of Linux’s
advantages is its freedom of choice, passing this choice on to users in your
organization will most likely increase the technical support load. Instead, a
standardized desktop environment should be created for your organization, with
only slight variations depending on the needs of the user.

Compared to building a standard Windows desktop environment, there can be
far more design decisions to be made when building a standard Linux desktop
environment. These choices can include the distribution to base your client
platform on, the desktop environment users will work with, the look and feel of
the environment, permissions available to the user, applications that the users

Planning tip: Make sure a DHCP host name is accepted by the Linux client
before starting X11 or logging on graphically.

Important: Linux’s greatest advantages include freedom of choice and 100%
top-down client software stack design flexibility. Use these advantages to
create simplified and task-focused desktop user interfaces that are designed
to limit excessive, non-business-oriented complexity.
 Chapter 4. Technical planning 75

will use, and even which type of file system to use and a partitioning and mount
point strategy for those file systems.

4.3.1 Linux distributions
Because Linux, and most of the software surrounding it, is open source, this
means that anyone can legally create a new distribution of Linux. This
empowerment has led to hundreds of various distributions, each with a niche it is
trying to fill. Some distributions are made to be easy-to-use, others are targeted
toward enterprise users, while still others are based on the idea of extreme
customizability. The two distributions that we focus on in this Redbook are Red
Hat Enterprise Linux and Novell Linux Desktop (which is based on Novell’s
SUSE Linux).

There are many reasons to choose one distribution over another. When
choosing a distribution, you must consider some or all of the following:

� Vendor support options and costs
� Applications bundled with the distribution
� Administration tools offered with the distribution
� Availability of third-party software which targets this distribution

4.3.2 Linux desktop environments
While there are numerous desktop environments available for desktop Linux (as
seen in 5.2.4, “Graphical and text-based environments” on page 118), the
majority of desktop Linux installations feature either a KDE or GNOME-based
desktop. These two environments provide a complete desktop environment. This
means providing not only a graphical toolkit and window manager, but also a
standard environment with desktop icons, a menu panel, and applications such
as a file browser, CD burner, and other basic tools. More advanced applications
have been written for each environment, such as office productivity suites, music
players, photo management tools, and advanced e-mail and groupware clients.
Applications that are written specifically for either KDE or GNOME will look
similar to other applications written for the same environment and will typically
follow global settings that have been configured for that environment. For

Planning tip: Assuming that you are migrating to a Linux desktop distribution
purchased from an enterprise vendor, then you will have the option of using
the default predesigned desktop environment as the basis for your clients. In
that case, you might not need to design your standard desktop from the
ground up, as discussed in this section. In fact, your selection criteria for
choosing which enterprise vendor distribution to use could be based in large
part on how closely the default desktop provided by that distribution meets
your client-side functional requirements.
76 Linux Client Migration Cookbook, Version 2

instance, if you change the default GNOME color scheme, the GNOME-based
Evolution will use the new color scheme but the KDE-based Kontact will not. This
disparate look-and-feel, and not any inherent technical problem, typically
prevents users from using a KDE-based application on a GNOME desktop and
vice versa.

Usability tests have shown that modern Linux desktops such as GNOME or KDE
are very competitive with Windows desktops. Users with no former computer
experience can perform equally on Windows and Linux desktops. Though users
who have used Windows desktops will need to spend some time to relearn tasks,
the majority of users are able to make the transition with only a small amount of
training. More information about Linux usability can be found at:

http://www.betterdesktop.org
http://www.openusability.org

A lot of work in many different areas had to be done to achieve these results:

� Accessibility (for users with physical disabilities)

Support for assisting technologies such as:

– Screen magnifiers
– On-screen keyboards
– Keyboard enhancement utilities
– Screen readers
– Braille displays
– Text-to-speech programs
– Speech recognition

� Programming standards

– GNOME Human Interface Guidelines1 (HIG)
– KDE User Interface Guidelines2

� Internationalization (UTF-8 support, Pango rendering)

Note: Applications written for a KDE-based desktop will work on a GNOME
desktop and vice versa, though they might have a different look-and-feel than
the current desktop environment.

1 http://developer.gnome.org/projects/gup/hig/
2 http://developer.kde.org/documentation/design/ui/
 Chapter 4. Technical planning 77

http://www.openusability.org
http://www.betterdesktop.org
http://developer.gnome.org/projects/gup/hig/
http://developer.kde.org/documentation/design/ui/

KDE Desktop
KDE is at:

http://www.kde.org

KDE provides a full-featured desktop and application environment for Linux and
other UNIX-like operating systems. KDE is based on the cross-platform Qt
programming toolkit from Trolltech, and uses the KParts component model
together with the DCOP IPC/RCP mechanism, which we describe in Appendix F,
“Desktop automation and scripting” on page 321.

With KDE, you can place icons and folders on your desktop and start
applications from the KDE panel (Kicker). The panel can also contain KDE
applets (such as a clock, battery and wireless status, or a virtual desktop
chooser). SuperKaramba3 provides options for even more fine tuning of KDE.
More information about KDE applications can be found at:

http://www.kde-apps.org

Significant applications for the KDE desktop include:

� Kontact PIM application with Kolab or eGroupware as calendaring server

� KOffice suite (including KWord, KSpread, KPresenter, Kivio, Karbon, and
KChart)

� K3b CD and DVD burning application

� Digikam digital photo management application

� Scribus desktop publishing system

� Konqueror Web and file browser

GNOME desktop
GNOME is at:

http://www.gnome.org

GNOME desktop is an open source desktop environment based on CORBA
(ORBit2) and the GTK+ GUI toolkit. It is the default desktop for Red Hat, and is
also used by some traditional UNIX vendors including Sun™. More information
about GNOME applications can be found at:

http://www.gnomefiles.org

3 http://netdragon.sourceforge.net

Note: Apple is using and extending the rendering engine from Konqueror
(KHTML) in its Safari Web browser.
78 Linux Client Migration Cookbook, Version 2

http://www.kde.org
http://www.gnome.org
http://netdragon.sourceforge.net
http://www.kde.org
http://www.kde-apps.org
http://www.gnomefiles.org
http://www.kde.org
http://www.kde-apps.org/
http://www.kde-apps.org/
http://www.gnome.org

Significant GNOME desktop applications include:

� AbiWord word processor

� Gnumeric spreadsheet program

� Evolution e-mail and calendaring client

� Ekiga VOIP and Video Conferencing Tool4

� GNUCash
� GTKam (GUI for gphoto2)

� Inkscape scalable vector graphics (SVG) editor

� Nautilus file manager

As with KDE, you can place icons and folders on your desktop and start
applications from the GNOME panel. On this panel, you can also freely arrange
GNOME applets (such as a clock, battery and wireless status, or a virtual
desktop chooser). For even more fine tuning of the GNOME desktop, GDesklets5
provides many options to add custom mini-applications (“desklets”) to the
GNOME desktop.

4.3.3 Look and feel
After choosing a desktop environment, you might wish to customize the look and
feel of the desktop. Choices include choosing the icons that will be used for
custom applications or even replacing icons for built-in applications, choosing a
theme to make applications look consistent across the environment, and setting
up a simple, unified menu structure.

Custom Icons
You probably want a company logo and other brand graphics to be part of your
standardized desktop. You might wish to customize desktop icons, such as
replacing the e-mail application icon with one fitting the corporate color scheme.
Or, you might wish to change the default menu launcher (the equivalent of the
Windows Start Menu) to an icon representing your organization. Also, you need
to create or find suitable replacement icons for any custom applications that you
have deployed.

Simple bitmap graphics are not really state of the art anymore and should be
kept to a minimum to eliminate display resolution problems. KDE and GNOME
have very good Scalable Vector Graphics (SVG) support in the most current
releases. You should use the W3 standard SVG6 when designing vector graphics

4 formerly known as GnomeMeeting, see http://www.gnomemeeting.org
5 http://gdesklets.org; http://en.wikipedia.org/wiki/GDesklets
6 http://www.w3.org/Graphics/SVG/
 Chapter 4. Technical planning 79

http://en.wikipedia.org/wiki/GDesklets
http://gdesklets.org
http://www.gnomemeeting.org
http://gdesklets.gnomedesktop.org
http://www.gnome.org
http://www.w3.org/Graphics/SVG/

logos and other graphics elements for your desktop. SVG images typically look
better than bitmaps, are easily resizable, use a standardized format viewable by
Web browsers, and are part of a general desktop Linux trend towards
SVG-based themes.

Table 4-2 SVG editing programs

Themes
Images and logos are part of the bigger topic of themes. The standard choices
the Linux distributors or desktop projects make here (for example, Novell Linux
Desktop’s Industrial, Red Hat’s BlueCurve, or KDE’s Plastik theme) are quite
reasonable and most users are comfortable with them.

Designing a new theme from scratch is probably not worth the effort and could be
confusing to users reading standard documentation from the Linux distributors. If
you really feel the need to design a corporate theme yourself, then first visit the
following Web sites to check if a theme that meets your needs is already
designed and available:

� http://themes.freshmeat.net

� http://www.customize.org

� http://www.kde-look.org

� http://art.gnome.org

� http://www.crystalgnome.org

Even when you decide to use a standard theme, you can make a lot of small
changes to refine the look even further.

Some applications include their own theming engines, such as Mozilla-based
projects or OpenOffice.org. Also, when running a GNOME-based application on
a KDE desktop, the GNOME-based application will use the selected GNOME
theme, which might not look appropriate (Figure 4-1 on page 81). Thus when
choosing a theme, you might wish to choose one which has variants for all the
applications you wish to use. For instance, Red Hat’s default BlueCurve theme is
available for both KDE and GNOME. Also, there is a Firefox theme7 which
matches Novell Linux Desktop’s default Industrial theme.

Editing program URL

Inkscape http://www.inkscape.org

Skencil http://www.skencil.org

Karbon http://www.koffice.org/karbon

OpenOffice.org http://graphics.openoffice.org/svg/svg.htm
80 Linux Client Migration Cookbook, Version 2

http://www.inkscape.org
http://www.skencil.org
http://www.koffice.org/karbon
http://graphics.openoffice.org/svg/svg.htm
http://themes.freshmeat.net
http://www.customize.org
http://www.kde-look.org
http://art.gnome.org
http://www.crystalgnome.org
http://www.kde-look.org
http://themes.freshmeat.net
http://www.customize.org
http://art.gnome.org
http://www.crystalgnome.org

While using a Windows XP theme with KDE or GNOME might seem like it would
ease the transition to Linux, it probably is not a good idea, because users will
expect exactly the same behavior they experienced with Windows, which could
be quite confusing.

Figure 4-1 Theme Preferences dialog in GNOME

Application menu design
Another desktop standardization topic to consider is the application menu
design. In enterprise environments, users do not need five different applications
appearing in their menus that do basically the same thing. SUSE Linux
Enterprise Desktop 10 takes this approach further, by limiting the total complexity
in the root “Computer” menu to a few specific productivity applications plus a few
entry points to some other frequent tasks. An example screen capture of the
default SLED 10 menu structure is shown in Figure 4-2 on page 82.

7 available at http://primates.ximian.com/~glesage/stuff/firefox/
 Chapter 4. Technical planning 81

http://primates.ximian.com/~glesage/stuff/firefox/

Figure 4-2 Simplified, task-oriented menu design (SUSE Linux Enterprise Desktop 10)

In fully controlled environments, you might want to reduce menu selections even
further and lock them down so that users cannot make changes to their
configuration (such as adding or changing panel applets, desktop launchers, or
menu entries). KDE provides the Kiosk framework to restrict the capabilities of
the KDE environment. Although primarily designed for unattended operation of
kiosk terminals, these features can also be very valuable in enterprise settings
where a more controlled environment is desired. We will discuss the Kiosk
framework in 7.1.1, “KDE Kiosk framework” on page 140.

Important: Changing the ownership and read-write flags of configuration files
is not necessarily a foolproof lockdown mechanism, because the user can
potentially rename the files and create new ones with the correct permissions.
82 Linux Client Migration Cookbook, Version 2

If your desktop environment needs to support both KDE and GNOME desktops,
then you will want to ensure that both desktop environments have similar menu
structures. Until recently, keeping a unified menu structure was difficult because
both KDE and GNOME used different format for menus. However, as of KDE 3.3
and GNOME 2.12, both environments now support the freedesktop.org Menu
Specification, available at:

http://standards.freedesktop.org/menu-spec/latest

4.3.4 User lockdown
When setting up a Linux environment, there are several options for locking down
workstations. While in a technical workstation, users can be given complete
control over their workstations (by giving them the root password), most desktop
environments should limit what a user can do.

On many Linux distributions, some hardware and software features are limited
based on group membership. For instance, there is often an audio group, and
only members of this group have access to the sound card. There can also be a
games group, where only members of this group can play any games installed on
the system. Similar restrictions can be made to any hardware device or
application on the system.

You might want to limit what menu items are shown to the user, and what
settings can be configured. More information about this topic can be found in 7.1,
“Restricting the desktop” on page 140.

4.3.5 Application choices
One of the main benefits of open source software is that it provides choices.
However, sometimes these choices can be overwhelming. For instance, some
distributions install four text editors, five terminals, and six e-mail clients. A user
that is new to Linux will not know which application to choose. Depending on the
technical knowledge of the user, the number of applications available for each
task should be limited. The majority of installations should only include one
e-mail client, one Web browser, and probably only one desktop environment.
However, if the users are used to more control over their desktops, they might
resent some of the choices selected. This is another situation where user desires
need to be balanced against technical support considerations.

4.3.6 File systems and partitions
As discussed in 5.2.6, “Drives, partitions, and file systems” on page 123, Linux
provides many more options of file systems and drive partitioning schemes.
When configuring the standard desktop environment, drive partitioning should be
 Chapter 4. Technical planning 83

http://standards.freedesktop.org/menu-spec/latest
http://standards.freedesktop.org/menu-spec/latest

homogeneous across the desktops. Also, locations for network share points
should be standardized, for ease of technical support among other reasons.
Because the new mount point configurations can confuse users, you might wish
to add the old drive names in brackets when configuring desktop folder icons, so
that users will recognize their old environment.

Also, you will need to decide if you wish to use advanced ACLs or the standard
access levels as provided by the file system. Depending on your environment,
the granularity of control provided by the standard permission set might be
sufficient. If ACLs are required, then you will need to make sure that all tools
dealing with security (such as the graphical file manager or backup tools) have
complete support for ACLs.

4.4 Migrating applications
A migration path needs to be determined for each application that will be
migrated to a Linux-based equivalent. Different migration paths will be
necessary, because not all Microsoft Windows-based applications have
Linux-based equivalents. Some example scenarios include:

� Bridging applications: These have native equivalents for both Microsoft
Windows and Linux. See 3.2.1, “Bridging applications” on page 53, for the
definition and importance of using bridging applications if possible.

� Similar applications: Applications that provide the same functionality and
usually data import capabilities. For instance, OpenOffice.org provides word
processing, spreadsheet, and presentation capabilities and can import
Microsoft Office files. See 3.2.2, “Functionally equivalent utility applications”
on page 54.

� Server-based applications: For an application that has no Linux-based
equivalent. In this case, application servers provide some type of remote
terminal service, and the Linux client then runs the application using a remote
desktop application interface. See 3.2.4, “Building bridges to the server” on
page 55.

� Web-based functional equivalent: Provide a platform-independent application
interface that is browser-based. See 3.2.3, “Web applications” on page 55.

4.4.1 Moving back to client/server computing
When planning for a Linux-based client migration, it is possible that you might
find compelling reasons to consider moving to a client/server computing
architecture for certain application services. This consideration becomes
especially evident when the Linux migration coincides with an application
84 Linux Client Migration Cookbook, Version 2

migration to a Web services-based model (for example, moving from a PC-based
application to an equivalent Web portal-based solution).

Thus, we need to consider patterns for logical segmentation of workstation types,
as discussed in the following section.

4.4.2 Logical segmentation - Thin, slim, or fat
Generally speaking, a major shift from an existing client computing environment
can also trigger an expansion in workstation types that are used by the
organization.

For the purpose of this logical segmentation discussion, we define three major
“types” of workstations, as follows:

� Thin: Always connected; no local applications besides a displaying
component, which could be either a Web browser or any other client
component of a terminal services environment.

� Slim: Intermittently connected; some applications running locally (that is, not
requiring synchronous server connectivity). This could be any type of
implementation of such components ranging from self-written client/server to
Eclipse-based Java components in a portal-based solution.

� Fat: Off-line capable; most applications are locally installed and run locally on
the client.

Within a client/server environment, Figure 4-3 on page 86 shows the progression
from thin to fat, where the important difference is in how many layers of the
application logic are hosted locally on the client.
 Chapter 4. Technical planning 85

Figure 4-3 Thin, slim, or fat client

4.5 Client administration planning
This section describes several methods for efficient administration of Linux
clients. For a corporate network with more than twenty clients, it becomes
impractical to install and maintain clients individually. An added advantage for
maintenance of the Linux client is that remote logon is possible, either through
SSH, telnet, or even an xterm connection.

The topics discussed in this section have to do with administering installed Linux
clients after a migration. We do not discuss initial installation or rollout of the
Linux clients in this section. Topics in this section are relevant to migration
planning, because it is important to consider the impact of post-migration
administrative tasks.

At the end of the section, we highlight two enterprise desktop distributions to
show how the administration issues are solved using tools provided by those
products.

H T M L ,
F u ll Ja va , W in 3 2

N e tw o r k

Thin / U lt ra -Th in ,
A lw ay s-On C lien t

I n t e rm it t en t ly C onnec t ed
S lim C lient

Of f line C apab ilit y
Fat C lient

H T M L , W T S/C itr ix -
R D P o r IC A

H T M L , Ja va S cr ip t

P res ent at ion Logic

D at a A c c es s Log ic

P res ent at ion Logic
B us ines s Logic

R D B M S

P res ent a t ion Log ic

B us ines s Logic
D at a A c c es s Log ic

P res ent a t ion Logic
B us ines s Log ic

D at a A c c es s Log ic

R D B M S

B us ines s Log ic

R D B M S

R D B M S

H T M L ,
F u ll Ja va , W in 3 2

N e tw o r k

Thin / U lt ra -Th in ,
A lw ay s-On C lien t

I n t e rm it t en t ly C onnec t ed
S lim C lient

Of f line C apab ilit y
Fat C lient

H T M L , W T S/C itr ix -
R D P o r IC A

H T M L , Ja va S cr ip t

P res ent at ion Logic

D at a A c c es s Log ic

P res ent at ion Logic
B us ines s Logic

R D B M SR D B M S

P res ent a t ion Log ic

B us ines s Logic
D at a A c c es s Log ic

P res ent a t ion Logic
B us ines s Log ic

D at a A c c es s Log ic

R D B M SR D B M S

B us ines s Log ic

R D B M SR D B M S

R D B M SR D B M S

Today: 20% 10% 70%
2007 : 10% 50% 40%
Ga rt n e r S t ra t e g i c A s s u mp t i o n s

Planning tip: Even though this section provides details about daily
administration tasks, after a migration, these topics are still relevant. It is
extremely important to consider the impact of post-migration administrative
tasks during migration planning.
86 Linux Client Migration Cookbook, Version 2

4.5.1 Operating system and vendor distribution updates
Keeping up with security concerns, and a constant stream of enhancements and
bug fixes that are submitted by the OSS community as well as distribution
vendors, means that there is an essentially continuous stream of updates and
patches that are available. Methods for managing the update process include:

� Automate all operating system updates and patches.
� Facilitate the operating system update process for the user.
� Force critical operating system updates and patches when necessary.

In the automatic update process, the operating system will be updated at regular
intervals. This means that a client will never be “out-of-date”. The process is
completely out of the user’s control.

When facilitating operating system updates for the user, the user needs to
perform some action to update. One possibility is to put updates on the corporate
intranet and notify users to fetch and install them. This process can lead to
clients with varied status, some up-to-date and some out-of-date.

In both cases, a mechanism has to be put in place that forces critical updates
and patches. This can be an administrator running a script centrally, which
contacts all clients remotely and forces an update using either the automated
facility (casing it to run immediately instead of once a week) or the facilitated
fetch and install method. This mechanism is needed in case of severe security
problems where patches need to be applied immediately.

A typical Linux distribution consists of a lot of parts that all have independent
updates. This means that there can be many different states of a client. Certainly
a lot more than under Windows, which generally aggregates fixes in service
packs (even Windows updates are generally small service packs and include
changes for multiple parts of the operating system). To be able to administer a
larger pool of Linux clients, it is important to keep all at more or less the same
level and version. This means that the automated update process is preferred
over the user driven process.

Most distributions have tools to do this update automatically. Examples are:

� Red Hat Network (up2date) tools on Red Hat Enterprise Linux; see
“Administration of Red Hat Desktop” on page 91.

� YaST online Update on SUSE Linux at:

http://www.novell.com/coolsolutions/feature/11823.html

� Novell ZENworks Linux Management.

See: “Administration of Novell Linux Desktop” on page 93.

� OSS alternative update management applications include apt and yum.
 Chapter 4. Technical planning 87

http://www.novell.com/coolsolutions/feature/11823.html
http://www.novell.com/coolsolutions/feature/11823.html

4.5.2 Application updates
If the application is included with and maintained as part of the distribution, then
the tools mentioned in the previous section can be used.

When the application is not part of the distribution, there are several ways to
approach the update:

� Use scripts to fetch updated files and configurations from a network server.

� For third-party applications, an update executable or script might be provided.

� Build a package that can be handled by OSS tools such as apt and yum.

� If the change is extensive and the client is thin, replace the entire client image
with a new one.

In early proof-of-concept tests and pilot migrations, most of the changes can (and
will) be done manually. When the size of the pool of Linux clients grows, this
quickly becomes unfeasible, and more automated methods need to be put in
place.

Special care should be taken to make sure that the desktop and menu structure
are not adversely impacted when updating (or maybe even removing)
applications. The menu should keep pointing to existing applications to prevent
stale menu items. Icons on the desktop should point to applications still available,
and to the right version if multiple versions exist simultaneously.

4.5.3 Remote administration
The Linux client supports various remote administration methods without having
to install extra software. An administrator can log on remotely through one of the
standard mechanisms, for example, by using SSH. This enables the

Planning tip: Automate operating system updates and patching to keep all
clients at the same level. If possible, as a best practice you should maintain a
private enterprise accessible repository of authorized updates.

Planning tip: Plan to create an update mechanism during early
proof-of-concept or pilot migration of the Linux client.

Important: Always include desktop and menu structure in changes related to
application updates. A successful update can appear failed, because the
users are left with stale icons or menu items.
88 Linux Client Migration Cookbook, Version 2

administrator to analyze and fix problems remotely (except networking problems
that prevent remote access). It also enables the administrator to remotely run
scripts to monitor clients and gain data about the state of the clients.

Monitoring of the clients is used to proactively prevent problems instead of
reacting to users not being able to work. It is used to detect problems with disks,
memory, and CPU usage, or even with certain applications. There are several
products or solutions available to monitor systems, from commercial products
such as IBM Tivoli Software to OSS solutions such as Nagios and Big Brother.

4.5.4 Rollout of additional or replacement clients
In a steady state situation (that is, after the initial rollout of Linux clients), there
will still be requirements for on-going replacement and addition of client systems.
For both tasks, there should always be an up-to-date system image that can be
used to build the client. Some extra updates after installing the initial client
should not be a problem, but building a new client should not mean applying very
many updates after the initial image installation to bring it fully up-to-date with the
current supported image.

When replacing a client, there are several things that have to be taken into
account:

� In the case of a thick client, personalization data has to be transferred from
the old replaced client or restored from backup.

� Configuration files need to be copied over.

� Care has to be taken that using the old name for the system will not lead to
extra unnecessary problems.

� When using a new name on a replacement, make sure that the old name is
removed from server-side configurations.

On Red Hat Enterprise Linux systems the winbind idmap file is:

/var/cache/samba/winbindd_idmap.tdb

On Novell Linux Desktop and SUSE Linux systems the winbind idmap file is:

/var/lib/samba/winbindd_idmap.tdb

Important: In the case where winbind is used, take care to copy the winbind
idmap file from the replaced client. Because this keeps track of domain user to
uid and gid matching, this is very important for file ownership.
 Chapter 4. Technical planning 89

4.5.5 Backup of clients
Backup of the client is only important if there is data stored locally on the client. If
all important data is kept on a reliably backed up server, then replacing a broken
client just means resetting with a clean initial client image or install.

If the client contains important application data, this has to be backed up. This is
generally implemented in a client/server configuration where a client of the
backup software is installed on the client that sends its data to the backup server.
The backup server will then write the data to offline storage (such as a tape
drive). One such product that supports Linux clients for this purpose is IBM Tivoli
Storage Manager.

However, as stated before, some configuration and cache files are important and
do contain data even if no applications write data to local file systems. For
example, users can be allowed to make some changes to their desktop.
Restoring these changes after a replacement of the client can be seen as a
service to the user. Otherwise, the user might have to spend several hours
getting it just right again.

We could make sure all the necessary files are kept by making an inventory of all
these needed files during early migration or proof-of-concept and implementing a
script that will collect all files in a zip or tar file and place them on a server before
that server is backed up. Because these files are generally not that large, this
method does not have a large impact on the backup.

Do remember to update the list of files as applications change or names of
configuration files change with new versions.

By remotely mounting user’s home directories, as described in “Home directories
and shares” on page 73, you might be able to greatly minimize the amount of
client specific backup tasks that need to be supported.

4.5.6 Virus mitigation
It is important to start protecting Linux clients from virus infection as soon as the
clients become operational. Even though there are few viruses targeted at Linux,
the number is expected to grow as the number of Linux clients grows.

Virus or worm protection is done in three ways:

� E-mail virus protection on the mail server
� Regular virus scanning on the client (perhaps once a day or once a week)

Planning tip: Implement a method to back up key configuration and cache
files from the client, to be used after client restore.
90 Linux Client Migration Cookbook, Version 2

� Configuration of the client firewall to protect against worms

To scan for viruses on the mail server, several solutions are available, both OSS
and commercial.

Virus scanning on the client should include all parts of the local file systems.
Several solutions, both OSS and commercial, are available. The virus definition
files of the tool chosen should be regularly updated automatically. The user
should not be allowed to stop the scanning operation.

The Linux client firewall should be configured to defend the client against
infection by worms. The firewall configuration should not be changeable by the
user and should be regularly, centrally updated.

4.5.7 Examples of administration of enterprise distributions
In this section, we highlight how Red Hat Enterprise Desktop and SUSE Linux
Enterprise Desktop can be managed using vendor integrated system
management frameworks.

Administration of Red Hat Desktop
The Red Hat Desktop distribution is based on Red Hat Enterprise Linux. Like all
other products in this range, the mechanism for administration and update is Red
Hat Network (RHN).

Red Hat offers three architectures for connecting to RHN: Hosted, Proxy, and
Satellite. Usually a client will connect directly to the RHN servers at Red Hat.
This is called the Hosted architecture. Included in the Red Hat Desktop offering
are the Proxy and Satellite architectures, where you can install a RHN proxy or
RHN satellite server locally. The RHN proxy server caches traffic and content
between the RHN servers at Red Hat and the local client. Using a satellite
server, it is possible to replicate a RHN server locally.

The proxy and satellite servers are useful when the number of clients increases
and the amount of traffic to Red Hat becomes large. Also, these solutions will
increase security because there is a limited connectivity to the Internet. An added
advantage of the satellite server is that the RHN solution can be taken offline
(disconnected from the Internet) if you choose.

Planning tip: Plan to start virus mitigation procedures on Linux clients early in
the migration process. Linux viruses will appear eventually. Be ready.
 Chapter 4. Technical planning 91

Updating and patching the desktop client is done using up2date. The RHN alert
notification tool is used to alert the user that an update or patch is available. The
update process can also be automated.

Using RHN, there are three types of modules:

� Update
� Management
� Provisioning

These modules determine the service level you get from RHN.

The Update module only gives you basic update capabilities such as:

� Access to a Web interface to manage the systems.

� Priority e-mail notification of new updates and errata.

� Errata information provides a list of all available errata updates for each
system.

� RPM dependency checking makes sure that every applied update gets all
necessary dependencies.

� Auto update allows a system to download and install errata and updates
autonomically.

The Management module provides all capabilities of the Update module plus
extended management capabilities:

� Systems can be managed as a group.

� System permissions can be assigned to administrators and groups of
systems.

� Actions such as updates can be scheduled for a system or group.

� System search allows for searching systems and groups by package, errata,
or system specifications.

� Detailed comparisons of packages can be produced between systems or
against a pre-built package profile.

The Provisioning module is really useful when RHN is used to create new clients.
Along with everything in the Update and Management module, Provisioning also
provides:

� Bare metal provisioning - A tool to automatically provision a system using
kickstart to deploy operating system, packages, and activation keys.

� Existing state provisioning - Provision a system to take the state of an existing
system of a predefined installation.

� A rollback functionality to roll back updates.
92 Linux Client Migration Cookbook, Version 2

� Configuration management that can combine with kickstart actions to enable
a complex provisioning action.

� Provision applications based on RPMs.

� Kickstart configuration writer.

All these options are available in the Hosted architecture. The Proxy and Satellite
architectures add extras such as custom channels, integrated network installs,
and much more.

Using RHN, it is possible to remote manage the Red Hat Desktop clients. For the
Hosted architecture, the management is limited to the operating system and
applications included in the distribution. Using the other architectures, it is
possible to create channels for third-party applications.

More information about RHN is available at:

http://www.redhat.com/software/rhn

Administration of Novell Linux Desktop
The preferred method to update the Novell Linux Desktop is through the use of
Novell ZENworks Linux Management. ZENworks Linux Management is based on
Red Carpet Enterprise.

ZENworks offers a central system where client systems can be configured and
where updates and patches can be pushed to the client. The central system
resides inside the firewalls of the organization and can get its content (packages)
from a variety of sources including Red Carpet servers, YaST online Update, and
even Red Hat Network.

The clients connect to the server to update and patch using the rug or
red-carpet programs. This connection uses the HTTP protocol. Administration is
done on the ZENworks server using either a Web interface or command line
commands.

The activation key that is used to activate the client actually specifies which
administrators have access, which channels are available, and to which groups
the client belongs.

Some of the features included in the ZENworks Linux Management are:

� Enhanced ACL - Closely related to Activation keys. Administrators, channels,
groups, or machine notifications can be associated with an activation key.

Note: More information is also in “Red Hat Satellite server and Red Hat
Network (RHN)” on page 257.
 Chapter 4. Technical planning 93

http://www.redhat.com/software/rhn

� Check pending updates - Administrators can see which clients have updates
pending and the importance of these.

� Package sets - Software packages can be grouped to a set. The sets behave
as packages and can have a version and dependencies.

� Ad-hoc groups - Groups can be created whenever an Administrator needs
one; for example, for all machines with a certain update pending.

� Enhanced transaction - Immediate or future execution scripts can be added or
rolled back.

� Set client permissions - Client configuration files can be controlled from the
server.

� Server-side dry run - A transaction can be tested on the server to check
dependency information without taxing the client.

� Machine comparisons - Tool lists the differences between two or more clients.

� Choice of database back-end - PostgreSQL or Oracle.

� Caching server - Server that caches software on different subnets.

� Enhanced mirroring tool - Tool generates package sets from product
descriptions provided by mirrored servers.

The client has the following additional features:

� Multiple server support - The client can access multiple ZENworks Linux
Management servers.

� Time-based rollback - Can be invoked locally and from the server.

� Expanded system information - The client can send hardware, software, and
system information to the server.

More information about ZENworks Linux Management can be found at:

http://www.novell.com/products/zenworks/linuxmanagement/

4.6 Desktop versus notebook considerations
While looking at differences between desktops and notebooks, not only the
included hardware pieces differ, but the way of working might be different, too.
Users of notebooks often work offline and therefore need to be able to
synchronize their data once they are back online. Another topic in this
relationship is remote connectivity through wired or wireless networks.

Note: More information can also be found in “Novell ZENworks Linux
Management” on page 264.
94 Linux Client Migration Cookbook, Version 2

http://www.novell.com/products/zenworks/linuxmanagement/

Not only should the hardware support working in disconnected mode; the
software should also have mechanisms necessary to adapt to the current
connection type if necessary.

4.6.1 Hardware considerations
When discussing hardware support in Linux, it is important to first state that
support has improved significantly in the last few years. More manufacturers see
the rising distribution and use of Linux both in private and in corporate
environments, and therefore have started to focus more resources toward
delivering compatible device drivers for Linux. Unfortunately, there is still a lot to
be done, especially in areas such as wireless LAN device support, or specialities
such as Winmodems or GDI-printers. Also, the open source community runs
several projects that develop device drivers, such as the WLan driver for the Intel
Centrino chipset. A problem in this context is the firmware files, which are mostly
closed source and so open source developers have to sometimes reverse
engineer the device interfaces to achieve some level of functionality for native
Linux device drivers.

Developments such as this have even led to ideas such as the ndiswrapper
project, which enables the loading of Windows ndis drivers in order to run
network cards under Linux. NDIS is the Windows network driver API, and
ndiswrapper allows use of this API as kernel modules in Linux. The URL of this
project is:

http://ndiswrapper.sourceforge.net

It is very important that the hardware types are determined during the planning
stage of a client migration (see 4.1.1, “Assessing the client hardware” on
page 63). Existing hardware could need more effort to get it running properly on
Linux than the hardware is currently worth.

This rule applies especially for the selection of PC models. Almost every PC
vendor provides a model type that is suitable for Linux. IBM provides a Web site
with information about supported models, which can be found at:

http://www.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

Regarding desktop computers, it is quite easy to determine if Linux will run
without problems; all the components, such as the graphics card, are known and

Planning tip: Notebook computer users are extremely likely to fall into the
advanced end of the client functional segmentation shown in Figure 3-1 on
page 50. Because of this, migrating notebook users will always require an
extra level of technical planning, both for hardware compatibility issues as well
as application migration.
 Chapter 4. Technical planning 95

http://ndiswrapper.sourceforge.net
http://www.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

can be checked for Linux support. Onboard components need special
consideration because they likely cause problems; but even if this happens, it is
possible to work around this problem, such as by inserting a separate AGP card
with a supported graphics chipset.

When considering notebook computers, such an exchange cannot be made,
because the components cannot be removed from the mainboard. Thus, it is
necessary to check Linux support for notebook models before purchasing them.

Of special concern for mobile Linux-based computers is support for power
management functions. The support of the standards APM and ACPI in Linux is
still lacking in some areas. ACPI has been supported in the kernel since Version
2.6; but the implementation in hardware drivers varies, resulting in problems for
some users. For example, it is frequently more reliable to use APM for systems
than it is to use ACPI.

In conclusion, it is very important to pay special attention to the hardware that will
be in use after the migration. Additional work might be required to have a
customized version of a distribution that supports all components, if it is even
possible to support every component.

4.6.2 Peripheral extensions
When you look into the client landscape, you will recognize that many users not
only have a desktop computer, but also different kinds of peripherals. Examples
include:

� Locally connected printers
� Scanners
� Plotters
� Card readers
� Digital cameras

While planning the migration, it is important to assess peripheral hardware in the
same way that you assess the client hardware. Considerations about that are
given in 4.1.1, “Assessing the client hardware” on page 63.

Especially in cases of cheap peripherals, we recommend building a list of
approved and standardized devices, and aligning this with your inventory. If some

Note: One method to test hardware compatibility is to use a bootable
CD-ROM image of the Linux distribution that you are considering migrating to.
These live CDs are designed for this purpose. See 3.4.5, “Hands-on Linux
prior to migration” on page 59 for more details. We highly recommend that you
use this method to verify existing laptop system support.
96 Linux Client Migration Cookbook, Version 2

existing peripherals are hard to support in Linux, it is probably less expensive to
buy new devices that are known to run under Linux.

Information about open source projects that support peripheral extensions can
be found on the following Web sites:

� Common UNIX Printing System (CUPS), see 9.7, “How to use network
printers in the domain” on page 219, too):

http://www.cups.org

� Scanner Access Now Easy (SANE):

http://www.sane-project.org

� UNIX SmartCard Driver Project:

http://smartcard.sourceforge.net

� gphoto2 - Digital camera support:

http://www.gphoto.org

4.6.3 Connectivity options
Now that the Internet is seemingly everywhere and many services are “on
demand”, connectivity becomes one of the most important features of a client.
The Internet was created on UNIX-based servers, and because Linux was
created as a UNIX-like operating system for the x86 architecture originally, it
should come as no surprise that Linux easily fulfills network connectivity
requirements.

The majority of Ethernet network cards are supported. Because DSL and Cable
modem Internet connections operate over an Ethernet network interface, support
in Linux for those devices is also common. For DSL connections, PPP and
PPPoE Protocols are supported. Cable modem connections are easy, too,
because they usually provide IP addresses via DHCP.

Wireless network device compatibility is where you will need to be most careful in
testing your target client systems and devices. In this situation, we recommend
that you choose devices from larger manufacturers; for example, Cisco offers
Linux drivers for its wireless network cards. Support for wireless devices has
improved significantly, so there should be no problem finding a solution to give
your users wireless connectivity.

Supporting dial-up connectivity can be more problematic, especially in the case
of winmodems, which are extremely common in notebook computers. These are
modems that use software to emulate the hardware components, and therefore,
you need special software in order to use it.
 Chapter 4. Technical planning 97

http://www.cups.org
http://www.sane-project.org
http://smartcard.sourceforge.net
http://www.gphoto.org

For winmodems, some Linux drivers are available for some models. Up-to-date
information about this can be found at:

http://linmodems.org

The support of these devices is dependent upon the distribution. Sometimes, it is
easier to use an external modem with a supported chipset than to spend a lot of
effort to get the internal winmodem working.

4.6.4 Offline mode
In this section, we discuss working in offline mode.

Offline messaging
There are many full-featured desktop e-mail client applications available (such as
Microsoft Outlook or IBM Lotus Notes) that provide for offline access to a user’s
e-mail. Frequently when planning a Linux client migration for mobile
(laptop-based) users, supporting a Linux-based messaging client with offline
capabilities will be the single most important design decision in a mobile desktop
application migration strategy. There are Linux-based messaging client options
that provide for offline access modes. Mozilla Thunderbird is one example;
Thunderbird supports both POP and IMAP protocols. More information about
Thunderbird can be found at:

http://www.mozilla.org

Although Thunderbird will support offline messaging modes, it does not provide a
way to integrate calendaring and scheduling functionality into the messaging
client that is provided by systems such as Microsoft Outlook with Microsoft
Exchange back-end and IBM Lotus Notes with Lotus Domino back-end. For this
reason, we choose to demonstrate use of Novell’s Exchange Connector
combined with the Novell Evolution e-mail client in Chapter 8, “Client migration
scenario” on page 173. Extending the example migration scenario in Chapter 9,
“Integration how-tos” on page 195, for the notebook user means that you will also
have to test and evaluate the offline capabilities of that solution.

Offline files
Because every user to some extent creates and manages files and folders, it
follows that the notebook user should be able to access copies of their files in
offline mode. However, the primary storage location for these files should be a
regularly backed up and highly available server.

For example, Microsoft provides methods for automatic synchronization of files
between servers and mobile clients. One of these methods uses the Briefcase, a
special folder whose contents are synchronized at specific intervals. A second
98 Linux Client Migration Cookbook, Version 2

http://linmodems.org
http://www.mozilla.org

method was provided with the launch of Windows 2000, where a new function
called offline files was implemented. This mechanism is able to synchronize
whole folders. While the notebook is offline, the files are fully accessible, and
changes are retransmitted automatically after connecting to the network.

In Linux, this kind of server-to-client file synchronization is not built into the
operating system itself. Instead, the task of developing and supporting
Linux-based file synchronization services between client and server is left to
ISVs. For example, Novell offers a solution called iFolder for taking files offline
and sharing them with other users. There are two servers available for iFolder,
one is open source and the other is a commercial product. More information can
be found at:

http://www.novell.com/products/ifolder

Another possibility is to use rsync for this purpose. rsync is a powerful open
source Linux utility that performs incremental file transfers. Used with the right
options, it can fulfill the demand for synchronizing local and remote folders.
Because it builds checksums of the files and transfers only the missing parts,
rsync is extremely effective over small-bandwidth connections. The Web site for
rsync is:

http://samba.anu.edu.au/rsync/

By using rsync, you can develop a client/server file synchronization tool that
could be run as both a scheduled or user-triggered service on notebook
computers. We recommend that you develop a user-friendly wrapper that
controls this process, and, thus, hides complexity from the user.

4.7 Unmigratable applications
This section discusses issues related to applications that cannot be migrated to
run directly on a Linux client. We propose alternate ways to support these
applications for access from a Linux client.

We assume that the number of unmigratable applications is small and that a
small percentage of users are using these applications. If this is not the case,
then the case for the client migration has to be reconsidered.

4.7.1 What makes an application unmigratable
We define an application as unmigratable when one or more of the following
statements about the application are true:

� A Linux version of the application or an alternative application does not exist.
� Porting the application to Linux is not feasible.
 Chapter 4. Technical planning 99

http://samba.anu.edu.au/rsync/
http://www.novell.com/products/ifolder

� License issues make a move to Linux impossible or highly expensive.

Once an application is designated as unmigratable, there are several ways to
migrate to a Linux client and solve the issues around this application:

� Investigate whether the application can run on a Windows server and be used
through remote access mechanisms such as a Terminal Server, Citrix
Metaframe, or NoMachine NX.

� When using Workplace™ Managed Client on the Linux client, investigate the
use of Ericom Powerterm WebConnect for Workplace to connect to Windows
servers containing unmigratable applications.

� Examine whether it is possible from a cost perspective to run VMware
workstation on the client to create virtual Windows machines on those clients
that still need to run the application natively in Windows.

� Create dual-boot clients if the application is not used very often.

� Leave some clients out of the migration and consolidate all unmigratable
applications on those shared clients, for use by all users who need to use
those applications.

4.7.2 Terminal Server, Citrix Metaframe, or NoMachine NX solutions
If the application can run as a centralized application on a server, solutions such
as Windows Terminal Server, Citrix Metaframe, or NoMachine NX can be used
to access them remotely. Before an application can be moved to a central server,
certain conditions have to be met:

� The application has to be able to run on a multi-user environment. A
multi-user environment has several consequences:

– Settings must be stored in a per-user location in the registry and file
system.

– More than one user can run the application simultaneously.

� The application license must allow you to run it in a multi-user environment.

� The servers must have enough resources to allow you to concurrently run
multiple instances of the application or other non-migratable applications.

Client applications are available for Linux for Windows Terminal Server, Citrix
Metaframe, and NoMachine NX. The client for Windows Terminal Server,
rdesktop, is open source; the Citrix client is available when you purchase
Metaframe solutions; and NoMachine has released the NX client under the GPL.
100 Linux Client Migration Cookbook, Version 2

4.7.3 Ericom Powerterm WebConnect for Workplace solution
In case the client is already running Workplace Managed client to enable Lotus
Notes or productivity tools, you can also use this to enable some unmigratable
applications.

Using Ericom Powerterm WebConnect makes it possible to connect to
applications running on UNIX, a mainframe, and Windows servers. You can use
this last capability to connect to applications that cannot be migrated to the Linux
client, but that can be centralized on a server.

Using Ericom Powerterm WebConnect for Workplace, you can centralize the
management of these applications. The release of Windows applications through
Powerterm WebConnect for Workplace can be controlled and managed
centrally.

More information about this can be found in Appendix B. of IBM Workplace
Managed Client 2.6 on Linux, SG24-7208:

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247208.html?Open

4.7.4 VMware solutions
Using VMware (or any similar application that runs on Linux), it is possible to
create a virtual Windows machine that the user can use to work with applications
that cannot be moved to Linux or a central server.

The virtual machine is a completely functioning Windows machine and can be
loaded with the image of a Windows client already in use before the migration to
Linux. When using a domain, this means that the virtual machine has to become
part of the domain as well. The virtual machine has to be connected to the
network via bridging or NAT.

This solution has several disadvantages:

� A full Windows license is needed for the virtual machine.

� VMware software needs a license also; this will lead to extra cost.

� Extra management tasks to keep VMs running on clients.

� Possible extra requirements on the client resources in terms of memory and
disk space.

� The user might be tempted to work in the virtual machine to avoid using the
new Linux client.

Whether this solution is feasible with the extra cost depends on the number of
clients involved and the cost of alternative solutions.
 Chapter 4. Technical planning 101

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247208.html?Open
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247208.html?Open

4.7.5 Dual boot solution
Using a dual-boot client to work around unmigratable applications is essentially
the same as the VMware solution, except that in this case, the user can use
either Linux or Windows but not both at the same time.

The disadvantages of this solution are:

� A full Windows license is needed to boot the client using a Windows operating
system.

� Extra management and support tasks are needed for the Windows part of the
dual-boot system.

� Extra user complexity:

– Context: It might appear unclear at times whether the client is running
Windows or Linux.

– The user cannot switch quickly and will need an extra partition to work with
files on both operating systems.

� User might be tempted to boot to Windows and keep working using the old
client.

Advantages over the VMware solution are that there are no VMware license
costs, and no extra memory or CPU power is needed since only one operating
system will be running at any one time. In this case extra disk space is needed in
the form of at least one partition. For both the VMware and the dual-boot
solution, it is best to make a minimal Windows client available. This way, only the
application that still needs Windows is run under Windows.

4.7.6 What to do if all else fails
There might be applications left that do not lend themselves to be moved off of a
Windows client using any of the methods that we have mentioned. If these
applications are to be used after the client migration because of economical,
legal, legacy, or other reasons, a solution has to be found.

At present, it is possible to use a Windows emulator (such as Wine) to support
running Windows applications on a Linux-based client.

The most economical solution in the case of unmigratable applications might be
to consolidate all unmigratable applications to a fixed number of Windows
clients. These are then used by the entire user population to access the
unmigratable applications. These central clients will most likely be used in a
single-user mode with a single user sitting at the keyboard; if multiple users can
access the application at once it is better to use a remote solution such as the
one described in 4.7.2, “Terminal Server, Citrix Metaframe, or NoMachine NX
102 Linux Client Migration Cookbook, Version 2

solutions” on page 100. The centralized clients can be used remotely by tools
that enable remote use by a single user. An example of a tool such as this is
VNC. A VNC server can remotely connect the display, mouse, and keyboard to
the VNC client on the Linux desktop. By using a secure socket connection, it is
possible to make sure that the remote connection is secure.

Of course, if the unmigratable application is a heavily used application, all of
these methods are unusable and a Linux client migration becomes extremely
difficult.

4.8 Deploying the new client
Once a suitable Linux client has been designed, it has to be deployed within the
organization. The architecture and methodology for deployment has to be worked
out in the planning stages. Otherwise, the pilot project might end up with a couple
of very nicely designed Linux clients, but without demonstrating a proven method
for efficiently managing deployment of that client image to the rest of the
organization. In the case of larger organizations with many hundreds or
thousands of clients, this can become a critical consideration.

Several planning issues in deploying the client are:

� Method: Use complete image with post-deployment script or use the
distribution automatic installation method such as Red Hat’s kickstart or
Novell’s autoyast.

� Update frequency: How to best update the deployed clients

� Personalization of the client: Store user data on the client or in the network?

4.8.1 Deployment method
Different methods exist to deploy the new Linux clients. Before designing and
creating the new clients, you must select and test the method.

Two different methods of deployment might be:

� Using the existing enterprise deployment method or a new tool to deploy
based on partition or disk images

Planning Tip: Decide on a deployment method before designing and creating
the new client. The method of deployment directly determines the extent to
which the installation and customization of the new clients can be automated.
This is a key total cost consideration in your migration plan.
 Chapter 4. Technical planning 103

� Using the distribution’s automatic installation method extended with custom
built packages for the locally customized client

Image-based deployment
Choosing an image-based deployment has an impact on the design of the client.
The image can either be deployed using existing enterprise deployment methods
or using a tool such as partimag (an open source version of the popular
Symantec Ghost tool):

http://sourceforge.net/projects/partimage/

When the client is going to be deployed as an image, less care has to be taken
when building the client to make sure that every customization is caught in a
package (usually an RPM). However, extra care goes into creating an overall
personalization script or method to change settings after the image has been
deployed to make that client unique and configured for the particular user.

Install-based deployment
Several distributions have a mechanism for automatic, unattended installations.
The enterprise distributions each have their own. Red Hat uses kickstart, which
essentially uses an answerfile, called the kickstart file, to control Red Hat’s
installer application, anaconda. Novell has autoyast, which also has a
configuration file to automate responses to the installation procedure. Both these
methods are based on the RPM package format. These mechanisms can be
extended with “homegrown” RPMs and have the option of running
post-installation scripts after all RPMs have been installed.

Using the install-based deployment method (usually based on RPMs) means that
all extra software and configurations have to be included as RPMs as well. This
has to be identified in planning before building the Linux client, so that each
application that is needed can be built into a supporting RPM package for
delivery and installation.

4.8.2 Update deployed clients
Depending on the method chosen to deploy the clients, the method for keeping
existing clients up-to-date might change as well.

Image based deployment
When using images the update scenario is twofold. The image has to be updated
for fresh installs and a method has to be conceived to update existing clients.

If all software on the client is installed in the form of RPMs, updating existing
clients boils down to updating those RPMs that are needed. However, if parts of
104 Linux Client Migration Cookbook, Version 2

http://sourceforge.net/projects/partimage/

the client are not installed from RPMs, updating those parts becomes more
challenging.

Install-based deployment
In the case of install-based deployment, the fresh clients are kept up-to-date by
installing the latest versions when deploying a new client. Since all software is
delivered as an RPM it is fairly easy to update software.

Enterprise distributions have management tools to handle this update process,
as discussed in Appendix B, “Using enterprise management tools” on page 255.

4.8.3 Personalization of deployed clients
Once a client is deployed, it needs customization and personalization. The
customization part can be handled by post-deployment scripts and can include:

� Hostname

� IP address

� Specific remote filesystem mounts

� Specific printers

� Specific applications

The personalization part is usually input with user data of the individual user
using that client. This can either be handled the first time the client is booted
through a mechanism such as firstboot or through a script or application that the
user has to run once logged in.

The firstboot mechanism is an application that is run once (at first boot) and can
personalize the desktop client. After running, a parameter is set in a file to
prevent firstboot running again. The advantage of this mechanism is that this
runs before logging on and means the user does not need an account and the
account can be created during the process using data the user provides.

When the firstboot mechanism is not available or the user uses a central login
account already available, personalization can be done by executing a script or
application that personalizes the desktop. This might require logging off and on
again or even a reboot.

Whether a user’s data and personalization information is stored locally or in the
network has an impact on the method to choose.

This section so far has described how to deploy Linux to users without
incorporating their settings from the old client. Tools exist that help to automate
the migration of many common sets of personalization data from Windows to
 Chapter 4. Technical planning 105

Linux. One of these tools is described in detail in Appendix C, “Automating
desktop migration using Versora Progression Desktop” on page 277.

4.9 Post-migration troubleshooting and technical
support

After migrating a group of clients to Linux, the clients will have to be
supported—not just in the normal day-to-day operations, but also for problems
arising from the migration itself.

Not all of the support is of a technical nature. The usage patterns on the Linux
client will be different from what users were used to on their previous clients.

The administration of a Linux client also needs a new methodology for
troubleshooting. Finding and solving problems under Linux is very different from
Windows. Administrators have to adapt to the new troubleshooting methods for
Linux clients. The first step in this process for the Linux client is not a reboot,
which is most often the first step on a Windows client.

4.9.1 What to expect
To prevent a lot of post-migration troubleshooting, the users have to be prepared
for the new Linux client. The expectations for the Linux client have to be
managed very carefully.

Changes for the user in migrating to the Linux client might be:

� The user no longer has full control over file system contents.

� Even when the desktop presents a similar look and feel, the process of
changing the desktop settings is completely different.

� Right-click menus are either gone or present different options.

� The look and feel of favorite desktop applications has changed, or those
applications have been entirely replaced with functional equivalents.

Most of these changes can be managed and anticipated by providing proper
training and enablement materials. Remember, to minimize the amount of
transition support, try to follow the guide for using “Bridging Applications”, as
described in 3.4.1, “Bridging applications can separate retraining from migration”
on page 58.
106 Linux Client Migration Cookbook, Version 2

4.9.2 How to handle the unexpected
While it is possible to fully prepare the user in advance, some problems will still
arise post-migration and during normal operation. Most of these problems are
tasks for which support staff and administrators can be prepared and trained.

To tackle the unexpected problems, the support staff has to use a Linux-oriented
approach to problem solving. To enable support staff to become used to this
different approach, the differences have to be investigated.

In general, Windows operating system methodology for troubleshooting usually
starts with:

� Rebooting the system
� Checking the event log
� Checking drivers and installing the latest versions

The Linux operating system has more easily identifiable modules. Also, there are
lots of log files. This means that the methodology for troubleshooting starts with:

� Identify the affected module of the Linux distribution.
� Check all involved system logs starting with the syslog.
� Verify that configuration files do not contain errors or faulty settings.
� Restart services involved.
� Check errors generated by restart.

When using a Windows client, a reboot will solve more than half of the problems;
when using a Linux client, the problem usually remains after a reboot. This
means that support staff has to learn how to approach the problem on the new
client.

Generally, the best way to prepare support staff for Linux client problems
depends on which level of support is given. In the case of helpdesk or level 1
support, the best training is using a Linux client. When the support moves more
toward administrative tasks, basic Linux (or even UNIX) training will have the best
effect.

4.9.3 When to contact vendor enterprise support
Vendor support is usually contacted when the problem is found to be a bug or
when software is not acting as stated in specifications or manuals. If the problem
is not related to a vendor-specific part of the Linux operating system or suite of
applications, it is also possible to find a solution or a fix in the open source
community.

The decision for searching community support has to be made for each issue.
When a support contract with an enterprise distribution vendor is in place, it is
 Chapter 4. Technical planning 107

best to explore that avenue first, because trying to incorporate a community fix in
a vendor distribution might lead to new problems and jeopardize your support
agreement with the vendor.
108 Linux Client Migration Cookbook, Version 2

Chapter 5. Linux architecture and
technical differences

In this chapter, we illustrate differences by presenting a top to bottom view of the
desktop Linux software stack, the dynamics of the free software and open source
movements, the definition of a “distribution”, the importance of standards, and
then sections related to specific technical differences.

� 5.1, “What is Linux” on page 110

Free software and open source, distributions, and standards

� 5.2, “Technical differences” on page 112

Components of the Linux operating system and a low to high-level discussion
of the major operating system functional layers

5

© Copyright IBM Corp. 2004, 2006. All rights reserved. 109

5.1 What is Linux
Linux is an operating system that was initially created by Linus Torvalds. He
began his work in 1991 when he made available Release 0.02 of the kernel
through a newsgroup on the Internet. Development continued, driven by a
loosely coupled team of programmers and release 1.0 of the Linux kernel was
made available in 1994.

The kernel’s main role is to supply an interface to the hardware and peripherals.
It also manages the memory and schedules execution of processes. A lot of
additional software is required to provide all of the functions expected from a
complete operating system. Fortunately, open source developers, including IBM,
have contributed time and effort to put all of the necessary pieces in place.

Today, Linux is a fully functional, flexible, reliable, and free operating system that
runs in many different hardware environments and on an extremely diverse set of
architectures. Linux is all about the freedom to choose the features and
configuration of your operating system.

Linux, both the kernel and associated software, is developed and distributed
under the GNU General Public License (GPL) and its source code is freely
available to everyone. The GPL means you can share and modify the software
without being charged for it and makes sure the software remains free of charge
for everyone. For more information about the GPL, use following URL:

http://www.linux.org/info/gnu.html

For more information about the Free Software Foundation and the GNU project,
refer to:

http://www.fsf.org

5.1.1 Distributions
There are hundreds of distributions (commonly called distros) of the Linux
operating system, available from sources all over the world. A distribution is a
organization that packages an installable set of components including the Linux
kernel, and makes it available to a broad audience. Most distributions have their
own feature set, and some are customized for special hardware configurations or
for special purposes. Some well-known distributions are: Red Hat, Novell SUSE,
Debian, Gentoo, and Mandriva. Although the operating system from these
organizations is freely available, many also sell retail versions that offer greater
levels of support should you need it.
110 Linux Client Migration Cookbook, Version 2

http://www.linux.org/info/gnu.html
http://www.fsf.org

Figure 5-1 Distribution contents

Most of the latest Linux distributions offer the following:

� Full 32-bit and 64-bit architectures
� Preemptive multitasking
� Support for multiple users and groups
� Full networking capabilities
� Protected memory
� Clustering, including load balancing and failover
� Dynamic reconfiguration
� SMP support

5.1.2 Standards
Recently, a lot of effort has been put into standardizing Linux and higher-level
subsystems. Organizations such as the Free Standards Group, freedesktop.org,
and the Open Source Development Labs (OSDL) started working on many
different projects in this area. These projects use and extend existing standards
such as POSIX, the Single UNIX Specification, XML, DOM, CORBA, and many
more. Some example projects are:
 Chapter 5. Linux architecture and technical differences 111

� Filesystem Hierarchy Standard
� Linux Standard Base at http://www.linuxbase.org
� Internationalization (OpenI18N)
� Printing (OpenPrinting)
� Accessibility
� Clustering (Open Cluster Framework)
� Data Center Linux
� Carrier Grade Linux

Most of these standardization efforts were focused on low-level functionality and
standardization of the file system layout, a new printing architecture, stabilization
or creation of APIs for clustering and high availability, and to make sure that
programs from independent software vendors (ISVs) are binary compatible
between different Linux distributions.

From a standardization point of view, the Linux desktop is currently a fast moving
target. A lot of promising development is currently underway that will evolve the
desktop Linux landscape even further. For example:

� New X server extensions and modularization

� Cairo (vector graphics system)

– With X, OpenGL, and Postscript or PDF output

� HAL (hardware abstraction layer)

� GStreamer (streaming media framework)

� D-BUS (message bus system)

5.2 Technical differences
This section introduces and discusses many of the technical differences between
the architecture of Windows and Linux clients.

Linux has innovations in technology and features that are not available on
Windows. Linux is also highly modular and extremely configurable. And certain
features have been implemented differently than they are implemented in the
Windows operating system.

A Linux operating system consists of the kernel and several crucial components.
Some of the terms used in this chapter might be new to someone coming from a

Note: The LSB 3.1 specification has been approved and published. See 1.7,
“Desktop Linux futures” on page 7.
112 Linux Client Migration Cookbook, Version 2

http://www.linuxbase.org
http://www.linuxbase.org
http://www.linuxbase.org

Windows environment. For more information about these terms, refer to
Appendix A, “Linux glossary for Windows users” on page 233.

The Linux operating system contains the following components (as shown in
Figure 5-2 on page 114):

Linux kernel Provides a set of services or kernel features to
applications allowing them to run. Device drivers and
modules can be added to the kernel to expand these
services. The kernel also supports concepts such as
multitasking and a multi-user environment.

Devices A device is an entity within the operating system that
forms the interface to hardware. The device driver
handles translation of operations on the device in the
operating system to physical actions in the hardware.

Modules A module is dynamically loadable or unloadable kernel
code that provides a service, such as a device driver.
Modules provide the ability for the kernel to interface with
hardware, making the hardware functionality available for
use by the kernel or user space applications. Once a
module is loaded into the kernel, it is considered part of
the kernel, but it can be unloaded when not needed
anymore.

Application level (user space)
Environment where applications that make use of the
kernel services run. This environment or user space can
be a graphical or a command line-based user interface.
An application has access to the kernel services through
invocation of system calls.
 Chapter 5. Linux architecture and technical differences 113

Figure 5-2 Linux Operating System

5.2.1 Kernel booting process
One of the biggest differences when migrating to Linux is its stability. It is
conceivably possible to never need a reboot, unless of course, the kernel needs
upgrading. However, when it is time to boot, the process is somewhat different
that it is in Windows. The initial kernel booting process is also referred to as
kernel bootstrap.

Kernel bootstrap process
The kernel bootstrap process is:

1. Processor initialization, only low memory addressed, BIOS starts bootloader
(GRUB, LILO).

2. Bootloader loads initrd and kernel into memory; bzImage unzips itself to high
memory (/boot).

3. Bootloader starts kernel, and bootloader tells kernel that there is an initrd.
114 Linux Client Migration Cookbook, Version 2

4. Kernel unzips initrd and mounts it as root-filesystem.

5. Within initrd, a program called linuxrc is executed. The linuxrc program loads
the modules necessary to mount various physical filesystem devices.

6. The real root filesystem is mounted; initrd is remounted to /initrd.

7. The init process starts (pid 1); init is the only process started by the kernel
itself, every other process is a child process of init.

In the previous description, the term initrd indicates a file that is decompressed
and used as an initial RAM disk (hence, the name). This initial RAM disk is the
root filesystem as the kernel starts running. This initial root filesystem needs to
contain modules and drivers for all devices needed. So if the actual root
filesystem lives on an ext3 filesystem of a SCSI disk, the initial RAM disk needs
both ext3 and SCSI kernel-modules.

5.2.2 Communication, files, and services
Communication in Linux is performed using sockets. A socket is a pseudo-file
that can be read from or written to. This then corresponds to a receive of a send
operation on the communication device. A network connection between two
Linux systems, for example, is built from two sockets on both ends, each
corresponding to an IP address and a port number.

Devices in Linux are also represented by files, usually in the /dev directory.
Writing to the file corresponds to writing to the hardware device. Device drivers
handle translation between this file-access and the physical action on the
hardware.

As mentioned in 5.1.2, “Standards” on page 111, the Filesystem Hierarchy
Standard (FHS) governs the Linux filesystem. Filesystems in most Linux
distributions are set up along the lines of the Filesystem Hierarchy Standard
(Table 5-1 on page 116).
 Chapter 5. Linux architecture and technical differences 115

Table 5-1 The Filesystem Hierarchy Standard

A more detailed description of the FHS can be found at:

http://www.pathname.com/fhs

A big difference with the Windows OS is that the concept of driveletters does not
exist within Linux. This is an important difference when discussing desktops,
because users are used to this concept of the driveletter (C: containing the
Windows OS and Program Files, D: usually containing data, E: being the
CD-ROM, and so forth).

Directory Description Remarks

/ Root of the filesystem All other files and
filesystems are
sub-directories of this.

/bin Essential command
binaries

Commands such as sh, ls.

/boot Static files of the boot
loader

Sometimes must be own
filesystem.

/dev Device files

/etc System configuration Contents differ for each
distribution.

/lib Shared libraries and kernel
modules

/media Mountpoint for removable
media

Used to be part of /mnt.

/mnt Mountpoint for temporary
mounts of filesystems

/opt Add-on application
software

/sbin Essential system binaries

/srv Data for services

/tmp Temporary files

/usr Secondary hierarchy Contains an entire subtree,
governed by FHS.

/var Variable data Logging, PIDs, caches,
and so on.
116 Linux Client Migration Cookbook, Version 2

http://www.pathname.com/fhs

5.2.3 Multi-user
The way in which users are used in Linux is based on the model of UNIX. Since
UNIX was developed as a multi-user operating system from the start, the
concept of multiple users is very tightly bound to the workings of the operating
system. The Windows operating system originally started as a single-user,
single-thread operating system. Since then, Windows has come a long way. But
because of this difference in history, there are inherent differences between the
way multiple users are handled by both operating systems.

The are several different ways to look at how good an operating system handles
multiple users:

� Can multiple users run processes at the same time?

� Can multiple users be logged on at the same time?

� Can applications be installed for multiple users?

� What are the rights of the different users?

Can multiple users run processes at the same time
One way to look at multi-user is that more than one user can run processes at
the same time. In Linux, usually all system processes run as the root user. Any
number of users can have processes running on a Linux system at the same
time. The number can be limited by specific tables in the kernel, but in essence
the code enables any number.

In Windows, it is also possible to have processes running for multiple users at the
same time. This property is the basic building block for the Windows Terminal
Server.

Can multiple users be logged on at the same time
In the case of both operating systems, the answer to this question is yes. Multiple
users can be logged on at once.

If a login consists of having a console with a graphical display, this is also
possible in both operating systems. In Windows, this is done using Terminal
Server and a Remote Desktop Protocol (RDP) connection. In Linux, this can be
done by allowing the session manager to create screens on remote Xservers.

Note: Userful’s multi-station client computing solution is an excellent example
of how to leverage the multi-user flexibility inherent in the Linux OS and the
X architecture. See 7.5, “Multi-station client architecture” on page 162 and
Appendix D, “Multi-station computing deep dive using Userful Desktop
Multiplier” on page 289 for more details.
 Chapter 5. Linux architecture and technical differences 117

A multi-station client architecture provides an excellent example of how a
Linux-based system can support multiple user logins, and in fact also support
multiple, independently connected KVM (keyboard-video-mouse) connections to
a single system. See 7.5, “Multi-station client architecture” on page 162 and
Appendix D, “Multi-station computing deep dive using Userful Desktop Multiplier”
on page 289.

Can applications be installed for multiple users
If different users want to run an application at the same time, it is extremely
useful if each user has individual settings for the application.

In Linux (like UNIX), this is usually handled by “dot-files” (filenames starting with
a period) that appear in the user’s home-directory, or by environment variables
that are set for the specific user.

Originally on Windows, settings were stored in the system registry, which was
originally only created for a single user. This situation sometimes still creates
problems in the Windows operating system, but most modern applications on the
latest incarnations of the Windows OS handle user settings differently. More and
more settings are now stored in files in the “Documents and Settings” structure in
Windows.

What are the rights of the different users1

In Linux, the user with all rights (that is, the superuser) is the user “root”. Many
lower level system services in Linux run “as root”, meaning that the process
owner ID is root and therefore the process itself is running with root privileges, for
example, the system initialization process ‘init’ (always process ID 1). The root
user cannot be renamed and, therefore, cannot be more than one root user.

In Windows, the Administrator user is the user with all rights. There can be
multiple instances of users defined with equivalent Administrator access levels,
and the Administrator user can be renamed to something else.

You could say that Linux is a “single-superuser OS” and Windows is a
“multi-superuser OS”. And where multi-user is good, it does not seem a good
idea to have multiple superusers, with free-to-be-chosen names.

5.2.4 Graphical and text-based environments
Microsoft Windows is inherently a graphical system. Windows will always boot
into a graphical mode, even on servers which do not need a graphical
environment for daily operation. Most applications developed for Windows are

1 Note: At the time of this writing, behavior of the security systems in Windows Vista is not known. In
the future, Vista might have different ways of managing administrator level access to the system.
118 Linux Client Migration Cookbook, Version 2

built with a GUI first, with command line automation a lower priority. Proponents
say that these graphical tools make Windows easier to use, though detractors
claim that the lack of command line options makes it hard to automate tasks on
Windows.

As we have stated already, Linux is an extremely modular operating system.
Even though most distributions of Linux configure a graphical environment by
default, it is always possible to boot Linux solely into a command line interface. In
fact, this is a common practice for “headless” servers, that is to say servers which
have no display attached and will only be accessed remotely. As such, not
loading a graphical environment can save on resources such as memory and
disk space. Many system level tools for Linux (such as networking configuration
or application packaging tools) are built with a command line interface first. Later,
graphical tools are built to wrap the command line interface. This results in a
multitude of different graphical “front end” applications that implement the same
features provided by the console (command line equivalent) applications in a
GUI-based equivalent.

The application structure for graphical environments in Linux is also extremely
modular. There are several layers of abstraction provided by different
applications, with many choices available in each layer. Table 5-2 demonstrates
many of the choices that are available at each layer of the user interface.

Table 5-2 Layers on top of the X Window system

This level of modularity (the ability to independently start, stop, and modify the
behavior of the X Window system on a Linux-based computer) is what allows for
the success of many-to-one client computing solutions such as Userful’s
multi-station Desktop Multiplier. See 7.5, “Multi-station client architecture” on
page 162 and Appendix D, “Multi-station computing deep dive using Userful
Desktop Multiplier” on page 289 for more details.

Layer Choices

Display manager XDM, GDM, KDM, and Entrance

X Window Server XFree86 or X.org

Window managers FVWM, IceWM, WindowMaker, Metacity,
KWin, and Enlightenment

GUI toolkits OpenMotif, GTK+, Qt, wxWidgets, FLTK,
FOX, Swing, SWT, and EFL

Desktop environments KDE, GNOME, GNUStep, XFCE, ROX,
Looking Glass, and Metisse
 Chapter 5. Linux architecture and technical differences 119

In the case where you want a graphical environment to start at the end of the
boot process, display managers can be set up as an additional service that is
started up. The display manager starts an X Window Server and communicates
with that server to display itself. The display manager normally also provides a
login screen for a desktop and allows users to choose which window manager or
desktop environment to use for their session if multiple choices are provided.

The X Window system is essentially a client/server application. The labeling of
the client and server components is at first non-intuitive. What would normally be
seen as the client application (running on the local workstation or desktop) is
called the X Server and the server applications (which can run remotely) are
called X clients. The X-Windows architecture is shown schematically in
Figure 5-3 on page 121. The X Window Server program has control over the
display and mouse+keyboard. The X client programs (in this case, Xterm and
Xclock) run either on the local machine (machine A) or on a remote machine
(machine B) and communicate with the X Server through sockets.

The ability to chose one of the multiple display management environment
options (that is, GNOME, KDE, and so forth) during the graphical login
process significantly demonstrates the modularity and flexibility of Linux
relative to Windows.
120 Linux Client Migration Cookbook, Version 2

Figure 5-3 Schematic X-windows architecture

The X Window Server handles drawing images on the screen, using the correct
video card and monitor drivers. The X server also handles receiving input from
devices such as a mouse and keyboard. X Window Servers follow a standard
interface, called X11, so that any X server can receive input from an X client. This
interface works over network sockets, even on the local machine (it is important
to note that local sockets are not limited to network speeds though). This
abstraction allows for X forwarding, where an X client on one machine can
display on an X server on a different machine, with no extra implementation
necessary for the X client.

Window managers are X client programs that control how other X clients are
positioned, resized, or moved, see:

http://xwinman.org
 Chapter 5. Linux architecture and technical differences 121

http://themes.freshmeat.net/articles/view/639/
http://xwinman.org
http://xwinman.org
http://xwinman.org

They can also provide title bars and other decorations to windows, handle
window focus, and provide user-specified key and mouse button bindings.
Example 5-1 on page 122 shows how to start a nested X server with Xnest,
which is an X server that is simultaneously an X client. This allows you to test
other window managers or desktop environments in a window.

Example 5-1 Nested X server with Xnest

Xnest -fp `xset -q | grep fonts` :1 &
xterm -display :1 &

To simplify graphical programming, several GUI toolkits have been developed on
top of the base X11 libraries. Most GUI toolkits also provide a theming engine,
and some base libraries allow for a similar look and feel between applications.
There are also many integrated development environments (IDEs) available that
further simplify GUI programing:

� KDevelop and Qt Designer for KDE and Qt
� Anjuta and Glade for GNOME and GTK+
� MonoDevelop for Mono
� Eclipse or NetBeans™ for Java with Swing or SWT

Desktop environments provide a much richer user environment than just simple
window managers by providing standard productivity applications such as:

� E-mail and calendaring
� Instant messaging
� Image manipulation
� Document editing and viewing
� Scanning
� CD and DVD burning

These applications are created with a standard GUI toolkit. They have a
homogeneous look and feel, theme flexibility, inter-application communication,
drag and drop functionality, session management, and virtual desktop
management.

Most recent Linux development activity is beginning to standardize around the
GNOME and KDE desktop environments (and their respective toolkits of GTK+
and Qt). Some traditional UNIX vendors are also beginning to adopt these
environments.

5.2.5 System runlevels
Linux operating systems have the ability to boot into multiple runlevels. A runlevel
is a configuration option which defines which processes should be allowed to
run, and at what level. This is somewhat analogous with booting Windows into
122 Linux Client Migration Cookbook, Version 2

Safe Mode, though much more granular and configurable. While it is technically
possible to boot into eleven different runlevels (the numbers 0 through 9, and
also S), only runlevels 1, 2, 3, and 5 are commonly used. (Runlevel 0 is reserved
for system shutdown and runlevel 6 is reserved for system reboot. Runlevel S is a
special runlevel used by scripts before entering the first runlevel.) By default, the
runlevels are laid out as you see in Table 5-3.

Table 5-3 System runlevels and modes

The default runlevel is configured in the file /etc/inittab. With root level access,
you can switch between runlevels using the init command.

5.2.6 Drives, partitions, and file systems
Unlike Windows, Linux does not treat drives as separate top-level items in the
system device hierarchy. Instead, everything is mounted into a file system
hierarchy. For instance, the main hard drive is usually mounted as /, while CD
drives are mounting as /mnt/cdrom (or /media/cdrom on some distributions).
Both methods have advantages and disadvantages. On Windows, it is obvious to
tell which files are on which drive. With Linux’s format, a faster drive could be
used for the system mount point (/), and a larger yet slower drive could be used
for home directories (/home), all done without the user noticing the difference.

Similar to mapping a drive to a file share in Windows, Linux can mount network
shares (using NFS, SMB, or more) into the current file system, as seen in
Example 5-2. It is even possible to mount the users’ home directories over the
network, in a setup similar to Windows’ roaming profiles. When mounting
Windows shares (or Samba shares), it is import to note that the SMB protocol
does not allow for symbolic links or sockets, and, as such, is not suitable for
home directories.

Example 5-2 Mounting a Samba share

smbmount //itsont05/data /mnt/itsont05_data

There are many different file systems available for Linux, such as ext2, ext3,
ReiserFS, XFS, and JFS. Each file system has reasons for and against its use,

Runlevel Mode

1 Single user text mode

2 Multiuser text mode without networking

3 Multiuser text mode with networking

5 Multiuser graphical mode with networking
 Chapter 5. Linux architecture and technical differences 123

though all are mature. Red Hat defaults to using ext3, while Novell Linux Desktop
uses ReiserFS. Both ext3 and ReiserFS are journaling file systems. A journaling
file system keeps an independent log (or journal) of data that is stored. Most
Linux file systems also do not need to worry about fragmentation. The file
systems work around most of the problems caused by a fragmented hard drive,
so that even if a drive was fragmented, it would not cause any significant speed
decrease.

Linux also has built-in support for the FAT file system used by DOS and
Windows. NTFS, the file system introduced with Windows NT, is currently
supported in read-only mode. There is an experimental driver for writing to
NTFS, but because this can cause data loss, we do not recommend it for real
use.

5.2.7 Virtual memory
Both Windows and Linux have a system for virtual memory. The model behind
both is different and can even change from one version to the next.

One difference between Windows and Linux is the way swapping or paging is
done. A Linux system will only start paging out memory pages when no physical
memory is available for allocation. Paging in occurs when memory pages are
needed that are no longer in physical memory. Performance can be adversely
affected when there is a lot of paging activity especially when there is a lot of
paging in and out. This generally means physical memory is too small, or certain
kernel parameters governing virtual memory might be set incorrectly, or possibly,
the size of the paging space is not optimal. Windows will sometimes perform
paging out of certain memory pages even when physical memory is not
exhausted. This is called preventive paging. This does speed up freeing up
memory pages when the need arises, but it also means that Windows will be
paging out more often.

Another difference is that Windows usually uses a swapfile, while Linux uses a
swap partition (but can use swapfiles as well). On Windows, the main drive C:
usually contains a file named pagefile.sys, and that file is used for virtual
memory. The file can grow in size if necessary, however this can lead to the
swapfile becoming fragmented, which significantly hampers performance. On
Linux, a swap partition is usually created on installation. This partition is set aside
for virtual memory use, and is always contiguous. However, because it is a
partition, it can never grow larger than the original size to which it was initialized
during partitioning, without repartitioning the disk.
124 Linux Client Migration Cookbook, Version 2

It is also possible to specify multiple swap partitions or swapfiles on the same
Linux machine. This might be necessary if the swap partition created on
installation was too small. Unlike Windows, which will automatically allocate
more virtual memory, partitioning the drive and allocating it are tasks that a
system administrator must perform manually.

5.2.8 File links
Unlike Windows, Linux supports shortcuts, called links, at the file system level.
(Technically, NTFS also supports links, but Microsoft Windows does not use
them.) Linux uses two types of links, symbolic links and hard links.

Symbolic links, or symlinks for short, are direct references to another file or
directory. A symlink can be created anywhere and can point to a file or directory
on any other partition or mount point. Similar to Windows shortcuts, if the original
file pointed to is moved or deleted, the symlink will no longer function.

In order to understand hard links, it helps to understand Linux file systems. A file
path on Linux is really just a pointer to an object called an inode. The inode
contains all the information about where a file is stored and how large it is. When
creating a hard link, another pointer to a file’s inode is created. Only when all of
the pointers are deleted is an inode removed. Therefore, if the original file is
moved or deleted, the hard link still points to the original inode, and thus the file
still exists. Hard links, however, cannot point to directories, nor can they point to
a file on a separate partition.

5.2.9 Replaceable kernel
Unlike Windows, the Linux kernel can be treated as another modular component
of the system. It is possible to have multiple kernels installed on a machine. For
instance, you might have the distribution installed kernel by default. However, for
instance if that kernel does not support certain new hardware or an optional
device, you have the option to download a newer version of the kernel and

Tip: To more efficiently utilize disk space on a dual-boot system, there are
ways to make both Windows and Linux use the same partition for managing
the virtual memory. More detail about this can be found at:

http://www.tldp.org/HOWTO/Swap-Space.html

Tip: Using separate swap partitions or swap files that are resident on each of
the physical hard disks installed in the same system usually has a positive
impact on overall system performance.
 Chapter 5. Linux architecture and technical differences 125

http://www.tldp.org/HOWTO/Swap-Space.html
http://www.tldp.org/HOWTO/Swap-Space.html

compile it to support the additional device. It is then possible to configure the
bootloader to display an option to boot either kernel; the default kernel as well as
the one which has the new device support functions compiled into it. While this
ability is useful for testing out new hardware support or new kernel features, most
users do not need to do this. However, it is important to point out that this is
another feature of the modular nature of the Linux OS.

Not all distributions give you the ability to choose which kernel to boot out of all
the kernels installed. This depends on how the Grand UNified Bootloader
(GRUB) is configured. For instance, Novell SuSE enterprise distributions usually
replace the kernel in the bootloader automatically with the last installed kernel.
For more information about GRUB and how you can manage boot level access
to multiple kernels in Linux, see the following sites:

http://www.gnu.org/software/grub/
http://en.wikipedia.org/wiki/GNU_GRUB
http://www.tldp.org/HOWTO/Multiboot-with-GRUB.html

5.2.10 Device drivers and hardware support
Windows is known for its hardware support and device drivers being available for
almost everything. This is based on manufacturers developing drivers for their
hardware for Windows first (and sometimes also last). Because not all
manufacturers supply Linux drivers, not all hardware can be used under Linux.

However, the open source development framework and the modular structure of
the Linux operating system enable everyone to write device drivers. This
generally means that as a piece of hardware (that is not supported by the
manufacturer of Linux) becomes more popular, an open source device driver
appears after some time.

The number of manufacturers now supplying source code for their drivers is
increasing. The advantage of providing source code is that the driver can be
compiled for any version of the corresponding kernel that is available. The
support is usually limited to a number of distributions’ kernels for which the
manufacturer has tested the driver.

5.2.11 Font support
As we mentioned in 5.2.4, “Graphical and text-based environments” on
page 118, the Windows OS has a fully integrated display driver. This includes
font support. The Windows OS has many fonts bundled, some of which are
copyrighted by Microsoft.

In the case of Linux, the display is driven by the X Window system. Recent
incarnations of the X Window system have a separate font server. This font
126 Linux Client Migration Cookbook, Version 2

http://www.gnu.org/software/grub/
http://en.wikipedia.org/wiki/GNU_GRUB
http://www.tldp.org/HOWTO/Multiboot-with-GRUB.html

server can even be used by other systems. Lately, a number of nicely rendered
fonts have become available for Linux, either in the public domain or for a small
license fee. Novell Linux Desktop and Red Hat Desktop each include fonts from
suppliers that ask for a license.

5.2.12 64 bit and multi-core support
Up until recently, 64-bit support was not relevant for desktop operating systems.
Lately, the processors used in desktops have not only gone to 64 bit, but also to
multiple cores.

Multiple cores in the CPU are handled both by Linux and Windows as multiple
CPUs. They are handled in a way similar to how hyperthreading in certain types
of CPUs resulted in multiple logical CPUs that are apparent to both Windows and
Linux.

Linux has been supporting 64-bit processors for a long time, predominantly
because Linux is also available on processors that have been 64 bit for a while
(for example, IBM Power architecture). Recently, Windows operating systems
have been released in 64-bit versions as well.

The key thing to remember when using a 64-bit version of an OS is that not all
32-bit applications run smoothly, and 32-bit applications cannot always find the
correct libraries. Also, drivers cannot be mixed when using 64-bit operating
systems. A 32-bit driver in a 64-bit OS can lead to problems.
 Chapter 5. Linux architecture and technical differences 127

128 Linux Client Migration Cookbook, Version 2

Part 3 Performing the
pilot migration

Part 3 of this book includes:

� Chapter 6, “Migration best practices” on page 131

� Chapter 7, “Client deployment models” on page 139

� Chapter 8, “Client migration scenario” on page 173

� Chapter 9, “Integration how-tos” on page 195

Part 3
© Copyright IBM Corp. 2004, 2006. All rights reserved. 129

130 Linux Client Migration Cookbook, Version 2

Chapter 6. Migration best practices

In this chapter, we describe several best practice methods you can use in your
own Linux client migration projects. The topics we cover include situations which
can make a Linux client migration easier and also the use of third-party tools to
automate specific migration tasks.

The sections in this chapter are:

� 6.1, “The transitional desktop” on page 132

� 6.2, “Choose an installation methodology” on page 132

� 6.3, “Centralize data locations” on page 133

� 6.4, “Break down migration into manageable groups” on page 134

� 6.5, “Minimize impact of down time” on page 135

� 6.6, “Get user feedback” on page 136

� 6.7, “Automate the migration” on page 136

� 6.8, “Use a systems management tool” on page 136

� 6.9, “Do not migrate until you are ready” on page 137

� 6.10, “Do not just migrate, upgrade” on page 138

6

© Copyright IBM Corp. 2004, 2006. All rights reserved. 131

6.1 The transitional desktop
As seen in 3.2.1, “Bridging applications” on page 53, many open source
applications run on Windows as well. Migrating to a Windows desktop with a few
open source applications is an easier transition than replacing the entire
operating system and application stack in one jump. Also, you can gain many of
the benefits of using open source tools, such as protection from viruses and
spyware, enhanced customizability, and compliance with open standards. Once
users are comfortable with the open source application stack, a migration to a
Linux desktop running the same applications is far less intimidating.

You might even choose to stage the rollout of open source applications into
several steps. For instance, you could start with a migration from Microsoft
Internet Explorer to Mozilla Firefox. This involves making sure all intranet and
important Internet sites are compatible with Firefox. After this migration, you
could switch from Microsoft Outlook or Outlook Express to Mozilla Thunderbird
for e-mail. However, because Thunderbird does not include calendering or
Exchange support, you might not be able to implement this change. Finally, you
could switch from the Microsoft Office suite to OpenOffice.org, converting any
macros or incompatible documents to the new format. Once all users are
comfortable with the new applications, switching to a Linux distribution which
provides support for Firefox, Thunderbird, and OpenOffice.org is less difficult for
users.

6.2 Choose an installation methodology
There are several options available for rolling out Linux desktops. Each option
has advantages and disadvantages, and you should choose the methodology
that is most appropriate to your organization.

6.2.1 Wipe and Reload
The most obvious installation method, Wipe and Reload involves removing the
current Windows installation and installing Linux on the same hardware. This
method gets users over to Linux immediately and requires no extra hardware, but
can be dangerous if some important data on the Windows installation is not
backed up before reloading the machine.

6.2.2 Dual boot
A dual boot installation installs Linux side-by-side with Windows, and allows the
user to choose either operating system at boot time. Many distributions can
resize Windows partitions during an installation, and they can be set up to read
132 Linux Client Migration Cookbook, Version 2

and write from the main Windows partition. This option allows users to return to
Windows if necessary, for example, to use an unmigratable application or to use
a more familiar application for a time-sensitive task. It also guarantees that the
user’s data is preserved and accessible on the Windows partition. However,
dual-booting requires maintaining two operating systems with current patches
and anti-virus systems. Also, certain users might continue to boot into Windows
as their main operating system, without even trying to learn Linux.

6.2.3 Hardware refresh
The migration to Linux desktops could be timed with your organization’s next
hardware upgrade. When the users get their new hardware, it also comes with a
new operating system. As with a dual-boot scenario, the old desktop could be left
with the user for a time, to run unmigratable applications or to use a more familiar
application for a time-sensitive task. Or, the old desktop could be kept only for
backup purposes, in case some data was not migrated to the new desktop. If no
hardware refresh is planned for a significant amount of time, this option might not
be suitable for your organization.

6.2.4 Hardware round-robin
Similar to the hardware refresh option, in a hardware round-robin, the user is
delivered a new computer with the new operating system installed on it. After the
user is comfortable with Linux, and all data is definitely recovered from the
Windows desktop, then the old desktop can be wiped and used as a new Linux
desktop for some other user. This option delivers many of the benefits of a
hardware refresh, without requiring purchasing new machines for all users.
However, you need as many new machines available as you have users being
simultaneously migrated. Also, it works best if your hardware is interchangeable
between users. Users receiving noticeably slower machines might not welcome
such a change.

6.3 Centralize data locations
The most important personalization on a user’s desktop is the user’s data.
Whether that data is word processing documents, presentation files, or e-mail,
users need that data to perform their day-to-day jobs. By centralizing the storage
of said data, migrations can be made easier and more reliable.

6.3.1 Central file server
There are many advantages to using a central file server. Easier and more
reliable backup procedures, more cost-effective use of storage space, easy
 Chapter 6. Migration best practices 133

collaboration between users, and data migration are unnecessary. Connecting
desktops to a file server can be as simple as mapping a drive to a Windows
share (perhaps using a Linux server running Samba) and requiring all users to
keep their data in that directory. Laptops are more difficult, because users want
their documents available when they are away from the office. Using a
synchronizing system such as Novell’s iFolder can solve the problem. If a user’s
files are all stored in the network server, you only need to connect the new Linux
desktop to the same server, and all of the user’s documents are available on the
new machine.

If for some reason files cannot be stored in the network, then it helps to
implement a policy which requires files to be in a specific directory structure on
each machine. For instance, users could be told to keep all of their documents in
the My Documents directory. Then, during a migration copying the My
Documents directory to the new Linux desktop ensures that all the necessary
documents are on the new machine.

6.3.2 Central mail server
Just like storing files in the network, using a central e-mail server provides many
of the same benefits. There are numerous open source mail servers which
provide IMAP access. However, these servers only centralize e-mail and not the
storage of contacts, calendaring, and tasks. To centralize these features, a
groupware server is required. There are still many choices from open source
servers such as Open-Xchange, OpenGroupware, and the upcoming Hula
project or from commercial servers such as Novell Groupwise, Scalix, or even
Microsoft Exchange. Not all groupware servers support all e-mail clients, so
more investigation into the available options is required. Once the user stores all
e-mail, contacts, and calendar information about the groupware server, the
migration of this data only requires setting up the account information about the
new Linux desktop.

6.4 Break down migration into manageable groups
Replacing the operating system and applications on every computer in an
organization is a daunting task. Not only is it usually not possible to replace every
machine in one step, it is certainly unwise. Before a migration, you should break
the task of migration into smaller, more manageable tasks. It makes sense to
start with the easiest groups to migrate, then continue on down the line. For
instance, you might want to move your call center (which only requires basic
e-mail and Web access) first, after that, the sales team (which also requires an
office suite), and then marketing (which requires graphics tools). You probably
want to break each of those groups into smaller groups, such as by project or by
134 Linux Client Migration Cookbook, Version 2

location. It is important to ensure that each of the groups that have been
migrated can still interoperate with those that have yet to be migrated. If two
groups, which need to work with each other, cannot work together during a
migration, then there is unnecessary animosity directed toward the Linux
desktop, and the migration project. Instead, either combine the two groups into
one, or find a solution to their interoperability needs. This might require the use of
a migration to a transitional desktop setup, which was described in 6.1, “The
transitional desktop” on page 132. A sample breakdown is shown in Figure 6-1.

Figure 6-1 A sample migration time line

6.5 Minimize impact of down time
One of the most expensive results of a migration is down time. Any time that
users are not able to perform their job duties is lost productivity that costs the
company money. While there is never a perfect time for a disruptive migration,
minimizing the amount and impact of down time is key. One option is to do
migrations during the evening or weekend off-hours. This might require paying
overtime or other compensation to the IT staff, but it can severely minimize the
outages. Depending on the size and skill set of the group migrating, the migration
could also be performed during an all-day training session. This way, the users
could return from the training session to start using their new Linux desktops.
 Chapter 6. Migration best practices 135

6.6 Get user feedback
Before migrating a group of users, select a representative minority to give
feedback on the proposed Linux desktop solution. Ensure that the users will be
able to perform all the necessary tasks for their jobs under the new operating
system. Try to see if the users can perform these tasks without help. Listen to the
problems that the users face and try to solve the underlying problem. For
instance, users might complain that the new desktop cannot perform certain
tasks, when, in reality, they just do not know how to perform the task or solve the
problem. Use what you learn from the users’ problems to either fix the desktop
solution or to tailor the training classes to focus on problem areas.

After migrating each group, learn from any mistakes that happened, and plan
better for next group. You might decide to offer more in-depth training or to
change your installation methodology.

6.7 Automate the migration
Users have an easier time adjusting to the new operating system if their data and
personalized settings have been applied to the new machine. Custom scripts can
be written to copy data from the users’ My Documents and Desktop directories
and to set up some of the settings on the new desktop. However, there are
hundreds to thousands of settings that users can have customized on their
desktop. There are commercial tools, which can automate migration of system
settings such as the user’s wallpaper or screen saver settings, and application
settings, such as e-mail messages and accounts, Internet bookmarks and home
page, custom dictionaries in word processor programs, or instant messaging
accounts. These tools also usually handle the migration of data, either from
specified directories or the ability to search by file type over the entire hard drive.
More information about a tool like this, Progression Desktop from Versora, is
available in Appendix C, “Automating desktop migration using Versora
Progression Desktop” on page 277.

6.8 Use a systems management tool
Systems management tools, such as IBM Tivoli Provisioning Manager1, Red Hat
Network2, and Novell ZENWorks Linux Management3 provide features such as
automated installation of software, or even full operating system image
deployment through provisioning modules. Many systems management tools

1 http://www-306.ibm.com/software/tivoli/products/prov-mgr/
2 http://www.redhat.com/rhn/
3 http://www.novell.com/products/zenworks/linuxmanagement/
136 Linux Client Migration Cookbook, Version 2

http://www.redhat.com/rhn/
http://www.novell.com/products/zenworks/linuxmanagement/
http://www-306.ibm.com/software/tivoli/products/prov-mgr/

can also be used to schedule the execution of custom jobs, such as running an
automated migration tool on multiple machines at once (an example of this is
described in Section 6.7, “Automate the migration” on page 136). Some studies
have shown that by leveraging a combination of an enterprise systems
management tool and an automated migration tool, one technician can complete
migration of one hundred or more desktops in a single day, as opposed to much
fewer if the process was managed manually.

Not only do systems management tools help in the installation and migration of
Linux desktops, but they can also help to maintain these desktops throughout
their lifecycles. More about systems management tools can be found in
Appendix B, “Using enterprise management tools” on page 255.

6.9 Do not migrate until you are ready
Replacing an operating system is a difficult task. It should not be done lightly, or
without sufficient planning. Even then, Linux might not be the perfect solution for
some users (such as those with many unmigratable applications, or laptop users
whose power management, sound, and wireless drivers are not supported under
Linux). It might be necessary to have a mixed network of Linux, Windows with
only commercial software, and Windows transitional desktops. While this setup is

Important: For medium to large enterprises, you can expect that the business
case for a migration cannot be entirely justified by a potential just for cost
savings in operating system and application software licensing fees. In fact, in
a client migration scenario, you should expect that the most important cost
consideration that will come into play in medium to large enterprises will be the
overall cost of managing the client computing infrastructure on an ongoing
basis.

As the size of the supported client base scales up, these costs (IT staffing,
support and help desk, system upgrade and replacement, repair and
protection from viruses and other attacks, and so forth) greatly overshadow
the costs of recurring operating system and application software licensing.

This is why we strongly recommend that the approach for building a cost
justification model for a client migration to Linux should focus on the potential
for introducing innovative ways to achieve savings in how enterprise client
platforms are managed. The integrated management tooling suites provided
by strategic Linux IBM Business Partners, such as Novell and their ZENWorks
Suite and Red Hat and their Red Hat Network, provide important value added
features that any enterprise must consider implementing as part of a Linux
client migration plan.
 Chapter 6. Migration best practices 137

more complicated than a Linux-only network, it is often still advantageous to
migrate some users.

More migrations fail from under-planning than over-planning. While not every
contingency can be planned for, the majority of possible problems can be found
before the migration of the first user. Sufficient planning requires thoroughly
investigating all distributions and software choices, involving the users with the
proposed solution, and performing a pilot migration with the systems
management and automated migration tools you will use. After that, any and all
problems encountered need to be fixed and then run through the testing process
again. Only after a successful pilot migration should the migration of the rest of
the organization begin. However, before migrating some of the groups, you might
need to plan and retest for any additional needs they have.

6.10 Do not just migrate, upgrade
A migration is not just a task; it is an opportunity to switch to a better
environment. For instance, a systems management tool could be introduced to
ease the migration, but also to manage machines once they have been migrated.
Depending on the role of the user, it could ease future application rollout and
technical support to switch to a thin client or rich client environment. Perhaps
some of the main IT problems have resulted from users having too much control
over their desktops; implementing the KDE Kiosk feature on those desktops
could keep the users from performing any potentially destructive tasks by limiting
them to usage of only approved interfaces. More information about additional
desktop configurations is available in Chapter 7, “Client deployment models” on
page 139.
138 Linux Client Migration Cookbook, Version 2

Chapter 7. Client deployment models

In this chapter, we concentrate on several client deployment models that can
make desktop Linux clients easier to manage.

The sections in this chapter are:

� 7.1, “Restricting the desktop” on page 140

Methods for locking down the KDE desktop using the KDE Kiosk framework,
the GNOME desktop with gconftool-2, and other tools are described.

� 7.2, “Remoting tools” on page 154

Several Linux-based solutions, which involve separating application logic
from the display of that application, are covered.

� 7.3, “Rich client” on page 156

Rich client solutions are introduced and several implementations are
discussed.

� 7.4, “Stateless client” on page 160

The goals behind stateless clients are introduced and some solutions are
discussed.

� 7.5, “Multi-station client architecture” on page 162

An in-depth discussion about Linux-based multi-station computing
architectures.

7

© Copyright IBM Corp. 2004, 2006. All rights reserved. 139

7.1 Restricting the desktop
An out-of-the-box Linux installation gives users a lot of power to change their
settings according to personal preferences. In an enterprise environment, this is
not necessarily preferable. There are several ways to lock down a Linux desktop,
depending on the applications that need to be locked down. We describe in
4.3.4, “User lockdown” on page 83 how to keep users from using certain
hardware or software. In this section, we describe methods for locking down KDE
desktops using the Kiosk framework. We also look at how to set default and
mandatory settings for GNOME desktops using gconftool-2 and several
graphical tools.

7.1.1 KDE Kiosk framework
In this section, we describe how to lock down your KDE desktop with the Kiosk
framework that was introduced in KDE 3. Kiosk allows you to disable certain KDE
features to create a more controlled environment. It is built on top of KDE’s
configuration framework and adds a simple API that applications can query to get
authorization for certain operations. We demonstrate both editing the
configuration files directly and using the easy-to-use Kiosk Admin Tool1
administration GUI tool.

For more information about how KDE stores its settings and how to edit them,
see “Desktop personalization: KDE Desktop” on page 315.

Profiles
The KDE Kiosk framework should be used in addition to standard Linux security
measures; the files that disable certain features should only be writable by the
Kiosk administrator, which can be the root user or somebody else designated
specifically for that task. The Kiosk framework uses the standard UNIX user and
group semantics and adds a profile layer to it. Profiles are configuration sets that
specify what can be done when working with KDE and are associated to single
users or groups of users.

You have to tell KDE in the global configuration file /etc/kderc (or sometimes in
/usr/share/config/kdeglobals) which profiles are available and where to find the
mapping file. In Example 7-1 on page 141, we showcase the configuration with
two user profiles, which are internationalized (English and German [de]) and
owned by the root user (ProfileInstallUser=root). The other three profiles look
identical.

1 http://extragear.kde.org/apps/kiosktool/
140 Linux Client Migration Cookbook, Version 2

http://extragear.kde.org/apps/kiosktool.php

Example 7-1 Profiles and the mapping file are specified in /etc/kderc

[Directories]
kioskAdmin=root:
profileDirsPrefix=/etc/kde-profile/
userProfileMapFile=/etc/kde-user-profile

[Directories-default]
ProfileDescription=Default profile
ProfileDescription[de]=Standard Profil
ProfileInstallUser=root
prefixes=/etc/kde-profile/default/

[Directories-ITSO]
ProfileDescription=ITSO Test Profile
ProfileDescription[de]=ITSO Standard Profil
ProfileInstallUser=root
prefixes=/etc/kde-profile/ITSO/

For our IBM Technical Support Organization (ITSO) migration, we chose five
profiles specified by their unique names default, Redbook, ITSO, Designer,
and Administrator, and corresponding configuration directories
/etc/kde-profile/[Profile Name]. In Table 7-1, you can see the meaning of the five
profiles that we are using in our test scenario.

Table 7-1 Profiles and their meanings

In the next step, we have to assign profiles to our users and groups. You can use
the graphical KDE Kiosk Admin Tool for that task (see Figure 7-1 on page 142) or
just edit the configuration file manually (see Example 7-2 on page 142).

When a user has more than one profile associated with that user, then the
settings of the profiles listed first have higher priority in conflicting situations. The
same is true for groups in the Groups section.

Profile Role

default No specific role, default

Redbook Redbook writers

ITSO ITSO staff

Designer ITSO staff with designer tasks

Administrator Has complete access to the machine
 Chapter 7. Client deployment models 141

Example 7-2 Mapping profiles to users and groups in /etc/kde-user-profile

[General]
groups=itso,redbook,users

[Groups]
itso=ITSO
redbook=Redbook
users=default

[Users]
anette=Designer
root=Administrator

Figure 7-1 Configuring users and groups with the Kiosk Admin Tool

Another interesting case happens when a user not listed in the Users section is
part of different UNIX groups that are mapped to different profiles in the Groups
section. In that case, the profiles listed earlier will have higher priority. Last but
not least, if a user is listed in the Users section, only the profiles in this entry are
142 Linux Client Migration Cookbook, Version 2

taken into account (that is, the UNIX groups the user belongs to and which are
mapped to profiles play no role in that case).

Although all these rules are quite straightforward, a simple or even linear profile
hierarchy is sufficient in most cases. For example, you can design the default
user profile first, add some features for a group needing more privileges, and so
on. If there are groups not fitting in that hierarchy (in our case, this could be the
designer group), build their profile separately and either merge it with a profile in
the first hierarchy or use it on its own.

A nice feature of the Kiosk Admin Tool is its remote configuration ability. In
Figure 7-2, you see how to map a local directory to a remote one (you can even
change the base URL path). Files are transferred, for example, by the SSH
protocol and the usual fish:// semantics or any other protocol that is supported
by the KDE networking framework.

Figure 7-2 Remote configuration with the Kiosk Admin Tool
 Chapter 7. Client deployment models 143

Kiosk lockdown options
Let us take a look at some of the available general options now. For the general
configuration (Figure 7-3):

� Disable window manager context menu (Alt+F3).
� Disable bookmarks.
� Disable all tasks and applications that require root access.
� Disable access to a command shell.
� Disable logout option.
� Disable lock screen option.
� Disable Run Command option (Alt+F2).
� Disable toolbar moving.
� Disable execution of arbitrary .desktop files.
� Disable starting of a second X session.
� Disable input line history.
� Disable “Edit file type” in properties dialog.

Figure 7-3 General configuration with the Kiosk Admin Tool

The following sections can be configured live, that is, you can add applets to a
second Kicker panel, change the background image or color, manipulate menu
144 Linux Client Migration Cookbook, Version 2

entries, and add icons on a second desktop and see the results immediately. An
example is in Figure 7-4. Configurable options are:

� Desktop icon configuration

– Lock down desktop settings.
– Disable context menus.
– Lock down all desktop icons.
– Lock down system-wide desktop icons.

� Desktop background configuration

– Lock down desktop background settings.

� Screen saver configuration

– Lock down screen saver settings.
– Disable OpenGL-based screen savers.
– Discrete screen savers only.

� KDE menu configuration

– Disable all tasks and applications that require root access.
– Disable menu editing.

Figure 7-4 Theming configuration with the Kiosk Admin Tool

� Theming configuration

– Lock down style settings.
– Lock down color settings.
 Chapter 7. Client deployment models 145

– Lock down font settings.
– Lock down window decoration settings.

� Panel configuration

– Lock down panel.
– Disable context menus.
– Disable menu editing.

� Network proxy configuration

– Lock down proxy settings.

The disabling of actions in the next two sections is an art itself since there are so
many of them. We look at that in more detail in “Action restrictions” on page 148.

� Konqueror configuration

– Disable properties in context menu.
– Disable Open With action.
– Disable Open in New Tab action.
– Disable file browsing outside home directory.

� Menu actions (Figure 7-5 on page 147)

– Disable File → New.
– Disable File → Open.
– Disable File → Open Recent.
– Disable Help → About <Application>.
– Disable Help → About KDE.
146 Linux Client Migration Cookbook, Version 2

Figure 7-5 Menu actions configuration with the Kiosk Admin Tool

Immutable configuration file entries
As we have seen, it is quite easy to generate lockdown profiles with the graphical
Kiosk Admin Tool, but what does this program really do behind the scenes?
Starting with KDE 3, configuration entries can be marked immutable, and once
such a value has been read, its value cannot be changed again through KConfig
or user entries in $KDEHOME (normally $HOME/.kde).

Entries can be marked immutable on an entry, group, or file basis by adding [$i]
at the right places, as shown in Example 7-3 on page 148. If KDE does not have
write access to the user’s configuration files, they will automatically be
considered immutable and the user will be warned about that fact. If you do not
like this behavior, add warn_unwritable_config=false to the KDE Action
Restrictions section in /etc/kderc (or kdeglobals on the global, profile, or user
level) to disable this warning for all applications. Non-writable user configuration
files are not a foolproof lock down mechanism because users can potentially
rename these files and add new ones according to their tastes. Consider the file
system mechanisms an add-on to the much more sophisticated KDE Kiosk
framework.
 Chapter 7. Client deployment models 147

Example 7-3 Immutable entries are marked with [$i]

[ScreenSaver]
Enabled[$i]=true

[Desktop0][$i]
Wallpaper=/usr/share/backgrounds/images/default.png
WallpaperMode=Scaled

[$i]
[Applet_1]
ConfigFile=kminipagerappletrc
DesktopFile=minipagerapplet.desktop
FreeSpace=0
WidthForHeightHint=92

Action restrictions
Using the Kiosk Admin Tool, we have already encountered action restrictions
that are configured on a profile level in the kdeglobals file in the KDE Action
Restrictions section. For our ITSO profile, look at Example 7-4 to see what kind
of entries have been generated.

Example 7-4 Action restrictions in /etc/kde-profile/itso/share/config/kdeglobals

[KDE Action Restrictions][$i]
action/kdesktop_rmb=false
action/kicker_rmb=false
action/menuedit=false
editable_desktop_icons=false
editable_system_desktop_icons=false
movable_toolbars=false
run_command=false
user/root=false

There are many actions available and a lot more will be added in the future by
the applications using the KDE framework. You have actions that refer on a
global level to menu and toolbar entries (for example, action/file_new) and
general actions for:

� Printing (print/options)
� Screensavers (opengl_screensavers)
� Desktop (logout, lock_screen, movable_toolbars, and start_new_session)

There are also actions related to standard KDE programs such as:

� Konqueror (action/openintab) and KDesktop
� KWin (action/kwin_rmb)
� Kicker (action/kicker_rmb)
148 Linux Client Migration Cookbook, Version 2

� Konsole (action/show_menubar)

There are also a lot of additional application actions that can be explored as
usual with the dcop command on the command line or with the KDE program
kdcop in an easy-to-use graphical way. Enter, for example, one of the following
commands after starting kmail to see what actions kmail offers:

% dcop kmail qt objects | grep KActionCollection | cut -d '/' -f 3
% dcop kmail kmail-mainwindow#1 actions

There are also actions that refer to applications that need to be run as a different
user. They are prefixed with user/ followed by the username (for example,
user/root=false to disable all application entries that require root access). If you
are interested in even more subtleties, check the Kiosk readme:

http://webcvs.kde.org/cgi-bin/cvsweb.cgi/kdelibs/kdecore/README.kiosk

URL restrictions
It is possible to restrict URL-related actions with the Kiosk framework based on
the action, the URL in question, or in some cases the referring URL. As you can
see in Example 7-5, the general syntax is quite long, so we will explain some
simple cases.

Example 7-5 URL restriction: General syntax

[KDE URL Restrictions]
rule_count=<N>
rule_1=<act>,<ref_proto>,<ref_host>,<ref_path>,<proto>,<host>,<path>,<enabled>
...
rule_N=<act>,<ref_proto>,<ref_host>,<ref_path>,<proto>,<host>,<path>,<enabled>

In the first part of Example 7-6, you can see how to disable browsing with KDE’s
file dialogs outside the $HOME directory by using the list action. The first rule
disables browsing any directories on the local file system, while the second
enables browsing in the $HOME directory, which is exactly what we want. You
can also see that KDE expands the environment variable $HOME. Usually, you
have to put [$e] after the entry name, or even [$ei] to prevent the application
replacing the entry with the actual environment value’s value after saving, but
this is not necessary everywhere. The second part of Example 7-6 shows how to
allow the user to open files in the $HOME and $TMP directories but nowhere
else on the file system (opening files from the Internet is still possible though).

Example 7-6 URL restriction examples

[KDE URL Restrictions][$i]
rule_count=2
rule_1=list,,,,file,,,false
rule_2=list,,,,file,,$HOME,true
 Chapter 7. Client deployment models 149

http://webcvs.kde.org/cgi-bin/cvsweb.cgi/kdelibs/kdecore/README.kiosk
http://webcvs.kde.org/cgi-bin/cvsweb.cgi/kdelibs/kdecore/README.kiosk

[KDE URL Restrictions][$i]
rule_count=3
rule_1=open,,,,file,,,false
rule_2=open,,,,file,,$HOME,true
rule_3=open,,,,file,,$TMP,true

You can also use shell commands in KDE configuration files, as in Example 7-7,
but do not overuse this feature.

Example 7-7 Using shell commands in KDE configuration files

Host[$e]=$(hostname)
...
[Icons]
Theme[$e]=$(source /usr/share/config/kdeglobals.defaults && echo $Theme)

Resource restrictions
The last lockdown capability that we discuss is the KDE resource restrictions,
which make it impossible for users to override file lookup outside
$KDEHOME/share (where most KDE applications put their resources such as
HTML documentation or sound files) with resources lying in $KDEHOME/share.
In the first part of Example 7-8, we do this for all resources, while in the second
part we use a more granular approach by just restricting sound, localization, and
wallpaper files.

Example 7-8 Resource restriction covering all resources

[KDE Resource Restrictions][$i]
all=false

[KDE Resource Restrictions][$i]
sound=false
locale=false
wallpaper=false

Some of the entries we can use are:

� data (share/data)
� html (share/doc/HTML)
� icon (share/icon)
� config (share/config)
� pixmap (share/pixmaps)
� apps (share/applnk)
� xdgdata-apps (share/applications)
� sound (share/sound)
150 Linux Client Migration Cookbook, Version 2

� locale (share/locale)
� services (share/services)
� servicetypes (share/servicetypes)
� mime (share/mimelnk)
� wallpaper (share/wallpaper)
� templates (share/templates)
� exe (share/bin)
� lib (share/lib)
� all (share/)
� data_<application name> (share/apps/<application_name>)

This is somewhat confusing since not all directory names are mapped to the
same names in the configuration file. Example 7-9 shows how to use the Control
Module and Custom Restriction sections in the kdeglobals file.

Example 7-9 More KDE restriction options

[KDE Control Module Restrictions]
kde-background.desktop=false
kde-colors.desktop=false
kde-fonts.desktop=false
kde-kwindecoration.desktop=false
kde-proxy.desktop=false
kde-style.desktop=false

[KDE Custom Restrictions]
restrict_file_browsing=true

Kiosk limitations
Disabling the run command and access to a command shell might be preferable
for a public terminal, but it is quite easy to open a shell with Mozilla, which does
not use the Kiosk framework. When you disable the logout option, you also have
to disable shutting down the X server by pressing Ctrl+Alt+Backspace, or the
whole machine with Ctrl+Alt+Delete (these settings can be configured in
/etc/inittab), otherwise, the restrictions could be easily worked around. There are
a lot of side effects to consider in order to make the whole setup bullet-proof,
because many Linux applications and subsystems do not use the KDE Kiosk
framework.

7.1.2 GNOME lockdown options
The GNOME desktop uses a database, which is represented by Extensible
Markup Language (XML) files to build and customize all of its settings. This
database is built from three sources: the settings, default, and mandatory
sources. Changes made by a user typically go into the settings source. The
 Chapter 7. Client deployment models 151

default source contains default options that are used for each setting that has not
been configured by a user. Finally, the mandatory source overrides users’
personal preferences and disallows changes to the associated setting. The
settings source is usually stored in $HOME/.gconf. The default source is found in
/etc/gconf/gconf.xml.defaults on Red Hat-based systems and
/etc/opt/gnome/gconf/gconf.xml.defaults on SUSE-based systems. And, the
mandatory source is /etc/gconf/gconf.xml.mandatory on Red Hat-based systems
and /etc/opt/gnome/gconf/gconf.xml.mandatory on SUSE-based systems.

For more information about how GNOME stores its settings and how to edit
them, see “Desktop personalization: GNOME Desktop” on page 317.

gconftool-2
The GNOME desktop ships with a tool called gconftool-2. You can use it from the
command line to edit the GConf database, and you can edit any of the
configuration sources. Because the default and mandatory sources apply to all
users, they typically can only be edited by the root user. Also, these changes
directly edit the GConf database sources, and, thus, they do not affect any
GConf session that is currently running.

If you want to remove the keyboard shortcut for bringing up the Run Application
dialog (which is normally Alt-F2), you run the following command:

gconftool-2 --direct --config-source
xml:readwrite:/etc/gconf/gconf.xml.mandatory --type bool --set
/apps/panel/global/run_key false

If you want to set the default number of workspaces for new users, but you still
allow them to change this setting later, you run the following command:

gconftool-2 --direct --config-source
xml:readwrite:/etc/gconf/gconf.xml.defaults --type int --set
/apps/metacity/general/num_workspaces 2

Graphical tools
GUI-based tools for locking down the GNOME desktop also exist. Similar to the
use of gconftool-2, gconf-editor can be used to directly edit the default and
mandatory sources. To do so, launch gconf-editor as root, and then choose
File → New Defaults Window or File → New Mandatory Window. Just as with
the command-line tools, changes to the default and mandatory sources do not
take effect for any GConf sessions that are already running.

Pessulus
Another available tool is Pessulus. Pessulus is a graphical tool, which configures
the lockdown settings built-in to GNOME, which otherwise can only be
configured via GConf. Pessulus is included in the GNOME admin suite starting
152 Linux Client Migration Cookbook, Version 2

with version 2.14 of GNOME. These settings include limiting which panel applets
can be added, and whether desktop icons can be edited. More information about
Pessulus is available at:

http://www.gnome.org/~vuntz/pessulus/
http://live.gnome.org/Pessulus

Sabayon
Sabayon is a graphical systems administration tool that can be used to manage
GNOME desktop configuration settings. Sabayon brings a new approach to
policy editing. Instead of providing a pre-built GUI to edit each of the settings,
Sabayon launches a nested X session that runs an entire GNOME desktop
environment (more information about X sessions can be found in 5.2.4,
“Graphical and text-based environments” on page 118). Any settings changed in
the nested environment are recorded, and at the end of the session, those
settings can be applied to either the default or mandatory GConf stores. Sabayon
also detects which local files have been edited, which is necessary for
applications that do not use GConf, such as Mozilla Firefox or OpenOffice.org.
Sabayon shows you a list of settings that have been changed, which you can
then save as default or mandatory settings.

More information about Sabayon can be found at:

http://www.gnome.org/projects/sabayon

As an example, graphic designers need a profile which contains a shortcut to
The GIMP on the panel and has your company’s Web site as the home page. To
create this type of profile through Sabayon, simply add a new profile, then click
Edit. In the nested session that appears, add a shortcut to The GIMP on the
panel, then launch Firefox and set the home page. As seen in Figure 7-6 on
page 154, Sabayon then shows the two changes that have occurred, which you
can save as default or mandatory settings.
 Chapter 7. Client deployment models 153

http://live.gnome.org/Pessulus
http://www.gnome.org/projects/sabayon
http://www.gnome.org/~vuntz/pessulus/

Figure 7-6 Sabayon editing a profile

7.2 Remoting tools
Due to the modular nature of Linux, there are numerous options when
implementing a thin or slim client desktop solution. The options include basic
remote access, where one workstation remotely displays the desktop of another
workstation, network booting diskless hardware, remote execution of a single
application with a local display, or multiple users connecting to a single
workstation.

7.2.1 Remote access
Basic remote access is where the entire application logic resides on a server and
the client only runs presentation logic. Implementations include Virtual Network
Computing (VNC), NoMachine NX, or even rdesktop, a Linux client for Microsoft
Remote Display Protocol (RDP) servers. However, because this kind of remoting
usually requires a significant amount of network resources, remoting of the entire
operating system is usually not used as a user’s standard environment. Instead,
they are used for situations such as remote diagnosis and help desk scenarios,
or accessing a desktop workstation while out of the office.
154 Linux Client Migration Cookbook, Version 2

7.2.2 Thin client
Thin client solutions involve many clients (either standard workstations or
diskless terminals) booting over the network off of a central server. Because
applications are all run on the server, upgrades and patches only need to be
applied to one location. Also, most user data is stored on the server, so users
can use any thin client connected to the server and receive the same experience.
Depending on the solution in use, thin clients can require a substantial amount of
network bandwidth between the clients and the server. Modern thin client
solutions include the Linux Terminal Server Project at:

http://www.ltsp.org

And various thin client solutions from Neoware:

http://www.neoware.com

7.2.3 Application forwarding
The X client/server environment (as described in 5.2.4, “Graphical and
text-based environments” on page 118) allows a more granular approach to
remoting. Because X clients already send their displays through networking
sockets to connect to a local X server, forwarding the display to a remote X
server is trivial and requires no changes to the client. There are numerous
scenarios where application forwarding could reduce technical support issues,
such as configuring a desktop to run e-mail and Web browsing applications
locally, but to connect to a network server to run an in-house application which
receives frequent updates. X forwarding can be tunneled over a Secure Shell
(SSH) connection to encrypt the session, allowing for secure application
forwarding over the Internet or an unsecure portion on your intranet. It is also
possible to use NoMachine NX or FreeNX, which compresses the session
significantly, thus making applications far more responsive over slower
connections, and usable even over dial-up connections.

Similar application remoting can be done with Windows applications running
through products such as Sun Secure Global Desktop Software (formerly from
Tarantella) or Microsoft Terminal Server. These services can be useful for
unmigratable applications; the unmigratable application can run on the server,
while all other applications run locally.

7.2.4 Multi-station computing
Thin client solutions are often limited in performance and their deployment
requires extensive infrastructure. Performance and response time are highly
sensitive to network traffic between the client and the server, potentially
frustrating some users. Multi-station computing based on standard desktop PC
 Chapter 7. Client deployment models 155

http://www.ltsp.org
http://www.neoware.com
http://www.ltsp.org
http://www.neoware.com

hardware overcomes many of these challenges. Due to widespread availability of
multi-headed video cards and USB input devices, many personal computers can
be configured for two local users simply with the addition of a new set of user
input and output devices such as keyboards, mice, and monitors. With the
addition of one or more video cards, several users can be simultaneously
supported without taxing a desktop computer's multi-gigahertz CPU or gigabytes
of memory and hard disk storage.

Deploying multi-station systems instead of an individual computer for each user
can reduce infrastructure build-out costs of both initial hardware and software
purchases, as well as through future savings in electricity and data network
infrastructure. In addition, the total cost of ownership of each workstation is
dramatically reduced during the life of the system due to reduced hardware and
software support and maintenance. With multi-station systems, IT departments
can refresh software images on fewer computers while also reducing software
subscription and support costs. And at the end of the computer life cycle,
disposal costs are reduced.

Consider deploying multi-station client architectures whenever user workstations
require clustering in close proximity, and their primary application usage patterns
do not involve CPU or memory intensive requirements. We discuss multi-station
computing strategies in more detail later in this chapter (7.5, “Multi-station client
architecture” on page 162).

7.3 Rich client
Rich client technology is based on a client/server relationship that attempts to
bring all the advantages of a browser-based thin client solution while inheriting
none of the disadvantages compared to a local application-based thick client
solution. In a rich client environment, applications are hosted on a central server,
which clients download on demand and run completely on the local machine. As
such, application upgrades or patches only need to be applied to the central
server, and then are propagated to the client on the next run, greatly reducing the
costs of rolling out an upgrade or application patch. And, because the application
logic runs on the client, rich client solutions take full advantage of the power
available on a standard desktop. By running the application locally, a
full-featured application environment can be used, unlike browser-based
solutions which severely limit the environment. Finally, rich clients can cache the
latest version of an application, resulting in minimal network traffic during online
use, and allowing for offline use that a thin client or browser-based solution
cannot provide. The sweet spot for rich-clients is illustrated in the upper right
quadrant of Figure 7-7 on page 157.
156 Linux Client Migration Cookbook, Version 2

Figure 7-7 Manageability of rich clients: The magic quadrant

7.3.1 Eclipse and the Eclipse Rich Client Platform
Eclipse is an open source IDE and integration platform. To develop an
understanding why the Eclipse platform was created, you should consider what
is currently happening at the intersection of two different IT industry trends:

� The explosion in Internet use. This led to a need for Web application services,
specific file formats, enabling protocols, markup languages, media types, and
the many different types of client applications and developer tools needed to
tie it all together in a seamless experience.

� The open source movement. The exploding popularity and increasing
credibility of open source software development methods naturally encourage
development of a supporting set of open standards.

What follows then is the need to create a free, open, standards-based, and
extensible application development framework. Meeting the need for a
standards-based open and extensible application development platform has from
the beginning been one of the primary goals of the Eclipse project. And with the
release of Eclipse 3.0, the Eclipse platform became more than just a Java-based
IDE and tool integration platform. It also became a very capable host for client
applications. Thus, the Eclipse Rich Client Platform was born.

Low

High
Basic
(thin)

Rich
(fat)

Traditional
Browser

Applications

Managed
Rich User

Experience

Traditional
Client/Server
Applications

Goal:
Rich user
experience with
manageability of
browser-based
applications

Richness of Applications
and Environment

Manageability
(TCO)

Low

High
Basic
(thin)

Rich
(fat)

Traditional
Browser

Applications

Managed
Rich User

Experience

Traditional
Client/Server
Applications

Goal:
Rich user
experience with
manageability of
browser-based
applications

Richness of Applications
and Environment

Manageability
(TCO)
 Chapter 7. Client deployment models 157

“While the Eclipse platform is designed to serve as an open tools platform, it is
architected so that its components could be used to build just about any client
application. The minimal set of plug-ins needed to build a rich client application
is collectively known as the Rich Client Platform.”2

7.3.2 IBM Workplace Client Technology
The new IBM Workplace Client Technology™ provides a flexible and extensible
framework for applications. It is built on a standards-based platform and utilizes
the Eclipse technology as a base component. Among its approaches to help
enable low total cost of ownership (TCO), a key element of IBM Workplace Client
Technology is its ability to provide a no-touch deployment model coupled with
policy-based management. Additionally, as an enterprise solution, IBM
Workplace Client Technology provides built-in security features and a managed,
synchronized relational data store that supports both connected and
disconnected operations. As one example, this secure data store can provide
document management capabilities, and when combined with plug-in document
editor support (another capability of this technology), it gives enterprises a new
level of document management combined with low TCO and ubiquity.

IBM Workplace Client Technology moves beyond the browser, enabling not only
browser capabilities, but also the ability to securely and incrementally download,
update, and intelligently cache the next generation of “rich” and hybrid client
applications. These applications run locally on the user’s machine using an
encrypted, synchronized content store with security features and offline
capabilities. Such applications harness the full power of the user’s machine to
deliver the state of the art in capability and performance while continuing to be
centrally deployed, upgraded, and administered at the server, side by side with
the browser-based applications.

IBM Workplace Client Technology delivers this next generation of rich
applications with the low total cost of ownership comparable to the TCO of
traditional browser-based applications.

For more information about IBM Workplace Client Technology, see the IBM
Redpaper IBM Workplace Client Technology (Rich Client Edition) Technical
Overview:

http://www.redbooks.ibm.com/abstracts/redp3884.html?Open

7.3.3 IBM Workplace Managed Client
IBM Workplace Managed Client (WMC) is a specific implementation of IBM
Workplace Client Technology. It is a server-managed application that hosts key
2 From the eclipse.org Rich Client Platform home page, found at: http://eclipse.org/rcp/
158 Linux Client Migration Cookbook, Version 2

http://www.redbooks.ibm.com/abstracts/redp3884.html?Open
http://eclipse.org/rcp/

collaboration applications and productivity tools and can easily be extended
using the Eclipse-based application development framework. It offers offline
support for e-mail, calendaring, scheduling, and document management.

The main characteristics of the IBM Workplace Managed Client compared to
other client technologies can be summarized as:

� A centrally managed, policy-based client provisioning system that ensures
that initial installations as well as maintenance updates can be applied on the
server side, and that users can experience those new updates client-side and
fully dynamically

� A synchronizing secure data store that is locally offline accessible and
centrally manageable (for backups and so forth)

� A componentized architecture that allows for gradual extension and that can
be distributed on demand

� An application development platform that users and third-party vendors can
use to extend the framework to their needs

Applications that come with WMC include:

� A messaging framework for sending and receiving e-mails and an instant
messaging product for real-time chat sessions

� An embedded Web browser to access additional portlets on the server side
and to directly browse the Web

� A document library that is synchronized to the server and can be shared with
other team members

IBM Workplace Managed Client includes an office productivity editor for creating,
editing, and sharing a variety of document types including: word processing,
spreadsheet, presentations, and project management. The IBM productivity tools
are compatible with Open Office applications and support the open standard
OASIS open document format (ODF). The IBM Workplace Managed Client
productivity tools can also be used to create, edit, and save documents in a
variety of other formats - including Microsoft® Office application formats. By
supporting open standards document formats, IBM Workplace Managed Client
ensures cross-platform and cross-application document exchange without being
locked into the proprietary vendor formats.
 Chapter 7. Client deployment models 159

IBM Workplace Managed Client also offers a new collaboration tool called
Activity Explorer. Activity Explorer lets teams of users manage projects through
an ad hoc workflow which groups together information objects that are related to
an ongoing project and are shared among team members. The information
objects can be documents, files, and notes. The ad hoc workflow is presented in
graphical, hierarchal format and makes it easier to refer to past work, visualize
project status, and discover opportunities for further progress.

For Lotus Notes® users, there is a Notes plug-in available (the Linux version is
currently in a BETA stage) that provides access to all Lotus Notes databases
inside the WMC framework.

For more information about the IBM Workplace Managed Client, refer to the
Redbook IBM Workplace Managed Client 2.6 on Linux, SG24-7208-00, at:

http://www.redbooks.ibm.com/abstracts/sg247208.html

7.4 Stateless client
A stateless client is a desktop installation that stores no important state
information on the client. This means that not only is every user’s personalization
data stored on a central server, but operating system and application installation
and configuration are performed through a central server. Stateless clients can
either boot the entire operating system from the network or can cache an
installation locally and synchronize updates at a regular interval. A stateless
installation includes benefits of a thin-client solution in that user data is backed
up centrally and available to any client automatically, and that application
patches and upgrades only need to be performed on one central server.
However, unlike thin-client solutions, stateless clients run all applications locally,

OpenDocument: The OpenDocument format (ODF), short for the OASIS
Open Document Format for Office Applications, is an open document file
format for saving and exchanging editable office documents such as text
documents (including memos, reports, and books), spreadsheets, charts,
and presentations. This standard was developed by the OASIS industry
consortium, based upon the XML-based file format originally created by
OpenOffice.org.

OpenDocument is the only standard for editable office documents that has
been vetted by an independently recognized standards body, has been
implemented by multiple vendors, and can be implemented by any supplier
(including closed source software vendors as well as developers using an
OpenSource license).
160 Linux Client Migration Cookbook, Version 2

http://www.redbooks.ibm.com/abstracts/sg247208.html
http://www.redbooks.ibm.com/abstracts/sg247208.html

thus, utilizing the full power behind most desktop workstations, and require no
specialized network infrastructure. Some stateless Linux installations do not
appear to be any different than a standard Linux installation. However, if a client
machine were to fail, it could be completely rebuilt nearly instantaneously, with
no data lost. The benefits of stateless clients are clear, however as of the time of
writing this IBM Redbook, stateless Linux required running in-development
software or a custom implementation.

7.4.1 Red Hat’s Stateless Linux project
Currently in development, Red Hat’s Stateless Linux project aims to include
stateless Linux with Red Hat Enterprise Linux 5. To deploy Stateless Linux, first
a prototype server needs to be created. This server stores the snapshots, or
client installations, that are to be distributed to each stateless client. A snapshot
is a complete installation of an operating system in a subdirectory on the server.
This environment is entered via the chroot tool (For more about chroot, see the
Linux man page), and then managed via standard management tools, such as
yum.

Stateless Linux supports booting operating system snapshots over the network,
from a read-only partition on the local hard drive, or off a CD or DVD-ROM.
Updates to a snapshot take effect on the next boot for network boot machines,
while local hard drive-based snapshots periodically poll the server for updates.
Naturally, CD and DVD-based snapshots have to be burned again for each
snapshot release.

A description of the goals and theories behind Stateless Linux is available at:

http://people.redhat.com/~hp/stateless/StatelessLinux.pdf

More information about Stateless Linux can be found at:

Stateless Linux tutorial:

http://fedora.redhat.com/docs/stateless

Stateless Linux project:

http://fedora.redhat.com/projects/stateless/

“Stateless Linux ... where the root partition is mounted read-only and synched
transparently with a central source, giving the central-state advantages of thin
client with the low hardware and network infrastructure costs of a
cheap-Intel-box thick client.”

— Seth Nickell, from:

http://www.gnome.org/~seth/blog/sabayon
 Chapter 7. Client deployment models 161

http://fedora.redhat.com/docs/stateless
http://www.gnome.org/~seth/blog/sabayon
http://fedora.redhat.com/docs/stateless
http://fedora.redhat.com/projects/stateless/
http://fedora.redhat.com/docs/stateless
http://people.redhat.com/~hp/stateless/StatelessLinux.pdf
http://fedora.redhat.com/projects/stateless/

7.4.2 Custom implementation of stateless client
A customized stateless Linux installation method has been implemented at a
large insurance company in Germany, using a highly specialized initrd
adaptation. They use about 4,500 laptop computers and another 2,000 stationary
clients. Those clients are booted over the network (with PXELinux3) and
configured while booting according to:

� What hardware is detected (using Kudzu4 for auto detection)

� What applications need to be run (for example, some applications require a
screen resolution of 1024x768, even if the hardware could do better)

� How they are connected to the network (Olympic Token ring, ISDN, GPRS
Option Card, or Bluetooth Mobile phone)

� System default login rights: What user and group is logging on (which results
in access to different applications)

All configuration data (such as /etc or configuration files in the users’ home
directories) is assembled during the boot process and written to memory, such
that even with access to a hard drive from one such system, it is impossible to tell
which network this machine was connected to or who has been working with it.
Each user needs to have an up-to-date system at any time. As such, stationary
users have access to all applications via NFS. Mobile users (who have a
pre-installed Linux system on their Thinkpads) get their applications rsynced
during the boot process, though certain parts of the system are rsynced only
when the network connectivity is fast enough (for example, a X11 server update
does not run over a dial-up connection). After booting, users have thirty seconds
to log into the system with a Omnikey USB smart card reader and password;
otherwise, the system is rebooted (and in certain cases, even repartitioned and
destroyed). This configuration allows for secure data backup, easy installation
and upgrade rollout, and a fast, reliable desktop environment for users.

7.5 Multi-station client architecture
In this section, we present an in-depth discussion about how Linux-based
multi-station computing architectures that are being pioneered in the
marketplace by Userful5 Corporation provide an innovative and potentially
extremely cost-effective strategy for deployment and management of client
workstations.

3 http://syslinux.zytor.com/pxe.php
4 http://rhlinux.redhat.com/kudzu
5 http://www.userful.com; http://userful.eu
162 Linux Client Migration Cookbook, Version 2

http://www.userful.com
http://userful.eu
http://syslinux.zytor.com/pxe.php
http://rhlinux.redhat.com/kudzu
http://www.userful.com

The ability to support multi-client architectures aptly demonstrates the flexibility
of the Linux client software stack, and specifically, how the flexibility and
modularity of the X windows system allows for design of innovative many-to-one
client computing architectures (refer to 5.2.4, “Graphical and text-based
environments” on page 118).

This section introduces the multi-station computing strategy and discusses
deployment considerations in detail. See Appendix D, “Multi-station computing
deep dive using Userful Desktop Multiplier” on page 289 for more technical
background, case studies, and implementation details.

7.5.1 Multi-station computing and Userful Desktop Multiplier
Multi-station computing software enables a single computer system to be shared
by two or more connected users, each user having an independent workstation
consisting of a keyboard, monitor, and mouse. For instance, multi-station Linux
“desktop virtualization” software such as Userful’s Desktop Multiplier can enable
a single IBM IntelliStation® system to provide many users with fully independent
desktop workstation services, simply by plugging in extra video cards, monitors,
USB keyboards, mice, and other peripheral devices directly to the single shared
system.

Providing multiple workstations with a single high-end desktop system (rather
than using multiple individual PC systems) can yield significant savings in
hardware and software acquisition costs, and it also multiplies those savings for
ongoing energy and system administration overhead. Powerful computer
systems such as high-end IBM IntelliStation workstations can provide fully
independent desktop workstations to many local users, all directly connected to
the shared system using regular VGA and USB cabling. Even more users can be
connected to the single shared system by using PCI bus expansion units and
distance extension technologies as needed.

Multi-station desktop computer systems are ideal for environments where groups
of workstations are clustered together in close proximity. Example scenarios
include classrooms, point of service systems, training labs, kiosks, call centers,
Internet cafes, voting and registration systems, and back-office environments
where PCs are used as low-cost console terminals for servers and networking
equipment.

Using a powerful and reliable IBM IntelliStation system to serve independent
desktops to many directly connected users offers an efficient alternative to
deploying multiple desktop computers and can deliver significant advantages
over traditional methods of providing desktop systems. Figure 7-8 on page 164
 Chapter 7. Client deployment models 163

illustrates this concept by showing the combination of one IBM IntelliStation A
Pro workstation and two dual-head graphics cards providing a platform that
supports four separate client workstations.

Figure 7-8 IntelliStation A Pro workstation supporting four workstations using two dual-head video cards

7.5.2 What is multi-station computing
The concept of a single computer providing independent desktop environments
to multiple users is not new. Many solutions enable desktops to be remotely
served to one or more client computers over a network using a single powerful
computer such as a mainframe or terminal server.

Traditional terminal server-based solutions require a PC or proprietary thin-client
hardware station to be deployed at each user’s physical desktop. However,
traditional networked thin client solutions are often limited in display and
computing performance, and their deployment typically requires additional
network bandwidth capability along with a powerful server system and often uses
as much power infrastructure as regular desktop PCs.

Multi-station computing, in contrast, is based on using standard desktop PC
hardware to serve desktop UIs directly to each user’s monitor, and is designed to
overcome many of the challenges and limitations of networked-based thin client
solutions. For new users, there are potential cost savings and management
164 Linux Client Migration Cookbook, Version 2

advantages in deploying additional screens and keyboards into existing
multi-user platforms, instead of complete stand-alone computer systems.

A basic multi-station configuration
In a multi-station configuration, multiple client workstations simultaneously share
the resources of a single computer. Each user’s desktop environment and
application processes are supported independently. See Figure 7-9.

Figure 7-9 IntelliStation A Pro showing VGA and USB connections supporting two client workstations

Each station has an independent set of input and output devices, consisting of a
monitor, mouse, and keyboard, which are configured to work together as a set.
Figure 7-9 illustrates connections to support two client workstations. Each user is
provided with an individual own private desktop environment from which the user
can access fixed and removable input, output, and storage devices. These
devices are directly connected to the workstation through the use of extension
cables, USB hubs, and other devices as necessary to provide stations at almost
any distance from the shared workstation. You can configure each user’s
desktop to consist of a single desktop on a single display, or more advanced
setups such as multiple virtualized desktops on a single display, or even multiple
desktops on multiple displays.
 Chapter 7. Client deployment models 165

7.5.3 Approaches to desktop consolidation and deployment
Desktop virtualization is one of several approaches to desktop consolidation and
deployment. Multi-station platforms use virtualization software to manage each
user’s desktop similar to the way a terminal server or virtual machine operates,
however multi-station systems also provide each user with a direct connection to
their virtual desktop, eliminating the client computer altogether and consolidating
many computer systems into a single shared workstation. In this section, we
compare and contrast several popular desktop deployment scenarios with a
multi-station computing approach.

Comparison with thin client systems
Thin client technology relies on small footprint client workstations that facilitate
user interaction between a server and a remote user via a standard data
network. PCs contain both the hardware and software to function independently
of any other device, while thin clients require connections to servers that provide
a set of remotely hosted terminal services: login, session management, hosted
applications, and so forth.

Multi-station computing solutions share the advantages of thin client systems
such as centralized management and minimal hardware at the physical desktop.
However, multi-station client architectures differ with thin client architectures in
some key aspects: they can be much less dependent on network connection
availability, or network bandwidth limitations, and do not require one-to-one
deployment of complete client systems for each user.

Comparison with remote desktop systems (RDP, VNC, and
XDMCP)

The Remote Desktop Protocol (RDP), X Display Manager Control Protocol
(XDMCP), and Virtual Network Computing (VNC) protocol are industry-standard
methods of connecting to desktops on remote computer systems through a local
area network or the Internet.

A user of a PC or thin client system runs an RDP, VNC, or XDMCP client
application locally, which captures user input from the local keyboard and
mouse, sending it to the remote server through a network connection. All of the
processing for applications displayed on the remote desktop is performed on the
server, which means that the server hardware and configuration sets the hard
limit on the number of simultaneous users who can connect to the host server. In

Tip: As soon as you move above hardware level considerations, multi-station
and thin client architectures can become complimentary instead of competing
design strategies. This is illustrated in the following section.
166 Linux Client Migration Cookbook, Version 2

addition to this physical limit, some remote desktop-capable operating systems
(including Windows) might require a license for each connecting client, which
imposes a software limit to the number of concurrent users on that server. You
should consult with your terminal services vendor as to whether client access
licensing savings can be realized through a multi-station approach. See
Figure 7-10.

Figure 7-10 On a multi-station system, each client can run a different remote desktop, terminal, or virtual
machine

In a multi-station configuration, a single computer serves multiple users, each of
whom could operate one or more remote desktops through local RDP, VNC, or
XDMCP client applications. This is illustrated in Figure 7-10 on page 167. Using
remote desktop software, each user on a multi-station system can connect to
almost any remote Windows, *NIX, or Apple desktop hosted on the remote
 Chapter 7. Client deployment models 167

system. All of the processing for applications displayed on the remote desktop is
done on the host system, with minimal load placed on the multi-station client
system. Multi-station systems can support multiple thin client and terminal
emulation sessions running concurrently with graphical desktop environments
such as Windows Terminal Services using Remote Desktop Protocol (RDP),
Virtual Network Computing (VNC), XDMCP, or Citrix ICA. Multi-station
configurations also support a variety of ANSI text environments, such as IBM
3270, 5250; VT52, VT100, and many other terminal applications, running in
parallel with each other, and with local applications.

Remote desktop clients and servers are available for most popular operating
systems, including Windows, Linux, and Mac OS X.

7.5.4 Where and when to deploy multi-station systems
There are many factors that you should consider when planning a multi-station
deployment. This section discusses deployment considerations pertaining to
multi-station Linux desktops and reviews several options for minimizing
disruptions and maximizing the value derived from leveraging a shared
computing platform. See also Chapter 6, “Migration best practices” on page 131.

New deployments
Always consider deploying multi-station systems whenever two or more users
are in close proximity and their primary computer usage patterns do not involve
frequent CPU or memory intensive application demands. New multi-station
deployments make the most sense as a simple management and cost reduction
enhancement when a desktop Linux migration or deployment is already being
considered. Multi-station desktops based on Linux pose few, if any, additional
challenges over those of single-user desktop Linux deployments. As with
single-station Linux workstation deployments, a multi-station Linux deployment
benefits from an existing technical infrastructure and expertise capable of
supporting Linux workstations and users.

A few key factors should be noted when considering multi-station deployments:

� IT planners considering multi-station deployments into open plan offices
should ensure that walls and furnishings permit running USB and VGA
extension cables from monitors and peripherals in user work areas to the
multi-station computers. In the typical deployment scenario, a cluster of four
to six users share one multi-station computer located at a centrally-accessible
cubicle. This configuration minimizes the use of extension cables, and all
cabling can be run along or within partitions without crossing floor traffic.

� Although more costly than extension cables, add-on solutions that carry
keyboard, video, and mouse (KVM) over standard category 5 network cable
168 Linux Client Migration Cookbook, Version 2

can be used to deploy client workstations hundreds of feet away from the
shared multi-station computer. KVM over Cat5 and other distance solutions
such as fiber-optic cabling make it easy to deploy workstations in
environments where tight user clusters might not be appropriate or even
possible. As with USB and VGA extension cables, ensure that Cat5 and
fiber-optic cables used in this manner are well protected from the
environment.

� With the rapid and continuous decline in computer memory prices and the
common availability of 1 GB memory modules, planners should consider
deploying workstations with as much memory as possible. Typical PC
motherboards support up to 4 GB of memory per processor, offering enough
capacity for each user to have a 512 MB share. Providing additional memory
during the initial deployment ensures that multi-station systems have
adequate memory to support more users, and more intensive usage patterns.

Some of these considerations are illustrated in the case studies included in
Appendix D, “Multi-station computing deep dive using Userful Desktop Multiplier”
on page 289.

Multi-station desktops as a replacement for existing PCs
Deploying multi-station Linux desktops as replacements for existing workstations
could be a cost-effective way to maximize the use of current infrastructure.
Replacing several older computers with a more powerful multi-station system
reduces network complexity and power demands. This makes it possible to add
more workstations without substantial additions to the existing technology
infrastructure. And as with conventional desktop replacement programs, in
almost all cases, existing workstation monitors and input devices can be reused
on multiple generations of new multi-station systems.

Provisioned multi-station desktop implementations
In addition to general purpose provisioned office desktops (as described above),
multi-station Linux has many applications in fixed function, transactional,
provisioned desktop implementations.

The majority of enterprise desktop computers are deployed and managed by IT
departments to offer specific business functionality to specific groups of users.
The tasks to be performed at these provisioned desktops are known prior to
deployment, and the computers themselves are typically imaged and set up with
precisely the applications needed for the work that the users need to perform.
Individual users generally cannot change settings or install software on these
provisioned computers. Linux and open source platforms are ideal for delivering
stable and reliable provisioned computer systems that leverage the advantage of
a multi-station deployment.
 Chapter 7. Client deployment models 169

Point of service and call center applications
Multi-station platforms can provide cost-effective access for point of service
applications such as service desks, ticket vending, and registration systems.
Computer terminals at point of service and point of sale locations are often
located in close proximity such that multi-station systems can provide
cost-effective access to back-end systems. Since applications running on these
systems are typically based on terminal emulation, distributed Java applications,
or Web-based technologies, multi-station solutions can easily provide an
effective alternative to deploying dedicated PCs or thin client terminals. A
multi-station approach provides significant cost savings where the cost of on-site
service is high by reducing the number and complexity of computer workstations
in the field.

Back office and data centers (terminals)
Multi-station systems combined with terminal emulation software could enable IT
departments to more efficiently deploy green-screen terminal replacements that
connect securely with terminal-based applications such as online transaction
processing (OLTP) systems and console monitors. Each multi-station system
could provide up to ten independent user stations, with each running one or more
terminal services applications connected to the back-end system using common
protocols such as TN3270 and TN5250. Using a multi-station Linux system to
provide console terminals eliminates the need to acquire and maintain
proprietary terminals and potentially uses less rack space than terminal
emulation solutions based on single-station PCs.

Public computer access and education environments
Applications running in public access or educational environments are typically
not computationally intensive, users are often clustered in close proximity, and
their needs are typically well met with desktop Linux. IT expertise and the
resources needed to maintain computer hardware is often scarce in these
environments, hence the reduced maintenance of the multi-station approach
combined with Linux’s enhanced security and client lock down capabilities could
provide many significant advantages.

7.5.5 Advantages of deploying multi-station Linux systems
Multi-station systems can potentially provide all the advantages of both thin client
and rich client environments, effectively integrating the performance benefits of
rich client computing with the cost and management benefits of centralized
server-based computing environments.
170 Linux Client Migration Cookbook, Version 2

Performance
Multi-station Linux multiplies the overall return on IT investment, especially when
deploying high performance and high quality IBM IntelliStation hardware,
because all of the users on the shared system benefit from the increased
performance and reliability gains.

Compared to multi-station systems, thin client devices could be more susceptible
to negative performance impacts because they depend almost entirely on the
server system and underlying network infrastructure to provide applications,
storage, and CPU processing power.

In contrast, each station of a multi-station deployment could be directly
connected to a single system, thus sharing in the full capabilities of a powerful
workstation-class system that might not be affected by variability in network and
remote server performance. In a properly designed environment, multi-station
systems could provide substantially higher performance for users compared to
using dedicated thin-client or low-performance PC systems, while reducing the
overall network traffic loading as compared to client/server systems.

Infrastructure and system management
Deploying large quantities of computers anywhere is typically an extremely
complex, time-consuming, and expensive process. The total maintenance and
support costs for the average corporate PC system can be significant.
Multi-station Linux technology provides an alternative strategy that could reduce
redundant hardware, software, energy and system management costs.

Userful Desktop Multiplier, like other approaches to desktop virtualization and
desktop consolidation such as remote desktops, can substantially reduce the
number of software and support subscriptions required. In addition, because the
number of deployed systems is reduced versus using single-station systems,
remote management, software updates, and support costs are also reduced.

Security
Since each user on a multi-station client is connected directly to a common
computer system, there is no need for client hardware or software at the user’s
physical desktop other than a regular keyboard, mouse, and monitor. This added
security feature can help to facilitate compliance with increasingly stringent
internal standards or regulatory access control requirements.

Reducing the number of deployed system disks enables IT staff to more rapidly
respond to emerging software security threats that require software updates.
Using centralized multi-station deployments reduces the number of systems that
need to be both physically and logically secured, and allows the consolidated
server systems to exist in centralized and distributed locations as needed.
 Chapter 7. Client deployment models 171

Cost: Economy of scale
For most organizations, the up-front costs of deploying desktop computer
systems typically represents a small fraction of the total lifecycle cost of
maintaining those systems. The remaining costs consist mostly of IT staffing
costs, hardware and software maintenance, and lost productivity due to
interruptions for software updates, troubleshooting, viruses, and various
technical support issues.

The multi-station client computing strategy introduces the potential for significant
cost savings in total PC lifecycle management. This is due to all of the inherent
economy of scale benefits that have been discussed so far.
172 Linux Client Migration Cookbook, Version 2

Chapter 8. Client migration scenario

In this chapter, we demonstrate an example client migration. We describe the
client as it is used before the migration. The important applications on the client
will be identified. We describe a migration plan for this client based on the
information in Chapter 3, “Organizational and human factors planning” on
page 49, and Chapter 4, “Technical planning” on page 61. The result of the
actual migration is shown in the last part of this chapter.

The sections in this chapter are:

� 8.1, “Example client migration” on page 174

Details on the pre-migration client environment are discussed.

� 8.2, “Migration plan details” on page 175

Migration plan details and strategy are presented as a result of assessing the
existing client environment.

� 8.3, “Performing the migration” on page 178

The actual migration sequence of steps, with some key configuration details
included.

8

© Copyright IBM Corp. 2004, 2006. All rights reserved. 173

8.1 Example client migration
We perform a migration of a single type of client to show how the methods
described in the planning part of this book can be put into practice. The example
client migration is a simple one. However, the infrastructure integration is almost
completely as described in 4.2, “Integrating with existing network services” on
page 69.

8.1.1 Assess the client usage pattern
The client we use for the example migration is an ITSO desktop used to write this
book. The migration client has the following properties:

� It is a registered workstation in an NT4 domain.
� Microsoft Internet Explorer is used to access intranet and Internet sites.
� Adobe FrameMaker is the primary content authoring application.
� Jasc Paint Shop Pro is used to create and work on screen captures.
� Network printers are used for all printing jobs.
� Microsoft Outlook connects to Microsoft Exchange for e-mail.

The client is running Windows 2000 with Service Pack 4 installed. We plan to
migrate to Linux using the Red Hat Desktop distribution.

8.1.2 Identify the most important applications and infrastructure
integration points

Since the user role for this workstation is primarily for writing books, Adobe
FrameMaker is the most important application, and the most important
infrastructure components are printing and access to network file shares.

The first thing to note about the Adobe FrameMaker application is that there is no
appropriate Linux alternative. There is no Linux native version, and moving to
another application on Linux is not acceptable from a business point of view. In
other words, FrameMaker is a unmigratable application that has to be handled in
the manner described in 4.7.2, “Terminal Server, Citrix Metaframe, or NoMachine
NX solutions” on page 100.

Printing using the network printers and accessing shares in the NT4 domain
means that the methods from 4.2, “Integrating with existing network services” on
page 69, have to be followed.
174 Linux Client Migration Cookbook, Version 2

8.2 Migration plan details
In this section, we want to discuss the migration steps, which possible problems
we could come across, and how we plan to establish the functional continuity.

After assessing a current ITSO desktop and its environment, as we have done in
the section before, we have to build a plan that includes the necessary work to
make the client functional after removing the Windows operating system.

8.2.1 Client approach
The ITSO resident workstation would fit into either the Basic Office or Advanced
Office workstation logical segment, as defined in 3.1.1, “Functional segmentation
- Fixed function to general office” on page 50. And since the users use these
workstations primarily for authoring technical papers using FrameMaker, as well
as doing research using a Web browser, they map most closely to the Fat client
type, as discussed in 4.4.2, “Logical segmentation - Thin, slim, or fat” on
page 85.

8.2.2 Graphical environment
Another key decision that has to be made is what type of graphical windowing
environment to use on the Linux client. Alternatives are discussed in 4.3.2, “Linux
desktop environments” on page 76.

In this special case, we are not going to discuss advantages and disadvantages
of one or the other environment; both of them would provide enough functionality.

But as GNOME is the default session manager for Red Hat distributions, we
decided to stay with this choice for our sample scenario. The version that is
included in Red Hat Desktop 4 at the time of this writing was GNOME 2.8.

8.2.3 Hardware
Another topic to be considered before migrating is the hardware that is in use.

In this case, no peripherals are connected to the client, and all other resources
(such as printers, for example) are accessed through the network.

The migration PC platform for this example is listed in Table 8-1 on page 176.
 Chapter 8. Client migration scenario 175

Table 8-1 Hardware and descriptions

Because the graphics and sound controller are integrated with the chipset, we
are expecting some additional work to identify and install appropriate Linux
drivers for these devices. A check on the Intel Web site provided us with drivers
for these two components. All other parts are known to be supported in Linux,
because they are standard components.

8.2.4 Application continuity
In Table 8-2 on page 177, we show our application mapping to support this
sample migration scenario.

Hardware Description

PC model IBM Netvista Type 6759

Processor Intel Pentium® III 866 MHz

Chipset i810 integrated

Graphics card i810

Sound card i810

Optical drive CD-ROM 24x IDE

Floppy 3.5 inch floppy drive

Harddisk IDE Harddisk 40 GB
176 Linux Client Migration Cookbook, Version 2

Table 8-2 Application mapping to support sample migration scenario

8.2.5 Windows networking
Windows networks can become quite complex, especially when using roaming
profiles, Active Directory structures, or when combining several trusted domains.
In our environment, none of these features are in use. From a network services
integration point of view, this makes the switch to Linux relatively easy.

Our migration clients will need to mount existing Windows file server shares and
be able to use existing printers also shared by the Windows domain servers.
Therefore, we need the domain name and a valid user for authentication to the
existing ITSO domain.

The distinct names in this domain are:

� Domain name = ITSOAUSNT
� Primary domain controller = ITSONT00
� Backup domain controllers = ITSONT01, ITSONT02, and ITSONT03
� Usernames for residents = ausresxx

We will use methods described in detail in 4.2, “Integrating with existing network
services” on page 69, and in Chapter 9, “Integration how-tos” on page 195, to
complete network services integration of the Linux client.

Application on Windows Application on Linux

Microsoft Internet Explorer Mozilla Firefox

Microsoft Outlook Novell Evolution with Novell Connector for
Exchange

Windows Explorer Nautilus

WinZip FileRoller

ICQ Gaim

Microsoft Word OpenOffice.org Writer

Microsoft Excel OpenOffice.org Calc

Microsoft Powerpoint OpenOffice.org Impress

Adobe Reader Acrobat Reader for Linux

Adobe FrameMaker Adobe FrameMaker (via Windows
Terminal Services)

Jasc Paint Shop Pro The GIMP
 Chapter 8. Client migration scenario 177

8.3 Performing the migration
In this section, we discuss performing the migration.

8.3.1 Basic installation tasks
The first thing to do is complete a base installation from the distribution CDs. In
the case of Red Hat Desktop, the CD set contains four CDs. Special packages
for the desktop are available from the Red Hat Network. These contain
third-party applications such as Acrobat Reader or Real Player and a set of
high-quality truetype fonts from AGFA.

During installation, we accepted the default selections for application packages
as defined by the installation program. On our target desktop hardware, the Red
Hat Anaconda installation program completed the base installation without any
problems. Also, the Red Hat hardware probing library called kudzu worked as
expected. All hardware components were detected correctly. The correct
modules for the integrated video and audio chipset were loaded successfully.
The network card driver was loaded, and the network was activated successfully
at the end of the installation. The system successfully received a DHCP lease
from the DHCP server in the ITSO network. Name resolution worked as well,
without any extra configuration steps.

Setting up remote administrative access using VNC
Once the installation completed, we chose to immediately modify our client setup
to provide remote terminal access to it from other workstations in the network
using VNC. This way we could complete any additional administrative tasks to
complete the install remotely.

To begin this process, we first checked that the SSH daemon was running and
that every connection through VNC gets a complete desktop. One way to enable
this for the root user is to modify the file $HOME/.vnc/xstartup, as shown in
Example 8-1.

Example 8-1 Enabling VNC connections

#!/bin/sh

Uncomment the following two lines for normal desktop:
unset SESSION_MANAGER
exec /etc/X11/xinit/xinitrc
.....

Also, we had to enable Xdmcp in /etc/X11/gdm/gdm.conf and set up a session in
/etc/sysconfig/vncservers.
178 Linux Client Migration Cookbook, Version 2

After we start by executing the command service vncserver start, we can
connect to any VNC client and work on the complete graphical interface.

Preparing to integrate with Windows network services
The next step in our migration is to connect the client to the existing networking
services. In our existing environment, we integrate with Windows NT and
Windows 2000 servers, so we follow the instructions in Chapter 9, “Integration
how-tos” on page 195.

Our first goal is the ability to use the services of the existing Windows domain,
primarily user authentication. In order to be able to log on to the Linux client
using Windows usernames and passwords, it is necessary to set up winbind.

We edited /etc/samba/smb.conf for a proper setup in our network environment.

Example 8-2 Changes to smb.conf for Linux client domain authentication

[global]
workgroup = ITSOAUSNT
security = domain
password server = ITSONT00,ITSONT01,ITSONT02,ITSONT03

...

...
winbind separator = +
idmap uid = 10000-20000
idmap gid = 10000-20000
winbind enum users = yes
winbind enum groups = yes
template homedir = /home/%D+%U
template shell = /bin/bash

8.3.2 Integrating existing network services
After the winbind daemon has started, the command wbinfo -u should deliver
the current user list of the Windows domain. But before this works, it is necessary
to join the domain with the Linux client. As long as there is no machine account in
the domain for the client, it is not possible to fetch the list of users using winbind.
Therefore, we have to join the domain with the following command:

net join -a ITSOAUSNT -U administrator

Important: Allowing complete access through VNC can be dangerous,
because it enables connecting to the local X server from any place. If it is
needed, editing /etc/hosts.allow or /etc/hosts.deny can allow you to limit who
can access the workstation.
 Chapter 8. Client migration scenario 179

Because we are now able to read the user database on Windows, only two more
steps are needed to log in on the Linux client with an existing account managed
by the existing Windows domain.

Next, nsswitch.conf is changed according to 9.2, “Using winbind to make domain
users known locally” on page 199, which delivers the mapping of Windows users
and Groups to the Linux uids and gids.

Example 8-3 Changes to /etc/nsswitch.conf

passwd: files winbind
group: files winbind

By performing the command getent passwd for testing purposes, all users should
be listed with their correct uids and gids.

Now it is time to enable the login process to use the mapped users. This is done
by using two different PAM modules, which is described in detail in 9.4.1, “How to
authenticate users using winbind and PAM” on page 208.

Because we use Red Hat Desktop for our pilot migration, all information in
“Winbind and PAM on Red Hat Desktop” on page 208 applies.

At first, we set up the pam_winbind and the pam_smb_auth module, which allow
system authentication with a user of the domain ITSOAUSNT. In order to enable
this module, we edited the /etc/pam.d/system_auth file, as in Example 8-4.

Example 8-4 Edit the /etc/pam.d/system_auth file

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_winbind.so use_first_pass
auth sufficient /lib/security/$ISA/pam_smb_auth.so use_first_pass nolocal
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account sufficient /lib/security/$ISA/pam_winbind.so
........................

Important: Do not forget to join the domain with the command net join -a
<domainname>. This creates a valid machine account on the domain controller
and gives the Linux client a valid SID for authentication.
180 Linux Client Migration Cookbook, Version 2

It is now possible to authenticate both with a local or a domain user account. A
first test on the console shows that it is working, but at this point, logging in on
the GNOME welcome window generates an error.

The reason for this problem is that at the time of the first login, there is no home
directory for the associated user ID. Thus, GNOME had no file system path in
which to create the personalization and settings files during first login. To solve
this problem, we used another pam module, pam_mkhomedir. By using this
module, a home directory is created at logon time, if it does not exist yet.

It is necessary to add the following line in the /etc/pam.d/system_auth file.

Example 8-5 Addition of pam_mkhomedir entry in /etc/pam.d/system-auth

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_winbind.so use_first_pass
auth sufficient /lib/security/$ISA/pam_smb_auth.so use_first_pass nolocal
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account sufficient /lib/security/$ISA/pam_winbind.so
........................
session optional /lib/security/$ISA/pam_mkhomedir skel=/etc/skel umask=0022

Now, we can enter the username and password on the GNOME welcome
window, a home directory is created, and the complete GNOME desktop is
available.

We log on using the ID:

ITSOAUSNT+AUSRES06

The login username has the format:

<domainname:separator:username>

So, the GNOME desktop shows an icon with ITSOAUSNT+AUSRES06’s home.
Unfortunately, it is not possible to separate the domain and username on a
standard GNOME installation; the winbind separator will always be visible.

Mounting Windows file shares
After enabling domain user logon, it should also be possible to use the file shares
on the Windows servers. Our example client needs to map three separate file
shares using the same credentials. We have to store the user credentials in a file
 Chapter 8. Client migration scenario 181

in order to avoid having to interactively use the mount command on each login.
The smbmount command allows the use of a credentials file. For security reasons,
we placed the credentials file in root’s home directory and set the file permission
such that only root has access to the file. The file /root/.credentials looks like
Example 8-6.

Example 8-6 Credentials file for mounting shares

username = ausres06
password = password
domain = itsoausnt

The most logical place for such a mount execution is in /etc/fstab, where it is
possible to define the file system to smbfs, and the file shares would be mounted
at the same time as the local file systems.

Example 8-7 Mounting file shares in /etc/fstab

/dev/hda1 / reiserfs acl,user_xattr 1 1
/dev/hda5 /scr auto noauto,user 0 0
/dev/hda2 swap swap pri=42 0 0
......
/dev/fd0 /media/floppy subfs fs=floppyfss,procuid,nodev,nosuid,sync 0 0
//itsont05/data /shares/data_g smbfs credentials=/root/.credentials 0 0

This works fine unless the Windows file share uses nonstandard characters. In
contrast to UNIX-like operating systems, Windows allows you to use space
characters and non-ASCII characters (such as German umlauts) in the names of
file shares. You might run into problems in the case where the Windows file
shares contain special characters. For example, the /etc/fstab file uses the space
character as a delimiter, so if a share contains a space, it takes the following
string as a mount point. So, while mounting the “project data” file share, the
mount command complains about several errors in the fstab file, as it tries to use
data as a mount point.

Thus, we had to use another way of mounting the file share, and we decided to
extend the /etc/rc.local file with the corresponding smbmount commands.

Modifications to rc.local are shown in Example 8-8 on page 183.

Tip: When mounting Windows file shares in a Linux file system, it is very
reasonable to check the names of the shares for special characters.
Renaming them to be UNIX-compliant can save a lot of time and annoyance.
182 Linux Client Migration Cookbook, Version 2

Example 8-8 Extended rc.local file

#!/bin/sh
#
This script will be executed *after* all the other init scripts.
You can put your own initialization stuff in here if you don't
want to do the full Sys V style init stuff.

touch /var/lock/subsys/local

#mounting windows file shares
smbmount //itsont05/data /shares/data_g -o credentials=/root/.credentials,
gid=ITSOAUSNT+Domain\ Users,dmask=0775
smbmount //itsont02/"project data" /shares/projectdata_e -o credentials=/root/.credentials,
gid=ITSOAUSNT+Domain\ Users,dmask=0775

If using file shares with special characters here, it is necessary to put them in
quotation marks, as shown in the last line of Example 8-8 above. The gid and
dmask options of the smbmount command are used to ensure that the
permissions are set in the right way for the Linux directories in which the shares
are mounted. If they are left out, users would not have write permissions
because of the default umask in the root directory. The permissions that are set
on the Windows file server are inspected only after a user has full access to the
mount point. It is evident that the smbmount does not override permissions on
the server side.

Printers
Printer services are provided via the smb protocol as well. We decided to use
CUPS to integrate our network printers on the Linux clients.

Important: Be careful with permissions on the directories that you use as
mount points; make sure that they fit to the permissions given on the Windows
server. Using a gid in the command prevents file access from users who are
not members of the group.
 Chapter 8. Client migration scenario 183

By following the steps in “Create a printer using CUPS Web interface” on
page 221, it was extremely easy to add the printers with the right credentials.

8.3.3 Application configuration and installation
As pointed out earlier in this chapter, the main application on the resident PC is
Adobe FrameMaker. Interestingly enough, Adobe offered a Linux version some
time ago, but as of Version 6.0 this product was cancelled. Because the client
needs FrameMaker Version 7.0 with some special plug-ins, it is not possible to
install this application on Linux. Thus, we have to find a way to handle this
“unmigratable” application (see 4.7, “Unmigratable applications” on page 99, for
a detailed discussion about strategies).

The solution we chose to support FrameMaker users on the migrated Linux client
was to use a remote terminal services method using Windows Terminal Server
(WTS). WTS makes it possible for a Linux client to connect using Remote
Display Protocol (RDP) to an application session running on the WTS host. Other
terminal services solutions for this type of application hosting requirement exist,
but for this small scenario, we decided using WTS is satisfactory. Our next step
was to install the application on the Terminal Server.

Because it is not guaranteed that every application can run on a Terminal Server,
we ran several tests by starting FrameMaker several times in different sessions.
We learned that our version of FrameMaker was not optimized for this scenario,
since each FrameMaker application instance running on the WTS host
consumed an equal amount of system memory.

Tip: If drivers for your printer are not included in the standard installation of
CUPS, it might be possible to find the right ppd (Postscript Printer Description)
driver file for your printer on the Internet. The correct ppd driver file for your
printer should be added to the directory /usr/share/cups/model. Then after
restarting CUPS, the new driver is available when adding a printer. Methods
for finding a ppd driver file are:

� Search your printer manufacturer’s Web site for Linux support or ppd driver
file downloads.

� Purchase printing software supporting Linux:

http://www.easysw.com/printpro

� Try a Windows PPD file provided by Adobe:

http://www.adobe.com/products/printerdrivers/winppd.html

� See the CUPS home page for more links:

http://www.cups.org
184 Linux Client Migration Cookbook, Version 2

http://www.easysw.com/printpro
http://www.adobe.com/products/printerdrivers/winppd.html
http://www.cups.org

The connection to the Terminal Server is made by tsclient, a GTK+ GUI for the
rdesktop application. Using a launcher file on the desktop, it is possible to use a
configuration file while executing tsclient. Our command syntax for starting the
tsclient session is as follows:

tsclient -x $HOME/framemaker.tc

The file framemaker.tc contains all of the information for the connection, such as
the IP address of the host and the username to connect to.

An example window capture of FrameMaker running inside a Terminal Server
client on Linux is provided in Figure 8-1 on page 190.

Image manipulation
On the Windows-based client, we used Jasc Paint Shop Pro for manipulating
images and taking screen captures. Because Paint Shop Pro is not available for
Linux, we decided to use The GIMP as a functionally equivalent Linux application
instead. This open source application is very mature and provides a good
functional equivalent to Paint Shop Pro for the specific uses that the Windows
client in this scenario needs. Further information can be found at:

http://www.gimp.org

The GIMP is included as part of the standard installation of Red Hat Desktop, so
no extra configuration was necessary. A screen capture showing The GIMP
running on the migrated desktop is shown on Figure 8-2 on page 191.

Browser
For our migration scenario, we decided to use the Mozilla Firefox Browser.
Firefox is the browser-only project from the Mozilla Foundation. Because we do
not need mail capabilities (these are provided by Novell Evolution), using the
stand-alone browser offering from Mozilla seemed reasonable.

We recommend that you check important Web sites or especially Web clients for
compatibility with the browser before the migration. Some Web sites use
ActiveX® controls or special JavaScript™ functions, which are only supported by
Microsoft Internet Explorer. Because this is not the case for our migration client,
it is easy to make the switch and use Mozilla Firefox instead of Internet Explorer.

Important: If an application is not optimized for terminal servers, it takes the
same amount of memory for each instance. The server needs to have enough
main memory to handle the expected Terminal Server session load.
 Chapter 8. Client migration scenario 185

http://www.gimp.org

E-mail client
To make our client migration scenario more realistic, we added the requirement
that existing clients use Microsoft Outlook, which connects to a Microsoft
Exchange 2000 server. Our migration task includes migrating from the
Windows-based Outlook client to a Linux-based messaging client that provides
similar functionality and that integrates with the existing Exchange 2000
messaging system.

Novell Evolution with Novell Connector for Exchange
Our migration solution consists of using the Novell Evolution e-mail client in
conjunction with the Novell Connector for Microsoft Exchange Server. The
Evolution e-mail client has an architecture that supports building special
connectors for different groupware applications. A connector for Microsoft
Exchange 2000 and 2003 was developed and was released under the terms of
the GPL in May 2004. A key factor in enabling the development of the Exchange
connectors was Microsoft’s inclusion of a Web interface to Exchange called
Outlook Web Access (OWA). OWA uses WebDAV for communication to the
Exchange Server message store. So it became possible to develop Exchange
connectors by implementing a WebDAV interface, instead of having to reverse
engineer the proprietary MAPI protocol of Exchange.

We installed the required Novell Connector for Microsoft Exchange Server RPMs
that were delivered with Red Hat Desktop and found it to be quite easy to set up
a connection to the Exchange Server. There were some requirements to get this
working, mainly enabling Outlook Web Access on the server.

More information about the Novell Connector for Microsoft Exchange Server can
be found on the Novell Evolution page at:

http://www.novell.com/products/evolution

Restriction: Only the Exchange versions 2000 and 2003 support WebDAV
connections. As of the writing of this book, a connector supporting native
Linux client access to Exchange Server 5.5 was still not available.

Important: Before using the Exchange connector, you need to check
prerequisites. It is necessary to start the Exchange virtual server in the HTTP
section of the Exchange system manager. You also need to enable HTTP
protocol for the users. This is done in the user settings through the Active
Directory Users console.
186 Linux Client Migration Cookbook, Version 2

http://www.novell.com/products/evolution

Settings migration
In order to keep the user productive, we want to maintain their settings and data.
Users are supposed to keep their documents on a network share, so we do not
need to search the entire hard drive for documents. In case users keep some
notes or important scratch files on their local machine, we still move data from
the My Documents and Desktop directories. E-mail messages are stored on the
Exchange Server, so we need to only move the account information. User
defined bookmarks and the Internet home page should also be migrated to make
the migration easier.

Manual migration
First, we look at performing this migration manually. The Windows version of
Firefox can import customized data such as bookmarks and the home page from
Microsoft Internet Explorer, which the Linux version cannot. Thus, on the
Windows machine, we install Firefox and launch it to start Firefox’s import
feature. Next, we enable Windows sharing if it is not already enabled and share
out the My Documents and Desktop directories. We also share out Firefox’s
settings directory, which is a subdirectory in the user’s Application Data directory,
in the Mozilla folder. The full path to this directory on our machine was:

C:\Documents and Settings\AUSRES06\Application Data
\Mozilla\Firefox\Profiles\xyjib4ms.default

As the last step on the Windows machine, we launch Microsoft Outlook and
ensure that all e-mail is stored on the server. If there are any local folders, we
create a new folder on the server and copy the mail onto the server.

On the Linux client, we now use Nautilus to connect to the Windows shares. We
copy the contents of the My Documents directory into a directory named
Documents in the user’s home directory. We then copy all of the data files (but
not the shortcuts) from the old Desktop share onto the user’s desktop. Next, we
launch Firefox to initialize a new profile. Then, we find the new profile directory,
which is in the user’s home directory, in the .mozilla folder. The full path on our
machine was:

/home/ITSOAUSNT+AUSRES06/.mozilla/firefox/xdch2a44.default

Now we copy all the files from the old profile share on the Windows machine into
this folder, overwriting all files that are currently there. Finally, we launch
Evolution and add a new account to the Exchange Server.

Automated migration
Because there are several authors using a similar environment, we do not want
to migrate each desktop manually. Instead, we use Progression Desktop to
automate the migration. More information about Progression Desktop is found in
Appendix C, “Automating desktop migration using Versora Progression Desktop”
 Chapter 8. Client migration scenario 187

on page 277. Because we have more than ten workstations, we decide to use the
command line interface with a template to make the migration step easier. We
also write a simple script to make the migration two simple steps.

First, we create a template, which contains all of the data we want to migrate and
save that on our network share. Then for the Windows store operation, we use
the following batch file to install the .NET framework and Progression Desktop
and then store the settings into a Platform Neutral Package (PNP) onto our
network share.

Example 8-9 Batch file to install and run Progression Desktop on Windows

cmd /c \\itsont05\data\ProgressionDesktop\Windows\dotnetfx.exe /q:a /c:“install /q /l”
cmd /c msiexec /quiet /i \\itsont05\data\ProgressionDesktop\Windows\zf7fg42j9.msi
“c:\Program Files\Versora\Progression Desktop\ProgressionDesktopCore.exe” --store

--file=\\itsont05\data\%UserDomain%+%UserName%.pnp
--template=\\itsont05\data\ITSOtemplate.xml

Next, we create a bash script for the Linux apply operation, which temporarily
installs Mono on the desktop (because Red Hat Desktop does not ship with
Mono), and we run Progression Desktop to apply the user’s settings from the
network share. Finally, the bash script cleans up the machine by removing Mono.

Example 8-10 Bash script to install and run Progression Desktop on Linux

#! /bin/bash
/shares/data_g/monoinstaller/mono-1.1.8.2_1-installer.bin \

--mode unattended --prefix /var/tmp/mono --AddMonoToPath 0
/var/tmp/mono/bin/mono /shares/data_g/ProgressionDesktop/Linux/ProgressionDesktopCore.exe \

--apply --file=/shares/data_g/$USER.pnp --template=/shares/data_g/ITSOtemplate.xml
rm -rf /var/tmp/mono
rm -f ~/Desktop/Mono.desktop

To migrate any machine from Windows to Linux, all we need to do is run the first
batch file on the Windows machine, and, once it finishes, run the bash script on
the Linux destination.

Customization
There is an extremely high degree of flexibility in modifying the look and feel of
desktop Linux. For our client migration scenario, we chose to modify just a few
settings as a way of demonstrating some possibilities.

The first thing we did was to adjust the default background color and insert the
ITSO Redbooks image on the background. You can do this easily by using the
background settings application for the GNOME Desktop. Another possibility,
188 Linux Client Migration Cookbook, Version 2

especially to set this desktop background image as a mandatory value, is the use
of the gconftool-2 with a command syntax as in Example 8-11.

Example 8-11 Using gconftool-2 to replace the desktop background image for all users

gconftool-2 --direct --config-source \
xml:readwrite:/etc/gconf/gconf.xml.mandatory --type string --set \
/desktop/gnome/background/picture_filename itso-logo.png

Further information about how to change values in the GNOME configuration
database can be found in “Desktop personalization: GNOME Desktop” on
page 317. Specific details about using gconftool-2 to make mandatory changes
can be found in 7.1.2, “GNOME lockdown options” on page 151.

You can create another nice effect by inserting another logo for the menu button.
By default, Red Hat has replaced the GNOME logo with its own custom image.
We replaced this by editing the following file:

/usr/share/pixmaps/redhat-main-menu.png

While the name of this file is set in GConf, we decided to take the easy way out
and just rename our ITSO logo file to redhat-main-menu.png. Of course, it has to
be 48x48 pixels large, and for a better look, the logo had to be made transparent
in The GIMP.

The final customization was the creation of links to the mapped Windows file
shares. For convenience, we renamed them to the equivalent drive letters.

The output of these customizations can be viewed in Figure 8-5 on page 194.

8.3.4 Screen captures: Client migrated to Linux
On the following pages, we provide screen captures of the most important
applications now running on the Linux client:

� Adobe FrameMaker on Windows Terminal Server - Figure 8-1 on page 190

� The GIMP on Linux Client - Figure 8-2 on page 191

� Novell Evolution on Linux Client connected to Microsoft Exchange 2000
server - Figure 8-3 on page 192

� Mozilla Firefox on Linux client - Figure 8-4 on page 193

� Showing the new desktop, customized for ITSO - Figure 8-5 on page 194
 Chapter 8. Client migration scenario 189

Figure 8-1 FrameMaker on Windows Terminal Server session using rdesktop1

1 Adobe product screen shot reprinted with permission from Adobe Systems Incorporated.
190 Linux Client Migration Cookbook, Version 2

Figure 8-2 Running The GIMP and taking a screen capture of FrameMaker
 Chapter 8. Client migration scenario 191

Figure 8-3 Novell Evolution connected to Microsoft Exchange 2000
192 Linux Client Migration Cookbook, Version 2

Figure 8-4 Mozilla Firefox on the Linux client
 Chapter 8. Client migration scenario 193

Figure 8-5 New Linux desktop showing organizational customizations for ITSO
194 Linux Client Migration Cookbook, Version 2

Chapter 9. Integration how-tos

This chapter demonstrates additional methods for integrating Linux clients into
an existing Windows domain (NT4 or Active Directory). Many integration issues
are covered, including mounting home directories from SMB shares at logon.

There are two ways to authenticate users to a Windows domain:

� Using winbind provided by Samba

� Using LDAP to connect directly to Active Directory (this needs changes to the
Active Directory schema)

The sections in this chapter are:

� 9.1, “How to join a Windows domain” on page 196
� 9.2, “Using winbind to make domain users known locally” on page 199
� 9.3, “How to use LDAP to connect to Active Directory” on page 204
� 9.4, “Pluggable Authentication Modules and the domain” on page 207
� 9.5, “How to mount a share on the Linux client” on page 214
� 9.6, “Automatically mounting home directories at logon” on page 216
� 9.7, “How to use network printers in the domain” on page 219

All examples and how-tos in this section assume at least Samba Version 3.0.
Some of the functionality is either not present or not mature in earlier versions.

9

© Copyright IBM Corp. 2004, 2006. All rights reserved. 195

9.1 How to join a Windows domain
Most how-tos discuss in detail how to add Linux servers to a domain. This how-to
describes adding a Linux client to a domain. Adding a client to an NT4 domain is
different from adding a client to an Active Directory domain. We discuss both in
detail.

In most examples in this section, we use a domain AD6380 with Primary Domain
Controller SMB3LAB26 and Backup Domain Controller SMB3LAB27. In some
examples (using Windows 2003 Active Directory), we use the domain AD6380
with domain controller W2K3AD.

9.1.1 Joining an NT4 domain
We use Samba to connect to the domain. The minimum smb.conf looks like
Example 9-1.

Example 9-1 smb.conf for joining NT4 domain

[global]
workgroup = AD6380
security = domain
password server = SMB3LAB26,SMB3LAB27

Replace the example domain and password servers with your own domain name
and the correct names or addresses for the primary (and backup) domain
controllers.

You can then join the domain using:

net join -S SMB3LAB26 -U administrator

Replace SMB3LAB26 with the name (or IP address) of your own primary domain
controller and use any domain account that has the right to add machines to the
domain. The command prompts you for the password of the domain account
“administrator”.

More details about joining an NT4 domain can be found in the current Samba-3
release version of the Samba-HOWTO-Collection. The collection can be found at
the following location:

http://samba.org/samba/docs/
196 Linux Client Migration Cookbook, Version 2

http://samba.org/samba/docs/

9.1.2 Joining an Active Directory domain
In this case, we need both Samba and Kerberos to connect. We need Kerberos
to authenticate against a Windows 200x KDC.

In the example, we use domain AD6380.LOCAL with AD server SMB3LAB26.

The minimum smb.conf contains the lines given in Example 9-2.

Example 9-2 smb.conf for joining Active Directory domain

[global]
realm = AD6380.LOCAL
workgroup = AD6380
security = ads
password server = SMB3LAB26

For the realm, take care to use the correct case, since Kerberos is case sensitive.
Use the fully-qualified name (that is, AD6380.LOCAL) for the realm and the short
name for the workgroup; otherwise, warnings might appear.

The minimum krb5.conf looks like Example 9-3.

Example 9-3 krb5.conf for joining Windows 200x Kerberos realm

[libdefaults]
default_realm = AD6380.LOCAL

[realms]
AD6380.LOCAL = {

kdc = SMB3LAB26:88
admin_server = SMB3LAB26

}

[domain_realm]
.kerberos.server = AD6380.LOCAL

Make sure the name of the Kerberos server is in the DNS in such a way that a
reverse lookup on the IP address returns the NetBIOS name of the KDC or the
NetBIOS name followed by the realm. It should not return the host name with a
domain attached. The easiest way to ensure this is by putting it in the /etc/hosts
entry.

Since Kerberos tickets are heavily time dependent, it is important to make sure
that the AD server and clients have the same time. Because Windows clients get
their time from the domain controller, the Linux client can use Samba tools to get
the time from the server as well. You do this using the net time set command.
This fetches the time from the AD server and sets the local clock.
 Chapter 9. Integration how-tos 197

When using Novell Linux Desktop, the heimdal and heimdal-tools packages
might not be installed by default. These are needed to connect to AD on
Windows 2003 Server.

You can test the Kerberos configuration by doing a kinit USERNAME@REALM to
make sure the password is accepted by the Windows 200x KDC.

To actually join the AD domain, you execute the following:

net ads join -U administrator

This prompts for the administrator password, for example, joining client machine
client1 to the domain AD6380 using administrative user idsadmin (see
Example 9-4).

Example 9-4 Example of joining client1 to domain AD6380

[root@client1 root]# net ads join -U idsadmin
idsadmin password:*******
Using short domain name -- AD6380
Joined 'CLIENT1' to realm 'AD6380.LOCAL'

Important: Make sure to use the right version of Kerberos (either MIT or
Heimdal). For AD on Windows Server® 2003, Heimdal should be at least at
Version 0.6 and MIT at least at Version 1.3.1. Also check to see if the kinit and
klist commands actually come from the correct implementation and not from
Java. The Java kinit is known not to work.

Important: Make sure clients and the Active Directory (or Kerberos) server
have the same time within a defined allowed skew.

Microsoft Windows servers use Simple Network Time Protocol (SNTP), which
is a simplified version of the (UNIX/Linux) Network Time Protocol (NTP). The
packets and formats are identical and thus are can be used together. This
means that the Linux clients can be synchronized with the AD servers using
ntp.

Important: Only newly created accounts in ADS or accounts that have had
their passwords changed once since migration work. If an account stems from
before the migration (or installation in the case of Administrator), the kinit
command returns a message about a wrong encryption. Changing the
password of the account resolves this problem.
198 Linux Client Migration Cookbook, Version 2

Joining a particular organizational unit can be done by first getting the correct
credentials and then joining the unit. For example, if you want to join the domain
(that is, create a computer account) in a container called Clients under the
organizational directory Computers/ITSO, you execute:

kinit Administrator@AD6380.LOCAL
net ads join “Computers\ITSO\Clients”

To check a join to an AD domain (at all times), use the command:

net ads testjoin

More details about joining an Active Directory domain can be found in the Samba
HOWTO collection section 6.4:

http://samba.org/samba/docs/Samba-HOWTO-Collection.pdf

9.2 Using winbind to make domain users known locally
After joining a domain as described in 9.1, “How to join a Windows domain” on
page 196, it is necessary to add all domain accounts to the Linux client if the
domain accounts are going to log on to the client. In smaller domains, this is not
a problem, but it is generally not good administrative practice. This means that
adding an account to the domain means adding an account to all clients. That
negates the advantage of using a domain.

In this section, we describe how to use winbind to avoid creating domain
accounts locally. The winbind daemon takes care of translating domain accounts
to uids and gids to the client operating system.

9.2.1 Common implementation of winbind
The winbind daemon reads its settings from the smb.conf file. You must add the
lines in Example 9-5 to the smb.conf to enable winbind to function.

Example 9-5 Lines added to smb.conf for winbind

[global]
winbind separator = +
idmap uid = 10000-20000
idmap gid = 10000-20000
winbind enum users = yes

Important: Since Windows 2003 uses SMB signing, you might have to put the
following line in the smb.conf file when trying to join a Windows 2003 ADS.

client use spnego = yes
 Chapter 9. Integration how-tos 199

http://samba.org/samba/docs/Samba-HOWTO-Collection.pdf

winbind enum groups = yes
template homedir = /home/%D+%U
template shell = /bin/bash

The separator means that accounts are written as “AD6380+Administrator” for
the Administrator account in the domain AD6380. The other entries give the uid
and gid range to use for domain accounts and what to use as shell and home
directory in case of actual logon. We have found that a plus sign (+) as a winbind
separator works most successfully within the Linux environment.

Alternatively, it is possible to not use a separator and domainname at all. This
way the default domain is used. To enable this, add the following line to the
smb.conf file:

winbind use default domain = yes

and probably change the template homedir to:

template homedir = /home/%U

All domain users show up without the domainname and separator. This might
cause problems if local users and domain users have the same name.

The idmap uid and gid entries tell winbind which range it can use to generate
uids and gids for domain accounts. Choose a range that does not overlap the
local users.

After these changes, the winbind daemon has to be started. Usually, this is done
using the command:

/etc/init.d/winbind start

Make sure the winbind daemon starts on system boot. On most distributions
(certainly on Red Hat Enterprise Linux and Novell Linux Desktop), this is done
using the following command:

chkconfig winbind on

Tip: Use the default domain option when in doubt. The separator and
domainname can lead to problems in applications. Using pam_mount for the
default domain avoids a lot of problems.

Important: If you have an extremely large domain, you might not be able to
incorporate all users in your idmap uid range. This is only problematic if you
use winbind on a domain client, which all users use through the network.
200 Linux Client Migration Cookbook, Version 2

The winbind functionality can be tested by using the wbinfo command. Executing
with the -u option shows all domain accounts translated and the -g option shows
all domain groups.

Example 9-6 Example output of wbinfo command

[root@client1 root]# wbinfo -u
AD6380+Administrator
AD6380+Guest
AD6380+TsInternetUser
AD6380+idsadmin
AD6380+krbtgt
AD6380+HOST/client1
AD6380+SMB3LAB26$

With these settings, the winbind daemon is able to translate domain accounts to
local users. We tell the system to actually use winbind by putting a reference in
the Name Service Switch (NSS) configuration.

The configuration file for NSS is /etc/nsswitch.conf. This file contains entries
such as:

passwd: files example

This means that when a request for a password comes in, first a routine in
/lib/libnss_files.so is called to resolve it and then a routine in
/lib/libnss_example.so. Once the request is resolved, the result is returned to the
application. To add winbind to the resolve path, we change the following lines in
/etc/nsswitch.conf in the following manner:

passwd: files winbind
group: files winbind

To test this, execute the command:

getent passwd

This returns not only the entries in the file /etc/passwd, but also the domain
accounts that were translated by winbind.

Example 9-7 Partial example output of getent passwd using winbind in NSS

[root@client1 root]# getent passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin

Important: The service called name service caching daemon (nscd) interferes
with proper functioning of winbind. Never run nscd on systems where
winbindd runs.
 Chapter 9. Integration how-tos 201

.......................
AD6380+Administrator:x:10000:10000:Administrator:/home/AD6380+Administrator:/bi
n/bash
AD6380+Guest:x:10001:10000:Guest:/home/AD6380+Guest:/bin/bash
AD6380+TsInternetUser:x:10002:10000:TsInternetUser:/home/AD6380+TsInternetUser:
/bin/bash
AD6380+idsadmin:x:10003:10000:idsadmin:/home/AD6380+idsadmin:/bin/bash
AD6380+krbtgt:x:10004:10000:krbtgt:/home/AD6380+krbtgt:/bin/bash
AD6380+HOST/client1:x:10005:10001:client1:/home/AD6380+HOST/client1:/bin/bash
AD6380+SMB3LAB26$:x:10006:10002:SMB3LAB26:/home/AD6380+SMB3LAB26_:/bin/bash

Because of the way that winbind works (namely, handing out the first uid in the
range to the first domain user it has to authenticate and then storing the
mapping), the mapping between domain user and uid is not the same on all
clients. This leads to problems if the clients are using a shared file system based
on NFS. The mechanisms discussed in 9.2.2, “Alternate implementations of
winbind” on page 202 avoid this problem.

The winbind daemon translates users and generates home directories and
shells. These home directories are not created by winbind. We show you how to
this in 9.4.3, “PAM and home directories” on page 212.

Using the winbind daemon creates the connection to the domain for translating
users. To enable domain users to log on to the Linux client, we need a change in
the PAM configuration, as shown in the section 9.4.1, “How to authenticate users
using winbind and PAM” on page 208.

9.2.2 Alternate implementations of winbind
The primary difference in the alternative implementations is the way that uid and
gid are generated by winbind. In the previous section, winbind chooses uid and
gid for each user from the range provided. This generally happens in the order
used, which means it is not the same on all clients in a domain.

This section describes two ways of handling this:

� idmap_rid backend to generate from Active Directory information

� idmap_ad backend to obtain uid and gid from an AD with an extended
schema (for example, extended with Services for UNIX)

Important: When winbind fails because the Kerberos connection is lost
because of time skew, the daemon has to be restarted after fixing the time
skew.
202 Linux Client Migration Cookbook, Version 2

These idmap back-ends are quite new and, thus, still a bit experimental. But both
remove one of the disadvantages of winbind as a solution in enterprise
environments.

idmap_rid backend
This back-end calculates a uid and gid for domain users based on the domain
SID. To enable this option, include the lines given in Example 9-8 in the smb.conf
file.

Example 9-8 Example of entries in smb.conf to use the idmap_rid backend

idmap uid = 10000-20000
idmap gid = 10000-20000
idmap backend = idmap_rid:AD6380=15000-20000
allow trusted domains = no

Use these settings and set the default domain to no to clearly distinguish the
domain accounts. Part of the output of getent passwd looks like Example 9-9.

Example 9-9 Partial output of getent passwd when using idmap_rid

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash
..................................
AD6380+administrator:x:15500:15513:Administrator:/home/administrator:/bin/bash
AD6380+guest:x:15501:15514:Guest:/home/guest:/bin/bash
AD6380+w2k3ad$:x:16003:15516:W2K3AD:/home/w2k3ad_:/bin/bash
AD6380+krbtgt:x:15502:15513:krbtgt:/home/krbtgt:/bin/bash
AD6380+testuser:x:16108:16121:Test User:/home/testuser:/bin/bash
AD6380+rhdt4$:x:16112:15515:rhdt4:/home/rhdt4_:/bin/bash
AD6380+rhdt4a$:x:16113:15515:rhdt4a:/home/rhdt4a_:/bin/bash
AD6380+ldapbind:x:16117:15513:ldapbind:/home/ldapbind:/bin/bash
AD6380+nld9$:x:16120:15515:nld9:/home/nld9_:/bin/bash

It is clear from the output in Example 9-9 that this is no longer a simple algorithm
for picking the uid and gid numbers one after the other in the allowed range. The
major advantage of this is that the mapping is the same on all clients within the
AD6380 domain.

idmap_ad backend
In the next section about LDAP, the concept of the Microsoft Services for UNIX
(SFU) is explained. Using the SFU, the schema for the Active Directory is
extended with uid and gid information. Using the idmap_ad backend, it is
possible to get at this information and use that with winbind.
 Chapter 9. Integration how-tos 203

This way the mapping on all clients is consistent, because the mapping is
actually done in the Active Directory.

The idmap_ad backend is enabled using the following line in the smb.conf file:

idmap backend = idmap_ad

9.3 How to use LDAP to connect to Active Directory
Active Directory is an implementation of the Lightweight Directory Access
Protocol (LDAP). Thus, we can use an LDAP client to connect to an AD to gather
information about users. However, since the AD is not designed to store
UNIX/Linux users, some of the necessary objects are missing in the default
schema. One of the first steps is to extend the schema with the needed
object-classes.

A simple way to extend the schema is to install the “Services for UNIX” (SFU)
from Microsoft. These include the object-classes needed to store the information
needed.

Install SFU using the default settings, as follows:

1. Extract files to a directory that is not C:\SFU, for example, C:\Temp\SFU.

2. Run setup.exe.

3. Accept Standard Installation.

4. On the Security Settings window, leave both options blank.

5. Choose Local Username Mapping Server and Network Information
Services.

6. Choose the domain name.

7. Reboot the AD server.

This installation has extended the schema of AD to include fields such as uid and
gid.

The next step is to create a user in the Active Directory to be used by LDAP
clients to bind to the directory. Choose a highly secure password and set it to not
expire.

Given the schema extensions, it is now possible to provide groups with a gid field
and users with uid, shell, and a home directory, as shown in Figure 9-1 on
page 205.
204 Linux Client Migration Cookbook, Version 2

Figure 9-1 Active Directory User properties window with UNIX Attributes

In this example, we have created a user called testuser with UID 5000, a Login
Shell, and a Home Directory. We have also created a group or Primary group
name/GID of Linuxusers with gid 5000.

More information about Services for UNIX and integrating Active Directory as the
directory for a Linux or UNIX client can be found in the document Solution Guide
for Windows Security and Directory Services for UNIX available from Microsoft.

To enable the system to use LDAP to connect to the Active Directory, you must
configure the LDAP configuration file, /etc/ldap.conf. This configuration file
contains the following information:

� Host of the directory, that is, the IP address of the Active Directory server (if
more than one, separated by spaces)

� The base node in the directory to start the search

� The bind user to use to connect to AD
 Chapter 9. Integration how-tos 205

� The password for the bind user (in plain text, so you secure the configuration
file)

� Scope to search

� SSL enablement

� A number of entries to map domain schema objects to objects needed by the
NSS

An example configuration file is shown in Example 9-10.

Example 9-10 Partial /etc/ldap.conf file

host 192.168.100.110
base cn=Users,dc=AD6380,dc=LOCAL
binddn cn=ldapbind,cn=Users, dc=AD6380,dc=LOCAL
bindpw Welcome2006
scope sub
ssl no
nss_base_passwd cn=Users,dc=AD6380,dc=LOCAL?sub
nss_base_shadow cn=Users,dc=AD6380,dc=LOCAL?sub
nss_base_group cn=Users,dc=AD6380,dc=LOCAL?sub
nss_map_objectclass posixAccount user
nss_map_objectclass shadowAccount user
nss_map_attribute uid sAMAccountName
nss_map_attribute uidNumber msSFU30UidNumber
nss_map_attribute gidNumber msSFU30GidNumber
nss_map_attribute loginShell msSFU30LoginShell
nss_map_attribute gecos name
nss_map_attribute userPassword msSFU30Password
nss_map_attribute homeDirectory msSFU30HomeDirectory
nss_map_objectclass posixGroup Group
nss_map_attribute uniqueMember msSFU30PosixMember
nss_map_attribute cn cn

The following entries are changed in the NSS configuration to enable the system
to use the domain users through LDAP:

passwd: files ldap
group: files ldap

To test this, use the command:

getent passwd

This should now also show the testuser entry in the passwd output. This is shown
in Example 9-11 on page 207.
206 Linux Client Migration Cookbook, Version 2

Example 9-11 Partial output of getent passwd using ldap in NSS

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
................................
testuser:ABCD!efgh12345$67890:5000:5000:Test User:/home/testuser:/bin/bash

So, instead of generating the uid and gid entries on each client, this method
takes those entries from Active Directory. However, this means that these entries
have to be put there in the first place.

The differences, advantages, and disadvantages of the two methods, winbind
and LDAP, were already mentioned in 4.2, “Integrating with existing network
services” on page 69.

Part of this section is based on the information available at:

http://enterprise.linux.com/enterprise/04/12/09/2318244.shtml?tid=102&tid=1
01&tid=100

9.4 Pluggable Authentication Modules and the domain
Once the Linux client is part of a domain (as described in 9.1, “How to join a
Windows domain” on page 196) and knows about the domain accounts using
either winbind (as described in 9.2, “Using winbind to make domain users known
locally” on page 199) or LDAP (as described in 9.3, “How to use LDAP to connect
to Active Directory” on page 204), we can configure the system to allow domain
accounts to log on.

Pluggable Authentication Modules (PAM) is a system for abstracting
authentication and authorization technologies. Using PAM modules, it is possible
to change the way applications authenticate or authorize accounts without having
to recompile the application.

In most distributions, the configuration of PAM is governed by files in /etc/pam.d/.
Usually there is one file per application. So, changing authentication modes for
an application is as simple as adding a corresponding module to the config file.

Important: Notice how the users show up without a domain name and without
a separator character. This also means that you should take care to prevent
overlap, that is, the same user in both local files and in the domain.
 Chapter 9. Integration how-tos 207

http://enterprise.linux.com/enterprise/04/12/09/2318244.shtml?tid=102&tid=101&tid=100

9.4.1 How to authenticate users using winbind and PAM
Since the PAM implementation of Linux distribution differs, we look at our test
distributions in detail.

Winbind and PAM on Red Hat Desktop
Red Hat has implemented the pam_stack module. This means that configuration
files in /etc/pam.d/ can use settings from other files, essentially stacking settings.
For this purpose, Red Hat has implemented most of the settings in the
/etc/pam.d/system-auth configuration file. This means that we only have to add
winbind PAM modules to this file, and then, all applications using PAM are
winbind aware.

Because the file /etc/pam.d/system-auth is generated by authconfig, care has to
be taken in running this command after making changes manually.

Example 9-12 A sample system-auth file contains the lines in Example 9-12.Example of part of
/etc/pam.d/system-auth file for winbind authentication

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_winbind.so use_first_pass
auth sufficient /lib/security/$ISA/pam_krb5.so use_first_pass
auth sufficient /lib/security/$ISA/pam_smb_auth.so use_first_pass nolocal
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account sufficient /lib/security/$ISA/pam_winbind.so
........................

Once pam_winbind.so has been incorporated into the system-auth file, all
applications using the file through pam_stack.so are now winbind aware. This
means that we can log on to the Linux client using a domain account,
remembering to use:

<domainname><winbind-separator><accountname>

So an example in our test domain is AD6380+Administrator.

If it is problematic that winbind-enabled users are available for all applications
using the pam_stack module, then pam_winbind.so calls could be placed only in
the configuration files for those applications that need it.
208 Linux Client Migration Cookbook, Version 2

Winbind and PAM on Novell Linux Desktop
The Novell Linux Desktop (NLD) does not use a pam_stack module to get
settings from a central file. This means that for each application that needs to use
winbind authentication, you must add the module to the configuration file in
/etc/pam.d.

We take the configuration file for sshd as an example. After incorporating the
pam_winbind.so module, the file looks like Example 9-13.

Example 9-13 Configuration file /etc/pam.d/sshd after incorporating winbind

#%PAM-1.0
auth sufficient pam_winbind.so
auth required pam_unix2.so use_first_pass # set_secrpc
auth required pam_nologin.so
auth required pam_env.so
account required pam_unix2.so
account sufficient pam_winbind.so
account required pam_nologin.so
password required pam_pwcheck.so
password required pam_unix2.souse_first_pass use_authtok
session required pam_unix2.sonone # trace or debug
session required pam_limits.so

For every PAM-enabled application that you want to enable for domain users,
you must add both the auth and account line for pam_winbind.so (before the
nologin lines). Also, to prevent a double password prompt, you should add the
parameter use_first_pass to any pam module needing a password in the
configuration file apart from the pam_winbind.so module.

9.4.2 How to authenticate users using LDAP and PAM
To be able to use PAM together with LDAP to authenticate users, we need to do
extra configuration for LDAP.

Because the objects in the SFU-extended Active Directory schema do not have
the same name as the objects needed by PAM, we need some mapping entries.
An example is shown in Example 9-14.

Example 9-14 Mapping entries for /etc/ldap.conf file

pam_login_attribute sAMAccountName
pam_filter objectclass=user
pam_member_attribute msSFU30PosixMember
pam_groupdn cn=unixusergroup,dc=AD6380,dc=LOCAL
pam_password ad
 Chapter 9. Integration how-tos 209

The highlighted line in Example 9-14 on page 209 enables us to narrow the
users from AD that can actually connect to the Linux client. PAM only accepts the
user if the user is a member of the group unixusergroup in AD.

Since the PAM implementation of Linux distribution differs, we look at our test
distributions in detail.

LDAP and PAM on Red Hat Desktop
Red Hat has implemented the pam_stack module. This means that configuration
files in /etc/pam.d/ can use settings from other files, essentially stacking settings.
For this purpose, Red Hat has implemented most of the settings in the
/etc/pam.d/system-auth configuration file. This means that we only have to add
LDAP PAM modules to this file, and then, all applications using PAM are LDAP
aware. The PAM module for LDAP is called pam_ldap.

Since the file /etc/pam.d/system-auth is generated by authconfig, you must take
care in running this command after making changes manually.

Example 9-15 A sample system-auth file contains the lines in
Example 9-15.Example of part of /etc/pam.d/system-auth file for LDAP authentication

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_ldap.so use_first_pass
auth sufficient /lib/security/$ISA/pam_krb5.so use_first_pass
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account required /lib/security/$ISA/pam_ldap.so
........................

Once pam_ldap.so has been incorporated into the system-auth file, all
applications using the file through pam_stack.so are now LDAP aware. This
means that we can log on to the Linux client using a domain account.

If it is problematic that domain users are available for all applications using the
pam_stack module, then you could place pam_ldap.so calls only in the
configuration files for those applications that need it.

Important: Take care to put pam_ldap as required in the account section;
otherwise, a user can get through that does not belong to the group that was
entered in /etc/ldap.conf as required.
210 Linux Client Migration Cookbook, Version 2

Example 9-16 shows the output of login with a domain user using SSH where the
domain user is not part of the unixusergroup group (as defined in Example 9-14
on page 209), and the account field for pam_ldap is sufficient.

Example 9-16 Example of ssh succeeding even with incorrect group membership

[root@RHDT4a ~]# ssh testuser@localhost
testuser@localhost's password:
You must be a msSFU30PosixMember of cn=unixusergroup,dc=AD6380,dc=LOCAL to
login.
Last login: Fri Jan 13 10:09:34 2006 from rhdt4a
-bash-3.00$

Example 9-17 shows the output when the pam_ldap account field is required.
The login fails but no helpful message is shown.

Example 9-17 Example of ssh failing because of incorrect group membership

[root@RHDT4a ~]# ssh testuser@localhost
testuser@localhost's password:
Permission denied, please try again.

LDAP and PAM on Novell Linux Desktop
The Novell Linux Desktop (NLD) does not use a pam_stack module to get
settings from a central file. This means that for each application that needs to use
LDAP authentication, the module has to be added to the configuration file in
/etc/pam.d.

We take the configuration file for sshd as an example. After incorporating the
pam_ldap.so module, the file looks like Example 9-18.

Example 9-18 Configuration file /etc/pam.d/sshd after incorporating LDAP

#%PAM-1.0
auth sufficient pam_ldap.so
auth required pam_unix2.so use_first_pass # set_secrpc
auth required pam_nologin.so
auth required pam_env.so
account required pam_unix2.so
account required pam_ldap.so
account required pam_nologin.so
password required pam_pwcheck.so
password required pam_unix2.souse_first_pass use_authtok
session required pam_unix2.sonone # trace or debug
session required pam_limits.so
 Chapter 9. Integration how-tos 211

For every PAM-enabled application that you want to enable for domain users,
you must add both the auth and account line for pam_ldap.so (before the nologin
lines). Also to prevent a double password prompt, add the parameter
use_first_pass to any pam module needing a password in the configuration file
apart from the pam_ldap.so module.

9.4.3 PAM and home directories
Domain-enabled users do not exist on the client locally. Either the winbind
configuration in /etc/samba/smb.conf or the entries in the SFU extension of the
AD schema tell the system which shell to use and where the home directory of
the user is located (this function is performed by the /etc/passwd file for local
users). However, the home directory is not created by either winbind or LDAP.

This problem can be solved in a number of ways:

� Create all possible home directories (empty) on all clients.

� Create all home directories on a server file system that is mounted on all
clients (either through SMB or NFS).

� Use the pam_mkhomedir.so module to create a home directory at first logon.

The first two options seem straightforward to implement but lead to management
issues every time a user is added to the domain. The last option is seen as a best
practice and consists of adding a line to the PAM configuration files that creates
the home directory if it does not exist. This change of the PAM configuration file
has to be done once when the Linux client “master” is created.

Red Hat Desktop
On Red Hat systems, the pam_mkhomedir module is added to
/etc/pam.d/system-auth. This way the home directory is created when a user
logs in through a login (for example, a terminal prompt), a secure shell session,
or a graphical logon.

The line that you must add to the file is shown in Example 9-19.

Example 9-19 Example of part of the /etc/pam.d/system-auth file, including pam_mkhomedir

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required /lib/security/$ISA/pam_env.so

Important: Take care to put pam_ldap as required in the account section;
otherwise, a user can get through who does not belong to the group entered in
/etc/ldap.conf as required.
212 Linux Client Migration Cookbook, Version 2

auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_winbind.so use_first_pass
auth sufficient /lib/security/$ISA/pam_krb5.so use_first_pass
auth sufficient /lib/security/$ISA/pam_smb_auth.so use_first_pass nolocal
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account sufficient /lib/security/$ISA/pam_winbind.so
........................
session optional /lib/security/$ISA/pam_mkhomedir skel=/etc/skel umask=0022

The skel option tells the module where to get the skeleton files to copy to the
newly created home directory. The umask governs the creation and subsequent
permission settings on the directory.

Novell Linux Desktop
Since NLD does not use system-auth and pam_stack.so, a pam_mkhomedir.so
has to be added to every configuration file for applications that let users log on.
Examples of these applications are SSH, telnet, gdm, xdm, and login. The first
login of every domain user through any of these applications creates the home
directory.

The line that is added to the file is of the form:

session optional pam_mkhomedir skel=/etc/skell umask=0022

An example for the ssh application is given in Example 9-20.

Example 9-20 Example of /etc/pam.d/sshd file including pam_mkhomedir.so

#%PAM-1.0
auth sufficient pam_ldap.so
auth required pam_unix2.so use_first_pass
auth required pam_nologin.so
auth required pam_env.so
account required pam_unix2.so
account required pam_ldap.so
account required pam_nologin.so
password required pam_pwcheck.so
password required pam_unix2.so use_first_pass use_authtok
session optional pam_mkhomedir.so skel=/etc/skel umask=0022
session required pam_unix2.so none # trace or debug
session required pam_limits.so

The skel option tells the module where to get the skeleton files to copy to the
newly created home directory. The umask governs the creation and subsequent
permission settings on the directory.
 Chapter 9. Integration how-tos 213

Example 9-21 show how a home directory is created when the domain user
testuser logs on for the first time.

Example 9-21 Output of logging in with domain user for first time

nld9:~ # ssh testuser@localhost
Password:
Creating directory '/home/testuser'.
Creating directory '/home/testuser/bin'.
Creating directory '/home/testuser/Documents'.
Creating directory '/home/testuser/public_html'.
Creating directory '/home/testuser/.xemacs'.
Creating directory '/home/testuser/.fonts'.

Last login: Fri Jan 13 16:09:47 2006 from localhost
testuser@nld9:~> pwd
/home/testuser

9.5 How to mount a share on the Linux client
This section describes in general some of the ways to approach data on
Windows shares.

One way is to permanently connect the share by mounting it somewhere in the
filesystem. The shares can either be mounted using an smb mount or a CIFS
mount.

If mounting is not an option, use the command smbclient. The smbclient works
similarly to an ftp-client. Using the smbclient, it is possible to get and put files
from and to a Windows share.

9.5.1 Mounting a share using smbfs
A share is mounted using the mount command in the following way:

mount -t smbfs //servername/sharename /mountpoint -o user=domainuser

The mount command calls smbmount to perform the mount of the share with the
name sharename on server servername on the mountpoint specified. To connect
to the server, the user domainuser is used and the command prompts for the
password to use.

This is the most commonly used way to mount Windows share on non-Windows
operating systems using Samba.
214 Linux Client Migration Cookbook, Version 2

However, if the share resides on a server that performs SMB signing (most
recent Windows servers do), this fails with an error message. This is because the
Samba client does not handle SMB signing and, thus, cannot mount the share.

9.5.2 Mounting a share using CIFS
Common Internet File System (CIFS) is a platform-independent file sharing
system built around the principles in the SMB-based filesystems of Microsoft.
Recent 2.6 Linux kernels have CIFS built-in. Mounting a share as a CIFS
filesystem enables the Linux client to go around the SMB signing problem
mentioned before.

Also, a CIFS mount can be used to mount Microsoft DFS™ filesystems, which is
something that smbmount also cannot handle.

The syntax for a mount using CIFS is highly similar to a mount using smbfs:

mount -t cifs //servername/sharename /mountpoint -o user=domainuser

9.5.3 Use of smbclient
The smbclient command essentially turns a Windows share into an ftp-server.
The command is invoked as follows:

smbclient //servername/sharename -U domainuser -W domainname

The command prompts for the password and connects to the share. Some of the
commands that are available in the smbclient environment are:

� get - retrieves a file from the share to the local filesystem
� put - copies a file from the local filesystem to the share
� cd - changes working directory in the share
� lcd - changes working directory in the local filesystem
� help - shows all of the available commands
� quit - exits the smbclient environment

Example 9-22 shows how to connect to a share and how to get help on the
commands in the smbclient environment.

Example 9-22 Example use of smbclient to connect to a Windows share

nld9:~ # smbclient //w2k3ad.ad6380.local/share1 -U administrator
Password:
Domain=[AD6380] OS=[Windows Server 2003 3790] Server=[Windows Server 2003 5.2]
smb: \> help get
HELP get:

Tip: Because of future compatibility, use CIFS where possible.
 Chapter 9. Integration how-tos 215

 <remote name> [local name] get a file

smb: \>

9.6 Automatically mounting home directories at logon
One of the great functionalities of Windows is the Single Sign On (SSO) function.
Once you log on to a Windows operating system, it takes your password to try to
mount shares that you have installed as remountable at next logon.

A similar functionality can be created on a Linux client using the pam_mount
module. This PAM module is not completely mature yet. It is not included in all
enterprise distributions. But with a little extra work, it can be made to function.

The SMB and CIFS filesystems do not allow the creation of symbolic links or
sockets, because the underlying Windows share does not allow these
constructs. This means that any application that needs to create a link or a
socket cannot run from such a mounted filesystem.

The pam_mount module not only mounts SMB and CIFS file systems, but also
NCP, loop-mounted encrypted file systems, and basically any file system
handled by the mount command.

9.6.1 pam_mount on Red Hat Desktop
The module is added to the /etc/pam.d/system-auth file to enable automatic
mounting for all login modes. The module consists of both an “auth” part, which

Important: Since September 2005, pam_mount seems to be getting more
attention. New versions become available more rapidly. Although, these do
not work on all distributions.

Restriction: Take care when mounting SMB shares as users’ home
directories when using graphical logon. Some graphical desktop environments
do not work in a SMB-mounted file system, most importantly, those that
depend on symbolic links or sockets, because SMB file systems do not work
with symbolic links and sockets.

Tip: Mount the user’s domain share in a subdirectory of the home directory,
thus, avoiding all issues with desktop environments.
216 Linux Client Migration Cookbook, Version 2

acquires the password through PAM, and a “session” part, which does the actual
mounting. Because this is a session module, this enables an unmount of the file
systems when the session closes.

The lines to add look like this:

auth required pam_mount.so

And:

session optional pam_mount.so

The auth line should go before the pam_unix and pam_winbind lines. The
session line should go in the session section. Remember to add a
use_first_auth argument for the line not having one before adding pam_mount;
otherwise, a second password prompt shows for that entry.

The pam_mount module has its own configuration file
/etc/security/pam_mount.conf. This file contains settings such as where the
mount and umount commands are found, debug settings, whether mount points
should be created, and which file systems should be mounted for which users.

A minimum pam_mount.conf file for just mounting SMB shares looks like
Example 9-23.

Example 9-23 Minimum pam_mount.conf

debug 1
mkmountpoint 1
options_require nosuid,nodev
lsof /usr/sbin/lsof
fsck /sbin/fsck
losetup /sbin/losetup
unlosetup /sbin/losetup -d
smbmount /usr/bin/smbmount
umount /usr/bin/smbumount
volume * smb smb3lab26 & /home/&/domainshare uid=&,dmask=0750 - -

This enables debugging on pam_mount. Mount points are created when they are
non-existent and the share to be mounted is indicated in the last line.

The asterisk near the beginning of the last line in the example above indicates
that this volume is mounted for every user. The ampersand character (&) in the

Tip: Check if you need automatic mounting for all modes to log in. For
example, a su from root to a user does not work because a password is not
provided.
 Chapter 9. Integration how-tos 217

definition is expanded to the username of the user logging in. So, the volume line
in Example 9-23 on page 217 tells pam_mount to mount a share named after the
username from server smb3lab26 onto mount point
/home/<username>/domainshare. The options indicate that the mount should be
owned by the indicated uid and have permissions as indicated by dmask.

A possible problem when mounting shares from a domain is that the ampersand
character (&) in the pam_mount.conf file expands to the entire username,
including the domain name and the winbind separator. Thus, it is best when
using pam_mount to go with the option winbind use default domain = yes in
the smb.conf file to get domain usernames without the domain and winbind
separator. Otherwise, extra scripting is needed to perform removal of these parts
of the username before performing a mount.

9.6.2 pam_mount on Novell Linux Desktop
The situation using Novell Linux Desktop and pam_mount is slightly different
from using Red Hat Desktop. The newest version of pam_mount does compile
on Novell Linux Desktop. However, using pam_mount with sshd seems
extremely difficult.

Pam_mount is added to all files in /etc/pam.d for all services that need automatic
mounting. The module consists of both an “auth” part, which acquires the
password through PAM; and a “session” part, which does the actual mounting.
Because this is a session module, this enables an unmount of the file systems
when the session closes.

The lines to add look like this:

auth required pam_mount.so

Important: In some cases, the pam_mount module fails to setuid root, which
means that normal mount commands fail with an “only root can do that”
message. This is, however, becoming much less frequent.

Tip: When using pam_mount, use simple usernames for domain users. This
means setting the option use default domain as described in 9.2.1, “Common
implementation of winbind” on page 199.

Important: Since some versions of OpenSSH split the authentication off into a
separate process, the password cannot be passed from the auth part of
pam_mount to the session part of pam_mount. This means that pam_mount
does not work in those cases.
218 Linux Client Migration Cookbook, Version 2

And:

session optional pam_mount.so

The auth line should go before the pam_unix and pam_winbind lines. The
session line should go in the session section. Remember to append a
use_first_auth argument to each auth line preceding the pam_mount line;
otherwise, a second password prompt will be triggered by the pam_mount entry.

The pam_mount module has its own configuration file
/etc/security/pam_mount.conf. This file contains settings such as where the
mount and umount commands are found, debug settings, whether mount points
should be created, and which file systems should be mounted for which users.

A minimum pam_mount.conf file for just mounting SMB shares looks like
Example 9-23 on page 217.

9.7 How to use network printers in the domain
Being able to use existing printers is one of the most important preconditions for
a new type of client in any environment. We do not want to keep separate printing
environments for every type of client.

This means that the Linux client has to use the (network) printers available in the
domain. We can achieve this in two ways:

� Print directly to the printer using its network interface.
� Print to the printer using the Windows print server and its SMB interface.

Both options are available using CUPS from the Linux client. We suggest using
the second option, however, since all printing in the domain (and user’s
environment) is equal. This means there are just prints and not Windows prints
and Linux prints.

You need to be running CUPS on the Linux client. Check this by:

/etc/init.d/cups status

This should return that CUPS is running and give its PID. If not, start it using:

/etc/init.d/cups start
 Chapter 9. Integration how-tos 219

Make sure that CUPS is started at the next reboot using:

chkconfig cups on

You also need to make sure that there is a link to smbspool in the CUPS
back-end directory:

ls -al /usr/lib/cups/backend/smb
lrwxrwxrwx 1 root root 21 Mar 1 12:34 /usr/lib/cups/backend/smb ->
../../../bin/smbspool

You can verify smb support in CUPS using this command:

lpinfo -v | grep smb
network smb

You can create a new printer in two ways:

� Using the lpadmin command
� Using the CUPS Web interface

We describe both methods in detail.

Create a printer using lpadmin command
You can create a printer from the command line. This enables scripted creation of
many printers. This means that creation of domain printers can be incorporated
into a login profile, such that users do not have to create printers manually on
their client.

To create the printer on the command line, we use the following command:

lpadmin -p printer1 -E -v smb://Administrator:*****@SMB3LAB26/printer1 -D
"printer1 in AD6380 example domain"

You need to change the fields to the names in your own domain. The first printer1
is the local printer name and the second printer1 is the name of the printer share.
The server SMB3LAB26 is the print server. If the printer share is available for
everyone, you can leave out the username and password in the smb: URL. Since
using a user-protected printer share exposes passwords in scripts and login
profiles, the best practice is to make printer shares available for everyone.

You can also add the -m option to set the model. Or use the -l option to set a
location.
220 Linux Client Migration Cookbook, Version 2

Create a printer using CUPS Web interface
You could accomplish the same thing as above by using the CUPS Web
interface. We do this following these steps:

1. In a browser, load the CUPS administrative interface (Figure 9-2) using this
URL: http://localhost:631/.

Figure 9-2 CUPS Web interface initial page

2. Then click Manage Printers. See Figure 9-3 on page 222.
 Chapter 9. Integration how-tos 221

Figure 9-3 CUPS Web interface Manage Printers page

3. Click Add Printer. See Figure 9-4 on page 223.
222 Linux Client Migration Cookbook, Version 2

Figure 9-4 CUPS Web interface Add Printer page

4. You get a page where you enter the Name, Location, and Description of the
printer. Then click Continue. See Figure 9-5 on page 224.
 Chapter 9. Integration how-tos 223

Figure 9-5 CUPS Web interface Device for the printer

5. On the next page, you choose the device for the printer. Choose Windows
Printer via SAMBA and click Continue. See Figure 9-6 on page 225.
224 Linux Client Migration Cookbook, Version 2

Figure 9-6 CUPS Web interface Device URI for printer

6. The next page asks for a device URI. Input:

smb://<domainname>:<password>@<printserver>/<printershare>

Or:

smb://<printserver>/<printershare>

Then click Continue. See Figure 9-7 on page 226.
 Chapter 9. Integration how-tos 225

Figure 9-7 CUPS Web interface Model/Driver for printer

7. On the next page, choose a model and driver for the printer and click
Continue. See Figure 9-8 on page 227.
226 Linux Client Migration Cookbook, Version 2

Figure 9-8 CUPS Web interface specific Model and Driver for printer

8. The next window gives a more detailed selection based on the model chosen
on the previous screen. Choose the correct one and click Continue.
See Figure 9-9 on page 228.
 Chapter 9. Integration how-tos 227

Figure 9-9 CUPS Web interface Printer added successfully message

9. You have added the printer to CUPS. See Figure 9-10 on page 229.
228 Linux Client Migration Cookbook, Version 2

Figure 9-10 CUPS Web interface Manage Printers page with printer1 added

The screen captures in this section are created using a Red Hat Desktop client
connected to an Active Directory domain AD6380 with domain controller
smb3lab26.

To test the printer you added using lpadmin or the Web interface just print a file to
it, or use the Print Test Page button on the Web interface.

Important: Using a username and password in the printer creation process
will expose your password in the CUPS definition files. It might be best to use
a special printer user or make printer shares available for everyone.
 Chapter 9. Integration how-tos 229

230 Linux Client Migration Cookbook, Version 2

Part 4 Appendixes

In part 4 of this book, we include:

Appendix A, “Linux glossary for Windows users” on page 233

Appendix B, “Using enterprise management tools” on page 255

Appendix G, “Application porting” on page 329

Appendix F, “Desktop automation and scripting” on page 321

Appendix E, “Client personalization” on page 313

Appendix C, “Automating desktop migration using Versora Progression Desktop”
on page 277

Appendix D, “Multi-station computing deep dive using Userful Desktop Multiplier”
on page 289

Part 4
© Copyright IBM Corp. 2004, 2006. All rights reserved. 231

232 Linux Client Migration Cookbook, Version 2

Appendix A. Linux glossary for Windows
users

This appendix describes basic terms.

In this appendix, we discuss the following topics:

� “What does it all mean” on page 234

� “Common Linux Terms” on page 234

A

© Copyright IBM Corp. 2004, 2006. All rights reserved. 233

What does it all mean
For a Microsoft Windows user first delving into the world of Linux, there are many
new terms to learn. This glossary explains briefly the meaning and significance of
many of the terms, acronyms, and abbreviations common to Linux products.
(Some of these terms are not specific to Linux, but still might be new to many
Windows users.) This document should help lessen some of the confusion
surrounding Linux; however, most common hardware, software, and
communications terms are not included here, because they are easily found
elsewhere.

If you cannot find a word you are looking for here, there are many other sources
of acronyms, abbreviations, and general computing terms (not all of them
specific to Linux) from which to choose. Because some terms are likely to appear
in one dictionary, but not another, and because some definitions can be clearer
or more comprehensive in one source than in another, here is a selection to
choose from, in alphabetical order:

� Free Online Dictionary of Computing

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?Free+On-line+Dictionary

� IBM Terminology Web site

http://www-306.ibm.com/software/globalization/terminology/

� Lucent Technologies Glossary

http://www.lucent.com/search/glossary

� TechWeb TechEncyclopedia

http://www.techweb.com/encyclopedia

� Ugeek Technical Glossary

http://www.geek.com/glossary/glossary.htm

� Whatis.com

http://www.whatis.com

Common Linux Terms
Account Name Same as Login ID, User ID, or Username. The name

assigned to a user on a Linux system. Multiple users can

Note: In the interest of keeping the definitions short, some might be
oversimplified. They are not meant to be in-depth tutorials, but simply to
provide a general explanation for a new user.
234 Linux Client Migration Cookbook, Version 2

http://www-306.ibm.com/software/globalization/terminology/
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?Free+On-line+Dictionary
http://www.lucent.com/search/glossary
http://www.techweb.com/encyclopedia
http://www.geek.com/glossary/glossary.htm
http://www.whatis.com

be set up on a system with unique account names, each
with varying access (permission) levels. After Linux
installation, account names are assigned by the
Superuser, or root operator.

ACPI (Advanced Configuration and Power Interface)
The Advanced Configuration and Power Interface
provides power management functionality on x86-based
platforms.

ALSA (Advanced Linux Sound Architecture)
A framework for accessing sound cards and other audio
devices under Linux. ALSA includes support for most
popular audio chips and adapters. ALSA has replaced
OSS on most distributions. (Also, see OSS.)

APM (Advanced Power Management™)
An industry standard for allowing the system processor
and various components to enter power-saving modes,
including suspend, sleep, and off. APM software is
especially important for mobile devices, because it saves
battery power.

Archive A single large file containing multiple files, usually
compressed to save storage space. Often created to
facilitate transferring between computers. Popular
archival formats include arj, tar, and zip.

Awk (Aho, Weinberger, and Kernighan)
A programming language useful for its pattern matching
syntax, and often used for data retrieval and data
transformation. A GNU version is called Gawk.

Background Process A program that is running without user input. A number of
background processes can be running on a multitasking
operating system, such as Linux, while the user is
interacting with the foreground process (for example, data
entry). Some background processes–daemons, for
example–never require user input. Others are merely in
the background temporarily while the user is busy with the
program presently running in the foreground.

Bash (Bourne Again SHell)
An enhanced version of the Bourne Shell. (Also, see Korn
Shell.)

BDF Fonts A variety of bitmapped fonts for the X Window System.
(Also, see PostScript Fonts and TrueType Fonts.)
 Appendix A. Linux glossary for Windows users 235

Bin A directory containing executable programs, primarily
binary files.

Binaries Source code that has been compiled into executable
programs. In the Linux world, some software is distributed
as source code only; other packages include both source
and binaries; still others are distributed only in binary
format.

Boot Disk A disk (floppy or CD) containing enough of an operating
system (such as Linux) to boot up (start) the computer
and run some essential programs from the command line.
This might be necessary if the system was rendered
non-bootable for some reason. A boot disk can be used to
partition and format the hard drive, restore the Master
Boot Record, or copy specific files, among other things.

Bootloader An application that handles the initial startup of the
computer. Bootloaders set up the initial environment, and
then hand off the process to the selected operating
system. (Also, see GRUB and LILO.)

Bot Short for Robot. A program designed to search for
information about the Internet with little human
intervention.

Bourne Shell A popular command line shell offering many advantages
over the DOS command prompt. (Also, see Bash and
Korn Shell.)

BSD (Berkeley Software Distribution) UNIX
UNIX distribution from University of California at Berkeley.
(Also, see FreeBSD.)

Bzip2 A newer file compression program for Linux, providing
smaller file sizes than Gzip. The file extension is usually
.bz2.

CGI (Common Gateway Interface)
Used on Web servers to transmit data between scripts or
applications and then return the data to the Web page or
browser. CGI scripts are often created using the Perl
language and can generate dynamic Web content
(including e-commerce shopping baskets, discussion
groups, and survey forms).

CHS (Cylinder/Head/Sector)
Disk information required by FDISK during partitioning.

Client A machine that requests services (e-mail, for example)
from a server.
236 Linux Client Migration Cookbook, Version 2

Cluster A network of workstations (PCs or other) running Linux.
(Also, see Beowulf.)

Command Line Interface (CLI)
A full-screen or windowed text-mode session where the
user executes programs by typing commands with or
without parameters. The CLI displays output text from the
operating system or program and provides a command
prompt for user input.

Command Prompt The DOS, Windows, and OS/2® term for the part of the
command line interface where the user types commands.
(Also, see Shell Prompt.)

Compile To turn programming source code into an executable
program.

Compiled Language A language that requires a compiler program to turn
programming source code into an executable
machine-language binary program. After compiling once,
the program can continue to be run from its binary form
without compiling again. Compiled languages and
programs tend to be faster than interpreted or p-code
languages, but require an extra step of compiling before
running the application. Examples of compiled languages
are C and C++, COBOL, and FORTRAN.

Compiler A program used to turn programming source code into an
executable program.

Console Application A command line program that does not require (or
perhaps even offer) a graphical user interface to run.

Cron A Linux daemon that executes specified tasks at a
designated time or interval.

Daemon A background process of the operating system that
usually has root security level permission. A daemon
usually lurks in the background until something triggers it
into activity, such as a specific time or date, or time
interval.

Desktop The operating system user interface, which is designed to
represent an office desk with objects on it. Rather than
physical telephones, lamps, and in/out baskets, the
operating system desktop uses program and data icons,
windows, taskbars, and the like. There are many different
desktop environments available for Linux, including KDE
and GNOME, that can be installed by a user. (Also see
 Appendix A. Linux glossary for Windows users 237

the definitions for GUI, Window Manager, and X Window
System in this section.)

Device Driver A program that serves as an intermediary between the
operating system and a device (such as ports, drives,
monitors, or printers) defining to the operating system
what capabilities the device has and translating the
operating system commands into instructions the device
understands.

Distribution A packaging of the Linux kernel (core) with various user
interfaces, utilities, drivers, and other software into a user
deliverable. Often available as a free download or in a
low-cost CD-ROM package. Popular distributions include
Red Hat, SUSE, and Debian. Sometimes referred to as a
“distro.”

Dpkg (Debian Package Manager)
A packaging and installation tool for Internet downloads,
included with Debian Linux, but compatible with other
distributions. It produces files with a .deb extension.
Similar to RPM.

Emacs (Editing with MACroS)
A popular text editor, usually used as a console
application. (Also, see Vi.)

Enlightenment One of several user interfaces (window managers). For
more about Enlightenment, see:

http://www.enlightenment.org

(Also, see GNOME, KDE, and X Window System.)

Environment variable A variable used in scripts or console commands that
refers to various environment settings. A common
environment variable is $HOME, which points to the
current user’s home directory.

Executable bit The part of a file which determines if a file can be
executed directly. Files without the executable bit are
considered data files. Note that it is usually possible to
execute files without the executable bit set if a helper
application is used. (For instance, perl ./noexec.pl will
still run the application noexec.pl, even if the executable
bit is not set.)

File Extension The trailing characters on a file name that are found after
a period (.). The file extension usually describes what type
of file it is. Unlike Windows, executables on Linux usually
do not have a file extension.
238 Linux Client Migration Cookbook, Version 2

http://www.enlightenment.org

File System A set of programs that tells an operating system how to
access and interpret the contents of a disk or tape drive,
or other storage medium. Common file systems include:
FAT and NTFS on Windows and ext3 and ReiserFS on
Linux.

Filter A program that reads data (from a file, program output, or
command line entry) as input, processes it according to a
set of predefined conditions (for example, sorted
alphabetically) and outputs the processed data. Some
filters include Awk, Grep, Sed, and Sort.

Finger A Linux command that provides information about users
that are logged on.

Foreground Process In a multitasking operating system, such as Linux, the
foreground process is the program that the user is
interacting with at the present time (for example, data
entry). Different programs can be in the foreground at
different times, as the user jumps between them. In a
tiered windowing environment, it is the topmost window.

FreeBSD (Free Berkeley Software Distribution)
Similar to Linux in that it includes many GNU programs
and runs many of the same packages as Linux. However,
some kernel functions are implemented differently. (Also,
see BSD UNIX.)

Fsck (File System Check)
The command for scanning a disk for errors and fixing
those errors if possible. Similar to the ScanDisk tool on
Windows.

FTP (File Transfer Protocol)
A method of transferring files to and from other
computers–often software repositories.

GCC (GNU C Compiler)
A high-quality C compiler governed by the GPL.

GIMP (GNU Image Manipulation Program), The
A popular image editor for Linux.

GNOME (GNU Network Object Model Environment)
One of several user interfaces (window managers) for
Linux, built with GTK+. For more about GNOME, see:

http://www.gnome.org
 Appendix A. Linux glossary for Windows users 239

http://www.gnome.org

In verbal communication, the G is not silent, as in
Guh-Nome. (Also, see Enlightenment, KDE, and X
Window System.)

GNU (GNU is Not UNIX) Project
An effort of the Massachusetts Institute of Technology
(MIT) Free Software Foundation (FSF) to develop and
promote alternatives to proprietary UNIX
implementations. GNU software is licensed under the
GPL.

GNU/Linux Same as Linux. So-called because many of the
components included in a Linux distribution are GNU
tools.

GPL (GNU General Public License)
A common usage and redistribution license. Any
derivation of a work released under the GPL must also be
released under the GPL or similar license. This includes
application that interacts with a GPL library. For a copy of
the GPL agreement, see:

http://www.gnu.org/copyleft/gpl.html

Grep (Global Regular Expression® and Print)
A tool that searches files for a string of text and outputs
any line that contains the pattern.

GRUB (GRand Unified Bootloader)
A partition boot manager utility, capable of booting
operating systems. GRUB provides a graphical menu to
select which operating system to boot. GRUB has
replaced LILO on most distributions. (Also, see LILO.)

GTK+ (GIMP ToolKit) A powerful, fast open source graphics library for the X
Window System on Linux, used by programmers to create
buttons, menus, and other graphical objects. In verbal
communication, it is called GTK. (Also, see GNOME,
Motif, and Qt.)

GUI (Graphical User Interface)
The collection of icons, windows, and other on-screen
graphical images that provides the user’s interaction with
the operating system. (Also, see Desktop and Window
manager.)

Gzip (GNU zip) The original file compression program for Linux. Recent
versions produce files with a .gz extension. (A .z or .Z
extension indicates an older version of Gzip.)
Compression is used to compact files to save storage
240 Linux Client Migration Cookbook, Version 2

http://www.gnu.org/copyleft/gpl.html

space and reduce transfer time. (When combined with
Tar, the resulting file extensions might be .tgz, .tar.gz, or
.tar.Z.)

Hard Link Hard links are a cross between a shortcut to a file and a
copy of a file. When hard linking, no data is copied, but a
new entry to the original data is created. When the
original file is deleted, the hard link pointing to the original
data will remain. Hard links can only point to files on the
same partition. (Also, see Symbolic Link.)

Home Directory The directory the user is placed in after logging on, and
where most (if not all) of a user’s files are stored. Usually
found in as a subdirectory of /home. Sometimes referred
to as $HOME, which is an environment variable that
points to the current user’s home directory. Also referred
to as ~, which is a shell shortcut that points to the current
user’s home directory.

HTML (Hyper Text Markup Language)
The standard markup language for designing Web pages.
Markup tags, or formatting commands, allow the Web
page designer to specify highlighting, position graphics,
create hyperlinks, and more.

HTTP (Hyper Text Transport Protocol)
The set of guidelines created for requesting and sending
HTML-based Web pages.

Init The first process to run immediately after the operating
system loads. It starts the system in single-user mode or
spawns a shell to read the startup files, and opens ports
designated as login ports.

Interpreted Language Unlike a compiled program, which is converted from
source code to an executable one time, by a compiler,
and then run from its binary form, an interpreted program
is converted to binary on the fly each time it is run, by an
interpreter program. Interpreted languages (and thus their
programs) tend to be slower than compiled and p-code
languages, and generally have limited authorization to
low-level operating system functions or direct hardware
access. On the other hand, they are often included along
with operating systems, and are usually easier to program
than compiled languages. Examples of interpreted
languages are BASIC, Perl, Python, and REXX/Object
REXX.
 Appendix A. Linux glossary for Windows users 241

Java An object-oriented programming language developed by
Sun Microsystems™ to be operating system independent.
Java is often used on Web servers. Java applications and
applets are sometimes offered as downloads to run on
users’ systems. Java programming can produce
applications, or smaller Java applets. While Java can be
compiled to native code, it is typically compiled to
bytecode, which is then interpreted. (Also, see JIT
Compiler.)

Java Applets Small Java programs that are embedded in a Web page
and run within a browser, not as a stand-alone
application. Applets cannot access some resources on
the local computer, such as files and printers, and
generally cannot communicate with other computers
across a network.

JavaScript A cross-platform World Wide Web scripting language,
vaguely related to Java. It can be used as a server-side
scripting language, as an embedded language in
server-parsed HTML, and as an embedded language for
browsers.

JDK™ (Java Development Kit)
A Java programming toolkit from Sun, IBM, or others,
available for Linux and other operating systems.

JFS (Journaled/Journaling File System)
A file system that includes built-in recovery capabilities.
Changes to the index are written to a log file before the
changes take effect so that if the index is corrupted (by a
power failure during the index write, for example), the
index can be rebuilt from the log, including the changes.

JIT (Just-In-Time) Compiler
A compiler for interpreted languages that allows programs
to be automatically compiled into native machine
language on the fly, for faster performance of the
program.

Journaling Same as logging. Writing information to a journal (log) file
as a method of tracking changes.

JVM™ (Java Virtual Machine)
Java run-time environment, required for the running of
Java programs, which includes a Java interpreter. A
different JVM is required for each unique operating
system (such as Linux and Windows), but any JVM can
run the same version of a Java program.
242 Linux Client Migration Cookbook, Version 2

KDE (K Desktop Environment)
One of several user interfaces (window managers) for
Linux, built with Qt. For more on KDE, see:

http://www.kde.org

(Also, see Enlightenment, GNOME, and X Window
System.)

Kernel The core of the operating system, upon which all other
components rely. The kernel manages such tasks as
low-level hardware interaction and the sharing of
resources, including memory allocation, input/output,
security, and user access.

Korn Shell An enhanced version of the Bourne Shell, including
extensive scripting support and command line editing. It
supports many scripts written for the Bourne Shell. (Also,
see Bash.)

LGPL (Lesser GPL) A variation of the GPL that usually covers program
libraries. Any application can interact with an LGPL library
or application, but any derived library must be licensed
under the LGPL or similar license. For a copy of the GPL
agreement, see:

http://www.gnu.org/copyleft/lesser.html

LILO (LInux LOader) A partition boot manager utility, capable of booting
operating systems. LILO is not constrained to booting just
Linux. Most distributions has replaced LILO with GRUB.
(Also, see GRUB.)

Link An shortcut to a file or directory. (Also, see Symbolic link
and Hard link.)

Linux An open source UNIX-like operating system, originally
begun by Linus Torvalds. The term “Linux” really refers to
only the operating system kernel, or core. Several
hundred people have contributed to the development of
the Linux kernel. The rest of a Linux distribution consists
of various utilities, device drivers, applications, a user
interface, and other tools that generally can be compiled
and run on other UNIX operating systems as well.

Log To store application or system messages or errors. Also,
a file that holds this information.

Lynx A popular non-graphical (text-based) Web browser.

Macro A set of instructions stored in an executable form. Macros
can be application specific (such as a spreadsheet or
 Appendix A. Linux glossary for Windows users 243

http://www.kde.org
http://www.gnu.org/copyleft/lesser.html

word processing macro that performs specific steps within
that program) or general-purpose (for example, a
keyboard macro that types a user ID when Ctrl+U is
pressed on the keyboard).

Man The Linux command for reading online manual pages.

MBR (Master Boot Record)
The first physical sector on a bootable disk drive. The
place where the system BIOS looks when the computer is
first booted, to determine which partition is currently
active (bootable), before reading that partition’s first (boot)
sector and booting from the partition.

Mesa An implementation of the OpenGL (Open Graphics
Library) API (Application Programming Interface). It
provides standard guidelines and a toolset for writing 2D
and 3D hardware-assisted graphics software.

MIME (Multipurpose Internet Mail Exchange)
A communications protocol that allows text e-mail
messages to include non-textual (graphics, video, or
audio, for example) data.

Motif A graphics library for Linux, developed by the Open
Software Foundation (OSF) and used by programmers to
create buttons, menus, and other graphical objects for the
X Window System. (Also, see GTK+ and Qt.)

Mount Identify a disk drive to the file system. Hard drives, CDs,
and floppies all need to be mounted before use.
Removable media usually needs to be unmounted before
ejecting the disk. Most modern distributions automatically
mount and unmount removable media. It is also possible
to mount disk images (such as ISO files), network
devices, and even links to other parts of the file system.

Mount Point The location on a file system where a hard drive partition,
removable media, or other resource is mounted.

Multitasking The ability of an operating system to run more than one
program, or task, at a time. A cooperative multitasking
OS, such as Windows 98, requires one application to
voluntarily free up resources upon request so another
application can use it. A preemptive multitasking OS,
such as Linux, Windows NT-based systems, or OS/2,
frees up resources when ordered to by the operating
system, on a time-slice basis, or a priority basis, so that
one application is unable to hog resources when they are
244 Linux Client Migration Cookbook, Version 2

needed by another program. (Also, see Multithreading
and Time-sharing.)

Multithreading The ability of an operating system to concurrently run
programs that have been divided into subcomponents, or
threads. Multithreading, when done correctly, offers better
utilization of processors and other system resources. A
word processor can make good use of multithreading,
because it can spell check in the foreground while saving
to disk and sending output to the system print spooler in
the background. (Also, see Thread.)

NFS (Network File System)
A file system that allows the sharing of files across a
network or the Internet.

Newbie Someone new to the Internet, computers in general, or
Linux specifically (for example, a “Linux newbie”).

Object-Oriented A software development methodology that offers the
programmer standard reusable software modules
(components), rather than requiring the developer to write
custom programming code each time. Using standard
components reduces development time (because the
writing and testing of those components have already
been done by other programmers), and ensures a
standard look and feel for programs using the same
components.

OO See Object-Oriented.

Open Source A somewhat ambiguous term that refers to software that
is released with its source code. The fact that the source
code is provided does not necessarily mean that users
can modify and redistribute the source code. The term is
sometimes use interchangeably with “free software,”
although they are not always the same. (Also, see Public
Domain and Shareware.)

OSS (Open Sound System)
A device driver for accessing sound cards and other audio
devices under Linux. It evolved from the Linux Sound
Driver, and supports most popular audio chips and
adapters. OSS has been replaced by ALSA on most
distributions. (Also, see ALSA.)

OSS (Open Source Software)
See Open Source.
 Appendix A. Linux glossary for Windows users 245

Owner The user who has privileged access to a file; typically, the
user who created the file.

P-code (Pseudo-code) Language
A type of Interpreted language. P-code languages are
something of a hybrid, falling between compiled
languages and interpreted languages in the way they
execute. Like an interpreted language, P-code
programming is converted to a binary form automatically
when it is run, rather than having to be compiled.
However, unlike a compiled language, the executable
binary file is stored in pseudo-code, not machine
language. In addition, unlike an Interpreted language, the
program does not have to be converted to binary each
time it is run. After it is converted to P-code the first time,
the pseudo-code version is used for each additional
execution. P-code languages (and thus their programs)
tend to be slower than compiled languages and programs
but faster than interpreted languages, and they generally
have authorization to some low-level operating system
functions but not direct hardware access. They are often
included along with operating systems, and some p-code
languages are easier to program than compiled
languages. Examples of P-code languages are Java,
Python, and REXX/Object REXX.

PAM (Pluggable Authentication Modules)
A replaceable user authentication module for system
security, which allows programs to be written without
knowing which authentication scheme will be used. This
allows a module to be replaced later with a different
module without requiring rewriting the software.

Panel The name for the Linux equivalent of the Windows
Taskbar.

Partition A contiguous section of a disk drive that is treated by the
operating system as a physical drive. Thus, one disk drive
can have several mount points assigned to it.

PCF fonts A variety of bitmapped fonts to be used with the X
Window System.

PDF (Portable Document Format) files
Binary files created with Adobe Acrobat or other programs
capable of producing output in this format. Used for
producing operating system-independent documents,
which can be viewed using Acrobat Reader or other
246 Linux Client Migration Cookbook, Version 2

programs, including Web browsers equipped with an
Acrobat Reader plug-in.

Perl (Practical Extraction and Report Language)
A common programming language. It is often used on
Linux Web servers for generating CGI scripts.

Permission The authority to read and write files and directories, and
execute programs. Varying permission levels can be
assigned by the Superuser, or root operator, on a file-by-
file, directory-by-directory basis or by account name (User
ID). Permissions are often referred to in two forms of
shorthand. When using shorthand, the first set regards
the file owner, the second a file group, and the third is in
reference to everyone. The first form of permission is to
abbreviate the permission, with rwx meaning read, write,
and execute respectively. The more common form uses a
numerical value for permissions, where the number is the
sum of permissions, with read equal to four, write equal to
two, and execute equal to one. For instance, a file where
the owner can read and write, the group can read, and
everyone else who has no access would be abbreviated
as 640.

PGP (Pretty Good Privacy)
A high-security, public-key data encryption program for
Linux and other operating systems.

Port The process of taking a program written for one operating
system platform and modifying it to run on another OS
with similar functionality. There is generally little or no
attempt to customize the program to take advantage of
the unique capabilities of the new operating system, as
opposed to optimizing an application for a specific
operating system.

Portable A term referring to software that is designed to be used on
more than one operating system with only minor
modifications and recompilation.

POSIX (Portable Operating System Interface for uniX)
A set of programming interface standards governing how
to write application source code so that the applications
are portable between operating systems. POSIX is based
on UNIX and is the basis for the X/Open specification of
The Open Group.
 Appendix A. Linux glossary for Windows users 247

PostScript A page description language developed by Adobe
Systems that tells a printer how to display text or graphics
on a printed page.

PostScript Fonts A wide variety of fonts that can be used with OS/2,
Microsoft Windows, and the X Window System. Font files
include those with .afm, .pfa, and .pfb extensions.
Sometimes called Adobe Type 1 fonts, or ATM (Adobe
Type Manager) fonts. PostScript fonts typically require a
PostScript-compatible printer. (Also, see BDF Fonts and
TrueType Fonts.)

Process An executing program. (Also, see Multitasking and
Multithreading.)

Public Domain Software that is available to be used and modified by
anyone, for any purpose, and might even be incorporated
for distribution in commercial software. Public domain
software is not copyrighted, and no rights are retained by
the author. (Also, see Open Source and Shareware.)

Public Key Encryption A method of data encryption that involves two separate
keys: a public key and a private key. Data encrypted with
the public key can be decrypted only with the private key
and vice versa. Typically, the public key is published and
can be used to encrypt data sent to the holder of the
private key, and the private key is used to sign data.

Python An object-oriented p-code programming language.

Qt A powerful, fast open source graphics library for the X
Window System on Linux, which is used by programmers
to create buttons, menus, and other graphical objects. In
verbal communication, Qt is pronounced the same as the
word “cute.” (Also, see GTK+ and KDE.)

Queue A list of tasks awaiting execution, as in “the print queue.”

RAID (Redundant Array of Independent/Inexpensive Disks/Devices)
A method of providing data redundancy, improved
performance, and quick data recoverability from disk
crashes, by spreading or duplicating data across multiple
disk drives. Commonly used RAID types include RAID 0
(Data Striping), RAID 1 (Disk Mirroring), and RAID 5
(Striping with Distributed Parity). RAID configurations
typically require identical drives (same capacity and even
brand and model). RAID arrays appear to the operating
system as a single device.
248 Linux Client Migration Cookbook, Version 2

RC File A script file containing the startup instructions for a
program (an application or even the operating system).
The file, to be executed automatically when the operating
system is started, contains a list of instructions
(commands or other scripts) to run.

RCS (Revision Control System)
A suite of programs that controls shared access to files in
a group environment and tracks text file changes.
Generally used for maintaining programming source code
modules.

Rdev A utility for obtaining information about a Linux system. It
is used to query and set the image root device, the video
mode, the swap device, and a RAM disk.

Root User The user ID with authority to perform all system-level
tasks. (Also called Superuser.)

Root Window The underlying session in which the Linux desktop runs.

RPM (Red Hat Package Manager)
A packaging and installation tool for Internet downloads,
included with some Linux distributions. It produces files
with a .rpm extension. Similar to Dpkg.

Script A set of commands stored in a file. Used for automated,
repetitive execution. (Also, see RC File.)

SCP (Secure Copy) A method for securely copying files between local and
remote hosts. SCP uses SSH as a back-end. (Also, see
SSH.)

Session A complete interaction period between the user and the
operating system, from login to logoff.

Shareware A form of commercial software, where it is offered as “try
before you buy.” If the customer continues to use the
product after a short trial period, they are required to pay
a specified, usually nominal, fee. (Also, see Open Source
and Public Domain.)

Shell A text-mode window containing a command line interface
to the operating system.

Shell Prompt The user input area of a shell. Whereas in a DOS shell
the command prompt is designated by a Greater Than (>)
symbol, in Linux it is usually a Percent (%) symbol, Dollar
sign ($) or other special character, depending on the shell
used. (Also, see Command Prompt.)
 Appendix A. Linux glossary for Windows users 249

Shell Script A script designed to be run automatically when a shell is
started.

Slash The / symbol. Slash is used in file path names, instead of
the backslash, \, used in the DOS, Windows, and OS/2
operating systems.

Source Code Programming commands in their raw state as input by a
programmer. Some programming languages allow the
commands to be executed on the fly by a program
interpreter. Other languages require the commands to be
compiled into executable programs (binaries) before they
can be used. In the Linux world, some software is
distributed as source code only; other packages include
both source and binaries; still others are distributed in
binary format only.

Spool (Simultaneous Peripheral Operation On-Line)
To send data to a program that queues up the information
for later use (for example, the print spooler).

SQL (Structured Query Language)
The language used for manipulating records and fields
(rows and columns) in a relational database. Sometimes
pronounced “sequel.”

SSH (Secure Shell) A secure protocol for logging in to a remote machine.
Many protocols can be “tunneled” through SSH, such that
connections travel through a SSH connection between
two machines instead of traveling unencrypted across the
network.

String A sequence of characters, as in a “search string.”

Superuser Usually synonymous with root user.

Swap To temporarily move data (programs or data files) from
random access memory to disk storage (swap out), or
back (swap in), to allow more programs and data to be
processed than there is physical memory to hold it. Also
called Virtual Memory.

Swap Space Where swapped data is temporarily stored on disk. Linux
uses a dedicated disk partition for swap space, rather
than a specific swap file.

Symbolic link An shortcut to a file or directory. Sometimes called a
symlink. If the original file is deleted, the symbolic link will
no longer work. (Also, see Hard link.)

Sync To force all pending input/output to the disk drive.
250 Linux Client Migration Cookbook, Version 2

Syslog The Linux System Logger, where all system messages or
errors are stored.

Tag A command in a markup language, such as HTML, to
display information in a certain way, such as bold,
centered, or using a certain font.

Tar (Tape ARchive) A file packaging tool included with Linux for the purpose
of assembling a collection of files into one combined file
for easier archiving. It was originally designed for tape
backup, but today can be used with other storage media.
When run by itself, it produces files with a .tar extension.
When combined with Gzip, for data compression, the
resulting file extensions can be .tgz, .tar.gz, or .tar.Z.

Tarball A file created by the Tar utility, containing one or more
other archived and, optionally, compressed files.

TeX A popular macro-based text formatter. The basis for other
such formatters, including LaTeX and teTeX.

Text Editor A program for editing text files. Similar to a word
processor, but without most of the formatting functions
(such as margins, italics, and fonts). Often used for writing
or editing scripts, programs, and plain text files.

Text Formatter A program that prepares a text document for printing,
allowing the user to perform many layout functions, such
as margins, headers, footers, indentation, pagination, and
justification.

TFTP (Trivial File Transfer Protocol)
A simplified version of FTP without authentication or
many other basic features of FTP.

Thread A small piece of programming that acts as an
independent subset of a larger program. A multithreaded
program can run much faster than a monolithic, or
single-threaded, program because several different tasks
can be performed concurrently, rather than serially
(sequentially). Also, threads within a single application
can share resources and pass data back and forth
between themselves.

Time-sharing A method of allowing multiple users to share a processor
by allocating each user a portion of the processor
resources on a timed basis and rotating each user’s
processes within those time segments. (Also, see
Multitasking.)
 Appendix A. Linux glossary for Windows users 251

Touch A command that changes the date and time stamp of a
file without affecting the contents. If passed a file name
that does not exist, touch will create an empty file.

TrueType Fonts A wide variety of fonts designed to be
printer-independent, unlike PostScript fonts. (Also, see
BDF Fonts and PostScript Fonts.)

Tux The name of the fictional Linux penguin mascot.

Umount The command for unmounting a hard drive partition,
removable media, or other resource. (Also, see Mount.)

UNIX UNIX began as a proprietary operating system developed
by Bell Laboratories in the 1960s. It eventually spawned a
number of mutually incompatible commercial versions
from such companies as Apple (Mac OS X), Digital
(Digital UNIX), Hewlett-Packard (HPUX), IBM (AIX®),
NeXT (NeXTSTEP), and others.

UUCP A set of programs and protocols that have become the
basis for a worldwide network of UNIX computers. Named
after the UNIX to UNIX Copy Program.

Vi A popular text editor, usually used as a console
application. Also used when discussing newer version,
Vim. (Also, see Emacs.)

Virtual Desktop A method for expanding the user’s workspace beyond the
boundaries of the computer screen. The desktop can be
scrollable left and right, up and down, as though a larger
desktop were positioned behind the glass screen and
moved around to reveal icons, windows, and other
objects that were “off-stage,” or out of view. Alternatively,
as with the KDE desktop, multiple buttons can be
available, each of which displays an area of desktop
equal to the size of the glass screen and which can each
contain different objects.

Virtual Machine Virtual Machines (VMs) are features of central processor
chips that isolate an area of memory from the rest of the
system. Because operating systems and applications run
in a “protected mode” environment, if a program freezes
in one Virtual Machine, it will not affect the operation of
the programs and operating systems running outside of
that Virtual Machine.

Virtual Memory The process of using a portion of disk space as a
temporary storage area for memory. Synonymous with
Swap.
252 Linux Client Migration Cookbook, Version 2

Widget A graphical user interface programming object (such as a
button, scroll bar, or check box) for the X Window System.
(Also, see X Window System.)

Window Manager The graphical user interface (GUI) that runs on top of the
X Window System to provide the user with windows,
icons, taskbars, and other desktop objects. (Also, see
Desktop.)

Working Directory Another name for the current directory, or the directory in
which the user is currently working.

Workspace Another name for the Root Window, or Desktop.

Wrapper A program used to start another program.

X Window System A graphical windowing environment for UNIX. The
underlying program required by many user interfaces.
(Also, see Desktop and Window Manager.)

X11 Version 11 of the X Window System.

XDM (X Display Manager)
User-friendly login front end for the X Window System.

XML (eXtensible Markup Language)
A powerful new markup language for designing data;
similar to HTML, but allows programmers to define their
own markup tags, or formatting commands.

Zip A popular form of file compression and archiving available
on many operating system platforms, including Windows
and Linux. Popular tools include PKZip/PKUnzip and
Zip/Unzip. Zipped files will have a .zip extension.

> The redirection symbol; it is often used to send the output
from a command to a text file. For example, the following
command sends the current directory list to a file called
output.txt, overwriting what had previously been in that
file:

ls -a > output.txt

(Also, see Append Symbol and Piping Symbol.)

>> The append symbol; it is often used to send the output
from a command to a text file, appending the data to the
end of the file, rather than replacing the existing content.
For example, the following command sends the current
directory list to a file called output.txt, and adds it to the
end of the file.

ls -a >> output.txt
 Appendix A. Linux glossary for Windows users 253

Repeating the command will continue to add new data to
the end of the file. (Also, see > and |.)

| The piping symbol (the Shift+Backslash character, above
the Enter key on a typical 101-key keyboard); it is often
used to feed the output from one command or program to
another. For example, to search for a previously entered
command with the word “mcopy” in it, use the following
command:

history | grep mcopy

(Also, see Append Symbol and Redirection Symbol.)

/ See Slash.

~ See Home Directory.
254 Linux Client Migration Cookbook, Version 2

Appendix B. Using enterprise
management tools

This appendix describes the system management tools available from two major
Linux enterprise distribution vendors, and some from other sources as well. For
each of these tools, this appendix describes their basic functionality, in what
environments the tool might be useful, and pointers to more information. These
tools provide extremely useful functions for facilitating a large migration.

This appendix discusses the following topics:

� “Why use enterprise management tools” on page 256

� “Red Hat Satellite server and Red Hat Network (RHN)” on page 257

� “Novell ZENworks Linux Management” on page 264

� “Webmin” on page 269

� “Other important tools” on page 272

B

© Copyright IBM Corp. 2004, 2006. All rights reserved. 255

Why use enterprise management tools
Just like you need to automate certain tasks when using other operating
systems, it is also advantageous to do this when using Linux. Red Hat and Novell
SUSE both provide options for automating client management tasks. These tools
and a few others are introduced and discussed in this appendix.

You might or might not have used these tools, but you might want to consider
their use when you migrate to Linux. These system management services
enable a client or set of clients to be configured and monitored remotely using
several optionally available management frameworks or applications. In the case
of client deployments based on Red Hat Enterprise Linux and the RHN
management framework, or SUSE Linux Enterprise Desktop and the Novell
ZENworks framework, the management tools provide a set of key value-added
options that can easily justify the subscription-based licensing fees.

The availability of enterprise management tools and how you plan on using them
can strongly affect the cost justification models in a migration scenario. This is
discussed in 2.1.2, “Costs related to Linux client” on page 32.

Internet standard technologies
There are published Internet standards that support community development of
system management tooling. There are currently many active open source
management tooling development projects that are based those standards. In
the case of Web-Based Enterprise Management (WBEM), the goal is to provide
a platform for unifying the management of distributed computing environments.

Web-Based Enterprise Management (WBEM)
Web-Based Enterprise Management (WBEM) and the Common Information
Model (CIM) are the object-based architecture standards and the data model
promoted by the industry consortia Distributed Management Task Force (DMTF).
The WBEM services described here are implementations of these standards. For
more information about these standards, refer to the DMTF Web site:

http://www.dmtf.org

WBEM services are made available for use by a system management
application through a CIM object manager or CIM server. Providers are written
that gather and manage system resources. These providers register their
classes with the CIM server to enable these objects to be used by a
management application or even other providers. There are increasing numbers
256 Linux Client Migration Cookbook, Version 2

http://www.dmtf.org

of applications adopting this new management standard. For more information
about the components in the WBEM architecture, refer to the DMTF Web site:

http://www.dmtf.org/standards/wbem

Simple Network Management Protocol (SNMP)
Another commonly used remote system management service is the Simple
Network Management Protocol (SNMP). SNMP is an Internet Engineering Task
Force (IETF) standard and is perhaps the most widely implemented standard for
system management. The data model used by an SNMP service is called a
Management Information Base (MIB). Different sections of this MIB are
supported by different devices and servers depending on the services available
on the system. For more information about the SNMP service, refer to the ITEF
Web site:

http://www.ietf.org

SNMP services are implemented through a background server or daemon. This
daemon listens for requests and if the object is supported in the set of MIB
extensions maintained by the server, the action is performed and the response
returned. The SNMP service also has the ability to send and receive system
events called traps. And, with the deployment and wide spread adoption of
secure SNMPv3, it is now even safer to use.

Red Hat Satellite server and Red Hat Network (RHN)
The Red Hat Network (RHN) is a systems management framework for your Linux
infrastructure. Through a Web-based interface, it is possible to automate system
updates, management, provisioning, and, monitoring. It provides a set of
services through what is known as modules. See the following site for additional
overview information about RHN:

http://www.redhat.com/rhn

Each of the major functions in RHN are defined in more detail here:

https://rhn.redhat.com/rhn/help/reference/index.jsp

Architectural and functional overview
There are three basic architectures for using RHN. These are the Hosted server
model, the Proxy server model, and the Satellite server model. The architecture
of the Red Hat Network is one where there is a central server from which all
systems are managed. With the Hosted model, the RHN server is located at and
hosted by Red Hat, with access through the Internet.
 Appendix B. Using enterprise management tools 257

http://www.ietf.org
http://www.dmtf.org/standards/wbem
http://www.redhat.com/rhn
https://rhn.redhat.com/rhn/help/reference/index.jsp

For supporting small numbers of systems and in scenarios with limited security
considerations, the hosted model can provide an appropriate level of service and
flexibility. When the number of systems in an enterprise grows or when security
constraints prevent all systems from reaching the Internet, you should consider
the proxy or satellite models. Of the three models, satellite provides the most
flexibility and features.

Red Hat Network architectures:

� Hosted model - All systems connect to the RHN server at Red Hat through
the organization’s Internet firewall. All management information and services
are exchanged directly with the RHN servers over the Internet.

� Proxy model - The managed systems connect to the locally administrated
proxy server. The Proxy server aggregates data, caches content, and
performs several tasks locally. It communicates with the RHN server on the
Internet and can be added to a Satellite model to help scale content
distribution. In this model, all management information for the RHN is stored
on the RHN servers (or the locally hosted Satellite servers).

� Satellite model - Systems connect to the satellite server running locally. The
satellite server functions as a locally connected RHN update server. It can
receive updates for distribution to your network using Internet connection to
RHN servers. It can also be loaded with updates manually, using physical
media, thus eliminating the need for an external Internet connection for the
satellite server (disconnected mode).

All of the models provide a core set of modules that can be grouped within the
following functional areas:

� Update
� Management
� Provisioning
� Monitoring

Additional modules that add more functionality for Provisioning and Monitoring
are available in the Proxy and Satellite models. For more details, see the Red
Hat Network module and architecture comparison tables here:

http://www.redhat.com/rhn/compare/

In Figure B-1 on page 259, we show an example topology that demonstrates a
tiered approach combining proxy and satellite servers. This approach might be
best suited for larger, distributed enterprises.
258 Linux Client Migration Cookbook, Version 2

http://www.redhat.com/rhn/compare/

Figure B-1 1Red Hat Network - Example of combined Satellite-Proxy model

Satellite server
The technical architecture of the satellite server consists of a server application
on top of a database to contain all of the data about systems, groups,
entitlements, channels, packages, and errata. This application has a
management Web interface. The communication with the clients is performed
through the up2date application and several daemons running on the client.

RHN Terminology
In this section, we describe terminology used in discussing the RHN/satellite
server. These concepts include:

� System
� System group
� System set
� System Entitlement
� Channel
� Channel Entitlement
� Errata
� Action
� Activation key

1 Copyright 2004 Red Hat, Inc. All rights reserved. Reprinted by permission.

Note: In Red Hat Enterprise Linux Version 5, up2date will be replaced by yum.
 Appendix B. Using enterprise management tools 259

We describe each of these concepts in some detail in the satellite server context.
Some of these same terms exist as a concept in ZENworks as well, but might
have a slightly different meaning.

System
A system can be any Red Hat Linux installed machine with up2date configured
for connection to a server. A system is connected to a satellite server using a
registration process that associates the system with a user ID on the satellite
server.

System group
A system group is an entity in the satellite server that can contain systems. When
created, the container is empty. Systems can be added to the system group. The
system group is used in the satellite server to perform actions for multiple
systems (the ones in the group) simultaneously. You can also have individual
systems that belong to multiple system groups, that for instance might overlap by
function and geography in your enterprise.

System set
Where the system group is more or less fixed, the system set can be used to
select systems to perform an action on. These systems can be picked
individually, or on a group level, or based on some property of the system. You
can construct a system set “on the fly” in order to group systems together for
applying a particular action.

Entitlements
Entitlements allow subscription access to the service level offerings in RHN. The
quantity and types of available subscriptions are set by which RHN licenses have
been purchased. You can have system level or software channel level
entitlements.

Modules
The concept of modules allows for the choice of levels of service entitlement that
the satellite server can perform. In the current Red Hat Network and satellite
server, there are four modules:

� Update - The entry-level module, complimentary with Red Hat Network
subscription, most appropriate for single or a few systems.

� Management - Includes Update module features plus additional features that
enable more efficient system grouping, management, and channel definition
to support larger numbers of systems.
260 Linux Client Migration Cookbook, Version 2

� Provisioning - Includes Management module features plus additional features
that provide for full Linux infrastructure lifecycle management.

� Monitoring - Requires the management module and a satellite server.
Enables tracking and monitoring of all the Linux systems performance.

With each higher level entitlement, more functions of the satellite server/RHN
become available. You can change the module entitlement levels assigned to a
particular system or group of systems whenever necessary.

Channel
A channel is a collection of updates. There are two types of channels: Base
channels and child channels.

A base channel consists of a list of packages based on a specific architecture
and Red Hat Enterprise Linux release. For example, all of the packages in Red
Hat Enterprise Linux 4 for the x86 architecture are a base channel.

A child channel is a channel associated with a base channel, but it contains extra
packages. This way, it is possible for an organization to use a base channel to
create a child channel that contains the base packages and extra packages
specifically needed by the organization.

Action
Actions can be performed on clients from the satellite server. Since the rhnd
daemon is running as root, even a reboot can be scheduled from the satellite
server. Some actions that can be scheduled are:

� Boot
� Package update
� Hardware properties update

Errata
Errata is the name for the collection of all updates and patches. Red Hat
distinguishes between three types of errata:

� Security updates
� Bugfix updates
� Enhancement updates

Note: For the most current information about RHN modules, refer to the
Red Hat Web site:

http://www.redhat.com/rhn
 Appendix B. Using enterprise management tools 261

http://www.redhat.com/rhn

These three types of errata each have their own priority for an application.
Security updates should be applied immediately, Bugfix updates if necessary,
and Enhancement updates when needed.

Activation key
An activation key is used to register the system, entitle the system to a service
level, and subscribe the system to specific channels and system groups through
the command line utility rhnreg_ks. These keys can only be created for
Management and Provisioning entitlements. The keys are generated in the
satellite server. For a single system, you can combine multiple activation keys
(key stacking). Key stacking allows for a lower total number of keys required for
multiple systems with differing subscription level requirements.

Sample update scenario
Consider a large multinational company, running Red Hat Desktop across the
enterprise as their primary user client platform. Their IT department developers
run the latest versions on test bed client platforms. As their enterprise
applications are ported to the latest releases and pass Quality Assurance (QA)
testing, they can then provide updates to their production client groups using
RHN channels.

A simplified Red Hat Network topology focusing on the desktop channels is
shown in Figure B-2 on page 263. A satellite server provides three base
channels. The Red Hat Desktop channel serves as a base for set of child
channels that are used for management development and testing (numbered
1-2-3® in the figure). The RHD base channel provides RHD Update 3 (the base
channel would be labeled “RHD_U3”). So each of the child channels could be
labeled as follows:

1. RHD_U3dev
2. RHD_U3test
3. RHD_U3prod

The IT department wants to deploy RHD Update 4 to their production desktop
channel in the same way that they managed the Update 3 deployment. To do
this, they follow the same pattern used to roll out Update 3 to the enterprise.
They first create a new “RHD_U4dev” base channel on the satellite server. They
can do this by cloning the Red Hat Desktop channel as provided by Red Hat, or
they can create a new blank channel and push the appropriate packages to the
channel from the installation media. This new RHD_U4dev channel is then used
by their developers for testing and updating any applications.
262 Linux Client Migration Cookbook, Version 2

Once the developers have completed their work on RHD_U4dev, the same
channel is cloned as RHD_U4test, and the IT quality assurance team takes over.
They test the packages and file bugs, and they might also request that the
development team apply fixes to any packages included in the channel.

When the QA team is able to sign off on production readiness for the
RHD_U4test channel, it can be cloned into a new channel, RHD_U4prod. This
new production channel is then used to manage deployment of the U4 update to
the enterprise.

Figure B-2 Red Hat Network update topology
 Appendix B. Using enterprise management tools 263

Novell ZENworks Linux Management
This section describes Novell ZENworks, now called ZENworks Suite. ZENworks
Suite is Novell’s application platform for deploying, managing, and maintaining
systems in the enterprise. It can be especially useful for enterprise customers
running a large number of Linux client installations within their organization.

ZENworks is the preferred tool for Novell/SUSE distribution, but can manage any
client desktop, either Linux-based or Windows-based. The ZENworks Linux
Management tools are the focus in this section.

Architecture and Functionality
ZENworks Suite contains Web-based tools to enable the administrator to
remotely manage systems in an heterogeneous environment. There are
currently modules in the suite for managing: assets, data, desktops, handhelds,
Linux, desktop personality settings migration, servers, software, and patches.
Their Linux Management solution uses policies and automation to manage and
maintain Linux systems.

The ZENworks suite focuses on full lifecycle systems management. For a
complete overview of the ZENworks Suite functionality, refer to the Novell Web
site at:

http://www.novell.com/products/zenworks/

See Figure B-3.
264 Linux Client Migration Cookbook, Version 2

http://www.novell.com/products/zenworks/

Figure B-3 ZENworks Suite lifecycle management2

ZENworks Linux Management
The management tasks available in the Linux Management module:

� Delivering packages

� Locking down client desktop settings

� Defining preboot activity

� Software and hardware inventory

� Manage remote clients

� Monitor events

� Generate reports

The system architecture of the ZENworks Linux management server is shown in
Figure B-4 on page 266. The server consists of an application running on top of a
database and using an http/https interface to communicate. The http/https

2 Reproduced with permission from the “ZENworks 7 IT Management Suite” overview
(http://www.novell.com/products/zenworks/overview.html)
 Appendix B. Using enterprise management tools 265

http://www.novell.com/products/zenworks/overview.html

interface runs the Web interface for management on one side and is used by the
client to communicate with the server. The server can also be managed through
the rcman command-line interface.

Previous to version 7, the client would run the rcd daemon. As of version 7, the
daemon is now the zmd daemon. This daemon can be controlled by the
novell-zmd command.

Figure B-4 ZENworks Linux management architecture3

ZENworks Terminology
In this section, we describe several terms used with ZENworks Linux
management:

� Machine
� Group
� Machine set
� Channel
� Transaction
� Activation key

3 Reproduced with permission from “ZENworks Linux Management 6.5 Administrator’s
Guide” (http://www.novell.com/products/zenworks/linuxmanagement/)
266 Linux Client Migration Cookbook, Version 2

http://www.novell.com/products/zenworks/linuxmanagement/

We describe each of these concepts in some detail in the ZENworks Linux
management context. Some of these same terms exist as a concept in the
satellite server as well (see “RHN Terminology” on page 259), but might have a
slightly different meaning.

Machine
Machine is the term used for a client system. The ZENworks server collects a lot
of information about the system through the zmd daemon. This information can be
used to search machines, but also to create sets on which to perform
transactions.

Group
A group of machines is a collection of machines that can share certain
properties, such as administrators or channels. The group is used to segment an
enterprise into smaller entities, for example, to limit the scope of administrators.

Machine set
The machine set is like a group. Only one set exists and it is populated from all
machines manually or by a search on properties of the machines. The machine
set can contain all machines with a certain graphics card, or all machines
needing a specific update and not having installed it yet. The set is a very
powerful mechanism to perform a change across the enterprise.

Channel
A channel is a collection of RPM packages or package sets for a specific
distribution or architecture. The package set is a collection of packages that is
handled by ZENworks as a single package. It can have a version and
dependencies.

Transaction
Transactions are generally updates that can be performed on machines, groups,
or the machine set. The transactions can be scheduled. A feature in ZENworks,
for example, is the ability to do a “dry run” of a transaction on the server to
decrease the load on client machines.

Activation key
The activation key is the primary mechanism to register machines in ZENworks.
The key is generated and certain properties are given to the key, such as groups,
channels, and administrators. When a machine is activated using this key, it gets
all these properties automatically in ZENworks. So the activation key used to
activate the client more or less sets its role in the organization.
 Appendix B. Using enterprise management tools 267

Usage examples
This section describes standard actions in the ZENworks Linux management
server. This shows a small example of how the tool works and what it can do. We
describe these actions:

� Creating a group
� Adding a channel with packages
� Creating an administrator
� Adding an activation key

An evaluation copy of ZENworks Linux management can be obtained from:

http://download.novell.com

On first login using the administrator account, the Web page of ZENworks Linux
management looks similar to the window shown in Figure B-5 on page 269.

Different areas of the server are reached through navigation links on the left side
of the page. These links are present on all pages to enable quick navigation
through the Web-enabled administration of the ZENworks Linux management
server.

Creating a group
A group is created by going to the Group administration page. After selecting
Create New Groups, the necessary information is entered on the next page. After
saving this page, the Edit page for the new group is reached. Through the tabs
on this page, it is possible to edit all of the properties of the group, for example,
administrators or channel permissions.

Adding a channel with packages
To work with channels, we go to the Channel administration page. Once there,
click the Create New Channels link and on the next page, enter the Name,
Description, and Alias for the new channel. After saving the new channel, the
Edit page for this channel is shown. To add a package to the channel, we click
the Add Package link. Saving this page adds the package for the selected
platforms to the channel.

Create an administrator
First, go to the Account administration page. Once there, follow the link Create
new administrator and fill in the needed information. Saving this information
displays the Edit page, where the groups and channels that the administrator
wants to administer can be added to the new administrator.
268 Linux Client Migration Cookbook, Version 2

http://download.novell.com

Add an activation key
The activation code pages are not mentioned in the navigation menu. To get
there, you go to Server, and on that page, choose Activation codes. You then get
the Activation administration page. Here you can create either a reusable or a
single-use activation. The single-use activation becomes invalid after one
machine has been activated using that code. The reusable activation key can be
used many times and is the ideal way to activate a collection of systems with the
same function. Following the Create New Reusable Activations link, we come to
a page allowing you to enter the description and generate a value for the key. On
the Edit page for the activation key, we can set the groups, channels, and
administrators that are going to be set for every machine using this key to
activate.

Figure B-5 ZENworks user interface window

Webmin
Webmin is a Web-based user interface for performing system administration on
Linux clients. It also supports most popular UNIX operating systems, making it a
good tool in a heterogeneous environment. It is a single system interface that
runs in any browser that supports tables and forms.
 Appendix B. Using enterprise management tools 269

Functionality
On Linux, Webmin supports well over 80 different modules that provide
management user interfaces for just about anything you want to change on the
client system, including many things that would be useful for servers as well. The
modules are grouped into different manageable areas, including Webmin,
System, Servers, Networking, Hardware, Cluster, and Others.

Just some of the modules supported:

� Webmin

– Language and theme
– Webmin configuration
– Webmin users

� System

– Bootup and shutdown scripts
– Passwords
– Software packages
– Disk quotas
– Users and groups
– System logs

� Servers

– Apache
– DNS
– DHCP
– MySQL
– PostgreSQL
– Samba
– FTP

� Networking

– Network
– Firewall
– ADSL
– NFS
– Kerberos
– IPSec
– NIS

� Hardware

– GRUB
– CD Burner
– Raid
– LVM
270 Linux Client Migration Cookbook, Version 2

– Partitions
– Printers

� Cluster

– Heartbeat Monitor
– Cluster users and groups

� Others

– Command shell
– System and service status
– Upload and download

Usage examples
In this section, we describe a small subset of the basic functionality of Webmin.
The standard actions we describe are:

� Adding a user to the managed client
� Remote command execution on the client system

Adding a user
Creating a user using Webmin is started by selecting the System icon from the
top action bar. Presented in the System tab is an icon for Users and Groups.
Clicking this icon presents the Users and Groups tab, showing all the current
users of this system. Select the Create a New User link at the top and the Create
User tab is shown. Simply fill in all the fields on this page and select the Create
button at the bottom of the page to create the new user. Once this user is
created, Webmin returns to the Uses and Groups summary tab, where you can
see the new user as a part of the system users.

Remote command execution
Being able to remotely execute a command on another server can be extremely
useful. To run a remote command, start by selecting the Other icon from the
action bar at the top of the page. The Other tab then shows all the modules
available in this group. Select the Command Shell icon and the Command Shell
tab shows. Enter a Linux command in the box provided, select the Execute
Command button, and the command is run on the system to which you are
connected. The output of the command is presented on the Command Shell
page. To see where the current path is, try issuing pwd first. You can use the cd
command to change location of the command shell to another directory.
 Appendix B. Using enterprise management tools 271

Figure B-6 Example of a Webmin user interface window

More Information
More information about Webmin, including project details, documentation, and
access to the latest version available for download can be found at the Webmin
Web site:

http://www.webmin.com

Other important tools

Tivoli management tools
Tivoli has a full set of management tools available for helping you handle the
complexity of managing clients in an enterprise environment. Linux clients are
supported by most of Tivoli’s management tools, including tools that help
monitor, manage, and deploy Linux client systems. Refer to the Tivoli Web site
272 Linux Client Migration Cookbook, Version 2

http://www.webmin.com

for more information about the enterprise management tools offered and their
features:

http://www.ibm.com/software/tivoli

Open Country OCM Suite
Open Country provides an a enterprise level management tooling platform. It
addresses many traditional large enterprise system management requirements.
Some of those include: provisioning, system management, monitoring, updates,
and asset tracking. For more information, see:

http://www.opencountry.com

OpenNMS
OpenNMS is an open source distributed enterprise network and system
management platform. The OpenNMS framework is SNMP-based and handles
discovering network nodes and services, polling for their availability, and
recording the system information for immediate use or creating thresholds.
OpenNMS also gathers and reports network and system service events. For
more information about the project, to view a demo, or to download the platform
itself, refer to the OpenNMS Web site:

http://www.opennms.org

SBLIM
SBLIM is an acronym for Standards-Based Linux Instrumentation for
Manageability. This open source project provides standard Web-Based
Enterprise Management (WBEM) components. The goal of this project is to
provide a complete Open Source implementation of a WBEM-based
management solution for Linux. WBEM-based management is a growing method
of managing clients using a object-based approach defined by the Distributed
Management Task Force (DMTF).

The SBLIM components or packages help to provide a unified management
strategy among Linux clients with distribution specific configuration files and
management tools. It also provides an abstraction to allow for simplification of
common management tasks. The result is a common management method for
handling system management tasks across different Linux clients.

You can read more about SBLIM project, the available packages, and the
underlying technology at the SBLIM Web site:

http://sblim.sourceforge.net
 Appendix B. Using enterprise management tools 273

http://sblim.sourceforge.net
http://www.opennms.org
http://www.ibm.com/software/tivoli
http://www.opennms.org

WBEM-SMT
Within the previously mentioned SBLIM project, a component of particular
interest is WBEM-SMT. WBEM-SMT stands for WBEM Systems Management
Tasks. The goal of the WBEM-SMT component is to improve the management
features and ease of use of the Linux operating system. WBEM-SMT provides a
set of task-oriented user interfaces that exploit the SBLIM WBEM-based
instrumentation and automate many aspects of configuration.

One of the tasks that WBEM-SMT has provided is an interface for configuring
DNS. An example of the DNS task can be seen in Figure B-7.

Figure B-7 Example of a WBEM-SMT user interface window

More information about the WBEM-SMT package can be found at the SBLIM
Web site at:

http://sblim.sourceforge.net/wbemsmt.html
274 Linux Client Migration Cookbook, Version 2

http://sblim.sourceforge.net/wbemsmt.html

 Appendix B. Using enterprise management tools 275

276 Linux Client Migration Cookbook, Version 2

Appendix C. Automating desktop
migration using Versora
Progression Desktop

This appendix describes the benefits of using an automated migration tool, such
as Versora’s Progression Desktop. It then expands upon the three ways to run
Progression Desktop; manually with the GUI, manually with the command line,
and automatically with a systems management tool. Finally, we describe
Progression Desktop’s extensible architecture.

C

© Copyright IBM Corp. 2004, 2006. All rights reserved. 277

Benefits of an automated migration
A manual desktop migration is a time-consuming task. When dealing with a
standard office or advanced office user, there are a myriad of technical
considerations associated with the migration of data and application and system
settings. A sample migration of e-mail, Web browser settings, and data is shown
in Chapter 8, “Client migration scenario” on page 173. Since a manual migration
is estimated to require several hours of technician time per desktop, it could
feasibly take an organization weeks or even months to complete. A Windows to
Linux migration requires a technician to be proficient on both platforms with an
understanding of the differences in file structures, applications, application
settings, and system settings.

By using an automated tool in a large migration, a test machine or lab can be
used to completely lay out the migration strategy. Any issues with the migration
can be fixed in the test lab and rolled into the migration process. This allows for
the least amount of down time when it is time for the actual migration to begin.
Use of automated tools provides predictable results that can be repeated
simultaneously on desktops throughout the organization. Also, automated tools
do not require the technician to have the same level of technical expertise
required for a manual migration, because much of that knowledge is built into the
program. When used in conjunction with systems management tools, certain
automated tools can allow one technician to migrate up to one hundred desktops
in the same time period that a single manual migration requires.

What is Progression Desktop
Progression Desktop by Versora is an example of a set of applications and tools
that together can automatically migrate system settings, application settings, and
data from Windows to Linux-based clients. The Web site is:

http://www.versora.com

System settings include settings such as desktop wallpaper, keyboard and
mouse settings, screen saver settings, system sounds, network shares, dial-up
connections, and fonts. System settings can be applied to both GNOME and
KDE desktop environments. Application settings include e-mail-related settings
such as messages, address books, and calendar entries; Web browser-related
settings such as favorites, cookies, and the browser home page; word
processing-related settings such as custom dictionaries, default templates, and
AutoCorrect settings; and instant messaging settings such as accounts and
buddy list preferences. In each of these application categories, settings can be
migrated from any given source application to any of the available destination
applications. Some example mappings can be found in Table C-1 on page 279.
278 Linux Client Migration Cookbook, Version 2

http://www.versora.com
http://www.versora.com
http://www.versora.com

Documents can be chosen by folder or by file, or even by file type. The
documents can be copied as they are or sent through a conversion process
based on file type to ensure complete compatibility on the target desktop.
Progression Desktop also allows files to be excluded based on location or file
type; for instance, a corporation might want to migrate the users’ My Documents
directories, but exclude all MP3 files or other files that violate corporate policies.

Table C-1 Some applications supported by Progression Desktop

How to migrate with Progression Desktop
There are three ways to migrate clients with Progression Desktop:

� Using the provided GUI

� Using the command line with templates

� Using a systems management tool to automatically invoke the command line
with templates

Each of these methods follows the same basic steps, as shown in the process
diagram in Figure C-1 on page 280. First, the Windows-based executable of
Progression Desktop is run on the source desktop. This process retrieves
information from each of the selected source applications and stores these
settings into a neutral source. This neutral source, called a Platform Neutral
Package (PNP), then must be made available to the destination machine. This
step is accomplished by copying the file to a network share, or directly to the
destination machine. Finally, the Linux-based executable of Progression Desktop
is run on the destination machine. This process gathers information from the
PNP and applies the settings to the appropriate location for each of the target
applications.

Category Source applications Destination applications

E-mail Microsoft Outlook
Microsoft Outlook Express
Mozilla Mail
Mozilla Thunderbird

Novell Evolution
KMail
Mozilla Mail
Mozilla Thunderbird

Web browser Microsoft Internet Explorer
Mozilla
Mozilla Firefox

Konqueror
Mozilla
Mozilla Firefox

Word processor Microsoft Word
OpenOffice.org Writer

OpenOffice.org Writer

Instant messaging AOL Instant Messenger
GAIM

GAIM
Kopete
 Appendix C. Automating desktop migration using Versora Progression Desktop 279

Figure C-1 Progression Desktop neutralization process

GUI
The GUI allows users to perform the migration via a “Next-Next-Finish” style
wizard interface. The user is presented with a series of questions that ask which
system settings, application settings, and files from the Windows desktop should
be captured and stored for migration. For instance, in Figure C-2 on page 281, a
list of detected applications is shown, and the user is choosing to migrate
settings from Microsoft Outlook, AOL Instant Messenger, Microsoft Internet
Explorer, and Microsoft Word.
280 Linux Client Migration Cookbook, Version 2

Figure C-2 Progression Desktop storing settings on Windows

Next, on the Linux desktop, the user interfaces asks to which destination
applications and locations those settings should be applied. In Figure C-3 on
page 282, the application is asking for destinations for settings that were stored
in Figure C-2. The user has chosen to map Microsoft Internet Explorer to Mozilla
Firefox, AOL Instant Messenger to GAIM, Microsoft Outlook to Novell Evolution,
and Microsoft Word to OpenOffice.org Writer.
 Appendix C. Automating desktop migration using Versora Progression Desktop 281

Figure C-3 Progression Desktop applying settings to Linux

Performing a migration using the GUI is the simplest approach. However,
because this approach requires installing Progression Desktop on each machine
(either off of the CD or a network share), this option does not scale well to large
environments. This approach is probably best suited for migrations of smaller
groups of systems (ten to twenty). For larger groups, you should consider the
other approaches.

Command line (with templates)
Templates are defined policies, which tell the Progression Desktop engine what
items are to be saved from the Windows machine and what items are to be
applied to the new Linux machine. Templates are used as part of an automated
migration processes. They also provide a method of efficient migration without
having to step through the Progression Desktop user interface each time you
want to perform a migration on a specific machine. Templates are simple XML
files, which can be created by editing the default templates provided, or by
capturing a temporary template that is created during a migration with the GUI.

Once the template has been created, a simple batch file or shell script can be
created, which installs Progression Desktop automatically and then runs it using
282 Linux Client Migration Cookbook, Version 2

the specified template. This process can then be run with a single command on
each workstation or run using a logon script, as your environment allows. This
option is probably best suited for migrations of up to forty to fifty systems.

Systems management tool
It is possible to manage the migration of large environments through the use of
third-party systems management tools. Migrations managed by a systems
management tool use the same command line approach discussed in the
previous section. The systems management tool needs to be configured to
automatically install and run Progression Desktop on both the source and
destination machines. For information regarding one systems management tool,
IBM Tivoli Provisioning Manager, see the IBM Redbook Provisioning On
Demand Introducing IBM Tivoli Intelligent ThinkDynamic Orchestrator,
SG24-8888, available at:

http://www.redbooks.ibm.com/abstracts/sg248888.html?Open

For information about how to set up a customized workflow with which to run
Progression Desktop or other custom jobs with IBM Tivoli Provisioning Manager,
see the IBM Redbook Developing Workflows and Automation Packages for IBM
Tivoli Intelligent ThinkDynamic Orchestrator, SG24-6057, available at:

http://www.redbooks.ibm.com/abstracts/sg246057.html?Open

The general steps of configuring a systems management tool to trigger a
migration process are similar on most platforms:

1. Create a template.

The first step in a migration is to create a template; for larger migrations, you
might choose to have different templates for different departments.

2. Create the Platform Neutral Package.

You then create a job, which automates the installation of Progression
Desktop, runs it using the specified template, and then copies the resulting
Platform Neutral Package (PNP) to a network server.

3. Apply the Platform Neutral Package.

The apply job would be similar, where the systems management tool copies
the PNP from the server, installs Progression Desktop, and then runs the
apply process using the same template.

If your systems management tool allows for multiple machines to be included in
the same job, you could schedule the apply job to start as soon as the store
finishes. If you are planning on reusing hardware (an “in-place” migration), some
systems management tools can even be used to install the Linux operating
system in between the store and apply phases, leading to a complete automated
 Appendix C. Automating desktop migration using Versora Progression Desktop 283

http://www.redbooks.ibm.com/abstracts/sg246057.html?Open
http://www.redbooks.ibm.com/abstracts/sg248888.html?Open

migration and installation with the click of a button. Because this option requires
the most setup before migrating, it is best suited for migrations of more than forty
machines.

Progression Desktop architecture
Some of the benefits to developing on Linux are the wide variety of higher-level
languages available on the Linux platform. When developing for Progression
Desktop, the majority of the engine code needed to be portable between the
Windows and Linux versions. When looking for a high-level language that was
equally supported on Windows and Linux, that provided robust run-time services,
and that was able to natively access Windows and Linux specific technologies
such as the Windows registry or GNOME GConf, the development environment
that made the most sense to use was Microsoft Visual C#® (pronounced “C
sharp”). While first created by Microsoft as a competitor to Java, the Mono
project has implemented the language and run time to provide a Linux
compatible implementation as well. However, because a native user interface for
all platforms was desired, a C#-based GUI program was not suitable for
KDE-based desktops at the time of this writing. Instead, the Linux GUI uses
another high-level, flexible language; Python. Python was chosen because in
addition to its object-oriented nature and dynamic run-time flexibility, the PyGTK
and PyQt libraries for developing graphical applications are quite mature. By
creating common Python base classes for each step and deriving a GTK and Qt
version from those classes, Progression Desktop manages to provide a native
look-and-feel in its Linux-based GUIs with only a minimal amount of duplicated
code.

One of the major design goals of Progression Desktop was extensibility. With
many unique choices of applications in both Windows and Linux for each of the
common and targeted migration data sets, Progression Desktop needed to be
able to migrate to several different configurations. For instance, a user who had
been running Microsoft Outlook might want to migrate to Evolution, while another
user might migrate from Mozilla Mail to Thunderbird. In order to achieve this goal
and be able to run on both Windows and Linux, Progression Desktop utilizes a
plug-in-based architecture and XML data files running on the .NET platform. The
three main technologies developed for this are the PNP file format, the Settings
Packages, and the plug-ins such as Transforms and Accessors.

PNP Files
Progression Desktop stores extracted settings in a Platform Neutral Package, or
PNP. PNP files are a standard Zip file, which can be opened with your favorite
Zip file editor, such as FileRoller, Ark, or WinZip. Figure C-4 on page 285 shows
284 Linux Client Migration Cookbook, Version 2

an example PNP file open in FileRoller. Inside of the Zip file are XML files
describing the PNP, your previous environment, and the settings that were
stored. Stored settings are grouped by category, with each application being a
root level node in the XML file. The PNP also contains subfolders, which are
either files that are referenced by a setting, or files that were explicitly selected by
the user when storing.

Figure C-4 An example PNP file open in FileRoller

Settings Packages
Progression Desktop is extended to support additional applications through
Settings Packages. A Settings Package is an XML file that describes an
application and its settings. Settings Packages provide a flexible data definition
format that can be used to migrate anything from custom in-house applications to
well known third-party applications. Versora-maintained Settings Packages are
bundled into a single DLL in the root folder, but additional settings packages
might be added in the “SettingsPackages” subfolder. This gives users the ability
to easily extend their own migration without having to contract out to Versora for
new application support. Settings Packages include information that tells
 Appendix C. Automating desktop migration using Versora Progression Desktop 285

Progression Desktop how to detect if the application is installed, as well as where
settings for this application are stored. Figure C-5 shows a simple settings
package, including the necessary values to apply desktop wallpaper and its
location to the GNOME desktop.

Figure C-5 A simple settings package describing the GNOME wallpaper

In order to avoid a complex mapping from each individual source application to
an appropriate destination application, Settings Packages map settings into a
common neutral format. Progression Desktop then automatically translates
settings between those with the same in the source and destination packages.

For instance, in order to migrate personalization settings from Internet Explorer
to Konqueror, both packages have a setting named “Homepage”. In Internet
Explorer’s case, the “Homepage” setting is defined as coming from the registry at
a specific path, while in Konqueror the setting points to a path of an INI file and
the section and key inside that INI. Once those two paths have been found and
named the same, Progression Desktop handles the details of extracting the
setting from the registry, storing it inside of the PNP, and then inserting the value
into an INI on the destination. If the setting had pointed to a file, then Progression
Desktop would also automatically extract the associated file and insert it in the
appropriate place on the destination machine. Settings Packages can also
include a Dictionary, which is a mapping of specific settings to neutral types. For
instance, Internet Explorer uses integers between 0 and 4 to specify how often a
page should be checked for updates, while Konqueror uses words such as Cache
286 Linux Client Migration Cookbook, Version 2

and Refresh. Once the dictionary is specified, Progression Desktop does all of
the work of mapping values between application-specific values.

Plug-Ins
While Settings Packages provide extra flexibility, sometimes more control over
the migration process might be necessary. Progression Desktop has a plug-in
architecture that allows you to extend its capabilities further. Plug-ins can be
written in any .NET language and are automatically used by Progression
Desktop when placed in the plug-ins directory. There are several types of
plug-ins that Progression Desktop can handle, including Transforms, Accessors,
and FileConverters.

Transforms
Transforms are used in cases where a simple translation needs to be performed
between applications. For instance, one application might store how often to run
an auto-save feature in minutes, while the destination application stores that
number in seconds. When extending Progression Desktop to migrate your
in-house applications, you can use Transforms if your application’s settings logic
differs between the Windows and Linux versions.

Accessors
Accessors allow a settings package to retrieve structured data from any data
store. Some Versora-provided Accessors include the ability to read and write
from the Windows registry, GConf, and INI files. When extending Progression
Desktop to migrate your in-house applications, you can write an Accessor if your
applications use a nonstandard format when storing settings.

FileConverters
FileConverters are used to convert any file type dynamically. For instance when
Windows shortcut files are stored, instead of storing the binary .lnk file, an XML
file containing the information about that shortcut is stored. Then when applying
to a Linux environment, a .desktop file is created, pointing to the new path for the
document that the shortcut had been pointing to. When extending Progression
Desktop to migrate your in-house applications, you can write a FileConverter to
convert documents which cannot be opened in the target Linux environment.

Enterprise Source License
Progression Desktop is licensed under Versora’s Enterprise Source License.
The license grants users of Progression Desktop access to the source code, and
the right to read and modify it for internal use. While this license does not allow
for redistribution of Progression Desktop, it does ensure the user that the user
 Appendix C. Automating desktop migration using Versora Progression Desktop 287

has access to extend the behavior of Progression Desktop to meet the user’s
migration requirements.
288 Linux Client Migration Cookbook, Version 2

Appendix D. Multi-station computing
deep dive using Userful
Desktop Multiplier

In this appendix, we provide more detailed information related to multi-station
deployment strategies using Userful Desktop Multiplier and IBM IntelliStation Pro
systems.

We present the following topics:

� “Deploying multi-station solutions on the IBM IntelliStation platform” on
page 290

� “Software requirements and installation considerations” on page 296

� “Deployment considerations” on page 298

� “Additional system management considerations” on page 303

� “Case study one: General office desktops for a 25-user office” on page 306

� “Case study two: Transactional desktops: Public computers for a city library”
on page 308

� “Understanding how multi-station computing works: Exploiting the flexibility of
X Window System” on page 309

D

© Copyright IBM Corp. 2004, 2006. All rights reserved. 289

Deploying multi-station solutions on the IBM
IntelliStation platform

The amount of computing power available to the user of a computer system is
determined by a number of factors including CPU speed, system memory, and
storage. Those measures also apply to multi-station systems, with some
additional considerations.

As with single-station PCs, the number of simultaneous users or processes that
can be supported is bound not just by the amount of computational power that is
available on the PC, but also by how long it takes to service a particular process
and the number of concurrent running processes. Obviously, the total number of
concurrent processes increases with the number of users sharing a multi-station
computer. Less obvious is how those processes and other factors interact to
affect the user experience on each station.

In this section, we consider a number of hardware and software factors that can
determine the total number of users who can effectively work from a single
multi-station Linux computer.

Hardware requirements
This section describes the hardware requirements and related considerations for
deploying multi-station Linux desktop systems.

Due to the widespread availability of multi-headed video cards and USB input
devices, many current personal computer systems can be configured for two
local users simply with the addition of a new set of user input and output devices
including a keyboard, mouse, and monitor. By adding video cards, several users
can be simultaneously supported on properly configured systems.

A multi-station computer can be built using standard PC components; however,
more robust, higher performing platforms, such as the IBM IntelliStation A Pro
and IntelliStation M Pro workstations, are ideal. Most common configurations
incorporate dual-head cards using ATI or NVIDIA chipsets, a generous amount
of RAM, and an x86, EM64T, or AMD64 processor and motherboard with a

Important: In deploying a multi-station computing solution, you must take
care to properly test client interactivity and overall performance. Defining the
acceptable level of client performance supported by the multi-station host
platform with the maximum number of clients all logged on and running their
key business applications simultaneously, and provisioning the host systems
to meet that goal, is a critical design requirement for success of the solution.
See “Processor requirements” on page 293.
290 Linux Client Migration Cookbook, Version 2

number of free PCI/AGP/PCI-E expansion slots. Criteria for specifying
equipment to meet each of these requirements is described in more detail below.

Dual-head video cards
Although multiple single-head video cards can also be used, dual-head video
cards are preferred for multi-station systems both to maximize the use of
workstation expansion slots, as well as for taking advantage of the cards’
on-board screen mirroring or screen spanning capabilities. In general, any recent
single or dual-head video card is compatible with multi-station configurations.
However, cards based on ATI’s FireGL workstation or Radeon consumer
chipsets, or NVIDIA’s Quadro workstation or GeForce consumer chipsets are
known to work well and provide good driver support for multi-station
configurations and other multi-monitor setups. Some video cards might work well
individually but not in concert with other video cards installed in the same
system. Be sure to test combinations of video cards in all anticipated
multi-station configurations prior to establishing standard configurations. See
Figure D-1 on page 292.

Note: Some video cards do not support 3D rendering on multiple screens
simultaneously. If 3D video rendering is critical to the utility of the multi-station
systems, individual models of video cards should be tested for 3D
compatibility.

Userful’s Desktop Multiplier system does not currently support 3D graphics
acceleration software.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 291

Figure D-1 Adding a video card to an IBM IntelliStation A Pro workstation

PCI/AGP/PCI-E expansion bus
The number of video cards (and hence, video heads) that you can install in a
workstation computer is limited by the number of expansion slots on the
workstation, and to a lesser extent, the bandwidth of the expansion bus. A single
32-bit PCI bus at 33 MHz is theoretically capable of transferring data at 133
MBps, or approximately the data required to display full-screen
software-decoded DVD movie streams simultaneously to six video heads with
overhead (720 pixels x 480 pixels x 2 bytes/pixel x 24 frames per second x 4
video heads=99.5 MBps). This worst case PCI bus utilization scenario far
exceeds normal workstation video display usage.

In new workstations, each lane of a PCI Express expansion bus can carry up to
250 MBps, which supports the data transfer for more than ten software decoded
292 Linux Client Migration Cookbook, Version 2

DVD movie streams. With up to 16 lanes per PCI Express video card, the
number of available expansion slots, rather than the bus bandwidth, is most often
responsible for limiting the total number of video displays that can be connected
to a multi-station system. Current IntelliStation models typically have three to five
free PCI-X or PCI Express expansion slots, supporting a total of 6 to 10
single-monitor stations, or 3 to 5 dual-monitor stations per computer. In either
configuration, performance of the multi-station system is not strictly limited by the
expansion bus or video cards.

When deploying high-density desktop clusters to many users within the same
area, PCI hardware expansion units can allow additional video cards and
peripheral devices to be added to facilitate as many directly connected users as
the systems memory, CPU, and PCI bus bandwidth permit.

Processor requirements
The optimal number of users supported by a particular CPU in a multi-station
system cannot be reduced to a simple formula, because overall performance
issues are largely dependent on the nature of usage. A IntelliStation system with
a dual-core 2.6 GHz processor could reliably support over 20 users, each
simultaneously running “low utilization” applications such as terminal emulators
or simple data entry applications. The same system could support far fewer
users, perhaps 4-8 users, with full graphical environments performing office
tasks such as word processing and Web browsing. The same system used by
programmers who frequently compile and test code could likely support 2 to 4
users without noticeable lag.

One method to estimate CPU usage is to examine the CPU load average, that is
the number of tasks waiting for execution time at any given point. On a single
core processor system with no HyperThreading, a load average of 1.0 indicates
that one process is always waiting for execution time. This is the ideal condition.
A load average of more than 1.0 indicates that some processes are waiting for
execution time, while a load average of less than one indicates that CPU cycles
are being unused or idle.

To determine the optimal multi-station system configuration for a particular usage
pattern, profile the load average for that class of users at peak usage on their
current single-user systems. For best results, the load average during peak
usage of all users on a multi-station system should not exceed 2.0 per
processing core. A load average value of 2.0 during peak usage indicates that
the CPU is, in general, able to serve all regular priority user processes as
required by user applications, while not ignoring the usually more numerous
background system processes. Faster CPUs or additional processing cores can
increase the available computational power to decrease the amount of time it
takes to service a process, and therefore increase the number of users that the
system can support.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 293

Userful’s Desktop Multiplier software shares the opportunity for processor time at
the X server layer equally for all users, but it does not attempt to modify the way
in which the underlying Linux kernel handles processes and threads. Since most
line-of-business applications do not spawn multi-threaded CPU-intensive
processes, the combination of a dual-core processor and an SMP kernel should
easily provide acceptable levels of performance for each client on the
multi-station system.

As with a single-station Linux desktop or thin client system, if a CPU-intensive
application or event is triggered by a user on a multi-station system, all other
running user processes might experience a negative performance impact.
Hardware-related CPU usage spikes arising from processes running in the
system context at a higher priority than user processes can negatively affect the
processes of all users. Various scheduling utilities exist to set priorities for
application and system-level events, such as nice and renice, which are
standard process management tools available with most Linux distributions.
There are numerous other special priority schedulers available from various
sources.

Persistent storage
When considering local storage for multi-station deployments, hard disk speed
and cache size tend to be more important factors than total disk size. On
multi-station computers with networked user file storage, the swap partition and
temporary user files are unlikely to ever occupy more than 10 GB in total, but that
usage would be the result of many hundreds of small files. Many user
applications and system processes store temporary working files in the /tmp
directory. With a single user, relatively few processes read and write files to that
directory, and it is unlikely to grow to more than 1 GB in size with any regularity.

As with a single user system, responsiveness of applications such as a Web
browser or OpenOffice benefits from a high-performance hard disk. Applications
often make and rely on many small temporary files for each open document,
which tie application responsiveness to reading and writing these small files from
the hard disk quickly. On a multi-station, multi-user system, overall performance
benefits greatly from a large disk cache and high spindle speed on the hard disks
on which /tmp and swap files are hosted. If persistent local storage is required,
local storage capacity should be provisioned according to the needs of each
user, as with any other desktop computer system.

Memory
Assessing memory requirements for multi-station Linux setups is no different
from assessing the memory requirements for a single user Linux workstation,
with the exception that the underlying operating system memory image is only
loaded once. Red Hat Enterprise Linux Workstation Version 4 loads a
294 Linux Client Migration Cookbook, Version 2

full-featured configuration in under 256 MB of non-swapped memory while
Ubuntu Linux loads a complete Linux operating system with GUI in under 350
MB of non-swapped memory. Each additional user only requires an additional
20-40 MB of system memory to expand the scope of USB device handlers, X
(see “Understanding how multi-station computing works: Exploiting the flexibility
of X Window System” on page 309), and the window manager, because no
additional copies of X, the kernel, or any other system software need to be
loaded. As with single station systems, each user application has memory
requirements that can be profiled with standard tools such as ps, top, and the
contents of /proc/<process>/status.

Individual user applications such as OpenOffice Writer and Firefox browsers use
no more or less memory on a multi-station system than on a single user system,
which is easily profiled with utilities such as ps and top, and such application
memory requirements are easily provided on a multi-station system. In a typical
office deployment, each user typically requires between 256-512 MB of
non-swapped memory for running local applications.

Device support
Common devices such as keyboards, mice, barcode scanners, magnetic stripe
readers, and most USB storage devices have mature multi-station (or multi-user)
aware driver support. For other devices, multi-station device support can
currently be limited by driver module implementations that are not multi-user
aware. For example, many Web cameras and USB audio devices function in
multi-station configurations, but access to these devices is shared by all users.

While non-multi-user aware devices can be used in multi-station systems, the
issue of multiple users contending for access to such devices should be
reviewed and fully tested before deploying such devices. A simple procedure
outlining access to a shared device such as the workstation’s CD burner is
feasible for most devices.

If controlling access to shareable devices is a requirement of the workplace
environment to meet policy or regulatory requirements, integrated solutions are
available. For example, Userful’s Desktop Server system (which integrates
Desktop Multiplier functionality with Fedora Core software and specialized
access control features) can quickly form logical workstations and assign
exclusive access to almost any non-privileged resource to a particular station,
overcoming many limitations of a non-integrated solution.

Shared access to removable storage
As mentioned, managing access to shared devices on a multi-station computer
can present unique technical and management challenges. Because most
computer systems are not configured with multiple local users in mind, they do
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 295

not include multiple optical or floppy drives. Therefore, a combination of policies
and technology enhancements might be needed to ensure appropriate access
and data security.

Providing shared access to removable storage devices means that any user on
the local multi-station system can access the contents of any disk or USB
memory key connected to the shared system. This can pose a security concern if
the enterprise data handling policy permits confidential information to be stored
by employees on removable media and could raise user concerns with regard to
identifying and working with multiple connected devices of the same kind.
Denying access to removable storage devices at the system level solves both of
these concerns, but can frustrate employees who occasionally access data
stored on removable media.

Prior to deploying multi-station systems, be sure to inform users about best
practices and policies regarding shared drive access.

Selecting your IBM IntelliStation model
The technologies that enable multi-station computing are based on standard PC
hardware so a variety of hardware configurations are capable of providing
stations to multiple users. However, there are distinct advantages to selecting
and implementing multi-station solutions based more scalable workstation class
platforms.

IntelliStation Pro systems with Intel Xeon® or AMD dual-core Opteron
processors can be configured for up to 16 GB of memory along with fast storage
subsystems to help ensure acceptable levels of performance for all client
workstations. Such systems are appropriate for supporting a moderate number
of client workstations to power users, or higher numbers of client workstations for
users of lightweight applications such as terminal emulators.

Software requirements and installation considerations
The software requirements for multi-headed or multi-station Linux are easily met
by most Linux distributions. Typically, multi-station Linux solutions require Linux
Kernel Version 2.6, X.Org version 6.8.2 or later, or Xfree86 4.3.0 or later and a
recent Gnome or KDE build.

Important note about X.org: Some older versions of X.org, including 6.8.2-31 are
incompatible with multiple installed PCI video cards, and they might fail to launch
an X environment. The current version of X.org (6.8.2-37) does not exhibit this
problem.
296 Linux Client Migration Cookbook, Version 2

Desktop Multiplier system requirements

As of this writing, Userful Desktop Multiplier is tested to be compatible with the
following Linux distributions:

RPM-based distributions:

� Red Hat Enterprise Linux WS, Fedora Core 2, 3, and 4, SuSE 9.1, 9.3, and
10, Mandrake 10.0 and 10.1, Novell Desktop Linux 9 and 10, and CentOS 4

DEB-based distributions:

� Ubuntu 5.x and 6.x, Linspire 5.0, Xandros v3, and Debian 3.1 (Sarge)

Desktop Multiplier might also be compatible with other Linux distributions that
support .deb and .rpm packages. Instructions for installing on non-supported
distributions are available at:

http://userful.com/products/dm-config

Before adding Desktop Multiplier multi-station software to an existing x86 or
EM64T Linux installation, sufficient video cards and USB ports must be installed
on the shared computer to connect at least one monitor, one keyboard, and one
mouse for each station. Since there are only three to six free USB ports on the
IntelliStation, we recommend USB keyboards with integrated hubs. Powered
USB hubs can be used to minimize the number of USB devices that need to be
directly connected to the computer.

Desktop Multiplier software supports display resolutions of 640x480, 800x600,
1024x768, and 1280x1024 on each monitor.

Recommended BIOS settings:

� Enable all USB ports.

� Enable Legacy USB support. (Sometimes called "USB keyboard support");
otherwise, only the PS/2 keyboard works during the Linux boot process.

In addition to this information, visit the Userful Desktop Multiplier product
home page at the following address for the most up-to-date information about
system requirements, installation, and answers to frequently asked questions:

http://userful.com/products/dm

Note: Underpowering the USB bus can cause unpredictable behavior of USB
devices. If extension cables are used, ensure that the distance between
keyboard or other USB device and computer or powered hub does not exceed
3 m (10 ft.).
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 297

http://userful.com/products/dm
http://userful.com/products/dm
http://userful.com/products/dm-config
http://userful.com/products/dm-config

� Disable unnecessary integrated peripherals.

� Installing extra video cards increases load on the PCI bus; therefore,
disabling any unneeded devices (for example, serial ports, parallel ports, and
so forth) in the BIOS can improve performance and compatibility.

� Disable on-board video (see notes above).

� For installation on NLD 9 or kernels below 2.6, disable USB2 if you are
planning to use hubs.

Desktop Multiplier software installation
Desktop Multiplier is available as an .rpm and as a .deb package and includes
installation scripts for supported Linux distributions. Following the basic package
installation, a reboot is required, at which point a configuration wizard helps to
complete the installation process.

To download Desktop Multiplier and access detailed installation instructions,
visit:

http://userful.com/products/dm

Deployment considerations
This section examines various deployment considerations relating to
multi-station systems. In general, multi-station computers are best deployed in
environments where the shared system’s CPU and memory usage are not
expected to be intensive, such as in most fixed function or provisioned office
systems where each user runs a limited number of concurrent applications.

For general office deployments where the primary computer use consists of an
e-mail client, several Web browser and office suite windows, and perhaps a data
entry or terminal emulation application, the processing, storage, and networking
capabilities of even modestly equipped desktop computers far exceed the
demands of individual users.

Storage, printing, and external service considerations
The basic requirements for deploying multi-station desktop Linux systems differ
little from those deploying standard multi-PC environments. Few or no
adjustments to file, print, and other network services are necessary to
accommodate access from multi-station computers. In both single and multi-user
variations of the desktop Linux environment, the use of local storage for
persistent data such as user documents is discouraged in favor of centralized,
managed storage.
298 Linux Client Migration Cookbook, Version 2

http://userful.com/products/dm
http://userful.com/products/dm

Remote file systems
Users of multi-station Linux desktops require access to remote file systems in the
same manner that users of single-user Linux desktops do.

Access to remote file systems is implemented in the underlying Linux operating
system, which is multi-user aware, rather than in X or the desktop environment,
posing few additional challenges for multi-station Linux desktop deployments. In
the majority of cases where remote file systems are accessed on a per user
basis (rather than per workstation), those file systems can be securely and
privately mounted by individual users on a multi-station Linux system in the same
fashion.

Because most storage solutions deployed according to best practice are already
multi-user aware, and because such awareness is not a characteristic of the
physical layers of connectivity, adjustments to file and print management are
typically not required to accommodate access from multi-station computers.

Multi-station Linux desktops use the same standard authentication or directory
services (such as NIS, LDAP, or local authentication) as those provided for
single station Linux desktops.

Network services
Most network-enabled services are unaffected by consumption from clients using
multi-station computers. For example, in a UNIX-type network environment,
sockets and client/server connections are all multi-user aware and many
services can be accessed by clients behind a NAT router or firewall. Most
services do not need to be reconfigured to accept multiple client connections
from a single IP address, in either single or multi-station configurations.

Network, electrical, and physical infrastructure considerations
Multi-station computers substantially reduce network, electrical, and physical
infrastructure requirements, resulting in substantial management and cost
savings in all areas.

Note: All users on a particular multi-station system share a single IP address
in the default configuration, although integrated solutions such as Desktop
Server and DiscoverStation can optionally bind unique IP addresses to
individual users. Be sure to review any applications that depend on unique IP
addresses for identification purposes for possible issues.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 299

Network infrastructure requirements
Deploying multi-station Linux provides the advantage of simpler network
configurations with fewer IP addresses and network devices to manage.

In most multi-station deployment scenarios, a single standard 100 Mbps Ethernet
connection to the multi-station computer provides sufficient bandwidth for all
users to access network-based data. Although each individual multi-station
computer can conceivably require as much bandwidth as individual workstations
do for the same number of users, it is frequently the case that users are fully
productive on less than 1 Mbps of bandwidth, as evidenced by the success of
telecommuting over home broadband connections.

We recommend gigabit network connections to the multi-station systems if many
users are expected to simultaneously access bandwidth-intensive resources
such as streaming video or large file access. IntelliStation and most other
workstation-class PCs include an integrated gigabit network interface, providing
sufficient bandwidth for each user on the shared system without noticeable
network lag.

Electrical requirements
Traditional single-station workstations such as IntelliStation require
approximately 550 W per user, with the computer consuming 450-500 W and the
LCD monitor consuming 50 W through a total of two electrical outlets. A five
station configuration reduces this requirement to under 150 W per user,
eliminating 400 W of consumption and one electrical outlet per user sharing the
multi-station computer. For new deployments, the reduced power consumption
of multi-station systems can lead to substantial savings in facility upgrade costs
and reduced power consumption.

Consult your workstation and display manuals for detailed power requirements.

Office layout
Multi-station configurations are best suited to office environments where users
work in close proximity, for example, open plan offices where cables and stations
can be easily installed. Multi-station configurations are less suited for enclosed
office deployments because the cabling and distance requirements become
more technically challenging. Extension cables and KVM over copper solutions
can help to enable effective multi-station deployments in otherwise restrictive
office layouts. Multi-user, multi-display configurations are spatially suited to
almost any office or production environment. The small footprint of modern LCD
monitors allows at least two moderately sized monitors to occupy the physical
desktop space of a traditional CRT monitor.
300 Linux Client Migration Cookbook, Version 2

Figure D-2 Multi-station hardware topology options based on a high-end IntelliStation multi-station platform

Figure D-2 illustrates some of the Multi-station topology options discussed so far.
Key components in the figure are described as follows:

� A: Managed multi-station disk images support thin clients alongside regular
multi-station desktops.

� B: Local workstations connect to the IntelliStation using standard USB/VGA
cables.

� C: KVM options allow mice, keyboards, and monitors to be located up to 250
feet away from the IntelliStation.

� D: Thick clients with minimal CPU, memory, and PCI expansion slots can
serve desktops to local stations, while application processing occurs on the
central IntelliStation computer.

� E: PCI expansion bus units allow stations to be deployed into user
environments, while the IntelliStation is managed in a secure environment.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 301

� F: PCI expansion bus units are also available with fiber optic interconnects,
allowing workstations to be deployed up to 1000 feet away from the
IntelliStation.

� G: IntelliStations can support multiple local clients, while sharing applications
and data with other systems.

Complementary technologies
A variety of complementary technologies can extend the flexibility of multi-station
deployments. This section discusses several of the key technologies that can be
used to logically complement and physically extend a multi-station computing
platform.

Adding more stations using PCI bus expansion
If the number of available PCI or PCI-Express expansion slots in the shared
system is a limiting factor, PCI bus expansion hardware allows additional video
cards and peripheral devices to directly link to the shared system. PCI expansion
units with up to 13 additional PCI slots can be daisy-chained or fanned out from
the single shared system to facilitate as many extra PCI cards as the computer’s
PCI bus bandwidth permits. PCI expansion units can also be used in conjunction
with PCI extension technologies over fiber-optic cable, effectively enabling an
unlimited number of PCI expansion slots at almost any distance from the shared
server system, using a single fiber-optic connection.

Connecting remote stations
KVM over CAT5 cable and PCI extension technologies can effectively support
connection of client workstations to the multi-station platform at distances of up
to 250 feet using copper1, or up to 1,000 feet or more using fiber2. In a
multi-station scenario, one or more workstations of a multi-station computer
system can be deployed to hostile or remote environments where deploying an
entire computer can be impractical or even impossible. These units can typically
be combined and linked in a variety of ways to accommodate virtually any
deployment scenario.

Remote desktop clients and services
Multi-station technologies combined with remote desktop client software enables
a single multi-station platform to support multiple connected clients that can run
virtually any kind of operating system interface or application available on remote
hosting servers. For example, remote Linux desktop services based on RDP,

1 The hardware KVM units combine (multiplex) the electrical signals carrying keyboard, mouse, and
video data into a single data stream.
2 PCI extension over fiber-optic cabling allows the complete PCI bus subsystem to be extended to as
many individual PCI cards as the computer’s bus bandwidth can support.
302 Linux Client Migration Cookbook, Version 2

XDMCP, VNC, NX, and so forth can be layered into a multi-station client
computing design just as easily as in a traditional thin client design.

See 7.2, “Remoting tools” on page 154 for more details.

Additional system management considerations
Software maintenance, system management tools, security, and privacy are
common concerns among all managed desktop environments; however, a few
basic additional considerations pertaining to multi-station Linux should be noted.

Software updates
Software packages and updates provided by the vendor of the installed Linux
operating system typically do not account for multi-station systems. For most
multi-station deployments, this fact can be both advantageous and annoying.

Updating most user application and system component packages does not affect
an existing multi-station installation. The exceptions are software packages that
directly affect X, the login managers, and configurations for those subsystems.

The following kinds of updates can affect Desktop Multiplier settings:

� Updates that change GDM settings might prevent graphical login from more
than one station.

� Updates that change the runlevel of the system might cause Desktop
Multiplier to exit prematurely (Desktop Multiplier defaults to runlevel 5).

However, to compensate for these cases, on the next system reboot, Desktop
Multiplier will attempt to automatically restore the GDM configuration file should it
be overwritten by an OS update, software package, or service pack.

The Desktop Multiplier configuration can be reset to defaults with the following
command: rm -f /etc/X11/userful.Mxorg.conf. After doing this, a software
wizard creates a new configuration file on the next reboot. In situations of
extreme modification due to vendor updates, reinstalling Desktop Multiplier might
be necessary.

Tip: As soon as you move above hardware level considerations, multi-station
and thin client architectures can become complimentary instead of competing
design strategies.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 303

Also, USB keyboard assignments can be reset by running the following
command: /opt/userful/bin/usbinput-reconf.sh

Management tools
Multi-monitor and multi-station system setups can at times pose additional
management challenges. Even though the one-to-one relationship between
users and their GUIs is preserved, some system management software might
not be aware that multiple monitors or other interface devices are in use.

Tools, such as Novell ZENworks system management software or OCM Suite
from OpenCountry, typically work seamlessly in multi-station setups, while
vendor specific tools might or might not. Be sure to thoroughly test management
tools in a variety of multi-user configurations prior to deployment.

Software and support
Multi-station desktop Linux can reduce the total number of software and support
subscriptions required in many deployment scenarios by reducing the total
number of CPUs deployed. Depending on the particular software licensing
agreements in force, licensing and support subscription costs can be reduced
substantially. Deploying multi-station systems also substantially lowers the total
system support load because there could be significantly fewer desktop systems
to manage.

System shutdown
System shutdown and physical access to controls on multi-station computers are
important considerations where multiple individuals share the same computer.
Restarting a shared system without notice could result in loss of work or data for
multiple users at once. Userful’s Desktop Multiplier removes the shutdown option
from the default greeter theme on Fedora Core. Best practices suggest similar
modifications should be made to all multi-station deployments to avoid the
accidental loss of work. As an example, Userful’s modified greeter theme for
Fedore Core is available from:

http://www.userful.com/no-shutdown-gdm-greeter

Multi-language support
Desktop Multiplier supports international keyboard layouts and allows each user
to have different keyboard settings as needed. However, GDM and KDM
currently do not allow users to change keyboard layouts3. As a result, users
cannot switch keyboard layouts until after they log in. The result is that users
304 Linux Client Migration Cookbook, Version 2

http://www.userful.com/no-shutdown-gdm-greeter
http://www.userful.com/no-shutdown-gdm-greeter

might be unable to type their username and password to log in if the keyboard
layout is incorrect.

If a multi-station computer is serving users who need to type using multiple
languages or use different keyboard layouts, the system and the greeter should
be started using a common language layout, which can then be changed by the
individual users after logging in. Desktop Multiplier software supports full
internationalization of its configuration tools with translations available in most
commonly used languages. Support for additional languages are typically
available within several business days of a request for supporting a new
language.

Security considerations
Software security on multi-station Linux poses few significant challenges beyond
those of single-user Linux workstation deployments. The key security difference
between a single-user Linux workstation and multi-station Linux is that multiple
users share access to the same computer system; therefore, its storage,
processes, programs, and other hardware are also shared. Any system
compromise or corruption during one user’s activity can potentially affect all other
users.

Sharing systems is not explicitly a problem if the users never modify their
workstation environment, for example, by installing browser plug-ins and
applications, or by adding or compiling shared libraries. But because multiple
users are able to simultaneously run potentially untrusted applications on the
same computer, a physical or electronic compromise of one user’s environment
could result in the compromise of all local user environments.

In order to minimize the effect of user configuration changes, we recommend that
users of multi-station systems never are given local root or administrator level
access, and that users are made aware of how to install software in their own
private directories without adversely affecting the shared multi-station computer
environment. In this manner, no user can have access to another user’s
temporary files or running processes, and no user can modify the shared
environment.

Privacy considerations
As discussed above, sharing a computer could result in the inappropriate,
inadvertent, or deliberate disclosure of confidential information. The potential for
sharing data and the sometimes complicated access controls required to prevent

3 The default keyboard layout is set in the X.org configuration file and is generally guessed from the
default system language.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 305

unintentional data sharing could pose problems for compliance with regulatory or
internal policies.

Depending on specific corporate policies, it might or might not be a problem if
different employees within the same security context share a computer with other
employees who have legitimate access to the same information. Access to the
same computer by employees from different security contexts, however, should
be actively prevented by only sharing multi-station computers among employees
of the same function. In many cases, existing policies that apply to the handling
of confidential information about shared or multi-user access mainframe
computers or file servers can map identically or be easily adapted to multi-station
environments.

Case study one: General office desktops for a 25-user
office

This case study shows a multi-station solution for adding employees at a branch.

Requirement
A 15-employee branch office of an IT company needs to expand its open plan
office to accommodate ten additional employees. The office also has an
executive suite with four workstations.

The office is located in an older building with aging electrical infrastructure with
relatively few wall outlets, low mains amperage, and most network cables must
be run through the plenum space due to the poor quality of installed copper lines.
Local construction bylaws concerning older buildings prevent the addition of new
electrical cabling without renovating the electrical infrastructure of the entire
building.

Each employee’s workstation either ran Windows or a Red Hat or Fedora Linux
distribution at various patch levels and was maintained individually as needed.
User files were maintained locally with no effective security measures,
centralized data storage, or backup plan. Several Windows workstations were
required for print document design and production, accounting functions, and for
access to occasionally used specialized Windows applications.
306 Linux Client Migration Cookbook, Version 2

Solution Design
The office deployed six multi-station systems based on Fedora Core 4 and
Desktop Multiplier, each with four or six video heads. Four of the quad-user
systems were retrofitted from the existing inventory of workstations by adding
video cards and memory, while the two six-user systems required new
computers based on AMD’s Athlon 64 processor. All systems contained enough
memory to provide between 256 and 512 MB of RAM per attached client
workstation.

In the new deployment, each multi-user system serves four to six users. One of
the systems was fitted with four dual-head video cards to accommodate four
dual-display users. A central server running Linux was added to provide
authentication services and remotely mounted home directories for each user.

The four users in the executive suite were provided with client workstations all
connected to another multi-station host system.

Access to optical drives was preserved by positioning multi-station systems
(each with a single optical drive) close to the users who anticipated using them
most frequently. Deploying external USB optical drives (for approximately $30
more than the cost of an additional internal drive) is an option if concurrent and
frequent access become necessary in the future.

Minimal changes to the office layout were required to accommodate the new
configuration. The most drastic changes were the removal of individual
workstations from under most employees’ desks, and the deployment of storage,
backup, and intranet servers based on hardware from the former workstation
computers. No additional electrical or network cabling was required to add
workstations for the ten new users. An important consideration because installing
new cabling and electrical outlets is costly.

With the savings from reduced computer management costs, the office was able
to expand the deployment beyond the initial plan to have one workstation for
each employee, and the office outfitted every available desk with a workstation.
The extra workstations increased flexibility in work patterns and improved
collaboration among employees. In addition, an RDP server was set up to
provide access to key Windows applications from anywhere in the office using
the Open Source rdesktop software at:

http://www.rdesktop.org/

The move to a consistent software platform and patch level reduced demands on
the IT staff. The hardware-related savings allowed the office to increase their
hardware refresh cycle from four years to two years, ensuring all users have the
latest high performance computer hardware. As a result, single image desktops
eased management, central storage, and backup-related overhead. The
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 307

http://www.rdesktop.org/

deployment also freed up ports on the existing 24-port managed switch for future
network growth. The workstation redundancy built into the new setup also allows
anyone to work on any other station for collaboration, or to minimize employee
down time in case of hardware failure.

Case study two: Transactional desktops: Public
computers for a city library

A multi-branch city library experienced a period of significant growth due to
population increases in their area. Library branches were added and modernized
to increase services with a focus on electronic access. The highest growth rate
was in public computer use. Its eight branches saw a 400% increase in computer
hours logged between 1998 and 2003.

Requirement
Since it began deploying public access computers, the library has prided itself on
offering its patrons an excellent service. Unfortunately, tight budgets coupled
with high hardware, software, and support-related costs were forcing tough
choices on the library. If the branches wanted to meet the immediate demand for
computer access for all their patrons, not all of the computers could have the
latest software packages. Even free software updates (such as the latest version
of Macromedia Flash) were often not up-to-date because staff time was always
in limited supply. Many stations lacked floppy drives, all stations lacked CD
burning capabilities, and not all stations could run word processors. For years,
the library was forced to pick and choose from a limited set of options. They
simply could not provide everything patrons wanted on every computer. This
created a heterogeneous hardware and software environment that was difficult to
maintain and support.

Helping patrons find the correct station to print a resume or download
attachments to disk also placed a unwanted burden on the reference desk staff.
Supporting the wide array of hardware and software combinations on 100 public
access computers across eight branches became a headache for the IT staff. In
addition, there were never enough machines to go around and there were often
long lineups for computers, particularly during peak hours.

Solution Design
In 2003, the library’s Manager of Systems and Technical Services decided to
deploy public access computing solutions for their branches based on Userful’s
Desktop Multiplier technology. The library’s multi-station solution was built by
308 Linux Client Migration Cookbook, Version 2

augmenting standard PCs with multiple dual head video cards with the target of
supporting four to eight users per computer.

Replacing a large number of individual workstations with more tamper-resistant
multi-station Linux systems drastically lowered support, licensing, and power
usage costs for the library. The multi-station desktop approach also enabled the
library to implement a consistent hardware and software platform at all branches,
which reduced the burden on IT staff. Further savings were achieved through
lowered hardware and software failure rates due to the reduction in the total
number of systems they needed to support.

Additional multi-station case studies
You can read additional case studies and customer references for multi-station
Linux deployments at:

http://userful.com/customers/case-studies

Understanding how multi-station computing works:
Exploiting the flexibility of X Window System

The X Window System (also known as X11 or X) is a windowing system for
computer displays, which provides the framework for the graphical user interface
found in most Linux distributions. X is responsible for drawing and moving
windows on the display and interacting with input devices such as a mouse and
keyboard. X does not specify the appearance or behavior of the user interface.
Xorg, the current reference implementation of X, is the most commonly bundled
and distributed version, although implementations such as XFree86 are also
popular. For more information, see:

http://en.wikipedia.org/wiki/X_Window_System
http://wiki.x.org/wiki/

The design of X
The design of X is based on a client/server model, in which the X server
communicates with client programs. The X server accepts requests to display
graphical output (windows) from the window manager and returns user input
(keyboard, mouse, and so forth) to the window manager. The window manager
running above X (such as Enlightenment or twm) controls the placement and
display of application windows. On top of the window manager, GUI widget
toolkits (such as Qt and GTK) and desktop environments (such as KDE and
Gnome) provide the windows with their specific appearance and visual styles.
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 309

http://userful.com/customers/case-studies
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/X_Window_System
http://wiki.x.org/wiki/

Applications, such as Web browsers, text editors, and so forth, request that the
window manager provide windows with specific user controls (check boxes,
buttons, scroll bars, and so forth) in specific positions. The window manager, in
conjunction with any GUI widget toolkits in use, then composes the requested
window for the user.

The X server is capable of keeping track of multiple video cards, monitors, and
input devices. Therefore, an X server is capable of logically interfacing with a
large array of displays. In a multi-display configuration, X can be configured to
present the displays as individual displays or as one large display, or as multiple
logical groupings of one or more displays. See Figure D-3.

Figure D-3 Standard single-user X server

Figure D-3 shows a typical single-station X implementation that uses a single X
server to handle a single keyboard/mouse input and outputs a single desktop to
one or more monitors.

See Figure D-4 on page 311.
310 Linux Client Migration Cookbook, Version 2

Figure D-4 Desktop Multiplier using one X server for all client workstations

Figure D-4 shows a multi-station X implementation that uses a single X server to
handle multiple sets of keyboard/mouse inputs and outputs one desktop for each
user to one or more associated monitors. This is how Desktop Multiplier
operates.

And Figure D-5 on page 312 shows a multi-station X implementation in which
one X server handles each set of keyboard/mouse inputs and outputs one
desktop for each user to one or more associated monitors. This is how “Ruby”,
also known as “Backstreet Ruby”, operates. For more information, see:

http://www.tldp.org/HOWTO/XFree-Local-multi-user-HOWTO/about_bruby.html
 Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier 311

http://www.tldp.org/HOWTO/XFree-Local-multi-user-HOWTO/about_bruby.ht

Figure D-5 Other multi-station approaches with separate X servers for each workstation

In a standard single user environment, the user runs a single instance of X on top
of which rests the remainder of the GUI. In a multi-station environment, a single
instance of X can be set up to handle multiple users (Desktop Multiplier) or
multiple instances of X can be run (as in the case of Ruby).
312 Linux Client Migration Cookbook, Version 2

Appendix E. Client personalization

This appendix compares the methods for storing client-side personalization data
between Windows and Linux. Because this book focuses on migrating clients
from Windows to Linux, migration of client-side personalization data could also
be an important requirement for the planning and implementation phases of a
project.

E

© Copyright IBM Corp. 2004, 2006. All rights reserved. 313

Microsoft Windows client personalization
The primary container for personalization data in Windows is called the user’s
profile. In Windows 2000 and Windows XP, profile data for the user “username”
is typically stored in:

c:\documents and settings\username

In Windows NT, profile data for the user “username” is typically stored in:

c:\winnt\profiles\username

Windows uses these locations to store various kinds of personalization data. For
example:

� User documents
� Application data and settings
� Temporary Internet files
� Internet favorites

The profile directory name uses the user ID, but can also have a more detailed
distinction, because sometimes the computer name or the name of the domain is
appended. This happens if a user exists already and a new one is created with
the same name but integrated in the domain. So one username can exist several
times on a machine, connected with the domain name or the local machine name
or other combinations. The consequence is that Windows has to distinguish
between user username.localcomputername and username.localdomainname.

Some settings are stored in subfolders of the user’s profile. For instance, many
settings are stored in a folder called “Application Data.” However, the majority of
settings are stored in the registry. The Windows registry contains two main
“hives”. The “Local Machine” hive contains system-wide settings and hardware
information. The “Current User” hive contains settings that are specific to a
certain user. The registry has its own permissions layer, which is similar to file
system permissions. The registry can only be accessed through APIs provided
by Microsoft, because the binary file representation is too complex to manually
edit. Because many settings are stored in the registry, this can lead to a single
point of failure; a corrupted registry can render an entire profile unusable.

Linux client personalization
Considering the modular structure of Linux, it becomes clear that profiles must
differ substantially from the Windows profiles. Because there is no registry in
Linux, all settings must be saved in another way. System-wide settings in Linux
are normally configured using readable text files in the /etc directory. These files
frequently have extensions such as .conf or .profile.
314 Linux Client Migration Cookbook, Version 2

The file /etc/profile sets the system-wide environment and startup programs per
user login. These system-wide defaults can be extended by profiles in the local
or home directory of the user. The local .bash_profile (Bourne Again SHell) is
one example on Red Hat Enterprise Linux; the .profile file on SUSE Linux is
another example.

Structurally, Linux stores user profile data in a method somewhat similar to the
way that Windows does. All individual user settings are stored inside the user’s
home directory, which is sometimes referenced as $HOME. The home directory
for the user “username” is usually found at:

/home/username

Linux does not implement a registry the way Windows does. Instead, user profile
information is stored in configuration files within the individual user home
directories. These files are usually created by specific applications that need to
store user personalization data required by that application.

One advantage of these files is that they are often plain text formatted files, and
thus, human readable. Another is that the content can be automatically
manipulated by scripts if you want. Also, because each application stores data in
separate files, a corrupted file only affects that application. Because these files
are standard files, the standard file permissions apply. By modifying permissions
on these files, it is possible to prevent unwanted changes by the user. This could
have the effect of “locking down” certain aspects of the user’s login environment.

Most applications create a hidden folder, beginning with a dot or period (.), in
which configuration files for those applications are created and maintained.
Frequently, these files are grouped together with similar applications, such as all
Mozilla-based applications storing settings in $HOME/.mozilla.

Desktop personalization: KDE Desktop
In KDE, desktop personalization is based on information found in a standard
directory structure within the user’s home directory. The contents of the desktop,
including icons and other data, is usually found in:

/home/username/Desktop

Application data settings, such as e-mail, bookmarks, and other preferences, are
usually stored in:

/home/username/.kde/share/config

When KDE looks up a setting, it first checks settings found in the user’s home
directory. If the setting is not found there, then it looks in the global configuration
directory. Red Hat typically places the global configuration files in the
 Appendix E. Client personalization 315

/usr/share/config directory. Other distributions might place these files in different
locations. Because users start out with no customized settings in their home
directory, any changes that are made to the global settings files are inherited by
all new users created after making the changes.

KDE uses plain text files for all its configuration options. This makes it easy to
configure KDE using scripts and editors. Three of the main files used to configure
the desktop are:

� kdeglobals
� kdesktoprc
� kickerrc

The most recent versions of KDE ship with an application called KConfigEditor.
KConfigEditor allows you to edit these files in a GUI application. KConfigEditor
can also be used to change some settings for GNOME applications as well. An
example of the KConfigEditor interface is shown in Figure E-1.

Figure E-1 KConfigEditor editing kdesktoprc
316 Linux Client Migration Cookbook, Version 2

Desktop personalization: GNOME Desktop
As with the KDE desktop, desktop personalization files in GNOME are stored in a
directory structure within the user’s home directory. Just like KDE, modern
versions of GNOME store desktop icons and other data in:

/home/username/Desktop

The task of making general configuration changes to the GNOME desktop is
extremely different than it is for KDE. While KDE uses simple text files, the
GNOME desktop uses a database called GConf to manage all of its settings. In
order to make settings available from different applications and also from tools
within the GNOME Desktop, there is a daemon running that notifies all involved
applications when a value has changed and that manages all access between
applications and the configuration sources. This daemon is called gconfd-2 and
runs in one instance for each user.

Two tools are provided to edit GConf settings directly: gconf-editor and
gconftool-2. gconf-editor is a graphical tool, which lets you browse and change
the settings stored in GConf. An example of using gconf-editor to browse to the
desktop/gnome/background key is shown in Figure E-2 on page 318. Many
values also include a description of what setting it controls, and what data is
relevant.
 Appendix E. Client personalization 317

Figure E-2 Editing gconf entries with the graphical gconf-editor

gconftool-2 is a command line application, which provides the access to the
same information and is quite useful for scripting purposes. The number of
configuration options that are available to the gconftool-2 tool are vast and too
numerous to list in this book. To display the current options that are set for the
GNOME desktop, enter the following command:

gconftool-2 -R /desktop

Although we do not cover all options, we show how we customize our desktop
and explain each of the commands that are used. To list all the settings
associated with the desktop background, enter the following command:

gconftool-2 -R /desktop/gnome/background

This displays the following default values:

color_shading_type = solid
secondary_color = #585768
primary_color = #585768
picutre_filename=/usr/share/wallpapers/suse-1024x768.jpg
318 Linux Client Migration Cookbook, Version 2

picture_options = stretched
picture_opacity = 100
draw_background = true

The following code changes the wallpaper to a corporate logo:

gconftool-2 --type string --set /desktop/gnome/background/picture_filename
/usr/share/backgrounds/images/corporate_logo.jpg

Immediately after running the command, the wallpaper should change to the
newly specified path.

For further information about how to make mandatory changes to GConf, see
7.1.2, “GNOME lockdown options” on page 151.
 Appendix E. Client personalization 319

320 Linux Client Migration Cookbook, Version 2

Appendix F. Desktop automation and
scripting

In this appendix, we present details about several scripting and automation
capabilities of Linux applications. These capabilities allow users and
administrators to fully control their environment and automate many desktop
management and configuration tasks.

F

© Copyright IBM Corp. 2004, 2006. All rights reserved. 321

Scripting languages
Open source scripting languages for Linux such as Perl, Python, Ruby,
ECMAScript, or Tcl, have been ported to many diverse operating systems,
including Windows and Mac OS X. The typical Windows scripting language,
Visual Basic, and the related project, Visual Basic for Applications (VBA), are not
directly available for Linux; although, there are similar projects available either
through commercial offerings (such as REALbasic, which is discussed in
Appendix G, “Application porting” on page 329) or through free implementations
(such as StarBasic in OpenOffice.org1):

http://www.thefreecountry.com/compilers/basic.shtml
http://documentation.openoffice.org/HOW_TO/various_topics/VbaStarBasicXref.pdf

All of these Basic dialects are certainly relevant from a compatibility point of view
(for example, for Excel macro migration), but they do not play a central role in the
foundation of the GNOME or KDE desktop environments, because there are so
many other natural choices there.

Shell scripting
The traditional way of scripting on Linux (and UNIX) machines involves shell
scripts. Shell dialects include bash, ksh, and tcsh. Shell scripts are the Linux
equivalent of batch files on Windows, except that they are significantly more
powerful. Shell scripts are frequently used for startup routines (such as those
found in /etc/init.d) or as wrappers around more complex programs (such as
Mozilla or OpenOffice.org). More information about programming with shell
scripts can be found at:

� Linux Shell Scripting Tutorial: http://www.freeos.com/guides/lsst

� Advanced Bash-Scripting Guide: http://www.tldp.org/LDP/abs/html/

Perl
Perl (Practical Extraction and Report Language) is a flexible and powerful
scripting language. Perl was originally developed for text manipulation, and now
it can be used for much more. An impressive collection of third-party modules are
available at the Comprehensive Perl Archive Network2 (CPAN). While
enthusiasts say that Perl’s philosophy of “TMTOWTDI” (“There’s More Than One
Way To Do It)” makes Perl easy to use to program, others can make a legitimate
claim that the same philosophy makes Perl code very difficult to read and
maintain.

1 http://en.wikipedia.org/wiki/StarOffice_Basic
2 http://www.cpan.org
322 Linux Client Migration Cookbook, Version 2

http://documentation.openoffice.org/HOW_TO/various_topics/VbaStarBasicXref.pdf
http://www.thefreecountry.com/compilers/basic.shtml
http://www.thefreecountry.com/compilers/basic.shtml
http://documentation.openoffice.org/HOW_TO/various_topics/VbaStarBasicXref.pdf
http://www.tldp.org/LDP/abs/html/
http://www.freeos.com/guides/lsst
http://en.wikipedia.org/wiki/StarOffice_Basic
http://www.cpan.org

Python
Python is a modern object-aware scripting language that has remarkable power
while still maintaining clear syntax. There are built-in libraries, which provide
abstractions for many platform specific features (such as file access and
threading), and many built-in or third-party open source libraries for graphical
applications (such as PyGTK, PyQt, and wxPython, and even bindings for Mac
OS X and Microsoft Foundation Classes (MFC)). New modules can be written in
either Python, C, or C++. While an entire application can be written in Python, it
is also frequently used as an extension language for applications that have a
built-in plug-in system.

Red Hat uses Python extensively in the installation process and at many other
places. Tools, such as kudzu (which is also used for hardware recognition in the
Debian-based Knoppix distribution), are available as Python modules, too. While
using kudzu --probe is straightforward, the Python wrapper allows system
administrators to write their own hardware recognition scripts in a much more
elegant fashion, as seen in Example F-1.

Example: F-1 Hardware recognition with kudzu and Python

#!/usr/bin/env python

import kudzu

print kudzu.probe(kudzu.CLASS_SOCKET, kudzu.BUS_PCI, kudzu.PROBE_ALL)
print kudzu.probe(kudzu.CLASS_NETWORK,kudzu.BUS_PCI, kudzu.PROBE_ALL)

devices = kudzu.probe(kudzu.CLASS_UNSPEC, kudzu.BUS_UNSPEC, kudzu.PROBE_ALL)
for dev in devices: print dev

Embedded Scripting Languages
Most Linux scripting languages have wrappers for the GTK+, Qt, and wxWidgets
libraries, and even the whole KDE/GNOME APIs. In fact, it is possible to write
simple desktop applications or panel applets in a scripting language in order to
allow for rapid application development. Several applications also have
embedded languages, which allow for user-customized actions. Such
customization is often useful to tailor these applications for your exact business
needs. The language used for these embedded capabilities often varies by
application. For example, Perl and Python are used in Gnumeric and The GIMP,
 Appendix F. Desktop automation and scripting 323

JavaScript, and XUL are used in Mozilla and Mozilla-based projects (such as
Firefox and Thunderbird), and Star Basic is used in OpenOffice.org.

Qt Script for Applications
Trolltech decided to give ECMAScript (the standardized version of JavaScript) a
dominant role in Qt by releasing the Qt Script for Applications toolkit (QSA),
which is tightly integrated into their framework:

http://www.trolltech.com/products/qsa/

QSA plays the same role as VBA for Windows applications and is very easy to
use for Qt programmers. QSA is released under a commercial license for Linux,
Windows, and Mac platforms. In addition to that, QSA is also licensed under the
GNU GPL for free software development.

KJSEmbed
An very similar approach is the KDE JavaScript Engine, KJSEmbed. KJSEmbed
has bindings for Qt, KDE, and DCOP interprocess communication mechanisms.
You can find KSJEmbed, which is licensed under the LGPL, and a lot of
documentation at:

http://xmelegance.org/kjsembed
http://www.sourcextreme.com/presentations/KJSEmbed/

In Example F-2, you see how easy it is to write to a simple HTML browser with
JavaScript using this toolkit.
324 Linux Client Migration Cookbook, Version 2

http://www.trolltech.com/products/qsa/
http://xmelegance.org/kjsembed
http://www.sourcextreme.com/presentations/KJSEmbed/

Example: F-2 Basic HTML browser with KJSEmbedd

#!/usr/bin/env kjscmd

var url = 'http://www.kde.org/';
if (application.args.length)
 url = application.args[0];

var mw = new KMainWindow();
var box = new QHBox(mw);
mw.setCentralWidget(box);

var view = Factory.createROPart("text/html", box, "view");
view.connect(view.child(0),

'openURLRequest(const KURL&,const KParts::URLArgs&)',
'openURL(const KURL&)')

view.openURL(url);

mw.resize(650,500);
mw.show();

application.exec();

Kommander
The developers of the Quanta+ Web development framework introduced a new
toolkit called Kommander, which you can use to design KDE Dialogs and widgets
by using kmdr-editor (a program derived from Qt Designer) and executing them
with kmdr-executor. Kommander uses XML-based GUI description files with
embedded DCOP scripts, which can be written in any language able to speak the
DCOP protocol (such as Bash, Python, Perl, Java, or JavaScript). Kommander
allows you to write KDE dialogs by using the powerful DCOP mechanisms itself.
It is already used at many places inside Quanta+ (DCOP is also used for the
inter-component communication in the KDE PIM framework Kontact). Take a
look at Figure F-1 to see how the integrated DCOP development with
kmdr-editor looks and can be used for your own purposes. For more
information:

http://kommander.kdewebdev.org
http://quanta.kdewebdev.org
 Appendix F. Desktop automation and scripting 325

http://kommander.kdewebdev.org
http://quanta.kdewebdev.org

Figure F-1 Integrated DCOP development with Kommander

Desktop interprocess communication
Sometimes you want to control multiple applications from one authority. Or,
perhaps you want to standardize on one programming language so that
customizations do not need to be written in each of the various embedded
languages. Many Linux-based applications support a form of interprocess
communication, which allows you to control the application programmatically.

The GNOME developers originally used ORBit2 (a highly optimized CORBA
implementation), but lately, they have focused on D-BUS for future development
projects.

DCOP is the standard KDE Desktop Communication Protocol. You can use it for
all kinds of KDE desktop automation and scripting purposes. It is based on the
Inter Client Exchange (ICE) protocol and uses UNIX sockets instead of remote
calls. It has its roots in a CORBA implementation, but it was completely
redesigned for desktop needs because the KDE developers were not happy with
the CORBA performance at that time. Let us take a closer look at DCOP,
because this is a proven technology that is available today. You can also use
DCOP for KDE applications running on the GNOME desktop.
326 Linux Client Migration Cookbook, Version 2

DCOP
When you log in to your KDE session, a program called kdeinit is started (by
startkde). It triggers other applications, such as dcopserver and the KDE
daemon kded, which are responsible for system configuration management and
caching (syscoca), interprocess communication, and a lot more. If you really
want to understand how this process works and which environment variables
and configuration files can influence it, you should read the KDE for System
Administrators Guide available at:

http://www.kde.org/areas/sysadmin/

You can explore your desktop environment and make DCOP calls with the
command-line tool dcop, its graphical counterpart kdcop, or with the DCOP
language bindings using Perl, Python, Ruby, Java, or any other language
supported through the kdebindings package. The dcop command syntax is as
follows:

dcop [application [object [function [arg1] [arg2] [arg3] ...]]]

Desktop automation with DCOP
To begin with your desktop automation work, just call dcop, check the output, and
go further down the pipeline. In Example F-3 on page 327, you can see how this
works in practice. After listing all applications registered with the DCOP server
(some of which include process IDs, such as konsole’s process ID 366), we open
a new Konsole session and display the first session name afterwards. Next, we
list our e-mail accounts, check e-mail, compact all e-mail folders, and open a
new KMail composer window with a few predefined values.

Example: F-3 DCOP in action

% dcop
konsole-366
kmail
...
% dcop konsole-366 konsole newSession
% dcop konsole-366 session-1 sessionName
% dcop kmail KMailIface accounts

% dcop kmail default checkMail
% dcop kmail default compactAllFolders
% dcop kmail default openComposer info@kde.org "" "" "Subject" "DCOP Rocks” 0

In Example F-4, we open our favorite URL in Konqueror and generate another
browser window with two preloaded tabs. The next line switches Konqueror to full
screen mode, which is useful for presentations or unattended Kiosk mode.
 Appendix F. Desktop automation and scripting 327

http://www.kde.org/areas/sysadmin/
http://www.kde.org/areas/sysadmin/

Finally, we switch to desktop 2 by using the published interface of the KDE
window manager kwin.

Example: F-4 More DCOP magic

% dcop
konqueror-21209
kwin
...
% dcop konqueror-21209 konqueror-mainwindow#1 openURL http://www.ibm.com/linux
% dcop konqueror-21209 default openBrowserWindow http://www.kde.org
% dcop konqueror-21692 konqueror-mainwindow#2 newTab http://www.linux.com

% dcop `dcop konqueror-21209 konqueror-mainwindow#1 action fullscreen` activate

% dcop kwin default setCurrentDesktop 2

DCOP is an extremely powerful mechanism and can even be used with XML
Remote Procedure Calls (through the XML-RPC to DCOP bridge). By using
standard UNIX security measures for the ICE communication sockets, users
should not be able to attack DCOP sessions from other users.
328 Linux Client Migration Cookbook, Version 2

Appendix G. Application porting

When planning for a Linux client migration, you might discover early on in the
assessment process that you have custom-developed applications that do not
run natively on a Linux-based client (any Microsoft Visual Basic application fits
into this category).

This appendix provides information and links for learning more about the
application porting process. This topic alone could easily fill an entire redbook.
We introduce the topic here for the sake of completeness (many
Windows-to-Linux client migration projects have application porting
considerations).

An extensive online guide for planning porting and migration efforts is provided
by Novell at this site:

http://developer.novell.com/wiki/index.php/Porting_and_Migration

G

© Copyright IBM Corp. 2004, 2006. All rights reserved. 329

http://developer.novell.com/wiki/index.php/Porting_and_Migration

GTK+
GTK+ is a cross-platform graphical toolkit that is used by applications such as
The GIMP, GAIM, and the GNOME desktop. GTK+ is written in C, although there
are language bindings for C++, Python, Perl, and many more languages. GTK+
is licensed under the LGPL, and it can be used in both open source and
commercial applications. More information about GTK+ can be found at:

http://www.gtk.org

Qt
Qt is a cross-platform graphical toolkit developed by Trolltech and is used by the
KDE desktop and related applications. Qt is written in C++, although there are
language bindings for C, Python, Ruby, and many more languages. Qt is
dual-licensed under the GPL and a commercial license. Therefore, you can
develop GPL compatible applications free of charge, but to develop commercial
applications, you must purchase a license from Trolltech. More information about
Qt can be found at:

http://www.trolltech.com

REALBasic
REALbasic, provided by REAL Software, Inc., is a cross-platform software
development environment that also provides an extremely effective path for
porting Visual Basic applications, so that they can run natively on a Linux client.
A technical white paper is available that provides a detailed description of the
porting process using REALbasic. The white paper can be accessed at the
following URL:

http://www.realbasic.com/vb

wxWidgets
Formerly known as “wxWindows”, wxWidgets provides an open source C++ GUI
framework for cross-platform programming. It lets developers create applications
for Win32, Mac OS X, GTK+, X11, and so forth. Applications, which use
wxWidgets, appear to be native on each platform that it targets. wxWidgets is
licensed under the wxWidgets License, and can be used free of charge in both
open source and commercial applications. More information about wxWidgets
can be found at:
330 Linux Client Migration Cookbook, Version 2

http://www.gtk.org
http://www.realbasic.com/vb
http://www.trolltech.com

http://www.wxwidgets.org

http://en.wikipedia.org/wiki/WxWidgets

Some older tutorials are available at the IBM Developerworks Web site that
explain how to use this toolkit in detail:

� “Looking through wxWindows: An introduction to the portable C++ and
Python GUI toolkit”:

http://www-106.ibm.com/developerworks/library/l-wxwin.html

� “Porting MFC Applications to Linux: A step-by-step guide to using
wxWindows”:

http://www-106.ibm.com/developerworks/linux/library/l-mfc

Mono and the .NET Framework
The Mono project is an open source implementation of the Microsoft .NET
Framework. Mono is based off of the ECMA standards for the .NET Common
Intermediate Language (CIL) and the C# language. The majority of the .NET
standard libraries have been reimplemented on Mono. As of Mono version 1.1,
WinForms, the graphical library used by most applications, which targets the
Microsoft .NET Runtime, is only partially supported. However, work on WinForms
has been rapidly progressing and is expected to be completed in Version 1.2.
Mono also includes support for GTK#, a graphical toolkit that works on both Linux
and Windows.

Both Mono and .NET support programming in more than just C# with languages
such as Visual Basic.NET, IronPython, Nemerle, and Boo. Languages which
target the Common Language Runtime (CLR) can access the entire framework,
and they are seamlessly interoperable with other languages, even in the same
application.

While some .NET applications can contain calls into native APIs, the majority of
any given .NET application can easily be ported to Mono. More information about
Mono can be found at:

http://www.go-mono.com

Some tutorials about porting from Microsoft .NET to Mono can be found at:

http://developer.novell.com/wiki/index.php/Porting_and_Migration
 Appendix G. Application porting 331

http://www.wxwidgets.org
http://en.wikipedia.org/wiki/WxWidgets
http://www-106.ibm.com/developerworks/library/l-wxwin.html
http://www-106.ibm.com/developerworks/linux/library/l-mfc
http://www.go-mono.com
http://developer.novell.com/wiki/index.php/Porting_and_Migration

332 Linux Client Migration Cookbook, Version 2

Related publications

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 338. Note that some of the documents referenced here may
be available in softcopy only.

� Linux Handbook A Guide to IBM Linux Solutions and Resources, SG24-7000

� Domino Web Access 6.5 on Linux, SG24-7060

� OS/2 to Linux Client Transition, SG24-6621

� Provisioning On Demand Introducing IBM Tivoli Intelligent ThinkDynamic
Orchestrator, SG24-8888

� Developing Workflows and Automation Packages for IBM Tivoli Intelligent
ThinkDynamic Orchestrator, SG24-6057

Other publications
These publications are also relevant as further information sources:

� Printing with Linux on zSeries Using CUPS and Samba, REDP-3864

� Migrate Exchange 5.5 to Domino on Linux, REDP-3777

� Linux: Why It Should Replace Your Windows NT Domains, REDP-3779

� Open Your Windows with Samba on Linux, REDP-3780

� Using Asset Depot for Inventory Management

� The IDA Open Source Migration Guidelines, netproject Ltd © European
Communities 2003

� Solution Guide for Windows Security and Directory Services for UNIX
available from Microsoft

Online resources
These Web sites and URLs are also relevant as further information sources:

� Red Hat Network Architecture

http://www.redhat.com/software/rhn/architecture/
© Copyright IBM Corp. 2004, 2006. All rights reserved. 333

http://www.redhat.com/software/rhn/architecture/

� Webmin

http://www.sourceforge.net/projects/webadmin
http://www.webmin.com

� Big Brother/Big Sister

http://www.sourceforge.net/projects/big-brother
http://www.sourceforge.net/projects/bigsister
http://www.bb4.org

� Nagios

http://sourceforge.net/projects/nagios
http://www.nagios.org/

� Copies of the GNU GPL Licenses

http://www.gnu.org/copyleft/gpl.html

� Free Software Foundation (FSF)

http://www.gnu.org/fsf/fsf.html

� OpenOffice.org (Writer, Calc, Impress)

http://www.openoffice.org

� The GIMP

http://www.gimp.org

� GAIM

http://gaim.sourceforge.net

� rdesktop

http://sourceforge.net/projects/rdesktop/

� NoMachine NX

http://www.nomachine.com

� Knoppix

http://www.knoppix.com

� Personal Computing Support: Linux for IBM Personal Systems

http://www-306.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

� Linux Standard Base

http://www.linuxbase.org

� KDE

http://www.kde.org

� SuperKaramba

http://netdragon.sourceforge.net/
334 Linux Client Migration Cookbook, Version 2

http://www.sourceforge.net/projects/big-brother
http://www.sourceforge.net/projects/webadmin
http://www.webmin.com
http://www.sourceforge.net/projects/bigsister
http://www.bb4.org
http://sourceforge.net/projects/nagios
http://www.nagios.org/
http://www.gnu.org/fsf/fsf.html
http://www.linuxbase.org
http://www.kde.org
http://sourceforge.net/projects/rdesktop/
http://netdragon.sourceforge.net/
http://www.nomachine.com
http://www.knoppix.com
http://www.gnu.org/copyleft/gpl.html
http://www.openoffice.org
http://www.gimp.org
http://gaim.sourceforge.net
http://www-306.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

� GNOME

http://www.gnome.org

� Significant GNOME desktop applications

http://www.gnomefiles.org

� GDesklets

http://gdesklets.gnomedesktop.org/

� SVG Clip Art Library

http://www.openclipart.org

� W3 standard SVG

http://www.w3.org/Graphics/SVG/

� Theme Web sites

http://themes.freshmeat.net
http://www.customize.org
http://www.kde-look.org
http://art.gnome.org
http://www.crystalgnome.org

� KDE OpenOffice integration and Mozillux projects

http://www.polinux.upv.es/mozilla
http://kde.openoffice.org

� Success story of Linux usability on the desktop

http://www.linux-usability.de/download/linux_usability_report_en.pdf
http://www.userinstinct.com/viewpost.php?postid=gnome26review

� UniConf

http://open.nit.ca/wiki/

� InterMezzo

http://www.inter-mezzo.org

� Linux at IBM Solutions page

http://www.ibm.com/linux/solutions

� Red Hat Network (RHN)

http://www.redhat.com/software/rhn

� ZENworks Linux Management

http://www.novell.com/products/zenworks/linuxmanagement/

� ndiswrapper project

http://ndiswrapper.sourceforge.net
 Related publications 335

http://www.gnomefiles.org
http://www.w3.org/Graphics/SVG/
http://www.gnome.org
http://gdesklets.gnomedesktop.org/
http://www.openclipart.org
http://themes.freshmeat.net
http://www.customize.org
http://www.kde-look.org
http://art.gnome.org
http://www.crystalgnome.org
http://www.polinux.upv.es/mozilla
http://kde.openoffice.org
http://www.linux-usability.de/download/linux_usability_report_en.pdf
http://www.userinstinct.com/viewpost.php?postid=gnome26review
http://open.nit.ca/wiki/
http://www.inter-mezzo.org
http://www.ibm.com/linux/solutions
http://www.redhat.com/software/rhn
http://www.novell.com/products/zenworks/linuxmanagement/
http://ndiswrapper.sourceforge.net
http://kde.openoffice.org
http://www.userinstinct.com/viewpost.php?postid=gnome26review

� PC model types suitable for Linux

http://www.ibm.com/pc/support/site.wss/MIGR-48NT8D.html

� Common UNIX Printing System (CUPS)

http://www.cups.org

� Scanner Access Now Easy (SANE)

http://www.sane-project.org

� UNIX SmartCard Driver Project

http://smartcard.sourceforge.net

� Project gphoto2 - Supporting digital cameras

http://www.gphoto.org

� For winmodems, some Linux drivers are available for some models

http://linmodems.org

� Mozilla, Firefox, Thunderbird

http://www.mozilla.org

� iFolder

http://www.novell.com/products/ifolder

� rsync

http://samba.org/rsync/

� Kiosk Admin Tool

http://extragear.kde.org/apps/kiosktool.php

� Kiosk readme

http://webcvs.kde.org/cgi-bin/cvsweb.cgi/kdelibs/kdecore/README.kiosk

� Mono

http://www.mono-project.com

� openMosix

http://www.openmosix.org

� PXELinux

http://syslinux.zytor.com/pxe.php

� Red Hat Linux hardware probing library

http://rhlinux.redhat.com/kudzu

� Introduction to Stateless Linux, Proposal for the Fedora Project

http://people.redhat.com/~hp/stateless/StatelessLinux.pdf
336 Linux Client Migration Cookbook, Version 2

http://www.ibm.com/pc/support/site.wss/MIGR-48NT8D.html
http://www.gphoto.org
http://linmodems.org
http://www.mozilla.org
http://www.novell.com/products/ifolder
http://samba.org/rsync/
http://www.mono-project.com
http://www.openmosix.org
http://syslinux.zytor.com/pxe.php
http://rhlinux.redhat.com/kudzu
http://people.redhat.com/~hp/stateless/StatelessLinux.pdf
http://www.cups.org
http://www.sane-project.org
http://smartcard.sourceforge.net
http://extragear.kde.org/apps/kiosktool.php
http://extragear.kde.org/apps/kiosktool.php
http://webcvs.kde.org/cgi-bin/cvsweb.cgi/kdelibs/kdecore/README.kiosk
http://webcvs.kde.org/cgi-bin/cvsweb.cgi/kdelibs/kdecore/README.kiosk
http://www.openmosix.org

� Purchase printing software supporting Linux

http://www.easysw.com/printpro

� Try a Windows PPD file provided by Adobe

http://www.adobe.com/products/printerdrivers/winppd.html

� Samba HOWTO Collection section 6.3

http://samba.org/samba/docs/Samba-HOWTO-Collection.pdf

� Red Hat Web page, Red Hat Network Architecture

http://www.redhat.com/software/rhn/architecture/

� Red Hat Web site

http://www.redhat.com/rhn

� ZENworks Linux Management Administrator’s Guide

http://www.novell.com/products/zenworks/linuxmanagement/

� Evaluation copy of ZENworks 6.5 Linux management

http://www.novell.com/products/zenworks/eval.html

� REALbasic for porting Visual Basic applications so that they can run natively
on a Linux client white paper

http://www.realbasic.com/vb

� wxWidgets provides an open source C++ GUI framework for cross-platform
programming - project Web site

http://www.wxwidgets.org

� “Looking through wxWindows: An introduction to the portable C++ and
Python GUI toolkit”

http://www-106.ibm.com/developerworks/library/l-wxwin.html

� “Porting MFC Applications to Linux: A step-by-step guide to using
wxWindows”

http://www-106.ibm.com/developerworks/linux/library/l-mfc

� Free BASIC Compilers and Interpreters

http://www.thefreecountry.com/compilers/basic.shtml

� QSA overview

http://www.trolltech.com/products/qsa/

� KDE for System Administrators Guide

http://www.kde.org/areas/sysadmin/
 Related publications 337

http://www.kde.org/areas/sysadmin/
http://www.thefreecountry.com/compilers/basic.shtml
http://www.trolltech.com/products/qsa/
http://samba.org/samba/docs/Samba-HOWTO-Collection.pdf
http://www.redhat.com/software/rhn/architecture/
http://www.redhat.com/rhn
http://www.novell.com/products/zenworks/linuxmanagement/
http://www.novell.com/products/zenworks/eval.html
http://www.realbasic.com/vb
http://www-106.ibm.com/developerworks/linux/library/l-mfc
http://www.easysw.com/printpro
http://www.adobe.com/products/printerdrivers/winppd.html
http://www.wxwindows.org
http://www-106.ibm.com/developerworks/library/l-wxwin.html
http://www.kde.org/areas/sysadmin/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
338 Linux Client Migration Cookbook, Version 2

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
.NET 331
/etc/fstab 182
/etc/hosts.allow 179
/etc/hosts.deny 179
/etc/profile 315

A
AbiWord word processor 79
acceptance 68
ACPI 96, 235
Active Directory 195
Active Directory. See Windows domain
ActiveX® controls 185
Activity Explorer 160
administration planning 86
ALSA 235
anti-virus 66
APM 96, 235
application development

platform 159
Application porting 329
application updates 88
applications

portal-based 41
Archive 235
archivers 55
as-is-analysis 50
assessment

client hardware 63
client IT environment 63
client software 65
data dependencies 66
infrastructure 67

Asset Depot 63
ATI 291
Awk 235

B
backup 90

Tivoli Storage Manager 90
Bash 235
© Copyright IBM Corp. 2004, 2006. All rights reserved
BDF Fonts 235
Big Brother/Big Sister 36
Boot Disk 236
Bootloader 236
Bot 236
Bourne Shell 236
bridging applications 53, 55

separate retraining from migration 58
BSD 236
Bzip2 236

C
Cairo (vector graphics system) 112
card readers 96
CDROM

bootable 59, 334
CGI 236
CIM object manager 256
CIM server 256
Citrix 56
Citrix Metaframe 100
CLI 237
Client 236
client environments 5
client personalization 313
CLR 331
Cluster 237
Command Line Interface (CLI) 237
Common Language Runtime 331
Common Unix Printing System. See CUPS
communications plan 57
configuration files 315
CORBA 111
cost 32

application 33
hardware 33
license 32
management 33
support 32

CRM 55
CUPS 73, 219

lpadmin 220
samba integration 74
. 339

web interface 221
custom applications 3

D
Daemon 237
D-BUS (message bus system) 112
DCOP 325

Desktop automation 327
interprocess communication 326

Debian 7
Debian Package Manager 238
desktop

design 38
standardization 75
themes 80

Desktop automation with DCOP 327
Device Driver 238
DHCP 67, 75
digital cameras 96
Distributed Management Task Force 256
Distribution 238
distributions 7

task oriented 37
dmask options 183
DMTF 256
DNS 75
document library 159
Dpkg 238
dual boot 102
Dual-head video cards 291

E
ease of use 38
ECMA 331
eGatherer 63
Emacs 238
end user survey 52
Enlightenment 238
enterprise management tools 255
Environment variable 238
ERP 55
Evolution 186
Example client migration 174
Exchange 186
Exchange connector 186

F
File Extension 238
file managers 55
File System 239
file systems 58
file types 52
Finger 239
firewall 30
Foreground Process 239
Free Software Foundation (FSF) 7
FreeBSD 239
Fsck 239
FSF (Free Software Foundation) 7
fstab 182
FTP 7, 239
functional continuity 53

G
GCC 239
GConf 317
gconf-editor 317

editing entries with 318
gconftool-2 152, 318
GDesklets 79
getent 201
GIMP 239
glossary 233
GNOME 239, 317

desktop environment 122
Nautilus 55

GNU 240
GNU C Compiler 239
GNU General Public License 110
GNU General Public License (GPL) 6, 32
GNU Image Manipulation Program 239
GNU Network Object Model Environment 239
GNU zip 240
GNU/Linux 240
goals 43
GPL 110, 240
graphical programming 122
graphics

SVG libraries and programs 80
Grep 240
GRUB 240
GStreamer (streaming media framework) 112
GTK+ 240, 330
GUI 240
340 Linux Client Migration Cookbook, Version 2

Gzip 240

H
HAL (hardware abstraction layer) 112
Hard Link 241
hardware support 64
Home directories 73
Home Directory 241
Host Publisher 68
HTTP 5
Human factors 56

I
IBM Productivity Tools 159
IBM Tivoli Intelligent ThinkDynamic Orchestrator
283, 333
IBM Workplace

Managed Client productivity tool 159
ICA Client 56
iFolder 99
Image manipulation 185
impact of changes 57
infrastructure 67
Init 241
Instant Messaging (IM) 159
IntelliStation 290
Internet Engineering Task Force 257
Interpreted Language 241
ISO-9660 7
ISV 65
IT personnel, 57
ITEF 257

J
Java 6
Java desktops 6
JFS 242
joining a Windows domain 196
Journaled/Journaling File System 242
Journaling 242

K
K Desktop Environment 243
KConfigEditor 316
KDE 243

desktop environment 122
kdeglobals 316

kdesktoprc 316
kickerrc 316
kiosk framework 82
Konqueror 29, 55

Kerberos 197
krb5.conf 197

Kernel 243
kernel modularity 35
kickerrc 316
KJSEmbed 324
Knoppix 59, 334
Kommander 325
Korn Shell 243
kudzu 323
KVM 302

L
LDAP 195, 204

ldap.conf 206
Lesser GPL 243
LGPL 243
Linux

why you need it 6
live CD 59, 334
look and feel

customization 58
Lotus Domino 66
Lotus Notes 6, 66

M
Mac OS X 323
managebility 34
management tools

enterprise 255
massive parallel processing (MPP) 7
message queueing 67
messaging

security 29
MIB 257
Microsoft Internet Explorer 29
Microsoft Office 2–3, 66
Microsoft Outlook 66
Microsoft Project 66
Microsoft Windows

client personalization 314
migrating applications 84
migration

assessing client software 65
 Index 341

automated 187
context 4
goals 43
justification 25
path 5
pilot 44

modular structure 35
Mono 331
mount 72, 182, 214

CIFS 215
cifs 72
smb 72
smbfs 214
Windows shares 72

Mozilla 6
browser security 29

MPP (massive parallel processing) 7
multimedia players 55
Multi-station computing 289

Deployment considerations 298
Processor requirements 293

N
Nagios 36, 334
Name Service Switch 201

ldap 206
nsswitch.conf 201
winbind 201

Nautilus
connect to the Windows shares 187

ndiswrapper 95, 335
NetBIOS 197
network services integration 69
nice 294
NoMachine NX 56, 100, 334
Novell Connector 186
Novell Evolution 186
nsswitch.conf 180
NT4. See Windows domain
NVIDIA 291
NX 303

O
OASIS 160
Open Document Format (ODF) 159
open standards 5
OpenDocument format 160
OpenOffice.org 54

Opera browser 29
operating system updates 87
organizational readiness 41
OSS

open source software philosophy 38
Outlook Web Access 186

P
PAM 72, 180, 208

pam_ldap 210
pam_mkhomedir 212
pam_mount 72, 216
pam_winbind 180–181, 208, 213

pam_mount 200
PCI bus expansion 302
Perl 322
Personal Communications 68
personalization 314

GNOME Desktop 317
KDE Desktop 315
Linux client 314

pervasive technologies 5
pilot group 57
planning

communications 57
organizational and human factors 49

plotters 96
port scanning 66
ported applications 55
POSIX

standard 6
thread library 7

Postscript Printer Description 184
ppd 184
printer 64
printers and authentication 74
profile 314
profiles

Windows NT 314
Progression Desktop

Architecture 284
protocol 67
PyGTK 323
PyQt 323
Python 323

Q
Qt 330
342 Linux Client Migration Cookbook, Version 2

Script for Applications 324

R
rcd 266
rcman 266
rdesktop 56, 334
RDP 56, 302
RDP sessions 56
REALBasic 330
RealPlayer 55
Red Carpet 93
Red Hat 7
Red Hat Network. See RHN
Redbooks Web site 338

Contact us xxii
remote access 35

execution 35
management 36
support 36

remote administration 88
Remote Display Protocol 56
removable storage 295
renice 294
retraining considerations 57
RHN 36, 91, 257

Hosted 91, 258
management tool 34
Proxy 91
Satellite 91, 258

RHN modules 92
Management 92
Provisioning 92
Update 92

roll-out 89

S
Samba 195–196

as domain controller 69
smb.conf 196, 199
smbclient 215
smbmount 72
symbolic links 73

Satellite server 257
action 261
activation key 262
architecture 257
channel 261
entitlement 260

errata 261
system 260
system group 260
system set 260

scalability 6
scanners 96
Scripting languages 322

Embedded 323
security

browser 29
desktop 27
firewalling 30
messaging-client 29
user fencing 30

Server Message Block (SMB) protocol 69
Service Oriented Architecture (see SOA)
Shell scripting 322
Simple Network Management Protocol 257
Simple Network Time Protocol 198
Single Sign On 72
SLIP 7
smb.conf 179, 199
smbmount 182
SNMP 257
SNTP 198
SOA 5
SOAP 5
stability 6
standardizing the desktop 75
strategy 3
survey 50
surveying user data 52
SUSE 7
SVG libraries and programs 80
symbolic links 73
system_auth 181

T
Task oriented distributions 37
TCP/IP

networking stack 6
Telnet 7
Terminal server 100
themes 80
Tivoli Configuration Manager 36
Tivoli Intelligent ThinkDynamic Orchestrator 283,
333
tsclient 185
 Index 343

U
up2date 259
updates 35
usability 77
usage patterns 50
user roles 68
Userful Desktop Multiplier 289
utility applications 54

V
Versora Progression Desktop

Architecture 284
viewers 55
viruses 90

worms 30
Visual Basic 3, 66, 329
VMware 100–101
VNC 178, 303
vncserver 179

W
WBEM 256
Web applications 55
Web browser 159
Web services 5–6
Web-Based Enterprise Management 256
Web-based Enterprise Management 256
WebDAV 186
Webmin 36, 334
Win32 3
winbind 179, 195, 199

idmap 89
idmap file 89
idmap_ad 203
idmap_rid 203
separator 71, 200
wbinfo 201

winbind daemon 199
window managers 121
Windows domain 70, 196

Active Directory 197
join 198
Service for Unix 71
Services for Unix 204

authentication 70
domain controllers 69
NT4 196

join 196

printing services 73
shares 72

Windows NT 314
migrating from 4
profiles 314

Windows Terminal Server 56, 184
WinForms 331
wxPython 323
wxWidgets 330

X
X Window System

layers 119
X11 75
Xdmcp 178
XDMCP, 303
xine 55
XML 5, 151
xmms 55
Xnest 122

Y
Yast online Update 37
yum 259

Z
ZENworks Linux Management 34, 36, 93, 264

Activation key 269
Administrator 268
Channel 268
Group 268

ZENworks Linux management
Activation key 267
Channel 267
Group 267
Machine 267
Machine set 267
Transaction 267
344 Linux Client Migration Cookbook, Version 2

L
in

u
x C

lien
t M

ig
ratio

n
 C

o
o

kb
o

o
k, V

ersio
n

 2

®

SG24-6380-01 ISBN 073849691X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux Client Migration
Cookbook, Version 2
A Practical Planning and Implementation
Guide for Migrating to Desktop Linux

For any organization
that is exploring or
planning for a Linux
desktop migration

Provides in-depth
detail on the
technical and
organizational
challenges

Includes methods
for planning and
implementation

The goal of this IBM Redbook is to provide a technical
planning reference for IT organizations large or small that are
now considering a migration to Linux-based personal
computers. For Linux, there is a tremendous amount of
“how-to” information available online that addresses specific
and very technical operating system configuration issues,
platform-specific installation methods, user interface
customizations, and so forth. This book includes some
technical “how-to” as well, but the overall focus of the
content in this book is to walk the reader through some of the
important considerations and planning issues that you could
encounter during a migration project. Within the context of a
pre-existing Microsoft Windows-based environment, we
attempt to present a more holistic, end-to-end view of the
technical challenges and methods necessary to complete a
successful migration to Linux-based clients.
This second version of the Linux Client Migration Cookbook
builds on the content strategy we started with in the first
version. Although anyone interested in using Linux on the
desktop could benefit from different portions of this book, our
primary audience for this book is existing business IT
environments that need to begin an evaluation of desktop
Linux, or in a broader sense, any organization whose strategy
is to move toward greater adoption of open source software
and open standards.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Forward
	Bernard Golden, Navica
	Greg Kelleher, IBM

	Preface
	The team that wrote this redbook
	Acknowledgements
	Become a published author
	Comments welcome

	Part 1 Choosing Linux
	Chapter 1. Introduction
	1.1 The migration landscape today
	1.2 Identifying suitable environments
	1.3 Strategic context
	1.4 Client environments
	1.5 Why Linux
	1.6 Linux overview and distribution choices
	1.7 Desktop Linux futures
	1.8 The rest of this book

	Chapter 2. The case for migration
	2.1 Why migrate
	2.1.1 Desktop security
	2.1.2 Costs related to Linux client
	2.1.3 Manageability of the Linux client
	2.1.4 Client customization
	2.1.5 Free software and the open source philosophy
	2.1.6 Ease of use and retraining
	2.1.7 New economies of scale

	2.2 When to migrate - Or not to migrate
	2.2.1 Desktop Linux markets - the threshold of entry
	2.2.2 Client roles fit thin and slim client model
	2.2.3 High number of migratable applications
	2.2.4 Organizational readiness

	2.3 What makes Linux so different
	2.3.1 The movements: free software and open source

	2.4 Migration goals
	2.4.1 Pilot migration
	2.4.2 Full migration

	Part 2 Planning the pilot migration
	Chapter 3. Organizational and human factors planning
	3.1 Assessing usage patterns
	3.1.1 Functional segmentation - Fixed function to general office
	3.1.2 Surveying user data
	3.1.3 User survey

	3.2 Establishing functional continuity
	3.2.1 Bridging applications
	3.2.2 Functionally equivalent utility applications
	3.2.3 Web applications
	3.2.4 Building bridges to the server

	3.3 Human factors
	3.4 Retraining considerations
	3.4.1 Bridging applications can separate retraining from migration
	3.4.2 Learning a new look and feel
	3.4.3 Familiar actions
	3.4.4 File systems: Everything has been moved
	3.4.5 Hands-on Linux prior to migration

	Chapter 4. Technical planning
	4.1 Assessing the client IT environment
	4.1.1 Assessing the client hardware
	4.1.2 Assessing the client software configuration
	4.1.3 Assessing data dependencies
	4.1.4 Assessing application equivalency
	4.1.5 Assessing the infrastructure
	4.1.6 Assessing the user

	4.2 Integrating with existing network services
	4.2.1 Setting the environment
	4.2.2 Authenticating within a Windows domain
	4.2.3 File sharing using domain shares
	4.2.4 Printing services in the domain
	4.2.5 DHCP and DNS configuration
	4.2.6 Web proxy interface

	4.3 Standardizing the desktop
	4.3.1 Linux distributions
	4.3.2 Linux desktop environments
	4.3.3 Look and feel
	4.3.4 User lockdown
	4.3.5 Application choices
	4.3.6 File systems and partitions

	4.4 Migrating applications
	4.4.1 Moving back to client/server computing
	4.4.2 Logical segmentation - Thin, slim, or fat

	4.5 Client administration planning
	4.5.1 Operating system and vendor distribution updates
	4.5.2 Application updates
	4.5.3 Remote administration
	4.5.4 Rollout of additional or replacement clients
	4.5.5 Backup of clients
	4.5.6 Virus mitigation
	4.5.7 Examples of administration of enterprise distributions

	4.6 Desktop versus notebook considerations
	4.6.1 Hardware considerations
	4.6.2 Peripheral extensions
	4.6.3 Connectivity options
	4.6.4 Offline mode

	4.7 Unmigratable applications
	4.7.1 What makes an application unmigratable
	4.7.2 Terminal Server, Citrix Metaframe, or NoMachine NX solutions
	4.7.3 Ericom Powerterm WebConnect for Workplace solution
	4.7.4 VMware solutions
	4.7.5 Dual boot solution
	4.7.6 What to do if all else fails

	4.8 Deploying the new client
	4.8.1 Deployment method
	4.8.2 Update deployed clients
	4.8.3 Personalization of deployed clients

	4.9 Post-migration troubleshooting and technical support
	4.9.1 What to expect
	4.9.2 How to handle the unexpected
	4.9.3 When to contact vendor enterprise support

	Chapter 5. Linux architecture and technical differences
	5.1 What is Linux
	5.1.1 Distributions
	5.1.2 Standards

	5.2 Technical differences
	5.2.1 Kernel booting process
	5.2.2 Communication, files, and services
	5.2.3 Multi-user
	5.2.4 Graphical and text-based environments
	5.2.5 System runlevels
	5.2.6 Drives, partitions, and file systems
	5.2.7 Virtual memory
	5.2.8 File links
	5.2.9 Replaceable kernel
	5.2.10 Device drivers and hardware support
	5.2.11 Font support
	5.2.12 64 bit and multi-core support

	Part 3 Performing the pilot migration
	Chapter 6. Migration best practices
	6.1 The transitional desktop
	6.2 Choose an installation methodology
	6.2.1 Wipe and Reload
	6.2.2 Dual boot
	6.2.3 Hardware refresh
	6.2.4 Hardware round-robin

	6.3 Centralize data locations
	6.3.1 Central file server
	6.3.2 Central mail server

	6.4 Break down migration into manageable groups
	6.5 Minimize impact of down time
	6.6 Get user feedback
	6.7 Automate the migration
	6.8 Use a systems management tool
	6.9 Do not migrate until you are ready
	6.10 Do not just migrate, upgrade

	Chapter 7. Client deployment models
	7.1 Restricting the desktop
	7.1.1 KDE Kiosk framework
	7.1.2 GNOME lockdown options

	7.2 Remoting tools
	7.2.1 Remote access
	7.2.2 Thin client
	7.2.3 Application forwarding
	7.2.4 Multi-station computing

	7.3 Rich client
	7.3.1 Eclipse and the Eclipse Rich Client Platform
	7.3.2 IBM Workplace Client Technology
	7.3.3 IBM Workplace Managed Client

	7.4 Stateless client
	7.4.1 Red Hat’s Stateless Linux project
	7.4.2 Custom implementation of stateless client

	7.5 Multi-station client architecture
	7.5.1 Multi-station computing and Userful Desktop Multiplier
	7.5.2 What is multi-station computing
	7.5.3 Approaches to desktop consolidation and deployment
	7.5.4 Where and when to deploy multi-station systems
	7.5.5 Advantages of deploying multi-station Linux systems

	Chapter 8. Client migration scenario
	8.1 Example client migration
	8.1.1 Assess the client usage pattern
	8.1.2 Identify the most important applications and infrastructure integration points

	8.2 Migration plan details
	8.2.1 Client approach
	8.2.2 Graphical environment
	8.2.3 Hardware
	8.2.4 Application continuity
	8.2.5 Windows networking

	8.3 Performing the migration
	8.3.1 Basic installation tasks
	8.3.2 Integrating existing network services
	8.3.3 Application configuration and installation
	8.3.4 Screen captures: Client migrated to Linux

	Chapter 9. Integration how-tos
	9.1 How to join a Windows domain
	9.1.1 Joining an NT4 domain
	9.1.2 Joining an Active Directory domain

	9.2 Using winbind to make domain users known locally
	9.2.1 Common implementation of winbind
	9.2.2 Alternate implementations of winbind

	9.3 How to use LDAP to connect to Active Directory
	9.4 Pluggable Authentication Modules and the domain
	9.4.1 How to authenticate users using winbind and PAM
	9.4.2 How to authenticate users using LDAP and PAM
	9.4.3 PAM and home directories

	9.5 How to mount a share on the Linux client
	9.5.1 Mounting a share using smbfs
	9.5.2 Mounting a share using CIFS
	9.5.3 Use of smbclient

	9.6 Automatically mounting home directories at logon
	9.6.1 pam_mount on Red Hat Desktop
	9.6.2 pam_mount on Novell Linux Desktop

	9.7 How to use network printers in the domain

	Part 4 Appendixes
	Appendix A. Linux glossary for Windows users
	What does it all mean
	Common Linux Terms

	Appendix B. Using enterprise management tools
	Why use enterprise management tools
	Internet standard technologies
	Web-Based Enterprise Management (WBEM)
	Simple Network Management Protocol (SNMP)

	Red Hat Satellite server and Red Hat Network (RHN)
	Architectural and functional overview
	RHN Terminology
	Sample update scenario

	Novell ZENworks Linux Management
	Architecture and Functionality
	Usage examples

	Webmin
	Functionality
	Usage examples

	Other important tools

	Appendix C. Automating desktop migration using Versora Progression Desktop
	Benefits of an automated migration
	What is Progression Desktop
	How to migrate with Progression Desktop
	GUI
	Command line (with templates)
	Systems management tool

	Progression Desktop architecture
	PNP Files
	Settings Packages
	Plug-Ins

	Enterprise Source License

	Appendix D. Multi-station computing deep dive using Userful Desktop Multiplier
	Deploying multi-station solutions on the IBM IntelliStation platform
	Hardware requirements
	Selecting your IBM IntelliStation model

	Software requirements and installation considerations
	Deployment considerations
	Storage, printing, and external service considerations
	Remote file systems
	Network services
	Network, electrical, and physical infrastructure considerations
	Complementary technologies

	Additional system management considerations
	Software updates
	Management tools
	Software and support
	System shutdown
	Multi-language support
	Security considerations
	Privacy considerations

	Case study one: General office desktops for a 25-user office
	Requirement
	Solution Design

	Case study two: Transactional desktops: Public computers for a city library
	Requirement
	Solution Design
	Additional multi-station case studies

	Understanding how multi-station computing works: Exploiting the flexibility of X Window System
	The design of X

	Appendix E. Client personalization
	Microsoft Windows client personalization
	Linux client personalization
	Desktop personalization: KDE Desktop
	Desktop personalization: GNOME Desktop

	Appendix F. Desktop automation and scripting
	Scripting languages
	Shell scripting
	Perl
	Python
	Embedded Scripting Languages
	Kommander

	Desktop interprocess communication
	DCOP

	Appendix G. Application porting
	GTK+
	Qt
	REALBasic
	wxWidgets
	Mono and the .NET Framework

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

