
P8_VBG_0506

Visual Basic
Guide

Creative assets management

Contact
Extensis

1800 SW First Avenue,
Suite 500
Portland, OR 97201
Toll Free: (800) 796-9798
Phone: (503) 274-2020
Fax: (503) 274-0530
http://www.extensis.com	

Extensis Europe
First Floor, Century House
The Lakes
Northampton NN4 7SJ
United Kingdom
Phone: +44(0)1604 636 300
Fax +44 (0)1604 636 366
info@extensis.co.uk

Celartem, Inc.
Email: sales_ap@celartem.com
http://www.celartem.com/jp/

Press Contact
Phone: (503) 274-2020 x129
Email: press@extensis.com

Customer Service
Web/email: http://www.extensis.com/customerservice/
Phone: (800) 796-9798

Technical Support
Web/email: http://www.extensis.com/support/

Documentation Feedback
Web/email: http://www.extensis.com/helpfeedback/

© 2006 Extensis, a division of Celartem, Inc. This document and the
software described in it are copyrighted with all rights reserved. This
document or the software described may not be copied, in whole or part,
without the written consent of Extensis, except in the normal use of the
software, or to make a backup copy of the software. This exception does
not allow copies to be made for others. Licensed under U.S. patents issued
and pending.

Extensis is a registered trademark of Extensis. The Extensis logo, Extensis
Library, Font Reserve, Font Reserve Server, Font Vault, and Font Sense,
Portfolio, Portfolio Server, Portfolio NetPublish, NetPublish, Suitcase
and Suitcase Server are all trademarks of Extensis. Celartem, Celartem,
Inc., the Celartem logo, PixelLive and PixelSafe are trademarks of
Celartem, Inc. Adobe, Acrobat, Illustrator, Photoshop, and PostScript
are trademarks of Adobe Systems, Incorporated. Apple, AppleScript,
Bonjour, FontSync, Macintosh, Mac OS 9, Mac OS X, PowerPC,
and QuickDraw are registered trademarks of Apple Computer, Inc.
Microsoft, Internet Explorer, Windows, Windows XP, Windows 2000,
Windows NT, Windows ME and Windows 98 are registered trademarks
of Microsoft Corporation. Intel is a registered trademark of Intel.
All other trademarks are the property of their respective owners.

Portions of this product use software components developed through
various open source projects. The licenses and availability of source

code for such components are specified in the copyright notice file,
LICENSES.TXT delivered with this product. Please refer to these
licenses for information regarding use of these software components.

Extensis warrants the disks on which the software is recorded to be free
from defects in materials and faulty workmanship under normal use for
a period of thirty (30) days from the original date of purchase. If you
purchased this product directly from Extensis, and if a defect occurs
during the 30-day period, you may return the disks to Extensis for a free
replacement. All products submitted for replacement must be registered
with Extensis before replacement. Extensis products purchased from
resellers are warranted by the reseller and are covered by the reseller’s
return policy. This warranty is limited to replacement and shall not
encompass any other damages, including but not limited to loss of profit,
and special, incidental, or other similar claims. This software is provided
on an “as is” basis. Except for the express warranty set forth above,
Extensis makes no other warranties, either explicit or implied, regarding
the enclosed software’s quality, performance, merchantability, or fitness
for a particular purpose.

Bonjour

http://www.extensis.com
http://www.celartem.com/jp/
http://www.extensis.com/customerservice/
http://www.extensis.com/support/
http://www.extensis.com/helpfeedback/

iii

Visual Basic GuidePortfolio

Contents
Visual Basic and Portfolio...1

Introduction to the Portfolio Automation Interface2
How to add Portfolio to your Visual Basic project..................................2

The Portfolio Object Model:...2

Creating Portfolio Objects..3

Opening Catalogs..3

Opening Catalogs on a Server...4

Opening catalogs with User-based access..4

Creating Catalogs...4

Working with Catalogs...4
Selecting a Gallery..5

Sorting a Gallery...5

Working with Galleries...5
Saving A Gallery...6

Adding files to a Gallery...6

How to access the Advanced Options..7

Cataloging - Advanced Options...7
Accessing Individual Records..8

Working with Selections...8

Working with Records & Selections..8
Selecting items...9

Determining the fields for a catalog... 10

Changing Field Values.. 10

Working with Fields..10
Passing Field Values to Portfolio... 11

How to Search ... 12

Building the Query... 12

Searching the Catalog..12

iv

Visual Basic Guide Creative Assets Management

Appendix A: The Portfolio Class Libraries...13
The Portfolio Document Class:... 13

The Portfolio Gallery Class:... 13

The Portfolio Record Class:... 15

The Portfolio Field Class:.. 15

The Portfolio Records Class:... 16

The Portfolio Selection Class:... 16

The Portfolio AdvancedOptions Class:... 16

APPENDIX B: Frequent Questions and Answers.................................17
Portfolio Automation Demo:.. 19

Path Change Utility:... 19

Backup Utility:.. 19

APPENDIX C: Guide to The Sample Applications...............................19

APPENDIX D: Portfolio Programming Error Codes........................... 20

�

Visual Basic GuidePortfolio

Visual Basic and Portfolio
This document provides a brief overview of the
Portfolio commands available via the Automation
interface in Extensis Portfolio 8.0 for Windows.
The examples covered here are written in Microsoft
Visual Basic 6. The source code for the sample
applications is provided in both Visual Basic 6 and
Visual Basic .NET (2003) format. Users familiar with
other languages capable of using Automation should
be able to extrapolate from the examples for their
particular languages. This document assumes a basic
level of working familiarity with Visual Basic.

This document is not meant to be an introduction
to Visual Basic or as a tutorial for how to script
Portfolio to perform specific tasks. For more
information about the basics of Visual Basic, please
visit http://msdn.microsoft.com/vbasic/. This site contains
a great deal of useful information on Visual Basic as
well as links to other programming-related websites.
For more information on how to script Extensis
Portfolio, please refer to the additional files provided
on the Extensis CD, or with your product download.

For more information about Portfolio, please refer
to the Portfolio User Guide installed with your
Portfolio client. For the most up-to-date information
about Portfolio, please visit the Extensis website at
http://www.extensis.com/portfolio/.

http://msdn.microsoft.com/vbasic/
http://www.apple.com/applescript/

�

Visual Basic Guide Creative Assets Management

How to add Portfolio to your
Visual Basic project

All objects, properties and methods of the Portfolio
interface (as described in the rest of this document)
are supported in the Portfolio_V8 automation
interface.

To expose the Portfolio object, and its family of
classes, to your Visual Basic code, you must first
include it in the reference options in your VB
project. Use the Project References dialog within
the VB interface to select the Portfolio_V8 library.
Once this has been done, your VB application will
be aware of the Portfolio document interface and
you can reference the family of classes within your
VB code.

The Portfolio Object Model:

The diagram below shows the relative
structure of the Classes within the
Portfolio Library Object Model.

One thing you’ll notice in the Portfolio Object
Model is that there is no Catalog object or class.
The Portfolio document object is actually a
collection of Galleries. If you need to reference the
Catalog name, you can use the Gallery.Catalog
name property.

Introduction to the Portfolio
Automation Interface

Portfolio.Document

Gallery

AllRecords

SelectedRecords

Options

Fields

Field

�

Visual Basic GuidePortfolio

Creating Portfolio Objects

As with any application being accessed through
Automation, you need to create a variable to hold
the object which references the Portfolio _
V8.document class and then create the object using
the set command

Example:

Dim PortObj as Portfolio _ V8.document

Set PortObj = New Portfolio _ V8.Document

If Portfolio is already running, the VB application
will use that instance of the application. Portfolio is
a single-instance application, so there is no way to
force a new instance of the application from within
VB.

To access the Gallery class, create an object variable
to hold a reference to the Portfolio _ V8.Gallery
class, and then create the reference using the set
command.

Example:

Dim PortGal as Portfolio _ V8.Gallery

Set PortGal = New Portfolio _ V8.Gallery

Throughout much of this document, the
examples will refer to objects named PortObj
and PortGal. These are the objects described
above, and represent Portfolio _ V8.Document
and Portfolio _ V8.Gallery objects. These
objects are the communication interfaces that
allow your VB code to access the features and
functionality of Portfolio.

Opening Catalogs

To open a Portfolio catalog via Automation, use
the Open function of the Document object. If the
catalog has already been opened with this copy of
Portfolio (either through scripting or manually), the
first gallery of the catalog will come to the front and
become the active gallery.

Function Open(Path As String, AccessMode
As Integer, Password As String) As
Integer

The acceptable values for AccessMode are as follows:

READER = 1

EDITOR = 2

PUBLISHER = 3

ADMINISTRATOR = 4

Example:

x = PortObj.Open(“C:\test.fdb”,4,””)

�

Visual Basic Guide Creative Assets Management

Opening Catalogs on a Server

To open a catalog which is being served by a
Portfolio Server, use the OpenServer function of the
Document object. The command takes the ‘address’
of the catalog in the form “server/catalog,” where
“server” is the server’s name or IP address.

Function OpenServer(Path As String,
AccessMode As Integer, Password As
String) As Integer

The acceptable values for AccessMode are the
same as above. Be aware, however, that server
catalogs can’t be opened via your VB code in the
Administrator mode.

Example:

x = PortObj.OpenServer(“192.0.0.0/Test.
fdb”,3,””)

Opening catalogs with
User-based access

To open a catalog with user-based access
security, use the Document.OpenByUserName
function for catalogs on disk, or the Document.
OpenServerByUserName function for served catalogs
(native or via the SQL service). The catalog is
automatically opened at the maximum access mode
allowed for the specified user.

Function OpenByUserName(Path As String,
UserName As String, Password As String)
As Integer

Function OpenServerByUserName(Path As
String, UserName As String, Password As
String) As Integer

Example:

x = PortObj.OpenByUserName(“C:\test.
fdb”,”User1”, “password”)

x = PortObj.OpenServerByUserName(“192.0.0
.0/Test.fdb”,”User1”,”password”)

Creating Catalogs

To create a new catalog, use the new command. By
default, the catalog opens in Administrator mode.

Function New(Path As String) As Integer

Example:

x = PortObj.New(“C:\test.fdb”)

Working with Catalogs

�

Visual Basic GuidePortfolio

Once a catalog has been opened or created, most of
the functionality of the Portfolio document model
is managed through the Gallery object. As noted
elsewhere, there isn’t even a catalog object available.

Selecting a Gallery

The majority of actions in your code will be based
upon a reference to a Gallery object. This reference
tells Portfolio not only which catalog’s records are
to be manipulated, but which set of visible records
(images) are being targeted. Defining which gallery
is targeted with your code requires referencing an
index with the gallery object:

PortObj.Gallery(x)

To obtain the number of open galleries in the
Portfolio document, use the Count property of the
Document object:

gCount = PortObj.Count

To determine the active gallery, use the GetActive
function of the Document object. This returns
the name of the active gallery. If no gallery is
open when this function is called, a Visual Basic
automation error will occur. See Appendix D for a
full listing of error codes.

sActive = PortObj.GetActive

To read a gallery’s string name, use the
GetGalleryIndexFromName function of the
Document object.

Function GetGalleryIndexFromName(Gallery
Name As String) As Integer

The following example references the active gallery:

Example:

PortObj.Gallery(PortObj.GetGalleryIndexFr
omName(PortObj.GetActive))

Sorting a Gallery

You can use the sort function of the Gallery
object to organize the records in the active
gallery in a particular order. Be sure to only
use indexed, single-valued fields for sorting. To
determine the sort order, set the Direction
attribute to True to sort in ascending order
and False to sort in descending order.

Function Sort(FieldName As String,
Direction As Boolean) As Boolean

Example:

x = PortObj.Gallery(1).
Sort(“Filename”,True)

Working with Galleries

�

Visual Basic Guide Creative Assets Management

Saving A Gallery

To save an existing gallery that has been changed,
use the Gallery.Save function for a gallery that
already exists, or use the Gallery.SaveAs function
for saving new galleries.

Function Save() As Integer

Function SaveAs(sNewName As String) As
Integer

Example:

x = PortGal.Save()

x = PortGal.SaveAs(“gallery”)

Adding files to a Gallery

To add source files to a gallery, use the
catalog function of the Gallery object.
The catalog command observes all the
settings found in the Cataloging Options
dialog in the Portfolio application.

Function Catalog(Path As String,
IncludeDirs As Boolean) As Boolean

Example:

x = PortObj.Gallery(1).Catalog(“C:\
Images\”, True)

Any path can be used as the string; this
makes it very simple to catalog folders or
entire volumes, as well as individual files.
To catalog subfolders of a folder or volume,
set the IncludeDirs property to True.

�

Visual Basic GuidePortfolio

How to access the Advanced Options

Cataloging options can also be controlled within
your Visual Basic application using the Portfolio
Automation interface. These are accessed via the
AdvancedOptions class of the Portfolio object.
The AdvancedOptions object contains properties
that correspond to the controls available in the
Cataloging Options and Advanced Options dialog
boxes. These are found in the Portfolio interface in
the Catalog menu.

Catalog Property Listing
The available properties of the class are:

AppendDescription

ExtractMetaData

ExtractThumbnail

SkipFiles

MergeKeywords

ParseKeywords

PathKeywords

0 - None

1 - File Name

2 - File and Folder Name

3 - Path Name

4 - Path Name and Volume

ThumbnailSize

0 - 112 x 112

1 - 256 x 256

The following example instructs Portfolio to attempt
to extract an embedded thumbnail from a source
file the next time a file is cataloged in the gallery.

Example:

PortObj.Gallery(1).AdvancedOptions.
ExtractThumbnail = True

Cataloging - Advanced Options

�

Visual Basic Guide Creative Assets Management

Accessing Individual Records

Each gallery typically contains one or more record
objects. If, however, it is a new gallery, it may
contain no records. Use the records properties of
the gallery class to iterate through a set of records
to manipulate the values of the fields within each
record. Records are typically referenced through the
AllRecords object. This object contains a record
object for each record in the selected gallery. Be
aware that an index represents the current order of
records within a particular gallery, so a particular
record’s index will change based on the contents
and order of the gallery.

To access a particular record in a catalog, pass in the
index number for the desired record object into the
AllRecords object.

PortObj.Gallery(1).AllRecords(x)

To get the count of all the records in a gallery, use
the Count property.

rCount = PortObj.Gallery(1).AllRecords.
Count

Be aware that this returns the number of records
in the gallery, which is not necessarily the same
as the number of records in the entire catalog.

Working with Selections

One common use of scripts (or Visual Basic
programs) is to perform operations based on the
selection of records the user has made in the
catalog. To determine which records are currently
selected, simply refer to the SelectedRecords
object within a particular Gallery object. As
with the AllRecords object, an index is used
to identify a particular record object within the
SelectedRecords object.

Example:

PortObj.Gallery(1).SelectedRecords(x)

As with the AllRecords object, SelectedRecords
also has a count property that will return
the numbers of individual records selected.
This can then be used to define a loop in
your Visual Basic code and step through
all the selected records in the gallery.

Working with Records & Selections

�

Visual Basic GuidePortfolio

Selecting items

To modify the selection, use the select and deselect
functions. The select function does not deselect the
current selection, so it may be necessary to use the
deselect function first to clear the selection.

Examples:

PortObj.Gallery(1).AllRecords(1).Select

PortObj.Gallery(1).SelectedRecords(2).
Deselect

In addition, the Gallery object has a SelectAll
function, which will set the selection point to
include every record in the gallery.

Example:

PortObj.Gallery(1).SelectAll

Changes to the selection may not be visible
on screen until the gallery is refreshed.
The selection will be accurate, but the
screen may not redraw if the items being
manipulated are already visible.

List view does not support modifying the
selection. The SelectedRecords object is
accessible, but the Select and Deselect
functions will not work.

10

Visual Basic Guide Creative Assets Management

Each Record object contains a number of Field
objects (one for each system field and one for each
custom field). A particular field is identified by
passing in the field’s name.

PortObj.Gallery(1).AllRecords(1).Field(x)

To determine a value for a field, use the Field
object’s Value property.

SDesc = PortObj.Gallery(1).AllRecords(1).
Field(“Description”).Value

To determine the number of fields in a catalog, get
the Count property of a particular record.

fldCount = PortGal.AllRecords(1).Count

Determining the fields for a catalog

Portfolio’s dynamic data structure allows the user
to customize the catalog by defining custom fields.
Since you might be working with a record structure
that contains custom data fields, it is often useful to
determine which fields are defined in a particular
catalog. To do this, step through the list of all the
field names for a particular record (any record
within a catalog will return the same results) and
examine the Name property.

Example:

fldCount = PortGal.AllRecords(1).Count

For i = 1 To fldCount

If PortObj.Gallery(1).AllRecords(1).
Fields(i).Name = “FieldName” Then

rem Found the field titled FieldName

End If

Next

Changing Field Values

One of the most powerful aspects of the Portfolio
scripting interface is the ability to not only read all
of the fields in a record, but also to modify all of the
fields (including the system fields). Be aware that
while this is a very useful tool, it is also possible to
ruin a catalog by incorrectly modifying data that
Portfolio uses to manage source files. For example,
incorrectly modifying the path of each record in a
catalog could result in Portfolio being unable to find
any records again. Setting the field value is done in
the same manner as getting the field values.

Example:

PortObj.Gallery(1).AllRecords(1).
Field(“Description”).Value = “This is the
new description”

You can also find an example of Visual Basic code
that performs a search and replay function on fields
in the Portfolio tables in the Path Change utility
application that accompanies this document.

Proceed with caution when you are learning
to manipulate the content of fields within the
Portfolio data tables. It is possible to make data
changes that could corrupt your entire catalog.
Always back up your Portfolio data before trying
to make changes to the data within the tables
from within your Visual Basic code.

Working with Fields

11

Visual Basic GuidePortfolio

Passing Field Values to Portfolio

Data Types
When programming with the Portfolio objects, all
values used to set field values should be passed to
Portfolio as strings, regardless of the data type of the
field within Portfolio. Passing the value as anything
other than a string variable or value will result in
an error. Portfolio uses its own internal validation
routines to determine whether the data being
passed in is appropriate for the field type, and that
internal process will only accept incoming string
variable data. The following example shows the Last
Updated field (a date field) being set by passing a
string value.

Keep this in mind if your application is going to
be using a declared variable. If you have a date
variable, for example, you must convert it to a string
equivalent before passing the value to Portfolio.

Example:

PortObj.Gallery(1).AllRecords(1).
Field(“Last Updated”).value = “July 4,
1776”

Multi-valued Fields
Field objects contain a set of functions for handling
multi-valued data. For reading the multi-valued list,
use the MVDataCount property to determine the
number of items in the list, and then iterate the list
using the GetMVData function to read the values.

Example:

iCount = PortObj.Gallery(1).AllRecords(1).
Field(“Keywords”).MVDataCount

For i = 1 To iCount

sValue = PortObj.Gallery(1).
AllRecords(1).Field(“Keywords”).
GetMVData(i)

rem Do something with the data

Next i

Set the Value property to add a value to the multi-
valued list. Use the DeleteMVData function to
remove a particular value, or use the DeleteData
function to remove all values from the list.

Examples:

rem Adds Dog to the keyword list

PortObj.Gallery(1).AllRecords(1).
Field(“Keywords”).Value = “dog”

rem Removes Dog from the keyword list

result = PortObj.Gallery(1).AllRecords(1).
Field(“Keywords”).DeleteMVData(“dog”)

rem Removes all the keywords from this
item

result = PortObj.Gallery(1).AllRecords(1).
Field(“Keywords”).DeleteData

12

Visual Basic Guide Creative Assets Management

How to Search

To perform a search in a Portfolio catalog, use the
find function of the Gallery object. Searches in
Portfolio are executed by passing in a text string
which represents the search criteria. The format of
the search string should follow the format used in
the Find dialog in Portfolio. The basic functionality
is shown below. See the next section for how to
formulate the query variable properly.

Function Find(SearchString As String,
AllRecords As Boolean, SetNewGallery As
Boolean) As Integer

The AllRecords attribute is the equivalent
of the Find in Gallery option of the Portfolio
Find dialog box. A value of True is the
equivalent of that box being unchecked. The
SetNewGallery attribute is the equivalent of
the Display Results in New Gallery option in
the Portfolio Find dialog box. A value of True
is the equivalent of that box being checked.

To find all the records in the catalog, simply pass in
a query that cannot fail.

Example:

PortObj.Gallery(1).Find((“Filename” &
vbTab & “starts with” & vbTab & ““),
True, False)

Building the Query

Searches in Portfolio are executed by passing a text
string to the Document object which represents
the search criteria. The structure of this query
information is the same as it is presented in the
Find dialog box within Portfolio. As in the Portfolio
Find dialog box, the basic query structure consists
of three clauses: the field, the operator, and the
value. Each of these clauses is passed in as a text
string, and the tab character separates each clause.

Example:

theQuery = “Keywords” & vbTab & “starts
with” & vbTab & “test”

PortObj.Gallery(1).Find(theQuery, True,
False)

To build a more complex search, a return character
must be used to delimit each line. In addition,
each line after the first one needs to begin with the
join condition (either “and” or “or”). Below is an
example of a two line search query:

Example:

theQuery = “Filename” & vbTab & “starts
with” & vbTab & “test” & vbNewLine &
“and” & vbTab & “Keywords” & vbTab &
“starts with” & vbTab & “key”

Searching the Catalog

13

Visual Basic GuidePortfolio

This appendix contains an alphabetical listing of
all of the members, functions and properties of
each of the Portfolio classes exposed through the
automation model.

The Portfolio Document Class:

Count as Long

Gallery(nIndex as Long) as Object [read-
only]

GetActive() as String

GetGalleryIndexFromName(GalleryName as
String) as Integer

LastError as Long

New(Path as String) as Integer

NewCatalogWithPrompt() as Integer

Open(Path As String, AccessMode As
Integer, Password As String) As Integer

OpenByUserName(Path As String,
AccessMode As Integer, UserName As
String, Password As String) As Integer

OpenServer(sAddress As String,
AccessMode As Integer, Password As
String) As Integer

OpenServerByUserName(sAddress As String,
AccessMode As Integer, UserName As
String, Password As String) As Integer

OpenServerWithPrompt(sAddress As String)
As Integer

OpenWithPrompt(sPath As String) As
Integer

SetActive(GalleryName As String) As
Integer

Visible as Boolean

The Portfolio Gallery Class:

Function Activate() As Integer

Function AddFiles(pDataObj As Unknown)
As Boolean

Function AddRecord(szFile As String,
szJPEGThumbnailFile As String,
nThumbSize As Integer, nThumbQuality As
Integer) As Object

AllRecords As Object

Busy as Long

Function Catalog(Path As String,
IncludeDirs As Boolean, bUseUserSettings
As Long) As Boolean

Appendix A:
The Portfolio Class Libraries

14

Visual Basic Guide Creative Assets Management

CatalogName as String

Function CatalogUsingOptionsPreset(Pa
th As String, szPresetName As String,
IncludeDirs As Boolean) As Boolean

Function Close() As Integer

Function CollectFiles(szFileCollec
tFolder As String, bKeepHierarchy
As Boolean, bCollectOriginals As
Boolean, nPreviewSizeInPixels As
Integer, bOrigIfNoPreview As Boolean,
bCreateArchiveCatalog As Boolean,
szCatalogPath As String, szVolumeName
As String, bOverwriteExistingCatalog
As Boolean, bIncludeBrowser As Boolean,
bIncludeUserGuide As Boolean) As Integer

Count as Long

Function CreateCustomField(szFieldNa
me As String, nFieldType As Integer,
bMultiValued As Boolean, nFieldOption As
Integer, szAdminPassword As String) As
Boolean

Function CreateCustomFieldPreDef(sz
FieldName As String, nFieldType As
Integer, bMultiValued As Boolean,
nFieldOption As Integer, bFromListOnly
As Boolean, szFieldValueList As String,
szAdminPassword As String) As Boolean

Function CreatePlaceholder(szFileName
As String, szOptionalPath As String) As
Long

Function DeleteRecord(RID As Long,
bDeleteFromCatalog As Boolean) As
Boolean

Function Find(SearchString As String,
AllRecords As Boolean, SetNewGallery As
Boolean) As Integer

GalleryName as String

Function GetRecordFromRecordID(nRecordID
As Long) As Object

Function ImportFieldValues(Path As
String, SavedSet As String) As Boolean

NumFound as Long

Options as Object

Sub RefreshView()

Function Save() As Integer

Function SaveAs(sNewName As String) As
Integer

Function SelectAll() As Integer

SelectedRecords As Object

Function Sort(FieldName As String,
Direction As Boolean) As Boolean

TotalRecordsInCatalog As Long

15

Visual Basic GuidePortfolio

The Portfolio Record Class:

Count as Long

Function Delete(bDeleteFromCatalog As
Boolean) As Boolean

Deselect() as Boolean

Sub EnsureVisible()

Function ExtractProperties() as Boolean

Property Field(FieldName as String) as
Object

Property Fields(nIndex as Long) as
Object

Function GetThumbnailData(pData, nSize
As Long) As Boolean

IsSelected as Boolean

RecordID as Long

Function RegenerateThumbnail() As
Integer

Function Select() As Boolean

Function Update() As Boolean

The Portfolio Field Class:

DeleteData() as Boolean

DeleteMVData(Value As String) As Boolean

GetMVData(nIndex As Long) As String

GetPredefinedValue(Index As Integer) As
String

GetPredefinedValueCount() As Integer

GetPredefinedValueList() as String

IsCustom as Boolean

IsIndexed as Boolean

IsMultiValue as Boolean

IsPredefined as Boolean

IsURL as Boolean

MyDataCount as Long

Name as String

Type as Integer

Value as String

16

Visual Basic Guide Creative Assets Management

The Portfolio Records Class:

Count as Long

Function GalleryCopy(nGalleryIndex as
Long)as Integer

Property Records(nIndex as Long) as
Object [read-only]

The Portfolio Selection Class:

Count as Long

Function GalleryCopy(nGalleryIndex as
Long) as Integer

Property Records(nIndex as Long) As
Object [read-only]

The Portfolio AdvancedOptions Class:

AppendDescription as Integer

ExtractMetadata as Boolean

ExtractThumbnail as Boolean

MergeKeywords as Integer

ParseKeywords as Integer

PathKeywords as Integer

SkipFiles as Boolean

ThumbnailSize as Integer

17

Visual Basic GuidePortfolio

This appendix contains some of the most frequently
asked questions about VB programming with the
Portfolio document object.

How do I add the Portfolio references
to my Visual Basic Project?

From the Project menu, select the references option.
Find the Portfolio_V8 library reference, select it and
click the OK button. The Portfolio document object
will now be included in your VB source project and
its objects and properties exposed for use in your VB
code. See the beginning of the tutorial for examples
of the code required to declare and set a Portfolio
document object within your project.

Can I use VBA or VB Script with Portfolio, or do
I have to use the full version of Visual Basic?

There are major differences in the way objects are
defined and handled in the full version of Visual
Basic and in VBA and VB Scripting. Due to these
differences, Portfolio only supports the use of the
full version of Visual Basic or Visual Basic.net.

What is the PortObj variable you keep referencing?

In all of the sample code, and this document, we’ve
used the PortObj variable name to identify the
Portfolio document object being referenced in the
code. You are free to use any variable name you
choose in your own code, but for purposes of clarity,
we use the standard object name throughout the
documentation and sample code.

Can I use the Portfolio automation library with VB.Net?

The automation object model use by Portfolio will
work with VB.net, but you need to keep in mind that
if you develop any applications using the Portfolio
automation object in VB.net, the Net Framework
will have to be installed on any machine that will be
running your application.

Where can I find the field definitions
for the Portfolio tables?

While in Portfolio, use the Customize View option
to see a full listing of fields included in a Catalog.
You can use this to select which fields you wish to
see displayed. Use this as a debugging tool when
you are writing code to edit or change field values. It
provides instant feedback to see if you code executed
the changes you expected in the field values.

If you wish to read or display the list of available
fields from within your Visual Basic application, see
the Working with Fields section of the tutorial.

APPENDIX B:
Frequent Questions and Answers

18

Visual Basic Guide Creative Assets Management

How can I tell how many Galleries are open?

You can get a count of the current open Galleries
with the following code:

PortObj.Document.Count

You need to be aware that this Count value will
return the number of all Galleries that are currently
open in all open Catalogs. For example, if you have
two open Catalogs, with three Galleries each, and
one Gallery is open in each Catalog, the Count value
you receive will be two.

Can I activate a particular Gallery from my VB code?

Yes. Use the following command:

PortObj.SetActive(“CatalogName.fdb -
GalleryName”)

Be aware that you must use the full Gallery name,
including the parent catalog. You can’t just use
the name of the Gallery itself. You can find the full
Gallery name by looking at the Gallery window’s
caption bar in Portfolio.

How can I get the Catalog name?

As you’ve probably noticed, with no Catalog class
or object there isn’t an obvious way to read the
Catalog name. Remember that the document object
is actually a collection of Galleries, and a Gallery
object has a Catalog Name property. You can use
this to read the name of the current catalog:

NameVariable = PortGal.CatalogName

You can also reference the Catalog name by looking
at the Gallery.Name property which will include the
Catalog name as part of the Gallery name definition.

For example:

Gallery Name: (“MasterCatalog.fdb -
Sample Gallery”)

Why do I keep getting errors when
trying to set field values?

See the section on Passing Field Values to Portfolio
in the tutorial. The most common cause of this error
will be that you are passing non-string values to the
Portfolio object. It expects all field values, regardless
of the type, to be passed as string values.

19

Visual Basic GuidePortfolio

Portfolio Automation Demo:

While this application provides a variety of utility
functions, its greatest value to the VB programmer
lies in the wide range of Portfolio class objects and
methods it uses. By stepping through the code as it
runs, you can follow many of the key programming
functions available to you as you learn to program
using the Portfolio document object and its classes.

Path Change Utility:

This is a helpful utility that will let you edit the
path definitions within the Portfolio database if
you have moved cataloged images from one
location to another.

You should be aware that there are two fields that
hold the path information for a record (Path and
Directory Path) and if you wish to redefine the
path info for a record you must change both of
these fields.

You can also examine the code to find an example
of how to read and write field values from within
your VB code.

Backup Utility:

This is a simple utility program that will let you back
up an existing Portfolio catalog. While it doesn’t
use any of the Portfolio automation methods, it
does provide an example of how to stop and start
the Portfolio server from within your VB code using
predefined .BAT files.

APPENDIX C:
Guide to The Sample Applications

20

Visual Basic Guide Creative Assets Management

This appendix contains an alphabetical listing of all
of the members of each Portfolio class object.

When an error occurs, the Portfolio error code
value can be found by reading the ObjectName.
LastError property. Any time a function or call
succeeds that error value is set to zero.

Use standard Visual Basic error-trapping procedures
to test and handle these errors. (See your VB
reference books if you aren’t sure how to manage
error handling within your VB application.)

KScriptNoError 0 No Error (Success)

KScriptBadPassword 1 Incorrect/Invalid Password

KScriptCatInUse 2 Catalog is currently in use and therefore cannot be
opened in this mode. This error code is not actually used in the
Portfolio client code and therefore should not be encountered.

KScriptAdminCatInUse 3 Attempting to open a Catalog in Admin
mode whilst there are other users

KScriptAdminInUse 4 Someone else is already logged in as Admin

KScriptReadOnlyAvailable 5 Catalog is only available in read-only mode,
for example on a read-only volume

KScriptServedAdminError 6 Opening a served Catalog in Admin (or Browser) mode

KScriptUnknownCatError 7 Unknown error trying to open Catalog

KScriptInvalidMode 8 Invalid mode

KScriptNoFileName 9 No Filename

KScriptDiskFull 10 Disk full

KScriptErrorCreate 11 Error creating Catalog

kScriptInvalidFieldname 12 Invalid Field name

kScriptFieldNotIndex 13 Field isn’t indexed

kScriptFieldNotMultiVal 14 Field isn’t multivalue

kScriptIndexOutOfRange 15 Index out of range

APPENDIX D:
Portfolio Programming Error Codes

21

Visual Basic GuidePortfolio

kScriptEmptyValue 16 Empty value

kScriptInvalidValueforFieldType 17 Value is invalid for given Field type

kScriptValueNotInPredefList 18 Value is not in pre-defined list

kScriptCatalogNotFound 19 Catalog could not be found

kScriptServerNotFound 20 Server could not be found

kScriptMaxServerConnected 21 Maximum allowed number server connections reached

kScriptInvalidFieldValue1 22 Invalid FieldValue Field 1

kScriptInvalidFieldValue2 23 Invalid FieldValue Field 2

kScriptInvalidGallery 24 Invalid Gallery

kScriptInvalidQuery 25 Invalid Query (Find) specification

kScriptSystemField 26 Can’t change system (built-in) Field

kScriptGalleryNotFound 27 Gallery Not Found

kScriptFieldNotPredefined 28 Field Not of pre-defined Type

kScriptInvalidCatalogOption 29 Invalid Cataloging option

kScriptInvalidHTMLSetName 30 Invalid HTML saved set name

kScriptCreatingHTMLImagesDir 31 Error Creating HTML Images Directory

kScriptCreatingHTMLFile 32 Error Creating HTML File

kScriptWritingHTMLFile 33 Error writing to HTML file

kScriptOutOfMemory 34 Out of memory

kScriptCopyError 35 Copy error (GalleryCopy)

kScriptServerDisconnect 36 Server disconnected

kScriptInvalidForFoundItems 37 Can’t perform on “found items” gallery

kScriptInvalidLoginMode 38 Attempting to open user-based catalog with level-based API

kScriptUnknownError 1000 Unknown Error opening/creating catalog

22

Visual Basic Guide Creative Assets Management

P8_VBG_0506

Visual Basic
Guide

Creative assets management

	Visual Basic and Portfolio
	Introduction to the Portfolio Automation Interface
	How to add Portfolio to your Visual Basic project
	The Portfolio Object Model:
	Creating Portfolio Objects
	Opening Catalogs
	Opening Catalogs on a Server
	Opening catalogs with User-based access
	Creating Catalogs

	Working with Catalogs
	Selecting a Gallery
	Sorting a Gallery

	Working with Galleries
	Saving A Gallery
	Adding files to a Gallery
	How to access the Advanced Options

	Cataloging - Advanced Options
	Accessing Individual Records
	Working with Selections

	Working with Records & Selections
	Selecting items
	Determining the fields for a catalog
	Changing Field Values

	Working with Fields
	Passing Field Values to Portfolio
	How to Search
	Building the Query

	Searching the Catalog
	Appendix A: The Portfolio Class Libraries
	The Portfolio Document Class:
	The Portfolio Gallery Class:
	The Portfolio Record Class:
	The Portfolio Field Class:
	The Portfolio Records Class:
	The Portfolio Selection Class:
	The Portfolio AdvancedOptions Class:

	APPENDIX B: Frequent Questions and Answers
	Portfolio Automation Demo:
	Path Change Utility:
	Backup Utility:

	APPENDIX C: Guide to The Sample Applications
	APPENDIX D: Portfolio Programming Error Codes

